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Preface to Volumes I and II 

A Guide to the Primer 

This text is a primer in the best sense of the word: A book which pres- 
ents the basic elements of a subject. In other respects, I have sought to 
write a different kind of text, breaking with what I regard as an unfor- 
tunate tradition in teaching formal logic. From truth tables through com- 
pleteness, I seek to explain, as opposed to merely presenting my subject 
matter. Most logic texts (indeed, most texts) put their readers to sleep 
with a formal, dry style. I have aimed for a livelier lecture style, which 
treats students as human beings and not as knowledge receptacles. In a 
text, as in the classroom, students need to be encouraged and to hear 

their difficulties acknowledged. They need variation in pace. They need 
shifts in focus among “I,” “we,” and “you,” just as most of us speak in the 
classroom. From time to time students simply need to rest their brains. 

One fault of logic textbooks especially bothers me: Some authors feel 
so concerned to teach rigor that they end up beating their students over 
the head with it. I have not sacrificed rigor. But I have sought to cultivate 
it rather than rubbing it in. 
Now to the contents of the Primer. Volume I presents sentence logic. 

Volume II, Part I lays out predicate logic, including identity, functions, 
and definite descriptions; Part II introduces metatheory, including math- 
ematical induction, soundness, and completeness. The text includes com- 

pletely independent presentations of Fitch-style natural deduction and 
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the tree method as developed by Richard Jeffrey. I have presented the 
material with a great deal of modularity. 

I have presented the text in two volumes to maximize flexibility of use 
in a variety of courses. Many introductory courses cover a mix of informal 

and formal logic. Too often I have heard instructors express dissatisfac- 
tion with what they find available for the formal portion of such a course. 
Volume I provides a new option. Using it in tandem with any of the many 
available inexpensive informal texts, instructors can combine the best of 

both subjects. Volume I will present a serious-minded introduction to for- 
mal logic, which at the same time should prove accessible and encourag- 
ing to those students who will never again take another logic course. The 
relatively small numbers who continue to a second course, devoted exclu- 
sively to formal logic, need only purchase Volume II to build on the foun- 
dation already laid. 
The Primer incorporates a number of unusual features. Chapters 1, 3, 

and 4 emphasize the concept of a truth function. Though the idea is sim- 
ple once you get it, many students need several passes. The optional sec- 
tion 3-4, on disjunctive normal form and the Scheffer stroke, serves the 

didactic function of providing yet more drill on truth functionality. 
Following Richard Jeffrey, I have thoroughly presented ‘&’, ‘v’, and ‘~’ 

before treating ‘D’ and ‘=’. ‘&’, V’, and ‘~’ are much less controversial 

correlates of their English counterparts than is ‘D’. Using '&', V and ‘~’ 
as a vehicle for introducing the idea of a truth function, I can deal hon- 
estly with the difficulties of giving a truth functional formulation of con- 
ditionals. In turn, this honest examination provides further drill with the 
concept of a truth function. 

Sentences in English and logic often do not correspond very accurately. 
Consequently, I speak of transcription, not translation between logic and 
English. I treat sentence logic transcription quite briefly in chapter 1 of 
Volume I and further in the short, optional chapter 2. Predicate logic 
transcription gets a minimal introduction in chapter 1 of Volume II and 
then comes in for a thorough workout in chapter 4, also optional. There 

I deal with the subject matter of domains and the traditional square of 
opposition by using the much more general method of restricted quanti- 
fier subscripts and their elimination. This technique provides an all-pur- 
pose tool for untangling complicated transcription problems. Chapter 4 
of Volume II also examines quantificational ambiguity in English, which 
most logic texts strangely ignore. . 

Training in metatheory begins in Volume I, chapter 1. But the training 
is largely implicit: I use elementary ideas, such as metavariables, and then 
call attention to them as use makes their point apparent. After thorough 
preparation throughout the text, chapter 10 of Volume II brings together 
the fundamental ideas of metatheory. 
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Standard treatments of sentence logic present sentence logic semantics, 
in the form of truth tables, before sentence logic derivation rules. Only in 
this way do students find the rules clearly intelligible, as opposed to 
poorly understood cookbook recipes. Often texts do not follow this heu- 
ristic for predicate logic, or they do so only half-heartedly. Presumedly, 
authors fear that the concept of an interpretation is too difficult. How- 
ever, one can transparently define interpretations if one makes the sim- 
plifying assumption of including a name for each object in an interpreta- 
tion’s domain, in effect adopting a substitutional interpretation of the 
quantifiers. I further smooth the way by stressing the analogy of form 
and function between interpretations and truth value assignments in sen- 
tence logic. 

This approach is ample for fixing basic ideas of semantics and for mak- 
ing predicate logic rules intelligible. After introducing predicate logic syn- 
tax in Volume II, chapter 1, and semantics in chapters 2 and 3, tree rules 
are almost trivial to teach; and derivation rules, because they can be better 

motivated, come more easily. I have clearly noted the limitation in my 
definition of an interpretation, and I have set students thinking, in an 
exercise, why one may well not want to settle for a substitutional interpre- 
tation. Finally, with the ground prepared by the limited but intuitive def- 
initions of chapters 2 and 3 of Volume II, students have a relatively easy 
time with the full characterization of an interpretation in chapter 15. 

No one has an easy time learning—or teaching—natural deduction 
quantifier rules. I have worked hard to motivate them in the context of 
informal argument. I have made some minor modifications in detail of 
formulation, modifications which I believe make the rules a little easier to 

grasp and understand. For existential elimination, I employ the superfi- 
cially restrictive requirement that the instantiating name be restricted to 
the sub-derivation. I explain how this restriction works to impose the 
more complex and traditional restrictions, and I set this up in the presen- 
tation so that instructors can use the more traditional restrictions if they 
prefer. 

For the proof of completeness of the natural deduction system I have 
fashioned my own semantic tableau proof. I believe that on its own it is 
at least as accessible as the Henkin and other more familiar proofs. In 
addition, if you do tree completeness first, you can explain the natural 
deduction completeness proof literally in a few minutes. 

I have been especially careful not to dive into unexplained proofs of 
soundness and completeness. Instructors will find, in separate sections, 
informal and intuitive explanations of the sentence logic proofs, unen- 
cumbered with formal details, giving an understanding of how the proofs 
work. These sections require only the first short section of the induction 
chapter. Instructors teaching metatheory at a more elementary level may 
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want to conclude with some of these sections. Those ready for the tonic 
of rigor will ind much to satisfy them in the succeeding sections. 

In some chapters I have worked as hard on the exercises as on the text. 
I have graded the skill problems, beginning with easy comprehension 
checkers, through skill builders, to some problems which will test real skill 
mastery. I think few will not find enough problems. 

Exercises should exercise understanding as well as skills. Any decent 
mathematics text puts problems to this task, as well as uses them to pres- 
ent auxiliary material. Too few logic texts fall in this tradition. I hope that 
students and instructors will enjoy my efforts in some of the exercises to 
introduce auxiliary material, to lay foundations for succeeding material, 
to engage creative understanding, and to join in the activity of conceptual 
exploration. 

For teaching plans the key word is “modularity.” Those using just Vol- 
ume I in an informal/formal course may teach chapters 1, 2 (optional), 3, 

and 4 to introduce sentence logic. Then, as taste and time permit, you 
may do natural deduction (chapters 5, 6, and 7) or trees (chapters 8 and 

9), or both, in either order. 

Volumes I and II together provide great flexibility in a first symbolic 
logic course. Given your introduction of sentence logic with chapters 1, 3, 
and 4 of Volume I and grounding of predicate logic with chapters 1, 2, 
and 3 of Volume II you can do almost anything you want. I have made 
treatment of derivations and trees completely independent. You can run 
through the one from sentence to predicate logic, and then go back and 
do the other. Or you can treat both natural deduction and trees for sen- 
tence logic before continuing to predicate logic. You can spend up to two 
weeks on transcription in chapter 2 of Volume I and chapter 4 of Volume 
II, or you can rely on the minimal discussion of transcription in the first 
chapters of Volumes I and II and omit chapter 2 of Volume I and chap- 
ter 4 of Volume II altogether. l 

If you do both trees and natural deduction, the order is up to you. 
Trees further familiarize students with semantics, which helps in explain- 
ing natural deduction rules. On the other hand, I have found that after 
teaching natural deduction I can introduce trees almost trivially and still 
get their benefit for doing semantics and metatheory. 

Your only limitation is time. Teaching at an urban commuter univer- 
sity, in one quarter I cover natural deduction (Volume I, chapters 1, 2, 3, 
4, 5, 6, 7; Volume II, chapters 1, 2, 3, 5, and perhaps 6), or trees and 
sentence logic natural deduction (Volume I, chapters 1, 2, 3, 4, 8, 9; Vol- 

ume II, chapters I, 2, 3, 7, 8; Volume I, chapters 5, 6, and 7). A semester 
should suffice for all of Volume I and Volume II through chapter 8, and 
perhaps 9. Again, you may want to follow the chapter sequencing, or you 
may want to do natural deduction first; all the way through predicate 
logic, or trees first. 
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If you do just natural deduction or just trees you have more time for 
identity, functions, definite descriptions, and metatheory. Chapter IO of 
Volume II, basic metatheoretical concepts, can provide a very satisfying 
conclusion to a first course. A two quarter sequence may suffice for all of 
the metatheory chapters, especially if you do not do both natural deduc- 
tion and trees thoroughly. To this end the metatheory chapters cover 
soundness and completeness for both natural deduction and trees inde- 
pendently. Or, you may choose to end with the sections presenüng the 
informal explanations of induction and the soundness and completeness 
proofs. The text will provide a leisurely full year course or a faster paced 
full year course if you supplement it a bit at the end of the year. 

I want to mention several features of my usage. I use single quotes to 
form names of expressions. I depart from logically correct use of quota- 
tion marks in one respect. In stating generalizations about arguments I 
need a formulation which makes explicit use of metavariables for premise 
and conclusion. But before chapter 10 of Volume II, where I make the 
metalanguage/object language distinction explicit, I do not want to intro- 
duce a special argument forming operator because I want to be sure that 
students do not mistake such an operator for a new symbol in the object 
language. Consequently I use the English word 'therefore'. I found, how- 
ever, that the resulting expressions were not well enough set off from 
their context. For clarity I have used double quotes when, for example, I 
discuss what one means by saying that an argument, "X. Therefore Y." is 
valid. 
Throughout I have worked to avoid sexist usage. This proves difficult 

with anaphoric reference to quantified variables, where English grammar 
calls for constructions such as 'If someone is from Chicago he likes big 
cities.’ and ‘ Anyone who loves Eve loves himself.’ My solution is to em- 
brace grammatical reform and use a plural pronoun: 'If someone is from 
Chicago they like big cities.’ and ‘Anyone who loves Eve loves themself.’ I 
know. It grates. But the offense to grammar is less than the offense to 
social attitudes. As this reform takes hold it will sound right to all of us. 

I thank the many friends and family who have actively supported this 
project, and who have born with me patiently when the toil has made me 
hard to live with. I do.not regard the project as finished. Far from it. I 
hope that you—instructors and students—will write me. Let me know 
where I am still unclear. Give me your suggestions for further clarifica- 
tion, for alternative ways to explain, and for a richer slate of problems. 
Hearing your advice on how to make this a better text will be the best 
sign that I have part way succeeded. 

Paul Teller 
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Basic Ideas and Tools 1l 

1-1. LOGIC AS THE SCIENCE OF ARGUMENT 

Adam is happy, or so I tell you. If you don't believe me, I try to convince 
you with an argument: Adam just got an ‘A’ on his logic exam. Anyone 
who gets an ‘A’ on an exam is happy. So Adam is happy. A logician would 
represent such an argument in this way: 

(1) a) Adam just got an ‘A’ on his logic exam. 
Remes b) Anyone who gets an ‘A’ on an exam is happy. 

Conclusion c) Adam is happy. 

We ordinarily think of an argument as an attempt to convince someone 
of a conclusion by offering what a logician calls premises, that is, reasons 
for believing the conclusion. But in order to study arguments very gen- 
erally, we will characterize them by saying: 

An Argument is a collection of declarative sentences one of which is called 
the conclusion and the rest of which are called the premises. 

An argument may have just one premise, or it may have many. 

By declarative sentences, I mean those, such as ‘Adam is happy.’ or 

I 
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‘Grass is green.’, which we use to make statements. Declarative sentences 

contrast with questions, commands, and exclamations, such as ‘Is Adam 
happy?’, ‘Cheer up, Adam!’ and ‘Boy, is Adam happy!’ Throughout this 
text I will deal only with declarative sentences; though if you continue 

your study of logic you will encounter such interesting topics as the logic 
of questions and the logic of commands. 

For an argument to have any interest, not just any premises and conclu- 
sion will do. In any argument worth its name, we must have some con- 
nection or relation between the premises and conclusion, which you can 
think of intuitively in this way: 

Ordinarily, the premises of an argument are supposed to support, or give 
us reasons, for believing the conclusion. 

A good way of thinking about logic, when you are beginning to learn, 
is to say that logic is the study of this reason-giving connection. I like to 
say, more generally, that logic is the science of arguments. Logic sets out 
the important properties of arguments, especially the ways in which ar- 
guments can be good or bad. Along the way, logicians also study many 
things that are not themselves arguments or properties of arguments. 
These are things which we need to understand in order to understand 
arguments clearly or things which the study of arguments suggests as re- 
lated interesting questions. 

In order to see our subject matter more clearly, we need to distinguish 
between inductive and deductive arguments. Argument (1) is an example 
of a deductive argument. Compare (1) with the following: 

(2) a) Adam has smiled a lot today. 
b) Adam has not frowned at all today. 
c) Adam has said many nice things to people 

today, and no unfriendly things. 

d) Adam is happy today. 

The difference between arguments (1) and (2) is this: In (1), without 

fail, if the premises are true, the conclusion will also be true. I mean this 

in the following sense: It is not possible for the premises to be true and 
the conclusion false. Of course, the premises may well be false. (I, for one, 

would suspect premise (b) of argument (1).) But in any possible situation 
in which the premises are true, the conclusion will also be true. 

In argument (2) the premises relate to the conclusion in a different 
way. If you believe the second argument’s premises, you should take 
yourself to have at least some fairly good reasons for believing that the 
conclusion is true also. But, of course, the premises of (2) could be true 
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and the conclusion nonetheless false. For example, the premises do not 
rule out the possibility that Adam is merely pretending to be happy. 

Logicians mark this distinction with the following terminology: 

Valid Deductive Argument: An argument in which, without fail, if the prem- 
ises are true, the conclusion will also be true. 

Good Inductive Argument: An argument in which the premises provide good 

reasons for believing the conclusion. In an inductive argument, the premises 

make the conclusion likely, but the conclusion might be false even if the 

premises are true. 

What do we mean by calling an argument 'deductive' or 'inductive', 
without the qualifiers ‘valid’ or ‘good’? Don't let anyone tell you that these 
terms have rigorous definitions. Rather, 

We tend to call an argument ‘Deductive’ when we claim, or suggest, or just 
hope that it is deductively valid. And we tend to call an argument Inductive’ 
when we want to acknowledge that it is not deductively valid but want its 
premises to aspire to making the conclusion likely, 

In everyday life we don't use deductively valid arguments too often. 
Outside of certain technical studies, we intend most of our arguments as 
inductively good. In simple cases you understand inductive arguments 
clearly enough. But they can be a bear to evaluate. Even in the simple 
case of argument (2), if someone suggests that Adam is just faking hap- 
piness, your confidence in the argument may waver. How do you decide 
whether or not he is faking? The problem can become very difficult. In 
fact, there exists a great deal of practical wisdom about how to evaluate 
inductive arguments, but no one has been able to formulate an exact the- 
ory which tells us exactly when an inductive argument is really good. 

In this respect, logicians understand deduction much better. Even in an 

introductory formal logic course, you can learn the rules which establish 
the deductive validity of a very wide and interesting class of arguments. 
And you can understand very precisely what this validity consists in and 
why the rules establish validity. To my mind, these facts provide the best 
reason for studying deductive logic: It is an interesting theory of a subject 
matter about which you can, in a few months, learn a great deal. Thus 
you will have the experience of finding out what it is like to understand a 
subject matter by learning a technical theory about that subject matter. 

Studying formal logic also has other, more practical, attractions. Much 
of what you learn in this book will have direct application in mathematics, 
computer science, and philosophy. More generally, studying deductive 
logic can be an aid in clear thinking. The point is that, in order to make 
the nature of deductive validity very precise, we must learn a way of mak- 
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ing certain aspects of the content of sentences very precise. For this rea- 
son, learning deductive logic can pay big dividends in improving your 
clarity generally in arguing, speaking, writing, and thinking. 

EXERCISES 

1-1. Explain in your own words what an argument is. Give an ex- 
ample of your own of an inductive argument and of a deductive 
argument. Explain why your example of an inductive argument is 
an inductive argument and why your example of a deductive argu- 
ment is a deductive argument. 

1-2. SENTENCES AND CONNECTIVES 

I have said that arguments are composed of declarative sentences. Some 
logicians prefer to say that arguments are composed of the things we say 
with sentences, that is, statements or propositions. Sentences can be prob- 
lematic in logic because sentences are often ambiguous. Consider this sen- 
tence: 

(3) I took my brother's picture yesterday. 

I could use this sentence to mean that yesterday I made a photograph of 
my brother. Or I could use the sentence to mean that I stole a picture 
that belonged to my brother. Actually, this sentence can be used to say a 
rather amazingly large number of different things. 
Ambiguous sentences can make a problem for logic because they can 

be true in one way of understanding them and false in another. Because 
logic has to do with the truth and falsity of premises and conclusions in 
arguments, if it is not clear whether the component sentences are true or 
false, we can get into some awful messes. This is why some logicians pre- 
fer to talk about statements or propositions which can mean only one 
thing. In a beginning course, I prefer to talk about sentences just because 
they are more familiar than statements and propositions. (What are state- 
ments and propositions supposed to be, anyway?) We can deal with the 
problem of ambiguity of sentences by insisting that we use only unambig- 
uous sentences, or that we specify the meaning which a possibly ambigu- 
ous sentence will have in an argument and then stick to that meaning. 

Actually, in most of our work we will be concerned with certain facts 
about tbe logical form of sentences and we won't need to know exactly 
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what the sentences mean in detail. All we will need in order to avoid 
problems about ambiguity is that a given sentence be either true or false 
(altheugh we usually won't know which it is) and that the sentence should 
not change from true to false or from false to true in the middle of a 
discussion. As you will see very soon, the way we will write sentences will 
make it extremely easy to stick to these requirements. 

In fact, by restricting our attention to sentences which are either true 
or false, we have further clarified and extended our restriction to decla- 
rative sentences. Questions (‘Is Adam happy?’), commands (‘Cheer up, 
Adam", and exclamations (‘Boy, is Adam happy") are not true or false. 
Neither, perhaps, are some declarative sentences. Many people don't 
think "The woman who landed on the moon in 1969 was blond." is either 
true or false because no woman landed on the moon in 1969. In any case, 
we shall study only sentences which are definitely one or the other, true 
or false. 
We will initially study a very simple kind of logic called Sentence Logic. 

(Logicians who work with propositions instead of sentences call it Propo- 
sitional Logic.) The first fact on which you need to focus is that we won't 
be concerned with all the details of the structure of a sentence. Consider, 
for example, the sentence 'Adam loves Eve.' In sentence logic we won't 
be concerned with-the fact that this sentence has a subject and a predicate, 
that it uses two proper names, and so on. 

Indeed, the only fact about this sentence which is relevant to sentence 
logic is whether it happens to be true or false. So let's ignore all the struc- 
ture of the sentence and symbolize it in the simplest way possible, say, by 
using the letter ‘A’. (I put quotes around letters and sentences when I talk 
about them as opposed to using them. If this use of quotes seems strange, 
don't worry about it—you will easily get used to it.) In other words, for 
the moment, we will let the letter ‘A’ stand for the sentence ‘Adam loves 
Eve.’ When we do another example we will be free to use ‘A’ to stand for 
a different English sentence. But as long as we are dealing with the same 
example, we will use ‘A’ to stand for the same sentence. 

Similarly, we can let other capital letters stand for other sentences. Here 
is a transcription guide that we might use: _ 

Transcription Guide 

A: Adam loves Eve. 

B: Adam is blond. 

C: Eve is clever. 

‘A’ is standing for ‘Adam loves Eve.’, ‘B’ is standing for ‘Adam is blond.’, 
and 'C' is standing for ‘Eve is clever.’ In general, we will use capital letters 
to stand for any sentences we want to consider where we have no interest 
in the internal structure of the sentence. We call capital letters used in 
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this way Atomic Sentences, or Sentence Letters. The word ‘atomic’ is sup- 
posed to remind you that, from the point of view of sentence logic, these 
are the smallest pieces we need to consider. We will always take a sentence 
letter (and in general any of our sentences) to be true or false (but not 
both true and false!) and not to change from true to false or from false 
to true in the middle of a discussion. 

Starting with atomic sentences, sentence logic builds up more compli- 
cated sentences, or Compound Sentences. For example, we might want to 
say that Adam does not love Eve. We say this with the Negation of ‘A’, also 
called the Denial of ‘A’. We could write this as ‘not A’. Instead of ‘not’, 

though, we will just use the negation sign, ‘~’. That is, the negation of ‘A’ 

will be written as ‘~A’, and will mean ‘not A’, that is, that ‘A’ is not true. 
The negation sign is an example of a Connective, that is, a symbol we use 
to build longer sentences from shorter parts. 
We can also use the atomic sentences in our transcription guide to build 

up a compound sentence which says that Adam loves Eve and Adam is 
blond. We say this with the Conjunction of the sentence ‘A’ and the sen- 
tence ‘B’, which we write as ‘A&B’. ‘A’ and ‘B’ are called Conjuncts or 
Components of ‘A&B’, and the connective ‘&’ is called the Sign of Conjunc- 
tion. 

Finally, we can build a compound sentence from the sentence ‘A’ and 

the sentence ‘B’ which means that either Adam loves Eve or Adam is 
blond. We say this with the Disjunction of the sentence ‘A’ and the sen- 
tence ‘B’, which we write as ‘AVB’. ‘A’ and P’ are called Disjuncts or Com- 
ponents of ‘AvB’, and the connective ‘v’ is called the Sign of Disjunction. 

You might wonder why logicians use a 'v' to mean ‘or’. There is an 
interesting historical reason for this which is connected with saying more 
exactly what ‘v’ is supposed to mean. When I say, ‘Adam loves Eve or 
Adam is blond.’, I might actually mean two quite different things. I might 
mean that Adam loves Eve, or Adam is blond, but not both. Or I might 
mean that Adam loves Eve, or Adam is blond, or possibly both. 

If you don't believe that English sentences with ‘or’ in them can be 
understood in these two very different ways, consider the following ex- 
amples. If a parent says to a greedy child, 'You can have some candy or 
you can have some cookies,' the parent clearly means some of one, some 
of the other, but not both. When the same parent says to an adult dinner 
guest, ‘We have plenty, would you like some more meat or some more 
potatoes?' clearly he or she means to be offering some of either or both. 

Again, we have a problem with ambiguity. We had better make up our 
minds how we are going to understand ‘or’, or we will get into trouble. In 
principle, we could make either choice, but traditionally logicians have 
always opted for the second, in which 'or' is understood to mean that the 
first sentence is true, or the second sentence is true, or possibly both sen- 
tences are true. This is called the Inclusive Sense of 'or'. Latin, unlike En- 
glish, was not ambiguous in this respect. In Latin, the word ‘vel’ very 
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specifically meant the first or the second or possibly both. This is why 
logicians symbolize ‘or’ with ‘v’. It is short for the Latin ‘vel, which means 
inclusive or. So when we write the disjunction ‘AvB’, we understand this 
to mean that ‘A’ is true, ‘B’ is true, or both are true. 

To summarize this section: 

Sentence logic symbolizes its shortest unambiguous sentences with Atomic 
Sentences, also called Sentence Letters, which are written with capital letters: 
‘A’, ‘B’, ‘C’ and so on. We can use Connectives to build Compound Sentences out 
of shorter sentences. In this section we have met the connectives ‘~’ (the 
Negation Sign), '&' (the Sign of Conjunction), and ‘v’ (the Sign of Disjunction). 

EXERCISES 

1-2. Transcribe the following sentences into sentence logic, using ‘G’ 
to transcribe ‘Pudding is good.’ and 'F' to transcribe ‘Pudding is fat- 
tening.’ i 

a) Pudding is good and pudding is fattening. 
b) Pudding is both good and fattening. 

Pudding is either good or not fattening. 
Pudding is not good and not fattening. 

You may well have a problem with the following transcriptions, 
because to do some of them right you need to know something I 
haven't told you yet. But please take a try before continuing. Trying 
for a few minutes will help you to understand the discussion of the 
problem and its solution in the next section. And perhaps you will 
figure out a way of solving the problem yourself! 

Pudding is not both good and fattening. 

Pudding is both not good and not fattening. 
Pudding is not either good or fattening. 

Pudding is either not good or not fattening. 
Pudding is neither good nor fattening. 

1-3. TRUTH TABLES AND THE MEANING OF ‘~’, ‘&’, AND ‘v’ 

We have said that ‘~A’ means not A, ‘A&B’ means A and B, and ‘AvB’ 
means A or B in the inclusive sense. This should give you a pretty good 
idea of what the connectives ‘~’, ‘&’, and ‘v’ mean. But logicians need to 
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be as exact as possible. So we need to specify how we should understand 
the connectives even more exactly. Moreover, the method which we will 

use to do this will prove very useful for all sorts of other things. 
To get the idea, we start with the very easy case of the negation sign, 

‘~’, The sentence ‘A’ is either true or it is false. If ‘A’ is true, then ‘~A’ is 
false. If 'A' is false, then '—A' is true. And that is everything you need to 
know about the meaning of ‘~’. We can say this more concisely with a 
table, called a Truth Table: 

Truth table case 1 

definition of ‘~’ 

cae2 f 

The column under 'A' lists all the possible cases involving the truth and 
falsity of ‘A’. We do this by describing the cases in terms of what we call 
Truth Values. 'The case in which A is true is described by saying that A has 
the truth value t. The case in which A is false is described by saying that 

A has the truth value f. Because A can only be true or false, we have only 
these two cases. We explain how to understand '—' by saying what the 
truth value of ‘~A’ is in each case. In case 1, ‘~A’ has the truth value f; 

that is, it is false. In case 2, ‘~A’ has the truth value t; that is, it is true. 
Although what we have done seems trivial in this simple case, you will see 
very soon that truth tables are extremely useful. 

Let us see how to use truth tables to explain '&'. A conjunction has two 
atomic sentences, so we have four cases to consider: 

Case 1 

Case 2 

case 3 

t 

f 

t 

Case 4 f —-— — c e 

When ‘A’ is true, ‘B’ can be true or false. When ‘A’ is false, again 'B' can 
be true or false. The above truth table gives all possible combinations of 
truth values which ‘A’ and ‘B’ can have together. 
We now specify how '&' should be understood by specifying the truth 

value for each case for the compound ‘A&B’: 

Truth table 

definition 

of ‘&’ 



In other words, ‘A&B’ is true when the conjuncts ‘A’ and ‘B’ are both 
true. 'A&B' is false in all other cases, that is, when one or both of the 
conjuncts are false. 
A word about the order in which 1 have listed the cases. If you are 

curious, you might try to guess the recipe I used to order the cases. (If 
you try, also look at the more complicated example in section 1—5.) But I 
won't pause to explain, because all that is important about the order is 

that we don't leave any cases out and all of us list them in the same order, 

so that we can easily compare answers. So just list the cases as I do. 
We follow the same method in specifying how to understand ‘v’. The 

disjunction ‘AvB’ is true when either or both of the disjuncts ‘A’ and ‘B’ 
are true. ‘AVB’ is false only when ‘A’ and ‘B’ are both false: 

A 

Truth table €?€ pt 
omn case2 t 

definition f 
ot v case 3 

case4 f 

We have defined the connectives ‘~’, '&', and 'v' using truth tables for 

the special case of sentence letters ‘A’ and ‘B’. But obviously nothing will 
change if we use some other pair of sentences, such as ‘H’ and ‘D’. 

This section has focused on the truth table definitions of ‘~’, ‘&’ and 
‘v. But along the way I have introduced two auxiliary notions about which 
you need to be very clear. First, by a Truth Value Assignment of Truth Values 
to Sentence Letters, mean, roughly, a line of a truth table, and a Truth 

Table is a list of all the possible truth values assignments for the sentence 
letters in a sentence: 

An Assignment of Truth Values to a collection of atomic sentence letters is a 
specification, for each of the sentence letters, whether the letter is (for this 
assignment) to be taken as true or as false. The word Case will also be used 
for ‘assignment of truth values’. 

A Truth Table for a Sentence is a specification of all possible truth values as- 
signments to the sentence letters which occur in the sentence, and a specifi- 
cation of the truth value of the sentence for each of these assignments. 

1-4. TRUTH FUNCTIONS 

I want to point out one more thing about the way we have defined the 
connectives ‘~’, ‘&’, and ‘Vv’. Let us start with ‘~’. What do you have to 

know in order to determine whether ‘~A’ is true or false? You don’t have 
to know what sentence ‘A’ actually stands for. You don't have to know 
whether ‘A’ is supposed to mean that Adam loves Eve, or that pudding is 
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fattening, or anything like that. To know whether ‘~A’ is true or false, all 
you have to know is whether 'A' itself is true or false. This is because if 
you know the truth value of ‘A’, you can get the truth value of ‘~A’ by 
just looking it up in the truth table definition of ‘~’. 

The same thing goes for '&' and ‘v’. To know whether ‘A&B’ is true or 
false, you don't have to know exactly what sentences ‘A’ and 'B' are sup- 
posed to be. All you need to know is the truth value of 'A' and the truth 
value of 'B'. This is because, with these truth values, you can look up the 
truth value of ‘A&B’ with the truth table definition of ‘&’. Likewise, with 

truth values for ‘A’ and for ‘B’, you can look up the truth value for ‘AvB’. 
Logicians have a special word for these simple facts about ‘~’, ‘&’ and 

‘v’. We say that these connectives are Truth Functional. Yn other words (to 

use '&' as an example), the truth value of the compound sentence 'A&B' 
is a function of the truth values of the components ‘A’ and ‘B’. In other 
words, if you put in truth values for ‘A’ and for ‘B’ as input, the truth 

table definition of '&' gives you, as an output, the truth value for the 
compound ‘A&B’. In this way ‘A&B’ is a function in the same kind of way 
that ‘x + y' is a numerical function. If you put in specific numbers for ‘x’ 
and ‘y’, say, 5 and 7, you get a definite value for ‘x + y', namely, 12. 

‘A&B’ is just like that, except instead of number values 1, 2, 3, . . . 
which can be assigned to ‘x’ and to ‘y’, we have just two truth values, t and 
f, which can be assigned to ‘A’ and to ‘B’. And instead of addition, we 
have some other way of combining the assigned values, a way which we 
gave in the truth table definition of '&'. Suppose, for example, that I give 
you the truth values t for 'A' and f for 'B'. What, then, is the resulting 
truth value for ‘A&B’? Referring to the truth table definition of ‘A&B’, 
you can read off the truth value f for ‘A&B’. The truth tables for ‘~’ and 
for ‘Vv’ give other ways of combining truth values of components to get 
truth values for the compound. That is,‘~’ and ‘v are different truth 
functions. 

Let's pull together these ideas about truth functions: 

A Truth Function is a rule which, when you give it input truth values, gives 
you a definite output truth value. A Truth Functional Connective is a connec- 
tive defined by a truth function. A Truth Functional Compound is a compound 
sentence formed with truth functional connectives. 

EXERCISES 

1-3. Try to explain what it would be for a declarative compound 
sentence in English not to be truth functional. Give an example of a 
declarative compound sentence in English that is not truth func- 
tional. (There are lots of them! You may find this exercise hard. 
Please try it, but don't get alarmed if you have trouble.) 
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1-5. COMPOUNDING COMPOUND SENTENCES 

We have seen how to apply the connectives ‘~’, '&', and 'v' to atomic 
sentences such as ‘A’ and ‘B’ to get compound sentences such as ‘~A’, 
‘A&B’, and ‘AvB’. But could we now do this over again? That is, could we 

apply the connectives not just to atomic sentences ‘A’, ‘B’, ‘C’, etc., but also 

to the compound sentences ‘~A’, ‘A&B’, and ‘AVB’? Yes, of course. For 
example, we can form the conjunction of ‘~A’ with ‘B’, giving us ‘~A&B’. 
Using our current transcription guide, this transcribes into ‘Adam does 
not love Eve and Adam is blond. 

As another example, we could start with the conjunction 'A&B' and 

take this sentence's negation. But now we have a problem. (This is the 
problem you encountered in trying to work exercise 1—2, e-i.) If we try 
to write the negation of ‘A&B’ by putting a ‘~’ in front of ‘A&B’, we get 
the sentence we had before. But the two sentences should not be the 
same! This might be a little confusing at first. Here is the problem: We 
are considering two ways of building up a complex sentence from shorter 
parts, resulüng in two different complex sentences. In the first way, we 

take the negation of ‘A’, that is, ‘~A’, and conjoin this with 'B'. In the 
second way, we first conjoin ‘A’ and 'B' and then negate the whole. In 
English, the sentence 'It is not the case both that Adam loves Eve and 

Adam is blond.’ is very different from the sentence ‘Adam does not love 
Eve, and Adam is blond.' (Can you prove this by giving circumstances in 
which one of these compound sentences is true and the other one is 
false?) 

In order to solve this problem, we need some device in logic which does 
the work that 'both' does in English. (If you are not sure you yet under- 

stand what the problem is, read the solution I am about to give and then 

reread the last paragraph.) What we need to do is to make clear the order 
in which the connectives are applied. It makes a difference whether we 
first make a negation and then form a conjunction, or whether we first 
form the conjunction and then make a negation. We will indicate the or- 
der of operations by using parentheses, much as one does in algebra. 
Whenever we form a compound sentence we will surround it by paren- 
theses. Then you will know that the connective inside the parentheses 

applies before the one outside the parentheses. Thus, when we form the 
negation of ‘A’, we write the final result as '(—A)'. We now take ‘(~A)’ and 

conjoin it with ‘B’, surrounding the final result with parentheses: 

(4) [(~A)&B] 

This says, take the sentence '(—A)' and conjoin it with ‘B’. To indicate that 

the final result is a complete sentence (in case we will use it in some still 
larger compound), we surround the final result in parentheses also. Note 
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how I have used a second style for the second pair of parentheses— 
square brackets—to make things easier to read. 

Contrast (4) with 

(5) [~(A&B)] 

which means that one is to conjoin ‘A’ with ‘B’ and then take the negation 
of the whole. 

In the same kind of way we can compound disjunctions with conjunc- 
tions and conjunctions with disjunctions. For example, consider 

(60) [(A&B)vC] 

(7) [(A&(BvO)] 

Sentence (6) says that we are first to form the conjunctions of 'A' with 'B' 
and then form the disjunction with ‘C’. (7), on the other hand, says that 
we are first to form the disjunction of 'B' with 'C' and then conjoin the 
whole with ‘A’. These are very different sentences. Transcribed into Eng- 
lish, they are ‘Adam both loves Eve and is blond, or Eve is clever.’ and 
‘Adam loves Eve, and either Adam is blond or Eve is clever.’ 

We can show more clearly that (6) and (7) are different sentences by 
writing out truth tables for them. We now have three atomic sentences, 
‘A’, 'B', and ‘C’. Each can be true or false, whatever the others are, so that 

we now have eight possible cases. For each case we work out the truth 
value of a larger compound from the truth value of the parts, using the 
truth value of the intermediate compound when figuring the truth value 
of a compound of a compound: 

b h 
[A&(BvC)) 

a C d g 

A C (A&B) (A&B)vC] 

case 1 

case 2 

case 3 

case 4 

case 5 

case 6 

case 7 

case 8 -e m n hne oc oc oc —- mn me me hahe oct a m ee ct -e — — h h he ent — æ oct ee m e oe ont æ nA hae o n —- —— —— iana iona a oct oct 

Let's go over how we got this truth table. Columns a, b, and c simply 
give all possible truth value assignments to the three sentence letters ‘A’, 
‘B’, and ‘C’. As before, in principle, the order of the cases does not matter. 

But to make it easy to compare answers, you should always list the eight 
possible cases for three letters in the order I have just used. Then, for 
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each case, we need to calculate the truth value of the compounds in col- 
umns d through h from the truth values given in columns a, b, and c. 

Let us see how this works for case 5, for example. We first need to 

determine the truth value to put in column d, for ‘(A&B)’ from the truth 

values given for this case. In case 5 ‘A’ is false and ‘B’ is true. From the 
truth table definition of '&', we know that a conjunction (here, ‘A&B’) is 
false when the first conjunct (here, ‘A’) is false and the second conjunct 

(here, ‘B’) is true. So we write an 'f' for case 5 in column d. Column e is 
the disjunction of.'B' with ‘C’. In case 5 ‘B’ is true and 'C' is true. When 
we disjoin something true with something true, we get a true sentence, 
So we write the letter ‘t’, standing for the truth value t, in column e for 

case 5. 
Moving on to column g, we are looking at the disjunction of ‘(A&B)’ 

with 'C'. We have already calculated the truth value of ‘(A&B)’ for case 
5—that was column d—and the truth value of 'C' for case 5 is given in 
column c. Reading off columns c and d, we see that ‘(A&B)’ is false and 
*C' is true in case 5. The sentence of column g, [(A&B)vC]’, is the dis- 

junction of these two components and we know that the disjunction of 
something false with something true is, again, true. So we put a ‘t in 
column g for case 5. Following the same procedure for column h, we see 
that for case 5 we have a conjunction of something false with something 
true, which gives the truth value f. So we write 'f' for case 5 in column h. 
Go through all eight cases and check that you understand how to de- 

termine the truth values for columns d through h on the basis of what 
you are given in columns a, b, and c. 

Now, back to the point that got us started on this example. I wanted to 
prove that the sentences '((A&B)vC] and '(A&(BvC)J are importantly dif- 

ferent. Note that in cases 5 and 7 they have different truth values. That 
is, there are two assignments of truth values to the components for which 
one of these sentences is true and the other is false. So we had better not 
confuse these two sentences. You see, we really do need the parentheses 
to distinguish between them. 

Actually, we don't need all the parentheses I have been using. We can 
make two conventions which will eliminate the need for some of the pa- 
rentheses without any danger of confusing different sentences. First, we 
can eliminate the outermost parentheses, as long as we put them back in 
if we decide to use a sentence as a component in a larger sentence. For 
example, we can write 'A&B' instead of '(A&B)' as long as we put the 
parentheses back around 'A&B' before taking the negation of the whole 
to form ‘~(A&B)’. Second, we can agree to understand ‘~’ always to apply 
to the shortest full sentence which follows it. This eliminates the need to 
surround a negated sentence with parentheses before using it in a larger 
sentence. For example, we will write ‘~A&B’ instead of '(—A)&B'. We 

know that ‘~A&B’ means ‘(~A)&B’ and not ‘~(A&B)’ because the ‘~’ in 
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‘~A&B’ applies to the shortest full sentence which follows it, which is ‘A’ 
and not ‘A&B’. 

This section still needs to clarify one more aspect of dealing with com- 
pound sentences. Suppose that, before you saw the last truth table, 1 had 
handed you the sentence '(A&B)vC' and asked you to figure out its truth 
value in each line of a truth table. How would you know what parts to 
look at? Here's the way to think about this problem. For some line of a 
truth table (think of line 5, for example), you want to know the truth 
value of '(A&B)vC'. You could do this if you knew the truth values of 

‘A&B’ and of 'C'. With their truth values you could apply the truth table 
definition of 'v' to get the truth value of ‘(A&B)vC’. This is because 
(A&B)vC' just is the disjunction of ‘A&B’ with ‘C’. Thus you know that 
‘(A&B)vC’ is true if at least one of its disjuncts, that is, either ‘A&B’ or ‘C’, 

is true; and ‘(A&B)vC’ is false only if both its disjuncts, ‘A&B’ and ‘C’, are 
false. 

And how are you supposed to know the truth values of 'A&B' and of 
‘C’? Since you are figuring out truth values of sentences in the line of a 
truth table, all you need do to figure out the truth value of 'C' on that 
line is to look it up under the ‘C’ column. Thus, if we are working line 5, 

we look under the 'C' column for line 5 and read that in this case 'C' has 
the truth value t. Figuring out the truth value for 'A&B' for this line is 
almost as easy. 'A&B' is, by the truth table definition of conjunction, true 
just in case both conjuncts (here, ‘A’ and ‘B’) are true. In line 5 ‘A’ is false 
and 'B' is true. So for this line, ‘A&B’ is false. 
Now that we finally have the truth values for the parts of ‘(A&B)vC’, 

that is, for ‘A&B’ and for ‘C’, we can plug these truth values into the truth 

table definition for v and get the truth value t for ‘(A&B)vC. 
Now suppose that you have to do the same thing for a more compli- 

cated sentence, say 

(8) ~{[Av~C]&[Bv(~A&C)} 

Don't panic. The principle is the same as for the last, simpler example. 
You can determine the truth value of the whole if you know the truth 
value of the parts. And you can determine the truth value of the parts if 
you can determine the truth value of their parts. You continue this way 
until you get down to atomic sentence letters. The truth value of the 
atomic sentence letters will be given to you by the line of the truth table. 
With them you can start working your way back up. 

You can get a better grip on this process with the idea of the Main 
Connective of a sentence. Look at sentence (8) and ask yourself, “What 
is the last step I must take in building this sentence up from its parts?" 
In the case of (8) the last step consists in taking the sentence 
[Av—C]&[Bv(— A&C)]' and applying ‘~’ to it. Thus (8) is a negation, ‘~’ 
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is the main connective of (8), and '[Av-C]&[Bv(—A&C)] is the compo- 

nent used in forming (8). 
What, in turn, is the main connective of ''Av—- C]J&[Bv(— A&C)]? Again, 

what is the last step you must take in building this sentence up from its 
parts? In this case you must take ‘AV~C’ and conjoin it with 'Bv(—A&C)'. 

Thus this sentence is a conjunction, '&' is its main connective, and its 
components are the two conjuncts ‘Av~C’ and 'Bv(—A&C)'. In like man- 
ner, ‘BV(~A&C)’ is a disjunction, with ‘v’ its main connective, and its com- 
ponents are the disjuncts ‘B’ and ‘~A&C’. To summarize, 

The Main Connective in a compound sentence is the connective which was 
used last in building up the sentence from its component or components. 

Now, when you need to evaluate the truth value of a complex sentence, 

given truth values for the atomic sentence letters, you know how to pro- 
ceed. Analyze the complete sentence into its components by identifying 
main connectives. Write out the components, in order of increasing com- 

plexity, so that you can see plainly how the larger sentences are built up 
from the parts. 

In the case of (8), we would lay out the parts like this: 

A, B, C, ~A, ~C, Av-C, ~A&C, Bv(-A&C), [Av- C]&[Bv(—- A&C)], 
~[AV~C]&[Bv(~A&C)} 

You will be given the truth values of the atomic sentence letters, either by 
me in the problem which I set for you or simply by the line of the truth 
table which you are working. Starting with the truth values of the atomic 
sentence letters, apply the truth table definitions of the connectives to 
evaluate the truth values of the successively larger parts. 

EXERCISES 

1-4. For each of the following sentences, state whether its main con- 
nective is ‘~’, '&', or ‘V’ and list each sentence’s components. Then 

do the same for the components you have listed until you get down 
to atomic sentence letters. So you can see how you should present 
your answers, I have done the first problem for you. 

Main 
Sentence Connective Components 

a) ~(Av~B) ~ Av~B 
Av~B v A, ~B 
~B ~ B 
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a) ~(Av~B) 

b) (D&-GY(G&D) 
€) [(Dv—-—B)&(DvB)]&(DvB) 

d) L&{Mv[~N&(Mv~L)]} 

1-6. RULES OF FORMATION AND RULES OF VALUATION 

We can summarize many important points discussed so far by giving ex- 
plicit rules which tell us what counts as a sentence of sentence logic and 
how to determine the truth values of compound sentences if we are given 
the truth values of the components: 

Formation Rules 

i) Every capital letter ‘A’, ‘B’, ‘C’. . . is a sentence of sentence logic. Such 
a sentence is called an Atomic Sentence or a Sentence Letter. 

ii) If X is a sentence of sentence logic, so is (~X), that is, the sentence 
formed by taking X, writing a ‘~’ in front of it, and surrounding the 
whole by parentheses. Such a sentence is called a Negated Sentence. 

ii) If X and Y are sentences of sentence logic, so is (X&Y), that is, the 
sentence formed by writing X, followed by '&', followed by Y, and 
surrounding the whole with parentheses. Such a sentence is called a 
Conjunction, and X and Y are called its Conjuncts. 

iv) If X and Y are sentences of sentence logic, so is (XvY), that is, the 
sentence formed by writing X, followed by ‘v’, followed by Y, and 
surrounding the whole with parentheses. Such a sentence is called a 
Disjunction, and X and Y are called its Disjuncts. 

v) Until further notice, only expressions formed by using rules i) through 
iv) are sentences of sentence logic. 

If you wonder why I say "until further notice," I want you to digest the 
present and some new background material before I introduce two new 
connectives, corresponding to the expressions "If . . . then" and "if and 

only if." When I introduce these new connectives, the formation rules will 
need to be extended accordingly. 

As I explained earlier, we agree to cheat on these strict rules in two 
ways (and in these two ways only!). We omit the outermost parentheses, 
and we omit parentheses around a negated sentence even when it is not 
the outermost sentence, because we agree to understand ‘~’ always to 
apply to the shortest full sentence which follows it. 

I should also clarify something about formation rule i). In principle, 
sentence logic can use as many atomic sentences as you like. It is not 
limited to the 26 letters of the alphabet. If we run out of letters, we can 
always invent new ones, for example, by using subscripts, as in ‘A,’ and 
‘C37’. In practice, of course, we will never need to do this. 
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Rules of Valuation 

i) The truth value of a negated sentence is t if the component (the sen- 
tence which has been negated) is f. The truth value of a negated sen- 
tence is f if the truth value of the component is t. 

ii) The truth value of a conjunction is t if both conjuncts have truth value 
t. Otherwise, the truth value of the conjunction is f. 

iii) The truth value of a disjunction is t if either or both of the disjuncts 
have truth value t. Otherwise, the truth value of the disjunction is f. 

Note that these rules apply to any compound sentence. However, they 
only apply if somehow we have been given a truth value assignment to 
the atomic sentence letters. That is, if we have been given truth values for 
the ultimate constituent atomic sentence letters, then, using the rules of 
valuation, we can always calculate the truth value of a compound sen- 
tence, no matter how complex. Once again, this is what we mean when 
we say that the connectives are truth functional. 
How does one determine the truth value of atomic senteiicés? That's 

not a job for logicians. If we really want to know, we will have to find out 
the truth value of atomic sentences from someone else. For example, we'll 
have to consult the physicists to find out the truth value of "light always 
travels at the same speed." As logicians, we only say what to do with truth 
values of atomic constituents once they are given to us. And when we do 
truth tables, we don't have to worry about the actual truth values of the 
atomic sentence letters. In truth tables, like those in the following exer- 
cises, we consider all possible combinations of truth values which the 
sentence letters could have. 
The truth table definitions of the connectives give a graphic summary 

of these rules of valuation. I'm going to restate those truth table defini- 
tions here because, if truth be told, I didn't state them quite right. I gave 
them only for sentence letters, 'A' and 'B'. I did this because, at that 
point in the exposition, you had not yet heard about long compound sen- 
tences, and I didn't want to muddy the waters by introducing too many 
new things at once. But now that you are used to the idea of compound 
sentences, I can state the truth table definitions of the connectives with 
complete generality. 

Suppose that X and Y are any two sentences. They might be atomic 
sentence letters, or they might themselves be very complex compound 
sentences. Then we specify that: 

X || ~X 

Truth table casel t f 

definition of ‘~’ case2 f 
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case 1 

Truth table case 2 

definition case 3 

of '&' case 4 

Truth table — €95€ ! 
BES case 2 

definition ase] 

of ‘v’ 
case 4 

The difference between my earlier, restricted truth table definitions 
and these new general definitions might seem a bit nitpicky. But the dif- 
ference is important. You probably understood the intended generality of 
my first statement of the truth table definitions. However, a computer, 
for example, would have been totally confused. Logicians strive, among 
other things, to give very exact statements of everything. They enjoy ex- 
actness for its own sake. But exactness has practical value too, for exam- 
ple, when one needs to write a program that a computer can understand. 

This section has also illustrated another thing worth pointing out. 
When I talked about sentences generally, that is, when.I wanted to say 
something about any sentences, X and Y, I used boldface capital letters 
from the end of the alphabet. I'm going to be doing this throughout the 
text. But rather than dwell on the point now, you will probably best learn 

how this usage works by reading on and seeing it illustrated in practice. 

n 

EXERCISES 

1-5. Which of the following expressions are sentences of sentence 
logic and which are not? 

a) A&-B 
b) A~&B 
9 Gw-B&-H) 
d) A&(C&-(DvH)) 
e) (A&B)v(C&D) 
f) (AvB)&CvD 

1-6. Construct a complete truth table for each of the following sen- 
tences. The first one is done for you: 
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a) 

b) 

c) 
d) 

e) 

f) 

g 
h) 

~BvA 

~(BVA) 

(QVT)&(~Qv~T) 
(D&-G)v(G&D) 

Av(~BvC) 

Kv[—P&(—PvM)] 

[(Dv~~B)8&(Dv~B)]&(DvB) 

L&(Mv[-N&(—Mv-L)]) 

1-7. Philosopher's problem: Why do I use quotation marks around 
sentences, writing things like 

B’ 

and 

‘~(Cv~AY 

but no quotation marks about boldface capital letters, writing 

X, Y, XvY, etc. 

when I want to talk about sentences generally? 

CHAPTER SUMMARY EXERCISE 

The following list gives you the important terms which have been 
introduced in this chapter. Make sure you understand all of them 
by writing a short explanation of each. Please refer back to the text 
to make sure, in each case, that you have correctly explained the 
term. Keep your explanation of these terms in your notebook for 
reference and review later on in the course. 

a) Argument 

b) Valid Deductive Argument 
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Good Inductive Argument 

Deductive Argument 
Inductive Argument 

Atomic Sentence (also called ‘Sentence Letter’ or ‘Atomic Sen 
tence Letter’) 

Compound Sentence 
Connective 

Component 

~ (called the ‘Negation Sign’ or ‘Sign of Denial’) 

Negation 

& (called the ‘Sign of Conjunction’) 

Conjunction 
Conjunct 

v (called the ‘Sign of Disjunction’) 

Disjunction 

Disjunct . 
Inclusive Or 

Exclusive Or 

Truth Value 

Truth Table 

Truth Table Definition 

Assignment of Truth Values 
Case 

Truth Function 

Truth Functional Connective 

Truth Functional Compound 
Main Connective 







Transcription between 2 

English and Sentence 
Logic 

2-1. TRANSCRIPTION VS. TRANSLATION 

As we saw in chapter 1, for many English sentences we can find corre- 
sponding sentences of sentence logic. For example, if ‘A’ stands for the 
sentence 'Adam loves Eve.' and 'B' for the sentence 'Adam is blond." then 
'Bv—A' corresponds to ‘Either Adam is blond'or he does not love Eve.’ 
Many logicians use the word 'translation' to describe the relation be- 

tween a sentence of English and a corresponding sentence of logic. I 
think that ‘translation’ is the wrong word to use. If a first sentence trans- 
lates a second, the two sentences are supposed to have exactly the same 
meaning. But the correspondence between English and logic is often 
looser than having the same meaning, as the next examples show. 

Consider the sentence ‘Adam loves Eve, but he left her.’ This English 
sentence is a compound of two shorter sentences, 'Adam loves Eve., 
which we will transcribe with the sentence letter ‘A’, and ‘He left her.’ 
(that is, Adam left Eve), which we will transcribe with the sentence letter 

‘T’. These two sentences have been connected in English with the word 
‘but’. So we can get a partial transcription into logic by writing ‘A but L’. 
We are still not finished, however, because ‘but’ is a word of English, not 
logic. What in logic corresponds to ‘but’? 

If I assert the sentence ‘Adam loves Eve but he left her.’. what am I 
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telling you? Well, first of all, I assert that Adam loves Eve. In asserting 
the original sentence, I am also telling you that Adam left Eve. In other 
words, so far, I seem to be saying: ‘Adam loves Eve and he left her.’ 

What's the difference between ‘Adam loves Eve but he left her.’ and 
Adam loves Eve and he left her.', that is, between ‘A but L' and ‘A&L’? 

Not much. In English, we tend to use the word ‘but’ when we want to 
assert two things (a conjunction), but the first thing asserted may well lead 
one to expect the opposite of the second thing asserted. 'But' functions 
much as do the words '. . . and, contrary to what I just said would lead 
you to expect. . . .': ‘Adam loves Eve, and, contrary to what I just said 
would lead you to expect, he left her.' 

Logic has no way of expressing the idea of ‘contrary to what the first 
conjunct would lead you to expect.’ So we simply transcribe ‘but’ as '&'. 
In sentence logic we can't improve upon 'A&L' as a transcription of 
‘Adam loves Eve but he left her.’ Several other English words function 
very much like ‘but’, and should likewise get transcribed as '&': ‘however’, 
‘nevertheless’, ‘although’, and ‘despite (the fact that)’. 

Perhaps you are starting to see why I want to talk about transcribing, 
instead of translating, English into logic. ‘A&L’ isn’t a very good transla- 
tion of ‘Adam loves Eve but he left her.’ If it were a good translation, we 
would have to say that ‘and’ means the same thing as ‘but’, which it clearly 
does not. However, ‘&’ is the closest we have to ‘but’ in logic, so that’s 
what we use. 

A Transcription of an English sentence into sentence logic is a sentence of 
sentence logic which expresses, as closely as possible, what the English sen- 
tence expresses. 

Logicians sometimes use the words ‘paraphrasing’ or ‘symbolizing’ for 
what I am calling ‘transcribing’ English sentences in logic. 

2-2. GROUPING IN TRANSCRIPTION 

Here is another problem which comes up in transcribing English into 
logic. Consider the sentence. 

(1) Eve is clever and Eve is dark-eyed or Adam is blond. 

How do we transcribe this? Should we understand (1) as 

(1a) (Eve is clever and Eve is dark-eyed) or Adam is blond. 

Or should we understand it as 

(1b) Eve is clever and (Eve is dark-eyed or Adam is blond). 
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As we know from section 1—5, the grouping makes a difference. The 
problem here is that (1) is bad English. In English we should also indicate 
the grouping, which we can easily do with a comma. Thus (la) corre- 
sponds to 

(1c) Eve is clever and Eve is dark-eyed, or Adam is blond. 

and (1b) corresponds to 

(1d) Eve is clever, and Eve is dark-eyed or Adam is blond. 

Using the following transcription guide 

B: Adam is blond. 

C: Eve is clever. 

D: Eve is dark-eyed. 

we get as transcriptions of (1a) and (1c): 

(le) (C&D)VB 

And as transcriptions of (1b) and (1d): 

(lf) C&(DvB) 

Notice that by using parentheses in (1a) and (1b) I have used a mixture 
of English and sentence logic as an aid to figuring out what seems to be 
going on. Such mixtures often help in transcription. If you don't see a 
correct transcription right away, transcribe part, or features of, the En- 
glish sentence. Then go to work on the parts which you did not transcribe 
in your first pass at the problem. 
The expression ‘Either . . . or ' functions in English to indicate 

grouping in some respects as do parentheses in logic. Anything that goes 
where you see the ‘. . .’ acts as if it had parentheses around it, even if it 
is quite complex. (Often something which goes where you see the ‘ : 
also acts like it had parentheses around it, but this English device does 
not always work.) Thus we could write (1a) and (1c) as 

(1g) Either Eve is clever and Eve is dark-eyed, or Adam is blond. 

‘Both . . . and ' serves much as does ‘Either . . . or , al- 

though the complexities of English grammar don’t let you say things such 
as ‘Both Eve is clever and Eve is dark-eyed, or Adam is blond.’ To speak 
grammatical English, one has to say 

(1h) Eve is both clever and dark-eyed, or Adam is blond. 

which we clearly transcribe as (1e). 
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Notice that in (1h) we have done some collapsing of English sentence 
units. When transcribing into logic, you should rewrite ‘Eve is clever and 
dark-eyed.' as a conjunction of two atomic sentences, that is, as ‘Eve is 
clever and Eve is dark-eyed.’ or finally as ‘C&D’. And, to consider a new 
example, you should rewrite ‘Eve is clever or dark-eyed.’ as a disjunction 
of two atomic sentences, that is, as ‘Eve is clever or Eve is dark-eyed.’, or 
finally as ‘CvD’. 

2-3. ADEQUACY OF TRANSCRIPTIONS 

It's your turn to figure out an example. Before reading on, try transcrib- 
ing 

(2) Adam is neither ugly nor dumb. 

What did you get? ‘Neither’ suggests a negation, and ‘nor’ suggests a dis- 
junction. But (2) is tricky. If we use ‘U’ for ‘Adam is ugly.’ and ‘D’ for 
‘Adam is dumb.’, ‘~(UvD)’ is a correct transcription. ‘~Uv~D’ is not. 
How can you tell which is correct? We want the English sentence and 

the proposed transcription to say the same thing, as nearly as possible. 
One way to test for such agreement is to transcribe back into English. 
Suppose you proposed ‘~Uv~D’ as a transcription of (2). Transcribe 
‘~Uv~D’ back into English, as literally as you can. ‘~Uv~D?’ is a disjunc- 
tion of two negations, so we transcribe it back as 

(3) Either Adam is not ugly or Adam is not dumb. 

Now, do (2) and (3) say the same thing? No! Sentence (2) is stronger. It 
says that Adam is both not ugly and also not dumb. Sentence (3) says that 
Adam is either not one or not the other (or possibly not both). It’s enough 
for (3) to be true that Adam not be ugly. That's not enough for (2). To 
make (2) true, Adam will have to fail both in being ugly and in being 
dumb. 

If what it takes to make (2) true is that Adam not be ugly and Adam 
not be dumb, could we also transcribe (2) as ‘~U&~D’? Yes. To test, tran- 
scribe back into English. ‘~U&~D’ transcribes back as 

(2a) Adam is not ugly and Adam is not dumb. 

(Or, equally good: ‘Adam is not ugly and not dumb.) Compare (2a) with 
.(2) I hope you will see that they say the same thing. Generalizing the 
moral of this example we have: 

First. Transcription Test: To check a transcription of an English sentence, 
transcribe back into English as literally as possible. To the extent that the 
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original and the retranscribed sentences seem to say the same thing, you 
have reason to think that you have an Adequate Transcription. 

Our example also suggests another test for adequate transcription. So 
far, 1 have relied on your intuitive understanding of when two sentences 

do and don't say the same thing. But we can spell out one part of this 
understanding in more detail The trouble with transcribing (2) as 
‘~Uv~D?’ is that there is a situation in which ‘~Uv~D’ is true but in which 
(2) is false. A situation in which Adam is ugly and is not dumb provides 
just such a case. But if a first sentence can be true while, in the same 

situation, a second sentence is false, then the two sentences are not saying 

the same thing. 
Let’s make this test for adequate transcription more precise. Consider 

a proposed transcription. Ask yourself: Is there an assignment of truth 
values to sentence letters (a case) which makes the proposed transcription 
true and the English sentence false, or the transcription false and the 
English sentence true? If so, reject the proposed transcription. If there is 
no such case, the transcription is as good as it can get. Of course, in ap- 
plying this test you will have to do the best you can to determine whether 
or not, for a case described in terms of truth values assigned to sentence 
letters, your English sentence is true. The structure of English is compli- 
cated, so there are no simple rules for determining the truth value of 
arbitrary English sentences. Nonetheless, this test can often help you to 
decide whether a proposed transcription is adequate. 

We summarize the test by saying: 

Second Transcription Test: Given a sentence of sentence logic as a proposed 
transcription of an English sentence, try to imagine a case, described in 
terms of an assignment of truth values to sentence letters, which makes one 
of the sentences true and the other false. If there is such a case, reject the 
proposed transcription. If there is no such case, you have an Adequate Tran- 
scription. . 

This second test and the last example bring out a curious fact. Look 
back and you will see that both ‘~(UvD)’ and ‘~U&~D’ seem to be ade- 
quate transcriptions of (2), for, by our first crude test, they both seem to 

say the same thing as (2). Are both ‘~(UvD)’ and ‘~U&~D’ adequate 
transcriptions of (2) according to the second test? If you think it through, 
you should be able to satisfy yourself that they are. But if so, that is, if 
both these sentences are true in exactly the same cases as (2), then they 
will have to be true in exactly the same cases as each other. Any case in 
which one is true is a case in which the other is true. Any case in which 
one is false is a case in which the other is false. 
We will say that two such sentences are logically equivalent, a notion 

which I won't dwell on now because it provides the subject of the next 
chapter. But even this quick description of logical equivalence will help 
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you pull together the ideas of the last few paragraphs. At least so far as 
sentence logic goes, two sentences say the same thing if and only if they 
are logically equivalent. With this way of understanding "saying the same 
thing," our two tests for adequacy of transcription ultimately do the same 
work. For if "saying the same thing" just means "being true in exactly the 
same cases," two sentences say the same thing (our first test for an ade- 
quate transcription) if and only if they are true in the same cases (our 
second test for an adequate transcription). 

Chapter 3 will clarify your understanding of logical equivalence. For 
the moment, however, you will be served by an intuitive understanding 
of a summary of this section: 

If two sentence logic sentences are logically equivalent to each other, they 
provide equally good transcriptions of a given English sentence. 

EXERCISES 

2—1. Consider the sentence 

(2*) Adam is not both ugly and dumb. 

Carry out a study of its transcription into sentence logic which is 
similar to the study of (2). In particular, show that this sentence has 
two logically equivalent, and so equally accurate, transcriptions, both 
of which need carefully to be distinguished from a somewhat similar, 

but inadequate, transcription. If you have trouble with this exercise, 
spend a minute guessing at a transcription of (2*). Write down your 
guess and then reread the discussion of the transcription of (2). 

, 2-2. Using this transcription guide, transcribe the following sen- 
tences into sentences of sentence logic. 

A: Adam loves Eve. 

B: Adam is blond. 

C: Eveis clever. 

D: Eve is dark-eyed. 

E: Eve loves Adam. 

a) Eve is clever or Eve is dark-eyed. 

l b) Eve is clever or dark-eyed. 
| c) Eve is clever and dark-eyed. 

d) Eve is clever but not dark-eyed. 

e) Eve either is not clever or she is not dark-eyed. 
f) Eve is either not clever or not dark-eyed. 



r) 

s) 
Ü 

u) 

v) 
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Eve is dark-eyed and Adam loves her. 

Either Adam is blond and loves Eve, or he is not blond and Eve 
loves him. 

Eve is both not dark-eyed and either clever or in love with Adam. 
Eve is dark-eyed, but Adam does not love her. 
Adam is either blond or in love with Eve; nevertheless, Eve does 
not love him. 
Although either Eve is dark-eyed or Adam is blond, Adam does 
not love Eve. 

Despite Eve’s being clever and not loving Adam, Adam does love 
Eve. 

Adam loves Eve even though she is not dark-eyed. 
Adam not only loves Eve, Eve also loves Adam. 

Even though Eve is either clever or not dark-eyed, either Adam 
is blond or in love with Eve. 

Eve is both in love with Adam and not dark-eyed, despite Adam's 
being either blond or not in love with Eve. 
Adam does not love Eve. Also, Adam is blond, and Eve is either 
clever or in love with Adam. 

Adam is either in love with Eve or not. 
Adam is either in love with Eve or not. However, although she is 
clever, Eve is either dark-eyed or in love with Adam. 

Either Adam is blond, or it is both the case that Eve loves Adam 
and is either dark-eyed or clever. 
Either it is the case that both Adam is blond or not in love with 
Eve and Eve is dark-eyed or in love with Adam, or it is the case 
that both Adam does love Eve or is not blond and Eve is clever 
but not dark-eyed. 

2-3. Using the same transcription guide as in exercise 2-2, tran- 
scribe the following into English: 

a) 
b) 

c) 

d) 
e) 

f) 

g) 

Bv~B 

A&~B 
~(AvC) 

Bv(D&~C) 

(Ev~C)&(~ BVA) 

{(AVE)&~C]v(C&~D) 
([(-BvA)&D]v-(E&B))&C (This is almost impossible to tran- 
scribe into English, but do the best you can. I'm giving this prob- 
lem not to give you a bad time but to illustrate how logic has 
certain capacities to state things exactly, no nfatter how complex 
they are, while English, in practice, breaks down.) 

2—4. Make up your own transcription guide and transcribe the fol- 
lowing sentences into sentence logic. Your transcriptions should be 
as detailed as possible. For example, transcribe 'Roses are red and 
violets are blue.' not with one sentence letter but with two sentence 

27 
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letters conjoined, like this: ‘R&B’ (R: Roses are red, B: Violets are 
blue). 

a) 

b) 
c) 

d) 
e) 
f) 
g) 
h) 

iy 

b, 

k) 

Roses are red or Teller will eat his hat. 

Monty Python is funny but Robert Redford is not. 

Chicago is not bigger than New York even hogh New York is 
not the largest city. 

Either I will finish this logic course or I will die trying. 
W. C. Fields was not both handsome and smart. 

Unde Scrooge was neither generous nor understanding. 
Although Minnesota Fats tried to diet, he was very overweight. 
Peter likes pickles and ice cream, but he does not like to eat them 
together. 

Roses are red and violets are blue. Transcribing this jingle i is not 
hard to do. 

Columbus sailed the ocean blue in 1491 or 1492, but in any case 
he discovered neither the South nor the North Pole. 

Either Luke will catch up with Darth Vader and put an end to 
him or Darth Vader will get away and cause more trouble. But 
eventually the Empire will be destroyed. 

a) 
b) 

CHAPTER SUMMARY EXERCISE 

Give brief explanations of the following terms introduced in this 
chapter. Again, please refer to the text to make sure you. have the 
ideas right. 

Transcription 

Adequate Transcription 

Also, give a brief description of how English marks the grouping of 
sentences, that is, describe how English accomplishes the work done 
in logic by parentheses. 







Logical Equivalence, 
Logical Truths, 
and Contradictions 

JO] 

3-1. LOGICAL EQUIVALENCE 

I introduced logic as the science of arguments. But before turning to ar- 
guments, we need to extend and practice our understanding of logic’s 
basic tools as I introduced them in chapter 1. For starters, let's look at the 
truth table for ‘A’, ‘~A’, and the negation of the negation of ‘A’, namely, 
Cos A! 

This truth table exhibits the special situation. which I mentioned at the 
end of the last chapter: The truth value of ‘~~A’ is always the same as 
that of ‘A’. Logicians say that ‘A’ and ‘~~A’ are Logically Equivalent. 

As we will see in a moment, much more complicated sentences can be 
logically equivalent to each other. To get clear on what this means, let us 
review some of the things that truth tables do for us. Suppose we are 
looking at a compound sentence, perhaps a very complicated one which 
uses many sentence letters. When we.write out the truth table for such a 
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sentence, we write Out all the possible cases, that is, all the possible assign- 
ments of truth values to sentence letters in all possible combinations. In 
each one of these possible cases our ee sentence has the truth value 
t or the truth value f. 
Now suppose that we look at a second sentence which uses the same 

sentence letters, or perhaps only some of the sentence letters that the first 
sentence uses, and no new sentence letters. We say that the two sentences 

are logically equivalent if in each possible case, that is, for each line of the 
truth table, they have the same truth value. 

Two sentences of sentence logic are Logically Equivalent if and only if in each 
possible case (for each assignment of truth values to sentence letters) the 
two sentences have the same truth value. 

What we said about the double negation of ‘A’ naturally holds quite 
generally: 

The Law of Double Negation (DN): For any sentence X, X and ~~X are 
logically equivalent. 

Here are two more laws of logical equivalence: 

De Morgan’s Laws (DM): For any sentences X and Y, —(X&Y) is logically 
equivalent to —Xv— Y. And ~(XvyY) is logically equivalent to — X&- Y. 

Thus ‘Adam is not both ugly and dumb. is logically equivalent to ‘Either 
Adam is not ugly or Adam is not dumb.’ And ‘Adam is not either ugly or 
dumb.’ is logically equivalent to ‘Adam is not ugly and Adam is not 
dumb.’ You should check these laws with truth tables. But I also want to 
show you a second, informal way of checking them which allows you to 

“see” the laws. This method uses something called Venn Diagrams. 
A Venn diagram begins with a box. You are to think of each point 

inside the box as a possible case in which a sentence might be true or 
false. That is, think of each point as an assignment of truth values to 
sentence letters, or as a line of a truth table. Next we draw a circle in the 

box and label it with the letter ‘X’, which is supposed to stand for some 
arbitrary sentence, atomic or compound. The idea is that each point in- 
side the circle represents a possible case in which X is true, and each point 
outside the circle represents a possible case in which X is false. 

Look at Figure 3—1. What area represents the sentence ~X? The area 
outside the circle, because these are the possible cases in which X is false. 

- Now let’s consider how Venn diagrams work for compound sentences 
built up from two components, X and Y. Depending on what the sen- 
tences X and Y happen to be, both of them might be true, neither might 
be true, or either one but not the other might be true. Not to omit any of 
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u [o1 

these eventualities, we must draw the circles represenüng X and Y as 
overlapping, as in Figure 3-2 and 3-3. 

X&Y 

Figure 3—2 Figure 3-3 

The conjunction X&Y is true in just those cases represented by points 
that lie inside both the X and Y circles, that is, the shaded area in Figure 
3-2. The disjunction XvY is true in just those cases represented by points 
that lie inside either the X or the Y circle (or both), that is, the shaded 
area in Figure 3-3. 
Now we can use Venn diagrams to check De Morgan's laws. Consider 

first a negated conjunction. Look for the area, shown in Figure 3—4, 

which represents —(X&Y). This is just the area outside the shaded lens in 
Figure 3-2. 

Figure 3-4 

Let us compare this with the area which represents —Xv—Y. We draw 
overlapping X and Y circles. Then we take the area outside the first circle 
(which represents —X; see Figure 3—5), and we take the area outside the 
second (which represents —Y; see Figure 3—6). 
Finally, we put these two areas together to get the area representing the 
disjunction ~Xv~Y, as represented in Figure 3-7. 

Notice that the shaded area of Figure 3-7, representing ~Xv~Y, is the 
same as that of Figure 3—4, representing ~(X&Y). The fact that the same 
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b A 

Figure 3-7 

shaded area represents both ~Xv~Y and —(X&Y) means that the two 

sentences are true in exactly the same cases and false in the same cases. 
In other words, they always have the same truth value. And that is just 
what we mean by two sentences being logically equivalent. 
Now try to prove the other of De Morgan's laws for yourself using 

Venn diagrams. 
Here are two more laws of logical equivalence: 

The Distributive Laws: For any three sentences, X, Y, and Z, X&(YvZ) is 
logically equivalent to (X&Y)v(X&Z). And Xv(Y&Z) is logically equivalent to 
(XvY)&(XvZ). 

For example, ‘Adam is both bold and either clever or lucky.’ comes to the 
same thing as 'Adam is either both bold and clever or both bold and 
lucky.' You should prove these two laws for yourself using Venn dia- 
grams. To do so, you will need a diagram with three circles, one each 
representing X, Y, and Z. Again, to make sure that you omit no possible 
combination of truth values, you must draw these so that they all overlap, 

as in Figure 3-8. 

Figure 3-8 

Zz 
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'Fill in the areas to represent YvZ, and then indicate the area which 
represents the conjunction of this with X. In a separate diagram, first fill 
in the areas representing X&Y and X&Z, and then find the area corre- 

sponding to the disjunction of these. If the areas agree, you will have 
demonstrated logical equivalence. Do the second of the distributive laws 
similarly. Also, if you feel you need more practice with truth tables, prove 
these laws using truth tables. 

EXERCISES 

3—1. Prove the second of De Morgan’s laws and the two distributive 
laws using Venn diagrams. Do this in the same way that I proved 
the first of De Morgan's laws in the text, by drawing a Venn diagram 
for each proof, labeling the circles in the diagram, and explaining in 
a few sentences how the alternate ways of getting the final area give 
the same result. Use more than one diagram if you find that helpful 
in explaining your proof. 

3-2. SUBSTITUTION OF LOGICAL EQUIVALENTS 
AND SOME MORE LAWS 

We can't do much with our laws of logical equivalence without using a 
very simple fact, which our next example illustrates. Consider 

(1) ~~AvB. 

‘~~A’ is logically equivalent to ‘A’. This makes us think that (1) is logically 
equivalent to 

(2) AVB. 

This is right. But it is important to understand why this is right. A 
compound sentence is made up of component sentences, which in turn 

may be made up of further component sentences. How do subsentences 
(components, or components of components, or the like) affect the truth 
value of the original sentence? Only through their truth values. The only 
way that a subsentence has any effect on the truth values of a larger sen- 
tence is through the subsentence’s truth value. (This, again, is just what 
we mean by saying that compound sentences are truth functions.) But if 
only the truth values matter, then substituting another sentence which 
always has the same truth value as the first can’t make any difference. 
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I'll say it again in different words: Suppose that X is a subsentence of 
some larger sentence. Suppose that Y is logically equivalent to X, which 
means that Y and X always have the same truth value. X affects the truth 
value of the larger sentence only through its (i.e., X's) truth value. So, if 

we substitute Y for X, there will be no change in the larger sentence's 
truth value. i 

But this last fact is just what we need to show our general point about 
logical equivalence. The larger sentence will have the same truth value 
before and after the substitution; that is, the two versions of the larger 

sentence will be logically equivalent: 

The Law of Substitution of Logical Equivalents (SLE): Suppose that X and Y 
are logically equivalent, and suppose that X occurs as a subsentence of some 
larger sentence Z. Let Z* be the new sentence obtained by substituting Y for 
X in Z. Then Z is logically equivalent to Z*. 

Let's apply these laws to an example. Starting with the sentence 

~[((~AV~B)&(~ AVB)] 

we can apply one of De Morgan’s laws. This sentence is the negation of a 
conjunction, with the conjuncts ‘~Av~B’ and ‘~AVB’. De Morgan's law 
tells us that this first line is logically equivalent to the disjunction of the 
negation of the two original conjuncts: 

~(~AV~B)v~(~AVB) DM 

(The ‘DM’ on the right means that this line was obtained from the pre- 
vious line by applying one of De Morgan’s laws.) 

Did you have trouble understanding that one of De Morgan’s laws ap- 
plies to the sentence? If so, try using the idea of the main connective 
introduced in chapter 1. Ask yourself: “In building this sentence up from 
its parts, what is the last thing I do?” You apply the negation sign to 
‘(~AV~B)&(~AvB)’. So you know the original sentence is a negation. 
Next, ask yourself, what is the last thing I do in building 

‘(~Av~B)&(~AVB) up from its parts? Conjoin ‘~AV~B’ with ‘~ AVB’. So 
‘(~AV~B)&(~AVB)’ is a conjunction. The original sentence, then, is the 
negation of a conjunction, that is, a sentence of the form ~(X&Y), where, 
in our example, X is the sentence ‘~AV~B? and Y is the sentence ‘~AvB’. 
Applying De Morgan's law to —(X&Y) gives ~XV~Y; in other words, in 
our example, ‘~(~Av~B)v~(~AvB)’. 
"Next, we can apply De Morgan's law to each of the components, 

‘~(~Av~B)’ and ‘~(~AvB)’, and then use the law of substitution of logi- 
cal equivalents to substitute the results back into the full sentence. Doing 
this, we get 
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(~~A&~~B)v(~~A&~B) DM, SLE 

(As before, ‘DM’ on the right means that we have used one of De Mor- 
gan’s laws. ‘SLE’ means that we have also used the law of substitution of 
logical equivalents in getting the last line from the previous one.) 
Now we can apply the law of double negation (abbreviated ‘DN’) to 

‘~~A’ and to ‘~~B’ and once more substitute the results into the larger 
sentence. This gives 

(A&B)v(A&~B) DN, SLE 

We have only one more step to do. If you look carefully, you will see 
that the distributive law (abbreviated ‘D’) applies to the last line. So the 
last line is logically equivalent to 

A&(Bv~B) D 

This might not be clear at first. As I stated the distributive law, you might 

think it applies only to show that the very last line is logically equivalent 
to the next to last line. But if X is logically equivalent to Y, then Y is 
logically equivalent to X! Logical equivalence is a matter of always having 
the same truth value, so if two sentences are logically equivalent, it does 
not matter which one gets stated first. Often students only think to apply 
a law of logical equivalents in the order in which it happens to be stated. 
But the order makes no difference—the relation of logical equivalence is 
symmetric, as logicians say. 

Let's put all the pieces of this problem together. In the following sum- 
mary, each sentence is logically equivalent to the previous sentence and 
the annotations on the right tell you what law or laws give you a line from 
the previous one. 

~((~Av~ B)&(-— AvB)] 
~(~AV~B)v~(~AVB) DM 
(~~A&~~B)v(~~A&~B) DM, SLE 
(A&B)v(A&~B) DN, SLE 
A&(Bv~B) D 

Actually, all 1 have really proved is that each of the above sentences is 
logically equivalent to the next. I really want to show that the first is logi- 
cally equivalent to the last. Do you see why that must be so? Because being 
logically equivalent just means having the same truth value in all possible 
cases, we trivially have 

The Law of Transitivity of Logical Equivalence (TLE): For any sentences X, 
Y, and Z, if X is logically equivalent to Y and Y is poly equivalent to Z, 
then X is logically equivalent to Z. 
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Repeated use of this law allows us to conclude that the first sentence in 

our list is logically equivalent to the last. Many of you may find this point 
obvious. From now on, transitivity of logical equivalence will go without 
saying, and you do not need explicitly to mention it in proving logical 
equivalences. 

Here are some more easy, but very important, laws: 

The Commutative Law (CM): For any sentences X and Y, X&Y is logically 
equivalent to Y&X. And XvY is logically equivalent to YvX. 

In other words, order in conjunctions and disjunctions does not make a 
difference. Note that the commutative law allows us to apply the distrib- 
utive law from right to left as well as from left to right. For example, 
‘(A&B)vC’ is logically equivalent to ‘(AVC)&(BvC)’. You should write out 

a proof of this fact using the commutative law and the distributive law as 
I stated it originally. 

Next, the Associative Law tells us that ‘A&(B&C)’ is logically equivalent 
to ‘(A&B)&C’. To check this, try using a Venn diagram, which in this case 
gives a particularly quick and clear verification. Or simply note that both 
of these sentences are true only when ‘A’, ‘B’, and ‘C’ are all true, and are 
false when one or more of the sentence letters are false. This fact shows 
that in this special case we can safely get away with dropping the paren- 
theses and simply writing ‘A&B&C’, by which we will mean either of the 
logically equivalent ‘A&(B&C)’ or (A&B)&C'. Better yet, we will extend 

the way we understand the connective ‘&’. We will say that ‘&’ can appear 
between any number of conjuncts. The resulting conjunction is true just 
in case all of the conjuncts are true, and the conjunction is false in all 
other cases. 

The same sort of generalization goes for disjunction. ‘AV(BVC)’ is logi- 
cally equivalent to ‘(AVB)vC’. Both of these are true just in case one or 
more of ‘A’, ‘B’, and ‘C’ are true and false only if all three of ‘A’, ‘B’, and 

‘C’ are false. (Again, a Venn diagram provides a particularly swift check.) 
We extend our definition of ‘V’ so that it can appear between as many 
disjuncts as we like. The resulting disjunction is true just in case at least 
one of the disjuncts is true and the disjunction is false only if all the dis- 
juncts are false. 

The Associative Law (A). For any sentences X, Y, and Z, X&(Y&2), 
(X&Y)&Z, and X&Y&Z are logically equivalent to each other. And Xv(YvZ), 
(XvY)vZ, and XvYVZ are logically equivalent to each other. Similarly, con- 
junctions with four or more components may be arbitrarily grouped and 

* similarly for disjunctions with four or more disjuncts. 

Here is yet another easy law. Clearly, X&X is logically equivalent to X. 
Likewise, XvX is logically equivalent to X. 
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The Law of Redundancy (RD): For any sentence X, X&X i is logically equiv- 
alent to X. Similarly, XvX is logically equivalent to X. 

Let us apply this law in a little example. Again, each line is logically 
equivalent to the next (RD stands for the law of redundancy): 

~(A&B)&(~ Av—B) 
(~Av~B)&(~Av~B) DM, SLE 
~Av~B RD 

Before asking you to practice these laws, let me give you a more ex- 
tended example which illustrates all the laws 1 have introduced so far: 

~(AV~B)v((CvB)&(Cv~A)] 
~(AV~B)v[(Cv(B&~ A)] D, SLE 
~(AV~B)v[(B&~A)vC] CM, SLE 
(~(AV~B)v(B&~ A)]vC A 
([~(AV~B)v(~A&B)]vC CM, SLE 
([~(AV~B)v(~ A&~~B)]vC DN, SLE 
{~(AV~B)v~(Av~B)]vC DM, SLE 
~(AV~B)vC RD, SLE. 

EXERCISES 

3-2. Prove the following logical equivalences. Write out your proofs 
as I did in the text specifying which laws you use in getting a line 
from the previous line. You can use the abbreviations for the laws 
found in the text. Until you feel comfortable with the easy laws, 

please include all steps. But when they begin to seem painfully ob- 
vious, you may combine the following laws with other steps and omit 

mentioning that you have used them: double negation, the associa- 
tive law, the commutative law, and the law of substitution of logical 

equivalents. You must explicitly specify any other law you use. 

a) 'Bv—A' is logically equivalent to ‘~(A&~B)’. 

b) ‘(A&B)vC’ is logically equivalent to (AvC)&(BvC). (Show all steps 
in this problem.) 

c) ‘A&(~~CVBY’ is logically equivalent to '(A&C)v(A&B). 

d) '—((A&-B)v(C&- B)]' is logically equivalent to ‘(~A&~C)vB’. 

e) . (AvB)&(CvD) is logically equivalent to 
'(A&C)v(B&C)v(A&D)v(B&D). 

f) 'A&B)(C&D) is logically equivalent to 
'(AVC)&(BVC)&(AvD)&(BvD). 

g) ‘(C&A)v(B&C)v[C&~(~B&~A)]’ is logically equivalent to 
‘C&(AVB)’. 

h) ‘C&~A’ is logically equivalent to ‘C&[{~Av~(~CVvA)/. 
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i) '—A&B&C' is logically equivalent to 
‘C&{~(AV~B)v[B&~(~CVvA)]P. 

3-3. Give a formal statement of De Morgan’s laws in application to 
negations of conjunctions and disjunctions with three components. 
Model your formal statement on the formal statement in the text. It 
should begin as follows: 

De Morgan’s Laws: For any sentences X, Y, and Z... 

3-3. LOGICAL TRUTHS AND CONTRADICTIONS 

Let us look at another interesting example: 

A || ~A | Av~A 

t f t 

f t t 

‘AV~A’ is true no matter what. Such a sentence is called a Logical Truth. 

A sentence of sentence logic is a Logical Truth just in case it is true in all 
possible cases, that is, just in case it is true for all assignments of truth values 
to sentence letters. 

Many authors use the word Tautology for a logical truth of sentence logic. 
I prefer to use the same expression, ‘logical truth’, for this idea as it ap- 
plies in sentence logic and as it applies to predicate logic, which we will 
study in volume II. 

Clearly there will also be sentences which are false no matter what, such 
as 

A || ~A | A&~A 

t f f 

f t f 

Such a sentence is called a Contradiction. 

A sentence of sentence logic is a Contradiction just in case it is false in all 
possible cases, that is, just in case it is false for all assignments of truth values 
to sentence letters. 

Later on in the course, logical truths and contradictions will concern us 
quite a bit. They are interesting here Poraus they provide several further 
laws of logical equivalence: 
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The Law of Logically True Conjunct (LTC): If X is any sentence and Y is 
any logical truth, then X&Y is logically equivalent to X. 

The Law of Contradictory Disjunct (CD): If X is any sentence and Y is any 
contradiction, then XvY is logically equivalent to X. 

You should be able to show that these laws are true. Furthermore, you 

should satisfy yourself that a conjunction is always a contradiction if one 
of its conjuncts is a contradiction and that a disjunction is always a logical 
truth if one of its disjuncts is a logical truth. 

EXERCISES 

3—4. Explain why a disjunction is always a logical truth if one of its 
disjuncts is a logical truth. Explain why a conjunction is always a 
contradiction if one of its conjuncts is a contradiction. 

3—5. Further simplify the sentence ‘A&(BV~B)’, which was the last 
line of the first example in section 3-2. 

3-6. Prove the following logical equivalences, following the same in- 
structions as in exercise 3—2: 

a) ‘A&(~AvB)’ is logically equivalent to ‘A&B’. 

b) ‘AvB’ is logically equivalent to ‘Av(~A&BY’. 

c) ‘A’ is logically equivalent to ‘(A&B)v(A&~BY, (This equivalence is 
called the Law of Expansion. You may find it useful in some of the 
en problems.) 

d) ” is logically equivalent to (AvB)&(Av— By. 

e) DEB CALCE is logically equivalent to ‘A&B’. 

f) ‘CvB’ is logically equivalent to (C&A)v(B&A)v(C&— AYv(B&--Ay. 

g) ‘C&B’ is logically equivalent to '(CvA)&(Bv—D)&(—AvC) &(DvB). 

h) 'A&B)v(—A&- B) is logically equivalent to '(—AvB)&(—BvAy. 

i) ‘~AvV~BvC’ is logically equivalent to ‘~(~AVB)v~AvC’. 

3-7. For each of the following sentences, determine whether it is a 
logical truth, a contradiction, or neither. (Logicians say that a sen- 

tence which is neither a logical truth nor a contradiction is Contin- 
gent, that is, a sentence which is true in some cases and false in 
others.) Simplify the sentence you are examining, using the laws of - 

logical equivalence, to show that the sentence is logically equivalent 
to a sentence you already know to be a logical truth, a contradiction, 
or neither. 

a) (B&A)V(B&~A) 
b) B&{(~AvA)&~B)] 
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c) (A&B)v[(A&~B)&(~A&B)} 

d) (AVB)v~(A&C) 

e) (AvB)&(Av—B)&(— AVB)&(~Av~B) 

f) —A&-—B&(AvB) 

g) (AvC)&C&(Av~C) 

h) (A&B)v~Bv~A 

i) (~B&A)v(~A&B)v(A&B)v(~B&~ A) 

p (Av~AvB)&(Av~ Av~C) 

k) (A&C)V(A&~C)v(B&C)W(B&~C) 
D) ~(~AvC)v~(~BvC)v~(AvB)vC 

3—4. DISJUNCTIVE NORMAL FORM 

AND THE SHEFFER STROKE 

Now that we understand logical equivalence, we can use it to put any 
sentence into a form which shows very clearly what the sentence says. As 
usual, we will start by looking at an example. Start with the truth table for 
Av~B: 

Casel tjt f t 

Case 2 tif t t 
Case3 flt f f 

Case 4 fif t t 

The truth table tells us that ‘Av~B’ is true in cases 1, 2, and 4. We can 
easily say what case 1 says using a sentence of sentence logic. Case 1 just 
says that ‘A’ and 'B' are both true, which we can say with ‘A&B’. In the 
same way, case 2 says that 'A' is true and 'B' is false, which we say in 
sentence logic with ‘A&~B’. Finally, '—-A&- B' says that case 4 holds, that 
is, that ‘A’ is false and ‘B’ is false. Of course, none of these things says 

what ‘Av~B’ says, which was that either case 1 is true or case 2 is true or 
case 4 is true. But, clearly, we can say this in sentence logic by using the 
disjunction of the three sentences, each one of which describes one of the 
cases covered by ‘Av~B’. That is 

‘Av~B’ is logically equivalent to ‘(A&B)v(A&~B)v(~A&~By’. 

'(A&B)v(A&-—B)v(—A&-B)' is said to be in Disjunctive Normal Form, 
and it says that either ‘A’ and ‘B’ are both true or ‘A’ is true and ‘P’ is 
false or ‘A’ is false and ‘B’ is false. This disjunction is logically equivalent 
to ‘Av~B’ because the disjunction says just what ‘Av~B’ says, as shown by 
its truth table. 
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Here is a slightly different way of putting the same point. The truth 
table shows us the possible cases in which the sentence under study will 
be true. We can always write a logically equivalent sentence in disjunctive 
normal form by literally writing out the information contained in the 
truth table. For each case in which the original sentence comes out true, 
write the conjunction of sentence letters and negated sentence letters 
which describe that case. Then take the disjunction of these conjunctions. 
This sentence will be true in exactly those cases described by the disjuncts 
(in our example, in the cases described by ‘A&B’, by ‘A&~B’, and by 
‘~ A &~B’). But the original sentence is true in just these same cases—that 
is what its truth table tells us. So the sentence in disjunctive normal form 
is true in exactly the same cases as the original, which is to say that the 
two are logically equivalent. 

I want to give you a formal summary description of disjunctive normal 
form. But first we must deal with three troublesome special cases. I will 
neutralize these troublesome cases with what may at first strike you as a 
very odd trick. 

Consider the atomic sentence ‘A’. As I have so far defined disjunctions 
and conjunctions, ‘A’ is neither a disjunction nor a conjunction. But be- 
cause 'A' is logically equivalent to 'AvA', it will do no harm if we extend 
the meaning of ‘disjunction’ and say that, in a trivial way, ‘A’ will also 
count as a disjunction—that is, as a degenerate disjunction which has only 
one disjunct. 
We can play the same trick with conjunctions. ‘A’ is logically equivalent 

to ‘A&A’. So we do no harm if we extend the meaning of ‘conjunction’ 
and say that, in a trivial way, 'A' also counts as a conjunction—the degen- 
erate conjunction which has only one conjunct. 

Finally, we will want to say the same thing, not just about atomic sen- 
tence letters, but about any sentence, X, atomic or compound. Whatever 

the form of X, we can always view X as a degenerate disjunction with just 
one disjunct or as a degenerate conjunction with just one conjunct. 
What is the point of this apparently silly maneuver? I am working to- 

ward giving a definition of disjunctive normal form which will work for 
any sentence. The idea of disjunctive normal form is that it involves a dis- 
junction of conjunctions. But what should we say, for example, is the 
disjunctive normal form of the sentence ‘A&B’? If we allow degener- 
ate disjunctions with one disjunct, we can say that ‘A&B’ is already in 
disjunctive normal form—think of it as ‘(A&B)v(A&B)’. Again, what 
should we say is the disjunctive normal form of ‘A’? Lets count ‘A’ as a 
degenerate conjunction with just one conjunct (think of 'A&A") and let's 
count this conjunction as a degenerate disjunction, as in the last example. 
So we can say that 'A' is already in disjunctive normal form and still think 
of disjunctive normal form as a disjunction of conjunctions. 
We still have to discuss one more special case. What should we say is 
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the disjunctive normal form of a contradiction, such as ‘A&~A’? We will 
allow repetitions of sentence letters with and without negation signs, so 
that, again, ‘A&~A’ will itself already count as being in disjunctive normal 
form. 
Now we can say very simply: 

A sentence is in Disjunctive Normal Form if it is a disjunction, the disjuncts of 
which are themselves conjunctions of sentence letters and negated sentence 
letters. In this characterization we allow as a special case that a disjunction 
may have only one disjunct and a conjunction may have only one conjunct. 

For any sentence, X, of sentence logic, the disjunctive normal form of X is 
given by a sentence Y if Y is in disjunctive normal form and is logically 
equivalent to X. Except for contradictions, the disjunctive normal form of a 
sentence is the sentence’s truth table expressed in sentence logic. 

The fact that every sentence of sentence logic is logically equivalent to 
a sentence in disjunctive normal form helps to show something interesting 
about the connectives. All our sentences are put together using ‘&’, ‘v’, 
and ‘~’. But are these connectives all we really need? Could we say new 
things if we added new connectives? The answer is no, if we limit our- 
selves to sentences which can be given in terms of a truth table. Because 
we can write any truth table in disjunctive normal form, using only ‘&’, ‘v’ 
and ‘~’, anything which we can express using a truth table we can express 
using just these three connectives. In other words, '&', v’, and ‘~’ are 
enough if we limit ourselves to a logic all the sentences of which are truth 
functions of atomic sentence letters. We say that ‘&’, ‘v’, and ‘~’ are, to- 
gether, Expressive Complete. For given the truth table of any sentence 
which we might want to write, we can always write it with a sentence in 

disjunctive normal form. 
Even more interestingly, ‘&’, 'v' and '— are more than we need. Using 

De Morgan's laws and double negation, we can always get rid of a con- 
junction in favor of a disjunction and some negation signs. And we can 
always get rid of a disjunction in favor of a conjunction and some nega- 
tion signs. (Do you see how to do this?) Thus any sentence which can 
be represented by a truth table can be expressed using just '&' and ‘~. 
And any such sentence can be expressed using just 'v' and ‘~’. So ‘&’ 
and '—' are expressively complete, and 'v' and ‘~’ are also expressively 
complete. 
We have just seen that anything that can be represented with truth 

tables can be expressed with a sentence using just two connectives. Could 
we make do with just one connective? Clearly, we can't make do with just 
‘&’, with just ‘v’, or with just ‘~’. (Can you see why?) But perhaps we could 
introduce a new connective which can do everything all by itself. Consider 

the new connective ‘|’, called the Sheffer Stroke, defined by 
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Work out the truth table and you will see that X{X is logically equivalent 
to ~X. Similarly, you can prove that (X|Y)|(X|Y) is logically equivalent to 
XvY. With this new fact, we can prove that ‘|’ is expressively complete. We 
can express any truth function in disjunctive normal form. Using De Mor- 
gan's law and the law of double negation, we can get rid of the '&'s in the 
disjunctive normal form. So we can express any truth function using just 
v and ‘~’. But now for each negation we can substitute a logically equiv- 
alent expression which uses just ‘|’. And for each disjunction we can also 
substitute a logically equivalent expression which uses just ‘|’. The final 
result uses ‘|’ as its only connective. Altogether, the sentence in disjunctive 
normal form has been transformed into a logically equivalent sentence 
using just ‘). And because any truth function can be put in disjunctive 

normal form, we see that any truth function, that is, any. sentence which 
could be given a truth table definition, can be expressed using just ‘|’. 
The important idea here is that of expressive completeness: 

A connective, or set of connectives, is Expressively Complete for truth functions 
if and only if every truth function can be represented using just the connec- 
tive or connectives. 

Actually, the really important idea is that of a truth function. Understand- 
ing expressive completeness for truth functions will help to make sure 
you have the idea of a truth function clearly in mind. 

