Low-Level
Programming

C, Assembly, and Program Execution on
Intel® 64 Architecture

lgor Zhirkov

Apress’

Low-Level Programming

Igor Zhirkov

Apress’

Low-Level Programming: C, Assembly, and Program Execution on Intel® 64 Architecture

Igor Zhirkov
Saint Petersburg, Russia

ISBN-13 (pbk): 978-1-4842-2402-1 ISBN-13 (electronic): 978-1-4842-2403-8
DOI110.1007/978-1-4842-2403-8

Library of Congress Control Number: 2017945327
Copyright © 2017 by Igor Zhirkov

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Robert Hutchinson
Development Editor: Laura Berendson
Technical Reviewer: Ivan Loginov
Coordinating Editor: Rita Fernando
Copy Editor: Lori Jacobs

Compositor: SPi Global

Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page athttp://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub via the book’s product page, located at www.apress.com/9781484224021. For more detailed
information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484224021
http://www.apress.com/source-code

Contents at a Glance

About the AUthOrccvvsmimmns e ——————=—— Xix
About the Technical REVIEWETccussmmssmsssmssmssmmssssssmssssssmsssssssssssssssssssssssnsssssnns XXi
AcknowIedgmENtScceerrsssssssmnnnnnmmmssssssssssssnssssssssssssssssnnssssssssssssnnnnnnsnssssssssnnnnnns XXiii
INtroduction ... ————————————_— XXV
Part I: Assembly Language and Computer Architecture.......ccusssssssnns 1
Chapter 1: Basic Computer Architecture..........cccccunemmmmmsssnmmmmissssmmmssssssnmsssssssns 3
Chapter 2: Assembly LANQUAQEccuiemrrssmsmsssnsmsssnsesssnsssssnsesssnsesssnsesssnnssssnnssssas 17
Chapter 3: LegaCY ...uuuuseermmmsssnnnmmssssnssssssssnnnssssssnnnsssssssnnsssssssnssssssssnnnssssssnnssssssnnnnss 39
Chapter 4: Virtual MemOorycouneeeeemmmmmmmmssssssssssssssssssssssssssssnsssssssssssssssssssssssssssns 47
Chapter 5: Compilation Pipelineccccuuseemmnnssssnnsmssssssnnmssssssssssssssssssssssssssssssssnnnss 63
Chapter 6: Interrupts and System Calls...........cccernssmmmmnnssnnnmmmssssnnnmnssssnmnssnns 91
Chapter 7: Models of Computationcccccunemmmminsssnmmmsssssnmmsssssmmsssssnsssssnnn 101
Part Il: The C Programming Language.........ussememmmmmsssssssnsssnnnnssssnas 127
Chapter 8: BaSiCS ...cucurssrrsssssmssssmssssnnsssssnsssssnssssansessansesssnsesssnsesssnnesssnnesssnnssssanssss 129
Chapter 9: Type SyStem......ccccuunmmmmmmmmmmmmmmmmnssssssnnnes s 147
Chapter 10: Code Structurecccrmmmssmmmmmssssnsnmmssssssnssssssssnsssssssnnssssssnnnsssssnnnnss 181
Chapter 11: MemOrYcccuuiseenmmmsssssnnssssssssssssssnssssssssnssssssssnsnssssssnnssssssnnnnsssssnnnnss 201
Chapter 12: Syntax, Semantics, and Pragmaticscccusemmmmsssnnnmsssssnnnsssssnnnns 221
Chapter 13: Good Code PractiCesccuucemmmmsssmsnmmssssnsnssssssssnmssssssnsssssssnnnssssssnnnns 241

iii

CONTENTS AT A GLANCE

Part lil: Between C and Assemblyccccnnmmemmmmmmmmmsssssssssnnmnanes 263
Chapter 14: Translation Detailscccccnninmemmmmmnnmnmsss s ——————— 265
Chapter 15: Shared Objects and Code Models...........uusmmmmmmnmmmnmmmsssssssssmnmmmmns 291
Chapter 16: PerformancCe.........uusseeemsmmmmmmsssssssssssssmmsssssssssssssssssssssssssssnnnnsssssssssnns 327
Chapter 17: Multithreadingcccemrmssemnmmmssssnmmmsssssmmmsssnmmsssss———— 357
Part IV: AppendiCescuuuuneemmneemmmmmmmmmmmmmmmmnnmnmmmsssssssssssssssssssssnnnnnnns 397
Chapter 18: Appendix A. USing gdbccccurnsssennmmssssnnsmmsssssssmsssssssssssssssssssssssnnns 399
Chapter 19: Appendix B. USing MaKeccccusssesnsnssssnnnssssssssnsssssssssssssssnnnsssssnnnnss 409
Chapter 20: Appendix C. System Calls.........cccucmrmssmnmmsssnmmsssnsssssssesssssesssssssssnneas 415
Chapter 21: Appendix D. Performance Tests Information...........cccuussunmmnnnnnnnnnnns 421
Chapter 22: Bibliography......cccccuusssmenmmsssssnnmmssssssnmssssssssssssssssnssssssnnssesssssnsssssnnnns 425
INA@X.eeiieesriansnmssssmsssnnss s ssm s s s s s ———— 429

iv

Contents

About the AUthOrccvvsmimmns e ——————=—— Xix
About the Technical REVIEWETccussmmssmsssmssmssmmssssssmssssssmsssssssssssssssssssssssnsssssnns XXi
AcknowIedgmENtScceerrsssssssmnnnnnmmmssssssssssssnssssssssssssssssnnssssssssssssnnnnnnsnssssssssnnnnnns XXiii
INtroduction ... ————————————_— XXV

