
1972 ACM Tari~g
Award Led~re

[Extract from the Turing Award Ci-
tation read by M.D, McI[roy, chair-
man o/the A CM Tzer#eg A ward C'om-
mittee, at the preser~tatio~ of this
lecture on Aztgzcst 14, I972, at the
A C M A nnuaI Coe~ference in Bostoa.]

The working vocabulary of pro-
grammers everywhere is studded with
words originated or forcefully prom-
ulgated by E.W. Dijkstra-display,
deadly embrace, semaphore, go-to-
less programming, structured pro-
gramming. But his influence on pro-
gramming is more pervasive than any

glossary can possibly indicate. The
precious gift that this Turing Award
acknowledges is Dijkstra's style: his
approach to programming as a high,
intellectual challenge; his eloquent
insistence and practical demonstra-
tion that programs should be com-
posed correctly, not just debugged
into correctness; and his illuminating
perception of problems at the foun.-
dations of program design. He has
published about a dozen papers, both
technical and reflective, among which
are especially to be noted his philo-

sophical addresses at ~HP, ~ his al-
ready classic papers on cooperating
sequential processes/ and his mem-
orable indictment of the go-to state-
ment.:' An influential series of letters
by Dijkstra have recently surfaced as
a polished monograph on the art of
composing programs?

We have come to value good pro-
grams in much the same way as we
value good literature. And at the
center of this movement, creating and
reflecting patterns no less beautiful
than useful, stands E.W. Dijkstra.

The Humble
b y E d s g e r W. D i j k s t r a

Programmer

59

As a result of a long sequence
of coincidences I entered the pro-
gramming profession officially on the
first spring morning of i952, and as
far as I have been abte to trace, i
was the first Dutchman to do so in
my country, tn retrospect the most
amazing thing is the slowness with
which, at least in my part of the
world, the programming profession
emerged, a slowness which is now
hard to believe. But I am grateful for
two vivid recollections from that
period that establish that slowness
beyond any doubt.

After having programmed for
some three years, i had a discussion
with van Wijngaarden, who was then
my boss at the Mathematical Centre
in A m s t e r d a m - a discussion for
which I shall remain grateful to him
as long as I live. The point was that

Communications
of
the ACM

I was supposed to study theoretical
physics at the University of Leiden
simultaneously, and as I found the
two activities harder and harder ,to
combine, I had to make up my
mind, either to stop programming
and become a real, respectable theo-
retical physicist, or to carry my study
of physics to a formal completion
only, with a minimum of effort, and
to b e c o m e . . . , yes what? A pro-
grammer? But was that a respect-
able profession? After all, what was
programming? Where was the sound
body of knowledge that could sup-

Copyright © 1972, Association for
Computing Machinery, Inc. General per-
mission to republish, but not for profit,
all or part of this material is granted,
provided that reference is made to this
publication, to its date of issue, and to
the fact that reprinting privileges were
granted by permission of the Association
for Computing Machinery.

1,2,3,4 Footnotes are on page 866.

October 1972
Volume 15
Number 10

port tt as an mtellectuaJ!ly respectable
discipline? i remember quite vividly
how I envied my hardware col-
leagues, who, when asked about their
professional competence, could at
least point out that they knew every-
thing about vacuum tubes, ampliiiers
and the rest, whereas I felt that,
when faced with that question, I
would stand empty-handed. Full of
misgivings i knocked on van Wijn-
gaarden's office door, asking him
whether I couM speak to him for a
moment; when I left his office a
number of hours later, I was an-
other person. For after having lis-
tened to my problems patiently, he
agreed that up till that moment there
was not much of a programming
discipline, but then he went on to
explain quietly that automatic com-
puters were here to stay, that we
were just at the beginning and could
not I be one of the persons called
to make programming a respectable
discipline in the years to come? This
was a turning point in my life and
i completed my study of physics
formally as quickly as I could. One
moral of the above story is, of
course, that we must be very careful
when we give advice to younger
people: sometimes they follow it[

Two years later, in 1957, I mar-
ried, and Dutch marriage rites re-
quire you to state your profession
and I stated that i was a program-
mer. But the municipal authorities
of the town of Amsterdam did not
accept it on the grounds that there
was no such profession. An.d, be-
lieve it or not, but under the head-
ing "profession" my marriage record
shows the ridiculous entry "theo-
retical physicist"!

So much for the slowness with
which l saw the programming pro-
fession emerge in my own country.
Since then 1 have seen more of the
world, and it is my general impres-
sion that in other countries, apart
from a possibIe shift of dates, the
growth pattern has been very much
the same.

Let me try to capture the situa-
tion in those old days in a little bit
more detail, in the hope of getting
a better understanding of the situa-

tion today. While we pursue our
analysis, we shall see how many
common misunderstandings about
the true nature of the programming
task can be traced back to that now
distant past.