EXERCISES 

3-8: Put the following sentences in disjunctive normal form. You 
can do this most straightforwardly by writing out truth tables for the 
sentences and then reading off the disjunctive normal form from 
the truth tables. Be sure you know how to work the problems this 
way. But you might have more fun trying to put a sentence in dis- 
junctive normal form by following this procedure: First, apply De 
Morgan’s laws to drive all negations inward until negation signs ap- 
ply only to sentence letters. Then use other laws to get the sentence 
in the final disjunctive normal form. 
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a) ~(A&B) 

b) ~((A&B)v(~A&C)] 

3—9. Suppose you are given a sentence in which ‘v’ occurs. Explain 
in general how you can write a logically equivalent sentence in 
which ‘v’ does not occur at all. Similarly, explain how a sent- 
ence in which ‘&’ occurs can be replaced by a logically equivalent 
sentence in which ‘&’ does not occur. (Hint: You will need to appeal 
to De Morgan's laws.) 

3-10. Define a new connective, **, as representing the following 
truth function: 

case 1 

- case 2 

Case 3 

Case 4 

Show that '*' is expressively complete. 
3-11. Show that '&' is not expressively complete. That is, give a truth 
function and show that this truth function cannot be expressed by 
using '&' as the only connective. Similarly, show that 'v' is not ex- 
pressively complete and show that ‘~’ is not expressively complete. 
(You may find this problem hard, but please take a few minutes to 
try to work it.) 

CHAPTER SUMMARY EXERCISE 

Once again, you will find below the important terms which I have 
introduced in this chapter. Make sure you understand all of them 
by writing out a short explanation of each. You should refer to the 
text to make sure that you have correctly explained each term. 

Please keep your explanations of these terms in your notebook for 
reference and review. 

3) Logical Equivalence 
b) Venn Diagram 
c) Law of Double Negation 

7 d) De Morgan’s Laws 
e) Distributive Laws 
f) Law of Substitution of Logical Equivalents 
g) Law of Transitivity of Logical Equivalence 
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h) Commutative Laws 
i) Associative Law 
p Law of Redundancy 
k) Logical Truth 
1) Contradiction 
m) Law of Logically True Conjunct 
n) Law of Contradictory Disjunct 

If you have read section 3-4, also explain 

o) Disjunctive Normal Form 

p) Expressively Complete 

q) Sheffer Stroke 



«| Validity 
and Conditionals 

4-1. VALIDITY 

Consider the following argument: 

AvB — Adam loves Eve or Adam loves Bertha. 
~A Adam does not love Eve. 

B Adam loves Bertha. 

If you know, first of all, that either ‘A’ or ‘B’ is true, and in addition you 
know that 'A' itself is false; then clearly, 'B' has to be true. So from 'AvB' 

and '—A' we can conclude ‘B’. We say that this argument is Valid, by 
which we mean that, without fail, if the premises are true, then the con- 

clusion is going to turn out to be true also. 
Can we make this idea of validity more precise? Yes, by using some of 

the ideas we have developed in the last three chapters. (Indeed one of the 
main reasons these ideas are important is that they will help us in making 
the notion of validity very precise.) Let us write out a truth table for all 
the sentences appearing in our argument: 
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Case 1 

Case 2 

Case 3 

Case 4 

We know that cases ! through 4 constitute all the ways in which any of 
the sentences in the argument may turn out to be true or false. This 
enables us to explain very exactly what we mean by saying that, without 
fail, if the premises are true, then the conclusion is going to turn out to 
be true also. We interpret this to mean that in each possible case (in each 
of the cases 1 through 4), if the premises are true in that case, then the 
conclusion is true in that case. In other words, in all cases in which the 

premises are true, the conclusion is also true. In yet other words: 

To say that an argument (expressed with sentences of sentence logic) is Valid 
is to say that any assignment of truth values to sentence letters which makes 
all of the premises true also makes the conclusion true. 

4-2. INVALIDITY AND COUNTEREXAMPLES 

Let's look at an example of an Invalid argument (an argument which is 
not valid): 

ANB 

*case 1 

*case 2 

case 3 

Case 4 

Counterexample 

I have set up a truth table which shows the argument to be invalid. First 
I use a * to mark each case in which the premises are all true. In one of 
these cases (the second) the conclusion is false. This is what can't happen 
in a valid argument. So the argument is invalid. I will use the term Coun- 
terexample for a case which in this way shows an argument to be invalid. A 
counterexample to an argument is a case in which the premises are true 
and the conclusion is false. 

In fact, we can use this idea of a counterexample to reword the defini- 
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tion of validity. To say that an argument is valid is to say that any assign- 
ment of truth values to sentence letters which makes all of the premises 
true also makes the conclusion true. We reword this by saying: An argu- 
ment is valid just in case there is no possible case, no assignment of truth 
values to sentence letters, in which all of the premises are true and the 

conclusion is false. To be valid is to rule out any such possibility. We can 
break up this way of explaining validity into two parts: 

A Counterexample to a sentence logic argument is an assignment of truth 
values to sentence letters which makes all of the premises true and the con- 
clusion false. 

An argument is Valid just in case there are no counterexamples to it. 

Now let us reexpress all of this using sentences of sentence logic and 
the idea of logical truth. Let us think of an argument in which X is the 
conjunction of all the premises and Y is the conclusion. X and Y might 
be very complicated sentences. The argument looks like this: 

X 

Y 
- 

I will express an argument such as this with the words "X. Therefore Y". 
A counterexample to such an argument is a case in which X is true and 

Y is false, that is, a case in which X&~Y is true. So to say that there are 
no possible cases in which there is a counterexample is to say that in all 
possible cases X&~Y is false, or, in all possible cases ~(K&~Y) is true. 
But to say this is just to say that ~(X&~Y) is a logical truth. The grand 
conclusion is that 

The argument ^X. Therefore Y" is valid just in case the sentence ~(X&~Y) 
is a logical truth. 

4-3. SOUNDNESS 

Logic is largely about validity. So to understand clearly what much of the 
rest of this book is about, you must clearly distinguish validity from some 
other things. 

If I give you an argument by asserting to you something of the form 
"X. Therefore Y", I am doing two different things. First, I am asserting 
the premise or premises, X. Second, I am asserting to you that from these 

premises the conclusion, Y follows. 
To see clearly that two different things are going on here, consider that 

there are two ways in which I could be mistaken. It could turn out that I 
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am wrong about the claimed truth of the premises, X. Or I could be 
wrong about the ‘therefore’. That is, I could be wrong that the conclusion, 

Y, validly follows from the premises, X. To claim that X is true is one 
thing. It is quite another thing to make a claim corresponding to the 
‘therefore’, that the argument is valid, that is, that there is no possible 

case in which the premises are true and the conclusion is false. 
Some further, traditional terminology helps to emphasize this distinc- 

tion. If I assert that the argument, "X. Therefore Y", is valid, I assert 

something about the relation between the premises and the conclusion, 
that in all lines of the truth table in which the premises all turn out true, 

the conclusion turns out true also. In asserting validity, I do not assert 
that the premises are in fact true. But of course, I can make this further 
assertion. To do so is to assert that the argument is not only valid, but 

Sound: 

An argument is Sound just in case, in addition to being valid, all its premises 
are true. 

Logic has no special word for the case of a valid argument with false 
premises. 
To emphasize the fact that an argument can be valid but not sound, 

here is an example: 

Teller is ten feet tall or Teller has never taught logic. AvB 
Teller is not ten feet tall. ~A 

Teller has never taught logic. B 

Viewed as atomic sentences, "Teller is ten feet tall.’ and "Teller has never 

taught logic.’ can be assigned truth values in any combination, so that the 
truth table for the sentences of this argument looks exactly like the truth 
table of section 4-1. The argument is perfectly valid. Any assignment of 
truth values to the atomic sentences in which the premises both come out 
true (only case 3) is an assignment in which the conclusion comes out true 
also. But there is something else wrong with the argument of the present 
example. In the real world, case 3 does not in fact apply. The argument’s 
first premise is, in fact, false. The argument is valid, but not sound. 

EXERCISES 

4—1. Give examples, using sentences in English, of arguments of 
each of the following kind. Use examples in which it is easy to tell 
whether the premises and the conclusion are in fact (in real life) true 
or false. 
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a) A sound argument 
b) A valid but not sound argument with a true conclusion 

c) A valid but not sound argument with a false conclusion 
d) An argument which is not valid (an invalid argument) all the 

premises of which are true ; 

e) An invalid argument with one or more false premises 

4—2. Use truth tables to determine which of the following arguments 
are valid. Use the following procedure, showing all your work: First 
write out a truth table for all the sentences in the argument. Then 
use a '*' to mark all the lines of the truth table in which all of the 
argument’s premises are true. Next look to see whether the conclu- 
sion is true in the *ed lines. If you find any *ed lines in which the 
conclusion is false, mark these lines with the word 'counterexample'. 

You know that the argument is valid if and only if there are no 
counterexamples, that is, if and only if all the cases in which all the 
premises are true are cases in which the conclusion is also true. 
Write under the truth table whether the argument is valid or invalid 
(i.e., not valid). 

a) ~(A&B) b) —AvB c) AvB d) AWB e A 
~A A —BvA ~AvB Bv~C 

~B B A A (A&B)V(A&~C) 

4—3. Show that X is logically equivalent to Y if and only if the argu- 
ments "X. therefore Y" and "Y. Therefore X" are both valid. 

4—4. THE CONDITIONAL 

In section 4—2 we saw that the argument, "X. Therefore Y", is intimately 
related: to the truth function ~(X&~Y). This truth function is so impor- 
tant that we are going to introduce a new connective to represent it. We 
will define XDY to be the truth function which is logically equivalent to 
~(K&~Y). You should learn its truth table definition: 

Truth table 

definition 

of 2 

" Again, the connection between XDY and the argument "X. Therefore Y" 

is that XDY is a logical truth just in case the argument "X. Therefore Y" 
is valid. 
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Logicians traditionally read a sentence such as ‘ADB’ with the words ‘If 
A, then B’, and the practice is to transcribe ‘If. . . then. . .’ sentences 

of English by using ‘D’. So (to use a new example) we would transcribe ‘If 
the cat is on the mat, then the cat is asleep.’ as ‘ADB’. 

In many ways, this transcription proves to be problematic. To see why, 
let us forget ‘D’ for a moment and set out afresh to define a truth func- 
tional connective which will serve as a transcription of the English ‘If. . . 

, 
then... 

IfA then B (In the next two paragraphs, think of the 
case 1 example, ‘If the cat is on the mat, then the cat is 

asleep." 

case 2 

case 3 

case 4 

That is, by choosing t or f for each of the boxes under ‘If A then B’ in 
the truth table, we want to write down a truth function which says as 
closely as possible what ‘If A then B’ says in English. 
The only really clear-cut case is case 2, the case in which the cat is on 

the mat but is not asleep. In this circumstance, the sentence ‘If the cat is 
on the mat, then the cat is asleep.’ is most assuredly false. So we have to 
put f for case 2 in the column under ‘If A then B’. If the cat is both on 
the mat and is asleep, that is, if we have case 1, we may plausibly take the 
conditional sentence to be true. So let us put t for case 1 under ‘If A then 
B’. But what about cases 3 and 4, the two cases in which A is false? If the 
cat is not on the mat, what determines whether or not the conditional, ‘If 

the cat is on the mat, then the cat is asleep.’, is true or false? 

Anything we put for cases 3 and 4 is going to give us problems. Sup- 
pose we put t for case 3. This is to commit ourselves to the following: 
When the cat is not on the mat and the cat is asleep somewhere else, then 
the conditional, ‘If the cat is on the mat, then the cat is asleep.’, is true. 

But suppose we have sprinkled the mat with catnip, which always makes 
the cat very lively. Then, if we are going to assign the conditional a truth 
value at all, it rather seems that it should count as false. On the other 

hand, if we put f for case 3, we will get into trouble if the mat has a cosy 
place by the fire which always puts the cat to sleep. For then, if we assign 
a truth value at all, we will want to say that the conditional is true. Similar 
examples show that neither t nor f will always work for case 4. 

Our problem has a very simple source: ‘If. . . then. . .’ in English can 
be used to say various things, many of which are not truth functional. 
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Whether or not an ‘If. . . then . . .' sentence of English is true or false 
in these nontruth functional uses depends on more than just the truth 
values of the sentences which you put in the blanks. The truth of ‘If you 
are five feet five inches tall, then you will not be a good basketball player.’ 
depends on more than the truth or falsity of “You are five feet five inches 
tall.’ and ‘You will not be a good basketball player.’ It depends on the fact 
that there is some factual, nonlogical connection between the truth and 
falsity of these two component sentences. 

In many cases, the truth or falsity of an English ‘If... then. . .' sen- 
tence depends on a nonlogical connection between the truth and falsity 
of the sentences which one puts in the blanks. The connection is often 
causal, temporal, or both. Consider the claim that ‘If you stub your toe, 

then it will hurt.’ Not only does assertion of this sentence claim that there 
is some causal connection between stubbing your toe and its hurting, this 
assertion also claims that the pain will come after the stubbing. However, 
sentence logic is insensitive to such connections. Sentence logic is a theory 
only of truth functions, of connectives which are defined entirely in terms 

of the truth and falsity of the component sentences. So no connective 
defined in sentence logic can give us a good transcription of the English 
‘If. .. then. . .’ in all its uses. 
What should we do? Thus far, one choice for cases 3 and 4 seems as 

good (or as bad) as another. But the connection between the words *. . 
therefore . . .’ and ‘If. . . then. . .’ suggests how we should make up 
our minds. When we use ‘If. . . then. . .’ to express some causal, tem- 
poral, or other nonlogical connection between things in the world, the 
project of accurately transcribing into sentence logic is hopeless. But when 
we use ‘If. . . then. . .’ toexpress what we mean by ‘. . . therefore. . .' 

our course should be clear. To assert "X. Therefore Y", is to advance the 
argument with X as premise(s) and Y as conclusion. And to advance the 
argument, “X. Therefore Y”, is (in addition to asserting X) to assert that 

the present case is not a counterexample; that is, it is to assert that the 
sentence ~(X&~Y) is true. In particular, if the argument, "X. Therefore 
Y", is valid, there are no counterexamples, which, as we saw, comes to the 

same thing as ~(X&~Y) being a logical truth. 
Putting these facts together, we see that when "If X then Y" conveys 

what the ‘therefore’ in "X. Therefore Y" conveys, we can transcribe the 
"If X then Y" as ~(X&~Y), for which we have introduced the new symbol 
XDY. In short, when ‘If. . . then. . .' can be accurately transcribed into 

sentence logic at all, we need to choose t for both cases 3 and 4 to give us 
the truth table for XOY defined as ~(K&~Y). 

Logicians recognize that ‘D’ is not a very faithful transcription of ‘If 
... then... when ‘If... then. . .' expresses any sort of nonlogical 
connection. But since ‘D’ agrees with ‘If. . . then. . .' in the clear case 2 
and the fairly clear case 1, ‘D’ is going to be at least as good a transcrip- 
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tion as any alternative. And the connection with arguments at least makes 
‘D’ the right choice for cases 3 and 4 when there is a right choice, that is, 
when ‘If. . . then. . .’ means‘. . . therefore. . X. 
We have labored over the introduction of the sentence logic connective 

‘D’. Some logic texts just give you its truth table definition and are done 
with it. But logicians use the ‘D’ so widely to transcribe the English ‘If. . . 
then. . .’ that you should appreciate as clearly as possible the (truth func- 
tional) ways in which ‘D’ does and the (nontruth functional) ways in which 

‘D’ does not correspond to ‘If. . . then. . ?. 
In these respects, the English ‘and’ and ‘or’ seem very different. ‘And’ 

and ‘or’ seem only to have truth functional aspects, so that they seem to 
correspond very closely to the truth functionally defined '&' and ‘v’. Now 
that you have been through some consciousness raising about how En- 
glish can differ from logic in having nontruth functional aspects, it is time 
to set the record straight about the ‘and’ and ‘or’ of English. 

Surely, when I assert, ‘Adam exchanged vows with Eve, and they be- 

came man and wife.’ I do more than assert the truth of the two sentences 
‘Adam exchanged vows with Eve.’ and ‘They became man and wife.’ I 
assert that there is a connection, that they enter into the state of matri- 
mony as a result of exchanging vows. Similarly, if I yell at you, ‘Agree 
with me or I'll knock your block off!’ I do more than assert that either 
‘You will agree with me’ or ‘I will knock your block off? is true. I assert 
that nonagreement will produce a blow to your head. In these examples 
‘and’ and ‘or’ convey some causal, intentional, or conventional association 
which goes above and beyond the truth functional combination of the 
truth values of the component sentences. ‘And’ can likewise clearly ex- 
press a temporal relation which goes beyond the truth values of the com- 
ponents. When I say, ‘Adam put on his seat belt and started the car.’ I 
assert not only that ‘Adam put on his seat belt.’ and ‘He started the car.’ 
are both true. I also assert that the first happened before the second. 

Although ‘and’, ‘or’, and ‘If. . . then. . .” all have their nontruth func- 

tional aspects, in this respect ‘If... then .. .' is the most striking. ‘D’ is 
much weaker than ‘If. . . then. . .’, inasmuch as ‘D’ leaves out all of the 
nontruth functional causal, temporal, and other connections often con- 

veyed when we use ‘If. . . then. . .’. Students sometimes wonder: If ‘D’ 
(and '&' and ‘v’) are so much weaker than their English counterparts, why 
should we bother with them? The answer is that although truth functional 
sentence logic will only serve to say a small fraction of what we can say in 

English, what we can say with sentence logic we can say with profound 
clarity. In particular, this clarity serves as the basis for the beautifully clear 
exposition of the nature of deductive argument. 
When the language of logic was discovered, its clarity so dazzled philos- 

ophers and logicians that many hoped it would ultimately replace English, 
at least as an all-encompassing exact language of science. Historically, it 



54 Validity and Conditionals 

took decades to realize that the clarity comes at the price of important 
expressive power. 

But back to ‘D’. 
Here are some things you are going to need to know about the connec- 

tive ‘D’: 

A sentence of the form XDY is called a Conditional. X is called its Antecedent 
and Y is called its Consequent. 

Look at the truth table definition of XDY and you will see that, unlike 

conjunctions and disjunctions, conditions are not symmetric. That is, 
XDY is not logically equivalent to YOX. So we need names to distinguish 
between the components. This is why we call the first component the an- 
tecedent and the second component the consequent (not the conclusion— 
a conclusion is a sentence in an argument). 

Probably you will most easily remember the truth table definition of the 
conditional if you focus on the one case in which it is false, the one case 
in which the conditional always agrees with English. Just remember that 

a conditional is false if the antecedent is true and the consequent is false, 
and true in all other cases. Another useful way for thinking about the 
definition is to remember that if the antecedent of a conditional is false, 

then the whole conditional is true whatever the truth value of the conse- 
quent. And if the consequent is true, then again the conditional is true, 
whatever the truth value of the antecedent. 

Finally, you should keep in mind some logical equivalences: 

The Law of the Conditional (C): X2Y is logically equivalent to ~(X&~Y) 
and (by De Morgan's law) to —XvY. 

The Law of Contraposition (CP); XDY is logically equivalent to —Y2 —X. 

4-5. THE BICONDITIONAL 

We introduce one more connective into sentence logic. Often we will want 
to study cases which involve a conjunction of the form (XOY)&(Y2X). 
This truth function of X and Y occurs so often in logic that we give it its 
own name, the Biconditional, which we write as X=Y. Working out the 
truth table of (KDY)&(YD X) we get as our definition of the biconditional: 

Truth table 

Definition of 
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Because a biconditional has a symmetric definition, we don't have dif- 
ferent names for its components. We just call them ‘components’. You will 
remember this definition most easily by remembering that a biconditional 
is true if both components have the same truth value (both true or both 
false), and it is false if the two components have different truth values 
(one true, the other false). We read the biconditional X=Y with the words 

'X if and only if Y'. With the biconditional, we get into much less trouble 
with transcriptions between English and sentence logic than we did with 
the conditional. 

Given the way we define 'z', we have the logical equivalence: 

The Law of the Biconditional (B): X=Y is logically equivalent to 
(X5 Y)&(YOX). 

Remember that the conditional, XDY, is a logical truth just in case the 
corresponding argument, "X. Therefore Y", is valid. Likewise, there is 
something interesting we can say about the biconditional, X=Y, being a 
logical truth: 

X=Y is a logical truth if and only if X and Y are logically equivalent. 

Can you see why this is true? Suppose X=Y is a logical truth. This means 
that in every possible case (for every assignment of truth values to sen- 
tence letters) X=Y is true. But X=Y is true only when its two components 
have the same truth value. So in every possible case, X and Y have the 
same truth value, which is just what we mean by saying that they are 
logically equivalent. On the other hand, suppose that X and Y are logi- 
cally equivalent. This just means that in every possible case they have the 
same truth value. But when X and Y have the same truth value, X=Y is 
true. So in every possible case X=Y is true, which is just what is meant by 
saying that X=Y is a logical truth. 

EXERCISES 

4-4. In section 1-6 I gave rules of formation and valuation for sen- 
tence logic. Now that we have extended sentence logic to include the 
connectives ‘D’ and ‘=’, these rules also need to be extended. Write 
the full rules of formation and valuation for sentence logic, where 
sentence logic may now use all of the connectives ‘~’, '&', ‘v’, ‘D’, and 

‘=’. In your rules, also provide for three and more place conjunc- 
tions and disjunctions as described in section 3—2 in the discussion 
of the associative law. 
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4—5. Follow the same instructions as for exercise 4—2. 

a) ADB b) AD~B c) A=B d) A=~B 
B B Av~B Av~B 

A ~A B AvB 

e) (AVB)D(A&C) f) (AvB)=(Av~C) 
CVA ~BvC 

~C AvC 

4-6. For each of the following sentences, establish whether it is a 

logical truth, a contradiction, or neither. Use the laws of logical 

equivalence in chapter 3 and sections 4—3 and 4-4, and use the fact 

that a biconditional is a logical truth if and only if its components 
are logically equivalent. 

a) (ADB)=(~BD~A) 
b) (A=~A)D(B=B) 
c) A=~A 

d) AD~B 
e) (ADB)v(AD~B) 
f) ~(AVB)&(~ADB) 
g) (A=A)2(B=~B) 
h) [~(BDA)&(CDA)}D(CDB) 

i) [AD(BDC)]D[(ADB)D(ADC)] 

4—7. Discuss how you would transcribe ‘unless’ into sentence logic. 
Experiment with some examples, trying out the use of 'v', ‘D’, and 

‘=’. Bear in mind that one connective might work well for one ex- 
ample, another connective for another example. As you work, pay 
attention to whether or not the compound English sentences you 
choose as examples are truth functional. Report the results of your 
research by giving the following: 

a) Give an example of a compound English sentence using ‘unless’ 
which seems to be nontruth functional, explaining why it is not 
truth functional. 

b) Give an example of a compound English sentence using ‘unless’ 
which seems to be truth functional, explaining why it is truth 
functional. 

c) Give one example each of English sentences using ‘unless’ which 
can be fairly well transcribed into sentence logic using V’, ‘D’, ‘=’, 

` giving the transcriptions into sentence logic. 
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4—8. Transcribe the following sentences into sentence logic, using 
the given transcription guide: 

A: Adam loves Eve. D: Eve has dark eyes. 

B: Adam is blond. E: Eve loves Adam. 

C: Eve is clever. 

a) If Eve has dark eyes, then Adam does not love her. 

b) Adam loves Eve if she has dark eyes. 
c) If Adam loves Eve, Eve does not love Adam. 

d) Eve loves Adam only if he is not blond. 

e) Adam loves Eve if and only if she has dark eyes. 
f) Eve loves Adam provided he is blond. 

g) Provided she is clever, Adam loves Eve. 
h) Adam does not love Eve unless he is blond. 

i) Unless Eve is clever, she does not love Adam. 

j) If Adam is blond, then he loves Eve only if she has dark eyes. 

k) If Adam is not blond, then he loves Eve whether or not she has 
dark eyes. 

}) Adam is blond and in love with Eve if and only if she is clever. 

m) Only if Adam is blond is Eve both clever and in love with Adam. 

4—9. Consider the following four different kinds of nontruth func- 
tional connectives that can occur in English: 

a) Connectives indicating connections (causal, intentional, or con- 
ventional) 

b) Modalities (what must, can, or is likely to happen) 

c) So-called "propositional attitudes," having to do with what people 
know, believe, think, hope, want, and the like 

d) Temporal connectives, having to do with what happens earlier, 
later, or at the same time as something else. 

Give as many English connectives as you can in each category. Keep 
in mind that some connectives will go in more than one category. 
(Since' is such a connective. What two categories does it go into?) 
To get you started, here are some of these connectives: ‘because’, 

‘after’, ‘more likely than’, ‘Adam knows that’, ‘Eve hopes that’. 
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a) 
b) 
c) 
d) 
e) 

CHAPTER SUMMARY EXERCISES 

Give brief explanations for each of the following. As usual, check 

your explanations against the text to make sure you get them right, 

and keep them in your notebook for reference and review. 

Valid 
Invalid 

Counterexample 

Sound 

Conditional 

Biconditional 

Law of the Conditional 

Law of Contraposition 
Law of the Biconditional 







Oq Natural Deduction 
for Sentence Logic 

Fundamentals 

5-1. THE IDEA OF NATURAL DEDUCTION 

In chapter 4 you learned that saying an argument is valid means that any 
case which makes all of the argument’s premises true also makes its con- 
clusion true. And you learned how to test for validity by using truth ta- 
bles, by exhaustively checking all the relevant cases, that is, all the lines of 
the truth table. But truth tables are horribly awkward. It would be nice to 
have a way to check validity which looked more like the forms of argu- 
ment we know from everyday life. 

Natural deduction does just that. When we speak informally, we use 
many kinds of valid arguments. (I'll give some examples in a moment.) 
Natural deduction makes these familiar forms of argument exact. It also 
organizes them in a system of valid arguments in which we can represent 
absolutely any valid argument. 

Let's look at-some simple and, I hope, familiar forms of argument. Sup- 
pose I know (say, because I know Adam's character) that if Adam loves 
Eve, then he will ask Eve to marry him. I then find out from Adam's best 
friend that Adam does indeed love Eve. Being a bright fellow, I immedi- 
ately conclude that a proposal is in the offing. In so doing I have used 
the form of argument traditionally called ‘modus ponens’, but which J am 
going to call Conditional Elimination. 
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Conditional Elimination 

XDY 
X cms T5 
Y 

Logicians call such an argument form a Rule of Inference. If, in the 
course of an argument, you are given as premises (or you have already 
concluded) a sentence of the form XDY and the sentence X, you may 
draw as a conclusion the sentence Y. This is because, as you can check 
with a truth table, in any case in which sentences of the form XDY and X 
are both true, the sentence Y will be true also. You may notice that I have 

stated these facts, not for some particular sentences ‘ADB’, ‘A’, and ‘B’, 

but for sentence forms expressed with boldfaced ‘X’ and 'Y'. This is to 
emphasize the fact that this form of argument is valid no matter what 
specific sentences might occur in the place of ‘X’ and ‘Y’. 

Here is another example of a very simple and common argument form, 
or rule of inference: 

Disjunction Elimination 

XvY 

zX v 
Y 

If I know that either Eve will marry Adam or she will marry no one, and 
I then somehow establish that she will not marry Adam (perhaps Adam 
has promised himself to another), J can conclude that Eve will marry no 

one. (Sorry, even in a logic text not all love stories end happily!) Once 
again, as a truth table will show, this form of argument is valid no matter 
what sentences occur in the place of X’ and in the place of ‘Y’. 
Though you may never have stopped explicitly to formulate such rules 

of argument, all of us use rules like these. When we argue we also do 
more complicated things. We often give longer chains of argument which 
start from some premises and then repeatedly use rules in a series of 
steps. We apply a rule to premises to get an intermediate conclusion. And 
then, having established the intermediate conclusion, we can use it (often 
together with some of the other original premises) to draw further con- 
clusions. 

Let's look at an example to illustrate how this process works. Suppose 
you are given the sentences ‘ADB’, ‘BDC’, and ‘A’ as premises. You are 
asked to show that from these premises the conclusion 'C' follows. How 
can you do this? 
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It’s not too hard. From the premises ‘ADB’ and ‘A’, the rule of condi- 
tional elimination immediately allows you to infer ‘B’: 

ADB 
A >E 
B 

But now you have ‘B’ available in addition to the original premise ‘BDC’. 
From these two sentences, the rule of conditional elimination allows you 
to infer the desired conclusion ‘C’: 

BDC 

B E 
C 

I hope this example is easy to follow. But if I tried to write out an 
example with seven steps in this format, things would get impossibly con- 
fusing. We need a streamlined way of writing chains of argument. 
The basic idea is very simple. We begin by writing all our premises and 

then drawing a line to separate them from the conclusions which follow. 
But now we allow ourselves to write any number of conclusions below the 
line, as long as the conclusions follow from the premises. With some fur- 
ther details, which I'll explain in a minute, the last example looks like this: 

ADB P 
BDC P 
A P 

B 1 
C 2 Wb wt 

3, DE 
,4, DE 

Lines 1 through 5 constitute a Derivation of conclusions 4 and 5 from 
premises 1, 2, and 3. In thinking about such a derivation, you should 
keep most clearly in mind the idea that the conclusions are supposed to 
follow from the premises, in the following sense: Any assignment of truth 
values to sentence letters which makes the premises all true will also make 
all of the conclusions true. 

In a derivation, every sentence below the horizontal line follows from 
the premises above the line. But sentences below the line may follow di- 
rectly or indirectly. A sentence follows directly from the premises if a rule 
of inference applies directly to premises to allow you to draw the sentence 
as a conclusion. This is the way I obtained line 4. A sentence follows in- 
directly from the premises if a rule of inference applies to some conclu- 
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sion already obtained (and possibly also to an original premise) to allow 
you to draw the sentence as a conclusion. The notation on the right tells 
you that the first three sentences are premises. It tells you that line 4 is 
Licensed (i.e., permitted) by applying the rule of conditional elimination to 
the sentence of lines 1 and 3. And the notation for line 5 tells you that 
line 5 is licensed by applying the rule of conditional elimination to the 
sentences of lines 2 and 4. 

For the moment don't worry too much about the vertical line on the 
left. It's called a Scope Line. Roughly speaking, the scope line shows what 
hangs together as one extended chain of argument. You will see why 
scope lines are useful when we introduce a new idea in the next section. 

You should be sure you understand why it is legitimate to draw conclu- 
sions indirectly from premises, by appealing to previous conclusions. 

Again, what we want to guarantee is that any case (i.e., any assignment of 
truth values to sentence letters) which makes the premises true will also 

make each of the conclusions true. We design the rules of inference so 
that whenever they apply to sentences and these sentences happen to be 
true, then the conclusion licensed by the rule will be true also. For short, 

we say that the rules are Truth Preserving. 
Suppose we have a case in which all of the premises are true. We apply 

a rule to some of the premises, and because the rule is truth preserving, 

the conclusion it licenses will, in our present case, also be true. (Line 4 in 
the last example illustrates this.) But if we again apply a rule, this time to 
our first conclusion (and possibly some premise), we are again applying a 
rule to sentences which are, in the present case, all true. So the further 

conclusion licensed by the rule will be true too. (As an illustration, look at 
line 5 in the last example.) In this way, we see that if we start with a case 
in which all the premises are true and use only truth preserving rules, all 
the sentences which follow in this manner will be true also. 
To practice, let's try another example. We'll need a new rule: 

Disjunction introduction 

xX wl 
XvY 

which says that if X is true, then so is XvY. If you recall the truth table 
definition of ‘v’, you will see that disjunction introduction is a correct, 
truth preserving rule of inference. The truth of even one of the disjuncts 
in a disjunction is enough to make the whole disjunction true. So if X is 
true, then so is XvY, whatever the truth value of Y. 

Let's apply this new rule, together with our two previous rules, to show 

that from the premises ‘AD~B’, ‘BvC’, and ‘A’, we can draw the conclu- 

sion ‘CvD’. But first close the book and see if you can do it for yourself. 



The derivation looks like this: 

1 | AD~B 

2 | BvC 
3|A 

4 | ~B 
5}Cc 
6 | CvD 

U m 

Pw < 

— m SM vv < 
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The sentence of line 4 (I'll just say "line 4" for short) is licensed by apply- 
ing conditional elimination to lines 1 and 3. Line 5 is licensed by applying 
disjunction elimination to lines 2 and 4. Finally, I license line 6 by apply- 
ing disjunction introduction to line 5. 

EXERCISES 

5-1. For each of the following arguments, provide a derivation 

a) 

f) 

~PD~D b) ~CD~D 

~DD~F ~C 

=P —DvE 
~F 

C g) (Kv~D)DF 
CD(HVA) K 

Li ae FvD 
Av~K 

(Mv~T)D(AvJ) 
~A 

BvM 

~AD~B 

JvD 

Fv~G d) ADB 
~F A 
GvK BD~C 
K CvD 

DvE 

D 
(DvB)>~G 
(—Gv—H)2(GVQ) 

Qv~A 

e) 

which shows the argument to be valid. That is, for each argument 
construct a derivation which uses as premises the argument's prem- 
ises and which has as final conclusion the conclusion of the argu- 
ment. Be sure to number and annotate each step as I have done with 
the examples in the text. That is, for each conclusion, list the rule 

which licenses drawing the conclusion and the line numbers of the 
sentences to which the rule applies. 

Lv~M 

~L 
MvD 

DDH 
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5—2. SUBDERIVATIONS 

Many of you have probably been thinking: So far, we have an "introduc- 
tion" and an "elimination" rule for disjunction and just an "elimination" 
rule for the conditional. I bet that by the time we're done we will have 
exactly one introduction and one elimination rule for each connective. 
That’s exactly right. Our next job is to present the introduction rule for 
the conditional, which involves a new idea. 
How can we license a conclusion of the form XDY? Although we could 

do this in many ways, we want to stick closely to argument forms from 
everyday life. And most commonly we establish a conclusion of the form 
XDY by presenting an argument with X as the premise and Y as the 
conclusion. For example, I might be trying to convince you that if Adam 
loves Eve, then Adam will marry Eve. I could do this by starting from the 
assumption that Adam loves Eve and arguing, on that assumption, that 

matrimony will ensue. Altogether, I will not have shown that Adam and 
Eve will get married, because in my argument I used the unargued as- 
sumption that Adam loves Eve. But I will have shown that if Adam loves 
Eve, then Adam will marry Eve. 

Let's fill out this example a bit. Suppose that you are willing to grant, 
as premises, that if Adam loves Eve, Adam will propose to Eve (‘ADB’), 
and that if Adam proposes, marriage will ensue (‘BDC’). But neither you 
nor I have any idea whether or not Adam does love Eve (whether 'A' is 
true). For the sake of argument, let's add to our premises the temporary 
assumption, 'A', which says that Adam loves Eve, and see what follows. 

Assuming ‘A’, that Adam loves Eve, we can conclude 'B' which says that 
Adam will propose (by conditional elimination, since we have as a premise 
‘ADB’, that if Adam loves Eve, he will propose). And from the conclusion 

'B', that Adam will propose, we can further conclude 'C', that marriage 
will ensue (again by conditional elimination, this time appealing to the 
premise ‘BDC’, that proposal will be followed by marriage). So, on the 
temporary assumption ‘A’, that Adam loves Eve, we can conclude ‘C’, that 

marriage will ensue. But the assumption was only temporary. We are not 

at all sure that it is true, and we just wanted to see what would follow 
from it. So we need to discharge the temporary assumption, that is, re- 
state what we can conclude from our permanent premises without making 
the temporary assumption. What is this? Simply ‘ADC’, that if Adam loves 
Eve, marriage will ensue. 

Presenting this example in English takes a lot of words, but the idea is 
in fact quite simple. Again, we badly need a streamlined means of repre- 
senting what is going on. In outline, we have shown that we can establish 
a conditional of the form XDY not on the basis of some premises (or not 
from premises alone), but on the strength of an argument. We need to 
write down the argument we used, and, after the whole argument, write 

down the sentence which the argument establishes. We do it like this: 
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3 A 

4 ADB 

5 BDC 

6 B 3, 4, DE 
7 C 5, 6, DE 

8 | ADC 3-7, Conditional Introduction (DI) 

For right now, don't worry about where lines 4 and 5 came from. Focus 
on the idea that lines 3 through 7 constitute an entire argument, which 
we call a Subderivation, and the conclusion on line 8 follows from the fact 

that we have validly derived ‘C’ from ‘A’. A subderivation is always an 
integral part of a larger, or Outer Derivation. Now you can see why I have 
been using the vertical scope lines. We must keep outer derivations and 

subderivations separated. A continuous line to the left of a series of sen- 
tences indicates to you what pieces hang together as a derivation. A deri- 

vation may have premises, conclusions, and subderivations, which are full- 

fledged derivations in their own right. 
A subderivation can provide the justification for a new line in the outer 

derivation. For the other rules we have learned, a new line was justified 
by applying a rule to one or two prior lines. Our new rule, conditional 
introduction (DI), justifies a new line, 8 in our example, by appealing to 
a whole subderivation, 3—7 in our example. When a rule applies to two 
prior lines, we list the line numbers separated by commas—in the exam- 
ple line 6 is licensed by applying DE to lines 3 and 4. But when we justify 
a new line (8 in our example) by applying a rule (here, DI) to a whole 
subderivation, we cite the whole subderivation by writing down its inclu- 
sive lines numbers (3—7 in our example). 

Now, where did lines 4 and 5 come from in the example, and why did 
I start numbering lines with 3? I am trying to represent the informal 
example about Adam and Eve, which started with the real premises that 
if Adam loves Eve, Adam will propose (ADB), and that if Adam proposes, 

they will marry (B2C). These are premises in the original, outer deriva- 
tion, and I am free to use them anywhere in the following argument, 
including in any subderivation which forms part of the main argument. 
Thus the whole derivation looks like this: 

1|A2B P 

2|B2C P 

3 A Assumption (A) 

4 ADB 1, Reiteration (R) 
5 BDC 2, Reiteration (R) 
6 B 3, 4, DE 

7 C 5, 6, 2E 

8l A2C 3—7, Conditional Introduction (21) 
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I am licensed to enter lines 4 and 5 in the subderivation by the rule: 

Reiteration: If a sentence occurs, either as a premise or as a conclusion in a 
derivation, that sentence may be copied (reiterated) in any of that deriva- 
tion's Iower subderivations, or lower down in the same derivation. 

In the present example, ‘ADB’ and ‘BDC’ are assumed as premises of the 
whole argument, which means that everything that is supposed to follow 
is shown to be true only on the assumption that these original premises 
are true. Thus we are free to assume the truth of the original premises 
anywhere in our total argument. Furthermore, if we have already shown 

that something follows from our original premises, this conclusion will be 
true whenever the original premises are true. Thus, in any following sub- 
derivation, we are free to use any conclusions already drawn. 

At last I can give you the full statement of what got us started on this 
long example: the rule of Conditional Introduction. We have been looking 
only at a very special example. The same line of thought applies whatever 
the details of the subderivation. In the following schematic presentation, 
what you see in the box is what you must have in order to apply the rule 
of conditional introduction. You are licensed to apply the rule when you 
see something which has the form of what is in the box. What you see in 
the circle is the conclusion which the rule licenses you to draw. 

Conditional Introduction 

X Assumption (A) 

O Conditional Introduction (21) 

In words: If you have, as part of an outer derivation, a subderivation with 
assumption X and final conclusion Y, then XOY may be entered below the 
subderivation as a further conclusion of the outer derivation. The subderi- 
vation may use any previous premise or conclusion of the outer derivation, 
entering these with the reiteration rule. 

You will have noticed that the initial sentences being assumed in an 
outer, or main, derivation get called "premises," while the initially as- 
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sumed sentence in a subderivation gets called an “assumption.” This is 
because the point of introducing premises and assumptions is slightly dif- 
ferent. While we are arguing, we appeal to premises and assumptions in 
exactly the same way. But premises always stay there. The final conclusion 
of the outer derivation is guaranteed to be true only in those cases in 
which the premises are true. But an assumption introduced in a subderi- 
vation gets Discharged. 

This is just a new word for what we have been illustrating. The point 
of the subderivation, beginning with assumption X and ending with final 
conclusion Y, is to establish XDY as part of the outer derivation. Once 
the conclusion, XDY, has been established and the subderivation has 

been ended, we say that the assumption, X, has been discharged. In 
other words, the scope line which marks the subderivation signals that we 

may use the subderivation’s special assumption only within that subderi- 
vation. Once we have ended the subderivation (indicated with the small 

stroke at the bottom of the vertical line), we are not, in the outer deriva- 

tion, subject to the restriction that X is assumed to be true. If the premises 
of the original derivation are true, XDY will be true whether X is true or 
not. 

It’s very important that you understand why this last statement is cor- 
rect, for understanding this amounts to understanding why the rule for 
conditional introduction works. Before reading on, see if you can state 
for yourself why, if the premises of the original derivation are true, and 
there is a subderivation from X as assumption to Y as conclusion, XOY 
will be true whether or not X is true. 
The key is the truth table definition of XOY. If X is false, KDY is, by 

definition, true, whatever the truth value of Y. So we only have to worry 
about cases in which X is true. If X is true, then for XDY to be true, we 

need Y to be true also. But this is just what the subderivation shows: that 
for cases in which X is true, Y is also true. Of course, if the subderivation 

used premises from the outer derivation or used conclusions that fol- 
lowed from those premises, the subderivation only shows that in all cases 
in which X and the original premises are true, Y will also be true. But 
then we have shown that XDY is true, not in absolutely all cases, but in at 
least those cases in which the original premises are true. But that’s just 
right, since we are entering XDY as a conclusion of the outer derivation, 
subject to the truth of the original premises. 

EXERCISES | 

5-2. Again, for each of the following arguments, provide a deriva- 
tion which shows the argument to be valid. Be sure to number and 
annotate each step to show its justification. All of these exercises will 
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require you to use conditional introduction and possibly other of the 
rules you have already learned. You may find the use of conditional 
introduction difficult until you get accustomed to it. If so, don't be 
alarmed, we're going to work on it a lot. For these problems you will 
find the following strategy very helpful: If the final conclusion which 
you are trying to derive (the "target conclusion") is a conditional, set 
up a subderivation which has as its assumption the antecedent of the 
target conclusion. That is, start your outer derivation by listing the 
initial premises. Then start a subderivation with the target conclu- 
Sion's antecedent as its assumption. Then reiterate your original 
premises in the subderivation and use them, together with the 
subderivation's assumptions, to derive the consequent of the target 
conclusion. If you succeed in doing this, the rule of conditional in- 
troduction licenses drawing the target conclusion as your final con- 
clusion of the outer derivation. 

a) ADB b NvP c) B d ~B | e KD~D 
BDC DvH 

~NDP ADB (BvO2C 
COD KOH 
—— 

ADD 

f) "ADB g) FD(CvM) h) (DvBDJ i ADK 

AD(BvC) mE e DIJ (KvP)OL 
F2M ADL 

p Q2-S k) P 

Q>\(SvF) (~DvK)>B 
(Fv~D)D~K 

Mer PO(Kv-F) 
(Fv~D)>(Bv~P) 

5-3. THE COMPLETE RULES OF INFERENCE 

We now have in place all the basic ideas of natural deduction. We need 
only to complete the rules. So that you will have them all in one place for 
easy reference, I will simply state them all in abbreviated form and then 
comment on the new ones. Also, I will now state all of the rules using the 

. same format. For each rule I will show a schematic derivation with one 
part in a box and another part in a circle. In the box you will find, de- 
pending on the rule, either one or two sentence forms or a subderivation 
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form. In the circle you will find a sentence form. To apply a given rule 
in an actual derivation, you proceed as follows: You look to see whether 

the derivation has something with the same form as what's in the box. If 
so, the rule licenses you to write down, as a new conclusion, a sentence 
with the form of what’s in the circle. 

Conjunction Introduction Conjunction Elimination 

X X&Y X&Y 
Y 

OL & ae | (Dac 

Disjunction Introduction Disjunction Elimination 

E Du | Dy OE ee 

Conditional Introduction Conditional Elimination 

A XDY 
| X 

Ç) 

Go» 31 

Biconditional Introduction Biconditional Elimination 

YX 

M Y X=Y 

E | (OX) st i 
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Negation Introduction Negation Elimination 

A [—x] 
(9 -t 

Coa 

Reiteration: If a sentence occurs, either as a premise or as a conclusion in a 

derivation, that sentence may be copied (reiterated) in any of that deriva- 
tion's lower subderivations, or lower down in the same derivation. 

In interpreting these schematic statements of the rules, you must re- 
member the following: When a rule applies to two sentences, as in the 
case of conjunction introduction, the two sentences can occur in either 
order, and they may be separated by other sentences. The sentences to 
which a rule applies may be premises, an assumption, or prior conclu- 
sions, always of the same derivation, that is, lying along the same scope 
line. Also, the sentence which a rule licenses you to draw may be written 
anywhere below the licensing sentences or derivation, but as part of the 
same derivation, again, along the same scope line. 

Conjunction introduction and elimination are so simple we rarely 
bother to mention them when we argue informally. But to be rigorous 
and complete, our system must state and use them explicitly. Conjunction 
introduction states that when two sentences, X and Y, appear in a deri- 
vation, in either order and whether or not separated by other sentences, 
we may conclude their conjunction, X&Y, anywhere below the two con- 

juncts. Conjunction elimination just tells us that if a conjunction of the 
form X&Y appears on a derivation, we may write either conjunct (or 
both, on different lines) anywhere lower down on the derivation. We have 

already discussed the rules for disjunction and the conditional. Here we 
need only add that in the elimination rules, the sentences to which the 
rules apply may occur in either order and may be separated by other 
sentences. For example, when applying disjunction elimination, the rule 
applies to sentences of the form XvY and —X, in whatever order those 
sentences occur and whether or not other sentences appear between 
them. 

Biconditional introduction and elimination really just express the fact 
that a biconditional of the form X=Y is logically equivalent to the con- 



junction of sentences of the form XDY and YDX. If the two conditionals 
appear on a derivation, whatever the order, and whether or not separated 

by other sentences, we may write the biconditional lower down as a con- 
clusion. Conversely, if a biconditional of the form X=Y appears, one may 
write lower down, as a conclusion, XOY, YDX, or both (on separate 

lines). 

Note that negation elimination licenses dropping a double negation, 
and is justified by the fact that X is always logically equivalent to ~ ~X. 

Negation introduction requires some comment. Once again, natural de- 
duction seeks to capture and make precise conventional forms of informal 
argument. This time we express what traditionally goes under the name 
of "reductio ad absurdum," or "reduction to the absurd." Here the idea 
is that if we begin with an assumption from which we can deduce a con- 
tradiction, the original assumption must be false. Natural deduction em- 
ploys this strategy as follows: Begin a subderivation with an assumption, 

X. If one succeeds in deriving both a sentence of the form Y and its 
negation, —Y, write the sentence of the form ~X as a conclusion of the 
outer derivation anywhere below the subderivation. 

As with the other rules, you should be sure you understand why this 
rule works. Suppose in a subderivation we have drawn the conclusions Y 
and ~Y from the assumption X. This is (by the rules for conjunction) 

equivalent to deriving the contradiction Y&~Y from X. Now, X inust be 
either true or false. If it is true, and we have drawn from it the conclusion 
that Y&—Y, we have a valid argument from a true premise to a false 
conclusion. But that can't happen—our rules for derivations won't let that 
happen. So X must have been false, in which case —X must be true and 
can be entered as a conclusion in the outer derivation. Finally, if the sub- 

derivation has used premises or conclusions of the outer derivation, we 

can reason in exactly the same way, but subject to the restriction that we 
consider only cases in which the original premises were true. 

In annotating negation introduction, keep in mind the same consider- 
ation which applied in annotating conditional introduction. The new line 
is justified by appeal, not to any one or two lines, but to a whole argu- 
ment, represented by a subderivation. Consequently, the justification for 
the new line appeals to the whole subderivation. Indicate this fact by writ- 
ing down the inclusive line numbers of the subderivation (the first and 
last of its line numbers separated by a dash). 

In applying these rules, be sure to keep the following in mind: To ap- 
ply the rules for conditional and negation introduction, you must always 
have a completed subderivation of the form shown. It's the presence of 
the subderivation of the right form which licenses the introduction of a 
conditional or a negated sentence. To apply any of the other rules, you 
must have the input sentence or sentences (the sentence or sentences in 

the box in the rule's schematic statement) to be licensed to write the out- 

put sentence of the rule (the sentence in the circle in the schematic pre- 
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sentation). But an input sentence can itself be either a prior conclusion in 
the derivation or an original premise or assumption. 

Incidentally, you might have been puzzled by the rule for negation in- 
troduction. The rule for negation elimination has the form “~ —X. There- 
fore X". Why not, you might wonder, use the rule "X. Therefore ——X" 
for negation introduction? That's a good question. The rule "X. There- 
fore ~~X” is a correct rule in the sense that it is truth preserving. It will 
never get you a false sentence out of true ones. But the rule is not strong 
enough. For example, given the other rules, if you restrict yourself to the 
rule "X. Therefore ~~X” for negation introduction, you will never be 
able to construct a derivation that shows the argument 

mA 
~(A&B) 

to be valid. We want our system of natural deduction not only to be 
Sound, which means that every derivation represents a valid argument. 
We also want it to be Complete, which means that every valid argument is 
represented by a derivation. If we use the rule "X. Therefore ~~ X” for 
negation introduction, our system of natural deduction will not be com- 
plete. The rules will not be strong enough to provide a correct derivation 
for every valid argument. 

EXERCISES 

5—3. Below you find some correct derivations without the annota- 

tions which tell you, for each line, which rule was used in writing the 
line and to which previous line or lines the rule appeals. Copy the 

derivations and add the annotations. That is, for each line, write the 

line number of the previous line or lines and the rule which, apply- 
ing to those previous lines, justifies the line you are annotating. 

a 1 | B&BD—A) P c) 1 | AD~B P 
2 | BvC P 

2 |B 
3| BD~A 3 
4 | ~A A 

b 1 | ~C=AvB) P » ar 
2 |A R 6 BvC 
3 | (AvB)D~C 7 c 
4 | AvB 8 | ADC 

5 -C 



d) 

f) 

D P 
(D&A)2C P 

e) 
N= 

A 

D 
D&A 
(D&A)DC 
C 

ADC 

1 | A&B P 

© NAM w 

N > 

am RO 

o 

BDA 
A=B Oo On 

5-3. The Complete Rule — 73 

1 | AvB P 

N Duh Ww N 

N- 

oo NONA 

5—4. For each of the following arguments, provide a derivation 
which shows the argument to be valid. Follow the same directions as 
you did for exercises 5—1 and 5-2. 

a) 

e) 

8) 

k) 