The first automatic electronic
computers were all unique, single-
copy machines and they were att to
be found in an environment with
the exciting flavor of an experimental
laboratory. Once the vision of the
automatic computer was there, its
realization was a tremendous chab
lunge to the electronic technology
then available, and one thing is cer-
tain: we cannot deny the couraage
of the groups that decided to try to
build such a fantastic piece of equip-
ment. For fantastic pieces of equip-
ment they were: in retrospect one
can only wonder that those first ma-
chines worked at all, at least some-
times. The overwhelming problem
was to get and keep the machine in
working order. The preoccupation
with the physical aspects of auto-
matic computing is still reflected in
the narncs of the older scientific so-
cieties in the field, such as the Asso-
ciation for Computing Machinery or
the British Computer Society, namcs
in which explicit reference is made
to the physical equipment.

What about the poor program-
mer? Well, to tell the honest truth,
he was hardly noticed. For one thing,
the first machines were so bulky that
you could hardly move them and
besides that, they required such ex-
tensive maintenance that it was quite
natural that the place where people
tried to use the machine was the
same laboratory where the machine
had been developed. Secondly, the
programmer 's somewhat invisible
work was without any glamour: you
could show the machine to visitors
and that was several orders of mag-
nitude more spectacular than some
sheets of coding. But most important
of all, the programmer himself had
a very modest view of his own work:
his work derived all its significance
from the existence of that wonderful
machine. Because that was a unique
machine, he knew only too well that
his programs had only local signifi-

cance, and also because it was pat-
ently obvious that this machine wouht
have a limited lifetime, he knew that
very little of his work would have
a lasting value. Firlally~ there is
yet another circumstance that had a
profound influence on the program-
tour's attitude toward his work: ot~
the one hand, besides being unre-
liable, his machine was us,mlty too
slow and its memory was usually
too small, i.e, he was faced with
a pinching shoe, while on the other
hand its usuaIty somewhat queer
order code would cater for the most
unexpected constructions. And in
those days many a .clever program-
mer derived an immense intellectual
satisfaction from the cunning tricks
by means of which he contrived to
squeeze the impossible into the con-
straints of his equipment.

Two opinions about program-
ruing date from those days. I men-
tion them now; I shall return to
them later. The one opinion was that
a really competent p rogrammer
should be puzzle-minded and very
fond of clever tricks; the other opin-
ion was that programming was noth-
ing more than optimizing the effi-
ciency of the computational process,
in one direction or the other.

The latter opinion was the result
of the frequent circumstance that,
indeed, the awfllable equipment was
a painfully pinching shoe, and in
those clays one often encountered
tbe naive expectation that, once more
powerful machines were available,
programming would no longer be a
problem, for then the struggle to
push the machine to its limits would
no longer be necessary and that was
all that programming was about,
wasn't it? But in the next decades
something completely different hap-
pened: more powerful machines be-
came available, not just an order
of magnitude more powerful, even
several orders of magnitude more
powerful. But instead of finding our-
selves in a state of eternal bliss with
all programming problems solved,
we found ourselves up to our necks
in the software crisis! How come?

There is a minor cause: in one
or two respects modern machinery

~i!i !~II
i~iii I

:860 Communications October 1972 .
of Volume 15
the ACM Number 10

•

is basically more difficult to handle
than the old machinery. Firstly, we
have got the ~/"o ir~terrupts, occur-

ring at unpredictable and irreproduc-
ible moments ; compared with the old
sequential machine that pretended
to be a fully deterministic automaton,
this has been a dramatic change,
and many a systems programmer 's
grey hair bears witness to ~he fact
that we should not talk lightly about
the logical problems created by that
feature. Secondly, we have got ma-
chines equ ipped with mul t i level
stores, presenting us problems of
mgmagement strategy that, in spite
of the extensive literature cm the
subject, still rcmaita rather elusive.
So much for the added complication
due to structural changes of the
actual machines.

But I called this a minor cause;
tile major cause i s . . . that the ma-
chines have become several orders
of' magnitude more powerful! To
p u t it quite bluntly: as tong as there
were no machines, programming was
no problem at all; when we had a
few weak computers, programmi~lg
became a mild problem, and now
we have gigantic cornputers, pro-
gramming has become an equally
gigantic problem. In tMs sense the
electronic industry has not solved a
single problem, it has only created
them--it has created the problem of
using its products. To put it in an-
other way: as the power of available
machines grew by a factor of more
than a thousand, society's ambition
to apply these machines grew in pro-
portion, and it was the poor pro-
grammer who found his job in this
exploded field of tension between
ends and means. The increased power
of the hardware, together with the
perhaps even more dramatic increase
in its reliability, made solutions fea-
sible that the programmer had not
dared to dream about a few years
before. And now, a few years later,
he had to dream about them and,
even worse, he had to transform
s u c h dreams into reality[Is it a

wonder that we found ourselves in
a software crisis? No, certainly not,
and as you may guess, it was even
predicted well in advance; but the

861

t rouble with m i n o r prophets , of
course,, is d:n.~t it is only /live years
later that you really know that they
had been right.