C&~H b) JvD c) A&B d) AD~D 

~~~D —- ~~A 
~H B&A 

J ~D 

GOD f) A=~B 

GD~D 

~BDA 

~G 

M h) A&(B&CO i) ~CDD j A=~B 

Rv~H = DI~C ~B 
————— (A&B)&C —— 

M&(Rv~H) D=~C A 

~CD~~~A |) KD~B m) ~P n (NDK)&(NDL) 
~C B&F ~Q —————— 

—— —— ND(K&L) 

~A ~K ~(PVQ) 



74 Natural Deduction for Sentence Logic 

o) DÓ(AvF p) HJ 
DD~F Hak 
~A E: 

J=K 
~D&~A 

5-5. In chapter 3 we defined triple conjunctions and disjunctions, 
that is, sentences of the form X&Y&Z and XvYvZ. Write introduc- 
tion and elimination rules for such triple conjunctions and disjunc- 
tons. 

5-6. Suppose we have a valid argument and an assignment of truth 
values to sentence letters which makes one or more of the premises 
false. What, then, can we say about the truth value of the conclu- 
sions which follow validly from the premises? Do they have to be 
false? Can they be true? Prove what you say by providing illustra- 
tions of your answers. 

CHAPTER SUMMARY EXERCISES 

Give brief explanations for each of the following, referring back to 
the text to make sure your explanations are correct and saving your 
answers in your notebook for reference and review. 

a) Derivation 

b) Subderivation 
c) Outer Derivation 

d) Scope Line 

e) Premise 

f) Assumption 
g Rule of Inference 
h) License (to draw a conclusion) 

i) Truth Preserving Rule 

j Discharging an Assumption 
k) Conjunction Introduction 
D) Conjunction Elimination 

m) Disjunction Introduction 
n) Disjunction Elimination 
o) Conditional Introduction 

p) Conditional Elimination 
q) Biconditional] Introduction 
r) Biconditional Elimination 
s) Negation Introduction 

t) Negation Elimination 
u) Reiteration 
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Strategies 

6-1. CONSTRUCTING CORRECT DERIVATIONS 

Knowing the rules for constructing derivations is one thing. Being able to 
apply the rules successfully is another. There are no simple mechanical 
guidelines to tell you which rule to apply next, so constructing derivations 
is a matter of skill and ingenuity. Long derivations can be extremely dif- 
ficult. (It’s not hard to come up with problems which will stump your 
instructor!) At first, most students feel they don't even know how to get 

started. But with a bit of practice and experience, you will begin to de- 
velop some intuitive skill in knowing how to organize a derivation. 'To get 
you started, here are some examples and practical strategies. 

Usually you will be setting a problem in the following form: You will 
be given some premises and a conclusion. You will be told to prove that 
the conclusion follows validly from the premises by constructing a deri- 
vation which begins with the given premises and which terminates with 
the given conclusion. So you already know how your derivation will begin 
and end. 

Your job is to fill in the intermediate steps so that each line follows from 
previous lines by one of the rules. In filling in, you should look at both 
the beginning and the end of the derivation. 
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Let's illustrate this kind of thinking with a simple example. Suppose you 
are asked to derive ‘B&C’ from the premises ‘ADB’, ‘ADC’, and ‘A’. Right 
off, you know that the derivation will take the form 

P 

ADC P 
P 

where you still have to figure out what replaces the question marks. 
First, look at the conclusion. It is a conjunction, which can most 

straightforwardly be introduced with the rule for &I. (From now on, I’m 

going to use the shorthand names of the rules.) What do you need to 
apply that rule? You need 'B' and you need ‘C’. So if you can derive ‘B’ 
and ‘C’, you can apply &I to get ‘B&C’. Can you derive ‘B’ and ‘C’? Look 
at the premises. Can you get ‘B’ out of them? Yes, by applying DE to lines 
1 and 3. Similarly, you can derive ‘C’ from lines 2 and 3. Altogether, the 
derivation will look like this: 

1| ADB P 
2] ADC P 
31A P 

4|B 1, 3, 2E 
5|C 2, 3, DE 
6| B&C 4,5, &l 

Let's try a slightly harder example. Suppose you are asked to derive 
‘CDA’ from the premises ‘AvB’ and 'CO— B'. Your target conclusion is a 
conditional. Well, what rule allows you to conclude a conditional? D1. So 

you will try to set things up so that you can apply DI. This will involve 
starting a subderivation with 'C' as its assumption, in which you will try to 
derive ‘A’. In outline, the derivation you are hoping to construct can be 
expected to look like this: 
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(Your derivation won't have to look like this. In every case there is more 
than one correct derivation of a conclusion which follows from a given set 
of premises. But in this case, this is the obvious thing to try, and it pro- 

vides the simplest correct derivation.) 
To complete the derivation, you must fill in the steps in the subderiva- 

tion to show that (given the premises of the outer derivation) ‘A’ follows 
from 'C', 
How will you do this? Let's study what you have available to use. In the 

subderivation you are allowed to use the subderivation's assumption and 
also any previous premise or conclusion in the outer derivation. Notice 
that from ‘C’ and the premise ‘CD~B’ you can get ‘~B’ by DE. Is that 
going to do any good? Yes, for you can then apply vE to ‘~B’ and the 
premise ‘AvB’ to get the desired ‘A’. All this is going to take place in the 
subderivation, so you will have to reiterate the premises. The completed 
derivation looks like this: 

1 | AvB P 
2 | CD~B P 

3 C A 

4 CD~B 2,R 
5 ~B 3,4, DE 
6 AvB 1, R 
7 A 5, 6, VE 

8 | CDA 3-7, DI 

If you are still feeling a little lost and bewildered, reread the text from 
the beginning of this section. 
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When you have understood the examples given so far, you are ready 
for something new. Let's try to derive ‘AD~B’ from ‘BD~A’. As in the 
second example, our first effort to derive a conditional should be by using 
DI. So we want a subderivation with ‘A’ as assumption and ‘~P’ as final 
conclusion: 

1 | BD~A P 

DI 

But how can we get ‘~B’ from the assumption of ‘A’, using the premise 
of the outer derivation? 

‘~B’ is the negation of the sentence ‘B’. Unless there is some really 
obvious simple alternative, one naturally tries to use ~I. ~I works by 
starting a subderivation with the sentence to be negated as assumption 
and then deriving some sentence and its negation. In the present situation 
this involves something that might not have occurred to you, namely, cre- 

ating a subderivation of a subderivation. But that’s fine. All the rules for 
working on a derivation apply to subderivations also, including the crea- 
tion of subderivations. The only difference between a subderivation and 

a derivation is that a subderivation ends when we discharge its assump- 
tion, returning to its outer derivation; and that in a subderivation we may 

reiterate prior premises or conclusions from an outer derivation (or from 
any outer-outer derivation, as you will see in a moment). This is because 

in a subderivation we are working under the assumption that all outer 
assumptions and premises are true. 

Will this strategy work? Before writing anything down, let me illustrate 
the informal thinking you should go through to see whether a strategy 
promises to be successful. Look back at the outline we have already writ- 
ten of how we hope the derivation will look. We are proposing to start a 
sub-sub-derivation with the new assumption ‘B’. That sub-sub-derivation 
can use the original premise ‘BD~ A’, which, together with the assump- 
“tion ‘B’, will give ‘~ A’ by DE. But the sub-sub-derivation is also within its 
outer derivation beginning with the assumption of ‘A’. So ‘A’ is also being 
assumed in the sub-sub-derivation, which we express by reiterating ‘A’ in 
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the sub-sub-derivation. The sub-sub-derivation now has both 'A' and 

‘~ A’, which constitutes the contradiction we needed: 

1 P 

2 A 

3 A 

4 1,R 

5 3, 4, DE 
6 2,R 

7 3-6, ~I 

8 2-7, 2l 

How are you doing? If you have had trouble following, rest for a mo- 

ment, review to be sure you have gotten everything up to this point, and 
then we'll try something one step more involved. 

Let's try deriving ‘A=~B’ from ‘AvB’ and ‘~(A&B)’. The conclusion is 
a biconditional, and one derives a biconditional most easily by using =I. 

Think of a biconditional as the conjunction of two conditionals, the two 

conditionals we need to derive the biconditional using =I. So you should 
aim to develop a derivation along these lines: 

DI 

We have reduced the complicated problem of deducing ‘A=~B’ to the 
simpler problems of deducing ‘~ BDA’ and ‘AD~B’. 

In constructing derivations, you should learn to think in this kind of 
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pattern. Try to resolve the problem of deriving the final conclusion (your 
target conclusion) by breaking it down into simpler problems of deriving 
simpler sentences (your new target conclusions). You may actually need 

to resolve your simpler problems into.still more simple problems. You 
continue working backward toward the middle until you can see how to 
derive your simple sentences from the premises. At this point you start 
working from the premises forward and fill everything in. 

How, in this example, can we derive our simplified new target conclu- 
sions? They are both conditionals, and as we saw in the second example, 
the straightforward way to derive conditionals uses DI. This involves 
starting one subderivation for each of the conditionals to be derived: 

1 | AvB P 
2 | ~(A&B) P 

A 

DI 

A 

Di 

We have now resolved our task into the problem of filling in the two 
subderivations. 

Can you see how to complete the subderivations by working with the 
premises of the outer derivation? The first subderivation is easy: ‘~B’ and 
*AVB' give ‘A’ by VE. The second subderivation presents more of a chal- 
lenge. But we can complete it by using the same tactics illustrated in the 
previous example. We've assumed ‘A’ and want to get ‘~B’. To get ‘~B’, 
we can try ~I (unless a really simple alternative suggests itself). ~1 will 
require us to start a sub-sub-derivation with ‘B’ as assumption. In this sub- 
sub-derivation we can reiterate anything which is above in an outer deri- 
vation of the derivation on which we are working. So we can reiterate ‘A’, 
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which, with ‘B’ , will give us ‘A&B’; and we can reiterate the original 

premise ‘~(A&B)’, thus giving us our contradiction. (Note that the contra- 
diction can be in the form of any sentence and its negation. Neither sen- 
tence has to be atomic.) Since from ‘B’ we have derived a sentence and its 

negation, we can use ~I to discharge the assumption ‘B’, giving the con- 
clusion ‘~B’ at the end of the subderivation which began with ‘A’. This is 
just what we needed. 

If you find this tangle of thinking hard to unravel, read it over again, 

following each step in the completed derivation below to see how it all fits 
together. 

Now let's tackle something different. You are asked to derive ‘C’ from 
‘A&B’ and ‘~CD~B’. What can you do? If you are stuck, you can at least 

write down the premises and conclusion so that you can start to see how 
the derivation will look: 
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No rule applies immediately to the premises to give ‘©. Because ‘C’ is 
atomic, no introduction rule for a connective will give ‘C. What on earth 
can you do? 

Sometimes when you are stuck, you can succeed by arranging to use ~I 
in what I am going to call the Reductio Ad Absurdum strategy. This strategy 
proceeds by assuming the negation of what you want and then from this 
assumption (and prior premises and conclusions) deriving a contradiction. 
As you will see in the example, you will then be able to apply ~I to derive 
the double negation of what you want, followed by —E to get rid of the 
double negation. In outline, the reductio absurdum strategy, applied to 
this problem, will look like this: 

CX’ here stands for some specific sentence, but | don't yet know 
what it will be.) 

~E 

Will this strategy work in this case? If you assume '— C, you will be able 
to use that assumption with the premise '— CO- B' to get ‘~B’. But ‘~B’ 
will contradict the 'B' in the premise 'A&B', and you can dig 'B' out of 
‘A&B’ with &E. In sum, from ‘~C’ and the premises you will be able to 

derive both ‘B’ and ‘~B’. ~I then allows you to conclude '——C' (the ne- 
gation of the assumption which led to the contradiction). —E finally gives 
‘C: 

1 P 
2 P 

3 A 

4 2, R 
5 3, 4, DE 
6 1, R 
7 6, &E 

8 3-7, ~i 
9 9, —E 
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The first time you see an example like this it may seem tricky. But you 
will soon get the hang of it. 

You do need to be a little cautious in grasping at the reductio strategy 
when you are stuck. Often, when students have no idea what to do, they 

assume the opposite of what they want to conclude and then start blindly 
applying rules. This almost never works. To use the reductio strategy suc- 
cessfully, you need to have a more specific plan. Ask yourself: “Can I, by 
assuming the opposite of what I want to derive, get a contradiction (a 
sentence and its negation) out of the assumption?" If you can see how to 
do this, you are all set, and you can start writing down your derivation. If 
you think you see a way which might work, it may be worth starting to 
write to clarify your ideas. But if you have no idea of how you are going 
to get a contradiction out of your assumption, go slow. Spend a little time 
brainstorming about how to get a contradiction. Then, if you find you are 
getting nowhere, you may well need to try an entirely different approach 
to the problem. 

I should also comment on the connection between what I have called 
the reductio ad absurdum strategy and the rule for ~I. They really come 
to pretty much the same thing. If you need to derive a sentence of the 
form ~X, considér assuming X, trying to derive a contradiction, and 
applying —1 to get —X. To derive a sentence of the form X, assume —X, 
and derive ~~X by ~I. Then eliminate the double negation with ~E. 

EXERCISES 

6-1. For each of the following arguments, provide a derivation, 

complete with annotations, which shows the argument to be valid. If 
you find you are having difficulty with these problems, go over the 
examples earlier in this chapter and then try again. 

a) Kv-4 b ~CDA c) ~DD~K d) -F2G 
BD~A K GD~E 

~(~K&l) B ~KvH 
—— EDF 

C D&H 

BDC 
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6-2. RECOGNIZING THE MAIN CONNECTIVE 

Suppose you are asked to provide a derivation which shows the following 
argument to be valid: 

(1) (A2B)&ICS(ADB)) 

Q) C 

The premise is a mess! How do you determine which rule applies to it? 
After your labor with some of the exercises in the last chapter, you prob- 
ably can see that the key lies in recognizing the main connective. Even if 
you got all of those exercises right, the issue is so important that it's worth 
going over from the beginning. 

Let's present the issue more generally. When I stated the rules of infer- 
ence, I expressed them in general terms, using boldface capital letters, ‘X’ 
and ‘Y’. For example, the rule for &E is 

® © 
The idea is that whenever one encounters a sentence of the form X&Y in 
a derivation, one is licensed to write either the sentence X or the sentence 
Y (or both on separate lines) further down. Focus on the fact that this is 
so whatever sentences X and Y might be. This is the point of using bold- 
face capital letters in the presentation. ‘X’ and 'Y' don't stand for any 
particular sentences. Rather, the idea is that if you write any sentence you 
want for ‘X’ and any sentence you want for 'Y', you will have a correct 
instance of the rule for &E. This is what I mean by saying that I have 
expressed the rule "in general terms" and by talking about a sentence "of 
the form X&Y”. 
How will these facts help you to deal with sentence (1)? Here’s the tech- 

nique you should use if a sentence such as (1) confuses you. Ask yourself: 
“How do I build this sentence up from its parts?” You will be particularly 
interested in the very last step in putting (1) together from its parts. In 
this last step you take the sentence l 

(4) ADB which you can think of as X 

and the sentence 

(B C=(ADB) which you can think of as Y 
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and put them on either side of an ‘&’ to get the sentence 

(ADB)&[C=(ADB)] which has the form X&Y 

You have just established that (1) has the form of X&Y; that is, it is a 

conjunction with sentences (4) and (5) as its conjuncts. Consequently, you 
know that the rule for &E, (3), applies to sentence (1), so that if (1) ap- 
pears in a derivation you are licensed to write sentence (4) or (5) (or both) 
below. 

Similarly, if in a derivation you are faced with the sentence 

(6) C=(ADB) 

ask yourself “What is the last thing I do to build this sentence up from its 
parts?” You take the sentence 

(7) C which you can think of as X 

and the sentence 

(8) ADB which you can think of as Y 

and you put them on either side of a biconditional, ‘=’, giving 

(9) Cz(ADB) which thus has the form X=Y 

Consequently, if you find sentence (6), you can apply the rule of inference 
for «E: 

rc 
ey ̂ 

which, when we put in sentences (7) and (8) for X and Y, look like 

C=(ADB) | C=(ADB) 

CD(ADB) =E and (ADBJOC =E 

Thus =E applies to sentence (6), licensing us to follow (6) on a derivation 
either with the sentence ‘CD(ADB)’, or the sentence ‘(ADB)DC’, or both 
on separate lines. 

In a moment we will apply what we have just done to provide a deri- 
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vation which shows how (2) follows from (1). But we will need to see how 

to treat one more compound sentence. This time, try to figure it out for 
yourself. What is the form of the sentence ‘(ADB)DC’? 

The last thing you do in putting this one together from its parts is to 
put ‘(ADB)’ and ‘C on either side of a conditional, ‘D’. So the sentence 

has the form XDY, with ‘ADB’ as X and ‘C’ as Y. If we have ‘ADB’ as 
well as ‘(ADB)DC’ in a derivation, we can apply DE to the two to derive 
"C. 

Perhaps you can now see how we can write a derivation which shows 
(2) to follow from (1). In this case, because the desired objective, 'C', is 
atomic, we can't get it by an introduction rule. So it is useless to-try to 

work backward from the end. The reductio ad absurdum strategy could 
be made to work, but only by doing more indirectly what we're going to 
have to do anyway. In this case the best strategy is to use elimination rules 
to take the premise apart into simpler pieces. 
When we think through what these pieces will look like, we will see that 

they provide just what we need to derive 'C'. &E applies to the premise. 

‘(ADB)&[C=(ADB)} to give us ‘ADB’ and ‘C=(ADB)’. In turn, =E ap- 
plies to ‘C=(ADB)’ to give us '(ADB)2C', which, together with the ‘ADB’, 
immediately gives us ‘C by DE. (=E applied to ‘C=(ADB)’ also gives 
‘CD(ADB)’. But we have no use for 'CO(ADB), so although licensed to 

write it down as a conclusion, we don't bother.) Altogether, the completed 
derivation looks like this: 

1 | (ADB)&[C=(ADB) P 

2 | ADB 1, &E 
3 | C=(ADB) 1, &E 
4 | (ADB)DC 3, = 
5|C 2, 4, DE 

The key idea you need to untangle a sentence such as (1) is that of a 
main connective: 

The Main Connective in a sentence is the connective which was used last in 
building up the sentence from its component or components, 

(A negated sentence, such as ‘~(Av~B)’, has just one component, ‘Av~ B’ 

in this case. All other connectives use two components in forming a sen- 
tence.) Once you see the main connective, you will immediately spot the 
component or components to which it has been applied (so to speak, the 

X and the Y), and then you can easily determine which rules of inference 
apply to the sentence in question. 

Let’s practice with a few examples: 
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SENTENCE MAIN CONNECTIVE COMPONENT OR COMPONENTS 

(AVB)D~(B&D) 5 AvB and ~(B&D) 
[((A2BYw-D]v(—AzD) v (ADB)v~D and ~A=D 

~[(ADB)D~(BD~A)] ~ (ADB)D~(BD~ A) 

The second and third examples illustrate another fact to which you 
must pay attention. In the second example, the main connective is a ‘v’. 
But which occurrence of ‘v’? Notice that the sentence uses two 'v's, and 
not both occurrences count as the main connective! Clearly, it is the sec- 
ond occurrence, the one used to put together the components 
'(ADB)v-D' and ‘~ A=D’, to which we must pay attention. Strictly speak- 
ing, it is an occurrence of a connective which counts as the main connec- 
tive. It is the occurrence last used in putting the sentence together from 
its parts. In the third example, ‘~’ occurs three times! Which occurrence 
counts as the main connective? The very first. 

In the following exercises you will practice picking out the main con- 
nective of a sentence and determining which rule of inference applies. 
But let’s pause first to say more generally how this works: 

The elimination rule for ‘&’ applies to a sentence only when an ‘&’ occurs 
as the sentence's main connective. The same thing goes for 'v', ‘D’, and ‘=’. 
The components used with the main connective are the components to 
which the elimination rule makes reference. 

‘ The elimination rule for ‘~’ applies only to a doubly negated sentence, 
~~X; that is, only when ‘~’ is the sentence’s main connective, and the ‘~’ is 
applied to a component, —X, which itself has a '— as its main connective. 

The introduction rule for ‘&’ licenses you to write as a conclusion a sentence, 
the main connective of which is ‘&’. The same thing goes for v’, ‘2’, ‘=’, 
and ‘~’, 

EXERCISES 

6—2. Give derivations which establish the validity of the following 
arguments: 

a) (AvB)&IAvB)JOC] b) A 
soge (AvB)=[(ADK)&(BDK)) 

K 

c) [AD(Dv~B)]&{fAD(Dv~B)]>(BDA)} 

BDA 
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6-3. DERIVATIONS: OVERVIEW, DEFINITIONS, AND POINTS 

TO WATCH OUT FOR 

This chapter and chapter 5 have described, explained, and illustrated de- 
rivations. Let's pull these thoughts together with some explicit definitions 
and further terminology. 

A Rule of Inference tells when you are allowed, or Licensed, to draw a conclu- 
Sion from one or more sentences or from a whole argument (as represented 
by a subderivation). 

A Derivation is a list of which each member is either a sentence or another 
derivation. If a first derivation has a second derivation as one of the first 
derivation's parts, the second derivation is called a Subderivation of the first 
and the first is called the Outer Derivation, of the second. Each sentence in a 
derivation is a premise or assumption, or a reiteration of a previous sentence 
from the same derivation or an outer derivation, or a sentence which follows 
by one of the rules of inference from previous sentences or subderivations 
of the derivation. 

In practice, we always list the premises or assumptions of a derivation 
at its beginning, and use a horizontal line to separate them from the fur- 
ther sentences which follow as conclusions. What’s the difference between 
premises and assumptions? From a formal point of view, there is no dif- 
ference at all, in the sense that the rules of inference treat premises and 
assumptions in exactly the same way. In practice, when an unargued sen- 
tence is assumed at the beginning of the outermost deduction, we call it a 
premise. When an unargued sentence is assumed at the beginning of a 
subderivation, we call it an assumption. The point is that we always ter- 
minate subderivations before the end of a main derivation, and when we 
terminate a subderivation, in some sense we have gotten rid of, or Dis- 

charged, the subderivation's assumptions. 
To maké these ideas clearer and more precise, we have to think 

through what the vertical lines, or Scope Lines, are doing for us? 

A Scope Line tells us what sentences and subderivations hang together as a 
single derivation. Given a vertical scope line, the derivation it marks begins 
where the line begins and ends where the line ends. The derivation marked 
by a scope line includes all and only the sentences and subderivations im- 
mediately to the right of the scope line. 
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To help sort out these definitions, here is a schematic example: 

Notice that at the bottom of each scope line I have written a number to 
help us in talking about the different component derivations. Consider 
first the main derivation, derivation 1, marked with the leftmost scope 

line numbered ‘1’ at its bottom. Derivation 1 includes premises Q and R 
and has a first conclusion S, ovher conclusions not explicitly shown, indi- 

cated by . . . , and the final conclusion Z. Derivation 1 also includes two 
subderivations, derivations 2 and 3. Derivation 2 has assumption T, var- 
ious conclusions not explicitly indicated (again signaled by . . .), and final 
conclusion U. Derivation 3 starts with assumption V, has final conclusion 
Y, and includes a subderivation of its own, derivation 4. 
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This organization serves the purpose of keeping track of what follows 
from what. In the outermost derivation 1, all the conclusions of the deri- 
vation (S . . . Z) follow from the derivation's premises, Q and R. This 
means that every assignment of truth values to sentence letters which 
makes the premises Q and R true will make all the conclusions of deri- 
vation 1 true. But the conclusions of a subderivation hold only under the 
subderivation's additional assumption. For example, the conclusion U of 
subderivation 2 is subject to the assumption T as well as the premises Q 
and R. This means that we are only guaranteed that any assignment of 
truth values to sentence letters which makes Q, R, and T all true will 

make U true also. In other words, when we start a subderivation, we add 

an additional assumption which is assumed in effect just in the subderi- 
vation. Any premises or assumptions from outer derivations also apply in 
the subderivation, since they and their consequences can be reiterated 
into the subderivation. 

You should particularly notice that when a subderivation has ended, its 
special assumption is no longer assumed. It is not assumed in any conclu- 
sions drawn as part of the outer derivation, nor is it assumed as part of a 
new subderivation which starts with a different assumption. Thus the 
truth of T is not being assumed anywhere in derivation 1, 3, or 4. This is 
what we mean by saying that the assumption of a subderivation has been 
discharged when the subderivation is terminated. 

These facts are encoded in the reiteration rule which we can now spell 
out more clearly than before. The reiteration rule spells out the fact that 
a subderivation assumes the truth, not only of its own assumption, but of 
the prior assumptions, premises, and conclusions of any outer derivation. 
Thus, in subderivation 2, reiteration permits us to write, as part of 2, Q, 
R, S, or any other conclusion of 1 which appears before 2 starts. This is 
because inside 2, we assume that the premises of outer derivation 1 are 

true. And because whenever the premises are true, conclusions which fol- 

low from them are true, we may also use the truth of any such conclusions 
which have already followed from these premises. 

But we cannot reiterate a sentence of 2 in, for example, 1. This is be- 

cause when we end subderivation 2 we have discharged its premise. That 
is, we are no longer arguing under the assumption that the assumption 
of 2 is true. So, for example, it would be a mistake to reiterate U as part 
of 1. U has been proved only subject to the additional assumption T. In 
1, T is not being assumed. In the same way, we cannot reiterate U as part 
of 3 or 4. When we get to 3, subderivation 2 has been ended. Its special 

assumption, T, has been discharged, which is to say that we no longer 

are arguing under the assumption of T. 
Students very commonly make the místake of copying a conclusion of 

a subderivation, such as U, as a conclusion of an outer derivation—in our 
schematic example, listing U as a conclusion in derivation 1 as well as in 
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subderivation 2. I'll call this mistake the mistake of hopping scope lines. 
Don't hop scope lines! 
We can, however, reiterate Q, R, S, or any prior conclusion in 1 

within sub-sub-derivation 4. Why? Because 4 is operating under its special 
assumption, W, as well as all the assumptions and premises of all deri- 
vations which are outer to 4. Inside 4 we are operating under all the 
assumptions which are operative in 3, which include not only the assump- 
tion of 3 but all the premises of the derivation of which 3 is a part, 
namely, 1. All this can be expressed formally with the reiteration rule, as 
follows: To get a premise or prior conclusion of 1 into 4, first reiterate 
the sentence in question as part of 3. Now that sentence, officially part of 
3, can be reiterated again in 4. But we can dispense with the intermediate 
step. 

Incidentally, once you clearly understand the reiteration rule, you may 
find it very tiresome always to have to explicitly copy the reiterated sen- 
tences you need in subderivations. Why, you may wonder, should you not 

be allowed, when you apply other rules, simply to appeal to prior sen- 
tences in outer derivations, that is, to the sentences which the reiteration 

rule allows you to reiterate? If you fully understand the reiteration rule, 
you will do no harm in thus streamlining your derivations. I will not use 
this abbreviation, because I want to be sure that all of my readers under- 
stand as clearly as possible how reiteration works. You also should not 
abbreviate your derivations in this way unless your instructor gives you 
explicit permission to do so. 

Scope lines also indicate the sentences to which we can apply a rule in 
deriving a conclusion in a derivation or subderivation. Let us first focus 
on rules which apply only to sentences, that is, rules such as vE or DE, 
which have nothing to do with subderivations. The crucial feature of such 
a rule is that, if the sentences to which we apply it are true, the conclusion 
will be true also. Suppose, now, we apply such a rule to the premises Q 
and R of derivation 1. Then, if the premises are true, so will the rule's 

conclusion, so that we can write any such conclusion as part of derivation 
1. In further application of such rules in reaching conclusions of deriva- 
tion 1, we may appeal to 1’s prior conclusions as well as its premises, since 
if the premises are true, so will the prior conclusions. In this way we are 
still guaranteed that if the premises are true, so will the new conclusion. 

But we can't apply such a rule to assumptions or conclusions of a sub- 
derivation in drawing conclusions to be made part of derivation 1. For 
example, we can't apply a rule to sentences S and U in drawing a conclu- 
sion which will be entered as a part of derivation 1. Why not? Because we 
want all the conclusions of 1 to be guaranteed to be true if 1’s premises 
are true. But assumptions or conclusions of a subderivation, say, 2, are 

only sure to be true if l's premises and 2’s special assumption are true. 
In sum, when applying a rule of inference which provides a conclusion 
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when applied to sentences ("input sentences"), the input sentences must 
already appear before the rule is applied, and all input sentences as well 
as the conclusion must appear in the same derivation. Violating this in- 
struction constitutes a second form of the mistake of hopping scope lines. 
What about DI and ~I, which don't have sentences as input? Both 

these rules have the form: If a subderivation of such and such a form 
appears in a derivation, you may conclude so and so. It is important to 
appreciate that these two rules do not appeal to the sentences which ap- 
pear in the subderivation. They appeal to the subderivation as a whole. 
They appeal not to any particular sentences, but to the fact that from one 
sentence we have derived certain other sentences. That is why when we 

annotate these rules we cite the whole subderivation to which the rule 
applies, by indicating the inclusive line numbers of the subderivation. 

Consider DI. Suppose that from T we have derived U, perhaps using 
the premises and prior conclusions of our outer derivation. Given this 
fact, any assignment of truth values to sentence letters which makes the 

outer derivation's premises true will also make the conditional TOU true. 
(I explained why in the last chapter.) Thus, given a subderivation like 2 
from T to U, we can write the conclusion TOU as part of the outer de- 
rivation 1. If I's premises are true, TOU will surely be true also. 

The key point to remember here is that when DI and ~I apply to a 
subderivation, the conclusion licensed appears in the same derivation in 
which the input subderivation appeared as a part. Subderivation 2 licen- 
ses the conclusion TOY as a conclusion of 1, by DI; and DI, similarly 

applied to derivation 4, licenses concluding WDX as part of 3, but not as 

part of 1. 
By this time you may be feeling buried under a pile of details and mis- 

takes to watch out for. Natural deduction may not yet seem all that natu- 
ral. But, as you practice, you will find that the bits come to hang together 
in a very natural way. With experience, all these details will become sec- 
ond nature so that you can focus on the challenging task of devising a 
good way of squeezing a given conclusion out of the premises you are 
allowed to use. 

EXERCISES 

6-3. For each of the following arguments, provide a derivation 
which shows the argument to be valid. If you get stuck on one prob- 
lem, try another. If you get good and stuck, read over the examples 
in this chapter, and then try again. 

a) R b (~A&B)vC œo -(Hv—D) d) F2(O2M) 
€ Ó M AvD FDH So 
(RVD) &(RvK) m (F&O)JOM 

~COD ~F 
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e P&~Q f) (K&kQOS g ~(A&~F) h) ~(NDN 
———— => DDA ~IDC 
~RD~[PD(RVQ)] K2(G2S) ———— 

DDF C 

i) ~MD~L j QvF k -(S&T) 1) ~CD(AvB) 
~LD~K QDA SvT ~DD(Cv~B) 
——— F2A ~(CvD) 
KIM —— ~S=T RES INE 

A (AvB)&(Cv~B) 

m  Ge-H n) P=Q o) (NDS)&(G2D) 
———— (SvD)2(IF2(FvVQ]J2(N &Q)) 

~G=H ~(P=~Q) —— 
N=G 

p (S&B)DK q) CvB rn HD(DDK) 
(GDP)&(GvP) ~(C&~B) (K&M)DP 
~B=(~P&G) ~(~C&B) 12 —(M2P) 

SDK C&(BV~C) H>(DD~!) 
6—4. Write a rule of inference for the Sheffer stroke, defined in 
section 3—5. 

CHAPTER SUMMARY EXERCISES 

This chapter has focused on improving your understanding of ma- 
terial introduced in chapter 5, so there are only a few new ideas. 
Complete short explanations in your notebook for the following 
terms. But also go back to your explanations for the terms in the 
chapter summary exercises for chapter 5 and see if you can now 
explain any of these terms more accurately and clearly. 

a) Reductio Ad Absurdum Strategy 
b) Main Connective 

€) Discharging an Assumption 

d) Hopping Scope Lines 
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7-1. DERIVED RULES 

This section begins with a somewhat strange example. We will first follow 
our noses in putting together a derivation using the strategies I have rec- 
ommended. When we are done, we will notice that some of the steps, 
although perfectly correct, do no real work for us. We will then find in- 
teresting ways to avoid the superfluous steps and to formulate in a gen- 
eral way some methods for making derivations easier. 

Let's derive ‘AD(BDC)’ from ‘(ADB)DC’. Our derivation must begin 
like this: 

(A2B)JOC P 

AD(BIC) 
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We will pursue the obvious strategy of getting the conclusion by con- 
structing a subderivation from the assumption of ‘A’ to ‘BDC’ as conclu- 
sion: 

P 1 | (ADB)DC 

2 A 

BDC 
AD(BDQ) Dl 

We have reduced our task to that of deriving ‘BDC’ from ‘A’, where we 

can use the outer derivation's premise. But how are we going to do that? 
The target conclusion we now need to derive, ‘BDC, is itself a condi- 

tional. So let's try setting up a sub-sub-derivation with ‘B’ as assumption 
from which we are going to try to derive ‘C’. We are shooting for a deri- 
vation which looks like this: 

1|(ADBDC P 

2 E 

3 A 

BDC Dl 

AD(BDC) 2I 

How are we going to squeeze ‘C’ out of ‘B’? We have not yet used our 
premise, and we notice that the consequence of the premise is just the 

needed sentence ‘C’. If only we could also get the antecedent of the prem- 
ise, ‘ADB’, in the sub-sub-derivation, we could use that and the premise 
to get 'C' by DE. i 

It might look rough for getting ‘ADB’ into the sub-sub-derivation, but 
once you see how to do it, it's not hard. What we want is ‘ADB’, which, 
again, is a conditional. So we will have to start a sub-sub-sub-derivation 

with ‘A’ as assumption where we will try to get ‘B’ as a conclusion. But 
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that's easy because this sub-sub-sub-derivation is a subderivation of the 

derivation with 'B' as its assumption. So all we have to do is reiterate ‘B’ 
in our sub-sub-sub-derivation. 

If this is a little confusing, follow it in the completed derivation below, 
rereading the text if necessary to see clearly the thought process which 
leads me along step by step: 

1 | (ADB)DC P 

2 A 

3 B A 

4 (ADB)>C 1,R 
5 A A 

6 B 3,R 
4 

7 ADB 5-6, 2I 
8 3 C 4, 7, DE 

9 2 BDC 3-8, Di 

10 | AD(BDC) 2-9, DI 

I've carefully gone through this example for you because I wanted to 
illustrate again our strategies for constructing derivations. In this case, 
though, we have produced a derivation which, while perfectly correct, has 
an odd feature. Notice that I got ‘B’ in step 6 by just reiterating it. I never 
used the assumption, ‘A’! In just the same way, I never used the assump- 
tion of ‘A’ on line 2 in deriving ‘BDC’ in line 9. The fact that ‘A’ was 
assumed (twice no less!), but never used, in no way shows anything tech- 

nically wrong with the derivation. Any derivation correctly formed, as this 
one is, following the rules, counts as correct even if it turns out that parts 

were not used. No one ever said that a line, either an assumption or a 
conclusion, has to be used. 

I should refine what I just said: The assumptions of ‘A’, both in line 2 
and in line 5, were not used in deriving the target conclusions of the 
subderivations in which ‘A’ was assumed. But we had to assume ‘A’ in 
both cases to permit us to apply DI to introduce a conditional with ‘A’ as 
the antecedent. However, if in subderivation 2 the assumption 'A' was 
never used in deriving ‘BDC’, you would suspect that we could derive not 
just ^'A2(B2CY but the stronger conclusion ‘BDC’ from thé original 
premise. And, indeed, we can do just that: 
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1 | (ADB)DC P 

2 B A 

3 (ADB)DC 1 R 
4 A A 

5 2, R 

6 ADB 4, 5, Di 
7 C 3, 6, DE 

8 | BDC 2-7, DI 

Now we notice that we could have worked the original problem in a 
different way. We could have first derived ‘BDC’, as I have just done. 
Then we could have modified this derivaton by inserting the subderiva- 
tion beginning with ‘A’, the subderivation 2 in the previous derivation, 
and then applying DI. In other words, if we can derive ‘BDC’, we can 
always derive ʻAD(BDCY by simply assuming ‘A’, deriving ‘BDC’ by what- 
ever means we used before, and then applying DI. In fact, we can orga- 
nize things most clearly by separating the two steps. First derive ‘BDC’, 
then create a subderivation with assumption ‘A’ and conclusion ‘BDC’ ob- 
tained by reiterating ‘BDC’ from above. Then apply DI. The relevant 
parts of the total derivation, beginning with the previously derived con- 
clusion, ‘BDC’, will look like this: 

BDC 

A A 

BDC R 

AD(BDC) Di 

We have just discovered something extremely interesting: Nothing in 
the above line of thought turns on the two sentences involved being ‘BDC 
and ‘A’. This procedure will work for any old sentences X and Y. For any 
sentences X and Y, if we can derive Y, we can always extend the deri- 
vation to a new derivation with conclusion XDY. If 
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stands for the part of the derivation in which we derive Y, the new deri- 
vation will look like this: 

Y 
X A 

Y R 

XDY Di 

Because X and Y can be any sentences at all, we can express the fact 
we have just discovered as a “new” rule of inference: 

&23 Weakening (W) 

In other words, if any sentence, Y, appears in a derivation, you are li- 
censed to write XOY anywhere below, using any sentence you like for X. 
This rule of inference is not really new (that’s why a moment ago I put 
quotes around the word “new”). If we want to, we can always dispense 
with the weakening rule and use our original rules instead. Wherever we 
have used the weakening rule, we can always fill in the steps as shown 
above by assuming X, reiterating Y, and applying DI. 

Dispensable, shortcut rules like weakening will prove to be extraordi- 
narily useful. We call them Derived Rules. 

A Derived Rule is a rule of inference which can always be replaced by some 
combination of applications of the original rules of inference. The original 
rules are called the Primitive Rules of inference. 

A proof of a derived rule is a demonstration which shows how the derived 
rule may be systematically replaced by application of the primitive rules of 
inference. 

The weakening rule is proved in the schematic derivation which you saw 
immediately above. 

By using the derived weakening rule, we can immensely simplify the 
derivation we have been studying in this section. For we can use weaken- 
ing instead of both of the subderivations which start from ‘A’ as an as- 
sumption. In addition to the use of weakening which we have already 
seen, we can use it in the subderivation which begins by assuming ‘B’. 
Given *B' as an assumption, weakening immediately licenses us to write 
‘ADB’, which we need for applying DE. 



1| (ADB)DC P 

2° A 

3 (ADB)DC 1,R 
4 ADB 2, W 
5 C 3, 4, DE 

6 | B2C 2—5, Di 
7 | AS(B2OQ 6, W 

Isn’t that easy! 

7-2. ARGUMENT BY CASES 

Once we see how much work derived rules can save us, we will want oth- 

ers. Indeed, many derivations which are prohibitively complicated if we 
use only primitive rules become quite manageable when we can use de- 
rived rules also. Here is another example of a derived rule: 

Argument by Cases 

XvY 
XDZ 
YDZ 

@ ac 

Here is a proof of this derived rule: 

XvY (input for the derived rule) 1 

2 XDZ (Input for the derived rule) 
3 Y2Z (Input for the derived rule) 
4 

5 A 

6 ,R 

7 , 6, DE 

8 ,R 

9 -8, ~i 
10 R 

11 , 10, VE 

12 ,R 

13 1, 12, DE 

14 4-13, ~i 

15 14, ~E 



Again, the point of this proof is this: Suppose you have just used the 
derived rule Argument by Cases. Then, if you really want to, you can go 
back and rewrite your derivation using only the primitive rules. This 
proof shows you how to do it. Whatever sentence you have used for X 
and whatever sentence you have used for Y, just substitute the above in 

your derivation, after having written in your sentences for X and Y. Of 
course, you will have to redo the line numberings to fit with those in your 

full derivation. I have put in line numbers above to help in talking about 
the proof. 

(A small point to notice in this example: In line 14 I have appealed to 
subderivation 2, lines 4—13, to use negation introduction. But where in 

the subderivation did I conclude both a sentence and its negation? The 
point is that the assumption can count as one of these sentences. Why? 
Because any sentence can be derived from itself, by reiteration. Thus, in 

derivation 2, I can fairly enough count both —Z and Z as following from 

~Z.) 
Here is another derived rule, which we will also call Argument by Cases 

because it differs only superficially from the last: 

Argument by Cases (second form) 

@ ac 

In words, if in a derivation you already have a sentence of the form XvY, 
a subderivation from X as assumption to Z as conclusion, and a second sub- 
derivation from Y as assumption to Z as conclusion, you are licensed to write 
Z as a condusion anywhere below. 
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'This second form of argument by cases is actually the form you will use 
most often. 
The proof of the second form of argument by cases goes like this: 

1 | XvY (input for the derived rule) 

(input for the derived rule) 

2 DI 

A 

(Input for the derived rule) 

3 Di 
From fines 1, 2, 3 and the first form of 
Argument by Cases 

Note that in this proof I have used a previously proved derived rule 
(the first form of argument by cases) in proving a new derived rule (the 
second form of argument by cases). Why should I be allowed to do that, 
given that a proof of a derived rule must show that one can dispense with 
the derived rule and use primitive rules instead? Can you see the answer 
to this question? 
Suppose we want to rewrite a derivation which uses a new derived rule 

so that, after rewriting, no derived rules are used. First rewrite the deri- 
vation dispensing with the new derived rule, following the proof of the 
new derived rule. The resulting derivation may use previously proved 
derived rules. But now we can rewrite some more, using the proofs of the 
previously proved derived rules to get rid of them. We continue in this 
way until we arrive at a (probably horrendously long) derivation which 
uses only primitive rules. 
Argument by cases is an especially important derived rule, so much so 

that in a moment I’m going to give you a batch of exercises designed 
exclusively to develop your skill in applying it. Its importance stems not 
only from the fact that it can greatly shorten your work. It also represents 
a common and important form of reasoning which gets used both in 
everyday life and in mathematics. In fact, many texts use argument by 
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cases as a primitive rule, where I use what I have called disjunction elim- 
ination. In fact, given the other rules, what I have called argument by 
cases and disjunction elimination are equivalent. I prefer to start with my 
form of disjunction elimination because I think that students learn it 
more easily than argument by cases. But now that your skills have devel- 
oped, you should learn to use both rules effectively. 

EXERCISES 

7—1. Use argument by cases as well as any of the primitive rules to 
construct derivations to establish the validity of the following argu- 
ments: 

a) AvB b) Av(BvC) c) (AvB)J&(BOC) d) (A&B)v(A&C) 

BvA (AvB)vC ANC A&(BvC) 

e) A&(BvC) f)  Av(B&C) g) (AvB)&(AvC) Hh) Kv 
——— ————— ————— =L 
(A&B)v(A&C) (AVB)&(AvC) Av(B&C) 

i) (D2Qw(DOh j) ~CvK k | —HvM 
coats ae ADD ~MD~C 

D2(Gwvl) 
(AvC)D(KvD) (HvC)D M 

) (S&J)v(-S&-) m K2(FvO) 

——— JD(CvD) 
S=J =e 

—(FvD)2 ~ (Kv) 

7—2. Show that in the presence of the other primitive rules, vE is 
equivalent to AC. (Half of this problem is already done in the text. 
Figure out which half and then do the other half!) 

7-3. FURTHER DERIVED RULES 

Here are some further derived rules. In naming these rules I have used 
the same name for similar or closely connected primitive rules. 
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Biconditional Elimination 

XzY 
X 

@ = 
and 

Biconditional Introduction 

Disjunction Elimination 

X Y 

O) ud Q x 

Denying the Consequent 
(Traditionally called “Modus Tolens”’) 

XDY X2-Y ~XDY 
~Y Y ~Y 

CXDDC | Epc (X) pc 

Reductio Ad Absurdum 

RD 

The reductio ad absurdum rule looks like a negation elimination rule. 
Actually, as you will see when you do the exercises, it uses both ~I 
and ~E. 
We can get further derived rules from the laws of logical equivalence 

(chapters 3 and 4). For example, any sentence of the form ~(XVY) is 
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logically equivalent to —X&- Y. Because two logically equivalent sentences 
have the same truth value in any assignment of truth values to sentence 

letters, if one of these sentences validly follows from some premises and 
assumptions, so does the other. We can use these facts to augment our 
stock of derived rules: 

Cx&-D DM C(XvY) 5 DM 

Similarly, one can use other logical equivalences to provide derived 
rules. Here is a list of such rules you may use, given in a shortened nota- 

tion. You should understand the first line as the pair of derived de Mor- 
gan rules immediately above. Understand the following lines similarly. 

DE MORGAN'S RULES 

~(XvY) and ~X&~Y are mutually derivable (DM). 

~(X&Y) and ~Xv~Y are mutually derivable (DM). 

CONTRAPOSITION 

X2Y and ~YD~X are mutually derivable (CP). 

~XDY and ~YDX are mutually derivable (CP). 

X2-Y and Y2- X are mutually derivable (CP). 

CONDITIONAL RULES 

X2Y and ~XvyY are mutually derivable (C). 

~(XDY) and X&- Y are mutually derivable (C). 

The letters in parentheses are the abbreviations you use to annotate your 
use of these rules. 
We could add further rules of mutual derivability based on the distrib- 

utive, associative, commutative, and other laws of logical equivalence. But 
in practice the above rules are the ones which prove most useful. 

It is not hard to prove that these rules of mutual derivability follow 
from the primitive rules—in fact, you will give these proofs in the exer- 
cises. 
Many texts use rules of logical equivalence to augment the rules for 

derivations in a much more radical way. These strong rules of replace- 
ment, as they are called, allow you to substitute one logical equivalent for 
a subsentence inside a larger sentence. Thus, if you have derived 

'(AvB)2C', these strong rules allow you to write down as a further conclu- 

sion ‘(AV~~B)DC’, where you have substituted ‘~~B’ for the logically 
equivalent 'B'. 
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By the law of substitution of logical equivalents, we know that such 
rules of replacement must be correct, in the sense that they will always 
take us from true premises to true conclusions. But it is not so easy to 
prove these replacement rules as derived rules. That is, it is hard to prove 
that one can always systematically rewrite a derivation using one of these 
replacement rules as a longer derivation which uses only primitive rules. 
For this reason I won't be using these replacement rules. Your instructor 
may, however, explain the replacement rules in greater detail and allow 
you to use them in your derivations. Your instructor may also choose to 
augment the list of logical equivalents you may use in forming such rules. 

EXERCISES 

7—3. Prove all the derived rules given in the text but not proved 
there. In each of your proofs use only those derived rules already 
proved. 

7-4. Provide derivations which establish the validity of the following 
arguments. You may use any of the derived rules. In fact, many of 
the problems are prohibitively complex if you don't use derived 
rules! 

a) M&(~BvC) b) MD(DDP) c) (KDS)D(SDH) 
3e MDD S 

MDP KDH 

d) FDO e) —[(F&H)v—F] f) BD(HVvR) 
LIJ ~H BD(~HDR) 
(FvL)>(Ov)) 

8) ~(~M&D) h) (ADB)&(DD~B) i) PO(DvM) 

E ee (PODV(P2M) 
~D 

) (G&~M)D(~M&K) k) AvB 
KD~G ~B=(CvD) 
GoM. (D&E)v(D&(FIG)] 

A 

1) d. m) —CO[Fv-(DvN) n) (GvA)O(HOB) 

(S&J)V(~S&~J) ~NOD [HD(H&B)]DK 
~FDC GOK 
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o) FD(KvB) p Dv(MO) q Q=~(A&F) 
(~FvG)&(~Gv~K) [MD(M&J]D(PvK) ~(MVA)D~H 
FB ^^ (POD)&K2F) ~(Q&A)VF 

DvF Q>(HDM) 

(I&—T)OP s) B2O(NvM) 
~AD~T ND(C&K) 
~TvC CD(KDP) 
CDD —(P&B) 

—P2[I2(D&A)] B2M 

7-4. DERIVATIONS WITHOUT PREMISES 

When we discovered the derived weakening rule, we stumbled across the 
fact that a derivation (or a subderivation) does not have to use all, or even 
any, of its premises or assumptions. This fact is about to become impor- 
tant in another way. To fix ideas, let me illustrate with the simplest pos- 
sible example: 

0; 8B P 

1 A A 

2 IE LR 

3 | ADA 1-2, Di 

The premise, ‘B’, never got used in this derivation. But then, as I put it 
before, who ever said that all, or even any, premises have to be used? 
Once you see this last derivation, the following question might occur to 

you: If the premise, ‘B’, never gets used, do we have to have it? Could we 

just drop it and have a derivation with no premises? Indeed, who ever 
said that a derivation has to have any premises? 
A derivation with no premises, which satisfies all the other rules I have 

given for forming derivations, will count as a perfectly good derivation. 
Stripped of its unused premise, the last derivation becomes: 

1 A A 

2 A LR 

3| ADA 1-2, Di 
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(You might now wonder: Can subderivations have no assumptions? We 
could say yes, except that an assumptionless subderivation would never 
do any work, for a subderivation helps us only when its assumption gets 
discharged. So I will insist that a subderivation always have exactly one 
assumption.) 

All right—a derivation may have no premises. But what does a prem- 
iseless derivation mean? 
Remember that the significance of a derivation with one or more prem- 

ises lies in this: Any case, that is, any assignment of truth values to sen- 
tence letters, which makes all the premises true also makes all of the de- 
rivation's conclusions true. How can we construe this idea when there are 
no premises? 
To approach this question, go back to the first derivation in this section, 

the one beginning with the premise ‘B’. Since the premise never got used, 
we could cross it out and replace it by any other sentence we wanted. Let 
us indicate this fact symbolically by writing X for the pipi thereby 
indicating that we can write in any sentence we want where the ‘X’ occurs 

0 P 

d LR 
A2 1-2, Di 

For example, for X we could put the logical truth, ‘AV~A’. Because the 
result is a correct derivation, any assignment of truth values to sentence 
letters which makes the premise true must also make all conclusions true. 
But ‘AV~A’ is true for all cases. Thus the conclusion, ‘ADA’, must be true 

in all cases also. That is, ‘ADA’ is a logical truth. I can make the same 
point another way. I want to convince you that ‘ADA’ is true in all cases. 
So Pll let you pick any case you want. Given your case, I'll choose a sen- 
tence for X which is true in that case. Then the above derivation shows 
‘ADA’ to be true in that case also. 
Now, starting with any derivation with no premises, we can go through 

the same line of reasoning. Adding an arbitrary, unused premise shows 
us that such a derivation proves all its conclusions to be logical truths. 
Since we can always modify a premiseless derivation in this way, a prem- 
iseless derivation always proves its conclusions to be logical truths: 

- 

UN 

À derivation with no premises shows all its conclusions to be logical truths. 
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Armed with this fact, we can now use derivations to demonstrate that a 
given sentence is a logical truth. For example, here is a derivation which 
shows ‘Av~A’ to be a logical truth: 

1 ~(AV~A) A 
2 ~A&~~A 1, DM 
3 —A 2, &E 
4 ~~A 3, &E 

5 | AV~A 1-4, RD 

I devised this derivation by using the reductio strategy. I assumed the 
negation of what I wanted to prove. I then applied the derived De Mor- 
gan and reductio rules. Without these derived rules the derivation would 
have been a lot of work. 

Let’s try something a bit more challenging. Let’s show that 

{[AD(B&~C)]&(~BvD)}D(ADD) 

is a logical truth. This is not nearly as bad as it seems if you keep your 
wits about you and look for the main connective. What is the main con- 
nective? The second occurrence of ‘D’, just after the ‘}’. Since we want to 
derive a conditional with ‘[AD(B&~C)]&(~BvD)’ as antecedent and 
‘ADD’ as consequence, we want a subderivation with the first sentence as 
assumption and the second as final conclusion: 

1 [AD(B&~C)}&(~BvD) A 

{[AD(B&~C)] &(~BvD)}D(ADD) Di 

What do we do next? Work in from both ends of the subderivation. 
The conclusion we want is the conditional with ‘A’ as antecedent. So prob- 
ably we will want to start a sub-sub-derivation with 'A' as assumption. At 
the top, our assumption has an '&' as its main connective. So &E will apply 
to give us two simpler conjuncts which we may be able to use. The first 
of these conjuncts is a conditional with ‘A’ as antecedent. We are going to 
be assuming 'A' as a new assumption any way, so most likely we will be 
able to apply DE. Let's write down what we have so far: 
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1 [AD(B&~C)} &(~BvD) A 

2 A A 

3 [AD(B&~C)} &(~ BvD) 1,R 
4 AD(B&~C) 3, &E 
5 ~BvD 3, &E 

6 

2 

D 

ADD Di 

{[AD(B&~C)] &(-BvD))2(A2 D) Di 

To complete the derivation, we note that from lines 2 and 4 we can get 
the conjunction ‘B&~C’ by DE. We can then extract ‘B’ from ‘B&~C by 
&E and apply the derived form of VE to ‘B’ and ‘~BvD’ to get ‘D’ as we 
needed: 

1 [A2(B&--C)) &(~BvD) A 
2 A A 
3 [AD(B&~C)]&(~BvD) — 1R 
4 AD(B&~C) 3, &E 
5 ~BvD 3, &E 
6 B&~C 2, 4, DE 
7 B 6, &E 
8 D 5, 7, VE 

9 ADD 2-8, Di 

10 | ([AD(B&-OJ&C-BvD)O(A9D) 1-9, 2! 

You might be entertained to know how I dreamed up this horrible- 
looking example. Note that if, in the last derivation, we eliminated line 10 
and the outermost scope line, line 1 would become the premise of a de- 
rivation with ‘ADD’ as its final conclusion. In other words, I would have 

a derivation that in oudine looked like this: 

Y final conclusion 
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But starting with such a derivation I can obviously do the reverse. I get 
back to the former derivation if 1 add back the extra outer scope line, call 
what was the premise the assumption of the subderivation, and add as a 
last step an application of DI. In outline, I have 

XDY D! 

Looking at the last two schematic diagrams you can see that whenever 
you have a derivation in the form of one, you can easily rewrite it to make 
it look like the other. This corresponds to something logicians call the 
Deduction Theorem. 

Here is one last application. Recall from chapter 3 that a contradiction 
is a sentence which is false for every assignment of truth values to sen- 
tence letters. We can also use derivations to establish that a sentence is a 
contradiction. Before reading on, see if you can figure out how to do this. 
A sentence is a contradiction if and only if it is false in every case. But 

a sentence is false in every case if and only if its negation is true in every 
case. So all we have to do is to show the negation of our sentence to be a 
logical truth: 

To demonstrate a sentence, X, to be a contradiction, demonstrate its nega- 
tion, ~X, to be a logical truth. That is, construct a derivation with no prem- 
ises, with ~X as the final conclusion. 

EXERCISES 

7—5. Demonstrate the correctness of the following alternative test for 
contradictions: 

A derivation with a sentence, X as its only premise and two sentences, 
Y and ~Y, as conclusions shows X to be a contradiction. 

7—6. Provide derivations which establish that the following sentences 
are logical truths. Use derived as well as primitive rules. 
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a) (AvB)D(~BDA) 
b) Mv~(M&N) 
o [HD(ODN)]D[(H&O)DN] 
d) (DDB) {(DDT)D[DI(BET)} 
e) (KDF)D[~FD~(K&P)] 
£ [(FVG)2P&Q)]D(~Q2~F) 
g) ILO(MON)IDIL2M)O(L2N)] 
h) [(SVI)DF]D{[(FVG)DH]>(SDH)} 
i) (I&—JvIq&E)v-(K&D] 

j^ {IC&(AvD)|v~(C&F)W~(A&~G) 

7—1. Provide derivations which establish that the following sentences 
are contradictions: 

a) A&~A 
b) (Hv~B)&[(~BDH)&~H] 
c) [(H&F)DC]&~[HD(FDC)] 
d) [-(GvQ)&(K2G)]&- (Pv— K)] 
e [KD(DDP)]&[(~KvD)&~(KDP)] 
f ~[~(Nv~R)D(N=~R)] 

g (FVG)=(~F&~G) 
h) [~(FVG)v(P&Q)&~(~QI~F) 
i) (ADD)&{[(A&~B)v(A&~C)]&[(B&~D)v(B&C)] 

(Exercise i is unreasonably long unless you use a derived rule for the 
distributive law. You have really done the work for proving this law 
in problem 7—1d. 

jJ (A=B)=(~A=B) 

7-8. Consider the definition 

A set of sentence logic sentences is Inconsistent if and only if there is 
no assignment of truth values to sentence letters which makes all of 
the sentences in the set true. 

a) Explain the connection between inconsistency as just defined and 
what it is for a sentence to be a contradiction. 

b) Devise a way of using derivations to show that a set of sentences 
is inconsistent. 

€) Use your test to establish the inconsistency of the following sets of 
sentences: 

cl) CG, Gz-C 

c2) FvT, (FVT)D(~F&~T) 
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c3) JvK, ~Jv~K, J=K 

c4) (GvK)OA, (AvH)OG, G&~A 

c5) Dm(-P&-M) P=(J&~F), ~FV~D, D&J 

7—9. Devise a way of using derivations which will apply to two logi- 
cally equivalent sentences to show that they are logically equivalent. 
Explain why your method works. Try your method out on some 
logical equivalences taken from the text and problems of chapter 3. 

a) 
b) 
c) 
d) 
e) 
f) 
g) 
h) 
i) 
» 

CHAPTER SUMMARY EXERCISES 

Provide short explanations for each of the following. Check against 
the text to make sure your explanations are correct, and save your 
answers for reference and review. 

Main Connective 

Primitive Rule 

Derived Rule 

Weakening Rule 

Contraposition Rule 
De Morgan's Rules 

Conditional Rules 

Reductio Ad Absurdum Rule 

Derivations without Premises 

Tests for Logical Truths and Contradictions 
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8-1. PROVING VALIDITY WITH TRUTH TREES 

You know, from the exercises of chapter 4, that you can use truth tables 
to check the validity of any argument of sentence logic. But such truth 
table checks for validity are extremely tedious. If you read chapters 5, 6, 
and 7, you also know how to establish validity by using derivations. Many 
logicians like this natural deduction technique because (for those with a 
taste for logic) derivations are challenging and fun, and because deriva- 
tions express and make precise informal modes of deductive reasoning. 

In this and the next chapter I will present a third means for determin- 
ing the validity of sentence logic arguments—the truth tree method. This 
method is more nearly mechanical than is natural deduction. This fact 
makes truth trees less fun, because they provide less of a challenge, but 
also less aggravating, because they are easier to do. Truth trees also have 
the advantage of making the content of sentence logic sentences clear, in 
a way which helps in proving general facts about systems of logic, as you 
will see if you study part II of Volume II. 

As a basis for the truth tree method we need to remember two funda- 

mental facts from sections 4-1 and 4-2. We know that an argument is 
valid if and only if every possible case which makes all its premises true 
makes its conclusion true. And we know that this comes to the same thing 
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as an argument having no counterexamples, that is, no cases which make 
the premises true and the conclusion false. 
The truth tree method proceeds by looking for counterexamples in-an 

organized way. The method has been cleverly designed so that it is guar- 
anteed to turn up at least one counterexample to an argument if there 
are any counterexamples. If the method finds a counterexample, we 
know the argument is invalid. If the method runs to completion without 
turning up a counterexample, we know there are no counterexamples, so 
we know that the argument is valid. Finally, the method considers whole 
blocks of possible cases together, so in most cases it works much more 
efficiently than truth tables. 
We will introduce the truth tree method with a specific example: 

AvB 

~BvC 

AvC 

We are trying to find a counterexample to this argument. That is, we are 
looking for an assignment of truth values to sentence letters which makes 
the premises true and the conclusion false. Now, if we try to make some 
sentences true and another sentence false, things are going to get very 
confusing. It would be much more straightforward if we could follow a 
procedure which tried to make all of the sentences considered true. 

Can we do that and still be looking for a counterexample to our argu- 
ment? Yes—if we replace the conclusion of the argument with its nega- 
tion. So we begin the truth tree method for looking for a counterexample 
by listing the premises of the argument and the negation of the conclu- 
sion: 

1 AvB P (Premise) 
2 ~BvC P (Premise) 
3 ~(AvC) ~C (Negation of the Conclusion) 

Our method now proceeds by trying to make lines 1, 2, and 3 true. 
“Make true” just means finding an assignment of truth values to sentence 
letters for which the sentences are true. If we succeed, we will have a case 
in which the argument’s premises, lines 1 and 2, are true. And this same 

case will be one in which the conclusion is false, because the negation of 
the conclusion, line 3, will be true. So if we can make lines 1, 2, and 3 
true, we will have our counterexample. 
*Note that I have numbered the lines, and written some information off 

to the right of each line which tells you why the line got put there. You 
should always number and annotate your lines in this way so that we can 
talk about them easily. 
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Now to work. Let’s begin by making line 1 true. We see that there are 
two alternative ways of making ‘AvB’ true. First, we can make it true just 

by making ‘A’ true. If we make ‘A’ true, we have made ‘AVB’ true, what- 
ever eventually happens to the truth value of ‘B’. But the same is true of 
‘BP’. If we make ‘P’ true, ‘AvB’ will be true whatever eventually happens 
to the truth value of ‘A’. So making ‘A’ true is a first and making ‘B’ true 
is a second, alternative way of making 'AvB' true. We need the truth tree 
method to be guaranteed to find a way of making all initial lines true if 
there is a way. So we must be sure to write down all ways in which a line 
might be true, and if there are alternative ways, we must list them inde- 
pendently. 
We mark this fact by extending the tree as follows: 

/1 AVB P 
2 ~BvC P 
3 ~(AvC) =C 

4 ONI 1, v 

We have split the original path into two paths or branches. Each branch 
will represent one way of making true all the sentences which appear 
along it. The left branch will make line 1 true by making ‘A’ true. The 
right branch will make line 1 true by making 'B' true. Since the paths 
have branched, they represent alternative ways of making line | true. 
What happens along one path will have no effect on what happens along 
the other path below the point at which they branch. 

I have added some notation to the tree. The ‘1, V' at the right of line 4 
means that I got line 4 from line 1 by working on a disjunction. I have 
checked line 1 to remind myself that I have now done everything which 
needs doing to make it true. I won't have to work on that line anymore. 
Now let's work on line 2. I have to make it true, and I will do this 

exactly as I did for line 1. I will make each of the two disjuncts true; that 

is, I will make ‘~B’ true and I will independently make ‘C’ true along a 
separate branch. But I have to “add on" the ways of making line 2 true 
to each of the ways of making line 1 true. Remember, we are looking for 
some way of making all the original lines true together. So I must first 
write each of the alternative ways of making line 2 true as an extension 
of the first (left branch) way of making line 1 true. That is, I must extend 
the left branch with two new branches each of which represents one of 
the two ways of making line 2 true. So the left branch will itself split and 
look like this: 

A 

e p. s 
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The same reasoning obviously applies to the right branch. 1 must add on 
both of the ways of making line 2 true to the second (right branch) way 
of making line 1 true. We represent this by splitting the right branch so 
it looks like this: 

B 

a Ne 

Putting these pieces together, after working on line 2, the tree looks like 
this: 

/1 AvB P 
J2 ~BvC P 
3 ~(AvC) ~C 

4 A B 1v 

Each branch represents one of the ways of making line | true combined 
with one of the ways of making line 2 true. The leftmost, or first, branch 

makes line 1 true by making ‘A’ true and makes line 2 true by making 
‘~B’ true. The second branch makes line | true by making ‘A’ true and 
makes line 2 true by making ‘C’ true. (Do you see how we combine the 
alternative ways of making the first two lines true?) 
The third branch makes line 1 true by making ‘B’ true and makes line 

2 true by making ‘~B’ true. Whoops! Surely something has gone wrong! 
Surely we can't make line 1 true by making 'B' true and at the same time 
make line 2 true by making ‘~B’ true. If we were to make ‘~B’ true, this 
would be to make 'B' false, and we just said that along the third branch 
‘B’ would be made true to make line | true. We can't make ‘B’ both true 
and false. What is going on? 
What has happened is that the third branch represents an inconsistent 

way of making lines 1 and 2 true. Focus on the fact that each branch 
represents one of the four ways of trying to make lines 1 and 2 true 
together. It turns out that the third of these ways won't work. One way of 
making line 1 true is by making ‘B’ true. One way of making line 2 true 
is by making ‘~B’ true. But we can't combine these ways of making the 
two lines true into one way of making the lines true at the same time, 
because doing this would require making 'B' both true and false. We 
mark this fact by writing an ‘Xx’ at the bottom of the branch on which 
both ‘B’ and ‘~B’ appear. The ‘x’ tells us that we cannot consistently 
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make true all of the sentences which appear along the branch. We say 
that the branch is Closed. We never have to work on a closed branch again: 

We say that a branch is Closed when a sentence, X, and its negation, —X, 
both appear on the branch. We mark a branch as closed by writing an ‘x’ 
at the bottom of the branch. Do not write anything further on a branch 
once it has been marked as closed. 

The sentence X may be an atomic sentence, such as ‘A’, or a compound 
sentence, such as ‘Bv~(C&~A)’. Also note that the sentence and its ne- 

gation which cause a branch to close must both appear as entire sentences 
at points along a branch. If one or both appear as part of some larger 
compounds, that does not count. To illustrate this point, look at the tree 

drawn up to line 4, as presented on page 115. On the right-hand branch 
you see ‘B’ as the entire sentence at the end of the branch, and ‘~B’ as 
part of a compound on line 2. The branch does not close at this point 
because there is no conflict between line 2 and the right branch at line 4. 
It is perfectly possible for 'B' and ‘~BvC’ both to be true. 

It is the fact that branches can close which gives the truth tree method 
its simplifying power. Here is how simplification occurs. We still have to 
make line 3 true, and we have to combine the ways of making line 3 true 

with the ways of making lines 1 and 2 true. But we can forget about one 
of these ways of (trying to) make lines 1 and 2 true because it turned out 
to be inconsistent. This corresponds to ruling out certain lines of the truth 
table before we have completely worked them out. Because a truth tree 
avoids working out what corresponds to some of the lines of the corre- 
sponding truth table, truth trees often save work. 

Note how I annotated the tree in the last step: I put ‘2, v’ to the right 
of line 5 to indicate that I got line 5 from line 2 by working on a disjunc- 
tion. And I checked line 2 to remind myself that I have done everything 
needed to make line 2 true. I won't need to worry about line 2 anymore. 

Let's complete the tree by working on line 3. What has to be done to 
make line 3 true? Line 3 is the negation of a disjunction. The negation of 
a disjunction is true just in case the disjunction itself is false. So, to make 
‘~(AvC)’ true, I have to make ‘AvC’ false. How do I make ‘AvC’ false? 

According to the truth table definition of ‘v’, I can do this only by making 
both 'A' false and 'C' false. So the result of making line 3 true will not be 
a branch of two alternative ways of making a sentence true. There is only 
one way to make line 3 true: a stack which first makes ‘A’ false and then 
makes 'C' false. But to keep things clearly organized I only write down 
true sentences. So what I have to write is a stack which makes ‘~ A’ true 
and makes ‘~C’ true.: 

~A 
~C 
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By making ‘~A’ true followed by ‘~C’ true, I have made ‘A’ and ‘C’ 
both false, which makes 'AvC' false, in the only way that this can be done. 
Finally, making 'AvC' false makes ‘~(AvC)’ true, which was what we 
wanted to accomplish. 

Where do I write this stack? I must combine the results of making line 
3 true with all the ways I already have for making lines 1 and 2 true. 
At first thought, this would seem to indicate that I should write my 
‘~A’, ‘~C stack at the bottom of every branch. This is almost right. But 
I won't have to write the results of working on line 3 at the bottom of 
the closed (third) branch. Remember that the closed branch represents 
a way of trying to make previous sentences true that can’t work because 
it is inconsistent. So I only have to write my stack at the bottom of 
every Open Branch, that is, every branch which does not have an ‘x’ at 
its bottom: 

A branch which is not closed is Open. 

Adding the stack to the open branches gives a tree that looks like this: 

/1 AvB P 
/2 ~BvC P 
/3 ~(AvC) ~C 

4 A B 1,v 

5 "d ra ,N 

| 1 5| 
6 ~A ~A ~A 3,-~V 
7 ~C ~C ~C 3,-v 

The ‘3, ~v’ means that I got the lines from line 3 by working on a negated 
disjunction. 1 also checked line 3. 
We have one more thing to do to this tree. Note that now the first, 

second, and fourth branches all have the problem that the third branch 
had. To make all the sentences along the first branch true, I would have 
to make ‘A’ true and ‘~A’ true. That is, I would have to make ‘A’ both 

true and false. I can’t do that, so I put an ‘x’ at the bottom of the first 

branch. I do exactly the same to the second branch for exactly the same 
reason. The fourth branch has both ‘C’ and ‘~C, so I must close it with 
an ‘x’ also. The final tree looks like this: 
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/1 ANB P 
/2 ~BvC P 
/3 —-(AvC) ec 

4 wr. B 1,v 

5 ~B C Pas 2,v 

EE 
6 ~A ~A ~A 3, ~v The argument 
7 >C =Ç ~C 3, ~v is valid. 

x x x 

Here is the final result: All branches have closed. That means that every 
possible way of trying to make all the initial sentences true results in a 
conflict. Each way of trying to assign truth values to sentence letters re- 
quires that some sentence be made both true and false, and the rules of 

the game do not permit that. We agreed in chapter 1 that in a given 
problem a sentence letter would be true or false, but not both. Since there 
is no way of making all initial sentences true, there is no way of making 
the argumenr's premises true and its conclusion false. That is, there is no 
counterexample to the argument. So the argument is valid. 

8-2. THE GENERAL STRATEGY FOR THE RULES 

The example we have just completed contains all the ideas of the truth 
tree method. But explaining two more points will help in understanding 
the rest of the rules. 

First, why did I write a stack when I worked on line 3 and a two-legged 
branch when I worked on lines 1 and 2? Here is the guiding idea: If there 
are two alternative ways of making a sentence true I must list the two 
ways separately. Only in this way will the method nose out all the possible 
different combinations of ways of making the original sentences true. I 
can make line 1 true by making 'A' true and, separately, by making 'B' 
true. I just list these two alternative ways separately, that is, on separate 
branches. This will enable me to combine the alternatives separately with 
all possible combinations of ways of making the other lines true. 

But when I tried to make line 3 true there was only one way to do it. I 

can make ‘~(AvC)’ true only by making both ‘~A’ and ‘~C’ true. Because 
there is only one way of making line 3 true, line 3 does not generate two 
branches. It generates only one thing: the extension of all existing open 
branches with the stack composed of ‘~A’ followed by ‘~C’. 

I have just explained how I decide whether to write a branch or a stack 
when working on a sentence. (I'll call the sentence we are working on the 
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"target" sentence.) But how do I decide what new sentence to write on 
the resulting branches or the resulting stack? Since each path represents 
a way of making all the sentences along it true, I should put enough 
sentences to ensure the truth of the target sentence along each branched 
or stacked path. But I also want to be sure that I don't miss any of the 
possible ways of making the target sentence true. 

It turns out that I can achieve this objective most efficiently by writing 
the least amount on a branch which gives one way of making the target 
sentence true. Í must then write, along separate branches, all the differ- 

ent ways in which I can thus make my target sentence true with as few 
components as possible. I will express this idea by saying that, when work- 
ing on a sentence, I must write, along separate branches, each minimally 

sufficient sentence or stack of sentences which ensures the truth of my 
target sentence. This will make sure that no avoidable inconsistency will 
arise. And in this way the method will be sure to find a way of making all 
the initial sentences true if there is a way. 

In sum, in working on a target sentence, I do the following. I figure 
out all the minimally sufficient ways of making my target sentence true. 
If there is only one such way, I write it at the bottom of every open path 
on which the target sentence appears. If there is more than one, I write 
each separate minimally sufficient way on a separate branch at the bottom 
of every open path on which the target sentence appears. 

This reasoning works to explain all the further rules. 

EXERCISES. 

8-1. Use the truth tree method to show that the following argu- 
ments are valid. Show your trees, following the models in the text, 
complete with annotations to the right indicating at each stage which 
rule you have used and what line you have worked on. 

a D b) ~(Mv~N) c) ~(FvP) d) Hvi 

J 74v) zw N ~Fv~P 
Dv) ZNK 

HvK 

8—2. If you ran into a conjunction on a tree, what would you do? If 
you don't see right away, try to figure this out on the basis of the 
description in this section of how the rules work and the two rules 
you have seen. If you succeed in stating the rule for a conjunction, 
try to state the rules for negated conjunctions, conditionals, and ne- 
gated conditionals. If you succeed again, try stating the rules for 

' biconditionals and negated biconditionals, which are a little harder. 
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8-3. PROVING INVALIDITY WITH TRUTH TREES 

Let us now look at an example of an invalid argument: 

AvB 

A&B 

Keep in mind that this argument is invalid just in case there is a counter- 
example to it, and that the truth tree method works by searching for such 
counterexamples. 
We begin by listing the premise and the negation of the conclusion. 

- 

1 AVB P 
2 ~(A&B) ~C 

An assignment of truth values which makes both of these sentences true 
will constitute a counterexample, demonstrating the invalidity of the orig- 
inal argument. 
We already know what to do with line 1. But when we get to line 2 we 

will have a new kind of sentence to work on, a negated conjunction. To 
make the negated conjunction ‘~(A&B)' true, I must make the conjunc- 
tion ‘(A&B)’ false. Making ‘A’ false is minimally sufficient for making 
‘(A&B)’ false, and so for making ‘~(A&B)’ true. So for line 2 I must pro- 
duce one branch which makes ‘A’ false, which I do by writing a branch 
which makes ‘~A’ true. Making ‘B’ false is likewise minimally sufficient 
for making ‘A&B’ false. So for line 2 I also need a second, separate 

branch with ‘~B’ on it. Altogether, the result of working on line 2 will 
look like this: 

~K > B 

I will write this at the bottom of every open path on which line 2 ap- 
pears. Note that this rule is very different from the rule for the negated 
disjunction ‘~(AvB)’. In working on the negated disjunction, ‘~(AvB)’, I 
had to write a stack of the negated disjuncts (‘~A’ followed by ‘~B’) at 
the bottom of every open branch. This is because only the stack, ‘~A’ 
followed by ‘~B’, is minimally sufficient for making the negated disjunc- 
tion true. In working on the negated conjunction, ‘~(A&B)’, I must write 

a branch with '—A' on one leg and ‘~B’ on the other leg. This is because 
each of the negated conjuncts (‘~A’ or ‘~B’) is by itself minimally suff- 
cient for making the negated conjunction true. 



122 Truth Trees for Sentence Logic Fundamentals 

We now know everything we need to test our new argument for valid- 
ity: 

/1 AvB P The argument 
/2 —(A&B) ~C is invalid. 

Counterexamples: 
3 AN E" —B&A, —A&B 

4 P2 ~A ~B 2, ~& 

x x 

I first worked on line 1, producing a branch with ‘A’ on one leg and ‘B’ 
on the other, representing the two minimally sufficient ways of making 
line 1 true. I checked line 1 to remind myself that I have done everything 
needed to make it true. I then worked on line 2. At the bottom of each 
open path I put a new branch, one leg representing one minimally suffi- 
cient way of makíng line 2 true, and the second leg representing the sec- 
ond minimally sufficient way of making line 2 true. The annotation on 
the right of line 4 indicates that I got line 4 by applying my rule for a 
negated conjunction to line 2. And I checked line 2 to remind myself that 
I have done all that is needed to make it true. Next I inspected each path 
to see if it contained both a sentence and the negation of the same sen- 
tence. The first path has both ‘A’ and ‘~A’. The fourth path has both ‘B’ 
and ‘~B’. So I marked both these paths closed. At this point I observed 
that there are no unchecked compound sentences which I could make 
true by making some simpler sentences true. 
How does this tree show the argument to be invalid? You see that this 

completed tree has two open paths. What do they mean? Look, for ex- 
ample, at the first open path. Reading up from the bottom, suppose we 
make '—B' true and make 'A' true. This constitutes an assignment of truth 
values to sentence letters ('B' false and ‘A’ true) which will make the orig- 
inal sentences 1 and 2 true. This is because we made ‘~B’ true as one way 
of making line 2 true. And we made 'A' true as one way of making line 1 
true. So by assigning truth values f to 'B' and t to ‘A’, we make all sen- 
tences along the first open path true. 

This sort of thinking works generally for open paths. Keep in mind 
how we constructed the paths. Each time we found a sentence with an '&' 
or a ‘v’ in it, we wrote a shorter sentence farther down the path. We did 
this in a way which guaranteed that if we made the shorter sentence true, 
the longer sentence from which it came would be true also. So if we start 
at the bottom of a path and work up, making each sentence letter and 
each negated sentence letter true, that will be enough to make all sen- 

tences along the path true. Any sentence longer than a sentence letter or 
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negated sentence letter will be made true by one or more sentences far- 
ther down the path. 

Even if we start with very complicated sentences at the top, each sen- 
tence is made true by shorter sentences below, and the shorter sentences 

are made true by still shorter sentences farther down, until we finally get 
to the shortest sentences possible, sentence letters and negated sentence 
letters. Then we can work backward. Making the sentence letters and ne- 
gated sentence letters along the path true will, step by step, also make 
true all longer sentences higher up on the path. 
We have seen that the assignment of f to ‘B’ and t to ‘A’ makes all 

sentences along the first open path true. In particular, it makes the orig- 
inal first two sentences true. These sentences were our argument's prem- 
ise and the negation of our argument’s conclusion. So making the initial 
two sentences true makes our argument’s premise true and its conclusion 
false. In short, ‘B’ false and ‘A’ true constitutes a counterexample to our 
argument. Thus the argument is invalid. One counterexample is enough 
to show an argument to be invalid, but you should note that the second 
open path gives us a second counterexample. Reasoning in exactly the 
same way as we did for the first open path, we see that making ‘~A’ true 
and ‘B’ true makes every sentence along the second open path true. So 
making ‘A’ false and ‘B’ true constitutes a second counterexample to the 
argument. 
Our last step is to record all this information next to the completed 

tree. We write ‘invalid’ next to the tree and write the counterexamples 
which show the argument to be invalid. We can do this most easily with 
the sentences of sentence logic which describe the counterexamples. The 
sentence ‘~B&A’ describes the counterexample given by the first open 
path and the sentence ‘~A&B’ describes the counterexample given by the 
second open path. l 

A last detail will conclude this section: The order of the cases in the 
description of the counterexample obviously does not matter. 1 described 
the first counterexample with the sentence ‘~B&A’ because I read the 
counterexample off the path by reading from the bottom up. As a matter 
of practice, I recommend that you do the same. But in principle the 
equivalent description ‘A&~B’ describes the same counterexample just as 
well. 

EXERCISES 

8-3. Use the truth tree method to show that the following argu- 
ments are invalid. Show your trees, being careful to show which 
branches are closed. In each problem give any counterexamples 
which show the argument being tested to be invalid. 
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a F b) —(-S&D) c  KvH d) -(I&P) 

F&K S -K EVE 
H&D IVF 

8—4. THE COMPLETE RULES FOR THE CONNECTIVES 

All we have left to do is to state the rules for the remaining connectives. 
And this further development involves nothing very different from what 
we have done already. The reasoning that enables us to figure out the 
new rules is just like the reasoning we went over in explaining the rules 
for disjunction, negated disjunction, and negated conjunction. 
To see how to state the rules generally, let us start with one we have 

already seen in action: 

Rule v: If a disjunction of the form XvY appears as the entire sentence at 
a point on a tree, write the branch 

x^ 

at the bottom of every open path on which XvY appears. 

Notice that I have stated the general rule using bold face 'X' and 'Y' 
instead of sentence letters ‘A’ and ‘B’. This is because I want to be able to 
apply the rule to more complicated sentences, which result if we substitute 
compound sentences for the 'X' and the 'Y'. Don't worry about this for 
now. We will work on this complication in the next chapter. 
We continue with a statement of the other two rules which we have 

already seen in action: 

Rule ~v: If a negated disjunction of the form ~(XvY) appears as the 
entire sentence at a point on a tree, write the stack 

~X 
~Y 

at the bottom of every open path on which ~(XvY) appears. 

Rule ~&: If a negated conjunction of the form ~(X&Y) appears as the 
entire sentence at a point on a tree, write the branch 

= P diac 
~X SUY 

at the bottom of every open path on which ~(X&Y) appears. 
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Did you try your hand at exercise 8—2? If not, or if you did and had 

trouble, try again, now that you have seen how I have given a general 
statement of the rules we have already worked with. Try to figure out the 
new rules for the other connectives by thinking through what, for exam- 
ple, you would need to do to a tree to make true a conjunction which 
appears on a tree, or a conditional, or a negated conditional. 

In order to make a conjunction true on a path we have to make both 
conjuncts true. This is the only minimally sufficient way of making the 
conjunction true. So the rule for conjunction is 

Rule &: If a conjunction of the form X&Y appears as the entire sentence 
at a point on a tree, write the stack 

X 
Y 

at the bottom of every open path on which X&Y occurs. 

Now let's try the conditional. How can we make a conditional true? If 
we make the antecedent false, that does it right there. Making the ante- 
cedent false is minimally sufficient for making the conditional true. Simi- 
larly, making just the consequent true is minimally sufficient for making 
the conditional true. Clearly, we need a branch, each fork of which has 

one of the minimally sufficient ways of making the conditional true. One 
fork of the branch will have the negation of the antecedent, and the other 
fork will have the consequent: 

Rule >: If a sentence of the form XDY appears as the entire sentence at 
a point on a tree, write the branch ̀  

x Y 
at the bottom of every open path on which XDY occurs. 

What about negated conditionals? A negated conditional produces a 
stack as do conjunctions and negated disjunctions. A negated conditional 
can be made true only by making its antecedent true and its consequent 
false at the same time. So our rule for negated conditionals reads 

Rule ~D: If a sentence of the form ~(XDY) appears as the entire sen- 
tence at a point on a tree, write the stack 

X 
~Y 

. at the bottom of every open path on which ~(XDY) appears. 
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The rule for the biconditional is just a bit more complicated. You can't 
make the biconditional X=Y true just by making one component true or 
false. You have to assign a truth value to two components to make it true. 
So far, the rule for X=Y is looking like that for X&Y. But there are two 
independent ways of making X=Y true. We can make it true by making 
both components true, and we can make it true by making both compo- 
nents false. Finally, these are all the minimally sufficient ways of making 

X=Y true. So we will have to make a branch, each fork of which will have 

two sentences: 

Rule =: If a biconditional of the form X=Y appears as the entire sentence 
at a point on a tree, write the branch 

X^ 7x 
Y ~Y 

at the bottom of every open path on which X=Y appears. 

Note that the rule = looks different from all the previous rules. Each 
previous rule instructed you to branch or stack, but not both. The rule = 

requires both branching and stacking. We need a branch with two forks, 
and each fork has a stack of two sentences. Only thus do we get all the 
minimally sufficient ways of making a biconditional true. 
The reasoning behind the rule for the negated biconditional looks very 

similar to that for the conditional. A negated biconditional is true just in 
case the biconditional itself is false. Under what conditions is a bicondi- 
tional false? It's false when the components have different truth values. 
This can happen in two ways: The biconditional is false when the first 
component is true and the second component is false, and it is false when 
the first component is false and the second component is true. This gives 
us the rule 

Rule ~=: If a negated biconditional of the form ~(X=Y) appears as the 
entire sentence at a point on a tree, write the branch 

p ie 
X ~X 

~Y Y 

at the bottom of every open path on which ~(X=Y) appears. 

As with the conditional, we need two branches, each with a stack of two 

sentences. Only in this way will we get all the minimally sufficient ways of 
making a negated biconditional true. 
We need one last truth tree rule. Consider the following argument and 

the tree for testing its validity: 
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~(A&~B) /1 ~(A&~B) P 
ADB 72 ~(A2B) ~C Valid 

a 38 aOR. dues 
4 A A. 3.22 
5 ~B ~B 2~D 

x x 

How did I get the branch on the right to close? We can look at this in 
two equally correct ways. We can note that ‘~~B? is the negation of ‘~B’. 
Thus we have an inconsistent pair of sentences on the same branch. This 
is what I hope occurred to you when you met double negations in the 

previous exercises in this chapter. I can no more make ‘~B’ and ‘~~B’ 
both true than I can make ‘B’ and ‘~B’ both true. So the branch closes. 
Also, we can observe that ‘~~B’ is logically equivalent to ‘B’. Clearly, the 
one will be true if and only if the other is true. So we can make ‘~~B’ 
true by making 'B' true. We could rewrite the right branch on the above 
tree as follows: 

~~B 1,~& 
B 3, ~~ 
A 2,—-2 

~B 2,~D 
x 

We will formalize this move in a further rule: 

Rule ~~: If the sentence ~~X appears as the entire sentence at a point 
on a tree, write X at the bottom of every open path on which ~~X appears. 

These nine rules for the connectives tell you what to do when working 
on a sentence which appears as the entire sentence at a point on a tree. 

The examples should give you a pretty good idea of how to go about 
applying these rules. But let's review the basic ideas: 

A truth tree works by looking for an assignment of truth values to sentence 
letters which makes all of the tree's original sentences true. 

We will see in the next chapter that a truth tree can be used for other 
things in addition to checking arguments for validity. But so far we have 
studied only validity checking: 

To use the truth tree method to test an argument for validity, list, as the 
initial sentences of a tree, the argument's premises and the negation of its 
conclusion. 
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You then apply the rules in this way: 

1) Starting with a tree's initial sentences, you may apply the rules in any 
order. 

2) After applying a rule to a sentence, check the sentence, to remind 
yourself that you do not need to work on that sentence again. 

3) After working on a sentence, look to see if any paths have closed. Mark 
any closed paths with an ‘x’. 

4) Continue working on unchecked sentences until the tree has been 
completed, which happens when either 

a) All paths have closed, 
or b) No unchecked sentences are left to which you can apply a rule. 

Now we need to review how you should interpret a tree once it has 
been completed: 

An open path provides an assignment of truth values to sentence letters as 
follows: Assign the truth value t to each sentence letter which occurs as the 
entire sentence at some point along the open path. Assign the truth value f 
to each sentence letter whose negation occurs as the entire sentence along 
the open path. 

In a completed tree the assignment of truth values to sentence letters pro- 
vided by an open path makes all sentences along the path true. If all paths 
have closed, there is no assignment of truth values to sentence letters which 
makes all the initial sentences in the tree true. 

When we use a tree to test an argument for validity, we apply this last 
general fact about trees, as follows: 

Suppose we have a completed tree whose initial sentences are an argument's 
premises and the negation of the argument's conclusion. An open path in 
this tree provides an assignment of truth values to sentence letters which 
makes all of the initial sentences true, and so makes the argument's premises 
true and its conclusion false. Such an assignment is a counterexample to the 
argument, showing the argument to be invalid. If all of the tree's paths have 
closed, there is no such assignment, hence no counterexample, and the ar- 
gument is valid. 

We will also always use the following practical procedure: 

When using the truth tree method to test an argument for validity, write 
next to your completed tree the word 'valid' or 'invalid' to record what the 
tree shows about the argument. Also, if the tree shows the argument to be 
invalid, write down all the counterexamples which the tree provides to the 
argument. 

Of course, one counterexample is enough to show that an argument is 
invalid. But you should practice your skill at constructing trees, and as 
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part of this practice it is useful to read off all the counterexamples a tree 
provides. 

8-5. IN WHICH ORDER SHOULD YOU WORK ON THE 

SENTENCES IN A TREE? 

The summary statement tells you that you may apply the rules in any 
order you like. Indeed, the order does not matter in getting the right 
answer. But the order can make a practical difference as to how quickly 
you get the right answer. In all the examples you have seen so far, I 
started with the first sentence on the tree and worked downward. To 
show you that order can make a practical difference I am going to redo 
the first example and work on line 3 first: 

J1 AvB P 
/2 —BvC P 
/3 ~(AvC) ~C 
4 ~A 3, ~v 
5 ~C 3, ~v 

6 A B 1, v 

x JN 
7 ~B C 2,v 

x x 

Compare this tree with the first way I worked the problem, and you 
will see that this one is a good bit shorter. I worked out the problem the 
longer way the first time because I wanted to illustrate how branches get 
stacked on top of several other branches. And I wanted to show you how 
working on the sentences in a different order can make a difference as to 
how quickly you can do the problem. 

But how can you tell what the shortest way will be? I have no surefire 
formula which will work for you all the time. In general, you have to try 
to “look ahead” and try to see how the problem will work out to decide 
on an order in which to work the lines. Your objective is to get as many 
branches to close as quickly as possible. If you don’t make the best choice, 
the worst that will happen is that your problem will take a little longer to 
do. 

There are several practical rules of thumb to help you out. First, 

Practical guide: Work on lines that produce stacks before lines that produce 
branches. 
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Branches make trees messy. Stacks line up more sentences along a path 
and improve your chances of getting a path to close. In the problem 
which I redid I knew I was likely to get a shorter tree by working on line 
3 before working on lines | and 2. I knew this because line 3 produces a 
stack while both | and 2 produce branches. 
A second suggestion: 

Practical guide: When you have as sentences on which to work only ones 
which are going to produce branches, work first on one which will produce 
at least some closed paths. 

If the first two suggestions don't apply, here is a final piece of advice: 

Practical guide: If the first two guides don't apply, then work on the longest 
sentence. 

If you put off working on a long sentence, you may have to copy the 
results of working on it at the bottom of many open branches. By working 
on a long sentence early on, you may get away with its long pieces at the 
bottom of relatively few branches, making your tree a little less compli- 
cated. 
Now you should sharpen your understanding of the rules by working 

the following problems. The easiest way to remember the rules is to un- 
derstand how they work. Once you understand the reasoning which led 
us to the rules, you will very quickly be able to reconstruct any rule you 
forget. But you may also refer to the rule summary on the inside back 
cover. You should understand the boxes and circles in this way: When- 
ever you find a sentence with the form of what you see in a box occurring 
as the entire sentence at a point along a tree, you should write what you 
see in the circle at the bottom of every open path on which the first sen- 
tence occurred. Then check the first sentence. 1 have written the abbre- 
viated name of the rule above each rule. 

EXERCISES 

8—4. Use the truth tree method to determine whether or not the 

following arguments are valid. In each case show your tree, indicat- 
ing which paths are closed. Say whether the argument is valid or 
invalid, and if invalid give all the counterexamples provided by your 

tree. 

a A b ~CDH c KDF d) POM e FG f JDD 
F MDB ~GVH KDD 

~HDC E DRE J&K 
A&B K PDB F&H pE 

D 
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g) (KvS) h JDD i) MaN p T=i k) ~(F&~L) 

~(K&H) Op 7 cem I&A ~(L&~C) 
JvK = KDH NR —Tv-À FeL 
D 

) FeG m CON m ~QDD) oœ  Re-S p Oz-F 
G=H .-(I2C) ~(Q&~B) ~(R=T) ~(F=K) 
FH NV) ZBER) R&~S ODK 

-N2-4 Dv~Q 

8—5. The rules, as I have stated them, specify an order for the 

branches and an order for sentences in a stack. For example, the 
rule for a negated conditional, —(X OY) instructs you to write a stack 

X 
~Y 

But could you just as well write the stack 

~Y 
x 

at the bottom of every open path on which ~(XDY) appears? If so, 
why? If not, why not? Likewise, the rule for the conditional, XDY, 
instructs you to write the branches 

~X Y 

But could you just as well write the branches in the other order, 
writing 

Y ~X 

* 

+ 

at the bottom of every open path on which XDY appears? If so, 
why? If not, why not? Comment on the order of branches and the 

order within stacks in the other rules as well. 

8-6. If we allow ourselves to use certain logical: equivalences the 
truth tree method needs fewer rules. For example, we know from 

chapter 4 that, for any sentences X and Y, XDY is logically equiva- 
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lent to ~XVY. Now suppose we find a sentence of the form XDY on 
a tree. We reason as follows: Our objective is to make this sentence 
true by making other (in general shorter) sentences true. But since 
~XvyY is logically equivalent to XOY, we can make XDY true by 
making —XvY true. So I will write —XvY at the bottom of every 
open branch on which XDY appears, check XDY, and then apply 
the rule for disjunctions to ~XvY. In this way we can avoid the need 
for a special rule for conditional sentences. 

Apply this kind of reasoning to show that, by appealing to de Mor- 
gan's rules, we can do without the rules for negated conjunctions 
and negated disjunctions, using the rules for disjunctions and con- 
junctions in their place. Also show that we could equally well do 
without the rules for conjunctions and disjunctions, using the rules 
for negated disjunctions and negated conjunctions in their place. 

8—7. In chapter 3 I extended the definition of conjunctions and dis- 
junctions to include sentences with three or more conjuncts and sen- 
tences with three or more disjuncts. But we have not yet stated truth 
tree rules for such sentences. 

a) State truth tree rules for conjunctions of the form X&Y&Z and 
for disjunctions of the form XvYvZ. 
b) State truth tree rules for conjunctions and disjunctions of arbi- 
trary length. i 

8—8. Write a truth tree rule for the Sheffer stroke, defined in section 

3—5. 

CHAPTER SUMMARY EXERCISES 

Here are this chapter's important new ideas. Write a short explana- 
tion for each in your notebook. 

a) Truth Tree 

b) Counterexample 

c) Branching Rule 
d) Nonbranching Rule 

e) Closed Branch (or Path) 

f) Open Branch (or Path) 
g Rule ~~ 
h) Rule & 

i) Rule ~& 

j Rulev 
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MOI Truth Trees for 

Sentence Logic 

Applications 

9-1. APPLICATION OF THE RULES TO COMPLEX SENTENCES 

This is going to be a short chapter. You really have all the facts about 
truth trees. It only remains to see how to apply these facts in some new 
ways. 

In the last chapter I was careful to give you only problems in which the 
sentences were very simple. But now that you have the hang of the rules, 
let’s see how to apply them in testing the validity of an argument like this: 

I 

(A&B)v(~A&C)  /1 (A&B)v(—A&C) P 

NEN Au cS Me ~(BvC) ~C 

ave 3 ~B 3 ~v 
4 ~C 2, EV 

J5 A&B ~A&C 1,v 

6 A ~A 5, & 

7 B C 5, & 
x x 

Valid 

-Following the suggestion of working first on nonbranching lines, I be- 
gan with line 2. But what, then, should I do with line 1? Line 1 is a 

disjunction of conjunctions. Which rule applies? And how? Keep in mind 
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what the rules are supposed to do. Our objective is to make line 1 true, 
in all the minimally sufficient ways that this can be done. Because line 1 
is a disjunction, we must do this by making each of the disjuncts true 
along a separate leg of a branch. That is, we must make the full subsen- 
tence ‘A&B’ true along one branch and the full subsentence ‘~A&C’ true 
along a second branch. The subsentences ‘A&B’ and ‘~A&C’ are them- 
selves compound sentences to which we must apply the rule for conjunc- 
tion, which I have done in lines 6 and 7. 

How can you tell which rule applies to line 1? Ask yourself: What do I 
have to do to the whole sentence appearing on line 1 which will guarantee 
that the whole sentence is true? The answer will direct you to the com- 
ponents which must be written at points farther down on the tree. 
To see more clearly how this works, let us look at some more examples. 

If the sentence is 

(A&B)2(CvD) 

I say to myself: This sentence is a conditional, the antecedent of which is 
the conjunction 'A&B' and the consequent of which is the disjunction 
‘CvD’. A conditional can be made true by making the antecedent false. 
And it can alternatively be made true by making the consequent true. So 
at the bottom of every open path on which ‘(A&B)D(CvD)’ appears, I 
must write the branch 

~(A&B) CvD 

What should I do with 

~((BvC)DA]? 

This sentence is a negated conditional. To make it true I must simulta- 
neously make the conditional’s antecedent true and its consequent false. 
So at the bottom of every open path on which it appears, I must write the 
stack 

BvC 
~A 

We will look at some nastier examples in a moment. But first let’s dis- 
cuss an explicit prescription for applying the rules to sentences no matter 
how complex. Suppose you are faced with a very complex sentence and 
you are not sure which rule applies. Ask yourself the following question: 
In building this sentence up from smaller parts, what was the last step? 
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What was the very last connective that got used in putting together this 
compound sentence from its components? 

I hope that by this time you are recognizing the idea of a sentence's 
main connective from chapter |. (If you did the chapters on natural de- 
duction, you may find this section repetitious. Please bear with those who 
are learning the tree method without having learned natural deduction 
first.) 

The Main Connective in a compound sentence is the connective which was 
used last in building up the sentence from its component or components. 

To determine which rule applies to a sentence, first determine the sen- 
tence's main connective. If the main connective is not ‘~’ all you have to 
do is to apply the rule for the main connective. If the main connective is 
‘~, determine the main connective of the negated sentence. Then apply 
the corresponding rule ~v, ~&, ~D, ~=, or ~~. 

Let us see how the rules apply to a few more examples. Consider 

(A2B)2((CvA)2B)] 

What is the main connective? It is ‘D’. But which occurrence of ‘D°? It's 
the second occurrence. The parentheses tell you that the very last step in 
building up this sentence is to take ‘ADB’ and '(CvA)OB' and to make the 
first the antecedent and the second the consequent of a conditional. 

Here is another example: 

~{{(A=~B)=C]=(CD(~A=B)} 

This is a negated biconditional, and the occurrence of ‘=’ to which you 
have to apply the rule is the third. In building the sentence up from its 
parts, the very last thing that was done was to apply the outermost nega- 
tion sign. The step before that was to form a biconditional from the com- 
ponents ‘(A=~B)=C’ and ‘CD(~A=B)’. So the rule for negated bicondi- 

tional applies, using ‘(A=~B)=C’ and ‘CD(~A=B)’ as the components. 
At the bottom of every open branch, we write 

(A=~B)=C — ~((A=~B)=C] 
~(CD>(~A=B)] CD(~A=B) 

Before turning you loose on some exercises, I should mention a small 
side point. When you worked problem 8—4g, one of the open branches 
displayed ‘~H’ and ‘K’ but neither ‘S’ nor ‘~S’. So what counterexamples 
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does this branch represent? What happened in this case is that making 
‘H’ false and ‘K’ true is already enough to make everything on the branch 
true. If 'H' is false and ‘K’ is true, the initial sentences are true whether 
'S' is true or false. But, strictly speaking, an assignment of truth values to 
sentence letters for a sentence must assign a truth value to each sentence 
letter in the sentence. So, strictly speaking, a counterexample for this 
problem must specify a truth value for ‘S’. Thus we really should say that 
the assignment of truth values which you read off the open branch, 'H' 
false and ‘K’ true, is an abbreviation for the pair of counterexamples, 
‘~H&K&S’ and ‘~H&K&~S’. 

However, having said this, we will record counterexamples by reading 

off the truth values for the sentence letters and negated sentence letters 

which occur on an open branch. If some sentence letters have been left 
out, we know that our list is an abbreviation for all the truth value assign- 
ments which result by arbitrarily assigning truth values for the neglected 
sentence letters. 

EXERCISES 

9-1. Determine the main connective in the following sentences: 

a) A&[Bv(CDD)] 
b) —[(Hv-K)&F]2(- Rv-F) 

c) ~{(1v~P)=M]D(~Iv~6G)} 

d) {(FI(BVv~N)]>(~JON)}>{Nv[FD~ (Bv) 

9-2. Test the following arguments for validity. Show your trees, 
showing which paths are closed. Say whether the argument is valid 
or invalid, and if invalid give the counterexamples provided by the 
finished tree. 

Before beginning these problems, you should review the practical 
guides at the end of chapter 8. Also, try to stay clear of the following 
pitfalls that often catch students: A tree is not completed until either 
all branches have closed or until all sentences have been checked. 
Sometimes you can see before completing a tree that there will 
surely be at least one counterexample. (This can happen, for exam- 
ple, when completing the left branch produced by an original sen- 
tence, before the right branch is complete.) But, both for safety and 
to make sure you get plenty of practice, please don't quit on a tree 
until all compound sentences have been checked. 
Sometimes students try to take shortcuts, writing down the results 
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of working on two rules at once. Often this produces mistakes, and 

makes it terribly hard for anyone to correct your papers. Finally, pay 
constant attention to the main connective. Only by correctly identi- 

fying the main connective in a compound sentence will you correctly 
apply the rules. 

e) 

h) 

k) 

n) 

q) 

s) 

v) 

a) B b) 

(BvC)&(BvD) 

(RvL)D(GvA) 
RD~G 

~(B&~R) ` 

~BvA 

(DDH)DP 
DD~(FvG) 

FvH 

DDP 

(T&G)V(G&--M) 

T&~M 

H2[DD(BvP)] 

DvP 

HDP 

Dv(M2)) 
[M2(M&J)] 2(PVK) 
(POD)&(K2F) 

DvF 

FD(KvB) 

(~FvG)&(~Gv~K) 

FDB 

(I& —T)OP 

~AD~T 

~TvC 
CDD 

~PDI[ID(D&A)) 

DvF 
KD~F 

~FD(DvK) 

f) 

r) 

t) 

€ NO(DOP) 
NDD 

(~1&~D)v~D 

~[C&~J(D&~J)] 

ID(JOK) 

(DJK 

(H=~Q)=(H=~M) 

H2[Qv-(-Q&M)) 

~[~K&~(~A&~B)] 

(ADK)&(KDB) 

[(F&~B)VQ) OIA&(SvT)) 
F&~(S&A) 

SVA 

BD(ADS) 

F=[~Jv(C&T)) 
Av(C=0) 

-[F202-0J 
F=(T&A) 

NDP 

g) 

m) 

p) 

u) 

d) (H&P)V(S&~J) 
JO~(H&D) 

(J2—D) 

(G2B)&(-—- G2 N) 
Bv—N 

Nv~B 

F&[Pv—-(D2F)) 
Dv~(FvK) 

KDD 

Q=M 

(H=~Q)=(H=~M) 

(GvA)>(H>B) 
[HD(H&B) DK 

GDK 

Q=~(A&F) 
~(MVA)D~H 
~(Q&A)VF 

Q>(HDM) 
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9-2. OTHER USES FOR TRUTH TREES 

So far we have used truth trees exclusively to test the validity of argu- 
ments. But now that we understand how truth trees work we can easily 
apply them to do all sorts of other jobs. For example, suppose I hand you 
the sentence ‘~(AVB)&(~A>B)’ and ask you whether it is a contradiction. 

You could always work this problem with truth tables. If in all lines of the 
truth table the sentence is false, it is, by definition, a contradiction. If the 

sentence is true in one or more cases it is not a contradiction. But a truth 
tree will get the job done faster. If we make a sentence the initial line on 
a truth tree, we know the truth tree will find us a case in which the sen- 

tence is true, if there is such a case. If there is no such case, all paths on 
the tree will close. Can you see how the truth tree will tell us whether the 
sentence is a contradiction? 

To explain this more thoroughly, we can again use the idea of a coun- 
terexample. A contradiction is false in all cases. So a case in which a sen- 
tence is true constitutes a Counterexample to its being a contradiction. The 

truth tree method applies immediately to look for counterexamples to a 
sentence being a contradiction. We make the sentence to be tested the 
first line of a tree. If there are one or more counterexamples, that is, cases 
in which the sentence is true, the tree method is guaranteed to find them. 
If the tree method does not turn up a counterexample, that is, if all paths 
close, we know there are no cases in which the sentence is true. But if 

there are no cases in which it is true, the sentence is false in all cases; in 

other words, it is a contradiction. We can summarize this test by saying 

To test a sentence for being a contradiction, make the sentence the first line 
of a truth tree. If there is an open path in the tree, this path provides a 
counterexample to the sentence being a contradiction. If all paths close, the 
sentence is a contradiction. 

Applying this test to our example we get 

/1 ~(AvB)&(~ADB) S (Sentence to be tested 
/2 ~(AvB) ` 1,& for contradiction) 
/3 ~ADB 1, & 
4 ~A 2, ~v 
5 ~B 2, ~v 

6 A 3, 2 
X x 

Contradiction 

Is the sentence ‘A=(~AvC)’ a contradiction? 
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/1 A=(~AvC) S 

2 A ~A 1,2 
J3 ~AvC -(-AVO 1,= 

4 ~AC ~~A 3,v; 3, ~v 
5 x -C 3, ~v 

x 
Not a contradiction. Counterexample: C&A. 

Note that I have written down the result of my test, that the sentence to 
be tested is not a contradiction. And note how I also put down the coun- 
terexample which shows this. 
A final small point about this example. In the annotation for line 4, I 

have listed two rules. This is because I applied the rule v to the disjunc- 
tion on the left branch of line 3, and I separately applied the rule ~v to 
the separate sentence of line 3 on the right branch. 

Can we use truth trees to determine whether a given sentence is a log- 
ical truth? Sometimes students propose the following test for a sentence 
being a logical truth: List the sentence and see if all branches remain 
open. Close, but no cigar! The proposed test mistakenly tells us that ‘A’ is 
a logical truth. If we make ‘A’ the initial line of a tree, there is nothing to 
do, and all branches are open. But ‘A’ is not a logical truth. We also get 
the wrong answer if we apply the proposed test to (Av—A)v(A&-—A): 

J1 (Av~A)V(A&~A) S (Sentence to be tested for logical truth) 

/2 Av~A A&~A 1, Vv 

3 A ~A A 2,v5 2, & 
4 ~A 2 

One branch of this tree does close. But the initial sentence is a logical 
truth, as you can tell from the fact that one of its disjuncts is a logical 
truth. x 

However, there is a very simple way to use the tree method to test for 
a logical truth. Just use the test for contradictions! How? A sentence is a 
logical truth just in case it is true in all cases. But a sentence is true in all 
cases just in case its negation is false in all cases. So a sentence is a logical 
truth if and only if its negation is a contradiction. Suppose, now, that I 
ask you whether a sentence is a logical truth, for example, the sentence 
of the very last example. Take the negation of the sentence. Determine 
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whether this negation is a contradiction. If the negation is a contradiction, 
then the original sentence was a logical truth. If the negation is not a 
contradiction, then the original sentence was not a logical truth: 

J1 —KAV-AMA&-A) ~S 
/2 ~(Av~A) 1, ~v 

3 ~(A&~A) 1, ~v 

4 ~A 2, ~V 
5 ~~A 2, ~v 

; n 

^— [(AV~A)WA&~A)]’ is a contradiction. Therefore '(Av—A)v(A& —A)' is a logical 

truth. 

Notice that this last tree is an example of a completed tree in which not 
all compound sentences have been checked. I never worked on line 3 
because all branches closed before I got to line 3. Once all the branches 
close, the tree is finished. There is no way to make all the initial sentences 

true. If any sentences have not been worked when all branches close, con- 
tinuing and working them would give us no new information. 

Let us similarly test ‘(A&B)v~A’ to see whether it is a logical truth: 

/1 -[(A&B)v—-A] ~S 
/2 ~(A&B) 1,v 
/3 ~~A 1, ~v 

4 ~A -B 2,~& 
5 x A e = 

‘~[(A&B)v~A] is not a Contradiction. 
Therefore ‘(A&B)v~a’ is not a logical truth. 

Counterexample: A&~B 

How should we understand the counterexample here? The case A&~B 
(‘A’ true and ‘B’ false) is a case in which ‘~[(A&B)v~AJ’, the sentence 

tested for being a contradiction, is true. But '-[((A&B)v— AJ is true in a 

case if and only if (A&B)v—A', the sentence tested for being a logical 
truth, is false in the case. A case in which a sentence is false proves that 
the sentence is not a logical truth. Such a case constitutes a counterex- 
ample to the sentence being a logical truth. So the case A&~B is a coun- 
terexample to '(A&B)v—A' being a logical truth. Clearly, this will hold 
generally: 

For any sentence X, any case which is a counterexample to ~X being a 
contradiction will also be a counterexample to X being a logical truth. 
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To summarize the test for logical truth: 

To test a sentence for being a logical truth, make the negation of the sen- 
tence the first line of a truth tree. If all the paths close, the sentence is a 
logical truth. An open path gives a counterexample to the original sentence 
being a logical truth. 

This summary makes no mention of the intermediate role of a test for 
contradiction. If you do not understand the test as just summarized, go 
back over the last two examples and make sure you can see how they fit 
in with the summary I have just given. 
We can do yet more with the truth tree method. Recall that two sen- 

tences are logically equivalent just in case their biconditional is a logical 
truth. Thus we can use the test we have just devised for logical truth to 
determine whether two sentences are logically equivalent: 

To test whether X and Y are logically equivalent, test X=Y for being a 
logical truth. If X=Y is a logical truth, X and Y are logically equivalent. If 
X=Y is not a logical truth, X and Y are not logically equivalent. A counter- 
example to X=Y being a logical truth is also a counterexample to the logical 
equivalence of X and Y. That is, it is a case in which one of the two sen- 
tences, X and Y, is true and the other is false. 

Can you see why a counterexample to the logical truth of X=Y is also 
a case in which one of the two sentences, X and Y, is true and the other 
is false? A counterexample to X=Y being a logical truth is a case in which 
X=Y is false. But a biconditional is false if and only if one of its compo- 
nents is true and the other is false, that is, if X is true and Y is false or 

the other way around. Finally, you can see why we would call such a case 

a counterexample to the logical equivalence of X and Y. X and Y are 
logically equivalent if and only if in all cases they have the same truth 
value. So if we have come up with a case in which one sentence is true 
and the other is false, we have a case which proves by counterexample 
that they are not logically equivalent. 
To illustrate this method of determining logical equivalence, I will use 

it to verify one of De Morgan's rules. To show: ‘~(A&B)’ is logically 
equivalent to ‘~AV~B’. 

J1 ~[~(A&B) = (~Av~B)) ~S (Negation of biconditional of the orig- 
inal sentences) 

/2 ~(A&B) ~~(A&B) 1,~= 
/3. ~(~Av~B) (~Av~B) 1~= 

_/4 A&B 2, ~~ 
~~A A 3, ~v; 4, & 

6 ~~B B 3, ~V; 4, & 

7 ~A ~B yf T 2, -&; 3, v 
x x x x 

‘~(A&B)' is logically equivalent to ‘~Av~B’. 
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This section will introduce you to one more notion: 

A set of one or more sentence logic sentences is consistent if and only if 
there is at least one assignment of truth values to sentence letters which 
makes all of the sentences true. 

The truth tree method applies immediately to test a set of sentences for 
consistency. Before reading on, see if you can figure out this test for your- 
self. 

The tree method works by finding a case in which all initial sentences 
on a tree are true, if there is such a case. So, to determine whether the 

sentences in a given set are consistent, list the sentences as the initial part 

of a tree. If there is a case in which all of these sentences are true to- 

gether, the tree method will find it. Such a case constitutes what logicians 
call a Model, which shows the initial sentences to constitute a consistent 
set. If the tree closes, the set of sentences has no model and is Inconsistent: 

A. Model of a set of sentence logic sentences is an assignment of truth values 
to sentence letters which makes all of the sentences in the set true. 

To test a finite set of sentences for consistency, make the sentence or sen- 
tences in the set the initial sentences of a tree. If the tree closes, there is no 
assignment of truth values to sentence letters which makes all the sentences 
true (there is no model), and the set is inconsistent. An open branch gives a 
model and shows the set to be consistent. 

To make the statement of the test correct, I have had to use the notion 
of a Finite Set of sentences, that is, a set or collection of a limited, as op- 

posed to an unlimited, number of sentences. You do not need to under- 
stand the distinction between a finite as opposed to an infinite set to un- 
derstand anything in Volume I and Volume II, Part I of this text. But 
you may explore the idea and its implications for consistency by working 
through exercise 9-7. 

It’s time to practice these new applications of truth trees. 

EXERCISES 

9—3. Use the truth tree method to determine which of the following 
sentences are logical truths. Show your completed trees. If a sen- 
tence is not a logical truth, give the counterexample or counterex- 
amples which show this. 

a) ~(~F&G)v~(F&G) 
b) [HD(ODN)]D[(H&O)DN] 
©) [-S&(GvK)IV[- G2 (SVE)] 
d) [(vG)2(PkQ)I2(- Q2— P) 
e) [Lv(M&N)]O[(LvM)&N] 
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f) [(K&M)&P]D[(~K&P)v(Kv~M)] 
g) [LD(MDN)]D[(LDM)2(LDN)] 
h) [(SYD2F]2((FvG)2H]2(S2H) 
i) (I&—JV[Q&K)v-(K&l)] 
jp (C&(AvD)]v-(C&F)lv-(A&-G) 

9—4. Use the truth tree method to determine which of the following 
sentences are contradictions. Show your completed trees, and for 
each sentence you determine not to be a contradiction, give the 
counterexample or counterexamples which show this. 

a) (A&B)&(—Av- B) 
b) (FVG)&(~Fv~G) 
c) (FvG)=(~F&~G) 
d) [Iv(J&K)]D2[(Iv&K] 
e) [(H&F)2C]&-[H2(F2C)] 
f) —([B&(Mv—P)]2[P2(- Mv-B)]) 
g) (A=B)=(~A=B) 
h) [(~FVQ)V(P&Q)]&~(~QD~F) 
i) [KD(DDP)]&[(~KvD)&~(KDP)] 
3 [(~GvQ)&(KIG)]&~(Pv~K) 

9-5. Use the information suggested in exercise 4—3 to state a new 
truth tree test for logical equivalence. Comment on the relation be- 
tween this test and the test given in the text. 

9-6. Use the truth tree method to determine which of the following 
pairs of sentences are logically equivalent. You may use either the 

test given in the text or the closely related test you discovered in 
exercise 9-4. Show your completed trees, and when you find a pair 
which is not logically equivalent, give the counterexample or coun- 
terexamples which show this. 

a) AD~A and ~A 

b) -(lvp and ~1&~J 

c) Mv~H and ~MD H 

d) ~(F&P) and ~F&~P 

e) (D&N)DJ and D2(N2DJ) 

f) (I2Q)2D and 12(QDD) 

g) L&(SvT) and (L&S)v(L&T) 

h) Hv~(~Pv~Q) and (HvP)&(HvQ) 

9—7. Consider the following definition: 

(Cl) A sentence of sentence logic is consistent if and only if it is not a 
contradiction. 
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a) Are all logical truths consistent according to definition (C1)? Ex- 
plain why or why not. 

b) Show that a sentence logic sentence is consistent according to def- 
inition (C1) if and only if there is at least one assignment of truth 

values to sentence letters which makes the sentence true. 

If you go on in your study of logic, the more general notion of 
consistency already given in the text will turn out to be very impor- 

tant: 

(C2) A set of one or more sentence logic sentences is consistent if and 
only if there is at least one assignment of truth values to sentence 
letters which makes all of the sentences true. 

c) Show that a set of sentences is consistent according to definition 
(C2) if and only if the conjunction of all the sentences in the set is 
consistent according to definition (C1). 

This last problem seems to show that the two definitions of consis- 
tency come to the same thing. Why, then, did I say that the second 
definition is more general? Actually, there is something not quite 
right about exercise (c). To see what this ís, you need to understand 
the difference between a finite and an infinite set of sentences. A 
finite set of sentences has some definite number of sentences in it, 
such as 2, or 47, or 1,007,859. In an infinite set of sentences the list 

of sentences goes on without end. There is no integer which gives 
you the number of sentences in an infinite set. 

d) Here is an example of an infinite set of sentences: 

SASS HAMAS recensio Ro, ccce A, 

The first sentence is ‘~A’. The second sentence is ‘~~A’. The third, 
fourth, fifth, and further sentences are ‘A’ preceded by 3, 4, 5, and 

further negation signs, so that the list goes on forever. Question: Is 
this set consistent? 

The difficulty with exercise (c) is that it makes sense only if you 

assume that the set of sentences is finite. For if the set is infinite, 
there is no sentence which is the conjunction of all its members. This 
is because in sentence logic, all sentences are finite in length. 
Now you can see why definition (C2) is more general than (C1). 

(C2) gives sense to the consistency of an infinite set of sentences. The 
two definitions really come to the same thing, but only for finite sets 
of sentences. 

e) Describe a consistent infinite set of sentences. 

f) Use the truth tree method to test the following sets of sentences 
for consistency. In each case, show your tree. Write next to your tree 
whether the set is consistent or inconsistent, and when consistent, 

give all the models for the set which the truth tree provides. 

145 
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V 

f1) PvS, PDS 

f2) (~FDS)DF, ~F, S 

f3) K£&[(-K&H)vH] 

f4) NvB, Nv~B, ~NvB 

From a logical point of view, you should really think of the truth 
tree method as a method for testing a set of sentences for consis- 
tency. This general method then has more specific applications, such 
as testing an argument for validity. This is because 

An argument is valid if and only if the set comprised by the argu- 
ment’s premises and the negation of its conclusion is inconsistent. 

We say the same thing in other words by saying that an argument is 
valid if and only if the negation of the conclusion is inconsistent with 
(the set of) the argument’s premises. 

g) Explain why the last offset statement is correct. 

Some textbooks first present the truth tree method as a test of 
consistency and then apply it to argument validity. I introduced 
trees as a test for argument validity because I wanted to motivate the 
introduction of trees with something you already know about, 
namely, arguments. It is initially hard for many students to under- 
stand the interest in consistency and inconsistency, but these notions 
will become very important in Volume II, Part II of the text. 

CHAPTER SUMMARY EXERCISES 

| Here are the important terms and ideas from this chapter. Write 
your explanations for them as usual. This list repeats some terms 

from previous chapters. 

a) Main Connective 

b) Logical Truth 
c) Truth Tree Test for Logical Truths 

i d) Contradiction 

e) Truth Tree Test for Contradictions 

f) Logical Equivalence 

g) Truth Tree Test for Logical Equivalence 

5 h) Consistency 
i) Model 

j Infinite Set of Sentences 

k) Truth Tree Test for Consistency of a Finite Set of Sentences 
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Preface to Volumes I and II 

A Guide to the Primer 

This text is a primer in the best sense of the word: A book which pres- 
ents the basic elements of a subject. In other respects, I have sought to 
write a different kind of text, breaking with what I regard as an unfor- 
tunate tradition in teaching formal logic. From truth tables through com- 
pleteness, I seek to explain, as opposed to merely presenting my subject 
matter. Most logic texts (indeed, most texts) put their readers to sleep 

with a formal, dry style. I have aimed for a livelier lecture style, which 
treats students as human beings and not as knowledge receptacles. In a 
text, as in the classroom, students need to be encouraged and to hear 
their difficulties acknowledged. They need variation in pace. They need 
shifts in focus among “I,” “we,” and “you,” just as most of us speak in the 
classroom. From time to time students simply need to rest their brains. 
One fault of logic textbooks especially bothers me: Some authors feel 

so concerned to teach rigor that they end up beating their students over 
the head with it. I have not sacrificed rigor. But I have sought to cultivate 
it rather than rubbing it in. 
Now to the contents of the Primer. Volume I presents sentence logic. 

Volume II, Part I lays out predicate logic, including identity, functions, 
and definite descriptions; Part II introduces metatheory, including math- 
ematical induction, soundness, and completeness. The text includes com- 

pletely independent presentations of Fitch-style natural deduction and 

^» 
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the tree method as developed by Richard Jeffrey. I have presented the 
material with a great deal of modularity. 

I have presented the text in two volumes to maximize flexibility of use 
in a variety of courses. Many introductory courses cover a mix of informal 

and formal logic. Too often I have heard instructors express dissatisfac- 
tion with what they find available for the formal portion of such a course. 
Volume I provides a new option. Using it in tandem with any of the many 
available inexpensive informal texts, instructors can combine the best of 

both subjects. Volume I will present a serious-minded introduction to for- 
mal logic, which at the same time should prove accessible and encourag- 
ing to those students who will never again take another logic course. The 
relatively small numbers who continue to a second course, devoted exclu- 

sively to formal logic, need only purchase Volume II to build on the foun- 
dation already laid. 

The Primer incorporates a number of unusual features. Chapters 1, 3, 

and 4 emphasize the concept of a truth function. Though the idea is sim- 
ple once you get it, many students need several passes. The optional sec- 
tion 3—4, on disjunctive normal form and the Scheffer stroke, serves the 

didactic function of providing yet more drill on truth functionality. 
Following Richard Jeffrey, I have thoroughly presented ‘&’, ‘v’, and ‘~’ 

before treating ‘D’ and ‘=’. ‘&’, V’, and ‘~’ are much less controversial 

correlates of their English counterparts than is ‘D’. Using ‘&’, ‘V’ and ‘~ 
as a vehicle for introducing the idea of a truth function, I can deal hon- 
estly with the difficulties of giving a truth functional formulation of con- 
ditionals. In turn, this honest examination provides further drill with the 
concept of a truth function. 

Sentences in English and logic often do not correspond very accurately. 
Consequently, I speak of transcription, not translation between logic and 
English. I treat sentence logic transcription quite briefly in chapter 1 of 
Volume I and further in the short, optional chapter 2. Predicate logic 
transcription gets a minimal introduction in chapter 1 of Volume II and 
then comes in for a thorough workout in chapter 4, also optional. There 

I deal with the subject matter of domains and the traditional square of 
opposition by using the much more general method of restricted quanti- 
fier subscripts and their elimination. This technique provides an all-pur- 
pose tool for untangling complicated transcription problems. Chapter 4 
of Volume II also examines quantificational ambiguity in English, which 
most logic texts strangely ignore. . 

Training in metatheory begins in Volume I, chapter 1. But the training 
is largely implicit: I use elementary ideas, such as metavariables, and then 
call attention to them as use makes their point apparent. After thorough 
preparation throughout the text, chapter 10 of Volume II brings together 
the fundamental ideas of metatheory. 
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Standard treatments of sentence logic present sentence logic semantics, 
in the form of truth tables, before sentence logic derivation rules. Only in 
this way do students find the rules clearly intelligible, as opposed to 
poorly understood cookbook recipes. Often texts do not follow this heu- 
ristic for predicate logic, or they do so only half-heartedly. Presumedly, 
authors fear that the concept of an interpretation is too difficult. How- 
ever, one can transparently define interpretations if one makes the sim- 
plifying assumption of including a name for each object in an interpreta- 
tion's domain, in effect adopting a substitutional interpretation of the 
quantifiers. I further smooth the way by stressing the analogy of form 
and function between interpretations and truth value assignments in sen- 
tence logic. 

This approach is ample for fixing basic ideas of semantics and for mak- 
ing predicate logic rules intelligible. After introducing predicate logic syn- 
tax in Volume II, chapter 1, and semantics in chapters 2 and 3, tree rules 
are almost trivial to teach; and derivation rules, because they can be better 

motivated, come more easily. I have clearly noted the limitation in my 
definition of an interpretation, and I have set students thinking, in an 
exercise, why one may well not want to settle for a substitutional interpre- 
tation. Finally, with the ground prepared by the limited but intuitive def- 
initions of chapters 2 and 3 of Volume II, students have a relatively easy 
time with the full characterization of an interpretation in chapter 15. 

No one has an easy time learning—or teaching—natural deduction 
quantifier rules. I have worked hard to motivate them in the context of 
informal argument. I have made some minor modifications in detail of 
formulation, modifications which I believe make the rules a little easier to 

grasp and understand. For existential elimination, I employ the superfi- 
cially restrictive requirement that the instantiating name be restricted to 
the sub-derivation. I explain how this restriction works to impose the 
more complex and traditional restrictions, and I set this up in the presen- 
tation so that instructors can use the more traditional restrictions if they 
prefer. 

For the proof of completeness of the natural deduction system I have 
fashioned my own semantic tableau proof. I believe that on its own it is 
at least as accessible as the Henkin and other more familiar proofs. In 
addition, if you do tree completeness first, you can explain the natural 
deduction completeness proof literally in a few minutes. 

I have been especially careful not to dive into unexplained proofs of 
soundness and completeness. Instructors will find, in separate sections, 
informal and intuitive explanations of the sentence logic proofs, unen- 
cumbered with formal details, giving an understanding of how the proofs 
work. These sections require only the first short section of the induction 
chapter. Instructors teaching metatheory at a more elementary level may 
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want to conclude with some of these sections. Those ready for the tonic 
of rigor will find much to satisfy them in the succeeding sections. 

In some chapters I have worked as hard on the exercises as on the text. 
I have graded the skill problems, beginning with easy comprehension 
checkers, through skill builders, to some problems which will test real skill 
mastery. I think few will not find enough problems. 

Exercises should exercise understanding as well as skills. Any decent 
mathematics text puts problems to this task, as well as uses them to pres- 
ent auxiliary material. Too few logic texts fall in this tradition. I hope that 
students and instructors will enjoy my efforts in some of the exercises to 
introduce auxiliary material, to lay foundations for succeeding material, 
to engage creative understanding, and to join in the activity of conceptual 
exploration. 

For teaching plans the key word is “modularity.” Those using just Vol- 
ume I in an informal/formal course may teach chapters 1, 2 (optional), 3, 

and 4 to introduce sentence logic. Then, as taste and time permit, you 
may do natural deduction (chapters 5, 6, and 7) or trees (chapters 8 and 
9), or both, in either order. 

Volumes I and II together provide great flexibility in a first symbolic 
logic course. Given your introduction of sentence logic with chapters 1, 3, 
and 4 of Volume I and grounding of predicate logic with chapters 1, 2, 
and 3 of Volume II you can do almost anything you want. I have made 
treatment of derivations and trees completely independent. You can run 
through the one from sentence to predicate logic, and then go back and 
do the other. Or you can treat both natural deduction and trees for sen- 
tence logic before continuing to predicate logic. You can spend up to two 
weeks on ‘transcription in chapter 2 of Volume I and chapter 4 of Volume 
II, or you can rely on the minimal discussion of transcription in the first 
chapters of Volumes I and II and omit chapter 2 of Volume I and chap- 
ter 4 of Volume II altogether. 

If you do both trees and natural deduction, the order is up to you. 
Trees further familiarize students with semantics, which helps in explain- 
ing natural deduction rules. On the other hand, I have found that after 
teaching natural deduction I can introduce trees almost trivially and still 
get their benefit for doing semantics and metatheory. 

Your only limitation is time. Teaching at an urban commuter univer- 
sity, in one quarter I cover natural deduction (Volume I, chapters 1, 2, 3, 
4, 5, 6, 7; Volume II, chapters 1, 2, 3, 5, and perhaps 6), or trees and 

sentence logic natural deduction (Volume I, chapters 1, 2, 3, 4, 8, 9; Vol- 

ume II, chapters I, 2, 3, 7, 8; Volume I, chapters 5, 6, and 7). A semester 

should suffice for all of Volume I and Volume II through chapter 8, and 
perhaps 9. Again, you may want to follow the chapter sequencing, or you 
may want to do natural deduction first; all the way through predicate 
logic, or trees first. 
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If you do just natural deduction or just trees you have more time for 
identity, functions, definite descriptions, and metatheory. Chapter I0 of 
Volume II, basic metatheoretical concepts, can provide a very satisfying 
conclusion to a first course. A two quarter sequence may suffice for all of 
the metatheory chapters, especially if you do not do both natural deduc- 
tion and trees thoroughly. To this end the metatheory chapters cover 
soundness and completeness for both natural deduction and trees inde- 
pendently. Or, you may choose to end with the sections presenüng the 
informal explanations of induction and the soundness and completeness 
proofs. The text will provide a leisurely full year course or a faster paced 
full year course if you supplement it a bit at the end of the year. 

I want to mention several features of my usage. I use single quotes to 
form names of expressions. I depart from logically correct use of quota- 
tion marks in one respect. In stating generalizations about arguments I 
need a formulation which makes explicit use of metavariables for premise 
and conclusion. But before chapter 10 of Volume II, where I make the 
metalanguage/object language distinction explicit, I do not want to intro- 
duce a special argument forming operator because I want to be sure that 
students do not mistake such an operator for a new symbol in the object 
language. Consequently I use the English word 'therefore'. I found, how- 
ever, that the resulting expressions were not well enough set off from 
their context. For clarity I have used double quotes when, for example, I 
discuss what one means by saying that an argument, “X. Therefore Y." is 
valid. 
Throughout I have worked to avoid sexist usage. This proves difficult 

with anaphoric reference to quantified variables, where English grammar 
calls for constructions such as 'If someone is from Chicago he likes big 
cities.’ and * Anyone who loves Eve loves himself.’ My solution is to em- 

brace grammatical reform and use a plural pronoun: 'If someone is from 
Chicago they like big cities.’ and ‘Anyone who loves Eve loves themself.’ I 
know. It grates. But the offense to grammar is less than the offense to 
social attitudes. As this reform takes hold it will sound right to all of us. 

I thank the many friends and family who have actively supported this 
project, and who have born with me patiently when the toil has made me 
hard to live with. I do.not regard the project as finished. Far from it. I 
hope that you—instructors and students—will write me. Let me know 
where I am still unclear. Give me your suggestions for further clarifica- 
tion, for alternative ways to explain, and for a richer slate of problems. 

Hearing your advice on how to make this a better text will be the best 
sign that I have part way succeeded. 

Paul Teller 
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| Predicate Logic 

Syntax 

1-1. WE NEED MORE LOGICAL FORM 

In Volume I you gained a firm foundation in sentence logic. But there 
must be more to logic, as you can see from the next examples. Consider 
the following two English arguments and their transcriptions into sen- 
tence logic: 

(1) Everyone loves Adam. A (2) Eve loves Adam. B 
Eve loves Adam. B Someone loves Adam. C 

In sentence logic, we can only transcribe the sentences in these arguments 
as atomic sentence letters. But represented with sentence letters, both nat- 
ural deduction and truth trees tell us that these arguments are invalid. 
No derivation will allow us to derive ‘B’ from ‘A’ or 'C' from ‘B’, A&—B 
is a counterexample to the first argument, and B&~C is a counterexam- 
ple to the second. An argument is valid only if it has no counterexamples. 
Something has gone terribly wrong. Clearly, if everyone loves Adam, 

then so does Eve. If the premise is true, without fail the conclusion will 
be true also. In the same way, if Eve loves Adam, then someone loves 

Adam. Once again, there is no way in which the premise could be true 
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and the conclusion false. But to say that if the premises are true, then 
without fail the conclusion will be true also is just what we intend when 
we say that an argument is valid. Since sentence logic describes these ar- 
guments as invalid, it looks like something has to be wrong with sentence 
logic. 

Sentence logic is fine as far as it goes. The trouble is that it does not go 
far enough. These two arguments owe their validity to the internal logical 
structure of the sentences appearing in the arguments, and sentence logic 
does not describe this internal logical structure. To deal with this short- 
coming, we must extend sentence logic in a way which will display the 
needed logical structure and show how to use this structure in testing 
arguments for validity. We will keep the sentence logic we have learned 
in Volume I. But we will extend it to what logicians call Predicate Logic 
(also sometimes called Quantificational Logic). 

Predicate logic deals with sentences which say something about some- 
one or something. Consider the sentence ‘Adam is blond.’ This sentence 

attributes the property of being blond to the person named ‘Adam’. The 
sentence does this by applying the predicate (the word) 'blond' to the 
name ‘Adam’. A sentence of predicate logic does the same thing but in a 
simplified way. 
We will put capital letters to a new use. Let us use the capital letter 'B', 

not now as a sentence letter, but to transcribe the English word ‘blond’. 
And let us use ‘a’ to transcribe the name ‘Adam’. For ‘Adam is blond.’, 
predicate logic simply writes 'Ba', which you should understand as the 
predicate ‘B’ being applied to the name ‘a’. This, in turn, you should un- 
derstand as stating that the person named by ‘a’ (namely, Adam) has the 
property indicated by ‘B’ (namely, the property of being blond). 

Of course, on a different occasion, we could use 'B' to transcribe a dif- 
ferent English predicate, such as ‘bachelor’, ‘short’, or ‘funny’. And we 
could use ‘a’ as a name for different people or things. It is only important 
to stick to the same transcription use throughout one problem or exam- 
ple. 

Predicate logic can also express relations which hold between things or 
people. Let's consider the simple statement that Eve loves Adam. This 
tells us that there is something holding true of Eve and Adam together, 
namely, that the first loves the second. To express this in predicate logic 
we will again use our name for Adam, ‘a’. We will use a name for Eve, 

say, the letter ‘e’. And we will need a capital letter to stand for the relation 

of loving, say, the letter ‘L’. Predicate logic writes the sentence ‘Eve loves 
Adam.’ as ‘Lea’. This is to be read as saying that the relation indicated by 
‘L’ holds between the two things named by the lowercase letters ‘e’ and 
‘a’. Once again, in a different example or problem, 'L', ‘a’, and ‘e’ could 
be used for different relations, people, or things. 
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You might be a little surprised by the order in which the letters occur 
in ‘Lea’. But don't let that bother you. It's just the convention most often 
used in logic: To write a sentence which says that a relation holds between” 
two things, first write the letter which indicates the relation and then write 
the names of the things between which the relation is supposed to hold. 
Some logicians write ‘Lea’ as 'L(e,a)', but we will not use this notation. 

Note, also, the order in which the names 'e' and ‘a’ appear in ‘Lea’. ‘Lea’ 
is a different sentence from ‘Lae’. ‘Lea’ says that Eve loves Adam. ‘Lae’ 

says that Adam loves Eve. One of these sentences might be true while the 
other one is false! Think of ‘L’ as expressing the relation, which holds just 

in case the first thing named loves the second thing named. 
Here is a nasty piece of terminology which I have to give you because 

it is traditional and you will run into it if you continue your study of logic. 
Logicians use the word Argument for a letter which occurs after a predi- 
cate or a relation symbol. The letter ‘a’ in ‘Ba’ is the argument of the 
predicate ‘B’. The letters ‘e’ and ‘a’ in ‘Lea’ are the arguments of the re- 
lation symbol ‘L’. This use of the word ‘argument’ has nothing to do with 
the use in which we talk about an argument from premises to a conclu- 
sion. 

At this point you might be perplexed by the following question. I have 
now used capital letters for three different things. I have used them to 
indicate atomic sentences. I have used them as predicates. And I have 
used them as relation symbols. Suppose you encounter a capital letter in 
a sentence of predicate logic. How are you supposed to know whether it 
is an atomic sentence letter, a predicate, or a relation symbol? 

Easy. If the capital letter is followed by two lowercase letters, as in 'Lea', 
you know the capital letter is a relation symbol. If the capital letter is 
followed by one lowercase letter, as in ‘Ba’, you know the capital letter is 
a predicate. And if the capital letter is followed by no lowercase letters at 
all, as in ‘A’, you know it is an atomic sentence letter. 

There is an advantage to listing the arguments of a relation symbol 
after the relation symbol, as in ‘Lea’. We can see that there is something 
important in common between relation symbols and predicates. To attrib- 
ute a relation as holding between two things is to say that something is 
true about the two things taken together and in the order specified. To 
attribute a property as holding of one thing is to say that something is 
true about that one thing. In the one case we attribute something to one 
thing, and in the other we attribute something to two things. 
We can call attention to this similarity between predicates and relations 

in a way which also makes our terminology a bit smoother. We can indi- 
cate the connection by calling a relation symbol a Two Place Predicate, that 
is, a symbol which is very like an ordinary predicate except that it has two 
argument places instead of one. In fact, we may sometimes want to talk 
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about three place predicates (equally well called 'three place relation sym- 
bols’). For example, to transcribe ‘Eve is between Adam and Cid’, I intro- 
duce ‘c’ as a name for Cid and the three place predicate ‘K’ to indicate 
the three place relation of being between. My transcription is ‘Keac’, 
which you can think of as saying that the three place relation of being 
between holds among Eve, Adam, and Cid, with the first being between 

the second and the third. 
This is why our new logic is called ‘predicate logic’: It involves predi- 

cates of one place, two places, three places, or indeed, any number of 
places. As I mentioned, logicians also refer to these symbols as one place, 
two place, or many place relation symbols. But logicians never call the 
resulting system of logic ‘relation logic’. I have no idea why not. 

Our familiar sentence logic built up all sentences from atomic sentence 
letters. Predicate logic likewise builds up compound sentences from 
atomic sentences. But we have expanded our list of what counts as an 
atomic sentence. In addition to atomic sentence letters, we will include 
sentences such as ‘Ba’ and ‘Lea’. Indeed, any one place predicate followed 
by one name, any two place predicate followed by two names, and so on, 
will now also count as an atomic sentence. We can use our expanded stock 
of atomic sentences to build up compound sentences with the help of the 
connectives, just as before. 
How would you say, for example, ‘Either Eve loves Adam or Adam is 

not blond.’? ‘Lea v ~Ba’. Try ‘Adam loves himself and if he is blond then 
he loves Eve too.: ‘Laa & (Ba D Lae)’. 

In summarizing this section, we say 

In predicate logic, a capital letter without a following lowercase letter is (as 
in sentence logic) an atomic sentence. Predicate logic also includes predicates 
applied to names among its atomic sentences. A capital letter followed by 
one name is a One Place Predicate applied to one name. A capital letter fol- 
lowed by two names is a Two Place Predicate applied to two names, where the 
order of the names is important. Predicates with three or more places are 
used similarly. 

EXERCISES 

In the following exercises, use this transcription guide: 

a: Adam 

e: Eve 

c Cid 

Bx: x is blond 
Cx: x is a cat 

Lxy: x loves y 
Txy: x is taller than y 
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1—1. Transcribe the following predicate logic sentences into English: 

a) Tce 

j b) Lee 

c) ~Tecc 

d) Bc 

e) Tce D Lee 

f) Leev Lec 

g) ~(Lce & Lea) 

h) Bc = (Lee v Lec) 

1-2. Transcribe the following English sentences into sentences of 
predicate logic; 

a) Cidisa cat. 

b) Cid is taller than Adam. 

€) Fither Cid is a cat or he is taller than Adam. 

d) If Cid is taller than Eve then he loves her. 

€) Cid loves Eve if he is taller than she is. 

f) Eveloves both Adam and Cid. 

g) Eveloves either Adam or Cid. 

h) Either Adam loves Eve or Eve loves Adam, but both love Cid. 

i) Only if Cid is a cat does Eve love him. 

j Eveis taller than but does not love Cid. 

1-2. QUANTIFIERS AND VARIABLES 

We still have not done enough to deal with arguments (1) and (2). The 

sentences in these arguments not only attribute properties and relations 
to things, but they involve a certain kind of generality. We need to be able 
to express this generality, and we must be careful to do it in a way which 
will make the relevant logical form quite clear. This involves a way of 
writing general sentences which seems very awkward from the point of 
view of English. But you will see how smoothly everything works when 
we begin proving the validity of arguments. 

English has two ways of expressing general statements. We can say 'Ev- 
eryone loves Adam.’ (Throughout, ‘everybody’ would do as well as ‘every- 
one’.) This formulation puts the general word ‘everyone’ where ordinarily 
we might put a name, such as ‘Eve’. Predicate logic does not work this 

way. The second way of expressing general statements in English uses 
expressions such as ‘Everyone is such that they love Adam.’ or ‘Everything 
is such that it loves Adam.’ Predicate logic uses a formulation of this kind. 
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Read the symbol ‘(Wx)’ as ‘Every x is such that’. Then we transcribe 'Ev- 
eryone loves Adam.’ as ‘(Wx)Lxa’. In words, we read this as "Every x is 

such that x loves Adam.” ‘(Wx)’ is called a Universal Quantifier. In other 
logic books you may see it written as (x). 
We are going to need not only a way of saying that everyone loves 

Adam but also a way of saying that someone loves Adam. Again, English 
does this most smoothly by putting the general word 'someone' where we 
might have placed a name like ‘Eve’. And again logic does not imitate this 
style. Instead, it imitates English expressions such as 'Someone is such that 
he or she loves Adam.’, or ‘Some person is such that he or she loves 
Adam.', or ‘Something is such that it loves Adam.’ Read the symbol ‘(Ax)’ 
as ‘Some x is such that’. Then we transcribe ‘Someone loves Adam.’ as 
'(3x)Lxa'. ‘(4x)’ is called an Existential Quantifier. 

In one respect, (dx) corresponds imperfectly to English expressions 
which use words such as ‘some’, ‘there is a’, and ‘there are’. For example, 
we say ‘Some cat has caught a mouse’ and “There is a cat which has caught 
a mouse’ when we think that there is exactly one such cat. We say ‘Some 
cats have caught a mouse’ or ‘There are cats which have caught a mouse’ 
when we think that there are more than one. Predicate logic has only the 
one expression, ‘(Ax)’, which does not distinguish between ‘exactly one’ 
and ‘more than one’. ‘(Ax)’ means that there is one or more x such that. 

(In chapter 9 we will learn about an extension of our logic which will 
enable us to make this distinction not made by ‘(Ax)’.) 

In English, we also make a distinction by using words such as ‘Everyone’ 
and ‘everybody’ as opposed to words like ‘everything’. That is, English 
uses one word to talk about all people and another word to talk about all 
things which are not people. The universal quantifier, ‘(Wx)’, does not 
mark this distinction. If we make no qualification, (Vx), means all people 
and things. The same comments apply to the existential quantifier. En- 
glish contrasts ‘someone’ and ‘somebody’ with ‘something’. But in logic, if 

we make no qualification, ‘(4x)’ means something, which can be a person 
or a thing. All this is very inconvenient when we want to transcribe sen- 
tences such as ‘Someone loves Adam.’ and ‘Everybody loves Eve.’ into 
predicate logic. 
Many logicians try to deal with this difficulty by putting restrictions on 

the things to which the ‘x’ in ‘(Wx)’ and ‘(Ax)’ can refer. For example, in 

dealing with a problem which deals only with people, they say at the out- 
set: For this problem ‘x’ will refer only to people. This practice is called 
establishing a Universe of Discourse or Restricting the Domain of Discourse. I 

am not going to fill in the details of this common logical practice because 
it really does not solve our present problem. If we resolved to talk only 
about people, how would we say something such as 'Everybody likes 
something.'? In chapter 4 I will show you how to get the effect of restrict- 
ing the domain of discourse in a more general way which will also allow 
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us to talk at the same time about people, things, places, or whatever we 
like. 

But until chapter 4 we will make do with the intuitive idea of restricting 
‘x’ to refer only to people when we are transcribing sentences using 
expressions such as 'anybody', 'no one', and 'someone'. In other words, 
we will, for the time being indulge in the not quite correct practice of 
transcribing ‘(Vx)’ as ‘everyone’, ‘anybody’, etc., and ‘(Ax)’ as ‘someone’, 
‘somebody’, or the like, when this is the intuitively right way to proceed, 
instead of the strictly correct ‘everything’, ‘something’, and similar expres- 
sions. 

The letter ‘x’ in ‘(Wx)’ and ‘(Ax)’ is called a Variable. Variables will do an 

amazing amount of work for us, work very similar to that done by English 
pronouns, such as ‘he’, ‘she’, and ‘it’. For example, watch the work ‘it’ does 
for me when I say the following: “I felt something in the closed bag. It 
felt cold. I pulled it out.” This little discourse involves existential quanti- 
fication. The discourse begins by talking about something without saying 
just which thing this something is. But then the discourse goes on to make 
several comments about this thing. The important point is that all the 
comments are about the same thing. This is the work that ‘it’ does for us. 
It enables us to cross-reference, making clear that we are always referring 
to the same thing, even though we have not been told exactly what that 
thing is. | 
A variable in logic functions in exactly the same way. For example, once 

we introduce the variable ‘x’ with the existential quantifier, ‘(Ax)’ we can 

use ‘x’ repeatedly to refer to the same (unknown) thing. So I can say, 
‘Someone is blond and he or she loves Eve’ with the sentence ‘(4x)(Bx 

&Lxe)’. Note the use of parentheses here. They make clear that the quan- 
tifier ‘(4x)’ applies to all of the sentence ‘Bx & Lxe’. Like negation, a 
quantifier applies to the shortest full sentence which follows it, where the 
shortest full following sentence may be marked with parentheses. And the 
‘x’ in the quantifier applies to, or is linked to, all the occurrences of ‘x’ in 
this shortest full following sentence. We say that 

A quantifier Governs the shortest full sentence which follows it and Binds the 
variables in the sentence it governs. The latter means that the variable in 
the quantifier applies to all occurrences of the same variable in the shortest 
full following sentence. 

Unlike English pronouns, variables in logic do not make cross-references 

between sentences. 
These notions actually involve some complications in sentences which 

use two quantifiers, complications which we will study in chapter 3. But 
this rough characterization will suffice until then. 

Let us look at an example with the universal quantifier, ‘(Wx)’. Consider 
the English sentences ‘Anyone blond loves Eve.’, 'All blonds love Eve.’, 
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*Any blond loves Eve.', and 'All who are blond love Eve.' All these sen- 

tences say the same thing, at least so far as logic is concerned. We can 
express what they say more painstakingly by saying, 'Any people are such 
that if they are blond then they love Eve.’ This formulation guides us in 
transcribing into logic. Let us first transcribe a part of this sentence, the 
conditional, which talks about some unnamed people referred to with the 
pronoun ‘they’: ‘If they are blond then they love Eve.’ Using the variable 
‘x’ for the English pronoun ‘they’, this comes out as ‘Bx D Lxe'. Now all 
we have to do is to say that this is true whoever "they" may be. This gives 
us ‘(Wx)(Bx D Lxe)’. Note that I have enclosed ‘Bx D Lxe' in parentheses 
before prefixing the quantifier. This is to make clear that the quantifier 
applies to the whole sentence. 

I have been using 'x' as a variable which appears in quantifiers and in 
sentences governed by quantifiers. Obviously, I would just as well have 
used some other letter, such as ‘y’ or ‘z’. In fact, later on, we will need to 

use more than one variable at the same time with more than one quanti- 
fier. So we will take ‘(Wx)’, ‘(Wy)’, and (Vz)' all to be universal quantifiers, 

as well as any other variable prefixed with 'V' and surrounded by paren- 
theses if we should need still more universal quantifiers. In the same way, 

‘(ax)’, ‘(Ay)’, and '(Hz)' will all function as existential quantifiers, as will 
any similar symbol obtained by substituting some other variable for ‘x’, ‘y’, 

or 'Z. 
To make all this work smoothly, we should clearly distinguish the letters 

which will serve as variables from other letters. Henceforth, I will reserve 
lowercase ‘w’, ‘x’, ‘y’, and ‘z to use as variables. I will use lowercase ‘a’ 

through ‘r’ as names. If one ever wanted more variables or names, one 
could add to these lists indefinitely by using subscripts. Thus 'a;' and 'd;; 
are both names, and ‘x,’ and ‘zs,’ are both variables. But in practice we 
will never need that many variables or names. 
What happened to ‘s’, ‘t’, ‘w’, and ‘v’? I am going to reserve these letters 

to talk generally about names and variables. The point is this: As I have 
mentioned, when I want to talk generally in English about sentences in 
sentence logic, I use boldface capital ‘X’, 'Y', and ‘Z’. For example, when 

I stated the & rule I wrote, “For any sentences X and Y. . . .” The idea 

is that what I wrote is true no matter what sentence you might write in 
for 'X' and 'Y'. I will need to do the same thing when I state the new rules 
for quantifiers. I will need to say something which will be true no matter 
what names you might use and no matter what variables you might use. I 
will do this by using boldface 's' and 't' when I talk about names and 
boldface ‘w’ and ‘v’ when I talk about variables. 
To summarize our conventions for notation: 

tur S9 G We will use lowercase letter ‘a’ through 'r' as names, and 'w', ‘x’, ‘y and 'z 
as variables. We will use boldface 's' and ‘t’ to talk generally about names 
and boldface ‘w’ and ‘v’ to talk generally about variables. 
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1-3. THE SENTENCES OF PREDICATE LOCIC 

We now have all the pieces for saying exactly which expressions are going 
to count as sentences of predicate logic. First, all the sentences of sentence 

logic count as sentences of predicate logic. Second, we expand our stock 
of atomic sentences. I have already said that we will include among the 
atomic sentences predicates followed by the right number of names (one 
name for one place predicates, two names for two place predicates, and 
so on). We will do the same thing with variables and with variables mixed 
with names. So ‘Bx’ will count as an atomic sentence, as will 'Lxx', ‘Lxy’, 

and ‘Lxa’. In general, any predicate followed by the right number of 
names and/or variables will count as an atomic sentence. 
We get all the rest of the sentences of predicate logic by using connec- 

tives to build longer sentences from shorter sentences, starting from 
atomic sentences. We use all the connectives of sentence logic. And we 
add to these ‘(Wx)’, ‘(Wy)’, ‘(Ax)’, ‘(Ay)’, and other quantifiers, all of which 

count as new connectives. We use a quantifier to build a longer sentence 
from a shorter one in exactly the same way that we use the negation sign 
to build up sentences. Just put the quantifier in front of any expression 
which is already itself a sentence. We always understand the quantifier to 
apply to the shortest full sentence which follows the quantifier, as indi- 
cated by parentheses. Thus, if we start with ‘Lxa’, '(Vx)Lxa' counts as a 
sentence. We could have correctly written '(Vx)(Lxa), though the paren- 

theses around ‘Lxa’ are not needed in this case. To give another example, 
we can start with the atomic sentences 'Bx' and 'Lxe'. We build a com- 
pound by joining these with the conditional, ‘D’, giving ‘Bx D Lxe’. 
Finally, we apply ‘(Wx)’ to this compound sentence. We want to be clear 
that ‘(Wx)’ applies to the whole of ‘Bx D Lxe', so we have to put parenthe- 
ses around it before prefixing ‘(Wx)’. This gives ‘(Wx)(Bx D Lxe)’. 

Here is a formal definition of sentences of predicate logic: 

All sentence letters and predicates followed by the appropriate number of 
names and/or variables are sentences of predicate logic. (These are the 
atomic sentences.) If X is any sentence of predicate logic and u is any vari- 
able, then (Vu)X (a universally quantified sentence) and (3u)X (an existen- 
tially quantified sentence) are both sentences of predicate logic. If X and Y 
are both sentences of predicate logic, then any expression formed from X 
and Y using the connectives of sentence logic are sentences of predicate 
logic. Finally, only these expressions are sentences of predicate logic. 

Logicians often use the words Well Formed Formula (Abbreviated wff) for 
any expression which this definition classifies as a predicate logic sentence. 

You may have noticed something a little strange about the definition. It 
tells us that an expression such as '(Vx)Ba' is a predicate logic sentence. If 
‘A’ is a sentence letter, even '(Vx)A' is going to count as a sentence! But 
how should we understand ‘(Wx)Ba’ and '(Vx)A'? Since the variable ‘x’ of 
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the quantifier does not occur in the rest of the sentence, it is not clear 
what these sentences are supposed to mean. 
To have a satisfying definition of predicate logic sentence, one might 

want to rule out expressions such as '(Vx)Ba' and ‘(Wx)A’. But it will turn 

out that keeping these as official predicate logic sentences will do no 
harm, and ruling them out in the definition makes the definition messier. 
It is just not worth the effort to rule them out. In the next chapter we 
will give a more exact characterization of how to understand the quanti- 
fiers, and this characterization will tell us that “vacuous quantifiers,” as in 

'(Vx)Ba' and '(Vx)A', have no effect at all. These sentences can be under- 

stood as the sentences ‘Ba’ and ‘A’, exactly as if the quantifiers were not 

there. 

The definition also counts sentences such as ‘By’, ‘Lze’, and ‘Bx & Lxe’ 

as sentences, where ‘x’ and ‘z’ are variables not governed by a quantifier. 

Such sentences are called Open Sentences. Open sentences can be a prob- 
lem in logic in the same way that English sentences are a problem when 
they contain “open” pronouns. You fail to communicate if you say, ‘He 
has a funny nose,’ without saying or otherwise indicating who “he” is. 
Many logicians prefer not to count open sentences as real sentences at 

all. Where I use the expression ‘open sentence’, often logicians talk about 
‘open formulas’ or ‘propositional functions’. If you go on in your study of 
logic, you will quickly get used to these alternative expressions, but in an 
introductory course I prefer to keep the terminology as simple as possi- 
ble. 

Have you been wondering what the word ‘syntax’ means in the title of 
this chapter? The Syntax of a language is the set of rules which tell you 
what counts as a sentence of the language. You now know what consti- 

tutes a sentence of predicate logic, and you have a rough and ready idea 
of how to understand such a sentence. Our next job will be to make the 
interpretation of these sentences precise. We call this giving the Semantics 
for predicate logic, which will be the subject of the next chapter. But, first, 

you should practice what you have learned about the syntax of predicate 
logic to make sure that your understanding is secure. 

EXERCISES 

1-3. Which of the following expressions are sentences of predicate 
logic? 

a) Ca 

b) Tab 

c) aTb 

d) Ca D Tab 

e) (3x)-Cx 
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f) (Wx)(Cx D Tax) 

g) (Wx)Cx & Tax(Vx) 
h) —(Vx)Txa v Tax) 

i) [(3x)Cx v(3x)- Cx] = (Vx)(Txa & Tax) 

In the following exercises, use this transcription guide: 

a: Adam 

e: Eve 

c: Cid 

Bx: x is blond 

Cx: xisacat 

Lxy: xlovesy 

Txy: xis taller than y 

Before you begin, I should point out something about transcribing 
between logic and pronouns in English. I used the analogy to En- 
glish pronouns to help explain the idea of a variable. But that does 
not mean that you should always transcribe variables as pronouns or 
that you should always transcribe pronouns as variables. For exam- 
ple, you should transcribe ‘If Eve is a cat, then she loves herself.’ 
with the predicate logic sentence ‘Ce D Lee’. Notice that ‘she’ and 
‘herself are both transcribed as 'e'. That is because in this case we 
have been told who she and herself are. We know that they are Eve, 
and so we use the name for Eve, namely, ‘e’ to transcribe these pro- 

nouns. How should we describe ‘Ca D —Ba'? We could transcribe 
this as ‘If Adam is a cat then Adam is not blond.’ But a nicer tran- 
scription is simply ‘If Adam is a cat then he is not blond.’ 
Now do your best with the following transcriptions. 

1-4. Transcribe the following predicate logic sentences into English: 

a) ~Laa 

b) Laa D ~Taa 

€) ~(Bc v Lee) 

d) Ca = (Bav Lae) 

€) (dx)Txc 

f) (Vx)Lax & (Wx)Lcx 

g) (Vx)Lax & Lex) 
h) (Ax)Txa v (3x)Txc 

i) (3x)(Txa v Txc) 

j (Wx)(Cx D Lxe) 
k) (3x)(Cx & ~Lex) 

D) ~(¥x)(Cx D Lex) 

m) (Vx)Cx D (Lcx v Lex)] 

n) (3x)Cx & (Bx & Txc)] 

11 
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m) 

1-5. Transcribe the following English sentences into sentences of 
predicate logic: 

Everyone loves Eve. 

Everyone is loved by either Cid or Adam. 

Either everyone is loved by Adam or everyone is loved by Cid. 
Someone is taller than both Adam and Cid. 

Someone is taller than Adam and someone is taller than Cid. 

Eve loves all cats. 

All cats love Eve. 
Eve loves some cats. 

Eve loves no cats. 

Anyone who loves Eve is not a cat. 

No one who loves Eve is a cat. 
Somebody who loves Adam loves Cid. 
No one loves both Adam and. Cid. 

CHAPTER SUMMARY EXERCISES 

a) 
b) 

€) 

d) 

! e) 
| f) 

g 
b) 

i) 

y 
k) 

D) 

m) 

n) 

9) 

p) 

9) 

Provide short explanations for each of the following. Check against 
the text to make sure that your explanations are correct, and keep 
your explanations in your notebook for reference and review. 

Predicate Logic 

Name 

Predicate 

One Place Predicate 

Two Place Predicate 

Relation 

Variable 

Universal Quantifier 
Existential Quantifier l 

Universe, or Domain of Discourse 

Govern 

Bind 

Open Sentence 
Sentence of Predicate Logic 

Well Formed Formula (wff) 

Syntax - i 

Semantics 







N Predicate Logic 

Semantics and Validity 

2-1. INTERPRETATIONS 

Recall that we used truth tables to give very precise definitions of the 
meaning of '&', ‘v’ ‘~’, ‘D’, and ‘œ’. We would like to do the same for the 
meaning of quantifiers. But, as you will see very soon, truth tables won't 
do the job. We need something more complicated. 
When we were doing sentence logic, our atomic sentences were just 

sentence letters. By specifying truth values for all the sentence letters with 
which we started, we already fixed the truth values of any sentence which 
we could build up from these smallest pieces. Now that we are doing 
predicate logic, things are not so easy. Suppose we are thinking about all 
the sentences which we could build up using the one place predicate ‘B’, 
the two place predicate ‘L’, the name ‘a’, and the name ‘e’. We can form 
six atomic sentences from these ingredients: ‘Ba’, ‘Be’, ‘Laa’, ‘Lae’, ‘Lea’, 
and ‘Lee’. The truth table formed with these six atomic sentences would 
have 64 lines. Neither you nor I are going to write out a 64-line truth 
table, so let’s consider just one quite typical line from the truth table: 

Ba, Be, Laa, Lae, Lea, Lee 
t f f t f t 

Figure 2-1 

f 13 
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Even such an elementary case in predicate logic begins to get quite com- 
plicated, so I have introduced a pictorial device to help in thinking about 
such cases (see figure 2-1). I have drawn a box with two dots inside, one 
labeled ‘a’ and the other labeled ‘e’. This box is very different from a 
Venn diagram. This box is supposed to picture just one way the whole 
world might be. In this very simple picture of the world, there are just 
two things, Adam and Eve. The line of the truth table on the left gives 
you a completed description of what is true and what is false about Adam 
and Eve in this very simple world: Adam is blond, Eve is not blond, Adam 
does not love himself, Adam does love Eve, Eve does not love Adam, and 
Eve does love herself. 

You can also think of the box and the description on the left as a very 
short novel. The box gives you the list of characters, and the truth table 

line on the left tells you what happens in this novel. Of course, the novel 
is not true. But if the novel were true, if it described the whole world, we 
would have a simple world with just Adam and Eve having the properties 
and relations described on the left. 
Now, in writing this novel, I only specified the truth value for atomic 

sentences formed from the one and two place predicates and from the 
two names. What about the truth value of more complicated sentences? 
We can use our old rules for figuring out the truth value of compounds 
formed from these atomic sentences using ‘&’, ‘v’, ‘~’, ‘D’, and ‘=’. For 
example, in this novel ‘Ba & Lae’ is true because both the components are 
true. 
What about the truth value of “(Ax)Bx’? Intuitively, '(dx)Bx' should be 

true in the novel because in the novel there is someone, namely Adam, 

who is blond. As another example, consider ‘(Ax)Lxa’. In this novel 

‘(dx)Lxa’ is false because Eve does not love Adam and Adam does not 
love Adam. And in this novel there isn't anyone (or anything) else. So no 

one loves Adam. In other words, in this novel it is false that there is some- 

one who loves Adam. 
Let's move on and consider the sentence ‘(Wx)Lxe’. In our novel this 

sentence is true, because Adam loves Eve, and Eve loves herself, and 

that's all the people there are in this novel. If this novel were true, it 
would be true that everyone loves Eve. Finally, '(Vx)Bx' is false in the 
novel, for in this novel Eve is not blond. So in this novel it is false that 

everyone is blond. 

Remember what we had set out to do: We wanted to give a precise 
account of the meaning of the quantifiers very like the precise account 
which truth table definitions gave to ‘&’ and the other sentence logic con- 
nectives. In sentence logic we did this by giving precise rules which told 
us when a compound sentence is true, given the truth value of the com- 

pound's components. 
We now have really done the same thing for ‘(Vx)’ and ‘(4x)’ in one 

special case. For a line of a truth table (a "novel") that gives a truth value 
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for all atomic sentences using ‘B’, ‘L’, ‘a’, and ‘e’, we can say whether a 

universally quantified or an existentially quantified sentence is true or 
false. For example, the universally quantified sentence ‘(Wx)Lxe’ is true 

just in case ‘Lxe’ is true for all values of 'x' in the novel. At the moment 
we are considering a novel in which the only existing things are Adam 
and Eve. In such a novel '(Vx)Lxe' is true if both 'Lxe' is true when we 
take ‘x’ to refer to Adam and 'Lxe' is also true when we take ‘x’ to refer 
to Eve. Similarly, '(dx)Bx' is true in such a novel just in case ‘Bx’ is true 
for some value of ‘x’ in the novel. As long as we continue to restrict atten- 
tion to a novel with only Adam and Eve as characters, '(dx)Bx' is true in 

the novel if either ‘Bx’ is true when we take ‘x’ to refer to Adam or ‘Bx’ 
is true if we take 'x' to refer to Eve. 

If the example seems a bit complicated, try to focus on this thought: 
All we are really doing is following the intuitive meaning of “all x" and 
"some x" in application to our little example. If you got lost in the pre- 
vious paragraph, go back over it with this thought in mind. 
Now comes a new twist, which might not seem very significant, but 

which will make predicate logic more interesting (and much more com- 

plicated) than sentence logic. In sentence logic we always had truth tables 
with a finite number of lines. Starting with a fixed stock of atomic sen- 
tence letters, we could always, at least in principle, write out all possible 
cases to consider, all possible assignments of truth values to sentence let- 

ters. The list might be too long to write out in practice, but we could at 
least understand everything in terms of such a finite list of cases. 

Can we do the same thing when we build up sentences with predicates 
and names? If, for example, we start with just ‘B’, ‘L’, ‘a’, and ‘e’, we can 
form six atomic sentences. We can write out a 64-line truth table which 
will give us the truth value for any compound built up from these six 
atomic sentences, for any assignment of truth values to the atomic sen- 
tences. But the fact that we are using quantifiers means that we must also 
consider further possibilities. 

Consider the sentence ‘(Wx)Bx’. We know this is false in the one case we 
used as an example (in which ‘Ba’ is true and ‘Be’ is false). You will im- 

mediately think of three alternative cases (three alternative "novels") 
which must be added to our list of relevant possible cases: the case in 
which Eve is blond and Adam is not, the case in which Adam and Eve are 

both blond, and the case in which both are not blond. But there are still 

more cases which we must include in our list of all possible cases! I can 
generate more cases by writing new novels with more characters. Suppose 
1 write a new novel with Adam, Eve, and Cid. I now have eight possible 

ways of distributing hair color (blond or not blond) among my characters, 
which can be combined with 512 different possible combinations of who 
does or does not love whom! And, of course, this is just the beginning of 
an unending list of novels describing possible cases in which '(Vx)Bx' will 
have a truth value. I can always expand my list of novels by adding new 
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characters. I can even describe novels with infinitely many characters, al- 
though I would not be able to write such a novel down. 

How are we going to manage all this? In sentence logic we always had, 
for a given list of atomic sentence, a finite list of possible cases, the finite 

number of lines of the corresponding truth tablé. Now we have infinitely 
many possible cases. We can't list them all, but we can still say what any 
one of these possible cases looks like. Logicians call a possible case for a 
sentence of predicate logic an Interpretation of the sentence. The example 
with which we started this chapter is an example of an interpretation, so 
actually you have already seen and understood an example of an inter- 
pretation. We need only say more generally what interpretations are. 
We give an interpretation, first, by specifying a collection of objects 

which the interpretation will be about, called the Domain of the interpre- 

tation. A domain always has at least one object. Then we give names to 
the objects in the domain, to help us in talking about them. Next, we must 

say which predicates will be involved. Finally, we must go through the 
predicates and objects and say which predicates are true of which objects. 
If we are concerned with a one place predicate, the interpretation speci- 
fies a list of objects of which the object is true. If the predicate is a two 
place predicate, then the interpretation specifies a list of pairs of objects 
between which the two place relation is supposed to hold, that is, pairs of 
objects of which the two place relation is true. Of course, order is impor- 
tant. The pair a-followed-by-b counts as a different pair from the pair b- 
followed-by-a. Also, we must consider objects paired with themselves. For 
example, we must specify whether Adam loves himself or does not love 
himself. The interpretation deals similarly with three and more place 
predicates. 

In practice, we often specify the domain of an interpretation simply by 
giving the interpretation's names for those objects. I should mention that 
in a fully developed predicate logic, logicians consider interpretations 
which have unnamed objects. In more advanced work, interpretations of 
this kind become very important. But domains with unnamed objects 
would make it more difficult to introduce basic ideas and would gain us 
nothing for the work we will do in part I of this volume. So we won't 
consider interpretations with unnamed objects until part II. 

The following gives a summary and formal definiuon of an interpreta- 
tion: 

An Interpretation consists of 

a) A collection of objects, called the interpretation’s Domain. The domain 
always has at least one object. 

b) A name for each object in the domain. An object may have just one 
name or more than one name. (In part II we will expand the definition 
to allow domains with unnamed objects.) 
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€) A list of predicates. 

d) A specification of the objects of which each predicate is true and the 
objects of which each predicate is false—that is, which one place predi- 
cates apply to which individual objects, which two place predicates apply 
to which pairs of objects, and so on. In this way every atomic sentence 
formed from predicates and names gets a truth value. 

e) An interpretation may also include atomic sentence letters. The inter- 
pretation specifies a truth value for any included atomic sentence letter. 

By an Interpretation of a Sentence, we mean an interpretation which is 
sure to have enough information to determine whether or not the sen- 
tence is true or false in the interpretation: 

An Interpretation of a Sentence is an interpretation which includes all the 
names and predicates which occur in the sentence and includes truth values 
for any atomic sentence letters which occur in the sentence. 

For example, the interpretation of figure 2-1 is an interpretation of ‘Ba’ 
and of '(Vx)Lxx'. In this interpretation ‘Ba’ is true and '(Vx)Lxx' is false. 

Note that for each of these sentences, the interpretation contains more 

information than is needed to determine whether the sentence is true or 

false. This same interpretation is not an interpretation of ‘Bc’ or of 
'(3x)Txe'. This is because the interpretation does not include the name ‘c’ 
or the two place predicate "T", and so can't tell us whether sentences which 
use these terms are true or false. 

EXERCISES 

2-1. I am going to ask you to give an interpretation for some sen- 
tences. You should use the following format. Suppose you are de- 
scribing an interpretation with a domain of three objects named ‘a’, 
'b', and ‘c’. Specify the domain in this way: D = {a,b,c}. That is, 

specify the domain by giving a list of the names of the objects in the 
domain. Then specify what is true about the objects in the domain 
by using a sentence of predicate logic. Simply conjoin all the atomic 
and negated atomic sentences which say which predicates are true of 
which objects and which are false. Here is an example. The follow- 
ing is an interpretation of the sentence "Tb & Kbd’: 

D = {b,d}; Tb & Td & Kbb & Kbd & Kdb & Kdd. 

In this interpretation all objects have property T and everything 
stands in the relation K to itself and to everything else. Here is an- 
other interpretation of the same sentence: 

D = {b,d}; ^ Tb & Td & Kbb & ~Kbd & ~Kdb & Kdd. 
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Sometimes students have trouble understanding what I want in 
this exercise. They ask, How am I supposed to decide which inter- 
pretation to write down? You can write down any interpretation you 
want as long as it is an interpretation of the sentence I give you. In 
every case you have infinitely many interpretations to choose from 
because you can always get more interpretations by throwing in 
more objects and then saying what is true for the new objects. 
Choose any you like. Just make sure you are writing down an inter- 
pretation of the sentence I give you. 

a) Lab d) (Wx)(Fx=Rxb) 

b) Lab D Ta e) Ga & (Ax)(Lxb v Rax) 

c) Labv ~Lba f) (Kx & (Wx)Rax) D (3x)(Mx v Rcx) 

2-2. TRUTH IN AN INTERPRETATION 

Just like a line of a truth table, an interpretation tells us whether each 
atomic sentence formed from predicates and names is true or false. What 
about compound sentences? If the main connective of a compound sen- 
tence does not involve a quantifier, we simply use the old rules for the 
connectives of sentence logic. We have only one more piece of work to 
complete: We must make more exact our informal description of the con- 
ditions under which a quantified sentence is true or is false in an inter- 
pretation. 

Intuitively, a universally quantified sentence is going to be true in an 
interpretation if it is true in the interpretation for everything to which the 
variable could refer in the interpretation. (Logicians say, "For every value 
of the universally quantified variable.”) An existentially quantified sen- 
tence will be true in an interpretation if it is true for something to which 
the variable could refer in the interpretation (that is, "for some value of 
the existentially quantified variable.") What we still need to do is to make 
precise what it is for a quantified sentence to be true for a value of a 
variable. Let's illustrate with the same example we have been using, the 

interpretation given in figure 2—1. : 
Consider the sentence ‘(Vx)Bx’. In the interpretation we are consider- 

ing, there are exactly two objects, a, and e. '(Vx)Bx' will be true in the 

interpretation just in case, roughly speaking, it is true both for the case of 
‘x’ referring to a and the case of ‘x’ referring to e. But when ‘x’ refers to 
a, we have the sentence ‘Ba’. And when ‘x’ refers to ‘e’, we have the sen- 

tence ‘Be’. Thus '(Vx)Bx' is true in this interpretation just in case both ‘Ba’ 

and ‘Be’ are true. We call ‘Ba’ the Substitution Instance of ‘(Wx)Bx’ formed 
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by substituting ‘a’ for ‘x’. Likewise, we call ‘Be’ the substitution instance of 
'(Vx)Bx' formed by substituting ‘e’ for ‘x’. Our strategy is to explain the 
meaning of universal quantification by defining this notion of substitution 
instance and then specifying that a universally quantified sentence is true 
in an interpretation just in case it is true for all substitution instances in 
the interpretation: 

(Incomplete Definition) For any universally quantified sentence (Vu)(. . . u 
. . .), the Substitution Instance of the sentence with the name s substituted for 
the variable u is (. .. s. . .), the sentence formed by dropping the initial 
universal quantifier and writing s wherever u had occurred. 

A word of warning: This definition is not yet quite right. It works only 
as long as we don't have multiple quantification, that is, as long as we 
don't have sentences which stack one quantifier on top of other quanti- 
fiers. But until chapter 3 we are going to keep things simple and consider 
only simple sentences which do not have one quantifier applying to a sen- 
tence with another quantifier inside. When we have the basic concepts we 
will come back and give a definition which is completely general. 
Now we can easily use this definition of substitution instance to charac- 

terize truth of a universally quantified sentence in an interpretation: 

(Incomplete Definition) A universally quantified sentence is true in an interpreta- 
tion just in case all of the sentence's substitution instances, formed with 
names in the interpretation, are true in the interpretation. 

Another word of warning: As with the definition of substitution in- 
stance, this definition is not quite right. Again, chapter 3 will straighten 
out the details. 
To practice, let's see whether '(Vx)(Bx D Lxe)' is true in the interpre- 

tation of figure 2-1. First we form the substitution instances with the 
names of the interpretation, ‘a’, and ‘e’. We get the first substitution in- 
stance by dropping the quantifier and writing in ‘a’ everywhere we see ‘x’. 
This gives 

Ba D Lae. 

Note that because 'Ba' and 'Lae' are both true in the interpretation, this 
first substitution instance is true in the interpretation. Next we form the 
second substitution instance by dropping the quantifier and writing in ‘e’ 
wherever we see ‘x’: 

Be D Lee. 

Because ‘Be’ is false and ‘Lee’ is true in the interpretation, the conditional 

‘Be > Lee’ is true in the interpretation. We see that all the substitution 
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instances of '(Vx)(Bx D Lxe) are true in the interpretation. So this uni- 
versally quantified sentence is true in the interpretation. 

To illustrate further our condition for truth of a universally quantified 
sentence, consider the sentence '(Vx)(Bx D Lxa)'. This has the substitution 
instance ‘Ba D Laa. In this interpretation ‘Ba’ is true and ‘Laa’ is false, so 

‘Ba D Laa’ is false in the interpretation. Because '(Vx)(Bx D Lxa) has a 

false substitution instance in the interpretation, it is false in the interpre- 
tation. 

You may have noticed the following fact about the truth of a universally 
quantified sentence and the truth of its substitution instances. By defini- 
tion ‘(Wx)(Bx D Lxe)' is true in the interpretation just in case all of its 

instances are true in the interpretation. But its instances are all true just 
in case the conjunction of the instances is true. That is, (Vx)(Bx D Lxe)' 
is true in the interpretation just in case the conjunction 

(Ba 2 Lae) & (Be D Lee) 

is true in the interpretation. If you think about it, you will see that this 
will hold in general. In the interpretation we have been discussing (or any 
interpretation with two objects named ‘a’ and ‘e’), any universally quanti- 
fied sentence, (Vx). . . x . . .)', will be true just in case the conjunction 

of its substitution instance, '(. ..a. . )&(. ..e. . .)', is true in the inter- 
pretation. 

It’s looking like we can make conjunctions do the same work that the 
universal quantifier does. A universally quantified sentence is true in an 
interpretation just in case the conjunction of all its substitution instances 
is true in the interpretation. Why, then, do we need the universal quan- 
tifier at all? 

To answer this question, ask yourself what happens when we shift to a 
new interpretation with fewer or more things in its domain. In the new 
interpretation, what conjunction will have the same truth value as a given 
universally quantified sentence? If the new interpretation has a larger do- 
main, our conjunction will have more conjuncts. If the new interpretation 
has a smaller domain, our conjunction will have fewer conjuncts. In other 
words, when we are looking for a conjunction of instances to give us the 

truth value of a universally quantified sentence, the conjunction will 
change from interpretation to interpretation. You can see in this way that 
the universal quantifier really does add something new. It acts rather like 
a variable conjunction sign. It has the effect of forming a long conjunc- 
tion, with one conjunct for each of the objects in an interpretation's do- 
main. If an interpretation's domain has infinitely many objects, a univer- 
sally quantified sentence has the effect of an infinitely long conjunction! 

What about existentially quantified sentences? All the work is really 
done. We repeat everything we said for universal quantification, replacing 
the word ‘all’ with ‘some’: 
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(Incomplete Definition) For any existentially quantified sentence (3)(. . . 
u. . .), the Substitution Instance of the sentence, with the name s substituted 
for the variable u is (. . . s. . .), the sentence formed by dropping the initial 
existential quantifier and writing s wherever u had occurred. 

(Incomplete Definition) An existentially quantified sentence is true in an interpre- 
tation just in case some (i.e., one or more) of the sentence's substitution in- 
stances, formed with names in the interpretation, are true in the interpre- 
tation. 

As with the parallel definitions for universally quantified sentences, these 
definitions will have to be refined when we get to chapter 3. 
To illustrate, let's see whether the sentence '(Hx)(Bx & Lxe)' is true in 

the interpretation of figure 2-1. We will need the sentence's substitution 
instances. We drop the quantifier and write in ‘a’ wherever we see ‘x’, 
giving ‘Ba & Lae’, the instance with ‘a’ substituted for ‘x’. In the same way, 
we form the instance with ‘e’ substituted for ‘x’, namely, ‘Be & Lee’. 

‘(ax)(Bx &Lxe)' is true in the interpretation just in case one or more of 

its substitution instances are true in the interpretation. Because ‘Ba’ and 
‘Lae’ are true in the interpretation, the first instance, ‘Ba & Lae’, is true, 
and so '(dx)(Bx & Lxe)’ is true. 

Have you noticed that, just as we have a connection between universal 

quantification and conjunction, we have the same connection between ex- 
istential quantification and disjunction: ‘(4x)(Bx & Lxe)' is true in our 

interpretation just in case one or more of its instances are true. But one 
or more of its instances are true just in case their disjunction 

(Ba & Lae) v (Be & Lee) 

is true. In a longer or shorter interpretation we will have the same thing 
with a longer or shorter disjunction. Ask yourself, when is an existentially 
quantified sentence true in an interpretation? It is true just in case the 
disjunction of all its substitution instances in that interpretation is true in 
the interpretation. Just as the universal quantifier acted like a variable 
conjunction sign, the existential quantifier acts like a variable disjunction 
sign. In an interpretation with an infinite domain, an existentially quan- 
tified sentence even has the effect of an infinite disjunction. 

I hope that by now you have a pretty good idea of how to determine 
whether a quantified sentence is true or false in an interpretation. In un- 
derstanding this you also come to understand everything there is to know 
about the meaning of the quantifiers. Remember that we explained the 
meaning of the sentence logic connectives ‘~’, ‘&’, 'v', ‘D’, and ‘=" by giv- 
ing their truth table definitions. For example, explaining how to deter- 
mine whether or not a conjunction is true in a line of a truth table tells 
you everything there is to know about the meaning of ‘&’. In the same 
way, our characterization of truth of a quantified sentence in an interpre- 
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tation does the same kind of work in explaining the meaning of the quan- 
tifiers. 

This point about the meaning of the quantifiers illustrates a more gen- 
eral fact. By a “case” in sentence logic we mean a line of a truth table, 
that is, an assignment of truth values to sentence letters. The interpreta- 
tions of predicate logic generalize this idea of a case. Keep in mind that 
interpretations do the same kind of work in predicate logic that assign- 
ments of truth values to sentence letters do in sentence logic, and you will 
easily extend what you already know to understand validity, logical truth, 
contradictions, and other concepts in predicate logic. 

By now you have also seen how to determine the truth value which an 
interpretation gives to any sentence, not just to quantified sentences. An 
interpretation itself tells you which atomic sentences are true and which 
are false. You can then use the rules of valuation for sentence logic con- 
nectives together with our two new rules for the truth of universally and 
existentially quantified sentences to determine the truth of any compound 
sentence in terms of the truth of shorter sentences. Multiple quantifica- 
tion still calls for some refinements, but in outline you have the basic 
ideas. 

EXERCISES 

2-2. Consider the interpretation 

D = {a,b}; ~Ba & Bb & Laa & ~Lab & Lba & ~Lbb. 

For each of the following sentences, give all of the sentence’s substi- 
tution instances in this interpretation, and for each substitution in- 

stance say whether the instance is true or false in the interpretation. 
For example, for the sentence '(Vx)Bx', your answer should look like 
this: 

GIVEN SENTENCE SUBSTITUTION INSTANCES 

(Wx)Bx Ba, false in the interpretation 
Bb, true 

a) (dx)Bx b) (3x)-Lxa c) (Vx)Lxa 

d) (3xLbx e (VXBx v Lax) f) (3x(Lxa & Lbx) 

g (VX(Bx2DLbx h) (Ax)[(Lbx & Bb) v Bx] 

i) (Wx)[Bx D (Lxx D Lxa)] 
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p (VXI(Bx v Lax) D (Lxb v ~Bx)] 

k) (3x) (Lax & Lxa) = (Bx v Lxb)] 

2—3. For each of the sentences in exercise 2-2, say whether the sen- 
tence is true or false in the interpretation of exercise 2-2. 

2—4. For each of the following sentences, determine whether the 
sentence is true or false in the interpretation of exercise 2-2. In this 
exercise, you must carefully determine the main connective of a sen- 
tence before applying the rules to determine its truth in an interpre- 
tation. Remember that a quantifier is a connective which applies to 
the shortest full sentence which follows it. Remember that the main 
connective of a sentence is the last connective that gets used in build- 
ing the sentence up from its parts. To determine whether a sentence 
is true in an interpretation, first determine the sentence's main con- 
nective. If the connective is '&', ‘v’, ‘~’, ‘D’, or ‘=’, you must first 

determine the truth value of the components, and then apply the 

rules for the main connective (a conjunction is true just in case both 
conjuncts are true, and so on). If the main connective is a quantifier, 
you have to determine the truth value of the substitution instances 
and then apply the rule for the quantifier, just as you did in the last 
exercise. 

a) (dx)Lxx D (Vx)(Bx v Lbx) 

b) -(d3x)Lxx D Bx) & (Wx)(Bx D Lxx) 

€) (3x)[Bx = (Lax v Lxb)] 

d) (dx)(Lxb v Bx) D (Lab v ~Ba) 

e) ~(Wx)(~Lxx v Lxb) D (Lab v ~Lba) 

f) (3x)[(Lbx v Bx) D (Lxb & ~Bx)] 
g) (Wx)~[(~Lxx = Bx) 2 (Lax = Lxa)] 
h) (Vx)(Lax v Lxb) v (3x)(Lax v Lxb) 

i) (3x)Lxx & (Bx D Laa)] & (dx) (Lab = Lxx) 

p (VXM[Bx v (Lax & ~Lxb)] D (Bx D Lxx) 

2—5. In the past exercises we have given interpretations by explicitly 
listing objects in the domain and explicitly saying which predicates 
apply to which things. We can also describe an interpretation in 
more general terms. For example, consider the interpretation given 

by 

i) Domain: All U.S. citizens over the age of 21. 
ii) Names: Each person in the domain is named by ‘a’ subscripted by 

his or her social security number. 

ii) Predicates: Mx: x is a millionaire. 
Hx: x is happy. 

23 
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(That is, a one place predicate 'Mx' which holds of someone just 
in case that person is a millionaire and a one place predicate 'Hx' 
which holds of someone just in case that person is happy.) 

a) Determine the truth value of the following sentences in this inter- 
pretation. In each case explain your answer. Since you can't write 
out all the substitution instances, you will have to give an informal 
general statement to explain your answer, using general facts you 
know about being a millionaire, being happy, and the connection (or 

lack of connection) between these. 

al) (dx)Mx a2) (Vx)Hx  a3)(VxX(Hx D Mx) a4) (dx)Mx & ~Hx) 

a5) (Vx)(Mx D Hx) & (~Mx D ~Hx)] 

a6) (Ax)[(Hx & Mx) v (~Hx & ~Mx)] 

a7) (J3x(Mx & Hx) & (3x)(Mx & ~Hx) 

a8) (Wx)(Hx 2 Mx) 2 ~ (3x)Mx 

Here is another example: 

i) Domain: All integers, 1, 2, 3, 4,. . . 

ii) Names: Each integer is named by ‘a’ subscripted by that integer’s 
numeral. For example, 17 is named by ‘a,,’. 

iii) Predicates: Ox: x is odd. 
Kxy: x is equal to or greater than y. 

b) Again, figure out the truth value of the following sentences, and 

explain informally how you arrived at your answer. 

bl) (4x)Ox b2) (Wx)~Ox b3) (Ax)(Ox & Kxx) 

b4) (Vx)Kxa,; b5)(Vx)(Ox v ~Ox) 

b6) (3xYOx & Kxa,;) 

b7) (Vx)Ox = (~Kxaig & Kxaj7)] 

-b8) (d3x)(Kxa; D Kxajg) & (Wx)(~Kxai7 v Kxa;g) 

b9) (Vx(Ox D Kxa;;) & (Wx)(~Ox D ~ Kxa,;) 

2-3. VALIDITY IN PREDICATE LOGIC 

In sentence logic, we said that an argument is valid if and only if, for all 

possible cases in which all the premises are true, the conclusion is true 
also. In predicate logic, the intuitive notion of validity remains the same. 
We change things only by generalizing the notion of possible case. Where 
before we meant that all lines in the truth table which made all premises 
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true also make the conclusion true, now we mean that all interpretations 
which make all the premises true also make the conclusion true: 

An argument expressed with sentences in predicate logic is valid if and only 
if the conclusion is true in every interpretation in which all the premises are 
true. 

You may remember that we got started on predicate logic at the begin- 
ning of chapter 1 because we had two arguments which seemed valid but 
which sentence logic characterized as invalid. To test whether predicate 
logic is doing the job it is supposed to do, let us see whether predicate 
logic gives us the right answer for these arguments; 

Everyone loves Eve.  (Vx)Lxe 

Adam loves Eve. Lae 

Suppose we have an interpretation in which '(Vx)Lxe' is true. Will ‘Lae’ 

have to be true in this interpretation also? Notice that ‘Lae’ is a substitu- 
tion instance of ‘(Wx)Lxe’. A universally quantified sentence is true in an 
interpretation just in case all its substitution instances are true in the inter- 
pretation. So in any interpretation in which '(Vx)Lxe' is true, the instance 
'Lae' will be true also. And this is just what we mean by the argument 
being valid. 

Let's examine the other argument: 

Adam loves Eve. Lae 

Someone loves Eve.  (Jx)Lxe 

Suppose we have an interpretation in which ‘Lae’ is true. Does '(dx)Lxe 
have to be true in this interpretation? Notice that 'Lae' is an instance of 
'(S«ix)Lxe'. We know that ‘(4x)Lxe’ is true in an interpretation if even one 

of its instances is true in the interpretation. Thus, if 'Lae' is true in an 
interpretation, '(dx)Lxe' will also be true in that interpretation. Once 
again, the argument is valid. 

Along with validity, all our ideas about counterexamples carry over 

from sentence logic. When we talked about the validity of a sentence logic 
argument, we first defined it in this way: An argument is valid just in case 
any line of the truth table which makes all the premises true makes the 
conclusion true also. Then we reexpressed this by saying: An argument is 
valid just in case it has no counterexamples; that is, no lines of the truth 

table make all the premises true and the conclusion false. For predicate 
logic, all the ideas are the same. The only thing that has changed is that 
we now talk about interpretations where before we talked about lines of 
the truth table: 



A Counterexample to a predicate logic argument is an interpretation in whic 
the premises are all true and the conclusion is false. 

A predicate logic argument is Valid if and only if it has no counterexamples 

Lets illustrate the idea of counterexamples in examining the validity o 

Lae 

(Ax)Lxe 

s there a counterexample to this argument? A counterexample would be 
bn interpretation with ‘Lae’ true and '(3x)Lxe' false. But there can be no 

uch interpretation. ‘Lae’ is an instance of ‘(Ax)Lxe’, and ‘(Ax)Lxe’ is trud 

an interpretation if even one of its instances is true in the interpreta 
ion. Thus, if ‘Lae’ is true in an interpretation, '(3x)Lxe' will also be true 

that interpretation. In other words, there can be no interpretation i 
hich ‘Lae’ is true and '(3x)Lxe' is false, which is to say that the argument 
as no counterexamples. And that is just another way of saying that the 

argument is valid. 
For comparison, contrast the last case with the argument 

(Ax)Bx 

Ba 

ts easy to construct a counterexample to this argument. Any case i 
hich someone other than Adam is blond and Adam is not blond will dq 
e trick. So an interpretation with Adam and Eve in the domain and i 
hich Eve is blond and Adam is not blond gives us a counterexample 
howing the argument to be invalid. 
This chapter has been hard work. But your sweat will be repaid. The 

oncepts of interpretation, substitution instance, and truth in an interpre 

ation provide the essential concepts you need to understand quantifica 
ion. In particular, once you understand these concepts, you will find 

broof techniques for predicate logic to be relatively easy. 

EXERCISES 

2-6. For each of the following arguments, determine whether the 
argument is valid or invalid. If it is invalid, show this by giving a 
counterexample. If it is valid, explain your reasoning which shows it 
to be valid. Use the kind of informal reasoning which I used in dis- 
cussing the arguments in this section. 



You may find it hard to do these problems because I haven't give 
you any very specific strategies for figuring out whether an argu 
nent is valid. But don't give up! If you can't do one argument, 
another first. Try to think of some specific, simple interpretation. of 

e sentences in an argument, and ask yourself—"Are the premise 
and conclusion both true in that interpretation?" Can I change the 
terpretation so as to make the premise true and the conclusio 

alse? If you succeed in doing that, you will have worked the prob 
em because you will have constructed a counterexample and sho 
he argument to be invalid. If you can't seem to be able to construct 
h counterexample, try to understand why you can't. If you can see 
hy you can’t and put this into words, you will have succeeded i 

showing that the argument is valid. Even if you might not succeed 
n working many of these problems, playing around in this way wi 
nterpretations, truth ín interpretations, and counterexamples wi 
strengthen your grasp of these concepts and make the next chapte 
Pasier. 

a) (Vx)ixe b) Lae € (3xLxe 

(3x)Lxe (Wx)Lxe Lae 

d) (VxBx & Lxe) e (Wx)(Bx D Lxe) 

(Wx)Bx aE (3x)Bx 

f) (axjbx & Gboixa g (WxXBx D Lxe) & (Wx)(~Bx D Lxa) 

(3x)(Bx & Lxa) (Wx) [(Bx D Lxe) & (—Bx D Lxa)] 

CHAPTER SUMMARY EXERCISES 

Provide short explanations for each of the following, checking 
Against the text to make sure you understand each term clearly and 
Raving your answers in your notebook for reference and review. 

a) Interpretation 

b) Interpretation of a Sentence 
c) Substitution Instance 

d) Truth in an Interpretation 
e) Validity of a Predicate Logic Arg 
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3-1. SOME EXAMPLES OF MULTIPLE QUANTIFICATION 

All of the following are sentences of predicate logic: 

(1) (Wx)(Wy)Lxy 
(2) (3x)y)Lxy 
(3) (Ax)(Vy)Lxy 

(4) (Ax)(Vy)Lyx 
(5) (VxY3y)Lxy 
(6) (Vx)y)Lyx 

Let's suppose that 'L' stands for the relation of loving. What do these 
sentences mean? 

Sentence (1) says that everybody loves everybody (including them- 
selves). (2) says that somebody loves somebody. (The somebody can be 
oneself or someone else.) Sentences (3) to (6) are a little more tricky. (3) 

says that there is one person who is such that he or she loves everyone. 
(There is one person who is such that, for all persons, the first loves the 

second—think of God as an example.) We get (4) from (3) by reversing 

the order of the ‘x’ and ‘y’ as arguments of ‘L’. As a result, (4) says that 
there is one person who is loved by everyone. Notice what a big difference 
the order of the ‘x’ and ‘y’ makes. 

28 
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Next, (5) says that everyone loves someone: Every person is such that 
there is one person such that the first loves the second. In a world in 
which (5) is true, each person has an object of their affection. Finally we 
get (6) out of (5) by again reversing the order of ‘x’ and 'y'. As a result, 
(6) says that everyone is loved by someone or other. In a world in which 
(6) is true no one goes unloved. But (6) says something significantly 
weaker than (3). (3) say that there is one person who loves everyone. (6) 

says that each person gets loved, but Adam might be loved by one person, 
Eve by another, and so on. 
Can we say still other things by further switching around the order of 

the quantifiers and arguments in sentences (3) to (6)? For example, 
switching the order of the quantifiers in (6) gives 

(9) (Ay)(Wx)Lyx 

Strictly speaking, (7) is a new sentence, but it does not say anything new 
because it is logically equivalent to (3). It is important to see why this is so: 

(7) (3) 

NEN EAD ANAD 
1 2 34 1 2 84 1 2 84 

These diagrams will help you to see that (7) and (3) say exactly the same 
thing. The point is that there is nothing special about the variable 'x' or 
the variable ‘y’. Either one can do the job of the other. What matters is 
the pattern of quantifiers and variables. These diagrams show that the 
pattern is the same. All that counts is that the variable marked at position 
l in the existential quantifier is tied to, or, in logicians’ terminology, Binds 
the variable at position 3; and the variable at position 2 in the universal 
quantifier binds the variable at position 4. Indeed, we could do without 
the variables altogether and indicate what we want with the third dia- 
gram. This diagram gives the pattern of variable binding which (7) and 
(3) share. 

3-2. QUANTIFIER SCOPE, BOUND VARIABLES, AND FREE 

VARIABLES 

In the last example we saw that the variable at 3 is bound by the quantifier 
at 1 and the variable at 4 is bound by the quantifier at 2. This case con- 
trasts with that of a variable which is not bound by any quantifier, for 
example 
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(8) Lxa D (AX)Exb 
1 2 3 

(9) (axb D Lxa 
1 2 3 

In (8), the occurrence of 'x' at 3 is bound by the quantifier at 2. However, 

the occurrence of ‘x’ at 1 is not bound by any quantifier. Logicians say 
that the occurrence of ‘x’ at 1 is Free. In (9), the occurrence of ‘x’ at 3 is 
free because the quantifier at 1 binds only variables in the shortest full 
sentence which follows it. Logicians call the shortest full sentence follow- 
ing a quantifier the quantifier's Scope. In (9), the 'x' at 3 is not in the scope 
of the quantifier at 1. Consequently, the quantifier does not bind ‘x’ at 3. 

All the important ideas of this section have now been presented. We 
need these ideas to understand clearly how to apply the methods of de- 
rivations and truth trees when quantifiers get stacked on top of each 
other. All we need do to complete the job is to give the ideas an exact 
statement and make sure you know how to apply them in more compli- 
cated situations. 

Everything can be stated in terms of the simple idea of scope. A quan- 
tifier is a connective. We use a quantifier to build longer sentences out of 
shorter ones. In building up sentences, a quantifier works just like the 
negation sign: It apples to the shortest full sentence which follows it. This 
shortest full following sentence is the quantifier's scope: 

The Scope of a quantifier is the shortest full sentence which follows it. Every- 
thing inside this shortest full following sentence is said to be in the scope of 
the quantifier. 

We can now define 'bound' and 'free' in terms of scope: 

A variable, u, is Bound just in case it occurs in the scope of a quantifier, 
(Vu) or (Ju). 

A variable, u, is Free just in case it is not bound; that is, just in case it does 
not occur in the scope of any quantifier, (Vu) or (Ju). 

Clearly, a variable gets bound only by using a quantifier expressed with 
the same variable. ‘x’ can never be bound by quantifiers such as ‘(Wy)’ or 
‘(az)’. 

Occasionally, students ask about the variables that occur within the 

quantifiers—the ‘x’ in ‘(4x)’ and in ‘(Wx)’. Are they bound? Are they free? 
The answer to this question is merely a matter of convention on which 
nothing important turns. I think the most sensible thing to say is that the 
variable within a quantifier is part of the quantifier symbol and so does 
not count as either bound or free. Only variables outside a quantifier can 
be either bound or free. Some logicians prefer to deal with this question 



3-2. Quantifier Scope, Bound Variables, and Free Variables — 31 

by defining the scope of a quantifier to include the quantifier itself as well 
as the shortest full sentence which follows it. On this convention one 
would say that a variable within a quantifier always binds itself. 

These definitions leave one fine point unclear. What happens if the 
variable u is in the scope of two quantifiers that use u? For example, 
consider 

(10) (dx)(Vx)Lxa D Lxb] 
1 2 3 4 

The occurrence of ‘x’ at 3 is in the scope of both the ‘x’ quantifiers. Which 
quantifier binds ‘x’ at 3? 

To get straight about this, think through how we build (10) up from 
atomic constituents. We start with the atomic sentences ‘Lxa’ and ‘Lxb’. 
Because atomic sentences have no quantifiers, ‘x’ is free in both of these 

atomic sentences. Next we apply ‘(Vx)’ to ‘Lxa’, forming ‘(Wx)Lxa’, which 
we use as the antecedent in the conditional 

(11) (Vx)Lxa D Lxb 
2 3 4 

In (11), the occurrence of ‘x’ at 3 is bound by the quantifier at 2. The 

occurrence of ‘x’ at 4 is free in (11). 

Finally, we can clearly describe the effect of ‘(4x)’ when we apply it to 
(11). ‘(4x)’ binds just the free occurrences of ‘x’ in (11). The occurrence 

at 4 is free and so gets bound by the new quantifier. The occurrence at 3 
is already bound, so the new quantifier can't touch it. The following dia- 
gram describes the overall effect: 

c (10) (3[(VÉIXa Dib] 
1 23 4 

First, the occurrence at 3 is bound by the quantifier at 2. Then the occur- 
rence at 4 is bound by the quantifier at 1. The job being done by the 2-3 
link is completely independent of the job being done by the 1—4 link. 

Let's give a general statement to the facts we have uncovered: 

A quantifier (Vu) or (Ju) binds all and only all free occurrences of u in its 
scope. Such a quantifier does not bind an occurrence of u in its scope which 
is already bound by some other quantifier in its scope. 

We can make any given case even clearer by using different variables 
where we have occurrences of a variable bound by different quantifiers. 
So, for example, (10) is equivalent to 

(2) (GxXj(vVZD3a D IXb] 
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In (12), there can be no confusion about which quantifier binds which 

variable—we keep track of everything by using different variables. Why, 
then, didn’t we just resolve to use different variables from the beginning 
and save ourselves a lot of trouble? We could have done that, but then 
the definition of the sentences of predicate logic would have been much 
more complicated. Either way, we have work to do. Besides, the formu- 

lation I have presented here is the one traditionally used by logicians and 
so the one you will need to know if you study more logic. 

Let’s look at another, slightly more complicated, example to make sure 
you have put this all together. Draw in the lines which show which quan- 
tifier binds which variable in the following: 

(13) (3x)[(3x)Bx v Lxa) D (Bx & Lxb)] 

If you are having trouble, think through how (13) gets built up from its 
parts. In 

(4) (A®(Bx v Ixa) D (Bx & Lxb) 
2 3 4 5 6 

the quantifier at 2 applies only to the shortest full sentence which follows 
it, which ends before the ‘D’. So the occurrences of ‘x’ at 3 and 4 are both 

bound by the quantifier at 2. The two occurrences of 'x' at 5 and 6 are 
not in the scope of a quantifier and are both free. So when we apply the 
second ‘(4x)’ to all of (14), the new '(3x) binds only the ‘x’s which are still 
free in (14), namely, the 'x's which occur at 5 and 6. In sum, the pattern 
of binding is 

13) (ACER va) 2 (Bx & Ixb)] 
1 2 3 4 5 6 

We can make this pattern even clearer by writing the sentence equiva- 
lent to (13): 

(15) (x)[(32)(Bz v Lza) D (Bx & Lxb)) 

In practice, of course, it is much better to use sentences such as (15) and 
(12) instead of the equivalent (13) and (10), which are more difficult to 
interpret. 

EXERCISES 

3-1. In the following sentences draw link lines to show which quan- 
tifiers bind which variables and say which occurrences of the vari- 
ables are bound and which are free: 
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a) Lzz b) (Vy)(Wz)Lzy €) (Va(Bz D Lxz) 
12 12 1 23 

d) (Ax)[Lxz & (Vy)(Lxy v Lzx)] 
12 34 56 

e) (Vx)Lax & Bx) = (Lxx D (3x)Bx) 
1 2 34 5 

f) (Vx)[Lyx 2 (Bx 2 (x)Lyx)] 
12 3 45 

3-3. CORRECT DEFINITIONS OF SUBSTITUTION INSTANCE 

AND TRUTH IN AN INTERPRETATION 

In chapter 2 I gave an incorrect definition of ‘substitution instance.’ I said 
that we get the substitution instance of (Vu) (.. .u. . .) with s substi- 
tuted for u by simply dropping the initial (u) and writing in s wherever 
we find u in (. ..u. . .). This is correct as long as neither a second (Vu) 

nor a (du) occurs within the scope of the initial (Vu), that is, within the 

sentence (...u. . .). Since I used only this kind of simple sentence in 
chapter 2, there we could get away with the simple but incorrect defin- 
tion. But now we must correct our definition so that it will apply to any 
sentence. Before reading on, can you see how multiple quantification can 
make trouble for the simple definition of substitution instance, and can 
you see how to state the definition correctly? 

To correct the definition of substitution instance, all we have to do is to 
add the qualification that the substituted occurrences of the variable be 
free: 

For any universally quantified sentence (Vu) (... u.. .), the Substitution 
Instance of the sentence, with the name s substituted for the variable u, is 
(...8.. )), the sentence formed by dropping the initia] universal quanti- 
fier and writing s for alj free occurrences of u in (. . .u.. ). 

For any existentially quantified sentence (du) (. ..u . . .), the Substitution 
Instance of the sentence, with the name s substituted for the variable u, is 
(...8. . .), the sentence formed by dropping the initia] existentia] quanti- 
fier and writing s for all free occurrences of u in (. ..u. . .). 

For example, look back at (13). Its substitution instance with 'c' substi- 
tuted for ‘x’ is 

(16) (3x)(Bx v Lxa) D (Bc & Lcb) 
2 3 4 5 6 

The occurrences of ‘x’ at 3 and 4 are not free in the sentence which re- 

sults from (13) by dropping the initial quantifier. So we don’t substitute 
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‘c for ‘x’ at 3 and 4. We substitute ‘c’ only at the free occurrences, which 

were at 5 and 6. 
Can you see why, when we form substitution instances, we pay attention 

only to the occurrences which are free after dropping the outermost 
quantifier? The occurrences at 3 and 4, bound by the ‘(4x)’ quantifier at 
2, have nothing to do with the outermost quantification. When forming 
substitution instances of a quantified sentence, we are concerned only 
with the outermost quantifier and the occurrences which it binds. 
To help make this clear, once again consider (15), which is equivalent 

to (13). In (15), we have no temptation to substitute 'c' for ‘z’ when form- 

ing the ‘c’-substitution instance for the sentence at a whole. (15) says that 
there is some x such that so on and so forth about x. In making this true 
for some specific x, say c, we do not touch the occurrences of ‘z’. The 

internal ‘z’-quantified sentence is just part of the so on and so forth which 
is asserted about x in the quantified form of the sentence, that is, in (15). 

So the internal ‘z’-quantified sentence is just part of the so on and so forth 
which is asserted about c in the substitution instance of the sentence. 
Finally, (13) says exactly what (15) says. So we treat (13) in the same way. 
Now let's straighten out the definition of truth of a sentence in an inter- 

pretation. Can you guess what the problem is with our old definition? Ill 
give you a clue. Try to determine the truth value of 'Lxe' in the interpre- 
tation of figure 2-1. You can't do it! Nothing in our definition of an inter- 
pretation gives us a truth value for an atomic sentence with a free vari- 
able. An interpretation only gives truth values for atomic sentences which 
use no variables. You will have just as much trouble trying to determine 
the truth value of '(Vx)Lxy' in any interpretation. A substitution instance 
of ‘(Wx)Lxy’ will still have the free variable ‘y’, and no interpretation will 
assign such a substitution instance a truth value. 
Two technical terms (mentioned in passing in chapter 1) will help us in 

talking about our new problem: 

A sentence with one or more free variables is called an Open Sentence. 

A sentence which is not open (i.e., a sentence with no free variables) is called 
a Closed Sentence. 

In a nutshell, our problem is that our definitions of truth in an inter- 
pretation do not specify truth values for open sentences. Some logicians 
deal with this problem by treating all free variables in an open sentence 
as if they were universally quantified. Others do what I will do here: We 
simply say that open sentences have no truth value. 

If you think about it, this is really very natural. What, anyway, is the 
truth value of the English “sentence” ‘He is blond.', when nothing has 
been said or done to give you even a clue as to who ‘he’ refers to? In such 
a situation you can't assign any truth value to ‘He is blond.’ ‘He is blond.’ 
functions syntactically as a sentence—it has the form of a sentence. But 
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there is still something very problematic about it. In predicate logic we 
allow such open sentences to function syntactically as sentences. Doing. 
this is very useful in making clear how longer sentences get built up from 