Then° in the mid sixties some-
thit~.g terdb!e happened: the com-
puters of Lilt so-called third genera-
don made their appearance. The
official literature tells us that their
price/performance ratio has been
one of the major design ob cctives.
But if you take as "performance"
the duty cycle of the machine's vari-
ous components, little will prevent
you from ending up with a design
in which the major part of your per-
t!ormance goat is reached by internal
housekeeping activities of doubtful
necessity. And if your definition of
price is the price to be paid for
the hardware, little will prevent you
from ending up with a design that
is terribly hard to program for: for
instance the order code might be
such as to enforce, either upon the
programmer or upon the system,
early binding decisions presenting
conflicts that really cannot be re-
solved. And to a large extent these
unpleasant possibilities seem to have
become reality.

When these machines were an-
nounced and their functional speci-
f ica t ions became known , many
among us must have become quite
miserable; at least I was. It was
only reasonable to expect that such
machines would flood the comput-
ing community, and it was therefore
all the more important that their de-
sign should be as sound as possible.
But the design embodied such seri-
ous flaws that I felt that with a
single stroke the progress of com-
puting science had been retarded by
at l e n t ten years; it was then that
I had the blackest week in the whole
of my p~o.fessional life. Perhaps the
most saddening thing now is that,
even fi ler all those years of frustrat-
ing experience, still so many people
honestly beEeve that some law of
natme tells us that machines have
to b:t that way. They silence their
douk;s by observing how many of
these machines have been sold, and
derive from that observation the false
sense of security that, after all, the

C o m m u n i c a t i o n s
of
the A C M

design cannot have been that bad.
But upon closer inspection, that line
of defense has the same convincing
strength as the argument that cig-
arette smoking must be healthy be-
cause so many people do it.

It is in this connection that I
regret that it is not c u s t o n l a r y for
scientific journals in the comp~ting
area to publish reviews of newly an-
nounced computers in much the same
way as we review scientific publica-
tions: to review machines would be
at least as important. And here I
have a confession to make: in the
early sixties 1 wrote such a review
with the intention of submitting it
to Communications, but in spite of
d~e fact that the few colleagues to
whom the text was sent for their aG
vice urged me to do so, I did not dare
to do it, fearing that the difficulties
either for myself or for the Editorial
Board would prove to be too great.
This suppression was an act of cow-
ardiec on my side for which t blame
myself more and more. The di:Ncul-
ties I foresaw were a consequence of
the absence of generally accepted
criteria, and although I was con-
vinced of the validity of the criteria
I had chosen to apply, I feared that
my review wouhI be refused or dis-
c a rded as "a mat te r of pe r sona l
taste." I still think that such reviews
would be extremely useful and i am
longing to see them appear, for their
accepted appearance would be a
sure sign of maturity of the com-
puting community.

The reason that I have paid the
above attention to the hardware scene
is because I have the feeling that
one of the most important aspects
of any computing tool is its influence
on the thinking habits of those who
try to use it, and because I have
reasons to believe that that influence
is many times stronger than is com-
monly assumed, Let us now switch
o u r attention to the software scene.

Here the diversity has been so
large that I must confine myself to
a few stepping stones. I am painfully
aware of the arbitrariness of my
choice, and I beg you not to draw
any conclusions with regard to my
appreciation of the many efforts that

O c t o b e r 1972
V o l u m e 15
N u m b e r 10

il/~i(~iiii%1~(~

!? ~i!iii!)i~ i!(~ / ~ ~i~,~, ,~ ,

i}! i !ii!;iiii~!i~/ii~;!:

~ii:,~ii)!i~ ~!~tii~

i~i!~!~ii!iii~i!ii~i),ili ~

~i/'~!~!!% ~

4j

wilt have to remain unmentioned.
hi the beg>lining there was the

},;Dssc in Cambridge, Engtimd, and
t think it quite inlpressive that right
froth the start the notion of a sub-
routine library played a central role
in the design of that machine and
of the way in which it should be
used. It is now nearly 25 years later
and the computing scene has changed
dramatically, but the notion of basic
software is still with us, and the
notion of the closed subroutine is
still one of the key concepts in pro-
gramming. We should recognize the
closed subroutine as one of the great-
cst software il,vcntions; it has sur-
vivcd three generations of computers
and it will survive a few more, bc-
cause it caters for the implementa-
tion of one of our basic patterns of
abstraction. Regrettably enough, its
importance has been underestimated
in the design of the third generation
computers, in which the great nurn-
her of explicitly named registers of
the arithrnetic unit implies a large
overhead on the subroutine mecha-
~lism. But even that did not kill the
concept of the subroutine, and we
can only pray that the mutation
won't prove to be hereditary.