shorter ones. But open sentences never get assigned a truth value, and in 
this way they fail to be full-fledged sentences of predicate logic. 

It may seem that I am dealing with the problem of no truth value for 
open sentences by simply ignoring the problem. 1n fact, as long as we 
acknowledge up-front that this is what we are doing, saying that open 
sentences have no truth value is a completely adequate way to proceed. 
We have only one small detail to take care of. As 1 stated the definitions 

of truth of quantified sentences in an interpretation, the definitions were 
said to apply to any quantified sentences. But they apply only to closed 
sentences. So we must write in this restriction: 

A universally quantified closed sentence is true in an interpretation just in 
case all of the sentence's substitution instances, formed with names in the 
interpretation, are true in the interpretation. 

An existentially quantified closed sentence is true in an interpretation just 
in case some (i.e., one or more) of the sentence’s substitution instances, 

formed with names in the interpretation, are true in the interpretation. 

These two definitions, together with the rules of valuation given in 
chapters 1 and 4 of volume I for the sentence logic connectives, specify a 
truth value for any closed sentence in any of our interpretations. 

You may remember that in chapter | in volume I we agreed that sen- 
tences of logic would always be true or false. Sticking by that agreement 
now means stipulating that only the closed sentences of predicate logic 
are real sentences. As I mentioned in chapter | in this volume, some lo- 
gicians use the phrase Formulas, or Propositional Functions for predicate 
logic open sentences, to make the distinction clear. I prefer to stick with 
the word ‘sentence’ for both open and closed sentences, both to keep ter- 
minology to a minimum and to help us keep in mind how longer (open 
and closed) sentences get built up from shorter (open and closed) sen- 
tences. But you must keep in mind that only the closed sentences are full- 
fledged sentences with truth values. 

EXERCISES 

3-2. Write a substitution instance using ‘a’ for each of the following 
sentences: 

a) (Wy)(x)Lxy b) (dz[(Vx)Bx v Bz] 

€) (dx)[Bx = (Vx)(Lax v Bx)] 

d) (Vy)[(Gx)(Bx D By) & (Wx)(By D Bx)] 

e) (Vyl(3x)Bx v [(Gy)By D Lyy}} 
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f) (Vy)(3x)(Rxy D Dy) D Ryx] 
g) (Vx(Vy(Vzl[Sxy v (Hz D Lxz)] = (Scx & Hy) 
h) (dxy(Vz)(Pxa D Kz) & (Jy)[(Pxy v Kc) & Pxx]) 

i) (Az)(Wy){{(4x)Mzx v (3x)(Mxy D Myz)] & (Jx)Mzx) 
P (VxM[(Vx)Rxa D Rxb] v [(3x)(Rex v Rxa) D Rxx] 

3—3. If u does not occur free in X, the quantifiers (Vu) and (Au) are 

said to occur Vacuously in (Vu)X and (du)X. Vacuous quantifiers 
have no effect. Let's restrict our attention to the special case in which 
X is closed, so that it has a truth value in any of its interpretations. 
The problem I want to raise is how to apply the definitions for in- 
terpreting quantifiers to vacuously occurring quantifiers. Because 
truth of a quantified sentence is defined in terms of substitution 
instances of (Vu)X and (du)X, when u does not occur free in X, 

we most naturally treat this vacuous case by saying that X counts 

as a substitution instance of (Vu)(X) and (Ju)(X). (If you look back 

at my definitions of 'substitution instance', you will see that they 
really say.this if by ‘for all free occurrences of u' you understand ‘for 
no occurrences of u' when u does not occur free in X at all. In any 
case, this is the way you should understand these definitions when u 
does not occur free in X.) With this understanding, show that 
(Vu)X, (Ju)X, and X all have the same truth value in any interpre- 

tation of X. 

3—4. a) As I have defined interpretation, every object in an inter- 
pretation has a name. Explain why this chapter's definitions of truth 
of existentially and universally quantified sentences would not work 
as intended if interpretations were allowed to have unnamed objects. 

b) Explain why one might want to consider interpretations with un- 
named objects. 

In part II we will consider interpretations with unnamed objects and 
revise the definitions of truth of quantified sentences accordingly. 

3-4. SOME LOGICAL EQUIVALENCES 

The idea of logical equivalence transfers from sentence logic to predicate 
logic in the obvious way. In sentence logic two sentences are logically 
equivalent if and only if in all possible cases the sentences have the same 
truth value, where a possible case is just a line of the truth table for the 
sentence, that is, an assignment of truth values to sentence letters. All we 
have to do is to redescribe possible cases as interpretations: 

Two closed predicate logic sentences are Logically Equivalent if and only if in 
each of their interpretations the two sentences are either both true or both 
false. 
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Notice that I have stated the definition only for closed sentences. In- 
deed, the definition would not make any sense for open sentences because 
open sentences don't have truth values in interpretations. Nonetheless, 

one can extend the idea of logical equivalence to apply to open sentences. 
That's a good thing, because otherwise the law of substitution of logical 
equivalents would break down in predicate logic. We won't be making 
much use of these further ideas in this book, so I won't hold things up 
with the details. But you might amuse yourself by trying to extend the 
definition of logical equivalence to open sentences in a way which will 
make the law of substitution of logical equivalents work in just the way 
you would expect. 

Let us immediately take note of two equivalences which will prove very 
useful later on. By way of example, consider the sentence, ‘No one loves 
Eve’, which we transcribe as ‘~(4x)Lxe’, that is, as ‘It is not the case that 

someone loves Eve'. How could this unromantic situation arise? Only if 
everyone didn't love Eve. In fact, saying '—(3x)Lxe' comes to the same 
thing as saying ‘(Wx)~Lxe’. If there is not a single person who does love 
Eve, then it has to be that everyone does not love Eve. And conversely, if 
positively everyone does not love Eve, then not even one person does love 
Eve. 

There is nothing special about the example I have chosen. If our sen- 
tence is of the form —(Ju)(. . .u. . .), this says that there is not a single 

u such that so on and so forth about u. But this comes to the same as 
saying about each and every u that so on and so forth is not true about 
u, that is, that (Vu)-(. . .u. . .). 

We can easily prove the equivalence of —(du)... u ...) and 
(Wu)~(. .. u. . .) by appealing to De Morgan’s laws. We have to prove 
that these two sentences have the same truth value in each and every 
interpretation. In any one interpretation, —(du)(. . . u . . .) is true just 
in case the negation of the disjunction of the instances 

—T7[C ..a23. . ) v C .. b... ) vC ..c.. ) v... ] 

is true in the interpretation, where we have included in the disjunction all 
the instances formed using names which name things in the interpreta- 
tion. By De Morgan's laws, this is equivalent to the conjunction of the 
negation of the instances 

—7(...a.. )&—-( ..b..)&-(..c..)&... 

which is true in the interpretation just in case (Vu)~(. . .u . . .) is true 

in the interpretation. Because this is true in all interpretations, we see that 

Rule ~J: —(Ju). ..u. . .) is logically equivalent to (Vu)~(. . .u. . .). 

Now consider the sentence 'Not everyone loves Eve, which we tran- 
scribe as ‘~(Wx)Lxe’. If not everyone loves Eve, then there must be some- 
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one who does not love Eve. And if there is someone who does not love 

Eve, then not everyone loves Eve. So ‘~(Wx)Lxe’ is logically equivalent to 
‘(Ax)~Lxe’. 

Pretty clearly, again there is nothing special about the example. 
—(Vuy. ..u.. .) is logically equivalent to (Au)~(. . .u. . .). If it is not 

the case that, for all u, so on and so forth about u, then there must be 

some u such that not so on and so forth about u. And, conversely, if there 

is some u such that not so on and so forth about u, then it is not the case 

that for all u, so on and so forth about u. In summary 

Rule ~Y: —(Vu). . .u. . .) is logically equivalent to (du)-(. . .u. . ). 

You can easily give a proof of this rule by imitating the proof of the 
rule —3. But I will let you write out the new proof as an exercise. 

EXERCISES 

3—5. a) Give a proof of the rule of logical equivalence, —V. Your 
proof will be very similar to the proof given in the text for the 
rule —3. 

b) The proof for the rule —3 is flawed! It assumes that all interpre- 
tations have finitely many things in their domain. But not all inter- 
pretations are finite in this way. (Exercise 2—5 gives an example of 
an infinite interpretation.) The problem is that the proof tries to talk 
about the disjunction of all the substitution instances of a quantified 
sentence. But if an interpretation is infinite, there are infinitely 
many substitution instances, and no sentence can be infinitely long. 

Since I instructed you, in part (a) of this problem, to imitate the 
proof in the text, probably your proof has the same problem as 
mine. 

Your task is to correct this mistake in the proofs. Give informal 
arguments for the rules —3 and ~V which take account of the fact 
that some interpretations have infinitely many things in their do- 
main. 

3—6. In the text I defined logical equivalence for closed sentences of 
predicate logic. However, this definition is not broad enough to en- 
able us to state a sensible law of substitution of logical equivalents 
for predicate logic. Let me explain the problem with an example. 
The following two sentences are logically equivalent: 

(i) -—(Vx)(Vy)Lxy 

(2) (Ax)(y)~Lxy 
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But we cannot prove that (1) and (2) are logically equivalent with the 

rule —V as I have stated it. Here is the difficulty. The rule — V tells 
us that (1) is logically equivalent to 

(8) (3x)-(Vy)Lxy 

What we would like to say is that —(Vy)Lxy is logically equivalent to 
(Ay)~Lxy, again by the rule ~V. But the rule ~Y does not license 

this because I have defined logical equivalence only for closed sen- 
tences and ‘~(Vy)Lxy’ and '(Jy)-Lxy' are open sentences. (Strictly 
speaking, I should have restricted the ~V and —3 rules to closed 

sentences. I didn't because I anticipated the results of this exercise.) 

Since open sentences are never true or false, the idea of logical 
equivalence for open sentences does not make any sense, at least not 
on the basis of the definitions I have so far introduced. 

Here is your task: 

a) Extend the definition of logical equivalence for predicate logic 
sentences so that it applies to open as well as closed sentences. Do 
this in such a way that the law of substitution of logical equivalents 
will be correct when one open sentence is substituted for another 
when the two open sentences are logically equivalent according to 
your extended definition. 

b) Show that the law of substitution of logical equivalents works 
when used with open sentences which are logically equivalent ac- 
cording to your extended definition. 
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CHAPTER SUMMARY EXERCISES 

Here are this chapter's important terms. Check your understanding 
by writing short explanations for each, saving your results in your 
notebook for reference and review. 

a) Bound Variables 

b) Free Variables 

c) Scope 

d) Closed Sentence 

e) Open Sentence 

f) Truth of a Sentence in an Interpretation 
g) Rule ~3 

h) Rule ~V 



| Transcription 

4-1. RESTRICTED QUANTIFIERS 

For three chapters now I have been merrily transcribing ‘(4x)’ both as 
‘something’ and ‘someone’, and I have been transcribing ‘(Wx)’ both as 
‘everything’ and ‘everyone.’ I justified this by saying that when we talked 
only about people we would restrict the variables ‘x’, ‘y’, etc. to refer only 
to people, and when we talked about everything, we would let the vari- 
ables be unrestricted. It is actually very easy to make precise this idea of 
restricting the universe of discourse. If we want the universe of discourse 
to be restricted to people, we simply declare that all the objects in our 
interpretations must be people. If we want a universe of discourse con- 
sisting only of cats, we declare that all the objects in our interpretations 
must be cats. And so on. 

As I mentioned, this common practice is not fully satisfactory. What if 
we want to talk about people and things, as when we assert, ‘Everyone 
likes sweet things.’? Restricted quantifiers will help us out here. They also 
have the advantage of getting what we need explicitly stated in the pred- 
icate logic sentences themselves. 

We could proceed by using ‘(Ax)’ and ‘(Vx)’ to mean ‘something’ and 
‘everything’ and introduce new quantifiers for ‘someone’ and ‘everyone’. 
To see how to do this, let’s use the predicate ‘P’ to stand for ‘is a person.’ 

40 
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Then we can introduce the new quantifier ‘(Ax)p’ to stand for some x 
chosen from among the things that are P, that is, chosen from among 
people. We call this a restricted quantifier. You should think of a re- 
stricted quantifier as saying exactly what an unrestricted quantifier says 
except that the variable is restricted to the things of which the subscripted 
predicate is true. With ‘P’ standing for ‘is a person’, ‘(Ax)p’ has the effect 

of ‘someone’ or ‘somebody’. We can play the same game with the univer- 
sal quantifier. ‘(Wx)p’ will mean all x chosen from among the things that 

are P. With ‘P’ standing for ‘is a person’, (‘Vx)p’ means, not absolutely 
everything, but all people, that is, everyone or everybody or anyone or 
anybody. 

This notion of a restricted quantifier can be useful for other things. 
Suppose we want to transcribe ‘somewhere’ and ‘everywhere’ or ‘some- 
times’ and ‘always’. Let’s use ‘N’ stand for ‘is a place’ or ‘is a location’. 
‘Somewhere’ means ‘at some place’ or ‘at some location’. So we can tran- 
scribe ‘somewhere’ as ‘(Ax)y’ and ‘everywhere’ as '(Vx)y'. For example, to 

transcribe ‘There is water everywhere’, I would introduce the predicate 
‘Wx’ to stand for ‘there is water at x’. Then '(Vx)uWx' says that there is 

water everywhere. Continuing the same strategy, let’s use ‘Q’ to stand for 
‘is a time’. Then ‘(4x)’ stands for 'sometime(s) and '(Vx)o' stands for 
‘always’ (‘at all times’). 

In fact, we can also use the same trick when English has no special word 
corresponding to the restricted quantifier. Suppose I want to say some- 
thing about all cats, for example, that all cats are furry. Let ‘Cx’ stand for 
‘x is a cat’ and ‘Fx’ stand for ‘x is furry’. Then '(Vx)cFx' says that all things 
which are cats are furry; that is, all cats are furry. Suppose I want to say 
that some animals have tails. Using ‘Ax’ for ‘x is an animal’ and ‘Txy’ for 
‘x is a tail of y’, I write (dx)A(Jy)Tyx': There is an animal, x, and there is 
a thing, y, such that y is a tail of x. 

As you will see, restricted quantifiers are very useful in figuring out 
transcriptions, but there is a disadvantage in introducing them as a new 
kind of quantifier in our system of logic. If we have many different kinds 
of quantifiers, we will have to specify a new rule for each of them to tell 

us the conditions under which a sentence formed with the quantifier is 
true. And when we get to checking the validity of arguments, we will have 
to have a new rule of inference to deal with each new quantifier. We 
could state the resulting mass of new rules in a systematic way. But the 
whole business would still require a lot more work. Fortunately, we don't 
have to do any of that, for we can get the full effect of restricted quanti- 
fiers with the tools we already have. 

Let's see how to rewrite subscripted quantifiers. Consider the restricted 
quantifier '(Jx)c', which says that there is cat such that, or there are cats 
such that, or some cats are such that. We say ‘some cats are furry’ (or 

‘there is a furry cat’ or the like) with '(dx)cFx'. Now what has to be true 
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for it to be true that some cats are furry, or that there is a furry cat? 
There has to be one or more things that is both a cat and is furry. If there 
is not something which is both a cat and is furry, it is false that there is a 
furry cat. So we can say that some cats are furry by writing '(dx)(Cx & 

Fx)’. In short, we can faithfully rewrite '(dx)cFx' as '(dx)(Cx & Fx)’. This 
strategy will work generally: 

Rule for rewriting Subscripted Existential Quantifiers: For any predicate S, 
any sentence of the form (du). .. u. . .) is shorthand for (Ju)Su & 
(...u.. )]. 

Here are some examples: 

Some cats are blond.  (Jx)cBx (3x)(Cx & Bx) 
Eve loves a cat. |... (Ax)cLex (3x)(Cx & Lex) 

Eve loves a furry cat. (3x)c(Fx & Lex) (3x)[Cx & (Fx & Lex)] 

Clearly, we can proceed in the same way with 'someone' and 'some- 
body’: 

Someone loves Eve. (Ax)pLxe (Ax)(Px & Lxe) 

Somebody loves Eve or Adam. (3x)p(Lxe v Lxa) (dx)[Px &(Lxe v Lxa)] 

If somebody loves Eve, then Eve loves somebody. 
(3x)pLxe D (3x)(Px & Lxe) D (3x)(Px & Lex 

(3x)pLex 

Notice that in the last example I used the rule for rewriting the subscript 
on each of two sentences X and Y, inside a compound sentence, X D Y. 

. How should we proceed with restricted universal quantifiers? This is a 
little tricky. Let's work on '(Vx)cFx'—that is, ‘All cats are furry’. Under 

what conditions is this sentence true? To answer the question, imagine 
that everything in the world is lined up in front of you: All the cats, dogs, 
people, stones, basketballs, everything. You go down the line and examine 

the items, one by one, to determine whether all cats are furry. If the first 

thing in line is a dog, you don't have to determine whether or not it is 
furry. If the second thing is a basketball, you don't have to worry about it 
either. But as soon as you come to a cat you must examine it further to 

find out if it is furry. When you finally come to the end of the line, you 
will have established that all cats are furry if you have found of each thing 
that, if it is a cat, then it is furry. In short, to say that all cats are furry is 

to say '(Vx)(Cx D Fx)’. 

At this point, many students balk. Why, they want to know, should we 

rewrite a restricted universal quantifier with the ‘D’ when we rewrite a 
restricted existential quantifier with the '&'? Shouldn't '&' work also for 

restricted universal quantifiers? Well, I'm sorry. It doesn't. That is just 
not what restricted universal quantifiers mean. 



4—1. Restricted Quantifiers 43 

You can prove this for yourself by trying to use ‘&’ in rewriting the 
subscripted ‘C’ in our transcription of ‘All cats are furry.’ You get 

(1 (Wx)(Cx & Fx) 

What does (1) say? It says that everything is a furry cat, and in particular 
that everything is a cat! That’s much too strong. All cats could be furry 
even though there are lots of things which are not cats. Thus ‘All cats are 
furry’ could be true even when (1) is false, so that (1) cannot be the right 
way to rewrite '(Vx)cFx'. 

What has gone wrong? The unrestricted universal quantifier applies to 
everything. So we can use conjunction in expressing the restriction of cats 
only if we somehow disallow or except the cases of noncats. We can do 
this by saying that everything is either not a cat or is a cat and is furry: 

(2) (Vx) Cx v (Cx & Fx)] 

(2) does indeed say what 'All cats are furry' says. So (2) should satisfy your 
feeling that an '&' also comes into the restricted universal quantifier in 
some way. But you can easily show that (2) is logically equivalent to 

'(Vx)(Cx D Fx)'! As the formulation with the ‘D’ is more compact, and is 
also traditional, it is the one we will use. 

In general, we rewrite restricted universal quantifiers according to the 
rule 

Rule for rewriting Subscripted Universal Quantifiers: For any predicate S, 
any sentence of the form (Vu). . . u . . .) is shorthand for (Vu)[Su D 
(..u..J] 

Here are some examples to make sure you see how this rule applies: 

Eve loves all cats. (Vx)c(Lex)  (Vx)(Cx D Lex) 

Everybody loves Eve. (Wx)pLxe (Vx)(Px 2 Lxe) 

Everyone loves either Adam or Eve. 
(Wx)p(Lxa v Lxe) (Vx)[Px D (Lxa v Lxe)] 

Not everyone loves both Adam and Eve. 
~(Vx)p(Lxa & Lxe)  —(Vx)[Px D (Lxa & Lxe)] 

In the last example, I used the rewriting rule on a sentence, X, inside a 
negated sentence of the form ~X. 

If you are still feeling doubtful about using the ‘D’ to rewrite restricted 
universal quantifiers, I have yet another way to show you that this way of 
rewriting must be right. I am assuming that you agree that our way of 
rewriting restricted existential quantifiers is right. And I will use a new 
rule of logical equivalence. This rule tells us that the same equivalences 
that hold for negated unrestricted universal quantifiers hold for negated 
restricted universal quantifiers. In particular, saying that not all cats are 
furry is clearly the same as saying that some cat is not furry. In general 
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Rule ~Vs: A sentence of the form ~(Vu)s(. . .u.. . .) is logically equiva- 
lent to (du)g~(. ..u.. .). 

You can prove this new rule along the same lines we used in proving the 
rule ~V. 
Now, watch the following chain of logical equivalents: 

1 (Vug(. ..u..) 

2 ~~(Vu)s(. ..u...) DN 

3 ~(du)s~(. Uu... ) ~Vs 

4 —(3Juj[Su & —(...u.. .)] Rule for rewriting (Ju); 

5 —(dJu)-—[Su & —(. ..u. . )] DN 

6 ~(du)~[~Suv(...u.. )] DM, DN 

7 —-(duj-[Su D (. ..u.. )] C 

8 ~~(Vu)[Su D(...u...)] ~J 

9 (VujSu2(...u.. )] DN 

Since the last line is logically equivalent to the first, it must be a correct 
way of rewriting the first. 

If you are having a hard time following this chain of equivalents, let me 
explain the strategy. Starting with a restricted universal quantifier, I turn 
it into a restricted existential quantifier in lines 2 and 3 by using double 
denial and pushing one of the two negation signs through the restricted 
quantifier. I then get line 4 by using the rule we have agreed on for 
rewriting restricted existential quantifiers. Notice that I: am applying this 
rule inside a negated sentence, so that here (and below) I am really using 
substitution of logical equivalents. In lines 5, 6, and 7 I use rules of logical 
equivalence to transform a conjunction into a conditional. These steps are 
pure sentence logic. They involve no quantifiers. Line 8 comes from line 
7 by pushing the negation sign back out through what is now an unre- 
stricted existential quantifier, changing it into an unrestricted universal 
quantifier. Finally, in line 9, I drop the double negation. It's almost like 
magic! 

EXERCISES 

4—I. Give an argument which shows that the rule ~Vs is correct. 

Similarly, show that 

Rule —3x: a sentence of the form —(du)s. . . u . . .) is logically - 
equivalent to (Vu)s~(. . .u. . -). 

is also correct. 
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4-2. Use the rule —3,s to show that, starting from the rule for re- 
writing subscripted universal quantifiers, you can derive the rule for 
rewriting subscripted existential quantifiers. Your argument will 
closely follow the one given in the text for arguing the rule for re- 
writing subscripted universal quantifiers from the rule for rewriting 
subscripted existential quantifiers. 

4-3. Transcribe the following English sentences into the language of 
predicate logic. Use this procedure: In a first step, transcribe into a 
sentence using one or more subscripted quantifiers. Then rewrite 
the resulting sentence using the rules for rewriting subscripted 
quantifiers. Show both your first and second steps. Here are two 

examples of sentences to transcribe and the two sentences to present 
in presenting the problem: 

Someone loves Eve. All cats love Eve. 

(Ax)pLxe (Vx)cLxe 

(Ax)(Px & Lxe) (Vx)(Cx 2 Lxe) 

Transcription Guide 
e: Eve Dx: x is a dog 

Px: xisaperson Bx: x is blond 
Cx: xis acat Lxy: x loves y 

a) Everyone loves Eve. 

b) Eve Joves somebody. 

c) Eve loves everyone. 

d) Some cat Joves some dog. 

e) Somebody is neither a cat nor a dog. 

f) Someone blond Joves Eve. 

g) Some cat is blond. 

h) Somebody loves all cats. 

i) Nocat is a dog. 
j Someone loves someone. 

k) Everybody loves everyone. 

D) Someone loves everyone. 

m) Someone is loved by everyone. 
n) Everyone loves someone. 

o) Everyone is loved by somebody. 

4-2. TRANSCRIBING FROM ENGLISH INTO LOGIC 

Transcribing into the language of predicate logic can be extremely diffi- 
cult. Actually, one can do logic perfectly well without getting very good at 
transcription. But transcriptions into logic provide one of predicate logic’s 
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important uses. This is because, when it comes to quantification, English 
is often extremely confusing, ambiguous, and even downright obscure. 
Often we can become clearer about what is being said if we put a state- 
ment into logic. Sometimes transcribing into logic is a must for clarity and 
precision. For example, how do you understand the highly ambiguous 
sentence, 'All of the boys didn't kiss all of the girls.'? I, for one, am lost 
unless I transcribe into logic. 

Before we get started, I should mention a general point. Just as 
in the case of sentence logic, if two predicate logic sentences are logically 
equivalent they are both equally good (or equally bad!) transcriptions 

of an English sentence. Two logically equivalent sentences share the 
same truth value in all possible cases (understood as all interpretations), 
and in this sense two logically equivalent sentences "say the same thing." 
But if two predicate logic sentences say the same thing, then to the extent 
that one of them says what an English sentence says, then so does the 
other. ) 
We are going to be looking at quite a few examples, so let's agree on a 

transcription guide: 

Transcription Guide 

a: Adam Px: xisa person 
J: The lights will be on Rx: xisa registered voter 

Ax: xisan adult Vx: x has the right to vote 
Bx: x is a boy Kxy: x kissed y 
Cx: x is a cat Lxy: x loves y 
Dx: x is a dog Mxy: x is married to y 

Fx: xcanrun a 3:45 mile Oxy: x owns y 

Gx: x is a girl Txy: xis a tail of y 

Hx: x is at home 

Take note of the fact that in giving you a transcription guide, I have been 
using open sentences to indicate predicates. For example, I am using the 
open sentence ‘Px’ to indicate the predicate ‘is a person.’ The idea of 
using an open sentence to indicate a predicate will soon become very 
useful. 
To keep us focused on the new ideas, I will often use subscripts on 

restricted quantifiers. However, you should keep in mind that complete 
transcriptions require you to rewrite the subscripts, as explained in the 
last section. 
Now let's go back and start with the basics. '(Vx)(Cx D Fx)’ transcribes 

‘all cats are furry,’ ‘Every cat is furry,’ ‘Any cat is furry,’ and ‘Each cat is 
furry.’ This indicates that 

Usually, the words ‘all’, ‘every’, ‘any’, and ‘each’ signal a universal quantifier. 
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Let's make a similar list for the existential quantifier. '(dx)(Cx & Fx) 

transcribes ‘Some cat is furry’, ‘Some cats are furry,’ ‘At least one cat is 

furry’, ‘There is a furry cat,’ and ‘There are furry cats’: 

Usually, the expressions ‘some’, ‘at least one’, ‘there is’, and ‘there are’ signal 
an existential quantifier. 

These lists make a good beginning, but you must use care. There are 
no hard and fast rules for transcribing English quantifier words into 
predicate logic. For starters, ‘a’ can easily function as a universal or an 
existential quantifier. For example, ‘A car can go very fast.’ is ambiguous. 
It can be used to say either that any car can go very fast or that some car 
can go very fast. 

To make it clearer that ‘a’ can function both ways, consider the follow- 
ing examples. You probably understand ‘A man is wise.’ to mean that 
some man is wise. But most likely you understand ‘A dog has four legs.’ 

to mean that all dogs have four legs. Actually, both of these sentences are 
ambiguous. In both sentences, ‘a’ can correspond to ‘all’ or ‘some’. You 
probably didn’t notice that fact because when we hear an ambiguous sen- 
tence we tend to notice only one of the possible meanings. If a sentence 
is obviously true when understood with one of its meanings and obviously 
false when understood with the other, we usually hear the sentence only 
as making the true statement. So if all the men in the world were wise, 
we would take ‘A man is wise.’ to mean that all men are wise, and if only 
one dog in the world had four legs we would take ‘A dog has four legs.’ 
to mean that some dog has four legs. 

It is a little easier to hear ‘A car can go very fast.’ either way. This is 
because we interpret this sentence one way or the other, depending on 
how fast we take ‘fast’ to be. If ‘fast’ means 30 miles an hour (which is 

very fast by horse and buggy standards), it is easy to hear ‘A car can go 
very fast.’ as meaning that all cars can go very fast. If “fast’ means 180 
miles an hour it is easy to hear ‘a car can go very fast.’ as meaning that 
some car can go very fast. 

‘A’ is not the only treacherous English quantifier word. ‘Anyone’ usually 
gets transcribed with a universal quantifier. But not always. Consider 

(3) 1f anyone is at home, the lights will be on. 

(4) 1f anyone can run a 3:45 mile, Adam can. 

We naturally hear (3), not as saying that if everyone is at home the lights 
will be on, but as saying that if someone is at home the lights will be on. 
So a correct transcription is 

(3a) (Ax)pHx DJ 



48 Transcription 

Likewise, by (4), we do not ordinarily mean that if everyone can run a 

3:43 mile, Adam can. We mean that if someone can run that fast, Adam 
can: 

(4a) (dx)Fx D Fa 

At least that's what one would ordinarily mean by (4). However, I think 
that (4) actually is ambiguous. I think 'anyone' in (4) could be understood 
as ‘everyone’. This becomes more plausible if you change the ‘3:45 mile’ 
to ‘10-minute mile’. And it becomes still more plausible after you consider 
the following example: ‘Anyone can tie their own shoe laces. And if any- 
one can, Adam can.’ 

Going back to (3), one would think that if (4) is ambiguous, (3) should 
be ambiguous in the same way. I just can’t hear an ambiguity in (3). Can 
you? 

‘Someone’ can play the reverse trick on us. Usually, we transcribe it with 
an existential quantifier. But consider 

(5) Someone who is a registered voter has the right to vote. 

We naturally hear this as the generalization stating that anyone who is a 
registered voter has the right to vote. Thus we transcribe it as 

(5a) (Wx)p(Rx D Vx) 

As in the case of (4), which uses ‘anyone’, we can have ambiguity in 
sentences such as (5), which uses ‘someone’. If you don’t believe me, imag- 
ine that you live in a totalitarian state, called Totalitarania. In Totalitar- 
ania, everyone is a registered voter. But voter registration is a sham. In 
fact, only one person, the boss, has the right to vote. As a citizen of 
Totalitarania, you can still truthfully say that someone who is a registered 
voter (namely, the boss) has the right to vote. (You can make this even 

clearer by emphasizing the word ‘someone: ‘someone who is a registered 
voter has the right to vote.’) In this context we hear the sentence as saying 

(5b) (Ax)p(Rx & Vx) 

Ambiguity can plague transcription in all sorts of ways. Consider an 
example traditional among linguists: 

(6) All the boys kissed all the girls 

This can easily mean that each and every one of the boys kissed each and 
every one of the girls: 

(6a) (Vx)k(Vy)cKxy 
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But it can also mean that each of the boys kissed some girls so that, finally, 
each and every girl got kissed by some boy: 

(6b) (Vx)&3y)cKxy & (Vy)c(dx)sKxy 

If you think that was bad, things get much worse when multiple quan- 
tifiers get tangled up with negations. Consider 

(7) All the boys didn’t kiss all the girls. 

Everytime I try to think this one through, I blow a circuit. Perhaps the 
most natural transcription is to take the logical form of the English at face 
value and take the sentence to assert that of each and every boy it is true 
that he did not kiss all the girls; that is, for each and every boy there is at 
least one girl not kissed by that boy: 

(7a) (Wx)p~(Vy)cKxy, or (Vx)&(Jy)g—-Kxy 

But one can also take the sentence to mean that each and every boy re- 
frained from kissing each and every girl, that is, didn’t kiss the first girl 
and didn’t kiss the second girl and not the third, and so on. In yet other 
words, this says that for each and every boy there was no girl whom he 
kissed, so that nobody kissed anybody: 

(7b) (Wx)p(Vy)g~Kxy, or (Wx)p~(dy)cKxy, or —(3x)s(3y)cKxy 

We are still not done with this example, for one can also use (7) to 
mean that not all the boys kissed every single girl—that is, that some boy 
did not kiss all the girls, in other words that at least one of the boys didn’t 
kiss at least one of the girls: 

(7c) —(Vx)(Vy)cKxy, or (dx)g-(Vy)cKxy, or (dx)s(3y)c— Kxy 

It's worth an aside to indicate how it can happen that an innocent-look- 
ing sentence such as (7) can turn out to be so horribly ambiguous. Mod- 
ern linguistics postulates that our minds carry around more than one rep- 
resentation of a given sentence. There is one kind of structure that 
represents the logical form of a sentence. Another kind of structure rep- 
resents sentences as we speak and write them. Our minds connect these 
(and other) representations of a given sentence by making all sorts of 
complicated transformations. These transformations can turn represen- 
tations of different logical forms into the same representation of a spoken 
or written sentence. Thus one sentence which you speak or write can cor- 
respond to two, three, or sometimes quite a few different structures that 

carry very different meanings. In particular, the written sentence (7) cor- 
responds to (at least!) three different logical forms. (7a), (7b), and (7c) 
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don't give all the details of the different, hidden structures that can be 

transformed into (7). But they do describe the differences which show up 
in the language of predicate logic. 

You can see hints of all this if you look closely at (7), (7a), (7b), and 

(7c). In (7) we have two universal quantifier words and a negation. But 
since the quantifier words appear on either side of 'kissed', it's really not 
all that clear where the negation is meant to go in relation to the universal 
quantifiers. We must consider three possibilities. We could have the ne- 
gation between the two universal quantifiers. Indeed, that is what you see 
in (7a), in the first of its logically equivalent forms. Or we could have the 

negation coming after the two universal quantifiers, which is what you 
find in the first of the logically equivalent sentences in (7b). Finally, we 
could have the negation preceding both universal quantifiers. You see this 
option in (7c). In sum, we have three similar, but importantly different, 

structures. Their logical forms all have two universal quantifiers and a 
negation, but the three differ, with the negation coming before, between, 
or after the two quantifiers. The linguistic transformations in our minds 
connect all three of these structures with the same, highly ambiguous En- 
glish sentence, (7). 

Let’s get back to logic and consider some other words which you may 
find especially difficult to transcribe. I am always getting mixed up by 
sentences which use ‘only’, such as ‘Only cats are furry.’ So I use the strat- 
egy of first transcribing a clear case (it helps to use a sentence I know is 
true) and then using the clear case to figure out a formula. I proceed in 
this way: Transcribe 

(8) Only adults can vote. 

This means that anyone who is not an adult can’t vote, or equivalently 
(using the law of contraposition), anyone who can vote is an adult. So 
either of the following equivalent sentences provides a correct transcrip- 
tion: 

(8a) (Wx)p(~Ax D ~Vx) 

(8b) (Wx)p(Vx D Ax) 

This works in general. (In the following I used boldface capital P and 
Q to stand for arbitrary predicates.) Transcribe 

(9) Only Ps are Qs. 

either as 

(93) (Vx)(—Px D ~Qx) 
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Or as 

(9b) (Wx)(Qx D PX) 

Thus ‘Only cats are furry’ becomes (Vx)(Fx D Cx). 
‘Nothing’ and ‘not everything’ often confuse me also. We must carefully 

distinguish 

(10) Nothing is furry: (Vx)~Fx, or ~(4x)Fx 

and 

(11) Not everything is furry: ~(Vx)Fx, or (Ax)~Fx 

(The alternative transcriptions given in (10) and (11) are logically equiva- 

lent, by the rules ~(Wx) and ~(Ax) for logical equivalence introduced in 
section 3—4.) ‘Not everything’ can be transcribed literally as ‘not all x . . .’. 
‘Nothing’ means something different and much stronger. ‘Nothing’ 
means ‘everything is not . . . .' Be careful not to confuse ‘nothing’ with 
‘not everything.’ If the distinction is not yet clear, make up some more 
examples and carefully think them through. 

‘None’ and ‘none bur can also cause confusion: 

(12) None but adults can vote: (Wx)(~Ax D ~Vx) 

(13) None love Adam: (Wx)~Lxe 

‘None but’ simply transcribes as ‘only.’ When ‘none’ without the ‘but’ fits 
in grammatically in English you will usually be able to treat it as you do 
‘nothing’. ‘Nothing’ and ‘none’ differ in that we tend to use ‘none’ when 
there has been a stated or implied restriction of domain: “How many cats 
does Adam love? He loves none.” In this context a really faithful tran- 
scription of the sentence ‘Adam loves none.’ would be ‘(Wx)c~Lax’, or, 
rewriting the subscript, ‘(Wx)(Cx D ~Lax). 

Perhaps the most important negative quantifier expression in English is 
‘no’, as in 

(14) No cats are furry. 

To say that no cats are furry is to say that absolutely all cats are not furry, 
so that we transcribe (18) as 

(15) (Vx)c—Fx, that is, (Vx)(Cx D ~Fx) 

In general, transcribe 

(16) No Ps are Qx. 
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as 

(17) (Wx)p~Q, that is, (Vx)(P D ~Q) 

EXERCISES 

4—4. Transcribe the following English sentences into the language of 
predicate logic. Use subscripts if you find them helpful in figuring 
out your answers, but no subscripts should appear in your final an- 
swers. 

Transcription Guide 

a: Adam Fx: xis furry 

e: Eve Px: xisa person 
Ax: xisananimal Qx: x purrs 

Bx: xis blond Lxy: xloves y 
Cx: xisacat Sxy: xisasonofy 
Dx: xisadog Txy: x is tickling y 

a) Anything furry loves Eve. 
b) No cat is furry. 
c) Ifanyone loves Adam, Eve does. 
d) Eve does not love anyone. 
e) Nothing is furry. 
f) Adam, if anyone, is blond. 

g) Not all cats are furry. 
h) Some cats are not furry. 

i) No one is a cat. 

j) No cat is a dog. 

k) If something purrs, it is a cat. 
l) Not everything blond is a cat. 

m) A dog is not an animal. (Ambiguous) 
n) Not all animals are dogs. 

o) Only cats purr. 
p) Not only cats are furry. 

q) Any dog is not a cat. 

r) No blonds love Adam. 

s) None but blonds love Adam. 

t) Some dog is not a cat. 

u) Nothing furry loves anyone. 
v) Only cat lovers love dogs. (Ambiguous?) 

w) Ifsomeone is a son of Adam, he is blond. 

x) No son of Adam is a son of Eve. 
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y) Someone who is a son of Adam is no son of Eve. (Ambiguous) 

z) Each cat which loves Adam also loves Eve. 

aa) Not everyone who loves Adam also loves Eve. 

bb) Anyone who is tickling Eve is tickling Adam. 
cc) None but those who love Adam also love Eve. 

4—5. Give alternative transcriptions which show the ways in which 
the following sentences are ambiguous. In this problem you do not 
have to eliminate subscripts. (It is sometimes easier to study the am- 
biguity if we write these sentences in the compact subscript nota- 
tion.) 

3) Everyone loves someone. 

b) Someone loves everyone. 
€) Something is a cat if and only if Adam loves it. 
d) All cats are not furry. 
e) Not anyone loves Adam. 

4—6. In this section I discussed ambiguities connected with words 
such as ‘a’, ‘someone’, and ‘anyone.’ In fact, English has a great many 
sorts of ambiguity arising from the ways in which words are con- 
nected with each other. For example, ‘I won't stay at home to please 

you.' can mean that if I stay at home, I won't do it in order to please 
you. But it can also mean that I will go out because going out will 
please you. ‘Eve asked Adam to stay in the house.’ can mean that 
Eve asked Adam to remain in a certain location, and that location is 
the house. It can also mean that Eve asked Adam to remain in some 
unspecified location, and that she made her request in the house. 

For the following English sentences, provide alternative tran- 
scripts showing how the sentences are ambiguous. Use the transcrip- 
tion guides given for each sentence. 

a) Flying planes can be dangerous. (Px: x is a plane. Fx: x is flying. 
Dx: x can be dangerous. Ax: x is an act of flying a plane.) 

b) All wild animal keepers are blond. (Kxy: x keeps y. Wx: x is wild. 
Ax: x is an animal. Bx: x is blond.) 

c) Adam only relaxes on Sundays. (a: Adam. Rxy: x relaxes on day y. 
Lxy: x relaxes ("is lazy") all day long on day y. Sx: x is Sunday.) 

d) Eve dressed and walked all the dogs. (e: Eve. Cxy: x dressed y. Dx: 
x is a dog. Wxy: x walked y.) 

Linguists use the expression Structural Ambiguity for the kind of 
ambiguity in these examples. This is because the ambiguities have to 

do with alternative ways in which the grammatical structure of the 

53 



54 Transcription 

sentences can be correctly analyzed. Structural ambiguity contrasts 
with Lexical Ambiguity, which has to do with the ambiguity in the 
meaning of isolated words. Thus the most obvious ambiguity of 'I 
took my brother's picture yesterday.' turns on the ambiguity of the 
meaning of 'took' (stole vs. produced a picture). The ambiguity in- 
volved with quantifier words such as 'a', 'someone', and 'anyone' is 
actually structural ambiguity, not lexical ambiguity. We can see a 
hint of this in the fact that '(dx)Hx D J’ is logically equivalent to 
'(Vx)(Hx D J) and the fact that '(Vx)Hx D J’ is logically equivalent to 
(3x)(Hx D J), as you will prove later on in the course. 

4-3. TRANSCRIPTION STRATEGIES 

I'm going to turn now from particularly hard cases to general strategy. If 
you are transcribing anything but the shortest of sentences, don't try to 
do it all at once. Transcribe parts into logic, writing down things which 
are part logic and part English. Bit by bit, transcribe the parts still in 
English into logic until all of the English is gone. 

Let's do an example. Suppose we want to transcribe 

(18) Any boy who loves Eve is not a furry cat. 

(18) says of any boy who loves Eve that he is not a furry cat; that is, it says 
of all things, x, of which a first thing is true (that x is a boy who loves 
Eve) that a second thing is true (x is not a furry cat). So the sentence has 
the form (Wx)(Px D Q): 

(18a) (Vx)(x is a boy who loves Eve > x is not a furry cat) 

Now all you have to do is to fashion transcriptions of 'x is a boy who loves 
Eve' and of 'x is not a furry cat' and plug them into (18a): 

(18b) xis a boy who loves Eve: Bx & Lxe 

(18c) xis not a furry cat: ~(Fx & Cx) 

(Something which is not a furry cat is not both furry and a cat. Such a 
thing could be furry, or a cat, but not both.) Now we plug (18b) and (18c) 
into (182), getting our final answer: 

(18d) (Vx)[((Bx & Lxe) D —(dx & Cx)] 

Here is another way you could go about the same problem. Think of 
the open sentence 'Bx & Lxe' as indicating a complex one place predicate. 
'The open sentence 'Bx & Lxe' presents something which might be true 
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of an object or person such as Adam. For example, if the complex pred- 
icate is true of Adam, we would express that fact by writing in 'a' for 'x' 
in ‘Bx & Lxe’, giving ‘Ba & Lae’. Now, thinking of ‘Bx & Lxe' as a predi-^ 
cate, we can use the method of quantifier subscripts which we discussed 
in section 4—I. (18) is somewhat like a sentence which asserts that every- 

thing is not a furry cat. But (18) asserts this, not about absolutely every- 
thing, but just about all those things which have the complex property Bx 
& Lxe. So we can write (18) as a universally quantified sentence with the 

universal quantifier restricted by the predicate ‘Bx & Lxe’: 

a 8e) (Vx)æx & Lxe) ~ (Fx & Cx) 

Now you simply use the rule for rewriting subscripts on universal quan- 
tifiers, giving (18d). 

In yet a third way of working on (18), you could first use the method 
of subscripting quantifiers before transcribing the complex predicates into 
logic. Following this route you would first write. 

(18f) (Vx)& is a boy who loves Eve (X is not a furry cat) 

Now transcribe the English complex predicates as in (18b) and (18c), plug 

the results into (18f), giving (18e). Then you rewrite the subscript, giving 
(18d) as before. You have many alternative ways of proceeding. 

Generally, it is very useful to think of complex descriptions as complex 
predicates. In particular, this enables us to use two place predicates to 
construct one place predicates. We really took advantage of this technique 
in the last example. 'Lxy' is a two place predicate. By substituting a name 
for ‘y’, we form a one place predicate, for example, 'Lxe'. ‘Lxe’ is a one 
place predicate which is true of anything which loves Eve. 

Here is another useful way of constructing one place predicates from 
two place predicates. Suppose we need the one place predicate 'is mar- 
ried', but our transcription guide only gives us the two place predicate 
'Mxy', meaning that x is married to y. To see how to proceed, consider 
what it means to say that Adam, for example, is married. This is to say 

that there is someone to whom Adam is married. So we can say Adam is 

married with the sentence '(dy)May'. We could proceed in the same way 
to say that Eve, or anyone else, is married. In short, the open sentence 

'(3y)Mxy' expresses the predicate ‘x is married’. 
Here’s another strategy point: When ‘who’ or ‘which’ comes after a 

predicate they generally transcribe as ‘and’. As you saw in (18), the com- 
plex predicate ‘x is a boy who loves Eve’ becomes ‘Bx & Lxe’. The com- 
plex predicate ‘x is a dog which is not furry but has a tail’ becomes ‘Dx & 
(~Fx & (Ay)Tyxy’. 

When ‘who’ or ‘which’ comes after. a quantifier word, they indicate a 

subscript on the quantifier: ‘Anything which is not furry but has a tail’ 
should be rendered as (Wx)~Fx & ayryo. When the quantifier word itself 
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calls for a subscript, as does 'someone', you need to combine both these 

ideas for treating ‘who’: ‘Someone who loves Eve’ is the subscripted quan- 
tifier '(3x)p, & Lxe= 

Let’s apply these ideas in another example. Before reading on, see if 
you can use only ‘Cx’ for ‘x is a cat’, ‘Lxy’ for ‘x loves y’, and ‘Oxy’ for ‘x 
owns y’ and transcribe 

(19) Some cat owner loves everyone who loves themselves. 

Let’s see how you did. (19) says that there is something, taken from 

among the cat owners, and that thing loves everyone who loves them- 

selves. Using a subscript and the predicates ‘x is a cat owner’ and ‘x loves 
everyone who loves themselves’, (19) becomes 

(19a) (AX) ix is a cat owner(X loves everyone who loves themselves) 

Now we have to fashion transcriptions for the two complex English pred- 
icates used in (19a). Someone (or something) is a cat owner just in case 
there is a cat which they own: 

(19b) x is a cat owner: (Ay)(Cy & Oxy) 

To say that x loves everyone who loves themselves is to say that x loves, 
not absolutely everyone, but everyone taken from among those that are, 
first of all people, and second, things which love themselves. So we want 
to say that x loves all y, where y is restricted to be a person, Py, and 
restricted to be a self-lover, Lyy: 

(19c) x loves everyone who loves themselves: (Wy) py & tyyyLxy 

Putting the results of (19b) and (19c) into (19a), we get 

(19d) (AX) ayycy & oxy (VY) ry & LyyLxy] 

Discharging first the subscript of ‘(4x)’ with an '&' and then the subscript 

of ‘(Wy)’ with a ‘D’, we get 

(19e) (Ax){(Ay)(Cy & Oxy) & (Wy) ry & tyyLxy} 

(19f) (Ax){Gy)(Cy & Oxy) & (Wy)[(Py & Lyy) D Lxy]} 

This looks like a lot of work, but as you practice, you will find that you 
can do more and more of this in your head and it will start to go quite 
quickly. 

I'm going to give you one more piece of advice on transcribing. Sup- 
pose you start with an English sentence and you have tried to transcribe 
it into logic. In many cases you can catch mistakes by transcribing your 
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logic sentence back into English and comparing your retranscription with 
the original sentence. This check works best if you are fairly literal 
minded in retranscribing. Often the original and the retranscribed En- 
glish sentences will be worded differently. But look to see if they still seem 
to say the same thing. If not, you have almost certainly made a mistake in 
transcribing from English into logic. 

Here is an illustration. Suppose I have transcribed 

(20) 1f something is a cat, it is not a dog. 

(20a) (3x)(Cx D ~Dx) 

To check, I transcribe back into English, getting 

(20b) There is something such that if it is a cat, then it is not a dog. 

Now compare (20b) with (20). To make (20b) true it is enough for there 

to be one thing which, if a cat, is not a dog. The truth of (20b) is consis- 
tent with there being a million cat-dogs. But (20) is not consistent with 

there being any cat-dogs. I conclude that (20a) is a wrong transcription. 
Having seen that (20) is stronger than (20a), I try 

(20c) (Vx)(Cx D ~Dx) 

Transcribing back into English this time gives me 

(20d) Everything which is a cat is not a dog. 

which does indeed seem to say what (20) says. This time I am confident 
that I have transcribed correctly. 

(Is (20) ambiguous in the same way that (5) was? I don’t think so!) 
Here is another example. Suppose after some work I transcribe 

(21) Cats and dogs have tails. 

as 

(21a) (Wx)[(Cx & Dx) D (Jy)Txy] 

To check, I transcribe back into English: 

(21b) Everything is such that if it is both a cat and a dog, then it has a tail. 

Obviously, something has gone wrong, for nothing is both a cat and a 
dog. Clearly, (21) is not supposed to be a generalization about such imag- 
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inary cat-dogs. Having noticed this, I see that (21) is saying one thing 
about cats and then the same thing about dogs. Thus, without further 
work, I try the transcription 

(21c) (Vx)(Cx D (Jy)Txy) & (Vx)(Dx D (dy)Txy) 

To check (21c), I again transcribe back into English, getting 

(21d) If something is a cat, then it has a tail, and if something is a dog, 
then it has a tail. 

which is just a long-winded way of saying that all cats and dogs have 
tails—in other words, (21). With this check, 1 can be very confident that 

(21c) is a correct transcription. 

EXERCISES 

Use this transcription guide for exercises 4—7 and 4-8: 

a: Adam Fx: xis furry 
e: Eve Px: xisa person 

Ax: xis an animal Qx: x purrs 
Bx: xis blond Lxy: x loves y 
Cx: x is acat Sxy: x is ason of y 
Dx: x is a dog Txy: x is a tail of y 

Oxy: x owns y 

4—7. Transcribe the following sentences into English: 

a) (Ax)(Ay)(Px & Py & Sxy) 

b) ~(Ax)(Px & Ax) 
€) -—(Vx)Qx D (Fx & Cx)] 

d) (dx)[Qx & ~(Fx & Cx)] 

e) (Wx)~[Px & (Lxa & Lxe)] 

f) (Vx)[Px D ~(Lxa & Lxe)] 

g (Wx)(Wy)[(Dx & Cy) D Lxy] 
h) (Vx)Vy)[Dx D (Cy D Lxy)] 

i) (Gx)[Px & (Jy) (dz) (Py & Szy & Lxz)] 

j  Gho[Px & Gy ay (Pz & Syz & Lxz)] 
k)  (Wx}{[Bx & (Jy)(Fy & Txy)] D (dz)(Cz & Txz)} 
) (Wx(y)Sxy 2 [(32)(Cz & Lxz) = (Jz)(Dz & Lxz)]) 

4—8. Transcribe the following sentences into predicate logic. I have 
included some easy problems as a review of previous sections along 
with some real brain twisters. I have marked the sentences which 
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seem to me clearly ambiguous, and you should give different tran- 
scriptions for these showing the different ways of understanding the 
English. Do you think any of the sentences I haven't marked are also 
ambiguous? You should have fun arguing out your intuitions about 
ambiguous cases with your classmates and instructor. 

a) All furry cats purr. 

b) Any furry cat purrs. 
c) No furry cats purr. 
d) None of the furry cats purr. 

e) None but the furry cats purr. (Ambiguous?) 
f) Some furry cats purr. 
g) Some furry cats do not purr. 
h) Some cats and dogs love Adam. 

i) Except for the furry ones, all cats purr. 

j) Not all furry cats purr. 
k) Ifa catis furry, it purrs. 
l) A furry cat purrs. (Ambiguous) 

m) Only furry cats purr. 

n) Adam is not a dog or a cat. 

o) Someone is a son. 
p) Some sons are blond. 

q) Adam loves a blond cat, and Eve loves one too. 

r) Adam loves a blond cat and so does Eve. (Ambiguous) 

s) Eve does not love everyone. 
t Some but not all cats are furry. 

u) Cac love neither Adam nor Eve. 

v) Something furry loves Eve. 
w) Only people love someone. 

x) Some people have sons. 
y) Any son of Adam is a son of Eve. 

z) Adam is a son and everybody loves him. 
aa) No animal is furry, but some have tails. 
bb) Any furry animal has a tail. 

cc) No one has a son. 

dd) Not everyone has a son. 

ee) Some blonds love Eve, some do not. 

ff) Adam loves any furry cat. 

gg) All blonds who love themselves love Eve. 

hh) Eve loves someone who loves themself. 

ii) Anyone who loves no cats loves no dogs. 

jj) Cats love Eve if they love anyone. (Ambiguous) 

kk) If anyone has a son, Eve loves Adam. (Ambiguous) 

l) If anyone has a son, that person loves Adam. 
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mm) 

nn) 

00) 

pp) 

qq) 
rr) 

ss) 

tt) 

uu) 

vv) 
ww) 

xx) 

yy 
zz) 

aaa) 
bbb) 

ccc) 

ddd) 

eee) 

fff) 

ggg) 

hhh) 
iii) 

ii) 

kkk) 

Anyone who has a son loves Eve. 
If someone has a son, Adam loves Eve. 

If someone has a son, that person loves Adam. 
Someone who has a son loves Adam. (Ambiguous) 

All the cats with sons, except the furry ones, love Eve. 

Anyone who loves a cat loves an animal. 
Anyone who loves a person loves no animal. 

Adam has a son who is not furry. 
If Adam’s son has a furry son, so does Adam. 

A son of Adam is a son of Eve. (Ambiguous) 

If the only people who love Eve are blond, then nobody loves 
Eve. 

No one loves anyone. (Ambiguous) 
No one loves someone. (Ambiguous) 

Everyone loves no one. 

Everyone doesn’t love everyone. (Ambiguous!) 

Nobody loves nobody. (Ambiguous?) 
Except for the furry ones, every animal loves Adam. 

Everyone loves a lover. (Ambiguous) 

None but those blonds who love Adam own cats and dogs. 
No one who loves no son of Adam loves no son of Eve. 
Only owners of dogs with tails own cats which do not love 
Adam. 
None of Adam’s sons are owners of furry animals with no tails. 
Anyone who loves nothing without a tail owns nothing which is 
loved by an animal. 
Only those who love neither Adam nor Eve are sons of those 
who own none of the animals without tails. 
Anyone who loves all who Eve loves loves someone who is loved 
by all who love Eve. 

4—9. Transcribe the following sentences into predicate logic, making 
up your own transcription guide for each sentence. Be sure to show 
as much of the logical form as possible. 

a) 
b) 
C) 
d) 
€) 

f) 
8) 

h) 

No one likes Professor Snarf. 
Any dog can hear better than any person. 

Neither all Republicans nor all Democrats are honest. 
Some movie stars are better looking than others. 
None of the students who read A Modern Formal Logic Primer 
failed the logic course. 

Only people who eat carrots can see well in the dark. 

Not only people who eat carrots can see as well as people who eat 
strawberries. 

Peter likes all movies except for scary ones. 
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i) Some large members of the cat family can run faster than any 
horse. 

j) Not all people with red hair are more temperamental than those 
with blond hair. 

k) Some penny on the table was minted before any dime on the 
table. 

i) No pickle tastes better than any strawberry. 

m) John is not as tall as anyone on the basketball team. 

n) None of the pumpkins at Smith's fruit stand are as large as any 
of those on MacGreggor's farm. 

o) Professors who don't prepare their lectures confuse their stu- 
dents. 

p) Professor Snarf either teaches Larry or teaches someone who 
teaches Larry. 

q) Not only logic teachers teach students at Up State U. 

r) Anyone who lives in Boston likes clams more than anyone who 
lives in Denver. (Ambiguous) 

s) Except for garage mechanics who fix cars, no one has greasy 
pants. 

t) Only movies shown on channel 32 are older than movies shown 
on channel 42. 

u) No logic text explains logic as well as some professors do. 
v) The people who eat, drink, and are merry are more fun than 

those who neither smile nor laugh. 

CHAPTER SUMMARY EXERCISES 

In reviewing this chapter make a short summary of the following to 
ensure your grasp of these ideas: 

a) Restricted Quantifiers 

b) Rule ~Vs 

c) Rule ~ds 

d) Transcription Guide 

e) Words that generally transcribe with a universal quantifier 
f) Word that generally transcribe with an existential quantifier 

g) Negative Quantifier Words 

h) Ambiguity 

i) Give a summary of important transcription strategies 



Natural Deduction 
for Predicate Logic 

IO 

Fundamentals 

5-1. REVIEW AND OVERVIEW 

Let's get back to the problem of demonstrating argument validity. You 
know how to construct derivations which demonstrate the validity of valid 
sentence logic arguments. Now that you have a basic understanding of 
quantified sentences and what they mean, you are ready to extend the 
system of sentence logic derivations to deal with quantified sentences. 

Let's start with a short review of the fundamental concepts of natural 
deduction: To say that an argument is valid is to say that in every possible 
case in which the premises are true, the conclusion is true also. The nat- 
ural deduction technique works by applying truth preserving rules. That 
is, we use rules which, when applied to one or two sentences, license us to 

draw certain conclusions. The rules are constructed so that in any case in 
which the first sentence or sentences are true, the conclusion drawn is 
guaranteed to be true also. Certain rules apply, not to sentences, but to 
subderivations. In the case of these rules, a conclusion which they license 
is guaranteed to be true if all the sentences reiterated into the subderiva- 
tion are true. 

A derivation begins with no premises or one or more premises. It may 
include subderivations, and any subderivation may itself include a subder- 
ivation. A new sentence, or conclusion, may be added to a derivation if 
one of the rules of inference licenses us to draw the conclusion from pre- 
vious premises, assumptions, conclusions, or subderivations. Because 
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these rules are truth preserving, if the original premises are true in a case, 
the first conclusion drawn will be true in that case also. And if this first 
conclusion is true, then so will the next. And so on. Thus, altogether, in 
any case in which the premises are all true, the final conclusion will be 
true. 

The only further thing you need to remember to be able to write sen- 
tence logic derivations are the rules themselves. If you are feeling rusty, 
please refresh your memory by glancing at the inside front cover, and 
review chapters 5 and 7 of Volume I, if you need to. 
Now we are ready to extend our system of natural deduction for sen- 

tence logic to the quantified sentences of predicate logic. Everything you 
have already learned will still apply without change. Indeed, the only fun- 
damental conceptual change is that we now must think in terms of an 
expanded idea of what constitutes a case. For sentence logic derivations, 
truth preserving rules guarantee that if the premises are true for an as- 
signment of truth values to sentence letters, then conclusions drawn will 
be true for the same assignment. In predicate logic we use the same over- 
all idea, except that for a "case" we use the more general idea of an inter- 
pretation instead of an assignment of truth values to sentence letters. 
Now we must say that if the premises are true in an interpretation, the 
conclusions drawn will be true in the same interpretation. 

Since interpretations include assignment of truth values to any sentence 
letters that might occur in a sentence, everything from sentence logic ap- 
plies as before. But our thinking for quantified sentences now has to ex- 
tend to include the idea of interpretations as representations of the case 
in which quantified sentences have a truth value. 
You will remember each of our new rules more easily if you understand 

why they work. You should understand why they are truth preserving by 
thinking in terms of interpretations. That is, you should try to understand 
why, if the premises are true in a given interpretation, the conclusion 
licensed by the rule will inevitably also be true in that interpretation. 

Predicate logic adds two new connectives to sentence logic: the univer- 
sal and existential quantifiers. So we will have four new rules, an intro- 
duction and elimination rule for each quantifier. Two of these rules are 
easy and two are hard. Yes, you guessed it! I’m going to introduce the 
easy rules first. 

5-2. THE UNIVERSAL ELIMINATION RULE 

Consider the argument 

Everyone is blond. (Vx)Bx 

Adam is blond. Ba 
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Intuitively, if everyone is blond, this must include Adam. So if the prem- 
ise is true, the conclusion is going to have to be true also. In terms of 
interpretations, let’s consider any interpretation you like which is an inter- 
pretation of the argument’s sentences and in which the premise, ‘(Wx)Bx’, 
is true. The definition of truth of a universally quantified sentence tells 
us that '(Vx)Bx' is true in an interpretation just in case all of its substitu- 
tion instances are true in the interpretation. Observe that ‘Ba’ is a substi- 
tution instance of ‘(Wx)Bx’. So in our arbitrarily chosen interpretation in 

which '(Vx)Bx' is true, ‘Ba’ will be true also. Since ‘Ba’ is true in any inter- 

pretation in which '(Vx)Bx' is true, the argument is valid. 
(In this and succeeding chapters I am going to pass over the distinction 

between someone and something, as this complication is irrelevant to the 
material we now need to learn. I could give examples of things instead of 
people, but that makes learning very dull.) 

The reasoning works perfectly generally: 

Universal Elimination Rule: If X is a universally quantified sentence, then 
you are licensed to conclude any of its substitution instances below it. Ex- 
pressed with a diagram, for any name, s, and any variable, u, 

(Yu. ..u...) 

s.. VE 

Remember what the box and the circle mean: If on a derivation you en- 
counter something with the form of what you find in the box, the rule 
licenses you to conclude something of the form of what you find in the 
circle. 

Here is another example: 

Everyone loves Eve.  (Vx)Lxe 1 | (¥x)Lxe P 

Adam loves Eve. Lae 2 | Lae 1, VE 

In forming the substitution instance of a universally quantified sen- 
tence, you must be careful always to put the same name everywhere for 
the substituted variable. Substituting ‘a’ for ‘x’ in ‘(Wx)Lxx’, we get 'Laa', 
not 'Lxa'. Also, be sure that you substitute your name only for the occur- 
rences of the variable which are free after deleting the initial quantifier. 
Using the name ‘a’ again, the substitution instance of '(Vx)(Bx D (Wx)Lxe)’ 
is'Ba D (Wx)Lxe’. The occurrence of ‘x’ in 'Lxe' is bound by the second 
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‘(Wx)’, and so is still bound after we drop the first ‘(Wx)’. If you don't 

understand this example, you need to review bound and free variables 
and substitution instances, discussed in chapter 3. 
When you feel confident that you understand the last example, look at 

one more: 

(Wx)(Gx D Kx) 1 | (Wx)(Gx D Kx) P 
Gf 2 | Gf P 

Kf 3 | GE 2 Kf 1, VE 
4 | Kf 2, 3, DE 

EXERCISES 

5—1. Provide derivations which demonstrate the validity of these ar- 
guments. Remember to work from the conclusion backward, seeing 

what you will need to get your final conclusions, as well as from the 
premises forward. In problem (d) be sure you recognize that the 
premise is a universal quantification of a conditional, while the con- 

clusion is the very different conditional with a universally quantified 
antecedent. 

a) (Wx)(Px & Dx) b) (Wx)(Px & Dx) c) (Wx)(Dx D Kx) 

Pk Pd & Dk UU = 
Ka 

d) (VX(Mx DA) e) (Wx)(Fx v Hx) f) (Vx)—Bx v Lcx) 
(Wx)(Fx D Dx) (Wx)Mx DA (V) (Hx > Dx) (Vx)Bx 2 Lcd 

Dp & Db 

g) (Wx)(Lxx D Lxh) h) (Vxy(Rxx v Rxk) 
~Lmh (Wy)~Ryk 

~(Wx)Lxx Rcc & Rff 

5-3. THE EXISTENTIAL INTRODUCTION RULE 

Consider the argument 

Adam is blond. Ba 

Someone is blond. (3x)Bx 
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Intuitively, this argument is valid. If Adam is blond, there is no help for 

it: Someone is blond. Thinking in terms of interpretations, we see that 
this argument is valid according to our new way of making the idea of 
validity precise. Remember how we defined the truth of an existentially 
quantified sentence in an interpretation: '(dx)Bx' is true in an interpreta- 
tion if and only if at least one of its substitution instances is true in the 
interpretation. But ‘Ba’ is a substitution instance of ‘(4x)Bx’. So, in any 
interpretation in which ‘Ba’ is true, ‘(Ax)Bx’ is true also, which is just what 

we mean by saying that the argument "Ba. Therefore (Ax)Bx.” is valid. 
You can probably see the form of reasoning which is at play here: From 

a sentence with a name we can infer what we will call an Existential Gen- 
eralization of that sentence. '(Hx)Bx' is an existential generalization of ‘Ba’. 
We do have to be a little careful in making this notion precise because we 
can get tripped up again by problems with free and bound variables. 
What would you say is a correct existential generalization of ‘(Wx)Lax’? In 
English: If Adam loves everyone, then we know that someone loves ev- 
eryone. But we have to use two different variables to transcribe ‘Someone 

loves everyone’: ‘(Ay)(Wx)Lyx’. If I start with '(Vx)Lax', and replace the ‘a’ 
with ‘x’, my new occurrence of ‘x’ is bound by that universal quantifier. I 
will have failed to generalize existentially on ‘a’. 

Here is another example for you to try: Existentially generalize 

(i) Ba D (Vx) Lax 

2 3 45 

If I drop the ‘a’ at 2 and 4, write in ‘x’, and preface the whole with '(3x)', 

I get 

(it) (dx)Bx D (Wx)Lxx) Wrong 

1 2 3 45 

The ‘x’ at 4, which replaced one of the 'a's, is bound by the universally 
quantified ‘x’ at 3, not by the existentially quantified ‘x’ at 1, as we intend 
in forming an existential generalization. We have to use a new variable. 
A correct existential generalization of ‘Ba D (Vx)Lax' is 

Gii) (Ay)(By D (Vx) Lyx) 

] 2 3 45 

as are 

(iv) (Ay)(By D (Vx)Lax) 

1 2 8 45 
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and 

() (Ay)(Ba>(Vx)Lyx) 

1 2 3 45 

Here is how you should think about this problem: Starting with a closed 
sentence, (. .. s. . .), which uses a name, s, take out one or more of the 

occurrences of the name s. For example, take out the ‘a’ at 4 in (i). Then 

look to see if the vacated spot is already in the scope of one (or more) 

quantifiers. In (i) to (v), the place marked by 4 is in the scope of the '(Vxy 

at 3. So you can't use 'x'. You must perform your existential generaliza- 
tion with some variable which is not already bound at the places at which 
you replace the name. After taking out one or more occurrences of the 
name, s, in (. .. s.. . ), replace the vacated spots with a variable (the 

same variable at each spot) which is not bound by some quantifier already 
in the sentence. 

Continuing our example, at this point you will have turned (i) into 

(vi) Ba D (Wx)Lya 

You will have something of the form (. . .u. . .) in which u is free: ‘y’ is 
free in (vi). At this point you must have an open sentence. Now, at last, 

you can apply your existential quantifier to the resulting open sentence to 
get the closed sentence (Ju)(. .. u.. .). 

To summarize more compactly: 

(du). .. u.. .) is an Existential Generalization of (. .. s . . .) with respect 
to the name s if and only if (du). . .u. . .) results from (. ..s. . .) by 

a) Deleting any number of occurrences of s in (. . 
b) Replacing these occurrences with a variable, u, which i is free at these 

occurrences, and 
c) Applying (du) to the result. 

(In practice you should read (a) in this definition as "Deleting one or 
more occurrences of s in (. .. s. . .).” I have expressed (a) with “any 
number of" so that it will correctly treat the odd case of vacuous quanti- 
fiers, which in practice you will not need to worry about. But if you are 
interested, you can figure out what is going on by studying exercise 3-3.) 

It has taken quite a few words to set this matter straight, but once you 

see the point you will no longer need the words. 
With the idea of an existential generalization, we can accurately state 

the rule for existential introduction: 

Existential Introduction Rule: From any sentence, X, you are licensed to con- 
clude any existential generalization of X anywhere below. Expressed with a 
diagram, 
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(us) 

Where (Ju). . .u. . .) 
is an existential 

5 generalization 
(du. . .u.. ))3I of(...s8.. .). 

Let’s look at a new example, complicated only by the feature that it 
involves a second name which occurs in both the premise and the conclu- 
sion: 

Adam loves Eve. Lae 

Adam loves someone. — (3x)Lax 

'(3x)Lax' is an existential generalizaton of ‘Lae’. So 3I applies to make the 
following a correct derivation: 

Lae P 

2 | (Ax)Lax 1, Jl 

To make sure you have the hang of rule 3I, we'll do one more exam- 
ple. Notice that in this example, the second premise has an atomic sen- 
tence letter as its consequent. Remember that predicate logic is perfectly 
free to use atomic sentence letters as components in building up sen- 
tences. 

Ka 1 | Ka P 
(3x)Kx DP 2| (ax)Kx DP P 

P 3 | (Ax)Kx 1,3l 

4|P 2, 3, DE 

In line 4 I applied DE to lines 2 and 3. DE applies here in exactly the 
same way as it did in sentence logic. In particular DE and the other sen- 

tence logic rules apply to sentences the components of which may be 
quantified sentences as well as sentence logic sentences. 

Now let's try an example which applies both our new rules: 

(Vx)Lxx 1 | (Wx)Lxx P 

(3x)Lxx 2 | Laa 1, VE 
3 | (ax)Lxx 2, dl 

In addition to illustrating both new rules working together, this exam- 
ple illustrates something else we have not yet seen. In past examples, 
when I applied VE I instantiated a universally quantified sentence with a 
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name which already occurred somewhere in the argument. In this case 
no name occurs in the argument. But if a universally quantified sentence 
is true in an interpretation, all of its substitution instances must be true in 
the interpretation. And every interpretation must have at least one object 
in it. So a universally quantified sentence must always have at least one 

substitution instance true in an interpretation. Since a universally quanti- 
fied sentence always has at least one substitution instance, I can introduce 

a name into the situation with which to write that substitution instance, if 

no name already occurs. 

To put the point another way, because every interpretation always has 
at least one object in it, I can always introduce a name to refer to some 
object in an interpretation and then use this name to form my substitution 
instance of the universally quantified sentence. 

Good. Let's try yet another example: 

(Wx)(Cx D Mx) 1 | VX(Cx2Mx) P 
Cd 2 | Cd P 

(3x)Mx 3 1, VE 
4 2, 3, DE 

5 4, 3I 

Notice that although the rules permit me to apply JI to line 2, doing so 
would not have gotten me anywhere. To see how I came up with this 
derivation, look at the final conclusion. You know that it is an existentially 
quantified sentence, and you know that 3I permits you to derive such a 
sentence from an instance, such as 'Md'. So you must ask yourself: Can I 
derive such an instance from the premises? Yes, because the first premise 
says about everything that if it is C, then it is M. And the second premise 
says that d, in particular, is C. So applying VE to 1 you can get 3, which, 
together with 2, gives 4 by DE. 

EXERCISES 

5—2. Provide derivations which demonstrate the validity of the fol- 
lowing arguments: 

a) Na b) (Vx(Kx & Px) c) (Wx)(Hx D ~Dx) 

(3x)(Nx v Gx) (3x)Kx & (3x)Px Dg 
(3x9 —Hx 

d) (Wx)Ax & (VX)Txd e) Fa v Nh f) (VXXSx v Jx) 

(Ax)(Ax & Txd) (3x)Fx v (Jx)Nx: (Ax)Sx v (3x))x 
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g (3x)Rxa D (Wx)Rax h) Laev Lea i) (Axx DQ 
Rea (ax)Lax D A (Vx))x 

(3x9 Rax (ax)Lxa D A Q 

A 

p (VX(MaxvMex k) (Wx)(Kxx = Px) D (Wx)(~Oxx v Ix) 
~(dx)Max v Bg (Wx)[Kjx & (Px D Sx)] (Wx)(ix D Rxm) 

~(4x)Mex v Bg (3x)$x (Wx)Oxx D (Ax)Rxm 
(2x)Bx 

5-4. THE EXISTENTIAL ELIMINATION AND UNIVERSAL 

INTRODUCTION RULES: BACKGROUND IN INFORMAL 

ARGUMENT 

Now let's go to work on the two harder rules. To understand these rules, 
it is especially important to see how they are motivated. Let us begin by 
looking at some examples of informal deductive arguments which present 
the kind of reasoning which our new rules will make exact. Let's start with 
this argument: 

Everyone likes either rock music or country/western. 
Someone does not like rock. 

Someone likes country/western. 

Perhaps this example is not quite as trivial as our previous examples. 
How can we see that the conclusion follows from the premises? We com- 

monly argue in the following way. We are given the premise that someone 
does not like rock. To facilitate our argument, let us suppose that this 

person (or one of them if there are more than one) is called Doe. (Since 
I don't know this person's name, I'm using ‘Doe’ as the police do when 

they book a man with an unknown name as ‘John Doe.’) Now, since ac- 

cording to the first premise, everyone likes either rock or country/west- 
ern, this must be true, in particular, of Doe. That is, either Doe likes rock, 

or he or she likes country/western. But we had already agreed that Doe 
does not like rock. So Doe must like country/western. Finally, since Doe 

likes country/western, we see that someone likes country/western. But that 
was just the conclusion we were trying to derive. 
What you need to focus on in this example is how I used the name 

‘Doe’. The second premise gives me the assumption that someone does 
not like rock. So that I can talk about this someone, I give him or her a 
name: ‘Doe’. I don't know anything more that applies to just this person, 
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but I do have a fact, the first premise, which applies to everyone. So I can 
use this fact in arguing about Doe, even though I really don't know who 
Doe is. I use this general fact to conclude that Doe, whoever he or she” 
might be, does like country/western. Finally, before I am done, I acknowl- 

edge that I really don't know who Doe is, in essence by saying: Whoever 

this person Doe might be, I know that he or she likes country/western. 

That is, what I really can conclude is that there is someone who likes 

country/western. 
Now let's compare this argument with another: 

(1) Everyone either likes rock or country/western. 
(2 Anyone who likes country/western likes soft music. 

(3) Anyone who doesn't like rock likes soft music. 

This time I have deliberately chosen an example which might not be com- 
pletely obvious so that you can see the pattern of reasoning doing its 
work. 

The two premises say something about absolutely everyone. But it's 
hard to argue about ‘everyone’. So let us think of an arbitrary example of 
a person, named 'Arb', to whom these premises will then apply. My strat- 
egy is to carry the argument forward in application to this arbitrarily cho- 
sen individual. I have made up the name 'Arb' to emphasize the fact that 
I have chosen this person (and likewise the name) perfectly arbitrarily. 
We could just as well have chosen any person named by any name. 
To begin the argument, the first premise tells us that 

(4) Fither Arb likes rock, or Arb likes country/western. 

The second premise tells us that 

(5) If Arb does like country/western, then Arb likes soft music. 

Now, let us make a further assumption about Arb: 

(6) (Further Assumption): Arb doesn't like rock. 

From (6) and (4), it follows that 

(7) Arb likes country/western. 

And from (7) and (5), it follows that 

(8) Arb likes soft music. 

Altogether we see that Arb's liking soft music, (8), follows from the fur- 
ther assumption, (6), with the help of the original premises (1) and (2) (as 
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applied through this application to Arb, in (4) and (5)). Consequently, 
from the original premises it follows that 

(9) 1f Arb doesn't like rock, then Arb likes soft music. 

All this is old hat. Now comes the new step. The whole argument to 
this point has been conducted in terms of the person, Arb. But Arb could 

have been anyone, or equally, we could have conducted the argument 
with the name of anyone at all. So the argument is perfectly general. 
What (9) says about Arb will be true of anyone. That is, we can legiti- 
mately conclude that 

(3) Anyone who doesn’t like rock likes soft music. 

which is exactly the conclusion we were trying to reach. 
We have now seen two arguments which use "stand-in" names, that is, 

names that are somehow doing the work of "someone" or of "anyone". 
Insofar as both arguments use stand-in names, they seem to be similar. 
But they are importantly different, and understanding our new rules 
turns on understanding how the two arguments are different. In the sec- 
ond argument, Arb could be anyone—absolutely anyone at all. But in the 
first argument, Doe could not be anyone. Doe could only be the person, 
or one of the people, who does not like rock. 'Doe' is "partially arbitrary" 
because we are careful not to assume anything we don't know about Doe. 
But we do know that Doe is a rock hater and so is not just anyone at all. 
Arb, however, could have been anyone. 

We must be very careful not to conflate these two ways of using stand- 
in names in arguments. Watch what happens if you do conflate the ways: 

Someone does not like rock. (Invalid) 

Everyone does not like rock. 

The argument is just silly. But confusing the two functions of stand-in 
names could seem to legitimate the argument, if one were to argue as 
follows: Someone does not like rock. Let's call this person ‘Arb’. So Arb 
does not like rock. But Arb could be anyone, so everyone does not like 

rock. In such a simple case, no one is going to blunder in this way. But in 
more complicated arguments it can happen easily. 

To avoid this kind of mistake, we must find some way to clearly mark 
the difference between the two kinds of argument. I have tried to bring 
out the distinction by using one kind of stand-in name, ‘Doe’, when we 

are talking about the existence of some particular person, and another 
kind of stand-in name, 'Arb', when we are talking about absolutely any 

arbitrary individual. This device works well in explaining that a stand-in 
name can function in two very different ways. Unfortunately, we cannot 
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incorporate this device in natural deduction in a straightforward way sim- 
ply by using two different kinds of names to do the two different jobs. 

Let me try to explain the problem. (You don't need to understand the 
problem in detail right now; detailed understanding will come later. All 
you need at this point is just a glimmer of what the problem is.) At the 
beginning of a derivation a name can be arbitrary. But then we might 
start a subderivation in which the name occurs, and although arbitrary 
from the point of view of the outer derivation, the name might not be 

arbitrary from the point of view of the subderivation. This can happen 
because in the original derivation nothing special, such as hating rock, is 
assumed about the individual. But inside the subderivation we might 
make such a further assumption about the individual. While the further 
assumption is in effect, the name is not arbitrary, although it can be- 

come arbitrary again when we discharge the further assumption of the 
subderivation. In fact, exactly these things happened in our last example. 
If, while the further assumption (6) was in effect, I had tried to generalize 

on statements about Arb, saying that what was true of Arb was true of 

anyone, I could have drawn all sorts of crazy conclusions. Look back at 
the example and see if you can figure out for yourself what some of these 
conclusions might be. 

Natural deduction has the job of accurately representing valid reason- 
ing which uses stand-in names, but in a way which won't allow the sort of 
mistake or confusion I have been pointing out. Because the confusion can 
be subtle, the natural deduction rules are a little complicated. The better 
you understand what I have said in this section, the quicker you will grasp 
the natural deduction rules which set all this straight. 

EXERCISES 

5—3. For each of the two different uses of stand-in names discussed 
in this section, give a valid argument of your own, expressed in Eng- 
lish, which illustrates the use. 

5-5. THE UNIVERSAL INTRODUCTION RULE 

Here is the intuitive idea for universal introduction, as I used this rule in 

the soft music example: If a name, as it occurs in a sentence, is completely 

arbitrary, you can Universally Generalize on the name. This means that you 
rewrite the sentence with a variable written in for all occurrences of the 

arbitrary name, and you put a universal quantifier, written with the same 
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variable, in front. To make this intuition exact, we have to say exactly 

when a name is arbitrary and what is involved in universal generalization. 
We must take specíal care because universal generalization differs impor- 
tantly from existential generalizaton. 

Let's tackle arbitrariness first. When does a name not occur arbitrarily? 
Certainly not if some assumption is made about (the object referred to 
by) the name. If some assumption is made using a name, then the name 
can't refer to absolutely anything. If a name occurs in a premise or as- 
sumption, the name can refer only to things which satisfy that premise or 

assumption. So a name does not occur arbitrarily when the name appears 
in a premise or an assumption, and it does not occur arbitrarily as long as 
such a premise or assumption is in effect. 

The soft music example. shows these facts at work. I'll use ‘Rx’ for ‘x 
likes rock.’, ‘Cx’ for ‘x likes country/western.', and ‘Sx’ for ‘x likes soft 

music.’ Here are the formalized argument and derivation which I am 
going to use to explain these ideas: 

(Wx)(Rx v Cx) 1 | (Wx)(Rx v Cx) P 
(Wx)(Cx D Sx) 2 | (VXCx D Sx) P 

(Vx)— Rx D Sx). 3 1, VE 
4 2, VE 

5 A 

6 3,R 
7 5, 6, vE 
8 4,R 
9 7, 8, OE 

10 | ~Ra 2 Sa 5—9, DI 

11 | (Wx)(~Rx D Sx) 10, VI 

Where does ‘a’ occur arbitrarily in this example? It occurs arbitrarily in 
lines 3 and 4, because at these lines no premise or assumption using ‘a’ is 
in effect. We say that these lines are Not Governed by any premise or as- 
sumption in which ‘a’ occurs. In lines 5 through 9, however, ‘a’ does not 

occur arbitrarily. Line 5 is an assumption using ‘a’. In lines 5 through 9, 
the assumption of line 5 is in effect, so these lines are governed by the 
assumption of line 5. (We are going to need to say that a premise or 
assumption always governs itself.) In all these lines something special is 
being assumed about the thing named by ‘a’, namely, that it has the prop- 
erty named by ‘~R’. So in these lines the thing named by ‘a’ is not just 
any old thing. However, in line 10 we discharge the assumption of line 5. 
So in line 10 ‘a’ again occurs arbitrarily. Line 10 is only governed by the 
premises 1 and 2, in which 'a' does not occur. Line 10 is not governed by 
the assumption of line 5. 
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I am going to introduce a device to mark the arbitrary occurrences of 
a name. If a name occurs arbitrarily we will put a hat on it, so it looks like 
this: à. Marking all the arbitrary occurrences of ‘a’ in the last derivation 
makes the derivation look like this: 

1 | (Wx)(Rx v Cx) P 
2 | (Wx(Cx D Sx) P 

3 1, WE 
4 2, WE 

5 A 

6 3,R 

7 5, 6, vE 

8 4,R 
9 7, 8, DE 

10 5-9, DI 

11 | (Wx)(~Rx D Sx) 10, VI 

Read through this copy of the derivation and make sure you understand 
why the hat occurs where it does and why it does not occur where it 
doesn't. If you have a question, reread the previous paragraph, remem- 
bering that a hat on a name just means that the name occurs arbitrarily 
at that place. 

I want to be sure that you do not misunderstand what the hat means. 
A name with a hat on it is not a new kind of name. A name is a name is 
a name, and two occurrences of the same name, one with and one without 

a hat, are two occurrences of the same name. A hat on a name is a kind 

of flag to remind us that at that point the name is occurring arbitrarily. 
Whether or not a name occurs arbitrarily is not really a fact just about the 

name. It is a fact about the relation of the name to the derivation in which 
it occurs. If, at an occurrence of a name, the name is governed by a prem- 

ise or assumption which uses the same name, the name does not occur 

there arbitrarily. It is not arbitrary there because the thing it refers to has 
to satisfy the premise or assumption. Only if a name is not governed by 
any premise or assumption using the same name is the name arbitrary, in 
which case we mark it by dressing it with a hat. 

Before continuing, lets summarize the discussion of arbitrary occur- 
rence with an exact statement: 

Suppose that a sentence, X, occurs in a derivation or subderivation. That 
occurrence of X is Governed by a premise or assumption, Y, if and only if Y 
is a premise or assumption of X's derivation, or of any outer derivation of 
X’s derivation (an outer derivation, or outer-outer derivation, and so on): In 
particular, a premise or assumption is always governed by itself. 
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A name Occurs Arbitrarily in a sentence of a derivation if that occurrence of 
the sentence is not governed by any premise or assumption in which the 
name occurs. To help us remember, we mark an arbitrary occurrence of a 
name by writing it with a hat. 

The idea for the universal introduction rule was that we would Univer- 
sally Generalize on a name that occurs arbitrarily. We have discussed arbi- 
trary occurrence. Now on to universal generalization. 
The idea of a universal generalization differs in one important respect 

from the idea of an existential generalization. To see the difference, you 
must be clear about what we want out of a generalization: We want a new 
quantified sentence which follows from a sentence with a name. 

For the existential quantifier, '(dx)Lxx', ‘(Ax)Lax’, and ‘(Ax)Lxa’ all fol- 
low from ‘Laa’. From the fact that Adam loves himself, it follows that 
Adam loves someone, someone loves Adam, and someone loves themself. 
Now suppose that the name ‘a’ occurs arbitrarily in ‘Laa’. We know that 

“Adam” loves himself, where Adam now could be just anybody at all. 
What universal fact follows? Only that ‘(Wx)Lxx’, that everyone loves 

themself. It does not follow that (Vx)Làx' or ‘(Wx)Lxa’. That is, it does 
not follow that Adam loves everyone or everyone loves Adam. Even 
though ‘Adam’ occurs arbitrarily, (Vx)Làx' and '(Vx)Lxá' make it sound 

as if someone ("Adam") loves everyone and as if someone ("Adam") is 
loved by everyone. These surely do not follow from ‘Laa’. But 3I would 
license us to infer these sentences, respectively, from '(Vx)Làx' and from 
“(Wx)Lxa’ 

Worse, à is still arbitrary in '(Vx)Làx'. So if we could infer '(Vx)Làx' 
from 'Láá', we could then argue that in '(Vx)Láx', ‘a’ could be anyone. We 
would then be able to infer '(Vy)(Vx)Lyx', that everyone loves everyone! 

But from 'Làà' we should only be able to infer '(Vx)Lxx', that everyone 
loves themself, not '(Vy)(Vx)Lyx', that everyone loves everyone. 
We want to use the idea of existential and universal generalizations to 

express valid rules of inference. The last example shows that, to achieve 
this goal, we have to be a little careful with sentences in which the same 
name occurs more than once. If s occurs more than once in(...s.. ), 

we may form an existential generalization by generalizing on any number 
of the occurrences of s. But, to avoid the problem I have just described 

and to get a valid rule of inference, we must insist that a universal gen- 
eralization of (. .. s . . .), with respect to the name, s, must leave no 

instance of s in (. . foe s). 
In other respects ^de idea of universal generalization works just like 

existential generalization. In particular, we must carefully avoid the trap 
of trying to replace a name by a variable already bound by a quantifier. 
This idea works exactly as before, so I will proceed immediately to an 

exact statement: 
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The sentence (Vu)(... u . . .) results by Universally Generalizing on the 
name s in (. .. 8. . .) if and only if one obtains (Vu)(. ..u . . .) from 
(..8s.. ) by 

3) Deleting all occurrences of s in (. . 
b) Replacing these occurrences with a sdiible u, which is free at these 

occurrences, and 
c) Applying (Vu) to the result. 

(Vu). . .u. . .) is then said to be the Universal Generalization of (...s.. .) 
with Respect to the Name s. 

With these definitions, we are at last ready for an exact statement of 
the universal introduction rule: 

Universal Introduction Rule: If a sentence, X, appears in a derivation, and if 
at the place where it appears a name, $, occurs arbitrarily in X, then you are 
licensed to conclude, anywhere below, the sentence which results by univer- 
sally generalizing on the name 8 in X. Expressed with a diagram: 

x 

C. s.) Where S occurs arbitrarily in (. . . $. . .) and 
(Yu). ..u. . .) is the universal generalization 

(Vu. ..u.. )) VI of(. . . S. . .) with respect to S. 

Let's look at two simple examples to illustrate what can go wrong if you 
do not follow the rule correctly. The first example is the one we used to 
illustrate the difference between existential and universal generalization: 

Everyone loves themself. 
(Invalid!) 

1 | (Wx)Lxx P 

2|Làà , 1,VE 
3 | (Wx)Lxa Mistaken attempt to 

apply Vito 2. 3 is not 
a universal generalization 
of 2. 

Everyone loves Adam. 

The second example will make sure you understand the requirement 
that WI applies only to an arbitrary occurrence of a name: 

Adam is blond. 1 | Ba P 

Everyone is blond. (Invalid) 2 | (vog, Mistaken attempt 
to apply Vi to 1. ‘a’ is 

not arbitrary at 1. 
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The problem here is that the premise assumes something special about 
the thing referred to by ‘a’, that it has the property referred to by 'B'. We 
can universally generalize on a name—that is, apply VI—only when noth- 
ing special is assumed in this way, that is, when the name is arbitrary. You 
will see this even more clearly if you go back to our last formalization of 
the soft music example and see what sorts of crazy conclusions you could 
draw if you were to allow yourself to generalize on occurrences of names 
without hats. 

Let's consolidate our understanding of VI by working through one 
more example. Before reading on, try your own hand at providing a der- 
ivation for 

(Vx)(Lax & Lxa) 

(Vx)(Lax = Lxa) 

If you don't see how to begin, use the same overall strategy we devel- 
oped in chapter 6 of volume I. Write a skeleton derivation with its prem- 
ise and final conclusion and ask what you need in order to get the final, 
or target, conclusion. 

(Wx)(Lax & Lxa) P 

(Wx)(Lax = Lxa) 

We could get our target conclusion by WI if we had a sentence of the 
form ‘Lab = Lba'. Let's write that in to see if we can make headway in 
this manner: 

(Wx)(Lax & Lxa) P 

? 

? 

Lab = Lba 
(Wx)(Lax = Lxa) VI 
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‘Lab = Lba is now our target conclusion. As a biconditional, our best 

bet is to get it by =I from ‘Lab D Lba' and ‘Lba D Lab’. (I didn't write 
hats on any names because, as I haven’t written the sentences as part of 
the derivation, I am not yet sure which sentences will govern these two 

conditionals.) The conditionals, in turn, I hope to get from two subderi- 
vations, one each starting from one of the antecedents of the two condi- 
tionals: 

1 | (Wx)(Lax &Lxa) P 

? 
Lab A 

? 

Lba 

Lab D Lba DI 

? 

Lba A 

? 

Lab 

tba D Lab DI 
Lab = Lba = 
(Wx)(Lax = Lxa) VI 

Notice that ‘b’ gets a hat wherever it appears in the main derivation. 
There, ‘b’ is not governed by any assumption in which ‘b’ occurs. But ‘b’ 
occurs in the assumptions of both subderivations. So in the subderivations 
'b' gets no hat. Finally, ‘a’ occurs in the original premise. That by itself 
rules out putting a hat on ‘a’ anywhere in the whole derivation, which 
includes all of its subderivations. 

Back to the question of how we will fill in the subderivations. We need 
to derive 'Lba' in the first and ‘Lab’ in the second. Notice that if we apply 
VE to the premise, using ‘b’ to instantiate ‘x’, we get a conjunction with 
exactly the two new target sentences as conjuncts. We will be able to apply 
&E to the conjunction and then simply reiterate the conjuncts in the sub- 
derivations. Our completed derivation will look like this: 
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1]|(VxLax&Lxa) P 

2 | Lab & Lba 1, VE 
3 | Lab 2, &E 
4 | Lba 2, &E 
5 Lab A 

6 Lba 4,R 

7 | Lab D Lba 5- 6, DI 
Lba A 

8 
9 Lab 3,R 

10 | L6a D Lab 8-9, DI 
11 | Lab = L6a 7, 10, =i 
12 | (Wx)(Lax = Lxa) 11, VI 

Once more, notice that 'b' gets a hat in lines 2, 3, and 4. In these lines 
no premise or assumption using 'b' is operative. But in lines 5, 6, 8, and 

9, ‘b’ gets no hat, even though exactly the same sentences appeared earlier 
(lines 3 and 4) with hats on ‘b’. This is because when we move into the 

subderivations an assumption goes into effect which says something spe- 
cial about ‘b’. So in the subderivations, off comes the hat. As soon as this 
special assumption about 'b' is discharged, and we move back out of the 
subderivation, no special assumption using ‘b is in effect, and the hat goes 
back on ‘b’. 

You may well wonder why I bother with the hats in lines like 2, 3, 4, 7, 

and 10, on which I am never going to universally generalize. The point is 
that, so far as the rules go, I am permitted to universally generalize on ‘b’ 

in these lines. In this problem I don’t bother, because applying VI to these 
lines will not help me get my target conclusion. But you need to develop 

awareness of just when the formal statement of the VI rule allows you to 
apply it. Hence you need to learn to mark those places at which the rule 
legitimately could apply. 

Students often have two more questions about hats. First, VI permits 

you to universally generalize on a name with a hat. But you can also apply 
JI to a name with a hat. Now that I have introduced the hats, the last 

example in section 5-3 should really look like this: 

(Vx)Lxx 

Laa 
(3x)Lxx be N 

P 

1, VE 
2, dl 
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If everyone loves themself, then Arb loves him or herself, whoever Arb 
may be. But then someone loves themself. When a name occurs arbitrar- 
ily, the name can refer to anything. But then it also refers to something. 
You can apply either VI or 3I to a hatted name. 

It is also easy to be puzzled by the fact that a name which is introduced 
in the assumption of a subderivation, and thus does not occur arbitrarily 

there, can occur arbitrarily after the assumption of the subderivation has 
been discharged. Consider this example: 

1 | (3x)Px D (Wx)Qx P 

2 Pa A 

3 (Ax)Px 2, 3 
4 (Ax)Px D (Wx)Qx 1,R 
5 (Wx)Qx 3, 4, DE 
6 Qa 5, VE 

7 | PaD Qa 2-6, DI 
8 | (Wx)(Px D Qx) 7, Vl 

In the subderivation something is assumed about ‘a’, namely, that it has 
the property P. So, from the point of view of the subderivation, 'a' is not 
arbitrary. As long as the assumption of the subderivation is in effect, ‘a’ 
cannot refer to just anything. It can only refer to something which is P. 
But after the subderivation's assumption has been discharged, ‘a’ is arbi- 
trary. Why? The rules tell us that ‘a’ is arbitrary in line 7 because line 7 is 
not governed by any premises or assumptions in which ‘a’ occurs. But to 
make this more intuitive, notice that I could have just as well constructed 
the same subderivation using the name 'b' instead of ‘a’, using DE to write 
‘Pb D QB’ on line 7. Or I could have used ‘c’, ‘d’, or any other name. This 
is why 'a' is arbitrary in line 7. I could have arrived at a conditional in line 
7 using any name I liked instead of using ‘a’. 
Some students get annoyed and frustrated by having to learn when to 

put a hat on a name and when to leave it off. But it's worth the effort to 
learn. Once you master the hat trick, VI is simple: You can apply VI 
whenever you have a name with a hat. Not otherwise. 

EXERCISES 

5—4. There is a mistake in the following derivation. Put on hats 
where they belong, and write in the justification for those steps 
which are justified. Identify and explain the mistake. 
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(Wx)(Bx D Cx) P 

N = 

(Wx)Ce 

Be D (Vx)Cx N Ou 

5—5. Provide derivations which establish the validity of the following 
arguments. Be sure you don't mix up sentences which are a quanti- 
fication of a sentence formed with a '&', a 'v', or a ‘D’ with com- 

pounds formed with a ‘&’, a ‘v’, or a ‘D’, the components of which 

are quantified sentences. For example, ‘(Wx)(Px & Qa)’ is a univer- 
sally quantified sentence to which you may apply VE. (Vx)Px & Qa’ 
is a conjunction to which you may apply &E but not VE. 

a) (Wx)(Fx & Gx) b) (VX9Mx2Nx) c) A 

(VX)Fx (Vx)Mx (Wx)(A v Nx) 
(Wx)Nx 

d) (VxHx & (Vx)Qx e) (Wx)(Kxm_ & Kmx) f) (VXX(Fx v Gx) 

(VXXHx & Qx) (Vx)Kxm & (Vx)Kmx (Wx)(Fx D Gx) 
(Wx)Gx 

g  (Wx)~Px vC h) (Vx(Rxb D Rax) i) (Wx)(Gxh D Gxm) 

(Wx)(~Px v C) (Vx)Rxb D (Vx)Rax (Vx) —Gxm D ~Gxh) 

j) (VXMx2Nx k) TD(VxMdx ) | (Wx)(Hff D Lxx) 

(VX)XNx 2 Ox) (Wx)(T D Mdx) Hff 2 (Wx)Lxx 
(Wx)(Mx D Ox) 

m) (Wx)Px v (Wx)Qx n) (Wx)Hx o) (Wx)(Sx = Ox) 

(Wx)(Px v Qx) (ANH x 2 (V9Hx DI) — (vios. = (WX)OX 
(Vx)lx 

p (33Px2A q) -(3xPx r) ~(Wx)Px s) (Wx)Px DA 

(Wx)(Px D A) (Wx)~Px (Ax)~ Px (Ax)(Px D A) 

fü ~x)Jx D ~Kx) u —GxQxvH v) ~(dx)Dx 

(3x)Ux & Kx) (Wx)(~Qx v H) (Wx)(Dx D Kx) 
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5—6. THE EXISTENTIAL ELIMINATION RULE 

VI and 3E are difficult rules. Many of you will have to work patiently 
over this material a number of times before you understand them clearly. 
But if you have at least a fair understanding of VI, we can proceed to 3E 
because ultimately these two rules need to be understood together. 

Let's go back to the first example in section 5—4: Everyone likes either 
rock music or country/western. Someone does not like rock. So someone 
likes country/western. I will symbolize this as 

(Wx)(Rx v Cx) 
(Ax)~ Rx 

(dx)Cx 

In informally showing this argument's validity, I used ‘Doe’, which I will 
now write just as 'd', as a stand-in name for the unknown "someone" who 
does not like rock. But I must be careful in at least two respects: 

i) I must not allow myself to apply VI to the stand-in name, ‘d’. Otherwise, 
I could argue from ‘(4x)~Rx’ to ‘~Rd’ to (Vx)- Rx". In short, I have to 
make sure that such a name never gets a hat. 

ii) When I introduce the stand-in name, ‘d’, I must not be assuming any- 
thing else about the thing to which 'd' refers other than that ‘~R’ is true 
of it. 

It's going to take a few paragraphs to explain how we will meet these 
two requirements. To help you follow these paragraphs, I'll begin by writ- 
ing down our example's derivation, which you should not expect to un- 
derstand until you have read the explanation. Refer back to this example 
as you read: 

(Wx)(Rx v Cx) 1 | (Wx)(Rx v Cx) P 
(Ax)~Rx 2 | (ax)~Rx P 

(Ax}Cx 3 ~Rd A 
4 (Wx)(Rx v Cx) 1,R 
5 Rd v Cd 4, WE 
6 Cd 3, 5, VE 

7 (3x)Cx 6, 3I 

8 | (39Cx 2, 3-7, 3E 

I propose to argue from the premise, ‘(4x)~Rx’, by using the stand-in 
name, ‘d’. I will say about the thing named by ‘d’ what ‘(4x)~Rx’ says 
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about "someone". But I must be sure that 'd' never gets a hat. How can I 
guarantee that? Well, names that occur in assumptions can't get hats any- 
where in the subderivation governed by the assumption. So we can guar- 
antee that 'd' won't get a hat by introducing it as an assumption of a 
subderivation and insisting that ‘d’ never occur outside that subderiva- 
tion. This is what I did in line 3. ‘~Rd’ appears as the subderivation's 
assumption, and the 'd' written just to the left of the scope line signals the 
requirement that ‘d’ be an Isolated Name. That is to say, ‘d’ is isolated in 

the subderivation the scope line of which is marked with the ‘d’. An iso- 
lated name may never appear outside its subderivation. 

Introducing 'd' in the assumption of a subderivation might seem a little 
strange. I encounter the sentence, ‘(4x)~ Rx’, on a derivation. I reason: 
Let's assume that this thing of which ‘~R is true is called ‘d’, and let's 

record this assumption by starting a subderivation with '—Rd' as its as- 
sumption, and see what we can derive. Why could this seem strange? Be- 

cause if I already know '(3x)- Rx', no further assumption is involved in 
assuming that there is something of which ‘~R is true. But, in a sense, I 

do make a new assumption in assuming that this thing is called 'd'. It 
turns out that this sense of making a special assumption is just what we 
need. 

By making ‘d’ occur in the assumption of a subderivation, and insisting 
that ‘d’ be isolated, that it appear only in the subderivation, I guarantee 
that ‘d’ never gets a hat. But this move also accomplishes our other re- 
quirement: If 'd' occurs only in the subderivation, 'd' cannot occur in any 
outer premise or assumption. 
Now let's see how the overall strategy works. Look at the argument's 

subderivation, steps 3—7. You see that, with the help of reiterated premise 
1, from ‘~Rd’ I have derived ‘(Ax)Cx’. But neither 1 nor the conclusion 

'(3x)Cx' uses the name ‘d’. Thus, in this subderivation, the fact that I used 

the name 'd' was immaterial. I could have used any other name not ap- 
pearing in the outer derivation. The real force of the assumption ‘~ Rd’ 
is that there exists something of which ‘~R’ is true (there is someone 
who does not like rock). But that there exists something of which ‘~R’ is 
true has already been given to me in line 2! Since the real force of the 
assumption of line 3 is that there exists something of which ‘~R’ is true, 
and since I am already given this fact in line 2, I don't really need the 
assumption 3. I can discharge it. In other words, if I am given the truth 
of lines 1 and 2, I know that the conclusion of the subderivation, 7, must 

also be true, and I can enter 7 as a further conclusion of the outer deri- 

vation. 
It is essential, however, that ‘d’ not appear in line 7. If 'd' appeared in 

the final conclusion of the subderivation, then I would not be allowed to 
discharge the assumption and enter this final conclusion in the outer der- 
ivation. For if ‘d’ appeared in the subderivation’s final conclusion, I would 
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be relying, not just on the assumption that ‘~R’ was true of something, 
but on the assumption that this thing was named by ‘d’. 

The example's pattern of reasoning works perfectly generally. Here is 
how we make it precise: 

A name is Isolated in a Subderivation if it does not occur outside the subderi- 
vation. We mark the isolation of a name by writing the name at the top left 
of the scope line of its subderivation. In applying this definition, remember 
that a sub-sub-derivation of a subderivation counts as part of the subderi- 
vation. ` 

Existential Elimination Rule: Suppose a sentence of the form (Ju)(. . . u. . .) 
appears in a derivation, as does a subderivation with assumption (. . .s. . .), 
a substitution instance of (Ju)(. . .u. . .). Also suppose that s is isolated in 
this subderivation. If X is any of the subderivation's conclusions in which s 
does not occur, you are licensed to draw X as a further conclusion in the 
outer derivation, anywhere below the sentence (Ju)(: . . u. . .) and below 
the subderivation. Expressed with a diagram: 

Where(. . .s. . Jisa 
substitution instance of 
(ju) (...u.. )ands 
is isolated in the ~ 5- 
derivation. 

When you annotate your application of the 3E rule, cite the line number 
of the existentially quantified sentence and the inclusive line numbers of 
the subderivation to which you appeal in applying the rule. 
You should be absolutely clear about three facets of this rule. I will 

illustrate all three. 

Suppose the JE rule has been applied, licensing the new conclusion, X, by 
appeal to a sentence of the form (Ju)(. .. u. . .) and a subderivation be- 
ginning with assumption (. . .s. . .): 

I) s cannot occur in any premise or prior assumption governing the 
subderivation, 

2) scannot occur in (du)(. ..u. . .), and 

3) scannot occur in X. 

All three restrictions are automatically enforced by requiring s to be 
isolated in the subderivation. (Make sure you understand why this is cor- 
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rect.) Some texts formulate the JE rule by imposing these three require- 
ments separately instead of requiring that s be isolated. If you reach chap- 
ter 15, you will learn that these three restrictions are really all the work 
that the isolation requirement needs to do. But, since it is always easy to 
pick a name which is unique to a subderivation, I think it is easier simply 

to require that s be isolated in the subderivation. 
Let us see how things go wrong if we violate the isolation requirement 

in any of these three ways. For the first, consider: 

Ca 

(G3)Bx (Invalid!) 

(Ax)(Cx & Bx) 

N ANP wn 

Ca 

Ca & Ba 

(Ax)(Cx & Bx) 

(ax)(Cx & Bx) Mistaken attempt to ap- 
ply 3E to 2 and 3-6. ‘a’ 
occurs in premise 1 and 
is not isolated in the sub- 
derivation. 

From the fact that Adam is clever and someone (it may well not be Adam) 
is blond, it does not follow that any one person is both clever and blond. 

Now let's see what happens if one violates the isolation requirement in 
the second way: 

(VX(3y)Lxy 

(Ax)Lxx (invalid!) 

ui RO No— 

(Vx)(dy)Lxy 

(ay)Lay 
a} Laa 

(3x)Lxx 

(3x)Lxx 

P 

1, VE 

A 

3, 3l 

Mistaken attempt to ap- 
ply 3E to 2 and 3—4. ‘a’ 
occurs ín 2 and ís not 
isolated in the subderi- 
vation. 

From the fact that everyone loves someone, it certainly does not follow 
that someone loves themself. 

And, for violation of the isolation requirement in the third way: 
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(Ax)Bx 1 (3x)Bx P 
(Invalid) 

(Vx)Bx 2 a} Ba A 

3 Ba 2,R 

4 Bà 
5 (Wx)Bx Mistaken attempt to 

apply 3E to 1 and 2-3. 
'a' occurs in 4 and is 
not isolated in the sub- 
derivation, 

From the fact that someone is blond, it will never follow that everyone is 
blond. 
One more example will illustrate the point about a sub-sub-derivation 

being part of a subderivation. The following derivation is completely cor- 
rect: 

1 | (XX Cx D ~Bx) P 
2 | (J39Bx P 

3 d | Bd A 

4 Cd A 

5 (VX)Cx D —Bx LR 
6 Cd 2 ~Bd 5, VE 
7 ~Bd 4,6, DE 

8 Bd 3,R 
3 

9 ~Cd 4-8, ~I 

10 (Ax)~Cx 9, Al 

11 | (@x)~Cx 2, 3-10, 3E 

You might worry about this derivation: If 'd' is supposed to be isolated in 
subderivation 2, how can it legitimately get into sub-sub-derivation 3? 

A subderivation is always part of the derivation in which it occurs, and 
the same holds between a sub-sub-derivation and the subderivation in 
which it occurs. We have already encountered this fact in noting that the 
premises and assumptions of a derivation or subderivation always apply 
to the derivation's subderivations, its sub-sub-derivations, and so on. 
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Now apply this idea about parts to the occurrence of ‘d’ in sub-sub- 
derivation 3 above: When I say that a name is isolated in a subderivation 
I mean that the name can occur in the subderivation and all its parts, 
but the name cannot occur outside the subderivation. 

Here is another way to think about this issue: The ‘d’ at the scope line 
of the second derivation means that ‘d’ occurs to the right of the scope 
line and not to the left. But the scope line of subderivation 3 is not 
marked by any name. So the notation permits you to use ‘d’ to the right 
of this line also. 

I hope that you are now beginning to understand the rules for quanti- 
fiers. If your grasp still feels shaky, the best way to understand the rules 
better is to go back and forth between reading the explanations and prac- 
ticing with the problems. As you do so, try to keep in mind why the rules 
are supposed to work. Struggle to see why the rules are truth preserving. 
By striving to understand the rules, as opposed to merely learning them 
as cookbook recipes, you will learn them better, and you will also have 

more fun. 

EXERCISES 

5—6. There is one or more mistakes in the following derivation. 
Write the hats where they belong, justify the steps that can be justi- 
fied, and identify and explain the mistake, or mistakes. 

(Wy)(Ax)Lxy P 1 

2 | (Ax)Lxb 

3 Lab A 

4 (Vy)Lay 

5 (Ax)(Wy)Lxy 

6 | (Ax)(Vy)Lxy 

5—7. Provide derivations which establish the validity of the following 
arguments: 

a) (Ax)ix b (Gx(ADP9 o (dx)Hmx 
(Wx)(Ix D Jx) A D (39Px (Wx)(~Hmx v Gxn) 

(xix (3x9Gxn 

d) (Ax)(Cfx & Cxf) e) GaxPxvQx f) (GxPxv (3b9Qx 

(Ax)Cfx & (3x)Cxf (3x)Px v (Ax)Qx (Ax)(Px v Qx) 
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= g (Gx(Px2A) h) (VX9PXO A) |) (xa = Lex) 

(V3Px > A (ax)Px 2 A (V9lxa —^. 
(Ax)Lex 

p (Wx)(Gsx D ~Gxs) 

(Ax)Gxs D (Ax)~Gsx 

k IL (Ax)(Px v Qx) ) (Ax)(~Mxt v Mtx) m) (3x)Hxg v (3x)NXxf 
(Wx)(Px D Kx) (Ax)(Mtx D Axx) (Wx)(Hxg D Cx) 
(Wx)(Qx D Kx) (339 —Mxt v Axx) (Wx)(Nxf D Cx) 

(Ax)Kx (Ax)Cx 

(Wx){(Fx v Gx) D Lxx] o) = (Wx){Fx D (Rxa v Rax)] 
(2x)— Lxx (3x)~Rxa 

(Ax)~Fx & (3x)~Gx (Wx)~Rax D (3x)—Fx 

n = 

p) Gx)Qxj q (Wx)~Fx rn) (AXx)~Fx 
(Ax)(Qxj v Dgx) D (Wx)Dgx ~(Ax)Fx ~(WX)FX 

(Wx)(Dgx v Qjx) 