The second major development
on the software scene that I would
l ike to mention is the birth of
FO~WaAN. At that time this was a
project of great temerity, and the
people responsible for it deserve our
great admiration. It would be abso-
lutely unfair to blame them for short-
comings that only became apparent
after a decade or so of extensive
usage: groups with a successful look-
ahead of ten years are quite rare!
tn retrospect we must rate FORTRAN
~S at SUCCessful coding technique,
but with very few effective aids to
conception, aids which are now so
urgently needed that time has come
to consider it out of date. The sooner
we can forget that FORTRAN ever ex-
isted, the better, for as a vehicle of
thought it is no longer adequate: i.t
wastes our brainpower, and it is too
risky and therefore too expensive to
~ilse. FORTRAN'S tragic fate has been
i ts wide acceptance, mentally chain-
ing thousands and thousands of pro-

~62

grammers to our past mistakes.
pray daily that more of my fellow-
programmers may find the means of
freeing themselves f rom the curse of

compatibility.
The third project ~ would not

like to leave unmentioned is Lisp,
a fascinating enterprise of a con>
pletely cliffercnt nature. With a few
very basic principles at its founda-
tion, it has shown a remarkable sta-
bility. Besides that, L~sp has been
the carrier for a considerable nun>
bcr of, in a sense, our rnost so-
phisticated compu te r applications.
I,Isp has jokingly been described as
"the most intelligent way to misuse
a computer." t think that description
a great compliment because it trans-
mits the full flavor of liberation: it
hits assisted a number of our most
gifted fellow humans in thinking
previously impossible thoughts.

The fourth project to be men-
tioned is AI.C;OL 60. While up to the
present clay FORTRAN programmers
still tend to understand their pro-
gramming language in terms of the
specific implementa t ion they are
working with-hence the prevalence
of octal or hexadecimal d u m p s -
while the definition of l.isp is still
a curious mixture of what the lan-
guage means and how the mecha-
nism works, the famous Report on
the Algorithmic Language ALGOL 60
is the fruit of a genuine effort to
carry abstraction a vital step further
and to define a programming lan-
guage in an implementation-inde-
pendent way. One could argue that
in this respect its authors have been
so successful that they have created
serious doubts as to whether it could
be implemented at all:! The report
gloriously demonstrated the power of
the formal method BNF, now fairly
known as Backus-Naur-Form, and
the power of carefully phrased Eng-
lish, at least when used by some-
one as brilliant as Peter Naut. I
think that it is fair to say that only
very few documents as short as this
have had an equally profound in-
fluence on the computing commu-
nity. The ease with which in later
years the names ALGOL and ALGOL-
like have been used, as an unpro-

Communications
of
the ACM

tected trademark, to lend glory to
a number of sometimes haldly re-
lated younger projects is a some.
what shocking compliment to ALooL's
statacling. The strength of ~Nir as a
defining device is responsible for
what ~ regard as one of the Weak.
nesses of the language: an over-
elaborate and not to(> systematic
syntax could now be crammed ittto
the confines of very few pages. With
a device as powerful as BNF, the
Report on the Algorithmic Lan-
guage At.eel. 60 should have been
much shorter. Besides that, I am
getting very doubtful about AI.GOl.
60% parameter mechanism: it al-
lows the prograrnmcr so much con>

binatorial freedom that its conlident
use requhTes a strong discipline from
the programmer. Besides being ex-
pensive to implenaent, it seems dan-
gerous to use.

Finally, although the subject is
not a pleasant oilo, t must nlention

PL/t, a progranlming hmguage for
which the dctining documentation is
of a frightening size and complexity.
[)sing PL/~ mast be like flying a
piano with 7,000 buttons, switches.
and handles to manipulate in the
cockpit. I absolutely fail to see how
we can keep our growing programs
firmly within our intellectual grip
when by its sheer baroqueness the
p rog ramming l a n g u a g e - o u r basic
tool, mincl y o u ! - a l r e a d y escapes
our intellectual control. And if I
have to describe the influence eL/l
can have on its users, the closest
metaphor that comes to my mind
is that of a drug. I remember
from a symposium on higher level
programming languages a lecture
given in defense of eL/I by a man
who described himself as one of its
devoted users. But within a one-hour
lecture in praise of eL/L he man-
aged to ask for the addition of about
50 new "features," little supposing
that the main source of his problems
could very well be that it contained
already far too many "features."
The speaker displayed all the de-
pressing symptoms of addiction, re-
duced as he was to the state of
mental stagnation in which he could
only ask for more, more, more

October 1972
Volume 15
Number 10

When VOIZTRAN has been called an
i~fa~ltile disorder, full >*JI, with
its growth characteristics of a dan-
gerous t t . t m o r , c o u l d t u r n ou l t t o be
a fataI disease.