s) (Vxdxx2 ~x) Ð (d9PxvQa u) AD (39Px 

~(AX)(Ixx & Jxf) NsP (339A D Px) 
(3x39Qx 

5—8. Are you bothered by the fact that JE requires use of a subder- 
ivation with an instance of the existentially quantified sentence as its 
assumption? Good news! Here is an alternate version of JE which 
does not require starting a subderivation: 

Show that, in the presence of the other rules, this version is ex- 

changeable with the 3E rule given in the text. That is, show that the 
above is a derived rule if we start with the rules given in the text. 
And show that if we start with all the rules in the text except for JE, 

and if we use the above rule for 3E, then the JE of the text is a 
derived rule. 
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CHAPTER SUMMARY EXERCISES 

Here is a list of important terms from this chapter. Explain them 
briefly and record your explanations in your notebook: 

Truth Preserving Rule of Inference 
Sound 

Complete 

Stand-in Name 

Govern 

Arbitrary Occurrence 

Existential Generalization 

Universal Generalization 

Isolated Name 

Existential Introduction Rule 

Existential Elimination Rule 

Universal Introduction Rule 

Universal Elimination Rule 







IONI More on Natural 

Deduction for Predicate 

Logic 

6—1. MULTIPLE QUANTIFICATION AND HARDER PROBLEMS 

In chapter 5 I wanted you to focus on understanding the basic rules for 
quantifiers. So there I avoided the complications that arise when we have 
sentences, such as ‘(Wx)(Vy)(Px & Py)’, which stack one quantifier on top 

of another. Such sentences involve no new principles. It's just a matter of 
keeping track of the main connective. For example, '(Vx)(Vy)(Px & Qy)’ is 

a universally quantified sentence, with '(Vx)' as the main connective. You 
practiced forming substitution instances of such sentences in chapter 3. 
The substitution instance of '(Vx)(Vy(Px & Qy) formed with ‘a’ (a sen- 
tence you could write when applying VE) is '(Vy)(Pa & Qy)’. 

You will see how to deal with such sentences most quickly by just 
looking at a few examples. So let's write a derivation to establish the 
validity of 

(Wx)(Wy)(Px .& Qy) 1 | (VXVy(Px & Qy) P 

(VxX)Px & (Vx)Qx 2 | (Vy(Pà & Qy) 1, VE 
3 | Pâ & Qb 2, VE 
4 | Pa 3, &E 

5 3, &E 
6 | (Vx)Px 4, Nl 
7 | (Vv)Qx 5, Vl 
8 | (VX)Px & (Wx)Qx 6, 7, &l 
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In line 2 I applied VE by forming the substitution instance of 1 using the 
name ‘a’. Then in line 3 I formed a substitution instance of the universally 
quantified line 2. 

Let's look at an example of multiple existential quantification. The basic 
ideas are the same. But observe that in order to treat the second existen- 
tial quantifier, we must start a sub-sub-derivation: 

(Ax)(Ay)(Px & Qy) 

(Ax)Px & (Jx)Qx 

1 | G(y)yPx & Qy) P 

2 a | (y)(Pa & Qy) A 

A 

4 3, &E 

5 3, &E 
6 4, 3I 
7 5, JI 
8 6, 7, &I 

9 2, 3—8, JE 

2 

10 | (3xjPx & (3x)Qx 1, 2-9, 3E 

In line 2 I wrote down ‘(Ay)(Pa & Qy)’, a substitution instance of line 1, 

formed with ‘a’, substituted for ‘x’, which is the variable in the main con- 

nective, ‘(Ax)’, of line 1. Since I plan to appeal to JE in application to line 
1, I make ‘(Ay)(Pa & Qy)’ the assumption of a subderivation with ‘a’ an 

isolated name. I then do the same thing with '(dy)(Pa & Qy)’, but because 
this is again an existentially quantified sentence to which I will want 
to apply 3E, I must make my new substitution instance, ‘Pa & Qb', 
the assumption of a sub-sub-derivation, this time with ‘b’ the isolated 
name. 
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In the previous example, I would have been allowed to use 'a' for the 
second as well as the first substitution instance, since I was applying VE. 
But, in the present example, when setting up to use two applications of 
3E, I must use a new name in each assumption. To see why, let's review 
what conditions must be satisfied to correctly apply 3E to get line 9. I 
must have an existentially quantified sentence (line 2) and a subderivation 
(sub-sub-derivation 3), the assumption of which is a substitution instance 

of the existentially quantified sentence. Furthermore, the name used in 
forming the substitution instance must be isolated to the subderivation. 
Thus, in forming line 3 as a substitution instance of line 2, I can't use ‘a’. 

I use the name ‘b’ instead. The ‘a’ following 'P' in line 3 does not violate 

the requirement. ‘a’ got into the picture when we formed line 2, the sub- 
stitution instance of line 1, and you will note that 'a' is indeed isolated to 

subderivation 2, as required, since sub-sub-derivation 3 is part of subder- 

ivation 2. 
Here's another way to see the point. I write line 3 as a substitution 

instance of line 2. Since I will want to apply 3E, the name I use must be 
isolated to subderivation 3. If I tried to use ‘a’ in forming the substitution 
instance of line 2, I would have had to put an 'a' (the "isolation flag") to 
the left of scope line 3. I would then immediately see that I had made a 
mistake. ‘a’ as an isolation flag means that ‘a’ can occur only to the right. 
But 'a' already occurs to the left, in line 2. Since I use 'b' as my new name 
in subderivation 3, I use ‘b’ as the isolation flag there. Then the ‘a’ in line 
3 causes no problem: All occurrences of ‘a’ are to the right of scope line 
2, which is the line flagged by ‘a’. 

All this is not really as hard to keep track of as it might seem. The scope 
lines with the names written at the top to the left (the isolation flags) do 
all the work for you. ‘a’ can only appear to the right of the scope line on 
which it occurs as an isolation flag. ‘b’ can only occur to the right of the 
scope line on which it occurs as an isolation flag. That's all you need to 
check. 
Make sure you clearly understand the last two examples before con- 

tinuing. They fully illustrate, in a simple setting, what you need to 
understand about applying the quantifier rules to multiply quantified sen- 
tences. 

Once you have digested these examples, let's try a hard problem. The 
new example also differs from the last two in that it requires repeated 
use of a quantifier introduction rule instead of repeated use of a quanti- 

fier elimination rule. In reading over my derivation you might well be 
baffled as to how I figured out what to do at each step. Below the problem 
I explain the informal thinking I used in constructing this derivation, so 
that you will start to learn how to work such a problem for yourself. 
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(Wx)Px D (3x)Qx 

Gx(3yY(Px D Qy) 

1 P 

2 A 

3 A 

4 3,W 

5 4, CP 

6 5, 3I 

7 6, 3I 

8 2,R 

9 3—8, RD 
10 9, VI 

11 A 

12 A 

13 12, W 
14 (y)(Pa D Qy) 13, 31 
15 Gx)dy(Px D Qy) 14,31 

16 (ax(Jy)(Px DQy) 11, 12-15, 3E 
17 ~(Ax)y)(Px D Qy) 2, R 

18 11-17, ~ 

19 (Vx)Px D (3x)Qx 1,R 
20 10, 19, DE 

21 2-20, RD 

My basic strategy is reductio, to assume the opposite of what I want to 
prove. From this I must get a contraction with the premise. The premise 
is a conditional, and a conditional is false only if its antecedent is true and 

its consequent is false. So I set out to contradict the original premise by 
deriving its antecedent and the negation of its consequent from my new 
assumption. 
To derive (Vx)Px (line 10), the premise's antecedent, I need to derive 

Pa. I do this by assuming ~Pa from which I derive line 7, which contra- 
dicts line 2. To derive ~(4x)Qx (line 18), the negation of the premise's 
consequent, I assume (4x)Qx (line 11), and derive a contradiction, so that 
I can use ~I. This proceeds by using 3E, as you can see in lines 11 to 16. 
Now it's your turn to try your hand at the following exercises. The 

problems start out with ones much easier than the last example—and 
gradually get harder! 
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EXERCISES 

6—1. Provide derivations to establish the validity of the following 
argument: 

a) (dx)Lxx 

(Ax)(@y)Lxy 

Note that the argument, ST is invalid. Prove that this argu- 

ment is invalid by giving a counterexample to it (that is, an inter- 
pretation in which the premise is true and the conclusion is false). 
Explain why you can't get from (Vx)Lxx to (Vx)(Vy)Lxy by using 
VE and VI as you can get from (Ax)Lxx to (3dx)(Jy)Lxy by using JE 

and 3l. 

b) (VX(Vy)Lxy 

(Vx)Lxx 

Note that the argument, oe , is invalid. Prove that this ar- 

gument is invalid by giving a counterexample to it. Explain why you 
can't get from (3x)(Jy)Lxy to (Ax)Lxx by using JE and JI as you 
can get from (Vx)(Vy)Lxy to (Vx)Lxx by using VE and VI. 

c) (Wx)(Wy)Lxy d) (3xGylxy 

(Wy)(Wx)Lxy (Ay)(4x)Lxy 

e) (3x(Vy)xy 

(Wy)(Ax)Lxy 

Note that the converse argument, Was \ieg: is invalid. Prove this 
(Ax)(Vy)Lxy 

by providing a counterexample. 

f) (VXPx & (Wx)Qx  g) (Ax)Px & (Ax)Qx h) (V3Pxv (Wx)Qx 

(Wx}(Wy}(Px & Qy) (Ax)(Sy)(Px & Qy) (Wx)(Wy)(Px v Qy) 

i) — (23)Px v (Ax)Qx ) GxGy(PxvQy k) (Vx(VyLxy D ~Lxy) 

(Ax)(y)(Px v Qy) (3x)Px v (d3x9Qx (Wx)~Lxx 

D)  (VXI(Vy(Px D Qy) =m) Gx(Gy(Px2 Qy) n) (3X(Vy(Px D Qy) 

(Ax)Px D (Vx)Qx (Vx)Px D (dx)Qx (Wx)Px D (Wx)Qx 
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o) (Wx)(Ay)(Px D Qy) p) (VX9x O(V)Qx  q) (Wx)(Vy)(PX v Qy) 

(3x)Px D (3x)Qx (Ax)(Wy)(Px D Qy) (Vx)Px v (Wx)Qy 

r — (33(Vy)xy 
(Ay)(4z)\(Hzy & ~Py) 
(¥z)(Ww)[(Jzw & ~Pw) D Gz] 

(Az)Gz 

6-2. SOME DERIVED RULES 

Problem 5—7(q) posed a special difficulty: 

(Wx)~Fx 

~(Ax)Fx 

(Wx) ~Fx 1 

2 

3 

4 

5 
= 

We would like to apply ~I to derive ~(4x)Fx. To do this, we need to get 
a contradiction in subderivation 2. But we can use the assumption of sub- 
derivation 2 only by using 3E, which requires starting subderivation 3, 
which uses ‘a’ as an isolated name. We do get a sentence and its negation 
in subderivation 3, but these sentences use the isolated name ‘a’, so that 

we are not allowed to use JE to bring them out into subderivation 2 
where we need the contradiction. What can we do? 
We break this impasse by using the fact that from a contradiction you 

can prove anything. Be sure you understand this general fact before we 
apply it to resolving our special problem. Suppose that in a derivation you 
have already derived X and —X. Let Y be any sentence you like. You can 
then derive Y: 
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We can use this general fact to resolve our difficulty in the following 
way. Since anything follows from the contradiction of ‘Pa’ and ‘~Pa’, we 
can use this contradiction to derive a new contradiction, ‘A &~ A’, which 

does not use the name ‘a’. JE then licenses us to write ‘A &~A’ in deri- 
vation 2 where we need the contradiction. 

To streamline our work, we will introduce several new derived rules. 

The first is the one I have just proved, that any sentence, Y, follows from 
a contradiction: 

Contradiction 

[5] 
¥Y cp 

In practice, I will always use a standard contradiction, 'A & —A', for Y. I 

will also use a trivial reformulation of the rules ~I and Rd expressed in 
terms of a conjunction of a sentence and its negation where up to now 
these rules have, strictly speaking, been expressed only in terms of a sen- 
tence and the negation of the sentence on separate lines: 

Negation Introduction Reductio 
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These derived rules enable us to deal efficiently with problem 5—7(q) 
and ones like it: 

(Wx)~ Fx 1 | (Wx)~Fx 

—(3x)Fx 

o N 

oN DU 

Let’s turn now to four more derived rules, ones which express the rules 

of logical equivalence, ~Y and ~J, which we discussed in chapter 3. 
There we proved that they are correct rules of logical equivalence. For- 
mulated as derived rules, you have really done the work of proving them 
in problems 5—4(q) and (r) and 5-7(q) and (r). To prove these rules, all 

you need do is to copy the derivations you provided for those problems, 
using an arbitrary open sentence (. . . u . . .), with the free variable u, 
instead of the special case with the open sentence ‘Px’ or ‘Fx’ with the free 
variable ‘x’. 

Negated Quantifier Rules 

-(VufK. .. u...) (Ju)~(. ..u.. ) 

(jw~(. ..u.. ) )-V ~(Vu. ..u...) )d~ 

~(duy(. . .u.. .) (Wu)~(. .. u...) 

(Wu)~(.. .u...) )~d —-(dJu( ..u.. )) Y~ 

A word of caution in using these negated quantifier rules: Students 
often rush to apply them whenever they see the opportunity. In many 
cases you may more easily see how to get a correct derivation by using 
these rules than if you try to make do without the rules. But often, if you 
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work hard and are ingenious, you can produce more elegant derivations 

without using the quantifier negation rules. In the following exercises, use 
the rules so that you have some practice with them. But in later exercises, 
be on the lookout for dever ways to produce derivations without the 
quantifier negation rules. Instructors who are particularly keen on their 
students learning to do derivations ingeniously may require you to do 

later problems without the quantifier negation rules. (These comments do 
not apply to the derived contradiction rule and derived forms of ~I and 
RD rules. These rules just save work which is invariably boring, so you 
should use them whenever they will shorten your derivations.) 

EXERCISES 

6-2. 

(Wx)Px (Wx)(Fx D Gx) o ~(Wx)(Wy)Lxy 
~ 3 E Vei S aiy 

~(Ax)(Px = Qx) 
~(Ax)Fx 

~(Ax)(y)Lxy e) ~(4x)(Px v Qx) f) ~(Wx)(Px & Qx) 

(Wx)(Wy)~Lxy (Wx)~Px & (Wx)~Qx (3x) -Px v (Ax)~Qx 

(Vx)[-GIyRxy & ~(y)Ryx] h) (dXI[Px D (Vy (Py D Qy) 

(Wx)(¥y)~Rxy TEX 
~(Wx)Px 

(Ay)(Az)[(Wx)~Rxy v (Wx)~Rxz] 

~(Wy)(Wz)(Ax)(Rxy & Rxz) 

6-3. LOGICAL TRUTH, CONTRADICTIONS, INCONSISTENCY, 

AND LOGICAL EQUIVALENCE 

This section straightforwardly applies concepts you have already learned 

for sentence logic. We said that a sentence of sentence logic is a logical 
truth if and only if it is true in all cases, that is, if and only if it comes out 
true for all assignments of truth values to sentence letters. The concept 
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of logical truth is the same in predicate logic if we take our cases to be 
interpretations of a sentence: 

A closed predicate logic sentence is a Logical Truth if and only if it is true in 
all its interpretations. 

Proof of logical truth also works just as it did for sentence logic, as we 
discussed in section 7—3 of Volume I. A derivation with no premises 
shows all its conclusions to be true in all cases (all assignments of truth 
values to sentence letters in sentence logic, all interpretations in predicate 

logic). A brief reminder of the reason: If we have a derivation with no 
premises we can always tack on unused premises at the beginning of the 
derivation. But any case which makes the premises of a derivation true 
makes all the derivation's conclusions true. For any case you like, tack on 
a premise in which that case is true. Then the derivation's conclusions will 
be true in that case also: 

A derivation with no premises shows all its conclusions to be logical truths. 

Contradictions in predicate logic also follow the same story as in sen- 
tence logic. The whole discussion is the same as for logical truth, except 
that we replace "true" with "false": 

A closed predicate logic sentence is a Contradiction if and only if it is false in 
all its interpretations. 

To demonstrate a sentence, X, to be a contradiction, demonstrate its nega- 
tion, —X, to be a logical truth. That is, construct a derivation with no prem- 
ises, with —X as the final conclusion. 

If you did exercise 7—5 (in volume I), you learned an alternative test 
for contradictions, which also works in exactly the same way in predicate 
logic: 

A derivation with a sentence, X, as its only premise and two sentences, Y 
and —Y, as conclusions shows X to be a contradiction. 

Exercise 7—8 (volume I) dealt with the concept of inconsistency. Once 
more, the idea carries directly over to predicate logic. I state it here, to- 
gether with several related ideas which are important in more advanced 
work in logic: 

A collection of closed predicate logic sentences is Consistent if there is at least 
one interpretation which makes all of them true. Such an interpretation is 
called a Model for the consistent collection of sentences. If there is no inter- 
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pretation which makes all of the sentences in the collection true (if there is 
no model), the collection is Inconsistent. 

A finite collection of sentences is inconsistent if and only if their conjunction" 
is a contradiction. 

To demonstrate that a finite collection of sentences is inconsistent, demon- 
strate their conjunction to be a contradiction. Equivalently, provide a deri- 
vation with all of the sentences in the collection as premises and a contradic- 
tion as the final conclusion. 

Finally, in predicate logic, the idea of logical equivalence of closed sen- 
tences works just as it did in sentence logic. We have already discussed 
this in section 3—4: 

Two closed predicate logic sentences are Logically Equivalent if and only if in 
each of their interpretations the two sentences are either both true or both 
false. 

Exercise 4—3 (volume I) provides the key to showing logical equiva- 
lence, as you already saw if you did exercise 7—9 (volume I). Two sen- 
tences are logically equivalent if in any interpretation in which the first is 
true the second is true, and in any interpretation in which the second is 
true the first is true. (Be sure you understand why this characterization 
comes to the same thing as the definition of logical equivalence I just 
gave.) Consequently 

To demonstrate that two sentences, X and Y, are logically equivalent, show 
that the two arguments, "X. Therefore Y." and "Y. Therefore X." are both 
valid. T'hat is, provide two derivations, one with X as premise and Y as final 
conclusion and one with Y as premise and X as final conclusion. 

EXERCISES 

6—3. Provide derivations which show that the following sentences are 
logical truths: 

a) (Wx)(Vy)Lxy D (3x)(dy)Lxy 
b) (Wx)(Gx v ~Gx) 

c) (Vx)dyyY(Ax & By) D (dx)(Ax & Bx) 

d) (Ay)[Ky & (Vx)(Dx D Rxy)] D (Wx)[Dx D (J3y((Ky & Rxy)] 

e) (x)Vy)Fy D Fx) 

f) (Vx)dy)Fy D Fx) 

g (Ax)(Vy)(Fx D Fy) 
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6—4. Provide derivations which show that the following sentences are 
contradictions: 

a) (Wx)(Ax D Bx) & (4x)(~Bx & (Vy)Ay) 

b) (Wx)(Rxb D ~Rxb) & (3x)Rxb 
c) (Vx)(Vy)Lxy & (3y)-Lyx] 
d) (Vx)3y)(Mx & ~My) 
e) (Vx)dy(Vw)(3z)(Lxw & ~Lyz) 

6—5. Provide derivations which show that the following collections of 
sentences are inconsistent: 

a) (Vx)Kx, (Vy) (Ky v Lya) 
b) (Vx)3y)Rxy, (Ax)(Wy)~Rxy 

c) (dx)Dx, (Vx)(Dx D (Vy)(Vz)Ryz), Gx)(3y)-Rxy 
d) (dx)dy)(Rxx & ~Ryy & Rxy), (Vx)(Vy)(Rxy D Ryx), 

(Wx)(Wy)Wz)[(Rxy & Ryz) D Rxz)] 

6—6. a) List the pairs of sentences which are shown to be logically 

equivalent by the examples in this chapter and any of the derivations 

in exercises 6-1 and 6-8. 7 

b) Write derivations which show the following three arguments to 

be valid. (You will see in the next part of this exercise that there is a 
point to your doing these trivial derivations.) 

(Wx)Rxa (Wx)Rxx (Wx)Px 

(Ax)Rxa (3x)Rxx (3x)Px 

c) Note that the three derivations you provided in your answer to 
(b) are essentially the same. From the point of view of these deriva- 
tions, ‘Rxa’ and ‘Rxx’ are both open sentences which we could have 

just as well have written as P(u), an arbitrary (perhaps very complex) 
open sentence with u as its only free variable. In many of the prob- 
lems in 5—5 and 5—7, I threw in names and repeated variables which 
played no real role in the problem, just as in the first two derivations 
in (b) above. (I did so to keep you on your toes in applying the new 

rules.) Find the problems which, when recast in the manner illus- 

trated in (b) above, do the work of proving the following logical 
equivalences. Here, P(u) and Q(u) are arbitrary open sentences with 

u as their only free variable. A is an arbitrary closed sentence. 
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(Vu)(P(u) & Q(u)) 
(3u)(P(u) v Q(u)) 

A D (Vu)P(u) 
A D (du)P(u) 
(Vu)P(u) D A 
(Jdu)P(u) DA 

is logically equivalent to 
is logically equivalent to 
is logically equivalent to 
is logically equivalent to 
is logically equivalent to 
is logically equivalent to 

(Vu)P(u) & (Vu)Q(u) 
(3u)P(u) v (Au)Q(u) 
(Vuy(A D P(u)) 
(Ju)y(A D P(u)) 

(Ju)(P(u) D A) 
(Wu)(P(u) D A) 

d) Prove, by providing a counterexample, that the following two 
pairs of sentences are not logically equivalent. (A counterexample is 
an interpretation in which one of the two sentences is true and the 
other is false.) 

(Vx)(Px v Qx) 
(3x)(Px & Qx) 

(Vx)Px v (Vx)Ox is not logically equivalent to 
(Ax)Px & (Ax)Qx is not logically equivalent to 

e) Complete the work done in 6-1(c) and (d) to show that the fol- 
lowing pairs of sentences are logically equivalent. (R is an arbitrary 
open sentence with u and v as its only two free variables.) 

(Vv)(Vu)R(u, v) 
(Av)(Au)R(u, v) 

(Vu)(Vv)R(u, v) 
(Ju)(3dv)R(yu, v) 

is logically equivalent to 
is logically equivalent to 

6—7. Here are some harder arguments to prove valid by providing 
derivations. In some cases it is easier to find solutions by using the 
derived rules for negated quantifiers. But in every case you should 
look for elegant solutions which do not use these rules. 

a) (Wx)[(Ay)(Lxy v Lyx) D Lxx] 

(Ax)(Ay)Lxy 

(3x)Lxx 

(Everyone who loves or is loved by 
someone loves themself. Someone 
loves someone. Therefore, someone 
loves themself.) 

b (Vx(Hx D Ax) 

(Wx)[(Ay)(Hy & Txy) D (JyXAy & Txy)] 

(Horses are animals. 
Therefore horses' tails are 
animals' tails.) 

c) (VXXVy)(Gz)Lyz D Lxy] 
(Ax)(Ay)Lxy 

(Wx)(Wy)Lxy 

(Everyone loves a lover. Someone loves 
someone. Therefore, everyone loves 
everyone.) 

d) (Vx(Vy[Gz)(Rzy & ~Rxz) D Lxy] 
~(Ax)Lxx 

(Wx)(Wy)(~Ryx D ~Rxy) 
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e 

f) 

h) 

k) 

(VxX6(y)uxy D (Ay)[(¥z)Lyz & Lxy]} (Everyone who loves 

(Ax)Gy)ixy 

(Ax)(Vy)Lxy 

(Wx)[Px D (Vy)(Hy D Rxy)] 
(Ax)(Px & (Jy)~Rxy) 

~(Wx)Hx 

(Wx)[(Ex D (Wy)(Hy D Wxy)] 
(3x)[Hx & (Vy(Dy D Wxy)] 

someone loves someone who 
loves everyone. Someone 
loves someone. Therefore, 
someone loves everyone.) 

(Any elephant weighs more 
than a horse. Some horse 

(Wx)(Wy)(Wz)[(Wxy & Wyz) D Wxz] weighs more than any 

(Vx)[Ex 2 (Wy)(Dy D Wxy)] 
donkey. If a first thing weighs 
more than a second, and the 
second weighs more than a 
third, the first weighs more 
than the third. Therefore, any 
elephant weighs more than 
any donkey.) 

(Wx)(4y)(Py D Qx) Note that in general a sentence of the form 
=. | (VxY3y)X does not imply a sentence of the 
GyXPy 2 QX) (orm (Ay)Wx)X (See problem 6 —1(e). 

However, in this case, the special form of the 
conditional makes the argument valid. 

(Ax)Px D (3x)Qx 

(Wx)(4y)(Px D Qy) 

(Ax)Px D (Wx)Qx 

(Wx)(Wy)(Px D Qy) 

(Wx}Bx D [(dy)Lxy D (Ay)Lyx}} 
(Vx)Gy)Lyx 2 Lxx] 
~(Ax)Lxx 

(Wx)(Bx D (Wy)~Lxy) 

(WxHFx D [Hx & (~Cx & ~Kx)]} 
(Wx)[(Hx & ~(dy)Nxy) D Dx] 

(Wx)(Fx D (dy)Nxy) 

(All blond lovers are loved. All 
those who are loved love 
themselves. No one loves 
themself. Therefore, all blonds 
love no one.) 
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m) (Wy)(Cy D Dy) 
(VXx3y)[(Hx & Cx) & (Gy & Ryx)] 
(Ax)Dx D (Wy)(Wz)(Ryz D Dy) 

(Ax)(Gx & Cx) 

n) (Vxy(Vy)(Rdy & Rxd) D Rxy] 
(Wx)(Bx D Rdx) 
(Jx(Bx & Rxd) 

(3x)[Bx & (Wy)(By D Rxy)] 

CHAPTER REVIEW EXERCISES 

Write short explanations in your notebook for each of the following. 

a) Contradiction Rule 

b) Quantifier Negation Rules 
€) Logical Truth of Predicate Logic 

d) Test for a Logical Truth 

e) Contradiction of Predicate Logic 
f) Test for a Contradiction 

g) Consistent Set of Sentences 
h) Inconsistent Set of Sentences 
i) Test for a Finite Set of Inconsistent Sentences 

j Logical Equivalence of Predicate Logic Sentences 

k) Test for Logical Equivalence 



Truth Trees for / 
Predicate Loaic: 

Fundamentals 

7-1. THE RULE FOR UNIVERSAL QUANTIFICATION 

You have already learned the truth tree method for sentence logic. And 
now that you have a basic understanding of predicate logic sentences, you 
are ready to extend the truth tree method to predicate logic. 

Let’s go back to the basics of testing arguments for validity: To say that 
an argument is valid is to say that in every possible case in which the 
premises are true, the conclusion is true also. We reexpress this by saying 
that an argument is valid if and only if it has no counterexamples, that is, 
no possible cases in which the premises are true and the conclusion false. 
When we were doing sentence logic, our possible cases were the lines of 
a truth table, and in any one problem there were only finitely many lines. 
In principle, we could always check all the truth table lines to see if any 
of them were counterexamples. Often the truth tree method shortened 
our work. But the trees were really just a labor-saving device. We could 
always go back and check through all the truth table lines. 

Predicate logic changes everything. In predicate logic our cases are 
interpretations, and there are always infinitely many of these. Thus we 
could never check through them all to be sure that there are no counter- 
examples. Now truth trees become much more than a convenience. They 
provide the only systematic means we have for searching for counterex- 
amples. 

Everything we learned about truth trees in sentence logic carries over 

106 
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to predicate logic. Someone gives us an argument and asks us whether it 
is valid. We proceed by searching for a counterexample. We begin by 
listing the premises and the denial of the conclusion as the beginning of 
a tree. Just as before, if we can make these true we will have a case in 

which the premises are true and the conclusion false, which is a counter- 

example and which shows the argument to be invalid. If we can establish 
that the method does not turn up a counterexample, we conclude that 
there is none and that the argument is valid. 
We have boiled our job down to the task of systematically looking for a 

case which will make true the initial sentence on a tree. In sentence logic 
we did this by applying the rules for the connectives '&', ‘v’, ‘~, ‘D’, and 

‘=, These rules broke down longer sentences into shorter ones in all the 
minimally sufficient possible ways which would make the longer sentences 
true by making the shorter ones true. Since, in sentence logic, this process 
terminates in sentence letters and negated sentence letters, we got 
branches which (if they do not close) make everything true by making the 
sentence letters and negated sentence letters along them true. In this way 
you should think of each branch as a systematic way of developing a line 
of a truth table which will make all the sentences along the branch true. 
The tree method for predicate logic works in exactly the same way, with 

just one change: Each branch is no longer a way of developing a line of a 
truth table which will make all the sentences along the branch true. In- 
stead, a branch is a way of developing an interpretation which will make 
all the sentences along the branch true. All you have to do is to stop 
thinking in terms of building a line of a truth table (an assignment of 
truth values to sentence letters). Instead, start thinking in terms of build- 
ing an interpretation. 

Let's see this strategy in action. Consider the example that got us 
started on predicate logic, way back in chapter 1: 

Everybody loves Eve. (Vx)Lxe 

Adam loves Eve. Lae 

We begin our search for an interpretation in which the premise is true 
and the conclusion is false by listing the premise and the denial of the 
conclusion as the initial lines of a tree: 

1 (Wx)Lxe P 

2 —Lae -C 

We already know quite a bit about any interpretation of these two sen- 
tences which makes them both true. The interpretation will have to have 
something called ‘a’ and something called ‘e’, and ‘~Lae’ will have to be 
true in the interpretation. ‘~Lae’ is already a negated atomic sentence. 
We cannot make it true by making some shorter sentence true. 
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But we can make '(Vx)Lxe' true by making some shorter sentences true. 
Intuitively, '(Vx)Lxe' says that everybody loves Eve. In our interpretation 
we have a (Adam) and e (Eve). In this interpretation, in this little novel 
or story of the way the world might be, we can make it true that every- 
body loves Eve by making it true that Adam loves Eve and making it true 
that Eve loves Eve. So we extend the branch representing our interpre- 
tation with the sentences ‘Lae’ and ‘Lee’: 

a,el (Wx)Lxe P 

2 ~Lae -C 

3 Lae 1, V 
4 Lee 1V 

x 

And the branch closes! The branch includes both ‘~Lae’ and ‘Lae’, where 
the first is the negation of the second. They cannot both be true in an 
interpretation. We had to include ‘~Lae’ to get an interpretation which 
makes the conclusion of the argument false. We had to include ‘Lae’ to 
get an interpretation which makes '(Vx)Lxe' true. But no interpretation 
can make the same sentence both true and false. So there is no interpre- 
tation which makes lines 1 and 2 true—there is no counterexample to the 
argument. And so the argument is valid. 

Let's talk more generally about how I got lines 3 and 4 out of line 1. 
Already, when we have just lines 1 and 2, we know that our branch will 
represent an interpretation with something called ‘a’ and something called 
ʻe’. We know this because our interpretation must be an interpretation of 
all the sentences already appearing, and these sentences include the 
names ‘a’ and ‘e’. Our immediate objective is to make (Vx)Lxe' true in this 
interpretation. But we know that a universally quantified sentence is true 
in an interpretation just in case all its substitution instances are true in the 
interpretation. So to make '(Vx)Lxe' true in the interpretation we must 
make 'Lae' and 'Lee' true in the interpretation. This is because 'Lae' and 
‘Lee’ are the substitution instances of ‘(Wx)Lxe’ formed with the interpre- 
tation's names, ‘a’ and ‘e’. 

Notice that I did something more complicated than simply checking 
line 1 after working on it and putting the annotation ‘1,V’ after lines 3 
and 4. The rule for the universal quantifier differs in this respect from 
all the other rules. The other rules, when applied to a "target" sentence, 
tell us to write something at the bottom of every open branch on which 
the target sentence appears. When this is done, we have guaranteed that 
we have made the target sentence true in all possible minimally sufficient 
ways. We thus will never have to worry about the target sentence again. 
To note the fact that we are done with the sentence, we check it. 

But the rule for the universal quantifier is not like this. First, in apply- 

ing the rule to a universally quantified sentence, we have to search the 
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branch on which the target sentence appears for names. Then, at the 
bottom of every open branch on which the target sentence appears, we 
must instantiate the target sentence with each name which occurs along 
that branch. To help keep track of which names have already been used 
to instantiate the target sentence, we list them as we use them. 

You might think that when we have thus accounted for all the names 
on the branch we are done with the target sentence and can check it. But 
you will see that new names can arise after first working on a universally 
quantified target sentence. In such a case we must come back and work 
on the universally quantified sentence again. Because we must recognize 
the possibility of having to return to a universally quantified sentence, we 
never check the sentence as a whole. Instead, we list the names which we 
have thus far used in the sentence, because once a universally quantified 

sentence has been instantiated with a given name, we never have to in- 
stantiate it with the same name again. 

Here is a summary statement of our rule: 

Rule V: If a universally quantified sentence (Vu)(. . .u. . .) appears as the 
entire sentence at a point on a tree, do the following to each open branch 
on which (Vu)(. . . u. . .) appears. First, collect all the names s,, $5, 83, . . . 
that appear along the branch. (If no name appears on the branch, introduce 
a name so that you have at least one name.) Then write the substitution 
instances (. ..8,...,(..82.. 5 (..8s. . .,. . . at the bottom of the 
branch, and write the names s;, $5, Ss, . . . to the left of (Vu)(. .. u . . ). 
Do not put a check by (Vu). ..u.. ). 

Several facets of this rule bear further comment. First, in working oma 
universally quantified sentence on a given branch, you only need to in- 
stantiate it with the names along that branch. If the same universally 
quantified sentence occurs along a second branch, that second branch 
calls for use of the names that occur along that second branch. This is 
because each branch is going to represent its own interpretation. Also, 
when instructed to write a substitution instance, (. . . s. . ), at the bot- 

tom of an open branch, you do not need to write it a second time if it 
already appears. 

Next, the rule instructs you to write all of the substitution instances, 

(...8)...),(.. .82...),(.. .83...),. . . at the bottom of every open 

path. But if the path closes before you are done, of course you can stop. 
Once a path closes, it cannot represent a counterexample, and further 

additions will make no difference. Thus, in the last example, I could have 
correctly marked the path as closed after line 3, omitting line 4. You can 
make good use of this fact to shorten your work by choosing to write 
down first the substitution instances which will get a branch to close.. But 
don't forget that if the branch does not close, you must list all the substi- 
tution instances. 
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Finally, listing the names used to the left of (Vu). . . u . . .) isa prac- 

tical reminder of which names you have already used to instantiate 
(Vu). ..u.. .) But this reminder is not foolproof because it does not 
contain the information about which branch the substitution instance ap- 
pears on. In practice, this isn't a difficulty because in almost every prob- 

lem your substitution instance will appear on all branches. Indeed, when 
a universally quantified sentence appears on a branch it never hurts to 
introduce a substitution instance formed with a name which had not oth- 
erwise appeared on that branch. 

Let me illustrate how the rule applies when no name appears on a path. 
At the same time, I will show you how we will write down counterexam- 
ples: 

A 1 A P 
NICE, /2. ~~(Wx)Bx ~C 
—(Vx)Bx a3 (Vx)Bx 2, ~~ 

4 Ba 3, V 

Invalid. Counterexample: D = {a}; Ba & A 

‘A’ is an atomic sentence letter which we make true in the counterexam- 
ple. ‘A’ is not a name. So when we get to line 3 and need to instantiate 
'(Vx)Bx' with all the names in the interpretation we are building, we find 
that we don't have any names. What do we do? Every interpretation must 
have at least one thing in it. So when applying the rule V to a universally 
quantified sentence on a branch which has no names, we have to intro- 
duce a name to use. This is the only circumstance in which the V rule 
tells us to introduce a new name. Any name will do. In this example I 
used ‘a’. 

Notice how I indicated the counterexample to the argument provided 
by the open branch. The counterexample is an interpretation which 
makes everything along the branch true. You read the counterexample 
off the open branch by listing the names which occur on the branch and 
the atomic and negated atomic sentences which occur along the branch. 
The rules have been designed so that these shortest sentences make true 
the longer sentences from which they came, which in turn make true the 
still longer sentences from which they came, and so on, until finally every- 
thing along the open branch is true. 

EXERCISES 

validity. In each problem, state whether or not the argument is valid; 

| 

| 
7—1. Use the truth tree method to test the following arguments for | 

| 
if invalid, give a counterexample. | 
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a) (Vx(Kx&]x) b) (VxX(FX2Gx) o (Yx(CxD Ix) 

Ka Mc MN Ch v Ih 
Fa 

d AD(VxMx e (Wx)(Bx D Cx) fì (Wx)(Ne = Px) 
A (Vx)Bx 

Ber Ort E ARSOMDE Pg 
Mg & Mi Ca & Cb 

g (VXKxvAx) h) (VXDxvGx) i) (Wx)(Sx = Tx) 
~Kj (Wx)(Dx D Jx) -bya 
Ad (Wx)(Gx D Jx) 

Ja 

p ~Tfg v (Vx)Px 
Ph D (Vx)Qx 

Tfg 2 Qh 

7-2. THE RULE FOR EXISTENTIAL QUANTIFICATION 

Consider the argument 

Somebody is blond. (Ax)Bx 

Adam is blond. Ba 

As we noted in chapter 2, this argument is obviously invalid. If somebody 
is blond, it does not follow that Adam is blond. The blond might well be 
somebody else. We will have to keep the clear invalidity of this argument 
in mind while formulating the rule for existentially quantified sentences 
to make sure we get the rule right. 

Begin by listing the premise and the negation of the conclusion: 

1 (3»Bx P 

2 ~Ba -C 

As in the last example, we already know that we have an interpretation 
started, this time with one object named ‘a’. We also know that ‘~ Ba’ will 

have to be true in this interpretation. Can we extend the interpretation so 
as also to make '(dx)Bx' true? 
We have to be very careful here. We may be tempted to think along the 

following lines: An existentially quantified sentence is true in an interpre- 
tation just in case at least one of its substitution instances is true in the 
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interpretation. We have one name, ‘a’, in the interpretation, so we could 
make ‘(4x)Bx’ true by making its substitution instance, ‘Ba’, true. But if 

we do that, we add ‘Ba’ to a branch which already has ‘~Ba’ on it, so that 
the branch would close. This would tell us that there are no counterex- 
amples, indicating that the inference is valid. But we know the inference 
is invalid. Something has gone wrong. 

As I pointed out in introducing the example, the key to the problem is 
that the blond might well be someone other than Adam. How do we re- 
flect this fact in our rules? Remember that in extending a branch down- 
ward we are building an interpretation. In so doing, we are always free 
to add new objects to the interpretation’s domain, which we do by bring- 
ing in new names in sentences on the tree. Since there is a possibility that 
the blond might be somebody else, we indicate this by instantiating our 
existentially quantified sentence with a new name. That is, we make 
'(3x)Bx' true by writing ‘Bb’ at the bottom of the branch, with 'b' a new 
name. We bring the new name, ‘b’, into the interpretation to make sure 
that there is no conflict with things that are true of the objects which were 
in the interpretation beforehand. 

The completed tree looks like this: 

/1  (GxBx P 
2 ~Ba -C 
3 Bb 1, 3, New name 

Invalid. Counterexample: D = {a,b}; ~Ba & Bb 

The open branch represents a counterexample. The counterexample is 
an interpretation with domain D = {a,b}, formed with the names which 

appear on the open branch. The open branch tells us what is true about 
a and b in this interpretation, namely, that ~Ba & Bb. 

You may be a little annoyed that I keep stressing ‘new name’. I do this 
because the new name requirement is a very important aspect of the rule 
for existentially quantified sentences—an aspect which students have a 
very hard time remembering. When I don’t make such a big fuss about 
it, at least 50 percent of a class forgets to use a new name on the next test. 
By making this fuss I can sometimes get the percentage down to 25 per- 
cent. 

Here is the reason for the new name requirement. Suppose we are 
working on a sentence of the form (du). .. u . . .) such as (Jx)Bx' in 

our example. And suppose we try to make it true along each open branch 
on which it appears by writing a substitution instance, (. . . t. . ), at the 
bottom of each of these branches. Now imagine, as happened in our 
example, that ~(... t .. )—or something which logically implies 
~(... t.. )—already appears along one of these branches. In the 
example we already had ‘~Ba’. This would lead to the branch closing 
when in fact we can make a consistent interpretation out of the branch. 
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We can always do this by instantiating (Jdu)(. . .u . . .) with a new name, 
say, S, a name which does not appear anywhere along the branch. We use 
this new name in the instantiation (. . . s. . .). Then (... s.. )cant 

conflict with a sentence already on the branch, and we are guaranteed not 
to have the kind of trouble we have been considering. 

Not infrequently you get the right answer to a problem even if you 
don't use a new name when instantiating an existentially quantified sen- 
tence. But this is just luck, or perhaps insight into the particular problem, 
but insight which cannot be guaranteed to work with every problem. We 
want the rules to be guaranteed to find a counterexample if there is one. 
The only way to guarantee this is to write the rule for existentially quan- 
tified sentences with the new name requirement. This guarantees that we 
will not get into the kind of difficulty which we illustrated with our ex- 
ample: 

Rule 3: If an existentially quantified sentence (du)(. . . u. . .) appears as 
the entire sentence at some point on a tree, do the following to each open 
branch on which (Ju). . .u.. . .) appears: First pick a new name, s, that 
is, a name which does not appear anywhere on the branch. Then write the 
one substitution instance (. .. s...) at the bottom of the branch. Put a 
check by (du. ..u.. ). 

Why do we always need a new name for an existentially quantified sen- 
tence but no new name for a universally quantified sentence (unless there 
happens to be no names)? In making a universally quantified sentence 
true, we must make it true for all things (all substitution instances) in the 
interpretation we are building. To make it true for more things, to add 
to the interpretation, does no harm. But it also does no good. If a conflict 

is going to come up with what is already true in the interpretation, we 
cannot avoid the conflict by bringing in new objects. This is because the 
universally quantified sentence has to be true for all the objects in the 
interpretation anyway. 

We have an entirely different situation with existentially quantified sen- 
tences. They don't have to be true for all things in the interpretation. So 
they present the possibility of avoiding conflict with what is already true 
in the interpretation by extending the interpretation, by making each ex- 
istentially quantified sentence true of something new. Finally, since the 
rules have the job of finding a consistent interpretation if there is one, 
the rule for existentially quantified sentences must incorporate this con- 
flict-avoiding device. 

EXERCISES 

7-2. Test the following arguments for validity. State whether each 
argument is valid or invalid; when invalid, give the counterexamples 

shown by the open paths. 
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a) AD(39Gx b) (3x)Dx c) (Ax\(Px & Qx) 
A (4x) -Dx SS 

Gb A 
Pa v Qb 

AvB 

A D (Ax)Nx 

B D (AX)Nx 

Ng 

7-3. APPLYING THE RULES 

Now let’s apply our rules to some more involved examples. Let’s try the 
argument 

(Wx)Lxe v (Wx)~Lxa 
~Lae 

~(3x)Lxa 

I am going to write out the completed tree so that you can follow it as I 
explain each step. Don’t try to understand the tree before I explain it. 
Skip over it, and start reading the explanation, referring back to the tree 
in following the explanation of each step. 

/1 (Vx)Lxe v (Wx)~Lxa P 
2 ~Lae P 

/3 ~~(dx)Lxa ~C 
/A (3x)Lxa 3, ~~ 

5 a,e,c No T 1,v 
6 Lca Lca 4, 3 New Name 
7 Lae —Laa 5, V 
8 Lee ~Lea 5, V 
9 Lce —Lca 5,V 

x x 
Valid 

We begin by listing the premises and the negation of the conclusion. 
Our first move is to apply the rule for double negation to line 3, giving 
line 4. Next we work on line 1. Notice that even though ‘(Vx)’ is the first 
symbol to appear on line 1, the sentence is not a universally quantified 
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sentence. Ask yourself (As in chapters 8 and 9 in volume I): What is the 
last thing I do in building this sentence up from. its parts? You take 
'(Vx)Lxe' and ‘(Wx)~Lxa’ and form a disjunction out of them. So the main 

connective is a disjunction, and to make this sentence true in the interpre- 
tation we are building, we must apply the rule for disjunction, just as we 

used it in sentence logic. This gives line 5. 
In lines 1 through 4 our tree has one path. Line 5 splits thís path into 

two branches. Each branch has its own universally quantified sentence 
which we must make true along the branch. Each branch also has 
(Jx)Lxa', which is common to both branches and so must be made true 
along both branches. What should we do first? 
When we work on ‘(3x)Lxa’ we will have to introduce a new name. It is 

usually better to get out all the new names which we will have to introduce 
before working on universally quantified sentences. To see why, look at 
what would have happened if I had worked on line 5 before line 4. Look- 
ing at the right branch I would have instantiated ‘(Wx)~Lxa’ with ‘a’ and 
ʻe. Then I would have returned to work on line 4, which would have 
introduced the new name ‘c’. But now with a new name ‘c’ on the branch 
I must go back and instantiate (Vx)—Lxa' with ‘c’. To make this sentence 

true, I must make it true for all instances. If a new name comes up in 
midstream, I must be sure to include its instance. Your work on a tree is 

more clearly organized if you don't have to return in this way to work on 
a universally quantified sentence a second time. 
We will see in the next chapter that in some problems we cannot avoid 

returning to work on a universally quantified sentence a second time. (It 
is because sometimes we cannot avoid this situation that we must never 
check a universally quantified sentence.) But in the present problem we 
keep things much better organized by following this practical guide: 

Practical Guide: Whenever possible, work on existentially quantified sen- 
tences before universally quantified sentences. 

Now we can complete the problem. I work on line 4 before line 5. Line 
4 is an existentially quantified sentence. The rule 3 tells me to pick a new 
name, to use this new name in forming a substitution instance for the 
existentially quantified sentence, and to write this instance at the bottom 
of every open path on which the existentially quantified sentence appears. 
Accordingly, I pick ‘c’ as my new name and write the instance ‘Lca’ on 
each branch as line 6. Having done this, I check line 4, sínce I have now 

ensured that it will be made true along each open path on which it ap- 
pears. 

Finally, I can work on line 5. On the left branch I must write substitu- 
tion instances for (Vx)Lxe' for all the names that appear along that 
branch. So below '(Vx)Lxe' I write ‘Lae’, ‘Lee’, and 'Lce', and I write the 
names ‘a’, ‘e’, and ‘c’ to the left of the target sentence '(Vx)Lxe' to note 
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the fact that this sentence has been instantiated with these three names. 
The branch closes because ‘Lae’ of line 7 conflicts with ‘~Lae’ on line 2. 
On the right branch I have '((Vx)—Lxa'. At the bottom of the branch I 
write its substitution instances for all names on the branch, giving '—Laa', 

‘~Lea’, and ‘~Lca’. Again, I write the names used to the left of the target 

sentence. ‘~Lca’ is the negation of ‘Lca’ on line 6. So the right branch 
closes also, and the argument is valid. 

One more comment about this example: The new name requirement 
did not actually avoid any trouble in this particular case. If I had used 
either of the old names ‘a’ or ‘e’, I would in this case have gotten the right 
answer. Moreover, the tree would have been shorter. You may be think- 

ing: What a bother this new name requirement is! Why should I waste 

my time with it in a case like this? But you must follow the new name 
requirement scrupulously if you want to be sure that the tree method 
works. When problems get more complicated, it is, for all practical pur- 
poses, impossible to tell whether you can safely get away without using it. 

The only way to be sure of always getting the right answer is to use the 
new name requirement every time you instantiate an existentially quanti- 
fied sentence. 
Now let's try an example which results by slightly changing the first 

premises of the last case: 

(Wx)(Lxe v ~Lxa) 
~Lae 

—(3x)Lxa 

Instead of starting with a disjunction of two universally quantified sen- 
tences, we start with a universal quantification of a disjunction: 

a,ec! (Wx)(Lxe v ~Lxa) P 
2 ~Lae P 

/3 ~~(dx)Lxa ~C 
V4 (3x)Lxa 3, 
5 Lca 4, 3! New name 

/6 Lae v ~Laa Lv 
/7 Lee v ~Lea 1,V 
48 Lce v ~Lca 1, V 

9 Lae ~Laa 6, v 
x 

10 Lce  —Lca 8, v 
x 

11 Lee ~Lea 7,V 

(i) (ii) 
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Lines 1, 2, and 3 list the premises and the negation of the conclusion. 
Line 4 gives the result of applying ~~ to line 3. Looking at line 1, we ask, 
What was the very last step performed in writing this sentence? The an- 
swer: applying a universal quantifier. So it is a universally quantified sen- 
tence. But line 4 is an existentially quantified sentence. Our practical 
guide tells us to work on the existentially before the universally quantified 
sentence. Accordingly, I pick a new name, 'c', and use it to instantiate 
‘(Ax)Lxa’, giving me line 5. Now I can return to line 1 and apply the rule 
V. At this point, the names on the branch are ‘a’, ‘e’, and 'c'. So I get the 
three instances of 1 written on lines 6, 7, and 8, and I record the names 
used to the left of line 1. Lines 9, IO, and 11 apply the v rules to lines 6, 
7, and 8. Notice that I chose to work on line 8 before line 7. I am free to 
do this, and I chose to do it, because I noticed that the disjunction of line 
8 would close on one branch, while the disjunction of line 7 would not 

close on any branches. 
We have applied the rules as far as they can be applied. No sentence 

can be made true by making shorter sentences true. We are left with two 
open branches, each of which represents a counterexample to the original 
argument. Let's write these counterexamples down. 

The branch labeled (i) at the bottom has the names ‘e’, ‘c’, and ‘a’. (In 

principle, the order in which you list information on a branch makes no 
difference. But it's easiest to read off the information from the bottom of 
the branch up.) So I indicate the domain of branch (i)'s interpretation by 
writing D = {e,c,a}. What is true of e, c, and a in this interpretation? The 

branch tells us that e bears L to itself, that c bears L to e, that a does not 
bear L to itself, that c bears L to a and that a does not bear L to e. In 

short, the interpretation is 

D = {e,c,a}; Lee & Lce & ~Laa & Lca & ~Lae 

To read an interpretation of an open branch, you need only make a list 
of the branch's names and the atomic and negated atomic sentences which 
appear along the branch. We use the format I have just indicated to make 
clear that the names are names of the objects of the domain, and the 
atomic and negated atomic sentences describe what is true of these ob- 
jects. Check your understanding by reading the counterexample off the 
branch labeled (ii). You should get 

D = {e,a,c}; ~Lea & Lce & ~Laa & Lca & ~Lae 

Notice that neither of these counterexamples as read off the branches 
constitutes complete interpretations. The branches fail to specify some of 
the atomic facts that can be expressed with ‘L’, ‘a’, ‘c’, and ʻe’. For exam- 

ple, neither branch tells us whether ‘Lec’ is true or false. We have seen 
the same situation in sentence logic when sometimes we had a relevant 
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sentence letter and an open branch on which neither the sentence letter 
nor its negation appeared as the entire sentence at a point along the 
branch. Here, as in sentence logic, this happens when a branch succeeds 
in making everything along it true before completing a selection of truth 
values for all relevant atomic sentences. In effect, the branch represents 

a whole group of interpretations, one for each way of completing the 
specification of truth values for atomic sentences which the branch does 
not mention. But for our purposes it will be sufficient to read off the 
interpretation as the branch presents it and call it our counterexample 
even though it may not yet be a complete interpretation. 

EXERCISES 

7-3. Test the following arguments for validity. State whether each 
argument is valid or invalid, when invalid, give the counterexamples 
shown by the open paths. 

a) (dJx(Px D Qx) b) (3x)Cx €) (3x)x v (Ax)Kx 
Ma mel cS peo a (Wx)~Jx 
~(Wx)(Px & ~Qx) ~(Hx)~Cx ENSEM 

~(Wx)~Kx 

(Wx)(Px D Qx) œ) (Wx)(Gx v Hx) 
(Ax)Px a RE 

aoe E ~(dx)~Gx v ~(Ex)~Hx 
~(Wx)~Qx 

(3x)Px & (Ax)~Px g) ~(Wx)Px D (dx)Qx 

~(Wx)Px & ~(Wx)~Px (3x) -Qx D ~(Wx)~Px 

jq D (Ax)Kx i) GHx&(xGx j) (339 Fx 
(Wx)(Kx 2 Lx) pee Se d ~(Wx)Fx D (Wx)~Px 

~(Wx)~(Hx & Gx) ~(Wx)Fx D (Wx)~Qx 
jq 2 ~(Wx)~Lx 

~(Wx)(Px v Qx) 

7-4. NEGATED QUANTIFIED SENTENCES 

To complete the rules for quantification, we still need the rules for the 
negation of quantified sentences. As always, we illustrate with a simple 
example: 
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Lae 1 Lae P 

(Ax)Lxe 2 ~(ax)Lxe ~C 

What will make line 2 true? All we need do is to make use of the equiva- 
lence rule for a negated existential quantifier, which we proved in section 
3—4. (Remember: “Not one is" comes to the same thing as “All are not.” 

If you have forgotten that material, reread the first few paragraphs of 
section 3—4—you will very quickly remember how it works.) ‘~(4x)Lxe’ is 

true in an interpretation if and only if (Vx)—Lxe' is true in the interpre- 
tation. So we can make '—(3x)Lxe' true by making ‘(Wx)~Lxe’ true. This 

strategy obviously will work for any negated existentially quantified sen- 

tence. So we reformulate the —3 rule for logical equivalence as a rule for 
working on a negated existentially quantified sentence on a tree: 

Rule —3: Ifa sentence of the form —(Ju)(. . .u. . ) appears as the full 
sentence at any point on a tree, write (Vu)—-(. . . u . . Jat the bottom of 
every open branch on which —(du)(. .. u . . .) appears. Put a check by 
—(Ju)...u.... 

With this rule, we complete our problem as follows: 

1 Lae P 
J2  ~(Ax)Lxe ~C 

a,e, 3 (Wx)~Lxe 2, —3 
4 ~Lae 3, V 
5 ~Lee 3,V 

x 
Valid 

Note that I did not use a new name when I worked on line 2. The new 
name rule does not enter anywhere in this problem because the problem 
has no existentially quantified sentence as the full sentence at some point 
on the tree. Consequently, the rule 3 never applies to any sentence in this 
problem. Line 2 is the negation of an existentially quantified sentence, 
and we deal with such a sentence with our new rule, —3. Line 2 gives line 
3 to which the rule V applies. 
The story for the negation of a universally quantified sentence goes the 

same way as for a negation of an existentially quantified sentence. Just as 
“not one is" comes to the same thing as “all are not,” “not all are" comes 
to the same thing as "some are not." In other words, we appeal to the 
rule ~Y for logical equivalence in exactly the same way as we appealed to 
the rule —3 for logical equivalence. Reformulating for application to a 
negated universally quantified sentence on a tree, we have 

> 

Rule ~V: If a sentence of the form ~(Vu)(. .. u. . .) appears as the full 
sentence at any point on a tree, write (Jdu)-(. .. u.. ) at the bottom of 
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every open branch on which —(Vu). ..u...) appears. Put a check by 
—-(Vu)y...u..) 

Once again, this rule works because —(Vu). . . u . . .) is equivalent to 

(au)~(. . . u . . .), as we noted in section 3—4 and as you proved in ex- 

ercise 3—5. 
Here is an example to illustrate the ~V rule: 

(Ax)Lxe 

(Vx)Lxe 

J1  (xLxe P 

/2. —(Vxlxe ~C 
/3. (d9-Lxe 2,~V 
4 Lce 1, 3, New name 
5 ~Lde 3, 3, New name 

Invalid. Counterexample: D = {d,e,c}; ~Lde & Lce 

In this example, note that failure to follow the new name rule at step 5 
would have incorrectly closed the branch. Also note that we do not instan- 
tiate line 2 with any of the names. Line 2 is not a universally quantified 
sentence. Rather, it is the negation of a universally quantified sentence 
which we treat with the new rule ~V. 
Now you have all the rules for quantifiers. It's time to practice them. 

EXERCISES 

Before you go to work, let me remind you of the three most com- 
mon mistakes students make when working on trees. First of all, you 
must be sure you are applying the right rule to the sentence you are 
working on. The key is to determine the sentence's main connective. 
You then apply the rule for that connective (or for the first and 
second connectives in case of negated sentences). You should be es- 
pecially careful with sentences which begin with a quantifier. Some 
are quantified sentences, some are not; it depends on the parenthe- 
ses. ‘(Wx)(Px D A) is a universally quantified sentence, so the rule V 
applies to it. It is a universally quantified sentence because the initial 
universal quantifier applies to the whole following sentence as indi- 
cated by the parentheses. By way of contrast, (Vx)(Lxa D Ba) & Lba' 
is not a universally quantified sentence. It is a conjunction, and the 
rule & is the rule to apply to it. 
The second mistake to watch for especially carefully is failure to 
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instantiate a universally quantified sentence with all the names that 
appear on the sentence's branch. When a universally quantified sen- 
tence appears on a branch, you are not finally done with the sen- 
tence until either the branch doses or you have instantiated it with 
all the names that appear on the branch. 

Finally, please don't forget the new name requirement when you 
work on an existentially quantified sentence. When instantiating an 
existentially quantified sentence, you use only one name, but that 
name must not yet appear anywhere on the branch. 

7-4. Use the truth tree method to test the following arguments for 
validity. In each problem, state whether or not the argument is valid; 
if invalid give a counterexample. 

al) 

b1) 

cl) 

d1) 

el) 

f1) 

g1) 

h1) 

il) 

jn 

k1) 

(Wx)Px & (Vx)Qx 

(Wx)(Px & Qx) 

(3x)Px v (3x)Qx 

GxxvQ - 
(Wx)Px v (Wx)Qx 

(Wx)(Px v Qx) 

(3x)Px & (3x)Qx 

GXx&Q 
A D (VX)Px 

VIA DPA 
A 2 (3x)Px 

(J3xY(A D Px) 

(Vx)Px D A 

(3Jx(Px D A) 

(JX)PX DA 

(Wx)(Px 2 A) 

(Wx)Px 

(Ax)Px 

(Wx)Px DA 

WAPOA 
(Ax)(Px D A) 

(Jdx)PX DA 

a2) 

b2) 

c2) 

d2) 

e2) 

f2) 

82) 

h2) 

i2) 

j2) 

k2) 

(Wx)(Px & Qx) 

(Vx)Px & (Vx)Qx 
(Ax)(Px v Qx) 

(3Px v (3)Qx- 
(Wx)(Px v Qx) 

(Wx)Px v (WXIQK 
(Ax)(Px & Qx) 

Px &AXNQK 
(Wx)(A D Px) 

ADWxPx 
(Ax)(A D Px) 

A D (3x)Px 

(Ax)(Px D A) 

(Wx)Px DA 

(Wx)(Px D A) 

(ax)Px DA 

(3x)Px 

(Vx)Px 

(VXPx D A) 

(WXPXOA — 
(dxX)PX D A 

@xPx DA) — 
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) (¥x)(Px D Qx) 
(3x)Px 

(Ax)Qx 

m) (3xyLxa = Lex) 
(Wx)Lxa 

(ax)Lex 

CHAPTER SUMMARY EXERCISES 

Here are the new ideas from this chapter. Make sure you under- 
stand them, and record your summaries in your notebook. 

a) RuleV ` d) Rule ~V 

b) Rule d e) Rule ~3 

€) New Name Requirement f) Reading an [Interpretation 
Off an Open Branch 







More on Truth Trees e$ 

for Predicate Logic 

8-1. CONTRADICTIONS, LOGICAL TRUTH, LOGICAL 

EQUIVALENCE, AND CONSISTENCY 

In this section we are going to see how to apply the truth tree method to 
test predicate logic sentences for some familiar properties. This will be 
little more than a review of what you learned for sentence logic. The ideas 
are all the same. All we have to do is to switch to talking about interpre- 
tations where before we talked about lines of a truth table. 

Lets start with logical contradiction. In sentence logic we say that a 
sentence is a contradiction if and only if it is false in all possible cases, 
where by "possible cases" we mean assignments of truth values to sentence 
letters—in other words, lines of the sentence's truth table. Recharacteriz- 
ing the idea of a possible case as an interpretation, we have 

A closed predicate logic sentence is a Contradiction if and only if it is false in 
all of its interpretations. 

The truth tree test for being a contradiction also carries over directly 
from sentence logic. The truth tree method is guaranteed to find an inter- 
pretation in which the initial sentence or sentences on the tree are true, 
if there is such an interpretation. Consequently 

To test a sentence, X, for being a contradiction make X the first line of a 
truth tree. If there is an interpretation which makes X true, the tree method 

128 
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will find such an interpretation, which will provide a counterexample to X 
being a contradiction. If all branches dose, there is no interpretation in 
which X is true. In this case, X is false in all of its interpretations; that is, X 
is a contradiction. 

Here is a very simple example. We test '(dx)(Bx & ~Bx)’ to see whether it 
is a contradiction: 

/1 (Ax)(Bx & ~Bx) S (The sentence being tested) 
/2 (Ba & —Ba) 1, 3, New name 
3 Ba 2, & 

4 ~Ba 2, & 

x 

The sentence is a contradiction. 

The idea of a logical truth carries over from sentence logic in exactly 
the same way. In sentence logic a sentence is a logical truth if it is true 
for all possible cases, understood as all truth value assignments. Now, tak- 
ing possible cases to be interpretations, we say 

A closed predicate logic sentence is a Logical Truth if and only if it is true in 
all of its interpretations. 

To determine whether a sentence is a logical truth, we must, just as we 
do in sentence logic, look for a counterexample—that is, a case in which 
the sentence is false. Consequently 

To test a predicate logic sentence, X, for being a logical truth, make ~X 
the first line of a tree. If there is an interpretation which makes ~X true, 
the tree method will find such an interpretation. In such an interpretation, 
X is false, so that such an interpretation provides a counterexample to X 
being a logical truth. If all branches close, there is no interpretation in which 
~X is true, and so no interpretation in which X is false. In this event, X is 
true in all of its interpretations; that is, X is a logical truth. 

Again, let's illustrate with a simple example: Test '(2x)Bx v (3x)—Bx' to 
see if 

/1 

/2 

/3 

a4 

a5 

6 

7 

it is a logical truth: 

—[(3x)Bx v (dx)-Bx] ~S (The negation of the sentence being tested) 
~(dx)Bx 1, ~y 

—(3x)—- Bx 1,~v 
(Wx)~Bx 2,~4 
(Wx)~~Bx 3, ~3 

~Ba 4,V 
~~Ba 5,V 

x 

The sentence is a logical truth. 
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The tree shows that there are no interpretations in which line 1 is true. 
Consequently, there are no interpretations in which the original sentence 
(the one which we negated to get line 1) is false. So this original sentence 
is a logical truth. 

Notice that I had to introduce a name when I worked on line 4. Line 4 
is a universally quantified sentence, and having no name at that point I 
had to introduce one to start my try at an interpretation. Line 5 is another 

universally quantified sentence, and when I worked on it, I already had 

the name ‘a’. So I instantiated line 5 with ‘a’. At no place on this tree did 
the new name requirement of the rule 3 apply. This is because at no 

place on the tree is the entire sentence an existentially quantified sen- 
tence. In particular, the sentences of lines 2 and 3 are negated existen- 

tially quantified sentences, not existentially quantified sentences, so the 
rule 3 and the new name requirement do not apply to them. 

It's time to talk about logical equivalence. We already discussed this 
subject in section 3—4, which you may want to review at this point. For 
completeness, let's restate the definition: 

Two closed predicate logic sentences are Logically Equivalent if and only if in 
each of their interpretations the two sentences are either both true or both 
false. 

Do you remember how we tested for logical equivalence of sentence 
logic sentences? Once again, everything works the same way in predicate 
logic. Two closed predicate logic sentences have the same truth value in 
one of their interpretations if and only if their biconditional is true in the 
interpretation. So the two sentences will agree in truth value in all of their 
interpretations if and only if their biconditional is true in all of their inter- 
pretations—that is, if and only if their biconditional is a logical truth. So 
to test for logical equivalence we just test for the logical truth of the bi- 
conditional: 

To determine whether the closed predicate logic sentences, X and Y, are 
logically equivalent, test their biconditional, X=Y, for logical truth. That is, 
make ~(X=Y) the first line of a tree. If all branches close, ~(X=Y) is a 
logical truth, so that X and Y are logically equivalent. If there is an open 
branch, X and Y are not logically equivalent. An open branch will be an 
interpretation in which one of the two sentences is true and the other false, 
so that such an open branch provides a counterexample to X and Y being 
logically equivalent. 

Here is another way in which you can test two sentences, X and Y, for 
logical equivalence. Consider the argument "X. Therefore Y." with X as 
premise and Y as conclusion. If this argument is invalid, there is a coun- 
terexample, an interpretation in which X is true and Y is false. Thus if 
"X. Therefore Y." is invalid, X and Y are not logically equivalent, and a 
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counterexample to the argument is also a counterexample which shows X 
and Y not to be logically equivalent. The same goes for the argument "Y. 
Therefore X.", this time taking the second sentence, Y, as premise and 

the first sentence, X, as conclusion. If this argument is invalid there is a 

counterexample, that is, an interpretation in which Y is true and X is 
false, and hence again a counterexample to X and Y being logically equiv- 
alent. 

Now, what happens if both the arguments "X. Therefore Y." and "Y. 
Therefore X." are valid? In this event every interpretation in which X is 
true is an interpretation in which Y is true (the validity of "X. Therefore 
Y."), and every interpretation in which Y is true is an interpretation in 
which X is true (the validity of "Y. Therefore X.”). But that is just another 
way of saying that in each interpretation X and Y have the same truth 
value. If whenever X is true Y is true and whenever Y is true X is true, 
we can't have a situation (an interpretation) in which one is true and the 
other is false. Thus, if *X. Therefore Y." and "Y. Therefore X.” are both 
valid, X and Y are logically equivalent: 

To determine whether the closed predicate logic sentences, X and Y, are 
logically equivalent, test the two arguments "X. Therefore Y." and "Y. 
Therefore X." for validity. If either argument is invalid, X and Y are not 
logically equivalent. A counterexample to either argument is a counterex- 
ample to the logical equivalence of X and Y. If both arguments are valid, X 
and Y are logically equivalent. 

In fact, the two tests for logical equivalence really come to the same 
thing. To see this, suppose we start out to determine whether X and Y 
are logically equivalent by using the first test. We begin a tree with 
~(X=Y) and apply the rule ~=: 

J1 ~(X=Y) ~S 

2 X~X 

Now notice that the left-hand branch, with X followed by ~Y, is just the 
way we start a tree which tests the validity of the argument “X. Therefore 
Y.”. And, except for the order of ~X and Y, the right-hand branch looks 
just like the tree which we would use to test the validity of the argument 
"Y. Therefore X.”. So far as the right-hand branch goes, this order makes 
no difference. Because we are free to work on the lines in any order, what 
follows on the right-hand branch is going to look the same whether we 
start it with ~X followed by Y or Y follow by ~X. 

In sum, lines 2 and 3 in our tree are just the beginning of trees which 
test the validity of "X. Therefore Y." and "Y. Therefore X.". Thus the 
completed tree will contain the trees which test the arguments ^X. There- 
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fore Y." and "Y. Therefore X.". And, conversely, if we do the two trees 

which test the arguments "X. Therefore Y." and "Y. Therefore X." we 
will have done all the work which appears in the tree we started above, 
the tree which tests X=Y for logical truth. So the two ways of determining 
whether X and Y are logically equivalent really involve the same work. 

If you did all of exercise 7—4 you have already tested 11 pairs of sen- 
tences for logical equivalence! In each of these pairs you tested two ar- 
guments, of the form "X. Therefore Y." and "Y. Therefore X.". Using 
our new test for logical equivalence, you can use your work to determine 
in each of these problems whether or not the pair of sentences is logically 
equivalent. 

Truth trees also apply to test sets of sentences for consistency. Recall 

from section 9-2 in volume I that a set of sentence logic sentences is 
consistent if and only if there is at least one case which makes all of the 
sentences in the set true. Interpreting cases as interpretations, we have 

A Model of a set of one or more predicate logic sentences is an interpretation 
in which all of the sentences in the set are true. 

A set of one or more predicate logic sentences is consistent just in case it 
has at least one model, that is, an interpretation in which all of the sentences 
in the set are true. 

To test a finite set of predicate logic sentences for consistency, make the 
sentence or sentences in the set the initial sentences of a tree. If the tree 
closes, there is no interpretation which makes all of the sentences true to- 
gether (no model) and the set is inconsistent. An open branch gives a model 
and shows the set to be consistent. 

Every truth tree test of an argument is also a test of the consistency of 
the argument's premises with the negation of the argument's conclusion. 

An argument is valid if and only if its premises are inconsistent with the 
negation of the argument's conclusion. In other words, an argument is 
invalid if and only if its premises are consistent with the negation of its 
condusion. Thus one can view the truth tree test for argument validity as 
a special application of the truth tree test for consistency of sets of sen- 
tences. (If you have any trouble understanding this paragraph, review 
exercise 9—7 in volume I. Everything in that exercise applies to predicate 
logic in exactly the same way as it does to sentence logic.) 

EXERCISES 

8-1. Test the following sentences to determine which are logical 
truths, which are contradictions, and which are neither. Show your 
work and state your conclusion about the sentence. Whenever you 
find a counterexample to a sentence being a logical truth or a con- 
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tradiction, give the counterexample and state explicitly what it is a 
counterexample to. 

a) (Vx)Dx v(3x)-Dx — b)(Vx)Kx & (4x)~Kx 
€) (Vx)Nxv(Vx)-Nx  d)Vx)x & (Vx)-]x 

e) (Ax)Bx v(dx)-Bx f)(3x)Px & (4x)~Px 
g [(Vx)Gx v (Vx)Hx] & —(Vx)(Gx v Hx) 

h) (Vx)(Kx v Jx) D [(3x)- Kx D (3x)]x] 

i) [(Vx)Mx D (Vx)- Nx] & (3x)(- Mx & Nx) 

p [Gx)Hx D (Vx)(Ox D Nx)] D [(3x)(Hx & Ox) D (Vx)Nx] 
k) (3x)[-Sx & (Gx v Kx)] v [((Vx)Gx D (Vx)(Sx v Kx)] 

) [(Vx)Fx v (Vx)Gx] = [(3x)- Fx & ~(Wx)Gx] 

8—2. Use the truth tree method to test the following sets of sentences 
for consistency. In each case, state your conclusion about the set of 
sentences, and if the set of sentences is consistent, give a model. 

a) (3x)Px, (3x)—Px 

b) (Vx)Px, (Wx)~Px 

c) (Vx)Px, (3x)—Px 

d) (Wx)~Fx, (Vx)Sx, (3x)[(—Fx D Sx) D Fx] 

e) (3x)Gx & (3x)Ox, —(dx)(Gx & Qx) 

f) (Wx)(Gx v Qx), —-[(Vx)Gx v (Vx)Qx] 
g) (dx)(Jx v Dx), (Vx)Jx D ~Hx), (Vx)(Dx D Hx), 

(Vx)[]x = (Dx v Hx)] 

8-3. Explain the connections among consistency, logical truth, and 
logical contradiction. 

8—4. By examining your results from exercise 7—4(a) through (k), 
determine which pairs of sentences are logically equivalent and 
which are not. This is more than an exercise in mechanically apply- 
ing the test for logical equivalence. For each pair of sentences, see if 
you can understand intuitively why the pair is or is not logically 
equivalent. See if you can spot any regularities. 

8—2. TRUTH TREES WITH MULTIPLE QUANTIFIERS 

In the last chapter I tried to keep the basics in the limelight by avoiding 
the complication of multiple quantifiers. Multiple quantifiers involve no 
new rules. But they do illustrate some circumstances which you have not 
yet seen. 
Suppose I asked you to determine whether ‘(Ax)[Lxa D (Vy)Lya] is a 
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logical truth. To determine this, we must look for a counterexample to its 
being a logical truth, that is, an interpretation in which it is false. So we 
make the negation of the sentence we are testing the first line of a tree. 
Here are the first six lines: 

/1  -(3x[Lxa D (Vylya] ~S 
a2 (Vx)-[Lxa D (Vy)Lya] 1, ^3 

/3 —[Laa D (Vylyag  2,V 
4 Laa 3,~D. 

/5 ~(Vy)Lya 3,~D 

We begin with the negation of the sentence to be tested. Line 2 applies 
the rule for a negated quantifier, and line 3 instantiates the resulting uni- 

versally quantified sentence with the one name on the branch. Lines 4, 5, 
and 6 are straightforward, first applying the rule ~D to line 3 and then 
the rule ~V to line 5. 

But now the rules we have been using all along are going to force on 
us something we have not seen before. Applying the rule 3 to line 6 

forces us to introduce a new name, say, ‘b’, giving ‘~Lba’ as line 7. This 
has repercussions for line 2. When we worked on line 2 we instantiated it 
for all the names we had on that branch at that time. But when we 
worked on line 6 we got a new name, ‘b’. For the universally quantified 
line 2 to be true in the interpretation we are building, it must be true for 
all the names in the interpretation, and we now have a name which we 
did not have when we worked on line 2 the first time. So we must return 
to line 2 and instantiate it again with the new name, ‘b’. This gives line 8. 
Here, with the final two easy steps, is the way the whole tree looks: 

/1 ~(Adx)[Lxa D (Vy)Lya] ~S 
b, a2 (Vx)--[Lxa D (Vy)Lya] 1, 43 

/3 ~[Laa D (Vy)Lya] 2,V 
4 Laa 3,~D 

/5 ~(Vy)Lya 3,~D 
/6 (dy)~Lya 5, ~V 
7 ~Lba 6, 3, New name 

a8 ~[Lba 2 (Vy)Lya] 2,V 
9 Lba 8,~D 

/10 ~(Vy)Lya 8, ~> 
x 

The sentence is a logical truth. 

We do not need to work on line 10 because line 7 is the negation of line 
9, and the branch thus closes. Indeed, I could have omitted line 10. 

There was no way for us to avoid going back and working on line 2 a 
second time. There was no way in which we could have worked on the 
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existentially quantified sentence of line 6 before working on line 2 the 
first time. The sentence of line 6 came from inside line 2. Thus we could 
get line 6 only by instantiating line 2 first. You should always be on the 
watch for this circumstance. In multiple quantified sentences it is always 
possible that an existentially quantified sentence will turn up from inside 
some larger sentence. The existential quantifier will then produce a new 
name which will force us to go back and instantiate all our universally 
quantified sentences with the new name. This is why we never check a 
universally quantified sentence. 

Here is another example. We will test the following argument for valid- 
ity: 

Everyone loves someone. (Wx)(Ay)Lxy 
Anyone who loves someone (Wx)[(Ay)Lxy D Lxx] 

loves themself. Vba 

Everyone loves themselves. 

al (Wx)(y)Lxy P 
a2 (Wx)[(dy)Lxy D Lxx] P 
/3. ~(Wx)Lxx ~C 
J4 (Ax)~Lxx 3, ~Y 
J5 ~Laa 4,4 
/6 (3y)Lay 1,V 
/7 Lab 6, 3, New name 
/8 (dy)Lay D Laa 2,V 

/9  —-Gylay Laa 8,2 
b10 (Wy)~Lay x 9, -3 

11  —Lab 10, V 
x 
Valid 

Getting this tree to come out as short as I did requires some care in choos- 
ing at each stage what to do next. For example, I got line 8 by instantiat- 
ing the universally quantified line 2 with just the name ‘a’. The rule V 
requires me to instantiate a universally quantified sentence with all the 
names on the branch. But it does not tell me when I have to do this. I am 
free to do my instantiating of a universally quantified sentence in any 
order I like, and if I can get all branches to close before I have used all 

available names, so much the better. In the same way, the rule V requires 

that I return to instantiate lines 1 and 2 with the new name ‘b’, which 
arose on line 7. But the rule doesn't tell me when I have to do that. With 
a combination of luck and skill in deciding what to do first, I can get all 
branches to close before returning to line 1 or line 2 to instantiate with 
‘b’. In this circumstance I can get away without using ‘b’ in these sen- 
tences. 
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However, in any problem, if I instantiate with fewer than all the names 
and I have failed to close all the branches, then I must return and put 

the names not yet used into all universally quantified sentences which ap- 
pear on open branches. 

8-3. THREE SHORTCUTS 

In general, it is very dangerous to do two or more steps at the same time, 
omitting explicitly to write down one or more steps which the rules re- 
quire. When you fail to write down all the steps, it becomes too easy to 
make mistakes and too hard to find mistakes once you do make them. 
Also, omitting steps makes it extremely hard for anyone to correct your 
papers. However, there are three step-skipping shortcuts which are suffi- 
ciently clear-cut that, once you are proficient, you may safely use. You 
should begin to use these shortcuts only if and when your instructor says 
it is alright to do so. 

Suppose you encounter the sentence —(Vx)(Vy)Lxy on a tree. The rules 
as I have given them require you to proceed as follows: 

J1 ~(Wx)(Wy)Lxy 
/2. (Aax)~(Vy)Lxy 1, ~V 
/3  -Wylay 23 
/4.. (3y-ay  3,-V 
5 ~Lab 4, 3, New name 

Now look at line 2. You may be tempted to apply the rule ~V inside 
the sentence of line 2. In most cases, applying a rule inside a sentence is 
disastrous. For example, if you should try to instantiate '(Vx)Bx' inside 
* -[(Vx)Bx v AJ, you will make hash of your answer. But in the special 
case of the rule for negated quantifiers, one can justify such internal ap- 
plication of the rule. 

In the example we have started, an internal application of the rule ~V 
gives the following first three lines of the tree: 

J1 ~(¥x)(Vy)Lxy 
/2. (Ax)~(Vy)Lxy 1,-V 
3 (Sy-ixy  2,-V 

In fact, we can sensibly skip line 2 and simply "push" the negation sign 
through both quantifiers, changing them both. Our tree now looks like 
this: 

J1 ~(¥x)(Vy)Lxy 
2. (Ax)(Sy)~Lxy 1, ^V, ~V 
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We can do the same with two consecutive existential quantifiers or a 
mixture of quantifiers: 

J1 —-(33(3ylxy 
2. (VX(Vy) -Lxy 1, 4^3, -3 

J1 ~(Ax)(Vy)Lxy 
/2 (Wx(3y)~Lxy  1-3,-V 

/1  —-(VX(Gylxy 
2 (3x)(Vy)~Lxy 1, ^V, ^3 

Indeed, if a sentence is the negation of a triply quantified sentence, you 
could push the negation sign through all three quantifiers, changing each 
quantifier as you go. 
Why is this shortcut justified? To give the reason in a very sketchy way, 

the subsentences to which we apply the negated quantifier rule are logi- 
cally equivalent to the sentences which result from applying the rule. In 
short, we are appealing to the substitution of logical equivalents. To make 
all this rigorous actually takes a little bit of work (for the reasons ex- 
plained in exercise 3—6), and I will leave such niceties to your instructor 
or to your work on logic in a future class. 

Here is another shortcut: Suppose you have a multiple universally 
quantified sentence, such as ‘(Wx)(Vy)Lxy’, on a tree that already has several 
names, say, ‘a’ and 'b'. Following the rules explicitly and instantiating with 
all the names is going to take a lot of writing: 

a b,1 (Vx(Vylxy 
a, b, 2 (Vylay 1,V 

3 laa 2,V 
4 lab 2,V 

a, b, 5 (Vylby 1,V 
6 Iba 5,V 
7 Lbb 5,V 

In general, it is not a good idea to skip steps, because if we need to look 
for mistakes it is often hard to reconstruct what steps we skipped. But we 
won't get into trouble if we skip steps 2 and 5 in the above tree: 

1 (Wx)(Wy)Lxy (a, a), (a, b), (b, a), (a, b) 
2 Laa 1,V,V 
3 Lab 1,V,V 
4 Lba 1,V,V 
5 Lbb 1,V,V 

(In noting on line 1 what names I have used in instantiating the doubly 
universally quantified sentence ‘(Wx)(Vy)Lxy’, | have written down the pairs 
of names | have used, being careful to distinguish the order in which they 
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occurred, and | wrote them to the right of the line simply because | did not 
have room on the left.) 

In fact, if you think you can get all branches to close by writing down just 
some of the lines 2 to 5, write down only what you think you will need. But 
if in doing so you do not get all branches to close, you must be sure to come 

back and write down the instances you did not include on all open branches 
on which line 1 occurs. 

What about using the same shortcut for a doubly existentially quantified 
sentence? That is, is it all right to proceed as in this mini-tree? 

1 QGxG3ylxy 
2 Lab 1, 3, 3, New names 

This is acceptable if you are very sure that the names you use to instan- 
tiate both existential quantifiers are both new names, that is, names that 
have not yet appeared anywhere on the branch. 

Our last shortcut does not really save much work, but everyone is 
tempted by it, and it is perfectly legitimate: You may drop double nega- 
tions anywhere they occur, as main connectives or within sentences. This 
step is fully justified by the law of substitution of logical equivalents from 
sentence logic. 

A final reminder: You may use these shortcuts only if and when your 
instructor judges that your proficiency is sufficient to allow you to use 
them safely. Also, do not try to omit other steps. Other shortcuts are too 
likely to lead you into errors. 

8—4. INFINITE TREES 

So far, truth trees have provided a mechanical means for testing argu- 
ments for validity and sentences for consistency, logical truth, logical con- 
tradiction, or logical equivalence. But if logic were a purely mechanical 
procedure it could not have enough interest to absorb the attention of 
hundreds of logicians, mathematicians, and philosophers. However, in 
one way, the truth tree method is not purely mechanical. 

Let's test the sentence '(Vx)(Jy)Lxy' for consistency. That is, let's look 
for an interpretation which makes it true: 

d,cb,a1 (VxXylxy S 
J/2 (aylay 1,V 
3 lab 2,3, New name 

/A (3y)Lby 1,V 
5 Lbc 4, 3, New name 

/6 (391cy 1,V 
7 Lcd 6, 3, New name 
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The tree starts with the universally quantified sentence ‘(Wx)(Ay)Lxy’. At 
this point the tree has no names, so I pick a name, ‘a’, and use it to in- 

stantiate 1, giving 2. Line 2 is an existentially quantified sentence, so I 
must instantiate it with a new name, ‘b’, giving line 3. But having the new 

name, ‘b’, I must go back and make 1 true for ‘b’. This produces 4, again 
an existentially quantified sentence, which calls up the new name, ‘c’. Now 
I must go back once more to 1 and instantiate it with 'c', producing the 
existentially quantified 6 and the new name, ‘d’, in 7. I am going to have 
to return to 1 with 'd'. By this time you can see the handwriting on the 
wall. This procedure is never going to end! The tree is just going to keep 
on growing. What does this mean? What has gone wrong? 

Your immediate reaction may be that the troublesome new name re- 
quirement has clearly gummed up the works. The tree keeps on growing 
without end only because we keep needing to use a new name each time 
the existentially quantified sentence comes up. It’s the new name from 
the existentially quantified sentence which has to be used to instantiate 
the universally quantified sentence which produces a new existentially 
quantified sentence which . . . and so on. 

On the other hand, we know that without the new name requirement, 

the method will not always do its job. So what should we make of this 
situation? 

First, let us understand what this infinite tree represents. It represents 
an interpretation with infinitely many names. The tree goes on forever, 
and corresponding to it we have a domain, D = {a,b,c,d, . . .}, and a 

specification that Lab & Lbc & Lcd & . . . . In other words, each object 
bears the relation L to the next. 

Perhaps you have noticed that we can simplify the interpretation by 
supposing that there really is only one object to which all of the infinitely 
many names refer. This gives an interpretation in which there is only one 
thing, a, such that ‘Laa’ is true. In this interpretation it is true that for 
each thing (there is only one, namely a) there is something (namely a 

itself) such that Laa. 
This is the last straw! you may well be saying to yourself. The new name 

requirement horribly complicates things, in this case by unnecessarily 
making the tree infinite. In this case the requirement prevents the 
method from finding the simplest interpretation imaginable which makes 
the original sentence true! 

In fact we could rewrite the rules so that they would find this simple 
interpretation in the present case. But then the new rules would have 
some analogue of the new name requirement, an analogue which would 
provide a similar difficulty in some other problem. Let us say a bit more 

specifically what the difficulty comes to. In the infinite tree we have seen, 
it is very easy to tell that the tree will go on forever. And it is easy to 
figure out what infinite interpretation the infinite tree will provide. But in 
more complicated problems it will not be so easy. The rub is that there 
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can be no mechanical way which will apply to all cases to tell us, in some 
limited number of steps, whether or not the tree will eventually close. 
There will always be cases in which, even after thousands of pages, we 
will still not know whether the tree will close in just a few more steps or 
whether it will go on forever. 

One can show that this problem, or some analogue of it, will come up 
no matter how we write the rules of logic. Indeed, this is one of the many 
exciting things about logic. The rules can be mechanically applied. But 
logic will always leave room for insight and ingenuity. For in difficult 
problems the mechanical rules may never tell you whether the tree will 
eventually close. In these cases you can find out only by being clever. 

Unfortunately, we must stop at this point. But I hope that all of you 
have been able to get a glimpse of one of the ways in which logic can be 
exciting. If you continue your study of logic beyond this course, you will 
come to understand why and how the problem of infinite trees is really a 
very general fact about all formulations of predicate logic, and you will 
understand the essential limitations of predicate logic in a much more 
thorough way. 

EXERCISES 

8-5. Test the following sentences to determine which are logical 
truths, which are contradictions, and which are neither. Show your 

work and state your conclusion about the sentence. Whenever you 
find a counterexample to a sentence being a logical truth or a con- 
tradiction, give the counterexample and state explicitly what it is a 
counterexample to. 

a) (Wx)[(Vy)Py D Px] 
b) (Vx)(Gy)By D Bx] 
c) (Wx)[@y)Cy & ~Cx] 
d) (3x)3y)Lxy & ~Lyx) 
e) (3y)(Vx)Rxy D (Vx)Ryx] 
f) (Vx)(Vy)Txy & (3x)~Tyx] 

g) (3x)(Vy)(Fx>Fy) 
h) (Vx)(3y)(Rxy & ~Ryx) 

8-6. Use the truth tree method to test the following sets of sentences 
for consistency. In each case, state your conclusion about the sets of 

sentences, and if the set of sentences is consistent, give a model. 

a) (3x)3y)Lxy, (33x)(3y)-Lxy 
b) (Wx)(Vy)Lxy, (Vx)(Vy)-Lyx 
c) (Vx)3y)Kxy, (Ax)(Vy)~Kxy 
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d) (Wx)Ax, -(3x)Bx, (Vx)(3y(Ax & ~By) D [(3y)Ay D (vyy-Byl 

e) (Vx)3y)Mxy, (3y(Vx)-Mxy 
f) (x)3y)(Rxx & ~Ryy & Rxy), (Vx)(Vy)(Rxy D Ryx), 

(Wx)(Wy)Wz)[(Rxy & Ryz) 2 Rxz] 

8—7. Use the truth tree method to determine which of the following 
are logically equivalent. Give counterexamples as appropriate. 

a) (Wx)(Wy)(Px & Qy) and (Vx)Px & (Wx)Qx 
b) (3x)3y(Px & Qy) and  (3x)Px & (3x)Qx 

c) (Wx)(Vy)(Px v Qy) and (Vx)Px v (Vx)Qx 
d) (Sx)Gy(Px v Qy) and  (3x)Px v (@x)Qx 
e) (Wx)(Vy)(Px D Qy) and (3x)Px D (Vx)Ox 
f) (3x(SyPx D Qy) and (Vx)Px D (Ax)Qx 
g) (Ax)(Vy)(Px D Qy) and (Vx)Px D (Vx)Ox 
h) (Vx)@y)(Px D Qy) and (3x)Px D (3x)Qx 
i) (Wx)@y)Lxy and (3y(Vx)Lxy 
j (Wy)[(@x)Bx & Hy] and (3x)Bx & (Vy)Hy 

8-8. Are the following arguments valid? If not, give a counterex- 
ample. 

a) (3x)(Sy)[(Wz)Lzx D Lxyl b) (VXXy3ylxy 
GXGpxy — ()[Gy)Lxy D Lxx] 

(Vx)Lxx 

c) (VX(Gylyx d) (VXXVyXV2lUxy & Jyz) D )xzl 
(Wx)(Wy)(Lxy D Txy) (VXXVy))xy D Jyx) 

(Wx)(3y)Tyx (Wx)Jxx 

e) (Wx)(Sy)Lxy f (Wx)(Cx D Ax) 

(3y)(Vx)Lxy (Wx)[(Sy\(Cy & Txy) D (JyKAy & Txy)l 

(All cats are animals. Therefore all 
tails of cats are tails of animals.) 

CHAPTER SUMMARY EXERCISES 

Here are items from this chapter for you to review and record in 
summary: 

a) Contradiction 

b) Truth Tree Test for Contradictions 

«) Logical Truth 
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Truth Tree Test for Logical Truth 
Logical Equivalence 

Truth Tree Test for Logical Equivalence 
Consistency 
Model 

Truth Tree Test for Consistency 

Three Permissible Truth Tree Shortcuts 

Infinite Trees 
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9—1. IDENTITY 

Clark Kent and Superman would seem to be entirely different people. 
Yet it turns out they are one and the same. We say that they are Identical. 
Since identity plays a special role in logic, we give it a permanent relation 
symbol. We express ‘a is identical to b' with ‘a=b’, and the negation with 
either ‘~(a=b)’ or ‘a#b’. 

‘=’ js not a connective, which forms longer sentences from shorter sen- 
tences. ‘=’ is a new logical symbol which we use to form atomic sentences 
out of names and variables. But as we did with the connectives, we can 

explain exactly how to understand ‘=’ by giving truth conditions for 
closed sentences in interpretations. Just follow the intuitive meaning of 
identity: To say that s—t is to say that the thing named by s is identical 
to the thing named by t; that is, that the names s and t refer to the same 

object. (Logicians say that s and t have the same referent, or that they are 
Co-Referential.) To summarize 

‘=’ flanked by a name or a variable on either side is an atomic sentence. If 
s and t are names, t— s is true in an interpretation if s and t name the same 
thing. s—t is false if s and t name different things. The negation of an 
identity sentence can be written either as ~(s=t) or as st. 

Identity is easy to understand, and it is extraordinarily useful in ex- 
pressing things we could not say before. For example, ‘(4x)’ means that 

138 
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there is one or more x such that. . . . Let's try to say that there is exactly 

one x such that . . . , for which we will introduce the traditional expres- 

sion ‘(Ax!)’ (read "E shriek”). We could, of course, introduce ‘(Ax!)’ as a 
new connective, saying, for example, that ‘(4x!)Bx’ is true in an interpre- 
tation just in case exactly one thing in the interpretation is B. But, with 
the help of identity, we can get the same effect with the tools at hand, 

giving a rewriting rule for ‘(4x!)’ much as we did for subscripted quanti- 
fiers in chapter 4. 

To say that there is exactly one person (or thing) who is blond is to say, 
first of all, that someone is blond. But it is further to say that nothing else 

is blond, which we can reexpress by saying that if anything is blond, it 
must be (that is, be identical to) that first blond thing. In symbols, this is 

(Sx)[Bx & (Vy)(By 2 y 2x). 
Before giving a general statement, I want to introduce a small, new 

expository device. Previously I have used the expression '(. . . u. . .)' to 
stand for an arbitrary sentence with u the only free variable. From now 
on I am going to use expressions such as P(u) and Q(u) for the same 
thing: 

Boldface capital letters followed by a variable in parentheses, such as P(u) 
and Q(u), stand for arbitrary sentences in which u, and only u, may be 
free. Similarly, R(u,v) stands for an arbitrary sentence in which at most u 
and v are free. 

In practice P(u), Q(u), and R(u,v) stand for open sentences with the 

indicated variable or variables the only free variable. However, for work 
in Part II of this Volume, I have written the definition to accommodate 

degenerate cases in which u, or u and v, don't actually occur or don't 

occur free. If you are not a stickler for detail, don't worry about this 
complication: Just think of P(u), Q(u), and R(u,v) as arbitrary open sen- 

tences. But if you want to know why I need, to be strictly correct, to cover 
degenerate cases, you can get an idea from exercise 13—3. 

With this notation we can give the E! rewrite rule: 

Rule for rewriting 3: For any open formula P(u) with u a free variable, 
(Ju!)P(u) is shorthand for (Ju)[P(u) & (v)(P(v) D v-u)], where v is free for 
u in P(u), that is, where v is free at all the places where u is free in P(u). 

Once you understand how we have used '—' to express the idea that 
exactly one of something exists, you will be able to see how to use ‘=’ to 
express many related ideas. Think through the following exemplars until 
you see why the predicate logic sentences expresses what the English ex- 
presses: 

There are at least two x such that Fx: 
(Ax)(Ay)[x +y & Fx & Fy). 
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There are exactly two x such that Fx: 
Gx)(3y)x* y & Fx & Fy & (Wz)[Fz D (z =x v z-y)]). 

There are at most two x such that Fx: 
(Wx)(Vy)(Wz)[(Fx & Fy & Fz) D (x=y v x=z v y=z)]. 

We can also use ‘=’ to say some things more accurately which previ- 

ously we could not say quite correctly in predicate logic. For example, 

when we say that everyone loves Adam, we usually intend to say that 
everyone other than Adam loves Adam, leaving it open whether Adam 
loves himself. But ‘(Vx)’ means absolutely everyone (and thing), and thus 
won't exempt Adam. Now we can use ‘=’ explicitly to exempt Adam: 

Everyone loves Adam (meaning, everyone except possibly Adam himself): 
(Vx)(x * a D Lxa). 

In a similar way we can solve a problem with transcribing ‘Adam is the 
tallest one in the class’. The problem is that no one is taller than themself, 

so we can't just use '(Vx)', which means absolutely everyone. We have to 

say explicitly that Adam is taller than all class members except Adam. 

Adam is the tallest one in the class: 
(Vx)[(Cx & x#a) D Tax]. 

To become familiar with what work ‘=’ can do for us in transcribing, 
make sure you understand the following further examples: 

Everyone except Adam loves Eve: 
(Vx)(x*a D Lxe) & ~Lae. 

Only Adam loves Eve: 
(Vx)(Lxe = x =a), or Lae & (Vx)(Lxe D x=a). 

Cid is Eve's only son: 
(Vx)(Sxe = x=c), or Sce & (Vx)(Sxe D x-c). 

EXERCISES 

9-1. Using Cx: x is a clown, transcribe the following: 

a) There is at least one clown. 

b) There is no more than one clown. 

C) There are at least three clowns. 

d) There are exactly three clowns. 

e) There are at most three clowns. 
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9—2. Use the following transcription guide: 

Adam Sxy: x is smarter than y 
Eve Qxy: xisa parent of y 
x is a person Oxy: x owns y 
x isin the classroom Mxy: x is a mother of y 
x is a Cat 
x is furry 

Transcribe the following: 

a) Three people love Adam. (Three or more) 

b) Three people love Adam. (Exactly three) 

c) Eve is the only person in the classroom. 
Everyone except Adam is in the classroom. 
Only Eve is smarter than Adam. 

Anyone in the classroom is smarter than Adam. 
Eve is the smartest person in the classroom. 

Everyone except Adam is smarter than Eve. 

Adam’s only cat is furry. 

Everyone has exactly one maternal grandparent. 

No one has more than two parents. 

9-2. INFERENCE RULES FOR IDENTITY 

You now know what ‘=’ means, and you have practiced using ‘=’ to say 
various things. You still need to learn how to use ‘=’ in proofs. In this 
section I will give the rules for ‘=’ both for derivations and for trees. If 
you have studied only one of these methods of proof, just ignore the rules 
for the one you didn’t study. 

As always, we must guide ourselves with the requirement that our rules 
be truth preserving, that is, that when applied to sentences true in an 
interpretation they should take us to new sentences also true in that inter- 
pretation. And the rules need to be strong enough to cover all valid ar- 
guments. 
To understand the rules for both derivations and trees, you need to 

appreciate two general facts about identity. The first is that everything is 
self-identical. In any interpretation which uses the name ‘a’, ‘a=a’ will be 
true. Thus we can freely use statements of self-identity. In particular, self- 
identity should always come out as a logical truth. 

The second fact about identity which our rules need to reflect is 



142 Identity, Functions, and Definite Descriptions 

just this: If a=b, then anything true about a is true about b, and con- 
versely. 

I'm going to digress to discuss a worry about how general this second 
fact really is. For example, if Adam believes that Clark Kent is a weakling 
and if in addition Clark Kent is Superman, does it follow that Adam be- 

lieves that Superman is a weakling? In at least one way of understanding 
these sentences the answer must be "no," since Adam may well be labor- 

ing under the false belief that Clark Kent and Superman are different 
people. 

Adam's believing that Clark Kent is a weakling constitutes an attitude 
on Adam's part, not just toward a person however named, but toward a 
person known under a name (and possibly under a further description as 
well). At least this is so on one way of understanding the word ‘believe’. 
On this way of understanding 'believe', Adam's attitude is an attitude not 
just about Clark Kent but about Clark Kent under the name ‘Clark Kent. 
Change the name and we may change what this attitude is about. What is 
believed about something under the name ‘a’ may be different from what 
is believed about that thing under the name 'b', whether or not in fact 
a=b. 

This problem, known as the problem of substitutivity into belief, and 
other so-called “opaque” or “intensional” contexts, provides a major re- 
search topic in the philosophy of language. I mention it here only to make 
clear that predicate logic puts it aside. An identity statement, ‘a= b’, is true 
in an interpretation just in case ‘a’ and ‘b’ are names of the same thing in 
the interpretation. Other truths in an interpretation are specified by say- 
ing which objects have which properties, which objects stand in which 
relations to each other, and so on, irrespective of how the objects are 
named. In predicate logic all such facts must respect identity. 

Thus, in giving an interpretation of a sentence which uses the predicate 
'B', one must specify the things in the interpretation, the names of these 
things, and then the things of which ‘B’ is true and the things of which 
‘B’ is false. It is most important that this last step is independent of which 
names apply to which objects. Given an object in the interpretation’s do- 
main, we say whether or not ‘B’ is true of that object, however that thing 
happens to be named. Of course, we may use a name in saying whether 
or not ‘B’ is true of an object—indeed, this is the way I have been writing 
down interpretations. But since interpretations are really characterized by 
saying which predicates apply to which objects, if we use names in listing 
such facts, we must treat names which refer to the same thing, so-called 

Co-Referential Names, in the same way. If ‘a’ and ‘b’ are names of the same 

thing and if we say that ‘B’ is true of this thing by saying that ‘Ba’ is true, 
then we must also make ‘Bb’ true in the interpretation. 

In short, given the way we have defined truth in an interpretation, if 
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'a — b' is true in an interpretation, and if something is true of ‘a’ in the 
interpretation, then the same thing is true of 'b' in the interpretation. 
Logicians say that interpretations provide an Extensional Semantics for 
predicate logic. “Semantics” refers to facts concerning what is true, and 
facts concerning meaning, insofar as rules of meaning have to do with 
what comes out true in one or another circumstance. “Extensional” means 
that the Extension of a predicate—the collection of things of which the 
predicate is true—is independent of what those things are called. Parts of 
English (e.g., ‘Adam believes Clark Kent is a weakling’) are not exten- 
sional. Predicate logic deals with the special case of extensional sentences. 
Because predicate logic deals with the restricted and special case of exten- 
sional sentences, in predicate logic we can freely substitute one name for 
another when the names name the same thing. 
Now let’s apply these two facts to write down introduction and elimi- 

nation rules for identity in derivations. Since, for any name, s, s=s is 
always true in an interpretation, at any place in a derivation which we can 
simply introduce the identity statement s = s: 

G= =| Where s is any name. 

If s does not occur in any governing premises or assumptions, it occurs 
arbitrarily and gets a hat. To illustrate, let's demonstrate that '(Vx)(x = x)’ 

is a logical truth: 

1) a=a =| 
2 | (Yx\x=x) = 2, VI 

The second fact, that co-referential names can be substituted for each 

other, results in the following two rules: 

The indicated substitutions may be for any number of occurrences of the 

name substituted for. 
To illustrate, let's show that ‘(Wx)(Vy)[x=y D (Fx D Fy) is a logical 

truth: 



144 

oy 

ONDA n FW N 

Now we'll do the rules for trees. We could proceed much as we did with 
derivations and require that we write identities such as ‘a=a’ wherever 

this will make a branch close. An equivalent but slightly simpler rule in- 
structs us to close any branch on which there appears a negated self-iden- 
tity, such as ‘a#a’. This rule makes sense because a negated self-identity 
is a contradiction, and if a contradiction appears on a branch, the branch 
cannot represent an interpretation in which all its sentences are true. In 
an exercise you will show that this rule has the same effect as writing self- 
identities, such as 'a- a', wherever this will make a branch close. 

Let's illustrate by proving '(Vx)(x =x)’ to be a logical truth: 

/1 
/2 

The second rule for trees looks just like the corresponding rules for 

Identity, Functions, and Definite Descriptions 

Fa > Fb 

ab > (Fa D Fb) 
(Vy)à- y D (Fa D Fy)l 
(Vx(Vy)[x y D (Fx D Fyll 

Rule #: 

-(VX)(x — x) ~S 
(Ax)(x # x) 1,~V 
ata 2,4 
x 

“> 

wm 1l m ` 

NOAA N N= 

| S y 
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For any name, s, if s#s appears on a branch, close the branch. 

derivations. Substitute co-referential names: 

Let's illustrate, again by showing ‘(Vx)(Vy)[x=y D (Fx D Fy) to be a 

Rule =: 

logical truth: 

For any names, s and t, if s=t appears on a branch, substitute 
s for t and t for s in any expression on the branch, and write the result at 
the bottom of the branch if that sentence does not already appear on the 
branch. Cite the line numbers of the equality and the sentence into which 
you have substituted. But do not check either sentence. Application of this 
tule to a branch is not completed until either the branch closes or until all 
such substitutions have been made. 
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Jt ~(¥x(Vy)Ix=y D (Fx D Fl. ~S 
/2. (33)(y) [x7 y D (Fx D Fy)l 1, ^V, ~Y 
/3 ~[a=b D (Fa 2 Fb)l 2,3,3 E 
4 a-b 3,~D 

J5 ~(Fa D Fb) 3, ~D 
6 Fa 5,~D 

7 ~Fb 5, ~D 
8 ~Fa 4,7,= 

x 

Before closing this discussion of identity, I should mention that identity 
provides an extreme example of what is called an Equivalence Relation. 
Saying that identity is an equivalence relation is to attribute to it the fol- 
lowing three characteristics: 

Identity is Reflexive. Everything is identical with itself: (Vx)(x =x). In general, 
to say that relation R is reflexive is to say that (Vx)R(x,x). 

Identity is Symmetric. If a first thing is identical with a second, the second is 
identical with the first: (Vx)(Vy)(x ̂ y D y- x). In general, to say that relation 
R is symmetric is to say that (Vx)(Vy)(R(x,y) D R(y.x)). 

Identity is Transitive. If a first thing is identical with a second, and the sec- 
ond is identical with a third, then the first is identical with the third: 
(Vx Vy)(Vz)[(x = y & y=z) D x=z]. In general, to say that relation R is tran- 
sitive is to say that (Vx)(Vy)(Vz)[(R(x,y) & R(y,z)) D R(x;z)]. 

You can prove that identity is an equivalence relation using either deri- 
vations or trees. 

Here are some other examples of equivalence relations: being a member 
of the same family, having (exactly) the same eye color, being teammates 
on a soccer team. Items which are related by an equivalence relation 
can be treated as the same for certain purposes, depending on the rela- 
tion. For example, when it comes to color coordination, two items with 
exactly the same color can be treated interchangeably. Identity is the ex- 
treme case of an equivalence relation because "two" things related by 
identity can be treated as the same for all purposes. 

Equivalence relations are extremely important in mathematics. For ex- 
ample two numbers are said to be Equal Modulo 9 if they differ by an 
exact multiple of 9. Equality modulo 9 is an equivalence relation which is 

useful in checking your arithmetic (as you know if you have heard of the 
"rule of casting out 9s"). 

EXERCISES 

9—3. Show that each of the two =E rules can be obtained from the 
other, with the help of the — I rule. 
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9-4. Show that the rule # is equivalent to requiring one to write, on 
each branch, self-identities for each name that occurs on the branch. 

Do the following three exercises using derivations, trees, or both: 

9-5. Show that the following are logical truths: 

a) (dx)x-a) 

b) (Wx)(Vy)[~(Fx D Fy) D x+y] 
c) (Vx)Px = (dy)x- y & Py)] 
d) Pa = (Vx)x-a D Pa) 

e) (Ax)(Ay)(Fx & —Fy) D (dx)(3y)(x* y) 

9-6. Show that (Ax)(Vy)(Fy = y =x) and (3x!)Fx are logically equiv- 

alent. 

9—7. Prove that — is an equivalence relation. 

9-8. Show the validity of the following arguments: 

a (Wx)(x=a D Fx) b) Fa C (Ax)(Fx & x=a) 

Fa (Wx)(x = a D Fx) Fa 

d) (V39x-aDFx e Pa f a=b 

(Wx)(Fx D Fb) (3yXy - a & y- b) Fa = Fb 

Fb Pb 

g) a=b h) (Wx)’a=x = b=x) i) (3x)(Vy)(Py = y=x) 

(Wx)(a=x = b=x) a=b Ka 

a-b 

) (Ax)Px k) GxXVyx-y D  (WVxGyRxy 
(Wx)(x =a v x-b) GhgPx 2 (VgPx (Wx)~Rxx 

Pa v Pb (Ax)(Ay)(x +y) 

m) (Wx)(Sy)Rxy n) (Ax)(Kx & Jx) 
(Wx)~Rxx (Ax)(Kx & —]x) 

(Wx)(Ay)(Rxy & x+y) (3x) 3y(Kx & Ky & x+y) 

o) (3x!)Px p -(3b9Fx 
(Jx(Px & Qx) (3x)Fx 

(Wx)(Px D Qx) (Ax)(y)(Fx & Fy & x+y) 

9-9. 1 stated that being teammates on a soccer team is an equiva- 
lence relation. This is right, on the assumption that no one belongs 

to more than one soccer team. Why can the relation, being teammates 
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on à soccer team, fail to be an equivalence relation if someone belongs 
to two teams? Are there any circumstances under which being team- 
mates on a soccer team is an equivalence relation even though one 
or more people belong to more than one team? 

9-3. FUNCTIONS 

Often formal presentations of functions leave students bewildered. But if 
you have done any high school algebra you have an intuitive idea of a 
function. So let's start with some simple examples from algebra. 

For our algebraic examples, the letters ‘x’, ‘y’, and ‘z’ represent variables 
for numbers. Consider the expression ‘y = 2x + 7’. This means that if 
you put in the value 3 for x you get the value 2x3 + 7 = 13 for y. If 
you put in the value 5 for x, you get the value 2x5 + 7 = 17 for y. Thus 
the expression 'y = 2x + 7’ describes a rule or formula for calculating a 
value for y if you give it a value for x. The formula always gives you a 
definite answer. Given some definite value for x, there is exactly one value 
for y which the formula tells you how to calculate. 

Mathematicians often use expressions like 'f(x)' for functions. Thus, in- 
stead of using the variable y in the last example, I could have written ‘f(x) 
= 2x + 7’ This means exactly what ‘y = 2x + 7’ means. When you put 
in a specific number for x, ‘f(x)’ serves as a name for the value y, so that 
we have y = f(x). In particular, ‘f(3)’ is a name for the number which 

results by putting in the value 3 for x in 2x + 7. That is, ‘f(3)’ is a name 
for the number 13, the number which results by putting in the value 3 
for x in f(x) = 2x + 7. 

This is all there is to functions in logic. Consider the name ‘a’. Then 
‘fay acts like another name. To what does ‘f(a)’ refer? That depends, of 

course, on what function f( ) is, which depends on how 'f( )' is inter- 
preted. In specifying an interpretation for a sentence in which the func- 
tion symbol 'f( y occurs, we must give the rule which tells us, for any 

name s, what object f(s) refers to. When we deal with interpretations in 

which there are objects with no names, this must be put a little more 

abstractly: We must say, for each object (called the Argument of the func- 
tion), what new object (called the Value of the function) is picked out by 
the function f ) when f( ) is applied to the first object. The function 
must be well defined, which means that for each object to which it might 
be applied, we must specify exactly one object which the function picks 

out. For each argument there must be a unique value. 
So far I have talked only about one place functions. Consider the ex- 

ample of the mathematical formula ‘z = 3x + 5y — 8’, which we can also 
write as ‘z = g(x,y)’ or as ‘g(x,y) = 3x + 5y — 8. Hereg( , ) has two 
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arguments. You give the function two input numbers, for example, x = 
2 and y = 4, and the function gives you a single, unique output—in this 
case, the number 3x 2 + 5x4 — 8 = 18. Again, the idea carries over to 

logic. If 'e( , )'isatwo place function symbol occurring in a sentence, 
in giving an interpretation for the sentence we must specify the unique 
object the function will pick out when you give it a pair of objects. If our 
interpretation has a name for each object the same requirement can be 
expressed in this way: For any two names, s and t, ‘g(s,t)’ refers to a 