So much for the past. But there
is no point in making mistakes un-
less thereafter we are able to learn
front them. As a matter of fact, I
think that we have learned so much
that within a few years program-
ruing can be a~? activity vastly dif-
terent from what it has been up
tilt now, so dilt'erent that we had
better p repa re our se lves for the
shock. I.et me sketch for you one of
the possible futures. At first sight,
this vision of programming in per-
haps already tile near future may
strike you as utterly fantastic. Let
me therefore also .add the considera-
tions that might lead one to the con-
clusion that this vision could be a
very real possibility.

Tile vision is that, well before
the seventies have run to comple-
tion, we shall be able to design and
implement the kind of systems that
are now straining our programming
ability at the expense of only a few
percent in man-years of what they
cost us now, and that besides that,
these systems will be virtually free of
bugs. These two improvements go
hand in hand. In the latter respect
software seems to be different from
many other products, where as a rule
a higher quality implies a higher
price. Those who want really reli-
able software will discover that they
must find means of avoiding the
majority of bugs to start with, and
as a result the programming process
will become cheaper. If you want
more effective programmers, you will
discover that they should not waste
their time debugging- they should
not introduce the bugs to start with.
In other words, both goals point to
the same change.

Such a drastic change in such
a short period of time would be a
revolution, and to all persons that
base their expectations for the future
on smooth extrapolation of the re-
cent pas t -appea l ing to some unwrit.-
ten laws of sociaI and cultural in-
er t ia- the chance :that this drastic

cha~?ge will take place must seem
negligible. But we all know that
sometimes revolutions do take place!
And what are tlle chances for this
o n e ?

There seem to be three major
coHditions that must be fulfilled. The
world at large must recognize the
need for the change; secondly, the
economic need for it must be suf-
ficiently strong; and, thirdly, the
change must be technically feasible.
Let me discuss these three conditions
in the above order.

With respect to the recognition
of Ihe need for greater reliabilii:y of
software, I expect no disagreement
anymore. Only a few years ago this
was different: to talk about a soft-
ware crisis was blasphemy. The turn-
ing point was tile Conference on
Software Engineering in Garmisch,
October 1968, a conference that
created a sensation as there occurred
the first open admission of the soft-
ware crisis. And by now it is gen-
erally recognized that the design of
any large sophisticated system is go-
ing to be a very difficult job, and
whenever one meets people respon-
s ine for such undertakings, one finds
them very much concerned about
the reliability issue, and rightly so.
In short, our first condition seems
to be satisfied.

N o w for the e c o n o m i c need.
Nowadays one often encounters the
opinion that in the sixties program-
ruing has been an overpaid profes-
sion, and that in the coming years
programmer salaries may be expected
to go down. Usually this opinion is
expressed in connection with the re-
cession, but it could be a symptom
of something different and quite
healthy, viz. that perhaps the pro-
grammers of the past decade have
not done so good a job as they
should have done. Society is getting
dissatisfied with the performance of
programmers and of their products.
But there is another factor of m u c h
greater weight. In the present situa-
t ion it is quite usual that for a
specific system, the price to be paid
for the development of the software
is of the same order of magnitude
as the price of the hardware needed,

and society more or less accepts
that. But hardware manufacturers
tell us that in the next decade hard-
ware prices can be expected to drop
with a factor of ten. If software de-
velopment were to continue to be
the same c lumsy and expens ive
process as it is now, things would
get completely out of balance. You
cannot expect society to accept this,
and therefore we ~t,st learn to pro-
gram an order of magnitude more
effectively. To put it in another way:
as long as machines were the largest
item on the budget, the program-
ruing profession could get alway with
its clumsy techniques; but that um-
brella will fold very rapidly. In short,
also our second condition seems to
be satisfied.

And now the third condition: is
it t echn ica l ly feasible? I think it
might be, and I shall give you six ar-
guments ill support of that opinion.

A study of program structure
has revealed that p rog rams-even al-
ternative programs for the same task
and with the same mathematical con-
t en t -can differ tremendously in their
intellectual manageability. A num-
ber of rules have been discovered,
violation of which will either seri-
ously impair or totally destroy the
intellectual manageability of the pro-
gram. These rules are of two kinds.
Those of the first kind are easily
imposed mechan ica l ly , viz. by a
suitably chosen programming lan-
guage. Examples are the exclusion
of gore-statements and of procedures
with more than one output para-
meter. For those of the second kind,
I at l eas t -bu t that may be due to
lack of competence on my s ide -
see no way of imposing them m e -
chanical ly , as it seems to need some
sort of automat ic theorem prover
for which I have no ex is tence proof.
Therefore, for the time being and
perhaps forever, the rules of the
s e c o n d k i n d present themselves as
elements of discipline required from
the programmer. Some of the rules
I have in mind are so clear that they
can be taught and that there never
n e e d s to be an a r g u m e n t as to
whether a given program violates
them or not. Examples are the re-

;i~!i~iii I~

ill! ~!ii ~ ;i

i: ~i~:!~i ~

t

863 Communications
of
the ACM

October 1972
Volume 15
Number 10

quirements that no loop should be
written down without providing a
proof for termination or without
stating the relation whose invariance
will not be destroyed by the execu.-
tion of the repeatable statement,

I now suggest that we confine
ourselves to the design and imple-
mentation of intellectually manage-
able programs. If someone fears that
this restriction is so severe that we
cannot live with it, I can reassure
him: the class of intellectually man-
ageable program.s is still sufficiently
rich to contain many very realistic
programs for any problem capable
of algorithmic solution, We must
not forget that it is ~ot our business
to make programs; it is our busmess
to design classes of computations
that will display a desired behavior.
The suggestion of confining ourselves
to intellectually manageable programs
is the basis for the first two of my
announced six arguments.

Argument one is that, as the
programmer only needs to consider
intellectually manageable programs,
the alternatives he is choosing from
are much, much easier to cope with.

Argument two is that, as soon
as we have decided to restrict our-
selves to the subset of the intellectu-
ally manageable programs, we have
achieved, once and for all, a drastic
reduction of the solution space to
be considered. And this argument is
distinct from argument one.

Argument three is based on the
constructive approach to the prob-
lena of program correctness. Today
a usual technique is to make a pro-
gram and then to test it. But: pro-
gram testing can be a very effective
way to show the presence of bugs,
but it is hopelessly inadequate for
showing their absence. The only ef-
fective way to raise the confidence
level of a program significantly is
to give a convincing proof of its cor-
rectness. But one should not first
make the program and then prove
its correctness, because then the re-
quirement of providing the proof
would only increase the poor pro-
grammer 's burden. On the con-
trary: the programmer should let
co r rec tness p r o o f and p r o g r a m

864

grow .hand in hand. Argument three
is essentially based on the following
observat ion if one first asks oneself
what the str~cture of a convincing
proof would be and, having found
this, then constucts a program satis-
fying this proof's requirernents, then
these correctness concerns turn out
to be a very effective heuristic guid..
ance. By definition this approach is
only applicable when we restrict our-
selves to intellectually manageable
programs, but it provides us with
effective means for finding a satis-
factory one among these.

Argument four has to do with
the way in which the amount of in-
tellectual effort needed to design a
program depends on the program
length. It has been suggested that
there is some law of nature telling us
that the amount of intellectual effort
needed grows with the square of
program length. But, thank good-
ness, no one has been able to prove
this law, And this is because it need
not be true. We all know that thc
only mental tool by means of which
a very finite piece of reasoning can
cover a myriad of cases is called
"abstraction"; as a result the effec-
tive exploitation of his powers of
abstraction must be regarded as one
of the most vital activities of a
competent programmer. In this con-
nection it might be worthwhile to
point out that the purpose of ab-
stracting is not to be vague, but to
create a new semantic level in which
one can be absolutely precise. Of
course I have tried to find a funda-
mental cause that would prevent our
abstraction mechanisms from being
sufficiently effective. But no matter
how hard I tried, I did not find such
a cause. As a result I tend to the
assumption--up till now not disproved
by exper ience- that by suitable ap-
plication of our powers of abstrac-
tion, the intellectual effort required
to conceive or to understand a pro-
gram need not grow more than pro-
portional to program length. A by-
product of these investigations may
be of much greater practical signifi-
cance, and is, in fact, the basis of
my fourth argument. The by-product
was the identification of a number

Communicat ions
of
the ACM

of patterns of abstraction that play
a vital role in the whole process
of composing programs. Enough is
known about these patterns of ab-
straction that you could devote a
tecture to each of them. What the
familiarity and conscious knowledge
of these patterns of abstraeti<m irr>
ply dawned upon me when I realized
that, had they been common knowl--
edge 15 years ago, the step from
~NF to syntax-directed compilers, for
instance, could have taken a few
minutes instead of a few years. There-
fore I prescott our recent knowledge
of vital abstraction patterns as the
fourth argument.