unique object, the one picked out by the function g( , ) wheng( , ) 
is applied to the arguments s and t. We can characterize functions with 
three, four, or any number of argument places in the same kind of way. 
To summarize 

The interpretation of a one place function specifies, for each object in the 
interpretation's domain, what object the function picks out as its value when 
the function is applied to the first object as its argument. The interpretation 
of a two place function similarly specifies a value for each pair of arguments. 
Three and more place functions are interpreted similarly. 

Incidentally, the value of a function does not have to differ from the 
argument. Depending on the function, these may be the same or they 
may be different. In particular, the trivial identity function defined by 
(Vx)(f(x) = x) is a perfectly well-defined function. 

In the last sentence I applied a function symbol to a variable instead of 
a name. How should you understand such an application? In an interpre- 
tation, a name such as ‘a’ refers to some definite object. A variable symbol 
such as ‘x’ does not. Similarly, ‘f(a)’ refers to some definite object, but ‘f(xy 
does not. Nonetheless, expressions such as ‘f(x)’ can be very useful. The 
closed sentence '(Vx)Bf(x) should be understood as saying that every 
value of 'f(x) has the property named by ‘B’. For example, let us under- 
stand ‘Bx’ as ‘x is blond’ and ‘f(x)’ as referring to the father of x. That is, 

for each person, x, f(x) is the father of x, so that ‘f(a)’ refers to Adam's 

father, 'f(e)' refers to Eve's father, and so on. Then '(Vx)Bf(x)' says that 
everyone's father is blond. 

In sum, function symbols extend the kind of sentences we can write. 
Previously we had names, variables, predicate symbols, and connectives. 
Now we introduce function symbols as an extension of the category of 
names and variables. This involves the new category called Terms: 

We extend the vocabulary of predicate logic to include Function. Symbols, 
written with lowercase italicized letters followed by parentheses with places 
for writing in one, two, or more arguments. 

All names and variables are Terms. A function symbol applied to any term 
or terms (a one place function symbol applied to one term, a two place 
function symbol applied to two terms, etc.) is again a term. Only such 
expressions are terms. 
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In forming sentences, terms function exactly as do names and variables. 
One may be written after a one place predicate, two after a two place pred- 
icate, and so on. P 

Do not confuse function symbols (lowercase italicized letters followed 
by parentheses with room for writing in arguments) with such expressions 
as P(u) and R(u,v). These latter expressions are really not part of predi- 

cate logic at all. They are part of English which I use to talk about arbi- 
trary open predicate logic sentences. 

Notice that these definitions allow us to apply functions to functions: If 
'f( Y is a one place function symbol, ‘f(f(a))’ is a well-defined term. In 

practice, we leave out all but the innermost parentheses, writing 'f(f(a))' as 
'ff(a" What does such multiple application of a function symbol mean? 
Well, if f(x) = x°, then ff(x) is the square of the square of x. If x = 3, 
then ff(3) = (3°)? = 9? = 81. In general, you determine the referent of— 
that is, the object referred to by —‘ff(a)’ as follows: Look up the referent 
of ‘a’. Apply the function f to that object to get the referent of ‘f(a)’. Now 
apply f a second time to this new object. The object you get after the 
second application of f is the referent of ‘ff(a)’. 

Function symbols can be combined to form new terms in all kinds of 
ways. If f( )' is a one place function symbol and 'g( , y is a two place 
function symbol, the following are all terms: ‘f(a)’, ‘f(y)’, 'g(a.x)', 'fg(a,x).— 

that is, fTg(a:x)], 'e(/(a), fO)’, and giftx), g(a,b)J"- 
We need one more definition: 

A term in which no variables occur is called a Constant or a Constant Term. 

Only constant terms actually refer to some specific object in an interpre- 
tation. But closed sentences which use nonconstant terms still have truth 
values. In applying the truth definitions for quantifiers, we form substi- 
tution instances, substituting names for variables within function symbols 
as well as elsewhere. Thus, in applying the definition for the truth of a 
universally quantified sentence in an interpretation to ‘(Wx)Laf(x)’, we 
look at the substitution instances 'Laf(a)', ‘Laf(b)’, 'Laf(c)', and so on. We 

then look to see if the relation L holds between a and the object f(a), 

between a and the object f(b), and so on. Only if all these instances hold 
is ‘(Wx)Laf(x)’ true in the interpretation. 

The rules for functions simply reflect the fact that constant terms 
formed by applying function symbols to other constant terms have defi- 
nite referents, just as names do. However, the generality of these new 
referring terms may be restricted. For example, the constant function f 
defined by (Vx)(f(x) = a) can only refer to one thing, namely, a. Thus, 
when it is important that nothing be assumed about a constant term we 
must use a name and not a function symbol applied to another constant 
term. 
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For derivations this means that we should treat constant terms all alike 
in applying the rules VE and JI. In applying JE, our isolated name must 
still be a name completely isolated to the subderivation to which the JE 
rule applies. (Strictly speaking, if you used an isolated function symbol 
applied to an isolated name, no difficulty would arise. But it's simpler just 
to let the isolated name requirement stand as a requirement to use an 
isolated name.) 

In applying VI only names can occur arbitrarily. For example, we must 
never put a hat on a term such as ‘f(a)’. The hat means that the term 
could refer to absolutely anything, but often the value of a function is 
restricted to only part of an interpretation's domain. So we can't apply VI 
to a function symbol. However, if a name appears in no governing prem- 
ise or assumption and occurs as the argument of a function symbol, we 

can apply VI to the name. For example, if ‘a’ appears in no governing 

premise or assumption, we could have 'Bf(3)' as a line on a derivation, to 

which we could apply VI to get '(x)Bf(x)'. To summarize 

In derivations, treat all constant terms alike in applying VE and 3I. Apply 
VI and JE only to names. 

Let's try this out by showing that ‘(Wx)(Ay)(f{x) = y)' is a logical truth. 
This sentence says that for each argument a function has a value. The 
way we treat functions in giving interpretations guarantees that this state- 
ment is true in all interpretations. If our rules are adequate, this fact 
should be certified by the rules: 

1 | fla)=f(a) =I 
2 | (Ay)(fa)= y) 1, 3l 
3 | (X3yXfo)- y) 2, VI 

Note that this derivation works without any premise or assumption. =I 
allows us to introduce the identity of line 1. Since ‘a’ does not occur in 
any governing premise or assumption, it occurs arbitrarily, although the 
larger term ‘f(a)’ does not occur arbitrarily. ‘a’ could refer to absolutely 
anything—that is, the argument to which the function is applied could be 
any object at all. However, the result of applying the function f to this 
arbitrary object might not be just anything. In line 2 we apply 3I to the 
whole term ‘f(a)’, not just to the argument ‘a’. This is all right because we 
are existentially, not universally, generalizing. If f(à) — f(à), then f(a) is 
identical with something. Finally, in line 3, we universally generalize on 
the remaining arbitrarily occurring instance of ‘a’. 

Let's try something harder. ‘(Wx)(Ay)[/(x)=y & (Vz)(f(x) -z D z-yy 
says that for each argument the function f has a value and furthermore 
this value is unique. Again, the way we treat functions in giving interpre- 
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tations guarantees that this statement is true in all interpretations. So our 
rules had better enable us to show that this sentence is a logical truth: 

1 | fàzfà =| 
2 flaj=b A 

3 fa)=fla) =I 
4 b-fa 2,3, =E 

5 | A=6 Db =fla) 2-4, Dl 
6 | (Wz)(fa)=z D z-f(à) 5, VI 
7 | fày- fà) & (Vz)fà- z D z-f(à) 1, 6, &I 
8 | GyyXfà =y & (Wz)(f(a)=z D z=y)l 7, Al 
9 | (Wx)\(y[Ax)=y & (YzXíx)=z 2Dz-yl 8, VI 

One more example will illustrate 3E and VE as applied to terms using 
function symbols. Note carefully how in applying VE the constant term to 
use in this problem is not a name, but ‘f(a)’, a function symbol applied to 
a name: 

1 | (Gy Vy)lfG9 gly) P 

2 al (Vylf(a)  gty)l A 

3 f(a) = gf(a) 2, VE 
4 (Ax)[f(x)= gfx) 3,3 

5 | Gbotfo9 = gfool 1, 2- 4, dE 

Similar thinking goes into the rules for trees. All constant terms act as 
names when it comes to the rule V. But for the rule d we want a name 
that could refer to anything in the interpretation—that was the reason for 
requiring that the name be new to the branch. So for 3 we need a new 
name, which must be a name, not a function symbol, applied to another 
constant term: 

In trees, instantiate all universally quantified sentences with all constant 
terms that occur along the branch, unless the branch closes. Instantiate each 
existentially quantified sentence with a new name. 

Let us illustrate the new rules with the same sentence as before, 

'(Vx)(3y)[f(x) =y & (Wz)(f(x)=z D z=y)]’. As I mentioned, this sentence 

says that f has a unique value for each argument. Since the way we treat 
functions in giving interpretations ensures that this sentence is true in all 
interpretations, our rules had better make this sentence come out to be a 
logical truth: 
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J1  -(VXX3ylfGo-y & (Vz)[fx)=z D z=y} ~ S 
J2 (3X(Vy)- (fo) =y & (Yzifix=z D z=yl} 1, ^3, ~Y 

fla) 3 (Vy)~{fla)=y & (VZ2)[fa)-z D z- yl) 2,3 
J4 —(f(a) - f(a) & (Yz[fa)=z D z= f(a)l) 3, V 

/5 fla f(a) ~(Vz)[fa)=z D z= fa)l ~& 
/6 x (32-[fa)2 z D z=f(a)] 5, ~V 
/7 ~[fa)=b D b=fa)l 6,4 
8 f(a) - b 7, -2 
9 b+ fla) 7,~D 

10 fa) # fla) 8,9, = 
x 

Notice that to get everything to close I used the term ‘f(a)’ in substitut- 
ing into line 3. Also, note that the right branch does not close at line 9. 
Line 9 is not, strictly speaking, the negation of line 8 since, strictly speak- 
ing, ‘f(a)=b’ and ‘b=f(a)’ are different sentences. 

The occurrence of functions in trees has an unpleasant feature. Sup- 
pose that a universally quantified sentence such as '(Vx)Pf(x)' appears on 
a tree. This will be instantiated, at least once, say, with ‘a’, giving ‘Pf(a)’. 
But now we have a new constant, ‘f(a)’, which we must put into '(Vx)Pf(x)', 
giving ‘Pff(a)’. This in turn gives us a further constant, ‘ff(a)’—and clearly 
we are off on an infinite chase. In general, open trees with function sym- 
bols are infinite when, as in '(Vx)Pf(x), a function symbol occurs as a non- 
constant term inside the scope of a universal quantifier. 

EXERCISES 

9—10. Provide derivations and/or trees to establish that the following 
are logical truths: 

a) (Wx)(Wy)(Wz)l flz)=x & f(z)» y) 2 x- yl 
b) (Bx)FfG) v —FfG9] 

9-11. Provide derivations and/or trees to establish the validity of the 
following arguments: 

a) (VFx b) (Wx)(Wy)(x=y) o (Wx) f(x) # x) 

VIFO VIW Gx3ype*y 
d) (3xfo9* e) (Ax\(Vy)(fly)=x) 

(Ax)(Ay)(f * y) (VxXVy)tfG) = fty)l 

f) (VXXVy)lgix, y) = gly,x)l g (Vxy(ff(x) = x) 

(VXXVy)[Fgix,y) D Fgty,xll (Vx Vy)[fo9 = fly) D x yl 
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h) (dx Vy Vz)gly,z) = x) ) (Vz(3x(Gylz- gx yl 

(Vx Vy)(Vz) V w)[gix, y) = gz,w)l (Vx Vy)Fg(x,y) D (Vx)Fx 

j)  GGylFfo) & —Ffyl 

(Ax)(Ay)[f(x) + fty)l 

k) (VxXVy)[x *y D gx y) + gy,xl 

(VXI VyY(x* y D glgx,y),gty,»l + glely,x),8(x,y)D 

D (VxxVylxsy D IFgx,y) = ~Fgly,x)]} 

(VXVy)l(x s y D g(x, y) * gty,x)l 

9—4. DEFINITE DESCRIPTIONS 

Let's transcribe 

(1) Theone who loves Eve is blond. 

We need a predicate logic sentence which is true when (1) is true and 
false when it is false. If there is exactly one person who loves Eve and this 
person is blond, (1) is true. If this person is not blond, (1) clearly is false. 
But what should we say about (1) if no one loves Eve, or more than one 

do? 
If no one, or more than one love Eve, we surely can't count (1) as true. 

If we insist that every sentence is true or false, and since (1) can't be true 
if none or more than one love Eve, we will have to count (1) as false under 
these conditions. Thinking about (1) in this way results in transcribing 
it as 

(la) (4x!)(Lxe & Bx). 

which is true if exactly one person loves Eve and is blond, and is false if 
such a person exists and is not blond or if there are none or more than 
one who love Eve. 

From a perspective wider than predicate logic with identity we do not 
have to take this stand. We could, instead, suggest that there being exactly 
one person who loves Eve provides a precondition for, or a Presupposition 
of, the claim that the one who loves Eve is blond. This means that the 

condition that there is exactly one person who loves Eve must hold for (1) 
to be either true or false. If the presupposition holds—if there is exactly 
one person who loves Eve—then (1) is true if this unique person is blond 
and false if he or she is not blond. If the presupposition fails—if there is 
none or more than one who love Eve—then we say that (1) is neither true 
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nor false. One can design more complex systems of logic in which to for- 
malize this idea, but predicate logic with identity does not have these re- 
sources. Hence, (la) is the best transcription we can provide. 

Grammatically, ‘the one who loves Eve’ functions as a term. It is sup- 
posed to refer to something, and we use the expression in a sentence by 
attributing some property or relation to the thing purportedly referred 
to. We can mirror this idea in predicate logic by introducing a new kind 
of expression, (The u)P(u), which, when there is a unique u which is P, 

refers to that object. We would then like to use (The u)P(u) like a name 

or other constant term in combination with predicates. Thus we would 
transcribe (1) as 

(1b) B(The x)Lxe. 

Read this as the predicate ‘B’ applied to the “term” ‘(The x)Lxe’. ‘The one 
who loves Eve’ and ‘(The x)Lxe’ are called Definite Descriptions, respec- 

tively in English and in logic. Traditionally, the definite description form- 
ing operator, (The u), is written with an upside-down Greek letter iota, 
w, like this: (vu)P(u). 

Here are some examples of definite descriptions transcribed into pred- 
icate logic: 

a) The present king of France: (The x)Kx. 

b) The blond son of Eve: (The x)(Bx & Sxe). 

€) The one who loves all who love themselves: (The x)(Vy)(Lyy D Lxy). 

But we can't treat (The x)P(x) like an ordinary term, because sometimes 

such "terms" don't refer. Consequently, we need a rewriting rule, just as 
we did for subscripted predicates and ‘(4x!)’, to show that expressions like 
(1b) should be rewritten as (1a): 

Rule for rewriting Definite Descriptions Using (The u): Q{(The u)P(u)] is 
shorthand for (Jul)[P(u) & Q(u)], where P(u) and Q(u) are open formulas 
with u the only free variable. 

This treatment of definite descriptions works very smoothly, given the 
limitations of predicate logic. It does, however, introduce an oddity about 
the negations of sentences which use a definite description. How should 
we understand 

(2) The one who loves Eve is not blond. 

Anyone who holds a presupposition account will have no trouble with 
(2): They will say that if the presupposition holds, so that there is just one 
person who loves Eve, then (2) is true if the person is not blond and false 
if he or she is blond. If the presupposition fails, then (2), just as (1), is 
neither true nor false. 
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But what should we say in predicate logic about the transcription of 
(2)? We can see (2) as the negation of (1) in two very different ways. We 
can see (2) as the definite description '(The x)Lxe applied to the negated 
predicate ‘~B’ in which case we have 

(2a) ~B(The x)Lxe, rewritten as (3x!)(Lxe & —Bx). 

When we think of (1) and (2) this way, we say that the definite description 
has Primary Occurrence or Wide Scope. 

Or we can see (2) as the negation of the whole transcribed sentence: 

(2b) -[B(The x)Lxe], rewritten as ~(3x!)(Lxe & Bx). 

Thinking of (1) and (2) in this second way, we say that the definite de- 
scription has Secondary Occurrence or Narrow Scope. When transcribing an 
English sentence with a definite description into logic, you will always 
have to make a choice between treating the definite description as having 
primary or secondary occurrence. 

EXERCISES 

Transcription Guide 

a: Adam Dx: xis dark-eyed 
e: Eve Fxy: x is a father of y 
c: Cain Sxy: x is a son of y 

Bx: x is blond Cxy: x is more cleyer than y 
Lxy: x loves y 

9-12. Transcribe the following. Expressions of the form (The u) and 
(3u!) should not appear in your final answers. 

a) The son of Eve is blond. 

b) The son of Eve is more clever than Adam. 

€) Adam is the father of Cain. 

d) Adam loves the son of Eve. 

e) Adam loves his son. 

f) Cain loves the blond. 

g The paternal grandfather of Adam is dark-eyed. 

h) The son of Eve is the son of Adam. 

i) The blond is more clever than the dark-eyed one. 

j The most clever son of Adam is the father of Eve. 

k) The son of the father of Eve is more clever than the father of the 
son of Adam. 
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9-13. Transcribe the negations of the sentences of exercise 9—12, 
once with the definite description having primary occurrence and 
once with secondary occurrence, indicating which transcription is 
which. Comment on how you think the notions of primary and sec- 
ondary occurrence should work when a sentence has two definite 
descriptions. 

a) 
b) 
c) 
d) 
e) 
f) 
g) 
h) 
i) 
» 
k) 
1) 

m) 
n) 
0) 
p) 
q) 
r) 
5) 
t) 
u) 
v) 
w) 

x) 
y) 
z) 

aa) 

bb) 
cc) 

CHAPTER SUMMARY EXERCISES 

This chapter has introduced the following terms and ideas. Sum- 
marize them briefly. 

Identity 

Referent. 
Co-Referential 

(u!) 
Self-Identity 

Extensional 
Extensional Semantics 

Rule =I for Derivations 
Rule =E for Derivations 
Rule = for Trees 

Rules * for Trees 
Reflexive Relation 
Symmetric Relation 

Transitive Relation 

Equivalence Relation 
Function 

One Place Function 
Two and Three Place Functions 

Arguments of a Function 

Function Symbols 

Term 
Constant, or Constant Term 
Rules for Function Symbols in Derivations 

Rules for Function Symbols in Trees 
Presupposition 
Definite Description 

Rewrite Rule for Definite Descriptions 

Primary Occurrence (Wide Scope) of a Definite Description 
Secondary Occurrence (Narrow Scope) of a Definite Description 







Metatheory 10 

The Basic Concepts 

10-1. OBJECT LANGUAGE AND METALANGUAGE 

In metatheory, we analyze and prove facts about logic, as opposed to us- 
ing logic. To proceed clearly, we must bear in mind that the language in 
which we do logic is distinct from the language in which we study logic— 
that is, that the language of sentence and predicate logic is distinct from 
English. The distinction has been implicit throughout the text. It is time 
to make this distinction explicit and give it a name. 

Since the language of sentence and predicate logic is the language we 
study and talk about, we call it an Object language. 

An Object Language is a language we study and talk abut. Our object lan- 
guage is the language of sentence and predicate logic. 

Our object language has an infinite stock of sentence letters, names, one 
place predicates, two place predicates, and in general, n-place predicates. 
(In section 15—5 we also add function symbols.) 
We contrast our object language with the language, called a Metalan- 

guage, which we use to talk about our object language. Our metalanguage 
is English, to which we add a few convenient items. Most of these you 
have already seen. For example, think about how we have been using 
boldface capital ‘X’ and ‘Y’ to range over sentences in the object language. 
In so doing, we are really using 'X' and 'Y' as a simple extension of En- 
glish, as a new linguistic device which we use in talking about the lan- 
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guage of sentence and predicate logic. We have used ‘s’, 't', ‘u’, ‘v’, 'P(u)', 
and 'R(u,v)' similarly. Since these are variables used in the metalanguage 
to range over object language sentences, names, variables, and open sen- 
tences, we call them Metavariables. 

I will now add three more kinds of metavariables to be used as part of 
English in talking about our object language. I will use boldface script 
capitals ‘X’, ‘Y’, and ‘Z’ to talk generally about sets of object language 
sentences. A set of sentences is just a collection of one, two, or more sen- 
tences where the order of the sentences does not matter. I will also in- 
clude among sets of sentences infinite sets, with infinitely many sentences 
in them, and the somewhat funny case of the Empty Set, that is, the de- 
generate case in which the set contains nothing. 

Next, I will use T, ‘J’, . . . as metavariables ranging over interpreta- 

tions. When, as in chapter 15, we will be concerned with predicate logic 

sentences, interpretations will be described by a generalization of the idea 
I introduced in chapter 2. For chapters 11 to 14, in which we will be 
concerned only with sentence logic, interpretations will just be assign- 
ments of truth values to atomic sentence letters, that is, specifications of 
conditions which determine truth values for sentence logic sentences. I 
will use T and ‘J’ as part of English to talk generally about interpretations, 
as when I say that two sentences, X and Y, are logically equivalent if and 
only if, for each I which is an interpretation of both X and Y, either X 
and Y are both true in I or X and Y are both false in I. 

As a last metavariable I will use ‘T’ to range over truth trees. 
I will also add to English the special symbol ‘V as an abbreviation of the 

word “Therefore’. Z\X stands for the argument which has sentences in the 
set Z as its premises and X as its conclusion. This is exactly what I have 
previously written as "Z. Therefore X." I did not previously introduce ‘V 
as an abbreviation for ‘therefore’ because I wanted to be sure that you 
did not mistakenly think that ‘V was part of the object language. But now 
that we have made the object language/metalanguage distinction explicit, 
I can introduce ‘V as an abbreviation for ‘therefore’ and ask you to be 
careful to understand that ‘V is an abbreviation in English, not a connec- 
tive of the object language we are studying. To summarize 

A Metalanguage is a language, distinct from the object language, which we 
use to talk about the object language. Our metalanguage is English, aug- 
mented with metavariables as follows: X’, Y’, ‘Z’, . . . range over object 
language sentences; X, 'Y', ‘Z’,. . . range over sets of object language sen- 

*Only after typesetting made large-scale changes in type a practical impossibility, I 
learned that the compositor's capital boldface italic was almost indistinguishable from the 
roman boldface type. However, I have used Z everywhere as my metavariable for sets of 
sentences, with only two minor exceptions (where I use W); and Z never occurs as a meta- 
variable for sentences. By remembering that Z ranges over sets of sentences, | hope that the 
reader will be able to make the needed contrast. E regret not having provided a truly dis- 
tinctive typeface. 
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tences*; 's', t, . . . range over names in the object language; ‘u’, ‘v’,.. . 
range over variables of the object language; ‘P(u)’ and ‘R(u, v) . . . range 
over sentences of the object language in which u (or u and v) may be free; 
T, T’, - . . range over interpretations; and ‘T’ ranges over trees. We also 
use *' as an abbreviation for ‘therefore’ in the metalanguage, so that ‘ZAX 
stands for the argument with premises taken from the sentences in the set 
Z and conclusion the sentence X. 

To understand better the interplay between object and metalanguage, 
you also need to understand the distinction between Use and Mention. 
Let's talk for a moment about Adam: In so doing I mention (that is, I 
refer to) this person. I might say about Adam that he is blond. Now, let 
us talk, not about the person, Adam, but about this person's name, 

‘Adam’. For example, I might say that ‘Adam’ is spelled with four letters. 
Note how I accomplished this. To talk about the name, I take the name 
and enclose it in single quotation marks. If I use the name without quotes, 
I use the name to mention (that is, to talk about) the person. If I use the 

name enclosed in quotes, I use the quoted name—really a name of the 
name—to mention (talk about) the name. 

Throughout this text I have tried hard (but not always successfully!) to 
observe the distinction between use and mention. Thus, when in the text 
I have talked about an object language sentence, such as 'A&B', I have 
been careful always to enclose it in quotes. When such a sentence is dis- 
played as an example, like this 

A&B 

I omit the quotes. This is because of the convention, universal in logic 
and philosophy, that offsetting a formal expression functions just like 
quoting it, so that you know that we are talking about what has been 
displayed rather than using what is displayed to make a statement or ref- 
erence. 

In contrast, when I use a metavariable I do not put quotes around it. 

Thus I might say that if the sentence X is a conjunction, then X contains 
the symbol ‘&’. Notice that there are no quotes around the boldface letter. 
This is because I was using it to make a general statement, not mention- 
ing the letter. In contrast, I do use quotes when I mention (that is, talk 
about) the boldface letter, as in the following statement: In the previous 

example I used the symbol 'X' as an example of how metavariables can 
be used. 
Now let's look at a problematic case. Suppose I say that any sentence of 

the form X&Y is true just in case X and Y are both true. I have, writing 
in the metalanguage, used ‘X’ and 'Y' to make a general statement. But 
in so doing I used the expression 'X&Y', which contains the object lan- 
guage symbol ‘&’. Furthermore, in some sense I made a statement about 
the symbol '&'. I didn't assert a conjunction. Instead, I talked about all 
sentences which have '&' as their main connective. 
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Here's the problem. I was tacitly talking about the symbol '&'. But I 

didn't quote it. I really should have used quotes around '&'. But it's not 
clear how I could do that without putting quotes around 'X' and 'Y', 
which I was using and not mentioning! 

Philosophers have invented some fancy notation to make more precise 
what is going on in such cases. But introducing this further notation 
would be to pass the point of diminishing returns for our present needs. 
Instead, I am simply going to ask you to understand that such "mixed" 
cases of use and mention, formed with metalanguage boldface variables 
and object language connectives, are a device which I use to talk generally 
about all sentences of the indicated form. 

I must mention one further twist in our conventions. Our object 
language provides a very precise and compact way of expressing truth 
functional facts. It would be a shame not to be able to use this compact 
notation in our metalanguage and to have to write everything out in im- 
precise, long-winded English. So we will occasionally allow ourselves the 
luxury of using expressions of the object language to make statements as 
part of the metalanguage. You can think of the metalanguage, English, as 
incorporating or being extended by a copy of the object language. 

You can always tell when I talk about, or mention, logical notation as 
part of the object language, for in these cases I will always quote or dis- 
play the expressions. When I use, as opposed to mention, logical notation 
as part of the metalanguage, the notation will not be quoted. Further- 
more, when I use, as opposed to mention, logical notation as part of the 
metalanguage, I will use the notation with metalanguage variables. You 
can spot these metalanguage variables as belonging to the metalanguage 
because I always write them in boldface. Strictly speaking, my notation 
does not distinguish between use of logical notation in the metalanguage 

EXERCISES 

10-1. For each of the underlined expressions, say whether the 
expression is being used as part of the metalanguage, mentioned as 
part of the metalanguage, used as part of the object language, or 
mentioned as part of the object language. 

a) If there is a proof of a sentence X, then there is a proof of the 
sentence XvY. 

b) The sentence ‘(Vx)(Bx v ~Bx)’ is a logical truth. 

€ Any sentence of the form (Vu)[P(u) v —P(u)] is a logical truth. 

d) 'Y'is a metavariable. 
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and the mixed use-mention cases which I described two paragraphs back. 
But in practice this imprecision causes no confusion. 

10-2. SYNTAX AND SEMANTICS 

Much of metatheory deals with connections between syntax and seman- 
tics, another distinction which I have tacitly observed throughout the text. 
A fact of Syntax is a fact which concerns symbols or sentences insofar as 
the fact can be determined from the form of the symbols or sentences, 
from the way they are written. The point is that facts of syntax do not 
depend on what the symbols mean. 

A fact of Semantics, on the other hand, concerns the referents, inter- 

pretation, or (insofar as we understand this notion) the meaning of sym- 

bols and sentences. In particular, semantics has to do with the referents 
of expressions, the truth of sentences, and the relations between various 

cases of these. 
Here are some examples: Syntactic facts include the fact that ‘A&B’ is 

a well-formed sentence of sentence logic, that 'AB&' is not a well-formed 

sentence, and that 'A&B' is a conjunction. Syntactic facts include more 
general facts which can be determined from form alone, such as the fact 
that the derivation rule &E and the truth tree rule & apply to any sen- 
tence of the form X&Y and that any sentence of the form XvY is deriva- 
ble from (that is, there is a proof from) a sentence of the form ~X D Y. 
One thing to keep in mind is that whether or not a given string of 

sentences counts as a formal proof (a derivation or a tree) is a syntactic 
fact. All the rules of proof have been carefully stated so that they appeal 
only to facts about how sentences are written, not about how they are 
interpreted. Whether or not a string of sentences qualifies as a proof de- 
pends only on the form, not on the content of the sentences. To see this 
clearly, consider that you could program a computer to check and con- 
struct proofs. The computer need not know anything about how the 
sentences are interpreted. For example, the computer need not know 
that you are supposed to think of '&' as meaning 'and'. It need only 
be programmed so that if a sentence of the form X&Y appears on a 
derivation or tree, then below this sentence it can write both the sentences 
X and Y. 

Examples of semantic facts include the fact that any interpretation 
which makes ‘ADB’ true makes ‘~BD~A’ true, that (Vx)(Px v ~Px)’ is 
true in all interpretations, and that '(Vx)Px' is true in some interpretations 
and false in others. Semantic facts include more general facts such as the 

fact that any existentially quantified sentence is true in an interpretation 
if one of its substitution instances is true in the interpretation. 
To summarize the distinction between syntactic and semantic facts 
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Facts of Syntax are facts having to do with the form of expressions. Syntactic 
facts contrast with facts of Semantics which have to do with the truth, refer- 
ence, and the meaning of expressions. 

EXERCISES 

10-2. Which of the following facts are syntactic facts and which se- 
mantic facts? 

a) Any interpretation which makes ‘(Wx)(Ax & Bx) true makes 
'(Vx)Ax' true 

b) The expression ‘A&BvC’ is not a well-formed sentence, though it 
would be if parentheses were put around the ‘A&B’. 

€) A sentence of the form ~~X can be derived from a sentence of 
the form X. 
In some interpretations ‘a’ and 'b' have the same referent. In some 
interpretations they do not. 

If X and Y are well-formed sentences, then so is their conjunction. 
If the argument XY is valid, then so is the argument ~Y\~X. 

A model of a set of sentences (that is, an interpretation in which 
each sentence in the set is true) is a model for any subset of the 
set (that is, any smaller set of sentences all the sentences of which 
are contained in the original set). 

If there is a proof of the sentence X from the sentences in the set 
Z, then there is a proof of X from any superset of Z, that is, any 
set which contains all the sentences of Z as well as one or more 
additional sentences. 

10-3. SOUNDNESS AND COMPLETENESS 

Students often have difficulty appreciating the difference between the 
question of whether an argument, Z\X, is valid (a semantic question) and 
the question of whether there is a proof from Z to X (a syntactic ques- 
tion). And no wonder! The syntactic rules of proof have been carefully 

crafted so that there is a proof from Z to X if and only if the argument, 
ZW, is valid. Of course, we have done this so that we can use proofs to 
ascertain validity. But this must not obscure the fact that Derivability—that 
is, the existence of a proof—is one thing and validity is another. That 
these two very different concepts go together is something we must dem- 

onstrate. Indeed, this fundamental result about logic is what the rest of 

this book is about. 
To help in talking about these ideas, we will use two new abbreviations 

in the metalanguage. (The following definitions also use the abbreviation 



10—3. Soundness and Completeness 163 

‘iff’, which is just shorthand for the metalanguage expression ‘if and only 
if") 

D1: ZFX iff X is Derivable from Z, that is, iff there is a formal proof of X 
using only sentences in Z. 

D2: ZFX iff the argument Z\X is valid, that is, iff every interpretation which 
makes all of the sentences in Z true also makes X true. 

The symbol ‘F is called the Single Turnstyle. ZFX asserts that a syntactic 
relation holds between the sentences in the set of sentences, Z, and the 

sentence, X, that the latter is derivable from the former. The symbol F 

is called the Double Turnstyle. ZFX asserts that a semantic relation holds 

between the set of sentences, Z, and the sentence, X, that any interpreta- 

tion which makes all of the sentences in Z true will also make X true. 

Here's a mnemonic to help remember which turnstyle is which. ‘F has 
more bars and so has to do with meaning. 'F' has less bars and so has to 

do with the form of language. 
Using the turnstyle notation, we can express the close relation between 

derivability and validity in two convenient parts: 

D3: A system of formal proof is Sound iff for all Z, X, if ZFX, then ZFX. 

To say that a system of formal proof is sound is to say that whenever you 
have a proof from Z to X, then any interpretation which makes all of the 
sentences in Z true also makes X true. 

D4: A system of formal proof is Complete iff for all Z, X, if ZFX, then ZFX. 

To say that a system of formal proof is complete is to say that in every 
case of an argument, Z\X, which is valid (that is, any interpretation which 
makes every sentence in Z true also makes X true), there exists a proof 
from Z to X. Completeness means that there is a proof in every case in 
which there ought to be a proof. 

Once more, derivability and validity are distinct concepts. But deriva- 
bility has been set up so that it can be used as a surefire test of validity. 
To give a crude analogy, derivability is like the litmus test for acids. If 
you put a piece of litmus paper in a liquid and the paper turns red, you 
know that the liquid is an acid. If the litmus paper does not turn red, the 
liquid is not an acid. Derivability is a kind of litmus test for validity. Prov- 
ing that the test works, proving soundness and completeness, is the fun- 
damental metatheoretical result in logic. 

This litmus test analogy is a good way to emphasize the fact that deriv- 
ability and validity are distinct but related ideas. However, I must be sure 
that the analogy does not mislead you in the following respect. Derivabil- 
ity is a surefire test for validity in the sense that if there is a proof, then 
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the corresponding argument is valid, and if an argument is valid, then 
there exists a proof which establishes that validity. But there may not be 
any surefire way to establish whether or not such a proof exists! We might 
look for a proof from Z to X until the cows come home and still not know 
for sure whether or not a proof exists. 

In predicate logic there is no mechanical means to determine whether 
or not a proof from Z to X exists, no means guaranteed to give a definite 
yes or no answer in some finite number of steps. This fact about predicate 
logic is known as Undecidability, and constitutes a second fundamental me- 
tatheoretical result. (Sentence logic is decidable.) If you learned the tree 
method, I can give you a hint of what is involved by reminding you of 
the problem of infinite trees. The same fact will turn up for derivations 
when we get to chapter 15. However, further study of undecidability goes 
beyond what you will study in this text. 

EXERCISES 

10-3. Some one might propose a set of rules of inference different 
from our natural deduction or truth tree rules. Explain what is in- 
volved in such a new set of rules being Unsound (not sound) or In- 

complete (not complete). 
In fact, logicians have proposed many, many sets of inferential 

rules. Some such sets are sound and complete, some are not. When- 
ever someone proposes a new set of inference rules it is important 
to determine whether or not the rules are sound and complete. 

Exercises 10—4 to 10—6 concern the idea of Rule Soundness. To say 
that an individual rule of inference is sound is to say that if the rule 
is applied to a sentence or sentences which is (are) true in a case, 
then the sentence which the rule licenses you to draw is also true in 
that case. We can state the rules of inference for derivations using 
the turnstyle notation, and we can also use this notation to assert the 
soundness of these rules. For example, the rule &I is expressed by 
saying that if Z-X and ZHY, then Z-X&Y. We can state, in one way, 
that the rule &I is sound by stating that if ZFX and ZFY, then 
ZEX&Y. 

10-4. Show that the rule &I is sound. 

10—5. State the other primitive rules for derivations using the turn- 
style notation and show that they are sound. 

10—6. Consider the following new rules for derivations. Determine 
which are sound and which are not. In each case, give an informal 
demonstration of your conclusion about the rules. 
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a) If Z-XDY and ZHY, then ZX. 

b) If Z-+X=Y and ZF-X, then H~Y. 

c) If Zr((Vu)P(u) v (Vu)Q(u)], then Z-(Vu)[P(u) v Q(u)]. 

d) If Zr (Ju)P(u), then Z-P(s). 

e) If Zr[(3u)P(u) & (3u)Q(u)], then Z-(3u)[P(u) & Q(u)]. 

10—7. Refresh your memory of the truth table method of establish- 
ing validity in sentence logic (see exercise 4—2 in chapter 4 of volume 
D. Then show that this method provides a decision procedure for 
sentence logic. That is, show that, given a sentence logic argument, 
the truth table method is guaranteed in a finite number of steps to 
give you a yes or no answer to the question of whether or not the 
argument is valid. 

10-4. SOME FURTHER NOTATION AND DEFINITIONS 

Some further notation and definitions will prove very useful in the follow- 
ing chapters, and will also give you a chance to practice the concepts of 
the last three sections. 

First, here's an obvious and trivial extension of the turnstyle notation, 
a fussy logician's point which you might not even notice. For example, if 
I write 'Z-X', I have used Z as a metavariable over sets of sentences. What 

if I want to look at the special case in which Z contains just one sentence? 
Then I may just use ‘Z’, a metavariable over individual sentences, writing 
"Z-X'. Or, if I want more explicitly to list the sentences that come before 

the turnstyle, I may do just that, explicitly giving the list, for example, 
writing W,Z-X. I may use the same latitude in notation with the double 
turnstyle. 
A little less trivially, I have glossed over an important point about using 

the single turnstyle. 'Z-X' means that there is a proof of X from the sen- 
tences in the set Z. But by proof, do I mean a derivation or a closed tree? 

It is important to keep separate these very distinct kinds of formal proof. 
Strictly speaking, I should use one kind of turnstyle, say, ‘ty’ to mean 
derivations. Thus 'ZF;X' means that there is a derivation which uses 

premises in Z and has X as its last line. And I should use a second kind 
of turnstyle, say, ‘H’, to mean trees. Thus ‘Z+,X’ means that there is a 

closed tree of which the initial sentences are —X and sentences taken 
from Z. Other systems of formal proof (and there are many others) must 
be distinguished from these with further subscripts on the single turn- 
style. When there is any danger of confusion about what kind of proof is 
in question, we must use a disambiguating subscript on the turnstyle. Usu- 
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ally, context will make it quite plain which kind of proof is in question, In 
which case we may omit the subscript. 

EXERCISE 

10—8. Do we need corresponding subscripts on the double turnstyle? 
Explain why or why not. 

Here is one more refinement. How should we understand the turnstyle 
notation when the set Z has infinitely many sentences? In the case of ‘ZFX’ 
this should be clear enough. This asserts that every interpretation which 
makes all of the infinitely many sentences in Z true also makes X true. 
But what do we mean by 'ZFX'? A formal proof can use only finitely many 
sentences. So by ‘ZX’ we mean that there is a proof of X each premise 
of which is a sentence in the set Z. This formulation leaves it open 
whether all of the sentences in Z get used as premises. If Z is infinite, only 
finitely many sentences can be used in a proof from Z. If Z is finite, all or 
only some of the sentences in Z may get used. Reread definition D1 and 
be sure that you understand 'formal proof of X using only sentences in 
Z', as just explained, to mean a proof which uses any number of, but not 
necessarily all, the sentences in Z as premises. We even allow the case of 
using no premises at all. Any proof of a sentence, X, from no premises 
makes ZH-X true for any set of sentences, Z. 

EXERCISES 

10—9. 'ZCW' means that every sentence in Z is a sentence in W. We 
say that Z is a Subset of W. Show that if Z-X and ZCW, then WEX. 
10-10. Show that if ZFX and ZCW, then WFX. 

10-11. If Z is the empty set, we write FX for Z-X and EX for ZFX. 
Explain what -X and FX mean. 

If you have studied truth trees, you have already encountered (in sec- 
tion 9—2, volume I, and section 8—1, this volume) the idea of a Model of a 

set of sentences. It’s not complicated: An interpretation, I, is a model of 
a set of sentences, Z, iff every sentence in Z is true in I. That is, a model, 

I, of a set of sentences, Z, makes all the sentences in Z true. For example, 

consider the truth value assignment, 1 which makes ‘A’ true, ‘B’ false, and 
‘C true. I is a model for the set of sentences {(AVB),(~BDC)}, but is not 
a model for the set of sentences {(A&~B),C,(B=C)}. Be sure you under- 
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stand why this is so. To check, work out the truth values of each sentence 

in the two sets in the truth value assignment, I, and apply the definition 
of model just given. 

In the following chapter we will use the notion of a model so often that 
it's worth introducing an abbreviation: 

D5: 'Mod' is a predicate in the metalanguage (an abbreviation in English), 
defined as Mod(LZ) iff all the sentences in the set Z are true in the inter- 
pretation, I. If Mod(LZ), I is said to be a Model for the sentences in Z. I is 
also said to Satisfy the sentences in Z. 

As with the turnstyle notation, we can use metavariables for sentences, 

such as ‘Z’, where the metavariable, ‘Z’, for sets of sentences occurs in the 

definition of ‘Mod’. 
We will also lean heavily on the notations of consistency and inconsis- 

tency, already introduced in exercise 7-8 and section 9-2 (in volume I) 
and in sections 6—3 and 8—1 (in this volume). To get ready for this work, 

and to practice this chapter's ideas, here is a pair of equivalent definitions 
for each of these concepts. (The slash through the double turnstyle in D6' 
means just what a slash through an equal sign means—the double turn- 
style relation does not hold.) 

D6: The set Z of sentences is Consistent iff (31)Mod(LZ). 

D6': The set Z of sentences is Consistent iff ZFA&~A 

D7: The set Z of sentences is Inconsistent iff (VI) Mod(L2Z), that is, iff Z is 
not consistent, that is, iff there is no model for all the sentences in Z. 

D7’: The set Z of sentences is Inconsistent iff ZFA&~A 

EXERCISES 

10—12. Show that D6 and D6' are equivalent. 

10—13. Show that D7 and D7’ are equivalent. 

10-14. Explain why the notions of consistency and inconsistency are 
semantic and not syntactic notions. Modify definitions D6' and D7' 
to provide corresponding syntactic notions, and label your new def- 
initions D6" and D7". You will then have a pair of notions, Semantic 

Consistency and Syntactic Consistency, and a second pair, Semantic In- 
consistency and Syntactic Inconsistency. You must always carefully dis- 
tinguish between these semantic and syntactic ideas. Whenever I 
speak about consistency and inconsistency without specifying 
whether it is the semantic or syntactic notion, I will always mean the 
semantic notion. 
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10-15. What do you think the relation is between semantic and syn- 
tactic consistency, and between semantic and syntactic inconsistency? 
What would you guess is the connection between this question and 
the ideas of soundness and completeness? Write a paragraph fion: 

. mally explaining these connections as best you can. 

Here. are the important concepts which I have introduced and dis- 
cussed in this chapter. erence a you under- 
stand them. 

a) 
_ b) 

c). P 

e) 
f) 
8) 
h) 
i) 

k) 
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m) 
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Mathematical | ll 

Induction 

11-1. INFORMAL INTRODUCTION 

The point of metatheory is to establish facts about logic, as distinguished 
from using logic. Sentence and predicate logic themselves become the ob- 
ject of investigation. Of course, in studying logic, we must use logic itself. 
We do this by expressing and using the needed logical principles in our 
metalangauge. It turns out, however, that to prove all the things we want 
to show about logic, we need more than just the. principles of logic. At 
least we need more if by ‘logic’ we mean the principles of sentence and 
predicate logic which we have studied. We will need an additional princi- 
ple of reasoning in mathematics called Mathematical Induction. 

You can get the basic idea of mathematical induction by an analogy. 
Suppose we have an infinite number of dominos, a first, a second, a third, 

and so on, all set up in a line. Furthermore, suppose that each domino 
has been set up close enough to the next so that if the prior domino falls 
over, it will knock over its successor. In other words, we know that, for all 

n, if the nth domino falls then the n + 1 domino will fall also. Now you 
know what will happen if you push over the first domino: They will all 
fall.. = 
To put the idea more generally, suppose that we have an unlimited or 

infinite number of cases, a first case, a second, a third, and so on. Suppose 
that we can show that the first case has a certain property. Furthermore, 
suppose that we can show, for all n, that if the nth case has the property, 

169 
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then the n + 1 case has the property also. Mathematical induction then 
licenses us to conclude that all cases have the property. 

If you now have the intuitive idea of induction, you are well enough 
prepared to read the informal sections in chapters 12 and 13. But to mas- 
ter the details of the proofs in what follows you will need to understand 

induction in more detail. 

11-2. THE PRINCIPLE OF WEAK INDUCTION 

Let's look at a more specific example. You may have wondered how many 
lines there are in a truth table with n atomic sentence letters. The answer 
is 2", But how do we prove that this answer is correct, that for all n, an 
n-letter truth table has 2" lines? 

If n = 1, that is, if there is just one sentence letter in a truth table, then 

the number of lines is 2 = 2!. So the generalization holds for the first 

case. This is called the Basis Step of the induction. We then need to do 
what is called the Inductive Step. We assume that the generalization holds 
for n. This assumption is called the Inductive Hypothesis. Then, using the 
inductive hypothesis, we show that the generalization holds for n + 1. 

So let's assume (inductive hypothesis) that in an n-letter truth table 
there are 2" lines. How many lines are there in a truth table obtained by 
adding one more letter? Suppose our new letter is ‘A’. ‘A’ can be either 
true or false. The first two lines of the n + 1 letter truth table will be the 
first line of the n-letter table plus the specification that ‘A’ is true, followed 
by the first line of the n-letter table plus the specification that ‘A’ is false. 
The next two lines of the new table will be the second line of the old 
table, similarly extended with the two possible truth values of ‘A’. In gen- 
eral, each line of the old table will give rise to two lines of the new table. 
So the new table has twice the lines of the old table, or 2" x 2 = 2^*!, 
This is what we needed to show in the inductive step of the argument. 
We have shown that there are 2" lines of an n-letter truth table when 

n = | (basis step). We have shown that if an n-letter table has 2" lines, 

then an n + | letter table has 2^*! lines. Our generalization is true for 
n = l, and if it is true for any arbitrarily chosen n, then it is true for 
n + 1. The princple of mathematical induction then tells us we may con- 
clude that it is true for all n. 
We will express this principle generally with the idea of an Inductive 

Property. An inductive property is, strictly speaking, a property of inte- 
gers. In an inductive argument we show that the integer 1 has the induc- 
tive property, and that for each integer n, if n has the inductive property, 
then the integer n + 1 has the inductive property. Induction then licenses 
us to conclude that all integers, n, have the inductive property. In the last 
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example, All n letter truth tables have exactly 2" lines, a proposition about 
the integer n, was our inductive property. To speak generally, I will use 
*P(ny to talk about whatever inductive property might be in question: 

Principle of Weak Induction 

a) Let P(n) be some property which can be claimed to hold for (is defined 
for) the integers, n = 1, 2, 3,. . . (the Inductive Property). 

b) Suppose we have proved P(1) (Basis Step). 

c) Suppose we have proved, for any n, that if P(n), then P(n + 1) (Induc- 
tive Step, with the assumption of P(n), the Inductive Hypothesis). 

d) Then you may conclude that P(n) holds for all n from ! on. 
e) If in the basis step we have proved P(i), we may conclude that P(n) 

holds for n =i,i + l,i + 2,... 

(e) simply says that our induction can really start from any integer, as long 

as the inductive property is defined from that integer onward. Often it is 
convenient to start from 0 instead of from 1, showing that P(n) holds for 
n=0,1,2,.... 

Most of the inductions we will do involve facts about sentences. To get 
you started, here is a simple example. The conclusion is so obvious that, 
ordinarily, we would not stop explicitly to prove it. But it provides a nice 
illustration and, incidentally, illustrates the fact that many of the general- 
izations which seem obvious to us really depend on mathematical induc- 
tion. 

Let’s prove that if the only kind of connective which occurs in a sen- 
tence logic sentence is ‘~’, then there is a truth value assignment under 
which the sentence is true and another in which it is false. (For short, we'll 

say that the sentence “can be either true or false.”) Our inductive prop- 
erty will be: All sentences with n occurrences of ‘~’ and no other connectives can 

be either true or false. A standard way of expressing an important element 
here is to say that we will be dotng the induction on the number of connectives, 
a strategy for which you will have frequent use. 
We restrict attention to sentences, X, in which no connectives other 

than ‘~’ occur. Suppose (basis case, with n = 0) that X has no occurrences 

of ‘~’. Then X is an atomic sentence letter which can be assigned either t 
or f. Suppose (inductive hypothesis for the inductive step) that all sen- 
tences with exactly n occurrences of ‘~’ can be either true or false. Let Y 
be an arbitrary sentences with n + 1 occurrences of ‘~’. Then Y has the 

form ~X, where X has exactly n occurrences of ‘~’. By the inductive 
hypothesis, X can be either true or false. In these two cases, ~X, that is, 

Y, is, respectively, false and true. Since Y can be any sentence with 

n + l occurrences of ‘~’, we have shown that the inductive property 

holds for n + 1, completing the inductive argument. 
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EXERCISES 

11—1. By a Restricted Conjunctive Sentence, I mean one which is either 
an atomic sentence or is a conjunction of an atomic sentence with 

another restricted conjunctive sentence. Thus the sentences 'A' 
and '[C&(A&B)]&D' are restricted conjunctive sentences. The 
sentence ‘A &[(C&D)&(H&G)] is not, because the component, 

'(C&D)&(H &G), fails to be a conjunction one of the components of 
which is an atomic sentence letter. 

Here is a rigorous definition of this kind of sentence: 

a) Any atomic sentence letter is a restricted conjunctive sentence. 
b) Any atomic sentence letter conjoined with another restricted con- 

junctive sentence is again a restricted conjunctive sentence. 

c) Only such sentences are restricted conjunctive sentences. 

Such a definition is called an Inductive Definition. 

Use weak induction to prove that a restricted conjunctive sentence is 
true iff all the atomic sentence letters appearing in it are true. 

11-2. Prove that the formula 

142+3+...+n=n(n + 1)/2 

is correct for all n. 

11-3. STRONG INDUCTION 

Let's drop the restriction in exercise 11-1 and try to use induction to 

show that any sentence in which '&' is the only connective is true iff all its 
atomic sentence letters are true. We restrict attention to any sentence logic 
sentence, X, in which '&' is the only connective, and we do an induction 
on the number, n, of occurrences of ‘&’. If n = 0, X is atomic, and is 

true iff all its atomic sentence letters (namely, itself) are true. Next, let's 

assume, as inductive hypothesis, that any sentence, X, in which there are 

exactly n occurrences of ‘&’ is true iff all its atomic sentence letters are 
true. You should try to use the inductive hypothesis to prove that the 
same is true of an arbitrary sentence, Y, with n + 1 occurrences of '&'. 

If you think you succeeded, you must have made a mistake! There is a 
problem here. Consider, for example, the sentence '(A&B)&(C&D). It has 
three occurrences of '&'. We would like to prove that it has the inductive 
property, relying on the inductive hypothesis that all sentences with two 
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occurrences of '&' have the inductive property. But we can't do that by 
appealing to the fact that the components, ‘(A&B)’ and ‘(C&D)’, have the 

inductive property. The inductive hypothesis allows us to appeal only to 
components which have two occurrences of '&' in them, but the compo- 
nents ‘(A&B)’ and ‘(C&D)’ have only one occurrence of ‘&’ in them. 

The problem is frustrating, because in doing an induction, by the time 
we get to case n, we have proved that the inductive property also holds 
for all previous cases. So we should be able to appeal to the fact that the 

inductive property holds, not just for n, but for all previous cases as well. 
In fact, with a little cleverness one can apply weak induction to get around 
this problem. But, more simply, we can appeal to another formulation of 
mathematical induction: 

Weak Induction, Strong Formulation: Exactly like weak induction, except in 
the inductive step assume as inductive hypothesis that P(i) holds for all 
i = n, and prove that P(n + 1). 

EXERCISE 

11-3. Using the strong formulation of weak induction, prove that 
any sentence logic sentence in which '&' is the only connective is true 
iff all its atomic sentence letters are true. 

You could have done the last problem with yet another form of induc- 
tion: 

Strong Induction: Suppose that an inductive property, P(n), is defined for 
n = ], 2, 3,.. .. Suppose that for arbitrary n we use, as our inductive 
hypothesis, that P(n) holds for all i < n; and from that hypothesis we prove 
that P(n). Then we may conclude that P(n) holds for all n from n = 1 on. 

If P(n) is defined from n = 0 on, or if we start from some other value of 

n, the conclusion holds for that value of n onward. 

Strong induction looks like the strong formulation of weak induction, 
except that we do the inductive step for all i < n instead of all i = n. You 
are probably surprised to see no explicit statement of a basis step in the 
statement of strong induction. This is because the basis step is actually 
covered by the inductive step. If we are doing the induction from n = 1 
onward, how do we establish P(i) for all i < 1? There aren't any cases of 

i< 1! When n = 1, the inductive hypothesis holds vacuously. In other 
words, when n - 1, the inductive hypothesis gives us no facts to which to 
appeal. So the only way in which to establish the inductive step when 
n = lis just to prove that P(1). Consequently, the inductive step really 
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covers the case of the basis step. Similar comments apply if we do the 
induction from n = 0 onward, or if we start from some other integer. 

You may be wondering about the connections among the three forms 
of induction. Weak induction and weak induction in its strong formula- 
tion are equivalent. The latter is simply much easier to use in problems 
such as the last one. Many textbooks use the name 'strong induction' for 
what I have called ‘weak induction, strong formulation’. This is a mistake. 
Strong induction is the principle I have called by that name. It is truly a 
stronger principle than weak induction, though we will not use its greater 
strength in any of our work. As long as we restrict attention to induction 
on the finite integers, strong and weak induction are equivalent. Strong 
induction shows its greater strength only in applications to something 
called "transfinite set theory," which studies the properties of mathemati- 
cal objects which are (in some sense) greater than all the finite integers. 

Since, for our work, all three principles are equivalent, the only differ- 

ence comes in ease of use. For most applications, the second or third 
formulation will apply most easily, with no real difference between them. 
So I will refer to both of them, loosely, as "strong induction." You simply 
need to specify, when doing the inductive step, whether your inductive 
hypothesis assumes P(i) for all i < n, on the basis of which you prove 
P(n), or whether you assume P(i) for all i = n, on the basis of which you 

prove P(n + 1). In either case, you will, in practice, have to give a sepa- 
rate proof for the basis step. 

I should mention one more pattern of argument, one that is equivalent 
to strong induction: 

Least Number Principle: To prove that P(n), for all integers n, assume that 

there is some least value of n, say m, for which P(m) fails and derive a 
contradiction. 

The least number principle applies the reductio argument strategy. We 
want to show that, for all n, P(n). Suppose that this is not so. Then there 

is some collection of values of n for which P(n) fails. Let m be the least 
such value. Then we know that for all i « m, P(i) holds. We then proceed 

to use this fact to show that, after all, P(m) must hold, providing the con- 
tradiction. You can see that this form of argument really does the same 
work as strong induction: We produce a general argument, which works 

for any value of m, which shows that if for all i < m P(i) holds, then P(m) 

must hold also. 
You will notice in exercises 11—7 to 11-9 that you are proving things 

which in the beginning of Volume I we simply took for granted. Again, 
this illustrates how some things we take for granted really turn on math- 
ematical induction. 
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EXERCISES 

11-4. Prove that any sentence logic sentence in which ‘v’ is the only 
connective is true iff at least one of its atomic sentence letters is true. 

11—5. Consider any sentence logic sentence, X, in which '&' and 'v 
are the only connectives. Prove that for any such sentence, there is 
an interpretation which makes it true and an interpretation which 
makes it false. Explain how this shows that '&' and ‘v’, singly and 
together, are not expressively complete for truth functions, as this 
idea is explained in section 3—4, (volume I). 

11—6. Consider any sentence logic sentence, X, in which ‘~’ does not 
appear (so that '&', 'V', ‘D’, and ‘=’ are the only connectives). Prove 
that for any such sentence there is an interpretation which makes X 
true, Explain how this shows that '&, ‘v’, ‘D’, and ‘=’ are, singly and 
together, not expressively complete for truth functions. 

11-7. Prove for all sentence logic sentences, X, and all interpreta- 

tions, I, that either I makes X true or I makes X false, but not both. 

11-8. Prove for all sentence logic sentences, X, that if two truth 
value assignments, I and I', agree on all the atomic sentence letters 
in X, then I and I’ assign X the same truth value. 

11-9. Prove the law of substitution of logical equivalents for sen- 
tence logic. 
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CHAPTER CONCEPTS 

In reviewing this chapter, be sure you understand clearly the follow- 
ing ideas: 

a) Weak Induction 

b) Inductive Property 

c) Basis Step 
d) Inductive Hypothesis 

e) Inductive Step 

f) Induction on the Number of Connectives 

g) Strong Formulation of Weak Induction 

h) Strong Induction 

i) Least Number Principle 
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Completeness for 
Sentence Logic Trees 

12-1. PRELIMINARIES 

This chapter will explain the soundness and completeness of sentence 
logic for the tree method. Section 12-2 gives an informal statement which 
you will be able to follow without having studied more than the first short 
section of chapter 11, on mathematical induction. Section 12-3 gives full 
details. 

Before getting started, I want to make a general point which will be 
useful in discussing both trees and derivations. I am going to make a 
statement which uses a new bit of notation. 'U' indicates set union. That 
is, ZUW is the set consisting of all the members of the set Z together with 
the members of the set W. Also, if X is a sentence, {X} is the set which has 

X as its only member. Now, to say that the Z\X is valid, that is, that ZFX, 
is to say that every interpretation which makes all the sentences in Z 
true also makes X true. Keep in mind that X is true in an interpretation 
iff ~X is false in that interpretation. Consequently 

Ll: ZFX iff ZU{~X} is inconsistent. 

(The ‘L’ in ‘LI’ stands for ‘lemma’. A lemma is a statement which may not 
be of great interest in itself but which we prove because it will be useful 
in proving our main results.) 

L1 shows that validity of an argument comes to the same thing as the 
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inconsistency of a certain set of sentences, namely, the premises and ne- 
gation of the conclusion of the argument. You will soon see that Ll's 
equivalent formulation of validity provides a particularly convenient way 
to study soundness and completeness. 

EXERCISE 

12-1. Prove L1. 

12-2. SOUNDNESS AND COMPLETENESS OF THE TREE 

METHOD: INFORMAL STATEMENT 

Soundness and completeness tell us that there is an exact correspondence 
between a semantic concept—validity—and a corresponding syntactic con- 

cept—proofs. Let's be explicit about what counts as a proof in the tree 
method: Given some premises and a conclusion, a tree method proof is a 
closed tree (a tree with all its branches closed) which has the premises and 

negation of the conclusion as its initial sentences. Closed trees are the 
syntactic objects which need to correspond to the semantic concept of va- 
lidity. So proving soundness and completeness for the tree method means 
proving that we have the right sort of correspondence between validity 
and closed trees. 
To become clear on what correspondence we need, let's go back to the 

way I introduced the tree method. I said that, given an argument, Z\X, 
the argument is valid just in case it has no counterexamples, that is, no 

interpretations in which the premises, Z, are all true and the conclusion, 

X, is false. I then went on to develop truth trees as a method of looking 
for counterexamples, a way which is guaranteed to find a counterexample 
if there is one. If the whole tree closes, there are no counterexamples, 

and we know the argument is valid. But a closed tree is what counts as a 
proof. So if there is a proof, the argument is valid. If you look back at 
definition D3 in chapter 10, you will see that this is what we call sound- 

ness. 
On the other hand, if there is an open branch (and so no proof), there 

is a counterexample, and thus the argument is invalid. A little thinking 
indicates that the last statement is just completeness: "If no proof, then 
invalid" comes to the same as "If valid, then there is a proof," which is 
completeness, as defined by D4 in chapter 10. I have used the law of 
contraposition: XDY is logically equivalent to ~YD~X. 

The first time through, this argument is bound to seem very slick. It is 
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also incomplete: I have yet to prove that the truth tree method is guar- 
anteed to find a counterexample if there is one. 
To sort all of this out more carefully, we need to examine the connec- 

tion between a counterexample and lemma L1. A counterexample to the 
argument Z\X is just an interpretation which shows the set of sentences, 
ZU{~X} to be consistent. (Remember that such an interpretation is called 

a model of the set of sentences.) Now, look at lemma LI, and you will 

start to see that all this talk about counterexamples is just another way of 
saying what lemma LI says. 

EXERCISE 

12-2. Show that lemma Ll is equivalent to the statement that an 
argument is valid iff it has no counterexamples. 

Lemma L| tells us that we can forget about validity and talk about con- 
sistency and inconsistency instead. Indeed, conceptually, the tree method 
is really a method for determining whether the initial sentences on a tree 
form a consistent set. It is a method which is guaranteed to find a model 
for a tree's initial sentences if there is one, thereby showing the set of 
sentences to be consistent. Conversely, if a set is inconsistent, it has no 

model, and a tree starting with the sentences in the set is bound to close. 
The real work we have to do is to show that the tree method is guar- 

anteed to find a model for a set of sentences if the set has a model. We'll 
worry later about connecting this up with validity—lemma L1 assures us 

that we will be able to do so. For now, we will connect the semantic con- 

cept of a model with the syntactic concept of an open branch. Remember 
that an open branch always represents an interpretation in which all sen- 
tences on the branch are true. Hence, if there is an open branch, there is 
an interpretation in which all the sentences on the branch, including the 
tree's initial sentences, are true. 

Here is how we proceed: We will show that a finite set of sentences 
is consistent if and only if we always get an open branch on a finished 
tree which starts from the sentences in the set. Equivalently, a set is incon- 
sistent if and only if we always get a closed tree if we start from the 
sentences in the set. This gives us the connection between a syntactic 
concept—open and closed trees—and a semantic concept—consistency 
and inconsistency. Lemma LI tells us we will be able to connect the latter 
with validity and invalidity. 

To keep track of how we will carry out this program, let's talk about it 
in terms of an example, say, the tree which results from using as initial 
sentences the sentences in the set (—(DvB), (A&B)v(COD)): 
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/1 ~(DvB) S 
J2 (A&B)v(COD) S 
3 ~D 1,~v 
4 ~B 1,~v 

/5. A&B COD 2,v 
6 A 5, & 
7 B 5, & 

x 
8 ~C D 52 

x 

We must first show that tree method is what I will call Downwardly Ade- 
quate. This means that the tree method applied to a consistent set of sen- 
tences always results in at least one open branch. Why is the tree method 
downwardly adequate? Remember that the rules are written so that when 
a rule is applied to a sentence, the rule instructs you to write, on separate 
branches, all the minimally sufficient ways of making the original sentence 
true. In effect, this means that, for any assignment of truth values to 

sentence letters which makes the original sentence true, all the sentences 
of at least one of the resulting stacks of sentences will be true also for the 
same assignment of truth values. 

This fact is easiest to grasp by example. In applying the rule v to line 
2, we produce two branches, on line 5. Suppose that we have an assign- 
ment that makes line 2 true. This can only be because it makes at least 
one of the two disjuncts true. But then, on this assignment, at least one 

of the sentences on the two branches of line 5 will be true for the same 
assignment. 

Or consider application of the rule ~v to line 1, and suppose that we 
have a truth value assignment which makes line | true. A negated dis- 
junction can be true only if both disjuncts are false. Consequently, an 
assignment which makes line 1 true will make lines 3 and 4 true. 

As I introduced the rules, I made sure that they are all, as in these two 
examples, what I will call Downwardly Correct. In outline, the downward 

correctness of the rules works to show that the tree method is downwardly 
adequate as follows: Suppose that the initial sentences on a tree are con- 
sistent, so that there is an interpretation, I, which assigns truth values to 
sentence letters making all the initial sentences true. Now apply a rule to 
one of the sentences. The downward correctness of the rules means that 
applying the rule will result in at least one branch on which all the new 
sentences are true in I. Of course, all the former sentences along this 
branch were true in I. So at this stage we have at least one branch along 
which all sentences are true in L Now we just do the same thing over 
again: Apply one of the rules to a sentence on this branch. We get at least 
one extension of the branch on which all sentences are true in I. 
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This process will eventually come to an end because each application of 
a rule produces shorter sentences. At the end we have at least one branch 
on which all the sentences are true in I. But this branch must be open. 
Since all the sentences along the branch are true in I, no sentence and its 
negation can both appear on the branch! In sum, if the original sentences 
are consistent, there will be an open branch. 

We are half done. We must still show that the tree method is Upwardly 
Adequate, that is, that if there is an open branch, then the set of initial 
sentences is consistent. So now let us suppose that we have a tree with an 

open branch. Since an open branch never has both a sentence and its 
negation, I can consistently assign the truth value t to all atomic sentences 
on the branch and the truth value f to all those atomic sentences whose 
negations occur on the branch. Call this assignment I. I will also make the 
longer sentences on the branch true. 

Look, for instance, at the open branch in the last example. Reading up 

from the bottom, this branch specifies the assignment ‘C’, ‘B’, and 'D' all 

false. Call this assignment I. If 'C' is false, that is, if ‘~C’ is true in I, then 
‘CDD’ is true in I. In turn, ‘CDD’ being true in I will make line 2, 

“A&B)v(CDD)’ true in I. Likewise, lines 3 and 4, ‘~D’ and ‘~B’, true in I 
will make line 1, ‘~(DvB)’, true in I. 

All the rules have the property just used, called Upward Correctness: If I 
makes true the sentence or sentences which a rule produced from a pre- 
vious sentence, I makes that previous sentence true also. Upward cor- 
rectness will apply to any open branch in any tree just as it did in the 
example. Choose an interpretation, I, as the one which makes all the 

atomic sentences on the open branch true and all the negated atomic sen- 
tences false. Apply upward correctness again and again. You can see that, 
finally, all the sentences along the open branch are true in I. So the open 
branch provides an interpretation, I, which makes all the sentences along 

the branch true, including the initial sentences. So if there is an open 

branch there is a model for the initial sentences, which is to say that the 

initial sentences form a consistent set, which is just what we mean by up- 
ward adequacy. 

Let's pull the threads together. The tree method is downwardly ade- 
quate. That is, if the initial sentences are consistent, then there is an open 

branch. By contraposition, if there is no open branch, that is, if there is a 
proof, then the initial sentences form an inconsistent set. Lemma 1 tells 

us that then the corresponding argument is valid. This is soundness. 
The tree method is also upwardly adequate. If there is an open branch, 

and so no proof, then the initial set of sentences is consistent. By contra- 
position, if the set of initial set of sentences is inconsistent, then there is a 

proof. Lemma 1 then connects the inconsistency with validity: If the cor- 
responding argument is valid, there is a proof. This is completeness. 
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If you are starting to see how soundness and completeness work for 
trees, this section is doing its job. Doing the job fully requires further 
precision and details, presented in the next section. If in the next section 

you start to feel lost in a forest of definitions (as I often do) reread this 
section, which contains all the concepts. Reviewing the intuitively pre- 
sented concepts will help you to see how the following formal details fit 
together. 

12-3. SOUNDNESS AND COMPLETENESS FOR SENTENCE 

LOGIC TREES: FORMAL DETAILS 

In this section 1 am going to make a very natural simplifying assumption: 
I will restrict discussion to finite sets of sentences Z. This restriction is 
natural because intuitively we think of arguments as only having finitely 
many premises anyway. Generalization to the case of infinite sets of sen- 
tences involves a complication which would only distract us from the main 
line of argument. Chapter 14 will take care of the generalization. 

For precision and efficiency of statement, we need the following defi- 
nitions: 

D8: A Minimal Sentence is a sentence which is either atomic or the negation 
of an atomic sentence. 

D9: A truth tree is Finished iff each branch is either closed or has all appli- 
cable rules applied to all nonminimal sentences. 

D10: ‘Tr’, ‘Op’, and ‘CF are predicates of the metalanguage (abbreviations 
in English) which are defined as 

a) Tr(T,Z) iff T is a finished tree with all the sentences in Z its initial 
sentences. 

b) Op(T) iff the tree T is open, that is, if T has an open branch. 

c) CKT) iff ~Op(T), that is, if T is closed, that is, if all of T's branches 
are closed. 

A proof of Z\X is just a closed tree which starts with sentences in Z and 
the sentence —X. Expressed with our abbreviations, this is 

D11: A tree, T, is a proof of X from Z iff Tr(T,ZU(—X]) and CI(T). 

Next, recall that ZFX just means that there exists a proof of X using 
premises in Z, where here a proof just means a tree as described in D11. 
So applying D11 to the definition of F, we have 

L2: For finite sets, Z, ZEX iff (AT)[Tr(T,ZU{~X}) & CI(T)]. 
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Of course, throughout this section ‘F means H, that is, derivability accord- 

ing to the tree method. 

EXERCISE 

12-3. In chapter 10 I specified that ZFX means that there is a proof 

of X using any number of sentences in Z, but not necessarily all of 
them. (I did this to accommodate the eventual generalization to in- 
finite sets.) But D11 defines T as being a proof of X from Z in terms 
of Tr(T,ZU{~X}), which specifies a tree, T, which has all the sen- 

tences of ZU(— X) as its initial sentences. 

Prove L2, taking care to deal with this apparent difficulty. Use the 
fact that L2 is stated with the existential quantifier, ‘(AT)’. 

Now remember how we used L1 to show that we could exchange the 
study of validity and invalidity for the study of the consistency and incon- 
sistency of a certain set of sentences, namely, the premises together with 
negation of the conclusion. Our next step is to connect the consistency of 
this set with the syntactic notion of an open branch. We do this with the 
idea of upward and downward adequacy of the tree method. Downward 
adequacy says that if the set Z is consistent, that is, if there is a model for 
Z, then the tree starting from Z has an open branch. Using definitions 
D5 and D6, this becomes 

D12: The tree method is Downwardly Adequate iff for all finite, nonempty 
sets of sentences Z, if (I)Mod(LZ), then (VT)[Tr(T,Z) D Op(T)]. 

Upward adequacy is the converse: If there is an open branch, the initial 
set is consistent: 

D13: The tree method is Upwardly Adequate iff for all finite, nonempty sets 
of sentences Z, if (VT)[Tr(T,Z) D Op(T)], then (AI)Mod(I,Z)]. 

A detail in D12 and D13 requires comment. If we start a tree with the 
sentences in Z, we can come up with more than one tree because we can 

apply the rules in different orders. So when I give a formal definition of 
upward and downward adequacy, I must make a choice whether to define 
these in terms of all open trees starting from Z or some open tree starting 
from Z. 

In terms of the proof of upward and downward adequacy, I could do 
either because, in essence, the proof will show that, for a given set of 

initial sentences, one tree is open iff all are. I choose to define upward 
and downward adequacy in terms of all open trees for the following rea- 
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son: When we connect adequacy with soundness and completeness, I will 

be taking a converse. This will introduce a negation sign, and when the 
negation sign gets pushed through the quantifier, ‘all’ turns into ‘some’. 
At that point I will be talking about “some closed tree”. That is just what 
we will need to get a smooth fit with derivability, which is defined in terms 
of “there is some proof”, where a proof is just a closed tree. If I had 

defined upward and downward adequacy in terms of some instead of all 
open trees, it would be a mess to make the connection with soundness 
and completeness. 

EXERCISE 

12-4. Assume (as we will prove shortly) that if a tree has at least one 
open branch, then the initial sentences of the tree form a consistent 
set. Also assume downward adequacy. Prove that for all the finished 
trees starting from the same set of initial sentences, one is open iff 
all are. 

The next step is to show that upward adequacy is equivalent to sound- 
ness and downward adequacy is equivalent to completeness. The connec- 
tion will not sink in unless you do the work! But I will break the job down 
into several steps. 

First we define a version of soundness and completeness for the tree 
method: 

D3’: The tree method is Sound iff for all finite, nonempty sets of sentences 
Z, if (AT)(Tr(T,Z) & CK(T), then (VI)~Mod(I,Z). 

D4’: The tree method is Complete iff for all finite, nonempty sets of sentences 
Z, if (VI)~Mod(I,Z), then (4T)[Tr(T,Z) & CK(T)]. 

Now it is not hard to prove that downward adequacy is soundness and 
upward adequacy is completeness in the form of four new lemmas: 

L3: The tree method is sound according to D3 iff it is sound according to 
D3'. 

L4: The tree method is complete according to D4 iff it is complete according 
to D4’. 

L5: The tree method is sound according to D3' iff it is downwardly ade- 
quate. 

L6: The tree method is complete according to D4’ iff it is upwardly ade- 
quate. 
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EXERCISES 

12-5. Prove lemmas L3 and L4. You will need to use lemmas L1 

and L2. 

12—6. Prove lemmas L5 and L6. You will need to use contraposition 
and the laws of logical equivalence for negated quantifiers as laws 
applied to statements in the metalanguage. 

We have reduced the problem of proving soundness and completeness 
to that of proving that the tree method is downwardly and upwardly ad- 
equate, which the last section indicated we would do by appealing to the 
downward and upward correctness of the rules. Some further terminol- 
ogy will enable us to state rule correctness more clearly. 
When we apply a truth tree rule to a sentence, the rule instructs us to 

write one or two branches and on each branch one or two new sentences. 
For example, the = rule is 

X ~X 
Y ~Y 

We will call the sentence to which the rule is applied, X=Y in the exam- 
ple, the Input Sentence. The rule instructs you to write one or two lists of 
sentences (each “list” containing one or two sentences). We will call each 

such list an Output List. In the example, X,Y is one output list and ~X, ~Y 

is the second output list. The rule 

X&Y 

X 
Y 

has only one output list, namely, X, Y. In summary 

D14: The sentence to which a tree method rule is applied is called the Input 
Sentence. The sentence or (sentences) along one branch which the rule di- 
rects you to write is (are) called an Output List of Sentences. 

Here is what we must require of a correct truth tree rule. Suppose that 
I give you an interpretation (an assignment of truth values to sentence 
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letters) which makes true the input sentence of a rule. Then that same 
interpretation must make true all the sentences on at least one (but per- 
haps not all) output lists. This is downward correctness. And suppose 1 
give you an interpretation which makes all the sentences on one output 
list true. Then that same interpretation must make the input sentence 
true. This is upward correctness. 

D15: A tree method rule is Downwardly Correct iff any interpretation which 
makes the input sentence true also makes true all the sentences of at least 
one output list. 

D16: A tree method rule is Upwardly Correct iff any interpretation which 
makes al] the sentences of one output list true also makes the input sentence 
true. 

EXERCISES 

12—7. Show that all of the truth tree rules for sentence logic are 
downwardly and upwardly correct. 

12-8. Consider the following two proposed truth tree rules: 

XOY X&Y 

x x 
Y 

Determine which of these is downwardly correct and which is up- 
wardly correct. In each case show correctness or failure of correct- 

ness. 

We are now ready to prove 

T1: The truth tree method for sentence logic is downwardly adequate. 

(The ‘T’ stands for ‘theorem’.) Suppose we are given a finite nonempty 
set of sentences, Z, and a tree, T, which has the sentences of Z as its initial 

sentences. Now suppose that there is a model, I, of the sentences in Z. 
What we will do is to look at successively larger initial segments of one 
branch of T and show that all these initial segments of the branch are 

open. 
Start with just the sentences in Z, that is, the initial sentences of T. This 

initial segment of a branch must so far be open. Why? Well, a branch 
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closes only if it contains both a sentence and the negation of that same 
sentence. But Z can't contain a sentence and its negation. This is because 

there is a model, I, of all the sentences in Z. That is, I makes all the 
sentences in Z true. But no sentence and its negation can both be true in 

the same interpretation! If I makes one sentence true, it makes its nega- 
tion false. So far we have an initial segment—let's call it the first seg- 
ment—of a branch, all the sentences of which are true in I, and which 
consequently is (so far) open. 

Next, in constructing the tree T, we apply a rule to one of the sentences 
in this first initial segment of our so far open branch. The input sentence 
for this rule is true in L By the downward correctness of the rules, there 

will be at least one output list all the sentences of which are true in I. Pick 
one such output list (say, the left one if there are more than one). Look 
at the extension of the first segment of our branch extended by this out- 
put list. Call this extension the second initial segment. This second seg- 
ment now has all its sentences true in I. 

You can see the handwriting on the wall. We just do the same thing 
over and over again. At the nth stage we start with a branch all the sen- 
tences of which are true in I. The tree grows by application of some rule 
to some sentence on the nth initial segment. Downward correctness guar- 
antees that at least one output list will have all its sentences true in I also. 
We pick the leftmost such output list as the extension of the nth initial 
segment to the n + Ist initial segment. Then the n + Ist initial segment 
has all its sentences true in I, and we can start all over again. 

In a sentence logic tree, the sentences get shorter with each application 
of a rule, so this process must eventually end. When it does, we have a 
branch all the sentences of which are true in I. For exactly the same rea- 
son that the first initial segment must be open, this final branch must be 
open also: All its sentences are true in I, and no sentences and its nega- 
tion can both be true in the same interpretation. 

EXERCISE 

12-9. Formulate the foregoing argument sketch into an explicit use 
of mathematical induction to prove Tl. There are many correct 
ways to apply induction. For example, begin by supposing that you 
are given a finite, nonempty set of sentences, Z, a model I of Z, and 

a finished tree, T, with initial sentences Z. Break the tree up into 
stages: The nth stage of the tree includes all lines written down in 
the first through nth application of a rule. Your inductive property 
will be: There is a branch through the nth stage of the tree all the 
sentences of which are true in I. Or you can similarly organize the 
inductive property around the number of lines to be checked: The 



12-3. Soundness and Completeness for Sentence Logic Trees: Formal Details 187 

first line to be checked, the first and second lines to be checked, and 

so on. Be sure to show explicitly how the results from the induction 
establish downward adequacy. x 

I have suggested a formulation for this proof which I hope you 
will find to be relatively intuitive, but the logical form of the sug- 
gested proof is actually a bit convoluted. In this formulation you use 
both universal introduction and induction. That is, for an arbitrary, 

finite, nonempty set Z, model I of Z, and tree T with initial sentences 
in Z, you show how induction gives the desired result in that case. 
Then, since you have assumed nothing else about the Z, I, and T, 
what you have shown is true for all such Z, I, and T. In addition, 

the induction is a finite induction. In a specific case it runs only from 
the first through the number of stages in the tree in question. 

Logicians prefer a more abstract but "pure" way of doing this kind 
of problem. In the inductive step you assume that in any tree with n 
stages (or n checked sentences) and interpretation I which makes all 
initial sentences true, there is a path all the sentences of which are 
true in I. You then use downward rule correctness to show that the 
same is true in any n + l-stage tree. To do this you consider an 
arbitrary n + l-stage tree and the n-stage tree (or trees) which result 
by deleting the first sentence to which a rule was applied in the orig- 
inal n + 1-stage tree. The downward rule correctness of the applied 
rule shows that if the inductive hypothesis holds of the subtree, it 
holds of the full n + 1-stage tree. 

But I will leave the details to you and your instructor! 

Let's turn to 

T2: The truth tree method for sentence logic is upwardly adequate. 

The proof works similarly to that for downwardly adequate, differing 

in that we use upward correctness of the rules and we look at successively 
longer and longer sentences on a branch instead of successively longer 
and longer initial segments of a branch. 

Suppose we are given a tree with an open branch. Take one open 
branch (say, the leftmost). Because this branch is open, and so has no 
sentence and its negation, we can consistently assign the truth value t to 
all the atomic sentence letters which appear on the branch and the truth 
value f to all atomic sentence letters the negation of which appear on the 
branch. This constitutes an interpretation I—an assignment of truth val- 
ues to sentence letters. We are going to show that all the sentences along 
this branch are true in I. 

By the Length of a sentence let us understand the total number of con- 
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nectives and sentence letters that appear in the sentence. So far, all mini- 
mal sentences along the branch are true in I—that is, all sentences of 
length 1 or 2. Now, consider any sentence along the branch (if there are 
any) of length 3. When a rule was applied to such a sentence, the rule 
produced an output list the sentences of which are each shorter than the 
input sentence; that is, each has fewer total connectives plus sentence let- 
ters. (You should check this.) But all such shorter sentences of the branch, 

that is, sentences of length 1 or 2, are already known to be true in I. 
Upward rule correctness then tells us that the sentence of length 3 is true 
in I. The same goes for any length 3 sentence on the branch. So now we 
know that all sentences of length 1, 2, and 3 on the branch are true in I. 

Again, you can see how this will go: We do the same thing over and 
over again. At stage n we know that all sentences of the branch of length 
n or less are true in I. Consider any sentence of length n + 1. The rule 
applied to it produced shorter sentences, already known to be true in I. 
By upward correctness of the applied rule, the sentence of length n 1 
is then also true in I. The same goes for any sentence of length n 1 on 
the branch, so that we now have shown that all of the branch's sentences 

of length n + 1 are true in I. Ultimately, the process shows that all the 
sentences in the branch are true in I. This includes the initial sentences, 
which are the initial sentences of the tree. 

EXERCISE 

12—10. Formulate the foregoing argument sketch into an explicit in- 
ductive argument. That is, given a tree and an open branch on the 
tree, show that there is an interpretation which can be shown by 
induction to make all sentences (and hence the initial sentences) 
along the branch true. 

Comments exactly parallel to those on your proof of T'1, about 
the logical “purity” of the proof, also apply here. Just as for T1, one 
can also do the induction on the "size" of the tree. In the inductive 
step, you assume that all open trees with no more than n checked 
sentences have the desired characteristic—that open paths represent 
interpretations which make all the sentences on the path true—and 
you then use upward rule correctness to show that all trees with 
n + l checked sentences also have this characteristic. In outline, the 

idea is that any tree with n + 1 checked sentences has one or more 
subtrees with no more than n checked sentences—namely, the tree 

or trees obtained by deleting the first checked sentence in the origi- 
nal tree. You then apply the inductive hypothesis assumed to hold 
for the shorter trees. 



12—3. Soundness and Completeness for Sentence Logic Trees: Formal Details 189 

We have shown that, given some tree with an open branch, there is an 
interpretation, I, in which all of the tree's initial sentences are true. How 

does this show upward adequacy? Suppose we are given a finite, non- 
empty set of sentences, Z. Assume the antecedent in the statement of up- 
ward adequacy. That is, assume that any tree starting from Z is open. 
There is always at least one tree, T, starting from Z. Since all such trees 
are being assumed to be open, T is open, that is, T has an open branch. 
But in the previous paragraphs we have shown that this open branch 
provides an interpretation in which all initial sentences of T, that is, all 
the sentences in Z, are true. 

We have now completed the proof of T2. 
T1 and T2, with the help of lemmas L3, L4, L5, and L6, complete our 

proof of soundness and completeness for the tree method. As you can 
check in a moment, T1, L3, and L5 immediately give 

T3: The tree method for sentence logic is sound. 

T2, L4, and L6 immediately give 

T4: The tree method for sentence logic is complete. 

EXERCISES 

12-11. This exercise makes precise the work you did informally in 
exercises 10—14 and 10—15. Recall that when I refer to consistency 
and inconsistency without qualification, I always mean semantic con- 
sistency and inconsistency. We want a notion of Syntactic Consistency 

and Inconsistency, that is, a syntactic notion which will work as a test 
for semantic consistency and inconsistency. These are 

D17: Z is Syntactically Consistent iff (WT)[Tr(T,Z) > Op(T)]. 

D18: Z is Syntactically Inconsistent iff (3T)|Tr(T,Z) &CK(T)]. 

(Throughout this problem, be sure to assume that Z is finite and 
nonempty.) 

a) Show that a set of sentences is syntactically consistent according to 
D17 iff it is not syntactically inconsistent according to D18. 

b) Show that Z is syntactically consistent iff ZFA&~A. 
€) Show that Z is syntactically inconsistent iff ZFA&—A. 

d) Show that Z is syntactically inconsistent iff for any X, Z-X. 

e) Reexpress lemma L2 and definitions D12, D13, D3’, and D4' in 
terms of semantic and syntactic consistency. 
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CHAPTER CONCEPTS 

To check your understanding of this chapter, make sure that you 
understand all of the following: 

a) Input Sentence of a Rule 

b) Output Sentence of a Rule 

c) Downward Rule Correctness 

d) Upward Rule Correctness 
e) Downward Adequacy 

f) Upward Adequacy 

g) Minimal Sentence 

h) Finished Tree 

i) Tr(T,Z) 
j Op(T) 
k) CIT) 
1) Tree T is a proof of X from Z 

m) Syntactic Consistency 

n) Semantic Consistency 







Soundness 13 
and Completeness 
for Sentence 
Logic Derivations 

13-1. SOUNDNESS FOR DERIVATIONS: INFORMAL 

INTRODUCTION 

Let's review what soundness comes to. Suppose I hand you a correct der- 
ivation. You want to be assured that the corresponding argument is valid. 
In other words, you want to be sure that an interpretation which makes 

all the premises true also makes the final conclusion true. Soundness 
guarantees that this will always be so. With symbols, what we want to 
prove is 

T5 (Soundness for sentence logic derivations): For any set of sentences, Z, 
and any sentence, X, if ZFX, then ZFX. 

with ‘F meaning derivability in the system of sentence logic derivations. 
The recipe is simple, and you have already mastered the ingredients: 

We take the fact that the rules for derivations are truth preserving. That 
is, if a rule is applied to a sentence or sentences (input sentences) which 
are true in I, then the sentence or sentences which the rule licenses you 
to draw (output sentences) are likewise true in I. We can get soundness 
for derivations by applying mathematical induction to this truth preserv- 
ing character of the rules. 

Consider an arbitrary derivation and any interpretation, I, which makes 

all of the derivation's premises true. We get the derivation's first conclu- 
sion by applying a truth preserving rule to premises true in I. So this first 
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conclusion will be true in I. Now we have all the premises and the first 
conclusion true in I. Next we apply a truth preserving rule to sentences 
taken from the premises and/or this first conclusion, all true in I. So the 
second conclusion will also be true in I. This continues, showing each 

conclusion down the derivation to be true in I, including the last. 
Mathematical induction makes this pattern of argument precise, telling 

us that if all the initial premises are true in I (as we assume because we 
are interested only in such I), then all the conclusions of the derivation 

will likewise be true in I. 
This sketch correctly gives you the idea of the soundness proof, but it 

does not yet deal with the complication arising from rules which appeal 
to subderivations. Let's call a rule the inputs to which are all sentences a 
Sentence Rule and a rule the inputs to which include a subderivation a 
Subderivation Rule. My foregoing sketch would be almost all we need to 
say if all rules were sentence rules. However, we still need to consider 
how subderivation rules figure in the argument. 

What does it mean to say that the subderivation rule, DI, is truth pre- 
serving? Suppose we are working in the outermost derivation, and have, 

as part of this derivation, a subderivation which starts with assumption X 
and concludes with Y. To say that DI is truth preserving is to say that if 
all the premises of the outer derivation are true in I, then XDY is also 
true in I. Let's show that DI is truth preserving in this sense. 
We have two cases to consider. First, suppose that X is false in I. Then 

XDY is true in I simply because the antecedent of XY is false in I. 
Second, suppose that X is true in I. But now we can argue as we did 
generally for outer derivations. We have an interpretation I in which X is 
true. All prior conclusions of the outer derivation have already been 
shown to be true in I, so that any sentence reiterated into the subderiva- 
tion will also be true in I. So by repeatedly applying the truth preserving 
character of the rules, we see that Y, the final conclusion of the subderi- 

vation, must be true in I also. Altogether, we have shown that, in this case, 

Y as well as X are true in I. But then XOY is true in I, which is what we 
want to show. 

This is roughly the way things go, but I hope you haven't bought this 
little argument without some suspicion. It appeals to the truth preserving 
character of the rules as applied in the subderivation. But these rules 
include DI, the truth preserving character of which we were in the middle 
of proving! So isn't the argument circular? 

The problem is that the subderivation might have a sub-subderivation 
to which DI will be applied within the subderivation. We can't run this 
argument for the subderivation until we have run it for the sub-subder- 
ivation. This suggests how we might deal with our problem. We hope we 
can descend to the deepest level of subderivation, run the argument with- 

out appealing to DI, and then work our way back out. 
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Things are sufficiently entangled to make it hard to see for sure if this 
strategy is going to work. Here is where mathematical induction becomes 
indispensable. In chapter 11 all my applications of induction were trivial. 
You may have been wondering why we bother to raise induction to the 
status of a principle and make such a fuss about it. You will see in the 
next section that, applied with a little ingenuity, induction will work to 

straighten out this otherwise very obscure part of the soundness argu- 
ment. 

EXERCISES 

13-1. Using my discussion of the DI rule as a model, explain what 
is meant by the rule ~I being truth preserving and argue informally 
that ~I is truth preserving in the sense you explain. 

13-2. Explain why, in proving soundness, we only have to deal with 
the primitive rules. That is, show that if we have demonstrated that 
all derivations which use only primitive rules are sound, then any 
derivation which uses any derived rules will be sound also. 

13-2. SOUNDNESS FOR DERIVATIONS: FORMAL DETAILS 

The straightforward but messy procedure in our present case is to do a 
double induction. One defines the complexity of a derivation as the num- 
ber of levels of subderivations which occur. The inductive property is that 
all derivations of complexity n are sound. One then assumes the inductive 
hypothesis, that all derivations with complexity less than n are sound, and 
proves that all derivations of complexity n are sound. In this last step one 
does another induction on the number of lines of the derivation. This 
carries out the informal thinking developed in the last section. It works, 
but it's a mess. A different approach takes a little work to set up but then 
proceeds very easily. Moreover, this second approach is particularly easy 
to extend to predicate logic. 

'This approach turns on a somewhat different way of characterizing the 
truth preserving character of the rules, which I call Rule Soundness, and 
which I asked you to explore in exercises 10—4, 10-5, and 10—6. One 

might argue about the extent to which this characterization corresponds 
intuitively to the idea of the rules being truth preserving. I will discuss 
this a little, but ultimately it doesn't matter. It is easy to show that the 
rules are truth preserving in the sense in question. And using the truth 
preserving character thus expressed, proof of soundness is almost trivial. 
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Here is the relevant sense of rule soundness, illustrated for the case of 

&I. Suppose we are working within a derivation with premises Z. Suppose 
we have already derived X and Y. Then we have Z+X and ZHY. &I then 

licenses us to conclude X&Y. In other words, we can state the &I rule by 

saying 

&I Rule: If Z-X and ZHY, then Z-X&Y. 

There is a fine point here, about whether this really expresses the &I 
rule. The worry is that 'Z-X' means there exists a derivation from Z to 
X, and ‘Z-Y’ means that there exists a derivation from Z to Y. But the 
two derivations may well not be the same, and they could both differ 
extensively from some of the derivations in virtue of which 'Z-X&Y' is 
true. 

For sentence rules, this worry can be resolved. But it's really not impor- 
tant because, as with rule soundness, this way of stating the rules will 

provide us with all we need for the soundness proof. We proceed by in- 
troducing the sense in which the &I rule is sound. We do this by taking 
the statement of the rule and substituting ‘F’ for ‘HF: 

L7 (Soundness of &I): If ZFX and ZFY, then ZFX&Y. 

Why should we call this soundness of the &I rule? First, it has the same 
form as the rule &I. It is the semantic statement which exactly parallels 
the syntactic statement of the &I rule. And it tells us that if we start with 
any interpretation I which makes the premises Z true, and if we get as far 
as showing that X and Y are also true in I, then the conjunction X&Y is 
likewise true in I. 

In particular, you can show that L7 directly implies that &I is truth 
preserving in the original sense by looking at the special case in which 
Z = {X,Y}. {X,Y}FX and {X,Y}FY are trivially true. So L7 says that 

{X,Y}FX&Y, which just says that any interpretation which makes X true 
and also makes Y true makes the conjunction X&Y true. 

We treat the other sentence rules in exactly the same way. This gives 

L8 (Soundness of &E: If ZEX&Y, then ZFX; and if ZEX&Y, then ZFY. 

L9 (Soundness of vI): If ZFX, then ZEXvY; and if ZFY, then ZFXvY. 

L10 (Soundness of vE): If ZFXvY and ZF- X, then ZFY; and if ZFEXvY and 

ZF - Y, then ZFX. 

L11 (Soundness of ~E): If ZF~~X, then ZFX. 

L12 (Soundness of DE: If ZFXDY and ZFX, then ZFY. 

L13 (Soundness of =I): If ZFXDY and ZFYDX, then ZFX=Y. 

L14 (Soundness of =E): If ZFX=Y, then ZEXDY; and if ZFX-Y, then 
ZFYDX. 



13-2. Soundness for Derivations: Formal Details 195 

EXERCISES 

13-3. Prove lemmas L7 to L14. Note that in proving these you do 
not need to deal with | at all. For example, to prove L7, you need 
to show, using the antecedent, that ZFX&Y. So you assume you are 
given an I for which all sentences in Z are true. You then use the 
antecedent of L7 to show that, for this I, X&Y is also true. 

13-4. In this problem you will prove that for sentence rules, such as 
the rules described in L7 to L14, what I have called rule soundness 
and the statement that a rule is truth preserving really do come to 
the same thing. You do this by giving a general expression to the 
correspondence between a syntactic and a semantic statement of a 
rule: 

Suppose that X, Y, and W have forms such that 

(i) (VD([Mod(LX) & Mod(LY)] D Mod(I,W)}. 

That is, for all I, if I makes X true and makes Y true, then I makes 

W true. Of course, this won't be the case for just any X, Y, and W. 

But in special cases, X, Y, and W have special forms which make (i) 

true. For example, this is so if X = U, Y = UDV, and W = V. In 
such cases, thinking of X and Y as input sentences of a rule and W 

as the output sentence, (i) just says that the rule that allows you to 
derive W from X and Y is truth preserving in our original sense. 

Now consider 

(i) If ZFX and ZFY, then ZFW. 

This is what I have been calling soundness of the rule stated by say- 
ing that if Z-X and ZHY, then ZW. (ii) gives turnstyle expression to 
the statement that the rule which licenses concluding W from X and 
Y is truth preserving. 

Here is your task. Show that, for all X, Y, and W, (1) holds iff and 
(ii) holds. This shows that for sentence rules (rules which have only 

sentences as inputs) the two ways of saying that a rule is truth pre- 
serving are equivalent. Although for generality, I have expressed (i) 
and (ii) with two input sentences, your proof will work for rules with 

one input sentence. You can show this trivialy by letting 
Y = Av-A for rules with one input sentence. 

I have not yet discussed the two subderivation rules, DI and ~I. Sound- 
ness of these rules comes to 
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L15 (Soundness of DI): If ZU{X}FY, then ZFX2Y. 

L16 (Soundness of ~I): If ZU{X}F¥ and ZU(X]F-Y, then ZF- X. 

In the case of DI and ~I there is a more substantial question of 
whether, and in what sense, L15 and L16 also express the intuitive idea 

that these rules are truth preserving. The problem is that the turnstyle 
notion makes no direct connection with the idea of subderivations. Thus, 

if the syntactic counterpart of L15 is assumed (if ZU(X)-Y, then Z-XDY), 
it is not clear whether, or in what sense, one can take this to be a state- 

ment of the DI rule. (The converse is clear, as you will show in exercise 
13-6.) However, this issue need not sidetrack us, since L15 and L16 will 

apply directly in the inductive proof, however one resolves this issue. 

EXERCISES 

13—5. Prove L15 and L16. 

13-6. Prove that if the system of derivations includes the rule DI, 
then if ZU{X}+Y, then Z+XDY. Also prove that if the system 

of derivations includes the rule —I, then if both ZU(X]FY and 
ZUIX)F- Y, then Z-—X. 

We are now ready to prove T5, soundness for derivations. Here is an 
oudine of the proof: We will start with an arbitrary derivation and look 
at an arbitrary line, n. We will suppose that any interpretation which 
makes governing premises and assumptions true makes all prior lines 
true. Rule soundness will then apply to show that the sentence on line n 
must be true too. Strong induction will finally tell us that all lines are true 
when their governing premises and assumptions are true. The special 
case of the derivation's last line will constitute the conclusion we need for 
soundness. 
To help make this sketch precise, we will use the following notation: 

X, is the sentence on line n of a derivation. Z, is the set of premises and 
assumptions which govern line n of a derivation. 

Now for the details. Suppose that for some Z and X, Z-X. We must 
show that ZFX. The assumption Z+X means that there is some derivation 
with premises a subset of Z, final conclusion X, and some final line num- 

ber which we will call n*. The initial premises are the sentences, Zp», gov- 

erning the last line, n*; and the final conclusion, X, is the sentence on the 

last line, which we are calling X,+. We will show that Z,.FX,.. This will 
establish ZFX because X,- = X and Z,. is a subset of Z. (Remember ex- 
ercise 10—10.) 
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We will establish Z,.FX,+ by showing that Z,FX, for all n, 1 s n < n*. 
And in turn we will establish this by applying strong induction. We will 
use the ^ 

Inductive property: Z;FX,. 

and the 

Inductive hypothesis: Z,FX, holds for all i < n. 

So let's consider an arbitrary line, n, and assume the inductive hypoth- 

esis. What we have to do is to consider each of the ways in which line n 

might be justified and, applying the inductive hypothesis, show that the 
inductive property holds for line n. 

First, X, might be a premise or an assumption. Notice, by the way, that 
this covers the special case of the first line (n — 1), since the first line of 
a derivation is either a premise or, in the case of a derivation with no 
premises, the assumption of a subderivation. But if X, is a premise or 

assumption, X, is a member of Z,. Therefore, Z,FX,. 
Next we consider all the sentence rules. I'll do one for you and let you 

do the rest. Suppose that X, arises by application of &I to two previous 
lines, X, and Xj, so that X, = X;&X;. By the inductive hypothesis 

ZFX; and Z,FX, (Inductive hypothesis) 

Since we are dealing with a sentence rule, X;, Xj, and X, all occur in the 
same derivation. Consequently, Zi = Zj = Za. So 

Z FX, and Z,FX;. 

This is just the antecedent of lemma 7, which thus applies to the last line 