Now for the fifth argument. It
has to do with the b~fluence of the
tool we are trying to use upon our own
thinking habits. I observe a cultural
tradition, which in all probability
has its roots in the Renaissance, to
ignore this influence, to regard the
human mind as the supreme and
autonomous master of its artifacts.
But if I start to analyze the thinking
habits of myself and of my fel-
low human beings, I come, whether
I like it or not, to a completely dif-
ferent conclusion, wig. that the tools
we are trying to use and the lan-
guage or notation we are using to
express or record our thoughts arc
the major factors determining what
we can think or express at all! The
analysis of the influence that pro-
gramming languages have on the
thinking habits of their users, and
the recognition that, by now, brain-
power is by far our scarcest re-
source, these together give us a new
collection of yardsticks for compar-
ing the relative merits of various
programming languages. The com-
petent programmer is fully aware of
the strictly limited size of his own
skull; therefore he approaches the
programming task in full humility,
and among other things he avoids
clever tricks like the plague. In the
case of a well-known conversational
programming language I have been
told from various sides that as soon
as a programming community is
equipped with a terminal for it, a
specific phenomenon occurs that even
has a well-established name: it is

October 1972
Volume 15
Number t0

!

!
i

called "the one-liners." ;it takes o~e
of two different forms: one program-
me* plaices a one-line program o n

the desk of another and Either he
proudly telis what it does and adds
Ihe question, "Can you code this in
less symbo!s?" -as if this were of
,sly conceptual rctcvance[--or he just
says, "'Guess what it does!" From
this observation we must conclude
that this language as a tool is an
open invitation for clever tricks; and
while exactly this may be the ex-
planation for some of its appeal,
i'ic. to those who like to show how
clever they are, 1 am sorry, but
I must regard this as one of the
most ctarnning things that can be
said about a p r o g r a m m i n g lan-
guage. Another lesson we should
have learned from the recent past is
that the development of "r icher" or
'more powerful" prograrnnling hm-
guages was a mistake in the sense
that these ba roque monstrosi t ies,
these conglomerations of idiosyn-
crasies, are really unmanageable, both
mechanically and mentally. I see a
great future :for very systematic and
very modest programming languages.
When I say "modest ," I mean that,
for instance, not only ALGOL 60'S
"for clause," but even FORTRAN'S "DO
loop" may find themselves thrown
out as being too baroque. I have run
a little programming experiment with
really experienced volunteers, but
something quite unintended and quite
unexpected turned up. None of my
volunteers found the obvious and
most elegant solution. Upon closer
analysis this turned out to have a
common source: their notion of rep-
etition was so tightly connected to
the idea of' an associated controlled
variable to be stepped up, that they
were mentally blocked from seeing
the obvious. Their solutions were
less efficient, needlessly hard to un-
derstand, and it took them a very
long time to find them. It was a re-
vealing, but also shocking experi-
ence for me. Finally, in one respect
one hopes that tomorrow's program-
ming languages will differ greatly
from what we are used to now: to
a much greater extent than hitherto
they should invite us to reflect in

865

the structure of what we write down
all abstractions needed to cope con-
ceptually whh the complexity of what
we are designing. So much for tile
greater adequacy of our future tools,
which was the basis of the fifth
argument.

As an aside I would like to in-
sert a warning to those who identify
the difficulty of the programming
task with the struggle against the
inadequacies of our current tools,
because they might conclude that,
once our tools will be nmch more
adequate, programming will no longer
be a problem. Programming will re-
main very difficult, because once we
have freed ourselves from tile cir-
cumstantial cumbersomeness, we will
find ourselves free to tackIe the
probIems that are now well beyond
our programming capacity.

You can quarrel with my sixth
argument, for it is not so easy to
collect experimental evidence for its
support, a fact that will not prevent
me from believing in its validity. Up
till now I have not mentioned the
word "hierarchy," but I think that
it is fair to say that this is a key
concept for all systems embodying a
nicely factored solution. 1 could ever,
go one step further and make an
article of faith out of it, >'iz. that
the only problems we can really
solve in a satisfactory manner are
those that finally admit a nicely fac-
tored solution. At first sight this
view of human limitations may strike
you as a rather" depressing view of
our predicament, but I don' t feel it
that way. On the contrary, the best
way to learn to live with our limita-
tions is to know them. By the time
that we are sufficiently modest to try
factored solutions only, because the
other efforts escape our intellectual
grip, we shall do our utmost to avoid
all those interfaces impairing our abil-
ity to factor tile system in a helpful
way. And I can not but expect that
this will repeatedly lead to the dis-
covery that an initially untractable
problem can be factored after all.
Anyone who has seen how the ma-
jority of the troubles of the compil-
ing phase called "code generation"
can be tracked down to funny prop-

Communications
of
the ACM

erties of the order code will know
a simple example of the kind of
things I have in mind. The wider
applicability of nicely factored solu-
tions is my sixth and last argument
for the technical feasibility of the
revolution that might take place in
the current ciecacle,

In principle I leave it to you to
decide for yourself how nmch weight
you are going to give to my con-
siderations, knowing only too well
that i can force no one else to share
my beliefs. As in each serious revolu-
tion, it will provoke violent opposi-
tion and one can ask oneself where
to expec t tile conse rva t ive forces
trying to counteract such a develop-
ment. I don ' t expect them primarily
in big business, not even in the com-
puter business; I expect them rather
in the educational institutions that
provide today's training and in those
conservative groups of computer
users that think their old programs
so important that they don' t think it
worthwhile to rewrite and improve
them. In this connection it is sad
to observe that on many a university
campus the choice of the central
computing facility has too often been
deternfined by the demands of a few
estabIished but expensive applica-
tions with a disregarcl of the ques-
tion, how many thousands of "small
users" who are willing to write their
own programs are going to suffer
f rom this choice . T o o often, for
instance, high-energy physics seems
to have blackmailed the scientific
community with the price of its re-
maining experimental equipment.
The easiest answer, of course, is a
fiat denial of the technical feasibility,
but I am afraid that you need pretty
strong arguments for that. No reas-
surance, alas, can be obtained from
the remark that the intellectual ceil-
ing of today's average programmer
will prevent the revolution from tak-
ing place: with others programming
so much more effectively, he is liable
to be edged out of the picture any-
way.

There ,nay also be political im-
pediments. Even if we know how
to educate tomorrow's professional
programmer, it is not certain that

Octobei 1972
Volume 1.5
Number 10

~)~i ~, ~i

y

! ii/i ~

h

a l l !~ ii!!

i ii

.li~i!i!;!!;/. ~;!!i}{~!)iii !

!ii

<

the society we are living in will allow
us to do so. The f i r s t effect of teach-
ing a me thodo logy - r a the r thm~ dis-
seminating knowledge - i s that of en-
hancing tlne capacities of the already
capable, thus magnifyi~/g the differ-
once in intelligence, hl a society in
which the educational system is used
as an instrumcrtt for the establish-
ment of a homogeuized cnkure, in
which the cream is prevented from
rising to the top the education of
competent programmers coukt be
politically unpalatable.

Let m c conclude. Automatic com-
puters have now been with us for
a quarter of a century. They have
had a great impact on our society
hi their capacity of tools, but in that
capacity their influence will be but
a ripple on the sttrface of our cul-
ture compared with the much more
profound intk~ence they wilt have in
their capacity of intdlectual chal-
lenge which will be without precc-
delqt in the ctt/tural history of man-
kind. Hierarchical systems seem to
have the property that something
considered as an undivided entity on
one level is considered as a con>
posito object o n thc next lOWEr level
of greater detail; ;.is a result the
natural grain of' space or time that
is applicable at each level decreases
by an order of magnitude when we
shift out" attention fronl one level to
the next lower one. We mlderstand
walls in terms of bricks, bricks in
terms of crystals, crystals in terms
of molecules, etc. As a result the
number of levels that can be distin-
guished meaningfully in a hierarchical
system is kind of proport ional to the
logarithm of the ratio between the
largest and the smallest grain, and
therefore, unless this ratio is very
large, we cannot expect many levels.
In computer programming our basic
building block lms an associated time
grain of less than a microsecond,
but our program may take hours of

computat ion time. t do not know
of any other technology covering a
ratio of 10" or more: the computer ,
by virtue of its fantastic speed, seems
to be the lirst to provide us with an
environnlcnt where highly hierarch-
ical artifacts arc both possibte and
~lecessary. This challenge, yiz. the
c o n f r o n t a t i o n with the p r o g r a m -
ruing task, is so unique chat this
novel experience can teach as a lot
about ourselves, tt should deepen
our understanding of the processes
of design and creation; it should give
us better control over the task of
organizing ore" thoughts. If it did
not do so, to my taste we should
not deserve the computer at all[

It has already taught us a few
lessons, and the one I have chosen
to stress in this talk is the %llow-
ing. We shall do a much better pro-
g r a m m i n g job , provic ted tha t we
approach the task with a full appre-
ciation of its t remendous diflicuIty,
provided that we stick to modest
and elegant programming languages,
provided that we respect the intrhlsic
limitations of the human rnind and
approach the task as Very H u m b b
Programmers.

[References to the following foot-
notes are found in the extract from the
Turing Award citation on page 859.]
aSome meditations on advanced program-
ruing, Proceedings of the IFIP Congress
1962, 535-538; Programming considered
as a human activity, Proceedings of the
IFIP Congress 1965, 213-217.
~Solution of a problem in concurrent pro-

866

gramming, control, CACM 8 (Sept. 1965),
569; The structure of the "THE" multi-
programming system, CACM l 1 (May,
1968), 341-346.
aGo to statement considered harmful,
CACM 11 (Mar. 1968), 147-148.
*A short introduct ion to the art of
computer programming, Technische Hoge-
school, Eindhoven, 1971.

Communications
of
the ACM

October 1972
Volume 15
Number 10