to give Z,FXq. 

EXERCISE 

13-7. Apply lemmas L8 to L14 to carry out the inductive step for 
the remaining sentence rules. Your arguments will follow exactly the 
same pattern just illustrated for &I. 

Turning to the other rules, suppose that X, arises by reiteration from 
line i. That is just to say that X, = X;. We have as inductive hypothesis 
that Z;FX,. If lines i and n are in the same derivation, Za = Zi, so that 

Z, X, as we require. If we have reiterated X, into a subderivation, Z, 
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differs from Z, by adding the assumption of the subderivation (or the 
assumptions of several subderivations if we have reiterated several levels 
down). That is, Z; is a subset of Z,. But as you have shown in exercise 10— 
10, if ZFX, and Z; is a subset of Z,, then Z,FX,. 
Now suppose that X, arises by DI. Then on previous lines there is a 

subderivation, beginning with assumption X; and concluding with Xj, so 
that X, = X;2X, By inductive hypothesis, 

ZjFX; (Inductive hypothesis for line j) 

The trick here is to notice that the subderivation has one more assump- 
tion than Z,. Though not perfectly general, the following diagram will 
give you the idea: 

Set of Premises and Assumptions 

Z Za 

Z = ZU{X} 

Zi = Z,U{X3} 

Xa (= X;X;) Za 

When we start the subderivation with the assumption of X;, we add the 
assumption X; to Z, to get Zi = Z,U{X;} as the total set of premises and 

assumptions on line i. When we get to line n and discharge the assump- 
tion of X;, moving back out to the outer derivation, we revert to Z, as the 

set of governing premises and assumptions. 
Since Z) = Z,U{X;}, we can rewrite what the inductive hypothesis tells 

us about line j as 

Z,U(XJ)FX,. 

But this is just the antecedent of lemma L15! Thus lemma L15 immedi- 
ately applies to give Z,FX;2X,, or Z,FX,, since X, = X;DX;. 

EXERCISE 

13-8. Carry out the inductive step for the case in which X, arises by 
application of —I. Your argument will appeal to lemma L16 and 
proceed analogously to the case for DI. 
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We have covered all the ways in which X, can arise on a derivation. 
Strong inducton tells us that Z,FX, for all n, including n*, the last line of 
the derivation. Since Z,. is a subset of Z and X,. = X, this establishes ZFX, 

as was to be shown. 

13-3. COMPLETENESS FOR DERIVATIONS: INFORMAL 

INTRODUCTION 

We still need to prove 

T6 (Completeness for sentence logic derivations): For any finite set of sen- 
tences, Z, and any sentence, X, if ZFX, then ZF-X. 

where ‘F’ is understood to mean fg, derivability in our natural deduction 
system. The proof in this section assumes that Z is finite. Chapter 14 will 
generalize to the case of infinite Z. 

The proof of completeness for derivations is really an adaptation of the 
completeness proof for trees. If you have studied the tree completeness 
proof, you will find this and the next section relatively easy. The connec- 
tion between trees and derivations on this matter is no accident. Histori- 
cally, the tree method was invented in the course of developing the sort 
of completeness proof that I will present to you here. 

Begin by reading section 12-1, if you have not already done so, since 
we will need lemma LI and the notation from that section. Also, do ex- 
ercises 12-1 and 12-2. (If you have not studied trees, you will need to 
refresh your memory on the idea of a counterexample; see section 4—1, 
volume I.) For quick reference, I restate L1: 

L1: ZFX iff ZU(—X) is inconsistent. 

The basis of our proof will be to replace completeness with another 
connection between semantic and syntactic notions. Let us say that 

D19: Z is Syntactically Inconsistent iff Z-A&~A. 

Semantic inconsistency is just what I have been calling ‘inconsistency’, de- 
fined in chapter 10, D7, as (VD—Mod(LZ). L1 says that an argument is 

valid iff the premises together with the negation of the conclusion form a 
semantically inconsistent set. Analogously 

L17: ZU{~X}FA&~A iff Z-X. 
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says that —X together with the sentences in Z form a syntactically incon- 
sistent set iff there is a proof using sentences in Z as premises to the 
conclusion X. Together, L1 and L17 show that T6 is equivalent to 

T7: For any finite set of sentences, Z, if Z is semantically inconsistent, then 
Z is syntactically inconsistent; that is, if (VI)- Mod(LZ), then Z-A&-— A. 

EXERCISES 

13-9. Prove L17. 

13-10. Using L1 and L17, prove that T6 is equivalent to T7. 

We have boiled our problem down to proving T7. We do this by devel- 
oping a specialized, mechanical kind of derivation called a Semantic Ta- 
bleau Derivation. Such a derivation provides a systematic way of deriving a 
contradiction if the original premises form an inconsistent set. 

If you haven't done trees, it is going to take you a little time and pa- 
tience to see how this method works. On a first reading you may find the 
next few paragraphs very hard to understand. Read them through even 
if you feel quite lost. The trick is to study the two examples. If you go 
back and forth several times between the examples and the text you will 
find that the ideas will gradually come into focus. The next section will 
add further details and precision. 

A semantic tableau derivation is a correct derivation, formed with a 
special recipe for applying derivation rules. Such a derivation is broken 
into segments, each called a Semantic Tableau, marked off with double 
horizontal lines. We will say that one tableau Generates the next tableau. 
Generating and generated tableaux bear a special relation. If all of a gen- 
erated tableau's sentences are true, then all the sentences of previous gen- 
erating tableaux are true also. In writing a derivation, each tableau we 
produce has shorter sentences than the earlier tableaux. Thus, as the der- 

ivation develops, it provides us with a sequence of tableaux, each a list of 
sentences such that the sentences in the later tableaux are shorter. The 
longer sentences in the earlier tableaux are guaranteed to be true if all of 
the shorter sentences in the later tableaux are true. 

A tableau derivation works to show that if a set, Z, of sentences is se- 

mantically inconsistent, then it is syntactically inconsistent. Such deriva- 
tions accomplish this aim by starting with the sentences in Z as its prem- 
ises. The derivation is then guaranteed to have ‘A&~A’ as its final 
conclusion if Z is (semantically) inconsistent. 

To see in outline how we get thís guarantee, suppose that Z is an arbi- 
trary finite set of sentences, which may or may not be inconsistent. (From 
now on, by 'consistent' and 'inconsistent' I will always mean semantic con- 
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sistency and inconsistency, unless I specifically say 'syntactic consistency' 
or ‘syntactic inconsistency’.) A tableau derivation, starting from Z as prem- 
ises, will continue until it terminates in one of two ways. In the first way, 

some final tableau will have on it only atomic and/or negated atomic sen- 
tences, none of which is the negation of any other. You will see that such 
a list of sentences will describe an interpretation which will make true all 
the sentences in that and all previous tableaux. This will include the orig- 
inal premises, Z, showing this set of sentences to be consistent. Further- 

more, we will prove that if the initial sentences form a consistent set, the 

procedure must end in this manner. 
Consequently, if the original set of sentence forms an inconsistent set, 

the tableau procedure cannot end in the first way. It then ends in the 
second way. In this alternative, all subderivations end with a contradic- 
tion, ‘A&~ A’. As you will see, argument by cases will then apply repeat- 
edly to make ‘A&~A’ the final conclusion of the outermost derivation. 

Altogether we will have shown that if Z is (semantically) inconsistent, 
then ZFA&- A, that is, Z is syntactically inconsistent. 

To see how all this works you need to study the next two examples. 
First, here is a tableau derivation which ends in the first way (in writing 
lines 3 and 4, I have omitted a step, ‘~B&~C’, which gives 3 and 4 by 
&E): 

N = 

UR 

ooN 0o 

You can see that this is a correct derivation in all but two respects: I have 
abbreviated by omitting the step ‘~B&~C’, which comes from 1 by DM 
and gives 3 and 4 by &E; and I have not discharged the assumptions of 
the subderivations to draw a final conclusion in the outer derivation. 

Each tableau is numbered at the end of the double lines that mark its 



202 Soundness and Completeness for Sentence Logic Derivations 

end. A tableau may generate one new tableau (Sequential Generation): In 
this example tableau 1 generated tableau 2 by applying the rules DM, &E, 

and R. Or a tableau may generate two new tableaus (Branching Genera- 
tion): In the example tableau 2 generated tableaux 3 and 4 by starting two 
new subderivations, each using for its assumption one of the disjuncts, ‘B’ 
and ‘D’ of ‘BvD’ on line 5, and each reiterating the rest of tableau 2. 

Tableau 3 ends in a contradiction. It can't describe an interpretation. 
We mark it with an ‘x’ and say that it is Closed. Tableau 4, however is 
Open. It does not contain any sentence and the negation of the same sen- 
tence; and all its sentences are Minimal, that is, either atomic or negated 

atomic sentences. Tableau 4 describes an interpretation by assigning f to 
all sentence letters which appear negated on the tableau and t to all the 
unnegated sentence letters. In other words, the interpretation is the truth 
value assignment which makes true all the sentences on this terminal tab- 
leau. i 

Note how the interpretation described by tableau 4 makes true all the 
sentences on its generator, tableau 2. The truth of ‘~B’ and ‘~C carries 

upward simply because they are reiterated, and the truth of 'D' guaran- 
tees the truth of ‘BvD’ by being a disjunct of the disjunction. You should 
check for yourself that the truth of the sentences in tableau 2 guarantees 
the truth of the sentences in tableau 1. 
Examine this example of a tableau derivation which ends in the second 

way: 

1 P 
2 P 

1 
3 1, DM, &E 
4 1, DM, &E 
5 2,R 

2 
6 A 

7 3, R 
8 4, R 
9 A&~A 6,7,CD 

3 
10 A 

11 3, R 
12 4, R 
13 A&~A 10,12, CD 

4 
5, 6—9, 10—13, AC 141 A&—A 

In this example, all terminal tableaux (3 and 4) close, that is, they have 

both a sentence and the negation of the same sentence, to which we apply 
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the rule CD. We can then apply AC to get the final desired conclusion, 
‘A&~A’. . 

Again, here is the key point: I am going to fill in the details of the 
method to guarantee that a consistent initial set of sentences will produce 
a derivation like the first example and that an inconsistent set will give a 
result like the second example. More specifically, we will be able to prove 
that if there is an open terminal tableau, like tableau 4 in the first exam- 
ple, then that tableau describes an interpretation which makes true all its 

sentences and all the sentences on all prior tableaux. Thus, if there is an 

open terminal tableau, there is an interpretation which constitutes a 

model of all the initial sentences, showing them to form a consistent set. 

Conversely, if the original set is inconsistent, all terminal tableaux must 
close. We will than always be able to apply argument by cases, as in the 
second example, to yield ‘A&~A’ as a final conclusion. But the last two 
sentences just state T7, which is what we want to prove. 
To help you get the pattern of the argument, here is a grand summary 

which shows how all our lemmas and theorems connect with each other. 
We want to show T6, that if ZFX, then Z-X. We will assume ZFX, and to 
take advantage of lemmas L1 and L17, we then consider a semantic tab- 
leau derivation with the sentences in ZU{~X} as the initial tableau. Then 

we argue 

(1) ZFX. (Assumption) 

(2) If ZFX, then ZU{~X} is inconsistent. (By L1) 
(3) If some terminal tableau is open, then ZU{~X} is consistent. (By 118, 

to be proved in the next section) 

(4) If ZU{~X} is inconsistent, then all terminal tableaux close. (Contrapo- 
sitive of (3)) 

(5) If all terminal tableaux close, then ZU{~X}+A&~A. (L20, to be proved 
in the next section) 

(6) If ZU(—X]FA&-— A, then Z-X. (By L17) 

Now all we have to do is to discharge the assumption, (1), applying it to 

(2), (4), (5), and (6), giving 

T6: If ZFX, then Z-X. 

In the next section we carry out this strategy more compactly by proving 

T7 (corresponding to (4) and (5) above), which you have already proved 
to be equivalent to T6. 

13-4. COMPLETENESS FOR DERIVATIONS: FORMAL DETAILS 

To keep attention focused on the main ideas, I'm going to restrict consid- 
eration to sentences in which ‘~’ and 'v' are the only connectives used. 
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Once you understand this special case, extension to the other connectives 
will be very easy. As I mentioned, I will also carry out the proof only 
under the restriction that the initial set of sentences, Z, is finite. Chapter 

14 will generalize the result to infinite sets, Z. 
To help fix ideas, I'll start with a slightly more extended example. Skip 

over it now and refer back to it as an illustration as you read the details. 

~Pv(DvM) 
~[(~PvD)v(~PvM)] 

16, 20-24, 25-29, AC 

10, 11-15, 16-30, AC 
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The method of semantic tableau derivations constitutes a way of testing 
a finite initial set of sentences for consistency. Here are the rules for gen- 
erating such a derivation: 

R1 Initial Tableau: The method begins by listing the sentences in the set 
to be tested as the premises of the derivation. This initial list constitutes the 
initial tableau. 

Lines | and 2 in the example are an initial tableau. 
Each further tableau (the Generated Tableau) is generated from some 

prior tableau (the Generating Tableau) by one of two methods: 

R2 Sequential generation 

a) Each line of the generated tableau is a new line of the same derivation 
as the generating tableau. 

b) Ifa sentence of the form ~~X occurs on the generating tableau, enter 
X on the generated tableau. 

€) If a sentence of the form ~(XVY) occurs on the generating tableau, 
enter —X and —Y as separate lines on the generated tableau. 

d) Reiterate all remaining sentences of the generating tableau as new lines 
of the generated tableau. 

Tableaux 2 and 3 in the example illustrate sequentially generated 
tableaux. c) is illustrated in the example by lines 3, 4, 6, 7, 8, and 9. d) is 

illustrated by lines 5 and 10. Note that the rule I apply for c), which I 
have called ‘~v’, is a new derived rule, constituted by simply applying DM 
followed by &E. 

R3 Branching generation: 

a) Ifa sentence of the form XvY occurs on the generating tableau, start 
two new subderivations, one with assumption X and the other with as- 
sumption Y. 

b) Reiterate all the remaining sentences of the generating tableau on each 
of the subderivations. 

€) Each of the (initial parts of) the subderivations started by steps a) and 
b) constitutes a generated tableau. 

Branching generation is illustrated in the example by tableaux 4, 5, 6, 7. 

Tableaux 4, 6, and 7 illustrate what happens when both a sentence and 

the negation of a sentence appear on a tableau. No interpretation will 
make all the sentences on such a tableau true. So such a tableau will never 
provide an interpretation which will prove the original sentences consis- 
tent. We record this fact by extending the tableau by applying CD to de- 
rive 'A&— A'. We say that such a tableau is Closed and mark it with an ‘x’. 
We have applied CD to draw the explicit contradiction, ‘A&~A’, on 

closed tableaux because this contradiction will be helpful in deriving 
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‘A&~A’ in the outermost derivation. We will see that, if the original set 
of sentences is inconsistent, then all chains of tableaux will terminate with 

a closed tableau. Argument by cases will then allow us to export 'A&—A' 
from subderivations to outer derivations, step by step, until we finally get 
'A&-- A' as the final conclusion of the outermost derivation. 
We make these ideas more precise with two further instructions: 

R4: If both a sentence and the negation of the same sentence appear on a 
tableau, apply CD to derive ‘A&~A' as the last line of the tableau, and mark 
the end of the tableau with an ‘X’ to indicate that it is Closed. Do not gen- 
erate any new tableaux from a closed tableau. 

R5: If ‘A&~A’ appears on two subderivations, both generated by the same 
disjunction in the outer derivation, apply AC to write ‘A&~A’ as the final 
conclusion on the outer derivation. 

Look again at tableaux 4, 6, and 7, as illustrations of R4. Lines 30 and 31 

illustrate R5. 
We now need to prove that semantic tableau derivations do what they 

are supposed to do. Here is the intuitive idea. We start with a set of sen- 
tences. The tableau procedure constitutes a way of determining whether 
or not this set is consistent. This works by systematically looking for all 
possible ways of making the original sentences true. If the systematic 
search turns up a way of making all the original sentences true (a model), 
then we know that the original set is consistent. Indeed, we will prove that 
if the original set is consistent, the procedure will turn up such an inter- 
pretation. Thus we know that if the procedure fails to turn up such an 
interpretation, the original set must be inconsistent. This is signaled by all 
chains of tableaux terminating with a closed tableau. 

The procedure accomplishes these aims by resolving the original sen- 
tences into simpler and simpler sentences which enable us to see what 
must be true for the original set to be true. Fach new tableau consists of 
a set of sentences, at least some of which are shorter than previous sen- 

tences. If all of the generated tableau's sentences are true, then all of the 

sentences on the generating tableau will be true. For a sequentially gen- 
erated tableau, the new sentences give us what has to be true for the 

sentences on the generating tableau to be true. When we have branching 
generation, each of the two new tableaux gives one of the only two pos- 
sible ways of making all sentences of the generating tableau true. In this 
way the procedure systematically investigates all ways in which one might 
try to make the original sentences true. Attempts that don't work end in 
closed tableaux. 

We need to work these ideas out in more detail. We will say that 

A tableau is a Terminal Tableau if it has not generated any other tableau, and 
no rule for tableau generation applies to it. 

It can happen that no rule applies to a tableau for one of two reasons: 



13—4. Completeness for Derivations: Formal Details 207 

The tableau can be closed. Or it might be open but have only minimal 
sentences (atomic or negated atomic sentences). We will discuss these two 
cases separately. 

First we will prove 

L18: An open terminal tableau describes an interpretation in which all sen- 
tences of the initial tableau are true. 

An open terminal tableau has only minimal sentences, none of which is 
the negation of any other. The interpretation such a tableau specifies is 
the one which makes all its sentences true, that is, the assignment of t to 

all the tableau’s unnegated atomic sentences and f to the atomic sentences 
which appear negated on the tableau. Let’s call such an interpretation a 
Terminal Interpretation, for short. 

Our strategy will be to do an induction. Suppose we are given an open 
terminal tableau, and so the terminal interpretation, I, which it specifies. 

The fact that all the sentences of the terminal tableau are true in I pro- 
vides our basis step. For the inductive step you will show that instructions 
for constructing a tableau derivation guarantee that if all the sentences of 
a generated tableau are true in an interpretation, then all the sentences 
of the generating tableau are true in the same interpretation. Thus all the 
sentences of the tableau which generated the terminal tableau will be true 
in I. In turn, that tableau’s generator will have all its sentences true in I. 
And so on up. In short, induction shows that all the Ancestors of the open 
terminal tableau are true. 
To fill in the details of this sketch, you will first prove the inductive 

step: 

L19: 1f tableau T; is generated from tableau T, and all sentences of T; are 
true in interpretation I, then all the sentences of T, are also true in I. 

EXERCISE 

13-11. Prove L19. 

Since the proof of L18 will be inductive, we need to specify more clearly 
the sequence of cases on which to do the induction: 

A terminal tableau's generator will be called the tableau’s first Ancestor. In 
general, the i + Ist ancestor of a terminal tableau is the generator of the 
ith ancestor. 

We will do the induction starting from a Oth case, namely, the terminal 
tableau. The ith case will be the terminal tableau's ith ancestor. 
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We are now ready to prove L18. Suppose we are given a semantic tab- 
leau derivation, with an open terminal tableau. This tableau specifies an 
interpretation, I, in which all the terminal tableau's sentences are true. 
The inductive property is: The nth ancestor of the terminal tableau has 
all its sentences true in I. The terminal tableau provides the basis case. By 
L19, if the nth ancestor of the terminal tableau has all its sentences true 

in I, then so does the n + Ist ancestor. Then, by induction, all the ter- 
minal tableau's ancestors have all their sentences true in I, which includes 
the derivation's initial tableau, as required to prove L18. 

I have now said all I need about tableau derivations which terminate 
with one or more open tableaux. What happens if all the terminal tab- 
leaux are closed? In a word, rule R5 applies repeatedly until, finally, 

‘A&~A’ appears as the final conclusion of the outermost derivation: 

L20: If in a semantic tableau derivation all the terminal tableaux are closed, 
then 'A&-—A' appears as the derivation's final conclusion. 

We will prove this with another induction. 
We need a sequence of cases on which to do the induction. The natural 

choice is the level or depth of subderivations, as measured by the number 
of nested scope lines. But we want to start with the deepest level of sub- 
derivation and work our way back out. So we need to reverse the order- 
ing: The first level of subderivations will be the deepest, the second will 
be the subderivations one level less deep, and so on. More exactly defined 

Given a tableau derivation, let k be the largest number of nested scope lines 
on the derivation (including the outermost scope line). The Inverted Level of 
each subderivation is k less the number of scope lines to the left of the 
subderivation. 

(I will henceforth omit the word ‘inverted’ in ‘inverted level’.) 
The key to the proof will be the inductive step: 

L21: Let D be a semantic tableau derivation in which all terminal tableaus 
are closed. Then, if all of D's subderivations of level n have ‘A&~ 4A’ as their 
final conclusion, so do all the subderivations of level n + 1. 

(I construe ‘subderivation’ broadly to include the outermost derivation, a 
sort of null case of a subderivation.) 

EXERCISE 

13-12. Prove L21. 
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We are now ready to prove L20. Let D be a semantic tableau derivation 
in which all terminal tableaux are closed. Our inductive property will be: 
All the subderivations of level n have ‘A&~A’ as their final conclusion. At 
level 1 all subderivations have no sub-subderivations. So all of the subder- 
ivations must end in terminal tableaux. By assumption, all of these are 

closed. So the inductive property holds for level 1. L21 gives the inductive 
step. By induction, the derivations at all levels conclude with ‘A&~A’, 
which includes the outermost derivation. 
We are at long last ready to prove T7. Suppose that Z, a finite set of 

sentences, is inconsistent. (Note that, if inconsistent, Z must have at least 

one sentence.) Make the sentences of this set the first tableau of a seman- 

tic tableau derivation. Suppose that the derivation has an open terminal 
tableau. Then, by L18, there is an interpretation which makes true all the 

sentences in Z. But this is impossible since Z is supposed to be inconsis- 
tent. Therefore all terminal tableaux are closed. Then L20 tells us that 
the derivation terminates with 'A&— A', so that Z-A&~A, as was to be 

shown. 
We have one more detail to complete. My proof of T7 is subject to the 

restriction that ‘v’ and ‘~’ are the only connectives which appear in any of 
the sentences. We easily eliminate this restriction by exchanging sentences 
with other connectives for logical equivalents which use ‘v’ and ‘~’ instead. 
At each stage we deal only with the main connective or, for negated sen- 
tences, with the negation sign and the main connective of the negated 
sentence. We rewrite rule R2 for sequential generation to read: 

R2 Sequential generation: 

a) Each line of the generated tableau is a new line of the same derivation 
as the generating tableau. 

b) Ifa sentence of the form ~~X occurs on the generating tableau, enter 
X on the generated tableau. 

€) If a sentence of the form ~(XVY) occurs on the generating tableau, 
enter both ~X and ~Y as separate lines on the generated tableau. 

d) If a sentence of the form X&Y occurs on the generating tableau, enter 
both X and Y as separate lines on the generated tableau. 

e) Ifa sentence of the form XDY occurs on the generating tableau, enter 
~XvY on the generated tableau. 

f) If a sentence of the form X=Y occurs on the generating tableau, enter 
(X &Y)v(—X&- Y) on the generated tableau. 

g) If a sentence of the form —(X&Y) occurs on the generating tableau, 
enter ~Xv~Y on the generated tableau. 

h) If a sentence of the form —(XY) occurs on the generating tableau, 
enter both X and ~Y as separate lines on the generated tableau. 

i) If a sentence of the form ~(X=Y) occurs on the generating tableau, 
enter (X &—Y)v(—X&Y) on the generated tableau. 

j) Reiterate all remaining sentences of the generating tableau as new lines 
of the generated tableau. 
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We could provide a more complicated version of R2 which would pro- 
duce more efficient tableau derivations, but it’s not worth the effort since 

true efficiency is only obtained with the truth tree method. In the next 
exercises you will show that the proof for the special case, using only the 
connectives ‘V’ and ‘~’, extends to the general case covered by our refor- 
mulated R2. 

EXERCISES 

Generalizing the proof of T7 only requires checking three points. 

13-183. I argued that a tableau derivation always comes to an end 
because each new tableau shortens at least one sentence of the pre- 
vious tableau. This argument no longer works, at least not as just 
stated. Show that tableau derivations, with sentences using any sen- 
tence logic connectives and the new rule R2, always come to an end. 

13—14. Check that when all terminal tableaux close, a tableau deri- 

vation created using the new rule R2 is a correct derivation. You will 
have to prove two new derived rules, one for biconditionals and one 
for negated biconditionals. 

13—15. Reprove lemma L19 for our fully general tableau deriva- 
tions. 

13-16. Explain why the proof of completeness in this section shows 
that the primitive sentence logic derivation rules of chapter 5 (vol- 
ume 1) are complete for sentence logic. 

CHAPTER CONCEPTS 

As a check on your mastery of this material, review the following 
ideas to make sure you understand them clearly: 

a) Rule Soundness 

b) Sentence Rule 

€) Subderivation Rule 

d) Semantic and Syntacüc Inconsistency 

e) Semantic Tableau Derivation (or Tableau Derivation) 

f) Tableau 

g) Initial Tableau | 

h) Generating Tableau 

i) Generated Tableau 

j) Sequential Generation 
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Branching Generation 

Derived Rule ~v 

Closed Tableau 

Minimal Sentence 

Terminal Tableau 

Terminal Interpretation 

Ancestors of a Tableau 
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- Koenig ' s Lemma, 

Compactness, 
and Generalization 

to Infinite Sets 

of Premises 

14-1. KOENIG’S LEMMA 

My proofs of completeness, both for trees and for derivations, assumed 
finiteness of the set Z in the statement ZFX. Eliminating this restriction 
involves something called ‘compactness’, which in turn is a special case of 
a general mathematical fact known as ‘Koenig’s lemma’. Since we will 
need Koenig’s lemma again in the next chapter, we will state and prove it 
in a form general enough for our purposes. 

Suppose we have a branching system of points, or Nodes, such as the 
following: 

; ; a P 2 M c 

dh as 2e 
s o wer Vx ux 

The nodes are connected by branching lines running downward; these 

212 
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are called Paths, or Branches. I have numbered the horizontal lines to help 
in referring to parts of the tree. We will consider only tree structures 
which have Finite Branching—that is, from any one node, only finitely 
many branches can emerge. To keep things simple, I will always illustrate 
with double branching, that is, with at most two branches emerging from 
a node. The restriction to two branches won't make an important differ- 
ence. 

Truth trees are one example of such a tree structure. Semantic tableau 
derivations are another, with each branch representing the formation of 
a new subderivation and each node representing all the tableaux on a 
subderivation before starting new subderivations. Some of the paths end 
with a ‘x’, as when we close a path in a truth tree or close a tableau in a 

tableau derivation. We say that such a path is Closed. A tree might have 
only finitely many horizontal lines, That is, there might be a line number, 

n, by which all paths have ended, or closed. Or such a tree might have 
infinitely many lines. What we want to prove is that if such a tree is infi- 
nite (has infinitely many horizontal lines with at least one open path ex- 
tending to each line), then there is an infinite path through the tree. 

Perhaps this claim will seem obvious to you (and perhaps when all is 
said and done it is obvious). But you should appreciate that the claim is 
not just a trivial logical truth, so it really does call for demonstration. The 
claim is a conditional: Jf for every line there is an open path extending to 
that line, then there is an open path which extends to every line. The 
antecedent of the conditional is a doubly quantified sentence of the form 
(Vu) (3v)R(u,v). The consequent is the same, except that the order of the 

quantifiers has been reversed: (Av)(Wu)R(u,v). Conditionals of this form 
are not always true. From the assumption that everyone is loved by some- 
one, it does not follow that there is someone who loves everyone. The 

correctness of such conditionals or their corresponding arguments re- 
quires special facts about the relation R. 

The tree structure provides the special facts we need in this case. Let's 
assume that we have an infinite tree, that is, a tree with infinitely many 
horizontal lines and at least one open path extending to each line. The 
key is to look at infinite subtrees. For example, look at line 3. The first, 
third, and fourth nodes can each be viewed as the first node in its own 
subtree, that is, the system of paths which starts with the node in question. 

The first node of line 3 heads a subtree which does not end, at least not 
as far as we can tell by as much of the tree as I have drawn. The same is 
true for the third node of line 3. But the fourth node heads a subtree 
that we can see is finite: All paths starting from that node close. 
Now consider all of the nodes of line 3 again. Suppose that all of the 

subtrees headed by these nodes are finite. Then the whole tree would be 
finite. Line 3 has only four nodes, and if each has below it only finitely 

many nodes, then there are only finitely many nodes in the whole tree. 
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In such cases there are no more than four times the maximum number 

of nodes in the subtrees headed by line 3 nodes, plus the three nodes in 
lines 1 and 2. Conversely, if the whole tree is infinite, at least one node of 
line 3 must head an infinite subtree. 

We can use induction to prove that the same will be true of any line of 
an infinite tree: 

L22: In any infinite tree, every line has at least one node which heads an 
infinite subtree. 

Suppose we have an infinite tree. Our inductive property will be: The 
nth line has at least one node which heads an infinite tree. Line 1 has this 
property, by assumption of the argument. This gives the basis step of the 
induction. For the inductive step, assume the inductive hypothesis that 
line n has the inductive property. That is, line n has at least one node 
which heads an infinite tree. Let N be the leftmost such node. Consider 
the nodes on line n + 1 below node N. If both of these nodes were to 
head only finite subtrees, then N would also head only a finite subtree, 

contrary to the inductive hypothesis. So at least one of these nodes of line 
n + l must also head an infinite subtree. In sum, if line n has the induc- 
tive property, so does line n + 1, completing the inductive proof of L22. 

It is now easy to establish 

L23 (Koenig's lemma): In any infinite tree there is an infinite path. 

Proof: Given an infinite tree, start with the top node and extend a path 
from each line to the next by choosing the leftmost node in the next line 
which heads an infinite tree. L22 guarantees that there will always be such 
a node. Since at each stage we again pick a node which heads an infinite 
tree, the process can never end. (See Exercise 14—1.) 

14-2. COMPACTNESS AND INFINITE SETS OF PREMISES 

In my proofs of completeness, the statement that if ZFX, then ZFX, I 

assumed that Z is finite. But in my original definition of ZFX and ZFX, I 
allowed Z to be infinite. Can we lift the restriction to finite Z in the proofs 
of completeness? 
There is no problem with +. By ZF-X, for infinite Z, we just mean that 

there is a proof which uses some finite subset of Z as premises. Counting 
Z as a subset of itself, this means that (whether Z is finite or infinite) X 

can be derived from Z iff X can be derived from some finite subset of Z. 
That is (using 'Z'CZ' to mean that Z' is a subset of Z) 

(1) ZEX iff (3Z')(Z/CZ and Z' is finite and Z'-X). 
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EXERCISE 

14-1. Consider a tree that looks like this: 

2 

3 x Oo o Oo o 

4 x o o fe) 

5 x o o 

6 x o 

x 

This tree differs from the ones we have been considering because it 
allows Infinite Branching—that is, from one node (here, the first 
node) infinitely many new branches emerge. These branches also 

extend farther and farther down as you move from left to right, so 

that the tree extends infinitely downward as well as to the right. For 
each integer, n, there is an open path that extends to the nth line. 
But there is no infinite path through the tree! 

This example helps to show that Koenig’s lemma is not just a triv- 
ial truth. Thinking about this example will also help to make sure 
you understand the proof of Koenig's lemma. 

Explain why the proof of Koenig's lemma breaks down for trees 
with infinite branching. My proof actually assumed at most double 
branching. Rewrite the proof to show that Koenig's lemma works 
when the tree structure allows any amount of finite branching. 
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What we need is a similar statement for F: 

(2) ZFX iff (3Z')(Z'C Z and Z' is finite and Z'FX). 

(1) and (2) will enable us quickly to connect completeness for finite Z' with 
completeness for infinite Z. 

Using L1 we see that (2) is equivalent to 

(3) ZU(-X) is inconsistent iff (3Z')(Z'CZ and Z' is finite and Z'U(—X] is 
inconsistent). 

Compactness is just (3), but stated slightly more generally, without the 
supposition that the inconsistent set has to include the negation of some 
sentence: 

T8 (Compactness): Z is inconsistent iff Z has an inconsistent finite subset. 
Equivalently, Z is consistent iff all its finite subsets are consistent. 

Compactness with the help of L1 will immediately give us 

T9 (Completeness): If ZFX, then ZX, where Z now may be infinite. 

F may be derivability by trees or derivations (or, indeed many other sys- 
tems of proof). All that we require here is (1), compactness, and complete- 
ness for finite sets Z in the system of proof at hand. 

EXERCISES 

14-2. Prove the equivalence of the two statements of compactness 
in T8. 

14—3. Prove completeness for arbitrary sets of sentences. That is, 
prove that if ZFX, then ZFX, where Z may be infinite. Do this by 
using compactness and L1 to prove (2). Then use (2) and (1), to- 

gether with the restricted form of completeness we have already 
proved (with Z restricted to being a finite set) to lift the restriction 

to finite Z. 

The key here is compactness, and the key to compactness is Koenig's 
lemma. In oudine, we will create a tree the paths of which will represent 
lines of a truth table. Finite subsets of an infinite set of sentences, Z, will 

be made true by paths (truth table lines) reaching down some finite num- 
ber of lines in our tree. Koenig's lemma will then tell us that there is an 
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infinite path, which will provide the interpretation making everything in 
Z true, showing Z to be consistent. , 

Here goes. Since our language has infinitely many sentence letters, let's 
call the sentence letters ‘A,’, ‘Ag, . . ., ‘An’. . . . Consider the tree which 

starts like this: 

QU EN LZ" 
WE T NS 3 A3 © ~A; O 3 ~A3 O A3 O ~A3 O 

(1) (2) (3) (4) (5) (6) (7) (B) 

Each branch through the third line represents one of the eight possible 
truth value assignments to ‘Ar’, ‘Ay’, and ‘As’. Branch (1) represents ‘A,’, 
‘Ay’, and ‘As’ all true. Branch (2) represents ‘A,’ and ‘A,’ true and ‘As’ 
false. Branch (3) represents ‘A,’ true, ‘A,’ false, and ‘As’ true. And so on. 
Line 4 will extend all branches with the two possible truth value assign- 
ments to ‘A,’, with ‘A,’ true on one extension and ‘A,’ false on the other. 

Continuing in this way, each initial segment of a branch reaching to line 
n represents one of the truth value assignments to ‘A,’ through ‘A,’, and 
every possible truth value assignment is represented by one of the 
branches. 
Now let us suppose that the set, Z, is composed of the sentence logic 

sentences Xi, X5, . .., Xa- . :, all written with the sentence letters ‘Ay’, 
‘Ao’,.--, ‘An... . Let Za = (X,, X2, . . . X,}. That is, for each n, Z, is 

the finite set composed of the first n sentences in the list Xj, X,.... 

Finally, let us suppose that each Z, is consistent, that is, that Z, has a 
model, an interpretation, I, which assigns truth values to all sentence let- 

ters appearing in the sentences in Z, and which makes all the sentences in 
Z, true. 

Our tree of truth value assignments will have initial path segments 
which represent the models which make the Z,'s consistent. Koenig's 
lemma will then tell us that there will be an infinite path which makes all 
the Xi, X3,. . . . true. To show this carefully, let us prune the truth value 

tree. For each Z,, starting with Z4, let i, be the first integer such that all 

the sentence letters in the sentence in Z, occur in the list ‘Ay’, ‘Ay’,. . ., 
‘A;,. Then the initial paths through line i, will give all the possible inter- 
pretations to the sentences in Z,. Mark as closed any path which does not 
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represent a model of Z,, that is, which makes any sentence in Z, false. 

Since each Z, is consistent, there will be at least one open path reaching 
to line in- 

I have provided an outline of a proof of lemma 24: 

L24: Let Xi, X2 . . . X, be an infinite sequence of sentences, each initial 
subsequence of which is consistent. Let T be a tree the paths which repre- 
sent all the truth value assignments to the sentence letters occurring in Xj, 
X, . .. Let each path be closed at line i, if the path’s initial segment to line 
i, makes any sentence X, through X, false, where line i, is the first line 
paths to which assign truth values to all sentence letters in X, through X,. 
'Then, for every line in T, there is an open path that reaches to that line. 

EXERCISE 

14—4. Prove lemma L24. Wait a minute! What remains to be done 
to prove L24? That depends on how thorough you want to be. 
There are details I didn't discuss. What if the vocabulary used is 

finite? What if the vocabulary of some Z, already includes the vocab- 
ulary of Z,4 1? More interestingly, perhaps you can find a simpler 
proof of L24 than the one I suggested. Or better still, you may be 
able to reformulate L24 so that your L24 is less complicated to prove 
but still functions to make the proof of compactness easy, in some- 
thing like the way I will describe in the following paragraphs. 

Proving compactness is now easy. Suppose that all of Z's finite subsets 
are consistent. If Z itself 1s finite, then, because any set counts as one of 
its own subsets, Z is consistent. If Z is infinite, we can order its sentences 
in some definite order. For example, write out each connective and par- 
enthesis with its English name (‘disjunction’, ‘negation’, ‘right parenthesis’, 

etc.) and think of each sentence logic sentence thus written out as a very 
long word. Then order the sentences (as words) as one does in a dictio- 
nary. (This is called a Lexicographical Ordering.) Since all finite subsets of Z 
are consistent, each initial segment of the ordered list of sentences is a 
consistent set. L24 applies to tell us that there is a tree, the initial finite 
open paths of which represent models of the initial segments of the list of 
sentences. L24 further tells us that for each line of the tree, there will be 
at least one open path that reaches that line. Koenig’s lemma then tells us 
that there will be at least one path through the whole tree (an infinite 
path if the tree is infinite). This path will represent a model for all the 
sentences in the set, establishing the consistency of Z. 
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EXERCISES 

14—5. Complete the proof of compactness by showing that if Z is 
consistent, then so are all of its finite subsets. 

14—6. In my proof of soundness for trees I also limited Z in the 
statement ZFX to be a finite set. There was no reason for doing so 
other than the fact that for trees it was convenient to treat soundness 
and completeness together, and I needed the restriction to finite Z 

in the proof of completeness. 
Assume soundness for finite Z, that is, assume that for all finite Z, 

if Z-X, then ZFX. Prove the same statement for infinite Z. Your 
proof will be perfectly general; it will not depend on which system 
of proof is in question. You will not need to use compactness, but 
you will need to use the result of exercise 10—9. 

CHAPTER CONCEPTS 

Here are this chapter's principal concepts. In reviewing the chapter, | 
be sure you understand them. 

a) Tree Structure 

b) Node of a Tree 

c) Path (or Branch) in a Tree 

d) Koenig's Lemma 
e) Compactness 

f) Finite Branching 

g) Infinite Branching 

h) Tree of Truth Value Assignments 
i) Lexicographical Ordering 



Interpretations, 15 
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for Predicate Logic 

15-1. INTERPRETATIONS 

In chapter 2 I introduced the idea of an interpretation for a predicate 
logic sentence, that is, of a case which determines the truth value for 

closed sentences of predicate logic. In the definition of chapter 2 I re- 
quired that every object in the domain of an interpretation have at least 
one name. I included this requirement because with it I could give a sim- 
ple and intuitive truth definition for existentially and universally quanti- 
fied sentences: I said that an existentially quantified sentence is true in 
any interpretation just in case at least one of its substitution instances is 
true in the interpretation. And I said that a universally quantified sen- 
tence is true in an interpretation just in case all of its substitution instances 
are true in the interpretation. l 

Requiring every object to have a name may have been expedient for 
teaching fundamentals, but ultimately the requirement is unsatisfactory. 

Our system of logic should be able to deal with situations in which some 
objects go unnamed. So henceforth, by an interpretation for predicate 
logic, I will mean exactly what I meant in chapter 2, except that I will no 
longer require every object to have a name. I also will streamline the def- 
inition somewhat by counting atomic sentence letters as Zero Place Predi- 
cates: 

D20: An Interpretation consists of a nonempty domain of objects, a list of 
names, and a list of (zero place, one place, two place, and in general many 
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place) predicates. The list of names may be empty, but there must be at least 
one predicate. For each name, the interpretation specifies the object in the 
domain which is named by that name; and for each predicate the interpre- 
tation specifies its truth value if it is a zero place predicate (an atomic sen- 
tence letter), or the objects in the domain of which the predicate is true if it 
is a one place predicate, or the ordered lists of objects of which the predicate 
is true if it is a two, three, or many place predicate. If a predicate is not true 
of an object or ordered list of objects, it is false of that object or list of 
objects. 

This definition allows us to consider situations in which there are ob- 
jects without names in the object language. But it makes hash of my def- 
inition of truth in an interpretation for quantified sentences. 

Before we begin, precision requires a comment on notation. Remember 
that *(3u)P(u)' is an expression of the metalanguage ranging over closed 
existentially quantified sentences, with u the existentially quantified vari- 
able. Ordinarily, P(u) will be an open sentence with u the only free vari- 
able, which is the way you should think of 'P(u)' while getting an intuitive 
grasp of the material. But strictly speaking, ‘(Au)P(w)’ ranges over closed 
existentially quantified sentences, the s-substitution instances of which are 
P(s), the expressions formed by substituting s for all free occurrences of 

u in P(u)—if there are any free occurrences of u. This detail accommo- 
dates vacuously quantified sentences, such as ‘(Ax)A’, as discussed in ex- 

ercise 3—3. 
To work toward new truth definitions for the quantifiers, let's think 

through what we want these definitions to do. Intuiüvely, (3u)P(u) should 
be true in an interpretation iff there is some object i in the domain of the 
interpretation of which the open sentence, P(u), is true. When all objects 
in the domain had names, we could express this condition simply by say- 
ing that there is at least one name, s, in the interpretation for which the 

substitution instance, P(s), is true in the interpretation. But now the object 
or objects in virtue of which (Ju)P(u) is true might have no names, so this 

strategy won't work. 
We can get around this problem by appealing to the fact that, even if 

the interpretation we are considering does not include a name for the 
object we need, there will always be another interpretation which does 
have a name for this object and which is otherwise exactly the same. 

In more detail, here is how the idea works. Suppose we have an inter- 
pretation, I, and a sentence (du)P(u). Intuitively speaking, (du)P(u) is 

true in I when I has an object, o, of which, intuitively speaking, the open 

sentence P(u) is true. We cannot say that (Ju)P(u) is true of o by saying 
that o has a name, s, in I such that P(s) is true in I. We are considering 

an example in which o has no name in I. But we get the same effect in 
this way: We consider a second interpretation, I’, which is exactly like I, 

except that in I' we assign o a name. We can always do this, because if I 
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is one interpretation, we get a second interpretation, I', which has exactly 
the same domain of objects, the same list of predicates, the same specifi- 
cation of what is true of what, but which differs from I only by assigning 
the name s to object o. 

We do also have to require that s not be a name which occurs in 
(3u)P(u). If, in going from I to I', we move a name from one object to 

another, and this name occurs in (Ju)P(u), we may disturb some other 
aspect of the truth conditions for (Ju)P(u). 

Some new terminology will help in transforming this intuitive idea into 
a precise definition: 

D21: I, is an s-Variant of I iff I, assigns the name s to some object in its 
domain and I, differs from I at most by having name s or by assigning s to 
a different object. 

With the help of the idea of an s-variant, we can say 

D22: (Ju)P(U) is true in interpretation I iff, for some name, s, which does 
not appear in (Ju)P(u), there is an s-variant, I,, of I in which P(s) is true. 

EXERCISE 

15-1. Give an example of a sentence and an interpretation which 
shows that D22 would not work as intended if it did not include the 
requirement that s not appear in (Ju)P(u). 

The truth definition for the universal quantifier works in exactly the 
same way, except that we use ‘all s-variants' instead of ‘some s-variant’. 

We want to specify the conditions under which (Vu)P(u) is true in I. In- 
tuitively, the condition is that P(u) be true of all objects in I. We capture 

this idea with the requirement that P(s) be true in all s-variants of I: 

D23: (Vu)P(u) is true in interpretation I iff, for some name, s, which does 
not appear in (Vu)P(u), P(s) is true in all s-variants of I. 

EXERCISE 

15-2. Give an example of a sentence and an interpretation which 
shows that D23 would not work as intended if it did not include the 
requirement that s not appear in (Vu)P(u). 

I hope you will find these new truth definitions for quantifiers to have 
some plausibility. But they are a bit abstract and take some getting used 
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to. The only way to become comfortable with them is to work with them. 
We can get the needed practice, and at the same time lay the groundwork 
for the next sections, by proving some basic lemmas. 
Consider a predicate logic sentence, X, and an interpretation, I. Now 

consider some name which does not occur in X. If we reassign the name 
to some new object in the interpretation, this should make no difference 
to the truth value of X in I. X does not constrain the referent of the name 
in any way. The same thing goes for a predicate symbol not occurring in 
X. Intuitively, X and the unused predicate have no bearing on each other. 
So what the predicate is true of (or the truth value of a zero place predi- 
cate) should make no difference to the truth or falsity of X: 

L25: Let X be a sentence and I and I’ two interpretations which have the 
same domain and which agree on all names and predicates which occur in 
X. Then X is true in I iff X is true in I’. 

By ‘agreeing on all names and predicates which occur in X’, I mean that, 
for each name which appears in X, I and I' assign the same object to that 
name, and for each predicate appearing in X, I and I’ specify the same 
truth value or the same collection of objects of which the predicate is true. 
For names and predicates not appearing in X, I and I' may make differ- 
ent assignments. 
We prove L25 by induction on the number of connectives in X. For the 

basis case, consider an atomic X and an I and I’ with the same domain 
which agree on all names and predicates in X. An interpretation explicitly 
provides the truth values in terms of the extensions of the used predicates 
and names (e.g., ‘Pa’ is true in I just in case the thing named ‘a’ is in the 
extension which I assigns to ‘P’). Since I and I’ agree on the predicates 
and names in X, they assign X the same truth value. 

For the inductive case, assume, as inductive hypothesis, that L25 holds 

for all X with n or fewer connectives and all I and I’ agreeing on X, as 
before. We must separately consider each of the connectives. For exam- 
ple, suppose that X has the form Y&W. Then X is true in I iff both Y 
and W are true in I. But since Y and W both have fewer connectives than 
X, we can apply the inductive hypothesis to conclude that Y is true in I 
iff Y is true in I’; and W is true in I iff W is true in I’. Finally, Y and W 
are both true in I’ iff X (=Y&W) is true in I’, which is what we need to 
show in this part of the argument. 

EXERCISE 

15-3. Carry out the inductive step of the proof of L25 for the other 
sentence logic connectives, modeling your proof on the example just 
given for ‘&’. 
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Now assume that X has the form (du)P(u). The ideas are not hard, but 
keeping everything straight can be confusing. So let's introduce some fur- 
ther terminology: For I' I will write I(X) to remind us that I(X) is an 

interpretation with the same domain as I and just like I so far as names 
and predicates in X are concerned, but differing arbitrarily from I on 
other predicates and names. In considering the case of X = (Au)P(u), 
instead of writing out I((Ju)P(u)), I will write just I(P). Finally, I will write 

I(P,s) for an otherwise arbitrary interpretation agreeing with I on do- 
main, on P, and on s. 

So suppose that (Ju)P(u), I, and I(P) have been given. Suppose that I 

makes (Ju)P(u) true. Definition D22 then tells us that there is a name, s, 

not appearing in (Ju)P(u), and an s-variant of I, L, where P(s) is true in 

I. Now we change I,. We keep L,s assignment of s and of all the names 
and predicates in (Ju)P(u), and we change everything else to look just like 
I(P). The resulting interpretation, I(P,s), is an s-variant of I(P). Further- 

more, the inductive hypothesis applies to tell us that, since P(s) is true in 
I,, P(s) is true in I(P,s). D22 applies to these facts to yield the conclusion 
that (Ju)P(u) is true in I(P). 

I have shown that if (Ju)P(u) is true in I, it is true in I(P). But exactly 

the same argument works in the reverse—direction—if I(P) agrees with I 
on all vocabulary in (Au)P(u), then I agrees with I(P) on this vocabulary. 

So we may conclude that (Ju)P(u) is true in I iff it is true in I(P), as was 
to be shown. (I did not use an iff in the chain of inferences in the pre- 
vious paragraph because doing so makes it harder to keep clear about the 
existential quantifiers, ‘there is an s' and ‘there is an L,'. I will avoid cer- 
tain ‘iffs’ in the proof of the next lemma for the same reason.) 

EXERCISE 

15—4. Carry out the inductive step of the proof of L25 for the uni- 
versal quantifier. 

Let's move on to another very intuitive fact, but one which is a bit tricky 

to prove. Consider a sentence of the form R(s,t), a perhaps very complex 
sentence in which the names s and t may (but do not have to) occur. Let 
I be an interpretation in which s and t refer to the same object. Then it 
should not make any difference to the truth of R(s,t) in I if we replace 
any number of occurrences of s with occurrences of t or occurrences of t 
with occurrences of s. In I, s and t are just two different ways of referring 
to the same thing. R(s,t) says something about this thing, and how one 
refers to this thing should not make any difference to the truth of R(s,t) 
in I. (At this point it would be a good idea to review the discussion of 
extensional semantics in section 9-2.) 
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L26: Let R(s,t) be a closed sentence in which the names s and t may occur. 
Let I be an interpretation in which the names s and t refer to the same- 
object. Let R'(s,t) arise by replacing any number of instances of s by t or 
instances of t by s. then R(s,t) is true in I iff R’(s,t) is true in I. 

I have stipulated that s and t do not have to occur in R(s,t) to cover the 
important case in which all occurrences of s in a sentence P(s) get re- 
placed by occurrences of t. 

EXERCISE 

15-5. Begin the proof of L26 by carrying out the basis step and the 
inductive step for the sentence logic connectives. 

The complications in the inductive step for L26 call for writing it out 
in some detail. In what follows, take care to understand what I mean by 

‘r= s'.'r' and 's' are metavariables over names. So ‘r = s’ means that the 

name picked out by 'r' is identical to the name picked out by ‘s’, that is, 
that r and s are the same name. ‘r= s' does not mean the object referred 
to by the name picked out by ‘r is the same as the object referred to by a 
different name picked out by 's'. 
Now let's assume (inductive hypothesis) that L26 holds for all R(s,t) 

with n or fewer connectives. And let's consider the case of R(s,t) with the 
form (Au)Q(u,s,t). R'(s,t) is then the sentence (Ju)Q'(u,s,t). Let interpre- 

tation I be given with names s and t having the same referent. In outline, 
the argument runs as follows: 

(1) Suppose that I makes (3u)Q(u,s,t) true. (Assumption) 

(2) Then there is a name, r, and an r-variant, I, of I, such that I, makes 
Q(r,s,t) true. (By (1) and D22) 

(3) Suppose that r + sandr + t. (Assumption, to be discharged) 

(4) Then I, makes Q’(r,s,t) true. (By the inductive hypothesis applied to 

(2) and (3)) 
(5) Then I makes (3u)Q'(u,s,t). (By D22 applied to (4)) 

I want to be sure you understand step (4) and the role of step (3). First, 

you might have thought that D22 guarantees (3). But that happens only 
if both s and t actually occur in (3u)Q(u,s.t). Since we want out proof to 
cover, for example, a sentence in which just t occurs and in which we 

replace all occurrences of t with occurrences of s, we have allowed that s 

and t don't have to occur. Next, remember that to apply the inductive 
hypothesis to switch around the names s and t, we need to be considering 
an interpretation in which s and t both refer to the same object. By as- 
sumption, I is such an interpretation. But in step (4) we need this to be 
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true of L. If r + s and r £ t, we're OK. According to D22, I, arises from 
I by at most reassigning r to a new referent. When r # s andr # t,s 
and t still have their mutual referent, so the inductive hypothesis can be 
applied. 
To get ready to discharge the assumption (3), let's see what can go 

wrong if (3) fails. Let's suppose that r — s. In this case, when we apply 
D22 to make I, out of I, we might have the situation pictured for I, in 
figure 15-1. 

In I, s and t both refer to the object o. We apply D22, which says that 
there is an r-variant, L, of I, differing at most from I by assigning a new 
referent, which I’m calling ‘o,’, to r (0, is an object which makes the exis- 

tential quantification true). But if r — s, this means assigning r, that is, s, 
to the object o,, which in general will be distinct from o, So in I, we may 
not have available the condition that s and t have the same referent, the 

condition needed to apply the inductive hypothesis. 
To get around this difficulty I will argue by cases. Case 1: Neither s nor 

t actually occurs in (Au)Q(u,s,t). Then there is nothing to prove, since 
there are no occurrences of s and t to switch around. Case 2: s and t both 
occur in (Ju)Q(u,s,t). D22 requires that r not occur in (Ju)Q(u,s,t). So in 

this case r + s and r + t, we have assumption (3) available, and the proof 
(1)-(5) can proceed. 

Case 3: t but not s actually occurs in (3u)Q(u,s,t). (The case in which 

s but not t occurs is the same.) To remind us that s occurs vacuously, I 
will put parentheses around s, like this: (Ju)Q(u,(s),t). If, in this case, r 
happens by luck to be distinct from s, the proof (1)-(5) applies. So I will 
also assume that r — s. In this case we have the situation for I, pictured 
in figure 15-1, and the inductive hypothesis will not apply because s and 
t no longer have the same referent. In addition, we won't be able to apply 
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D22 in step (5). When r = s, r, that is, s, will get put in for occurrences 
of t when we exchange Q(r,(s),t) for Q’(r,(s),t). Then when we try to apply 
D22 to reform the existential quantification, the u will get put into the 
wrong places. 
To resolve these difficulties, I must accomplish two things. I must show 

that I can pick another name, r', with r' # s and + t, and assign r’ to Or. 

Then I must reassign s as a name of œ. If I do these two things, then s 
and t will again have the same referent, so that I can apply the inductive 
hypothesis in step (4); and I will again be using a name, r' # s and # t, 

so that D22 will unproblematically apply in step (5). 
Once this problem is clearly explained it is easy to solve, with the help 

of lemma L25. I pick a new name, r', not occurring in Q(r,(s),t), + s and 
+ t. L25 tells us that Q(r,(s),t) has the same truth value in a new inter- 

pretation, Iy, that it had in I,, where I, is just like I, except that r’ has 

been assigned as an additional name of o,. Next I apply the inductive 
hypothesis to Q(r,(s),t) and the interpretation Iy. In Iy, r' and r (that is, 

s) both name o,. So the inductive hypothesis allows me to replace all oc- 
currences of r with r'. I now have Q(r’,(s),t) true in Iy, with s not actually 

occurring in Q(r’,(s),t). Consequently, I can again apply L25 to tell me 
that Q(r',(s),t) is also true in I$, an interpretation just like I, except that 
s has been reassigned to œ. At this point If is an r'-variant of I, r' + s 
and + t, and s and t are both referents of o, so that I can carry out steps 
(4) and (5) of the foregoing proof using I$, instead of Ip. 
We are almost done. I have shown that if I makes (Ju)Q(u,s,t) true, 

then I makes (Ju)Q'(u,s.t) true. But the argument works in exactly the 
same way in the opposite direction. So we have shown that I makes 
(3u)Q(u,s,t) true iff it makes Gu)Q’(u,s,t) true, completing this part of 
the proof of L26. 

EXERCISES 

15-6. In a more advanced logic text, this sort of informal proof 
would be written up much more briefly. I have spelled it out in some 
detail to help you learn how to read and study such a proof. To 
further practice study of an informal proof and to appreciate better 
how complicated it really is, formalize the proof as a natural deduc- 
tion. Use 'Mod(LX) for ‘X is true in I’, ‘(Ar)’ for ‘There is a name, 

r’, ‘(AL)’ for ‘There is an r-variant, L, of I’, and so on. I suggest that 

you formalize the initial proof (1)-(5), with the undischarged as- 

sumption of step (3), being sure to make explicit the tacit appeal to 
3E. Then fill in the full argument explained in the discussion which 
follows (1)-(5). The most efficient natural deduction may have a sig- 
nificantly different organization than the informal presentation, 
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which was designed to help you see what is going on as opposed to 
presenting the argument in as few steps as possible. 

Students of truth trees may also have fun doing this argument as 
a truth tree proof, although this is less helpful in exposing the struc- 
ture of the informal argument in English. 

15—7. Carry out the inductive step of the proof of L26 for univer- 
sally quantified sentences. You may do this most efficiently by com- 
menting on how to modify the proof for the case of existentially 
quantified sentences. 

Now that I have shown you how to proceed with this kind of argument, 
I am going to ask you to prove the rest of the lemmas we will need. When 
not otherwise specified, P(u) can be any open sentence with u the only 
free variable, I any interpretation, and so on. 
Lemmas L27 and L28 show that the truth definitions for the quantifiers 

are equivalent to conditions which, superficially, look stronger than the 

definitions: 

L27: Let s be any name not appearing in (Ju)P(u). Then Mod[L (Ju)P(u)] 
iff there is an s-variant, I,, of I such that Mod{I,, P(s)]. 

L28: Let s be any name not appearing in (Vu)P(u). Then Mod[I,(Vu)P(u)] 
iff Mod[I,,P(s)] for all s-variants, I,, of I. 

EXERCISE 

15-8. Prove L27 and L28. Apply L25 and L26 to D22 and D23. You 
will not need to do an induction. 

L29: —(Vu)P(u) is logically equivalent. to (Ju)—P(u) and —(3u)P(u) is logi- 
cally equivalent to (Vu)~P(u). 

EXERCISE 

15—9. Prove L29. Remember that logical equivalence is the semantic 
notion of having the same truth value in all interpretations. You will 
not need to use induction. Instead, simply apply L27 and L28. 

When you have finished your proof of L29, look it over and find the 

places at which you used, as informal logical principles applied in the 
metalanguage, just the negated quantifier rules which you were proving 
as generalizations about the object language! It is a noteworthy, and per- 
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haps disturbing, fact that we cannot prove anything about the object lan- 
guage formulation of logic without assuming logical principles at least as 
strong in the metalanguage. What, then, do we gain in the process? Pre- 
cision and clarity. 

L30: Suppose that Mod{I,P(s)]. Then Mod[I,(Ju)P(u,s)], where P(u,s) arises 
from P(s) by substituting u for any number of occurrences of s in P(s). 

L31: Suppose that Mod{I,(Vu)P(u)]. Let I’ differ from I only in assignment 
of names not occurring in (Vu)Pu, and let s be any name in I’. Then 
Mod{I’ ,P(s)]. 

Note that in L31, s may be a name appearing in (Vu)P(u). L31 is a gen- 
eralization of the principle that all substitution instances of a universally 
quantified sentence are true, a generalization we will need in the follow- 
ing sections. 

EXERCISES 

15—10. Prove L30. You will use L26 and D22 and no induction. 

15-11. Prove L31, using L25, L26, and L28. The fact that s may 

appear in (Vu)P(u) may give you trouble in this problem. The trick 
is not to use the name s for the s-variant in D23. Use some other 

name, t, which does not appear in (Vu)P(u) and then apply L25 and 
L26 to s and t. 

L32: Let I be an interpretation in which every object in its domain has a 
name. Then 

a) Mod[L(3u)P(u)] iff Mod[I,P(s)] for some name, s, that appears in I. 
b) Mod{I,(Wu)P(u)] iff Mod[I,P(s)] for all names, s, that appear in I. 

L32 simply says that the truth definitions for quantifiers given in chapter 

2 work in the special case in which all objects in an interpretation's do- 
main have names. 

EXERCISE 

15-12. Using any prior definitions and lemmas from this section 
that you need, prove L32. 

We are now ready to extend our previous proofs of soundness and 
completeness for sentence logic to predicate logic. Most of the real work 

has been done in the lemmas of this section and in Koenig's lemma from 
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chapter 14. I am only going to outline the proofs and ask you to fill in 
the details. In the next three sections I will only treat predicate logic with- 

out identity or function symbols, and 1 will treat only finite sets of sen- 
tences in the completeness proofs. 

15-2. SOUNDNESS AND COMPLETENESS FOR TREES 

When we extend trees for sentence logic to predicate logic, we add four 
new rules: 3, —3, V, and ~V. Roughly speaking, what we need to do is to 
check that these rules are downwardly and upwardly correct. There is, 
however, a complication: infinite trees. 

Before going further, please review section 8—4. In sentence logic every 
tree ends, including all open trees. That is because we need to work on 

each sentence only once, and when working on a sentence the sentences 
on the output list are all shorter than the input sentence. But in predicate 
logic we may have to work on sentences of the form (Vu)(3v)R(u,v) more 
than once. When we instantiate (Vu)(dv)R(u,v) with a name, s, we get an 

existentially quantified sentence, (4v)R(s,v). When we apply 3 to this sen- 
tence, we must use a new name, t, which we must then substitute back 

into (Vu)(3v)R(u,v), producing another existentially quantified sentence, 
which will produce another new name, and so on. 

The overall tree strategy still works as before: We make longer sen- 
tences true by making shorter sentences true, until we get to minimal 
sentences which describe an interpretation. The process may now go on 
forever, but we can still think of infinite open paths as describing inter- 
pretations in which all sentences on the paths are true. 

Because trees can be infinite, we need to reconsider what is involved in 

a finished tree. We do not need to revise our definition, D9, but we do 

need to make sure that if a tree does.not close in a finite number of steps 
that it can be finished in the sense given by D9. That is, we must make 

sure that there is some systematic way of applying the rules which guar- 
antees that, for each sentence to which a rule can be applied, eventually 
the rule is applied. 

Here's a system which supplies the guarantee. We segment our work 
on a tree into stages. At stage n we work only on sentences that appear 
on lines 1 through n. Stage n continues until all sentences on lines 1 
through n which can be checked have been checked and until all names 
occurring in lines 1 through n have been substituted into all universally 
quantified sentences occurring in lines 1 through n. Of course, at the end 
of stage n, the tree may have grown to many more than n lines. But that 
does not matter. Every checkable sentence occurs by some line, n, and so 

will eventually get checked by this process, and every name and every 
universally quantified sentence occurs by some line n, so every universally 
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quantified sentence will eventually be instantiated by every name. Of 
course, this system is not efficient. But efficiency is not now the point. We 
want to show that there is a system which is guaranteed not to leave any- 
thing out. 
The next point to establish is that if a tree is infinite it has an infinite 

open branch. Koenig's lemma tells us that if a tree is infinite, it has an 
infinite branch, and since closed branches are finite, this infinite branch 

must be open. 
Open branches, infinite or finite, describe interpretations in pretty 

much the way they do for sentence logic. Given an open branch, collect 
all the names that occur on the branch and set up a domain of objects, 
each one named by one of the names on the branch, with no two names 

assigned to the same object. Then let the minimal sentences on the branch 
specify what is true of what. Atomic sentence letters are treated as in 
sentence logic. If an atomic sentence of the form P(s) appears on the 
branch, in the branch's interpretation P is true of s. If an atomic sentence 
of the form —R(s,t) appears, then in the branch’s interpretation R is false 

of the pair of objects named by s and t (in that order). And so on. The 
minimal sentences will generally fail to specify all atomic facts. The un- 
specified facts may be filled in arbitrarily. 

For sentence logic we formulated rule correctness in terms of any inter- 
pretation: Any interpretation which makes an input sentence true makes 
at least one output list true. And any interpretation which makes an out- 
put list true makes the input sentence true. This won't work for quanti- 
fied sentences. 

For upward correctness of the V rule, consider some sentence, 

(Vu)P(u), and some interpretation, I, in which there are more objects than 

are named on an open branch. Even if all of the output sentences of the 
V rule—that is, even if all of the substitution instances of (Vu)P(u) which 

appear on this branch—are true in I, (Vu)P(u) might not be true in I. To 

be true in I, (Vu)P(u) must be true for all objects in I, whether the object 

concerned has a name or not. 
For downward correctness we need the following: Given an interpreta- 

tion in which the first n lines of a branch are true, there is an interpreta- 
tion which makes true all of these sentences as well as the sentences in an 
output list resulting from applying a rule. But for the J rule, not just any 
interpretation in which the first n lines, including (Ju)P(u), are true will 

serve. Such an interpretation might not have a name for an object which 
makes (Ju)P(u) true. Worse, the interpretation might have such a name 

but the resulting substitution instance might conflict with another sen- 
tencé already on the branch. 

This last problem is what necessitated the new name rule, and it is es- 
sential that you understand how that requirement fits in here. Suppose 
that our branch already has '(3x)Bx' and ‘~Ba’ and that the interpreta- 
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tion, I, which makes these two sentences true has just one name, ‘a’, and 

two objects, the first, named by 'a', which is not B and the second, which 

has no name in I and is B. This I is a consistent interpretation for ‘(4x)Bx’ 
and ‘~Ba’, but we cannot use it in forming a substitution instance which 

shows ‘(4x)Bx’ to be true. We must extend or change our interpretation 
by assigning a new name, ‘b’, to the unnamed object. Then the truth of 
'(3x)Bx' is made explicit by including ‘Bb’ on the branch. 
The new name feature of the 3 rule ensures that we always proceed in 

the way just described. When it comes time to describe downward cor- 
rectness of the 3 rule, the downward correctness must be given a corre- 
sponding description. As in the last example, the I which makes the initial 
sentences on the branch true may not have the required new name. Or I 
may have the name but, since the name does not occur in any of the 

sentences so far considered on the branch, the name could refer to the 
wrong object. (Think of lemma 25 in making sure you understand this 
last point.) For lack of the right name referring to the right object, the I 
which makes true the first n sentences on a branch may not also make 
true the substitution instance which comes by applying the 3 rule with its 
new name requirement. But there will always be an s-variant of I, I,, re- 

sulting by assigning the new name s to the right object, which will make 
true (Ju)P(u)s substitution instance, P(s). Since s is new to the branch, 
lemma 25 guarantees that all the prior sentences in the branch will still 
be true in I,. 

The foregoing remarks should motivate the following revisions of D15 
and D16: 

D15': A tree method rule is Downwardly Correct iff it meets the following 
condition for all interpretations, I, and all line numbers, n: Suppose that I 
is an interpretation which makes true all sentences along a branch from lines 
1 through n. Suppose that the input sentence for the rule lies on this 
branch, on one of the lines 1 through n, and the sentences on the output 
lists lie on the lines immediately succeeding n. Then there is an s-variant of 
I which makes true all of the sentences on the original branch, lines 1 
through n, and also all of the sentences on at least one of the output lists, 

D16': A tree method rule is Upwardly Correct iff in any interpretation, I, 
which is described by an open branch, if all the sentences on an output list 
on that branch are true in I, then the input sentence is true in I. 

Note that upward correctness concerns only interpretations which are de- 
scribed by the open branch in question. 

Before checking rule correctness, we need to clarify what is to count as 
the output list for an application of the V rule. For upward correctness, 
the output list resulting when V is applied to (Vu)P(u) includes all the 
substitution instances of (Vu)P(u) on the finished branch. For downward 
correctness the output list includes only those substitution instances on 

the branch as it exists just after the V rule is applied to (Vu)P(u) but 
before any further rules are applied. 
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You can now proceed to check downward and upward correctness of 
the quantifier rules. 

EXERCISES 

15-13. Using lemma L29, show that the rules —3 and ~V are down- 
wardly and upwardly correct according to D15' and D16' (though, 

for these two rules, the difference with D15 and D16 is inessential). 

15-14. Prove that the J rule is upwardly correct. You only need 
apply definition D22. 

15-15. Prove that the V rule is upwardly correct. You need to apply 
lemma L32. 

15—16. Prove that the 3 rule is downwardly correct. You need lem- 
mas L25 and L27. Note carefully the role of the new name require- 
ment in your proof. 

15-17. Prove that the V rule is downwardly correct. You need 

lemma L31. Don't forget to treat the case in which V applies to a 
sentence on a branch with no names. This case will require L25. 

We have now done all the real work in proving downward and upward 
adequacy: 

T10: The truth tree method for predicate logic is downwardly adequate. 

T11: The truth tree method for predicate logic is upwardly adequate. 

Given the revised definitions of upward rule correctness, the proof of 

upward adequacy works pretty much as it does for sentence logic. Down- 
ward adequacy requires some change, in ways which I have already indi- 
cated. Suppose that an initial set of sentences has a model. For sentence 
logic we showed that each time we applied a rule there is at least one 
extension of the initial segment of a branch all the sentences of which are 
true in the original model. Now we show instead that each time we apply 
a rule there is at least one extension of the initial segment of a branch all 

the sentences of which are true in an s-variant of the model for the prior 
branch segment. D15' has been designed to make the inductive proof of 
this statement straightforward. 

EXERCISES 

15-18. Prove downward adequacy for predicate logic trees. 

15-19. Prove upward adequacy for predicate logic trees. To extend 
the proof of section 12-2, you will need to revise the definition of 
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‘length of a sentence’. The natural alternative is to let the length of 
a predicate logic sentence be the number of predicates and connec- 
tives. But on this definition the input and output sentences of the 
—3 and ~V rules have the same length. With a little care you can 
still do the induction with this definition. Or you can define length 
by letting an initial negation followed by a quantifier count as three 
units of length and letting each occurrence of ‘=’ count as two units. 

T10 and T11, downward and upward adequacy, immediately give 

T12: The truth tree method for predicate logic is sound. 

and 

T13: The truth tree method for predicate logic is complete. 

in exactly the way they do for sentence logic. 

15-3. SOUNDNESS FOR PREDICATE LOGIC DERIVATIONS 

To extend the proof for sentence logic, we need to prove rule soundness 
for the four new predicate logic rules. Two are easy applications of defi- 
nitions and lemmas given in section 15-1: 

L33 (Soundness for 3I): If ZFP(s), then ZF(Ju)P(u,s),where (3u)P(u,s) is an 
existential generalization of P(s), that is, P(u,s) results from P(s) by replacing 
any number of occurrences of s with u. 

L34 (Soundness for VE): If ZF(Vu)P(u), then ZFP(s), where P(s) is a substi- 
tution instance of (Vu)P(u), that is, s is substituted for all free occurrences 
of u in P(u). i 

EXERCISES 

15-20. Apply lemma L30 to prove lemma L33. 

15-21. Apply lemma L31 to prove lemma L34. 

Let’s look at VI in a bit more detail. We want to prove 

L35 (Soundness for V1): Assume that the name s does not occur in Z or in 
(Vu)P(u). On this assumption, if ZFP(s), then ZF(Vu)P(u), where (Vu)P(u) is 
the universal generalization of P(s), that is, P(u) results by replacing all oc- 
currences of s in P(s) with u. 
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Let's consider an arbitrary interpretation, I, in which all the sentences in 
Z are true. What will it take for (Vu)P(u) to be true also in I? Lemma L28 
tells us that given any name, s, not appearing in (Vu)P(u), we need only 
show that P(s) is true in all s-variants of I. What we need to do is squeeze 
the conclusion that P(s) is true in all the s-variants of I out of the assump- 

tion that ZFP(s) and the hypothesis that Mod(I,Z). 
But this is easy. The assumption that s does not occur in Z allows us to 

apply lemma L25 as follows: I is a model for Z. Since s does not occur in 
Z, L25 tells us that any s-variant of I is also a model of Z. Then the 
assumption that ZFP(s) tells us that any s-variant of I makes P(s) true. 

You should carefully note the two restrictions which play crucial roles 
in this demonstration. In order to apply lemma L25, s must not appear 
in Z. Also, in order to apply lemma L28, s must not appear in (Vu)P(u). 
The latter restriction is encoded in the VI rule by requiring that (Vu)P(u) 

be the universal generalization of P(s). 

In a similar way, the restrictions built in the AE rule play a pivotal role 
in proving 

L36 (Soundness for JE): Assume that s does not appear in Z, in (Ju)P(u), 
or in X. Then if ZU((Ju)P(u),P(s)FX, then ZU((Ju)P(u))FX. 

You will immediately want to know why the restrictions stated in L36 
are not the same as the restriction I required of the 3E rule, that s be an 
isolated name. If you look back at section 5—6, you will remember my 
commenting that requiring s to be an isolated name involves three more 
specific requirements, and that other texts state the JE rule with these 
three alternative requirements. These three requirements are the ones 
which appear in the assumption of L36. Requiring that s be an isolated 
name is a (superficially) stronger requirement from which the other three 

follow. Since we are proving soundness, if we carry out the proof for a 
weaker requirement on a rule, we will have proved it for any stronger 
requirement. You can see this immediately by noting that if we succeed 

in proving L36, we will have proved any reformulation of L36 in which 
the assumption (which states the requirement) is stronger. 

Of course, by making the requirement for applying a rule stronger (by 
making the rule harder to apply), we might spoil completeness—we might 
make it too hard to carry out proofs so that some valid arguments would 
have no corresponding proofs. But when we get to completeness, we will 
check that we do not get into that problem. 

Let's turn to proving L36. The strategy is like the one we used in prov- 
ing L35, but a bit more involved. Assume that I is a model for Z and 
(3u)P(u). Since s does not appear in (Ju)P(u), there is an s-variant, I, of 

I, such that P(s) is true in I,. Since s does not appear in (Ju)P(u) or in Z, 

and since I and I, differ only as to s, lemma L25 tells us that (du)P(u) and 
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Z are also true in I,. The hypothesis, that ZU((Ju)P(u), P(s))FX, then tells 
us that X is true in I,. Finally, since s is assumed not to appear in X and 
I and I, differ only as to s, lemma L25 again applies to tell us that X is 
true in I. 
The soundness of the quantifier rules immediately gives us 

T14 (Soundness for predicate logic derivations): For any set of sentences, Z, 
and sentence, X, if ZFX, then ZFX. 

The proof is a trivial extension of the proof for sentence logic, but to fix 
the ideas you should carry out this extension. 

EXERCISE 

15-22. Prove T14. You only need to extend the inductive step in the 
proof of T5 to cover the cases of the four quantifier rules. 

15-4. COMPLETENESS FOR PREDICATE LOGIC DERIVATIONS 

For completeness, we also follow the same overall strategy as we did for 
sentence logic. Starting with an initial tableau of sentences, we generate a 
new tableau the sentences of which make the sentences on the original 
tableau true. The sentences on the generated tableau are, on the whole, 
shorter than on the generating tableau. Roughly speaking, we eventually 

get down to minimal sentences which characterize an interpretation on 
which all the sentences of ancestor tableaux are true. But there will be 
some new wrinkles. 
We have to say how quantified and negated quantified sentences will be 

treated on a tableau. For negated quantified sentences, we apply the rules 
of logical equivalence for negated quantifiers, pushing the negation sign 
through the quantifier and switching the quantifier. That will leave us 
with only quantified sentences, with no negation signs in front, with which 
we have to deal. 
We will make a universally quantified sentence true by making all its 

substitution instances true. We will make an existentially quantified sen- 
tence true by making one substitution instance true. But we will have to 
make this substitution instance the assumption of a new subderivation so 
that we will be able to apply the 3E rule to contradictions to get ‘A&~A’ 
as the final conclusion of the outermost derivation. 

These ideas get incorporated by extending the rules for sequential and 
branching generation: 
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: R2' Sequential generation: Extend the statement of the rule with the following 
steps (to be applied before the instruction to reiterate remaining sentences). 

a) If a sentence of the form —(Ju)P(u) appears on the generating tab- 
leau, enter (Vu)~P(u) on the generated tableau. 

b) If a sentence of the form ~(Vu)P(u) appears on the generating tab- 
leau, enter (dJu)~P(u) on the generated tableau. 

€) Ifa sentence of the form (Vu)P(u) occurs on the generating tableau, 
enter on the generated tableau all the substitution instances formed 
with names which appear on the generating tableau. If no names 
appear on the generating tableau, pick one name arbitrarily and use 
it to form a substitudon instance entered on the generated tableau. 
Also reiterate (Vu)P(u) on the generated tableau. 

We must reiterate (Vu)P(u) on the generated tableau because, as you 
will soon see, new names can arise on later tableaux. These new names 
must be substituted into (Vu)P(u) to make (Vu)P(u) true for all its substi- 

tution instances. So we must carry (Vu)P(u) along on each tableau to have 
it for forming substitution instances any time that a new name arises. 

R3' Branching generation: If any sentence of the form XvY occurs on the 
generating tableau, apply R3 exactly as stated. If no XvY occurs but there 
is a sentence of the form (du)P(u) on the generating tableau, pick a New 
Name, that is, a name which does not appear anywhere on the generating 
tableau. Use the new name to form a substitution instance of (Ju)P(u), and 
use this substitution instance as the assumption starting a new subderivation. 
Reiterate all other sentences on the generating tableau in the subderivation 
to complete the generated tableau, just as in R3. 

As students of the tree method already know, these rules create a prob- 
lem. Suppose that a sentence of the form (Vu)(3v)R(u,v) appears on a 

tableau. R?’ tells us to enter at least one substitution instance, (Av)R(s,v), 

on the next tableau and to reiterate (Vu)(3v)R(u,v) itself. R3' will then 

tell us to start a new subderivation with R(s,t), t a new name. Of course, 

(Vu) (3v)R(u,v) also gets reiterated onto the subderivation. But now we 

will have to do the same thing all over again. The new name, t, will have 

to go into (Vu)(3v)R(u,v), giving a new existentially quantified sentence, 
(Av)R(t,v), which will call for a new subderivation with yet another new 
name, which will have to go back into the reiterated (Vu)(4v)R(u,v). We 

are off and running in a chain of subderivations that will never end. 

A first impulse is to wonder if the generation rules couldn't be written 

better, so as to avoid this problem. They can be written so as to avoid 
exactly this form of the problem, but it turns out that no matter how the 

rules are written, some problem with essentially the same import will 
arise. Indeed, proving this is a further important fact about logic. 

Here is an overview of what the problem involves. The semantic tableau 
procedure provides a mechanical method for searching for a derivation 
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which establishes the validity of a given argument, or equivalently, a me- 
chanical method for searching for an interpretation of a given finite set 
of sentences. In sentence logic, the method is guaranteed to terminate. A 
method which thus terminates is guaranteed to give a definite yes or no 
answer to the original question (‘Is the argument valid?’ or ‘Is the initial 
set of sentences consistent?). Such a method, guaranteed eventually to 
turn-up a yes or no answer, is called a Decision Procedure. 

Now, here is the general form of our current problem. Given an ex- 

ceedingly plausible assumption about what will count as a mechanical de- 
cision procedure, one can prove that there is no decision procedure for 
predicate logic. In our formulation we fail to get a decision procedure 
because we may get an infinite sequence of sub-sub . . . -sub-derivations. 
If our tableau procedure has failed to close at some stage, we may not be 
able to tell for sure whether that is because we just haven't pursued it far 
enough, or because it will go on forever. This is not just a weakness of 
our rules. One can prove that any sound and complete system of predi- 
cate logic will suffer in the same way. Roughly speaking, the problem 
arises from the requirement on the 3E rule, which we must have in order 
to ensure soundness. 

Since there is no point in searching for better rules, we will have to see 
what we can make of our R2' and R3’ in fashioning a completeness proof. 

Consider a set of sentences, for example, just the sentence 

(Wu)(4v)R(u,v) for which our tableau procedure generates an infinite se- 
quence of tableaux. We will need the fact that we can then, so to speak, 
draw an unending path through the nested sequence of subderivations. 
Koenig's lemma assures us that we can always do so. Refer back to the 
tree structure at the beginning of chapter 14 and imagine that each node 
represents a subderivation, beginning with the outermost derivation at 
the top node. Moving from one node to two nodes beneath represents the 
process of starting two new subderivations by working on a sentence of 
the form XvY. When we start one new subderivation by working on a 
sentence of the form (Ju)P(u), we start one new node, that is, a “branch” 

with one rather than two new forks. When a subderivation closes, the 

corresponding path on the tree structure closes. Koenig's lemma tells us 
that if such a tree structure is infinite, then there is an infinite open path 
through the tree. 
We now know that if a tableau derivation does not close (is infinite or 

does not have all its terminal tableaux closed) then there is an open path 
of subderivations through the derivation. The path might be finite or it 
might be infinite. Each such path provides an interpretation, which we 
will again call a Terminal Interpretation. But we want to characterize the 
idea of a terminal interpretation so that it will work for infinite as well as 
finite cases. Since an infinite path through a derivation has no terminal 
tableau, we cannot let the terminal interpretation simply be one provided 
by the terminal tableau. 
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Here's the recipe for the terminal interpretation represented by an in- 
finite path. Collect all the names that occur on the path, and set up a 
domain of objects, each one named by one of the names on the path, with 

no two names assigned to the same object. Then look at all the minimal 
sentences which appear on the path. If an atomic sentence letter appears, 
the interpretation will make it true. If an atomic sentence letter appears 
negated, the interpretation will make the atomic sentence letter false. If 
an atomic sentence of the form P(s) appears, the interpretation will make 
the predicate P true of the object named by s. Similarly, if ~P(s) appears, 
the interpretation will make P false of the object named by s. Two and 
more place predicates are treated similarly. If this recipe fails to specify 
all the atomic facts of the interpretation, fill in the missing facts arbitrar- 
ily. In sum 

D24: A Terminal Interpretation represented by an open path has as its names 
all the names which occur on the path and as its domain a set of objects, 
each named by exactly one of the names. The interpretation assigns truth 
values to atomic sentence letters and determines which predicates are true 
of which objects (pairs of objects, and so on) as described by the minimal 
sentences on the path. Any facts not so specified by the minimal sentences 
may be filled in arbitrarily. 

Note, incidentally, that this recipe gives a consistent interpretation. 
Since the path is open, it cannot contain both an atomic sentence and its 
negation. So this recipe will not make an atomic sentence both true and 
false. That is, it will not both say and deny that a predicate is true of an 
object. 
The main work we need to do is to prove the analogy of lemma 18, 

namely 

L37: The sentences of the initial tableau are all true in a terminal interpre- 
tation represented by an open path. 

We prove this by proving that a terminal interpretation makes true all the 
sentences in all the tableaux along its path, arguing by induction on the 
length of the sentences. 
We need to take a little care in saying what the length of a sentence is. 

To keep things initially simple, let us first consider a special case—analo- 
gous to our procedure in section 13—4: Suppose that ‘v’, ‘~’, and the 

quantifiers are the only connectives occurring in any of the initial sen- 
tences. Then we can take the length of a sentence simply to be the num- 
ber of connectives occurring in the sentence. 

To carry out the inductive argument, suppose that we have an open 
path and a terminal interpretation, I, represented by that path. By the 
definition of a terminal interpretation, all atomic and negated atomic sen- 
tences, and so all sentences of length 0 or 1, along this path are true in I. 
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For the inductive hypothesis, suppose that all sentences of length no 
greater than n along the path are true in I. Let X be a sentence of length 
n + 1. Suppose that X has the form ~(YvZ). Then rule R2 for sequential 
generation tells us that —Y and —Z will both be on the path, since they 
will be on the tableau generated by the tableau on which —(YvZ) occurs. 
~Y and ~Z are both shorter than —(YvZ), and the inductive hypothesis 
tells us that ~Y and ~Z are both true in I. Hence —(YVvZ), that is, X, is 

true in I. When X has the form ~~Y the argument goes quite like the 
case of ~(YVZ). 

Next, we must consider X of the form YvW. Such X gives rise to two 
generated tableaux, one including Y and one including W. One of these 
generated tableaux must be on the open path. Suppose it is the one with 
Y. Since (by the inductive hypothesis) all sentences along this path with n 
or fewer connectives are true, Y, and so YvW, are true. If W rather than 
Y is on the path, the same argument applies. 

Suppose that X has the form (du)P(u). Then rule R3’ specifies that 
there is a subderivation along the path that includes a substitution in- 
stance, P(s), which the inductive hypothesis tells us is true in I. Definition 
D22 applies to tell us that then (Ju)P(u), that is, X, is true in I. 

Now suppose that X has the form (Vu)P(u). Rule R2' specifies that, for 
each tableau in which (Vu)P(u) appears, all its substitution instances 

formed with names in that tableau appear in the next sequentially gen- 
erated tableau. (Vu)P(u) is also reiterated, so that any name which comes 
up will eventually get instantiated along the path. By the inductive hy- 
pothesis, all these substitution instances are true in I. Remember that in a 

terminal interpretation there is exactly one object named by each name, 
and we have just seen that all of these names eventually get used to form 
true substitution instances of (Vu)P(u). So lenma L32 applies to tell us 
that (Vu)P(u), that is, X, is also true in I. 

Make sure that you understand how this last step in the inductive proof 
makes essential use of the fact that (Vu)P(u) is always reiterated, to ensure 
that when new names come up in later tableaux, they will always be used 
to instantiate (Vu)P(u). 

We still need to consider sentences of the form ~(Ju)P(u) and 
~(Vu)P(u). Rule R2' applies to such sentences to produce sentences, re- 

spectively, of the form (Vu)—P(u) and (Au)~P(u). There might seem to 

be a problem here because —(du)P(u) and (Vu)- P(u) have the same num- 
ber of connectives, as do ~(Wu)P(u) and (Ju)- P(u). But we can still com- 

plete the inductive step. Suppose that —(3u)P(u) has n + 1 connectives 
and appears on the path. R2' tells us that (Vu)— P(u), also having n + 1 
connectives, also appears on the path. But we have already seen that the 
inductive hypothesis ensures us of the truth of (Vu)- P(u) in the terminal 

interpretation, I. Lemma L29 then tells us that —(3u)P(u) is also true in 

I. Of course, the case for —(Vu)P(u) works the same way. 
To complete the proof of L37 we must lift the restriction and allow 
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sentences to include all the sentence logic connectives. This creates a new 
difficulty. For example, R2 instructs us to generate (K&Y)v(~X&~Y) 
from X=Y. But (X&Y)v(—X&- Y) has four more connectives than X=Y 

rather than fewer. 
We can resolve this impasse by assigning weights to the connectives. ‘~’, 

‘v’, and the quantifiers are each worth one “point,” ‘D’ and '&' each get 
three “points,” and ‘=’ gets six “points.” The length of a sentence is now 
just the number of these "points" added up for all the connectives in the 
sentence. (This technique can also be applied to arrange for —(du)P(u) 
and —(Vu)P(u) to be longer than (Vu)~P(u) and (Au)~P(u).) 

EXERCISE 

15-23. Complete the inductive step of the argument for lemma L37 
with all of the sentence logic connectives. 

We have proved L37, the analogue of L18 needed for proving com- 

pleteness for sentence logic derivations. The proof for sentence logic der- 
ivations also used L20, which says that if all terminal tableaux close, then 
‘A&~A’ appears as the derivation's final conclusion. We must reformulate 
the statement ever so slightly because, with the possibility of infinite deri- 
vations, some paths might not have terminal tableaux. So we will say 

D25: a semantic tableau derivation is Closed if all sequences of subderivations 
terminate in a closed tableau. 

You will then prove the analogy of L20: 

L38: If a semantic tableau derivation is closed, then 'A&-—A' appears as the 
derivation's final conclusion. 

'The key to L20 is the inductive step, L21. Again, we only need to refor- 
mulate to accommodate our more specific definition of a closed tableau 
derivation: 

L39: Let D be a closed semantic tableau derivation. Then, if all of D's sub- 
derivations of level i have ‘A&~A’ as their final conclusion, so do all the 
subderivations of level i + 1. 

EXERCISE 

15-24. Prove L39. You only need to check the inductive step for 
rule R3', involving subderivations started with a substitution instance 

of a sentence of the form (du)P(u). Be sure you see how the new 
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name requirement in the statement of R' functions: crucially in 
your proof. 

If you now go back and read the short paragraph proving T7 and 
change just the words 'L18' and 'L20' to ‘L37’ and ‘L38’, you will see that 
we have a proof of T7, where the set of sentences Z may now include 
predicate logic sentences. T7 applies exactly as it did in section 12-3 to 
establish 

T15 (Completeness for predicate logic derivations): For any finite set of sen- 
tences, Z, and any sentence X, if ZFX, then ZFX. 

15-5. COMPACTNESS, IDENTITY, AND FUNCTIONS 

In this section I am going to get started in cleaning up some details. But 
I am going to let you do most of the work. Students of truth trees and of 
derivations will be able to apply the material of this section appropriately 
to what they have learned. 
My completeness proofs for predicate logic assumed a finite set of sen- 

tences, Z. To get a full statement of completeness, where Z can be infinite, 
we need to show that the compactness result, T8, which we proved in 
chapter 14, also holds for predicate logic. To accomplish this we need to 
modify the idea of a tree of truth value assignments. 

Here's what we do. We can consider all possible closed atomic sentences 
written out in some definite order: the first atomic sentence letter, the 

second, the first one place predicate with the first name, the second. . . : 
‘A’, ‘B’, ‘Pa’, ‘Pb’, 'Raa'. . . . To make sure that this is possible, again con- 
sider that we could write each such description of the atomic sentences in 
English and order them as in a dictionary. 

Say the closed atomic sentences are X,, X2, Xs, . . . Then we can dia- 
gram all possible truth value assignments to these atomic sentences in the 
form of a tree: 

"m p EN 

1 X,0 O~X, 
i a Al € ibn 

The third line will catalogue the alternative truth values for X3 under- 
neath all the possibilities covered in lines 1 and 2, and so on. 

Note that each path through this tree represents an interpretation, in- 
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deed, just the sort of interpretations represented by open paths on a truth 
tree or semantic tableau derivation. We have seen, in the completeness 

proofs, how there must be at least one such interpretation for each con- 

sistent finite set of sentences. We now proceed very much as we did in 
predicate logic. Let Z be an infinite set of sentences all of the finite subsets 
of which are consistent. We list the sentences in some definite order, and 

consider the initial finite segments of this ordering: Z,, Z2, Zs, . . . As we 
work down the lines of the tree, we close branches which conflict with 
some sentences in one of the Z;. Since all of the Z; are consistent, for each 

line of the tree, there will be an open branch reaching down to that line. 

Koenig's lemma tells us that there is then an infinite path through the 
tree. But (if you make the right sort of arrangement of when paths get 
closed) you will see that this infinite path represents an interpretation 
which makes true all the sentences in all the Z;. That is, this interpretation 

is a model of Z. 

EXERCISE 

15-25. Following the suggestions of the argument sketch given in 
the last paragraph, give a detailed proof of compactness for predi- 
cate logic. 

Actually, we have done the work to prove the Lówenheim Skolem Theo- 
rem, a much stronger result, of fundamental importance in logic and set 
theory. In all my discussion of infinite interpretations, I have not men- 
tioned the fact that there are different kinds of infinities. The infinity of 
the integers is the smallest, called, for obvious reasons, a Countable Infinity. 
However, other infinities are, in a certain sense, "larger." Consider, for 

example, the infinity of the real numbers (numbers representable by a 
finite or an infinite decimal fraction, such as 27.75283 . . .). The infinity 
of the real numbers is larger, or Uncountable, in the sense that there is no 

one-to-one correspondence between the integers and the real numbers. 
We cannot list the real numbers with the integers the way we can an infi- 
nite set of sentences. 
The Lówenheim Skolem theorem says that if a set of sentences has a 

model with a finite, countable, or uncountable domain, then it has a finite 

or a countable model. For finite sets of sentences, these models are gen- 

erated by open paths on a truth tree or semantic tableau derivation. If a 
finite set has a model (finite, countable, or uncountable) then there is an 

open path. But then the open path represents a finite or countably infi- 
nite model. The compactness theorem then shows how the same is true 
of infinite consistent sets of sentences. (If our object language does not 
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include identity, then there is always a countable model. But ‘=' allows us 
to write a sentence which, for example, is only true in an interpretation 
with exactly one object. Can you produce such a sentence?) 
My soundness and consistency proofs assumed that our object language 

contained neither identity nor function symbols. For the moment, let’s 
consider just identity. To begin with, we must refine the characterization 
of an interpretation with requirements which should seem natural if ‘=’ 
really means ‘identity’: 

D20' (Interpretations for languages with identity): An interpretation is as 
described in D20 with the following two additional requirements: 

a) A sentence of the form s=t is true in an interpretation iff s and t 
name the same object. 

b) For all atomic sentences of the form R(s,t), if s —t is true in an inter- 
pretation, then R(s,t) and R'(s,t) have the same truth value in the 
interpretation, where R'(s,t) arises from R(s,t) by replacing any num- 
ber of occurrences of s with t or of t with s. 

Clause b) covers sentences such as 'Qab': If ‘a=c’ is true in an interpre- 
tation, then ‘Qab’ and ‘Qcb’ have the same truth value in the interpreta- 
tion. 

A good many of the semantical facts surrounding identity turn on the 
following lemma, which simply generalizes clause b) to the case of any 
closed sentence: 

L40: Let I be an interpretation for predicate logic with identity. Then, for 
all sentences of the form R(s,t), if s=t is true in I, R(s,t) and R'(s,t) have 
the same truth value in I, where R'(s,t) arises from R(s,t) by replacing any 
number of occurrences of s with t or of t with s. 

v 

EXERCISE 

15—26. Prove L40. 

You are now in a position to examine how our soundness proofs need 
to be modified if our language includes identity. Identity involves new 
rules, the roles of which need to be checked in the proofs. 

EXERCISES 

15—27. (Trees) Show that the truth tree = rule is downwardly cor- 

rect. To treat the # rule, note that we can reconstrue it in the fol- 

lowing way: Whenever a sentence of the form s#s appears on a 
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branch, also write the sentence s- s on that branch. Explain why this 
rule comes to the same as the # rule as stated in chapter 9. Prove 
that the rule in this form is downwardly correct. 

15-28. (Derivations) State and prove rule soundness for the two der- 
ivation rules for identity. Comment on whether and, if so, how these 

rules require any changes in the inductive proof of soundness for | 
derivations. 

We can turn now to completeness. For semantic tableau derivations we 
must add two new parts to the rules for sequential generation, corre- 
sponding exactly to the =] and =E rules: Whenever a name s occurs on 
a tableau, include the sentence s=s on the sequentially generated tableau. 
And if two sentences of the form s=t and R(s,t) appear on a tableau, 
include the sentences R'(s,t) on the sequentially generated tableau. Then, 

for both trees and semantic tableau derivations, we change how we read 
an interpretation off an open branch. Before, every name was assigned a 
distinct object. Now each name will be assigned a distinct object unless a 
sentence of the form s=t appears on the branch. Then s and t are as- 
signed the same object. This corresponds to clause a) in D20'. Clause b) 
in D20' is already ensured by the identity rules for trees and for tableau 
generation. 

EXERCISES 

15-29. (Trees) Show that clause b) of D20' will be satisfied in the 

interpretation represented by an open branch. Comment on the sta- 
tus of lemma L40 in describing an open branch. That is, note the 
way in which, in effect, proof of upward adequacy automatically cov- 

ers the work done by lemma L40. Then check that the tree method 
with identity is upwardly adequate. Though intuitively quite clear, a 
formal proof requires care, since the input and output sentences for 
the = rule all have the same predicates and connectives, so that 

none of our prior methods of attributing lengths to sentences will 

apply here. 

15—30. (Derivations) Show that clause b) of D20' will be satisfied in 

the interpretation represented by an open branch. Comment on the 
status of lemma L40 in describing an open branch. That is, note the 
way in which, in effect, proof of lemma L37 automatically covers the 

work done by lemma L40. Then check that lemma L37 is still cor- 
rect. Just as with the case for trees, proof requires care, since none 

of our prior means of assigning lengths to sentences will work here. 
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Finally, let's take a brief look at function symbols. Again, we must ex- 

tend the definition of an interpretation: 

D20” (Interpretations for languages with function symbols): An interpreta- 
tion is as described in D20 or D20', with the following addition: For each 
function symbol, f, and each object, o, in the domain of the interpretation, 
the interpretation assigns a unique object o' = f(o), as the value of f applied 
to o. If s is a closed term referring to object o*, then f(s) is a term referring 
to f(o*). 

The last sentence in D20" constitutes a recursive definition. If s is a name, 

referring to o, then f(s) refers to f(o), ff(s) refers to ff(o), and so on. 
As with identity, once we have made this extension of the notion of an 

interpretation, most of the work is done. 

EXERCISES 

15—31. (Trees) Check the downward correctness of the quantifier 
rules when the language includes function symbols. 

15-32. (Derivations) Check the proof of rule soundness for the 
quantifier rules when the language includes function symbols. 

15-33. (Trees) Check that the proof of upward adequacy works 
when interpretations are read off open branches in accord with def- 
inition D20". 

15-34. (Derivations) Check lemma L37 when interpretations are 
read off open branches in accord with definition D20". 

15-6. CONCLUSION 

You have worked hard trying to understand these proofs of soundness 
and completeness. I too have worked hard, first in understanding them 

and then in my efforts to write them up in a clear and accessible form. 
Working on the strength of the presentations of others, I will be very 
happy if I have made some small contribution to improving the accessi- 
bility of soundness and completeness and if I have avoided both horns of 
the dilemma of too much complication versus inaccuracies in the proofs. 
Whatever I have accomplished, I am sure that my presentation can be 
improved. I welcome your comments and suggestions. In the meantime, 

you should not be discouraged if you have found part II of this text to 
be very difficult. Soundness and completeness are substantial mathemati- 
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cal results. If you understand them only in a fragmentary way, you can 
greatly improve your grasp by patiently going over these chapters again. 
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