Part I: Assembly Language and Computer Architecture.........usssssnnnna 1

Chapter 1: Basic Computer Architecture..........cccccunemmmmmsssnmmmmissssmmmssssssnmsssssssns 3
1.1 The Core ArChiteCtUre ... ——— 3
1.1.1 Model 0f COMPUEALIONcveeeeeeree et re e s e e s e e a e e a e e ae e e s ae e nae e naen 3
1.1.2 von Neumann ArChitBCIUE ... 3
1.2 EVOIULION ...ttt 5
1.2.1 Drawbacks of von Neumann ArchiteCtUre ... 5
1.2.2 Intel 64 ArCRItECIUIEcocvvecicciiii i ———————————— 6
1.2.3 Architecture EXIBNSIONS........cocovrmninisininininiiniisissssssssss s s 6
LI 31 L] (=] £SO 7
1.3.1 General PUrp0SE REGISTEISc.cceceererccrirircc e 8
1.3.2 Other REOISTIEIS......e ettt 1
1.3.3 SYSIEM REUISTIEIS. ...t 12
1.4 ProteCtion RINGScccceveriiererere s sss e ssessessesssssesssssesssssssssssssssssssasssssssssssssssssnns 14
1.5 Hardware StaCK ... s 14
1.6 SUMMANY ... a e s a e a e s a e sa e sr e sr e n e sn e sn e snennennennnnnnnnnns 16

CONTENTS

Chapter 2: Assembly LANQUAQEccurrussmmmmmssssnnnnsssssssnsssssssssssssssssssssssssnssssssssnnnss 17
2.1 Setting Up the Environment..........o. e 17
2.1.1 Working with Code EXAMPIES ..o s 18
2.2 Writing “Hello, WOrld” ...t sn e n s 18
2.2.1 Basic INPUL @N0 QULPULoveeceeeccceir et e s e nas 18
2.2.2 Program STUCIUIEccceeeereecrcrerrse s sese e se s se s s e s s et s s s e s sse s e s ssasnnnnnes 19
2.2.3 BaSIC INSITUCHIONSvoveccriricccrte et ense e e e s nnnnnns 20
2.3 Example: Output Register Contents.........ccovvvrvrvrrrrersr s 22
T I o | 23
2.3.2 Relative AQArESSINGcccceeerererrereererrerereresersssersesersesessesessessssessssesssssssssssssssssessesessesssssssssessssessesessssssaes 23
2.3.3 0rder Of EXECULIONc.cueeeeeeeeeecereeeceeeseeee e ssss s s s s s s ssssss s s s ssnnns 24
P g T (0 25
2.5 Working With Data.........cccceeecncrcrcrrcr s 28
2.5.1 ENUIANNESScvreecererreecsisieeseses s e se s e s ss e se s e e s e s e se e e s ase et s e sa s e s nsesn e s nsannannees 28
2.5.2 STTNQS ..uvveueeeresresesisesseseseses et e s ss s se s se e se e e se e e e s s e e e e s R e Re e e A e Re e e A e Re e e e A e Re e e e e Renn e e nRennnnen 29
2.5.3 Constant PreCOMPULALIONccoeeeecnirnescnireeser e e s 30
2.5.4 Pointers and Different AddreSSing TYPES.....ccouvueecrerrreseserennesesesssesesessse e e sssssssessssssssessssssssesssssssasens 30
2.6 Example: Calculating String Length..........ccoovvevrvrcrrrcr e 32
2.7 Assignment: Input/Output LiDrary........cocceeervcnnsrscsnseseses s sesens 34
P B 1 o 11T (o T 35
2.8 SUMMAIY ...coeiieceeciecie e sa s e se s sa s n s a s e e e e sn e se e e e e e e e e e n e e e e e e e e e nennennennennan 36

Chapter 3: LEgACYccusurssssasmsasssmsmssssssssasssssssssssnssssssssssnsssnsssnssssssssssnsssnsnsnsnnnsnnns 39
3.1 RRAI MOUE......ceeerereeer et se s e r s e r e n e r s n e n e r e nn e n e nn e nn e nn e nnen s 39
B T o (0 (=i (= o 0o 40
3.3 Minimal Segmentation in Long Mode..........cccoccerrrernierenniernsese e 44
3.4 Accessing Parts of REgIiSIErS........cccvrrrrierircr s e 45
3.4.1 An UNeXpected BENAVIOL..........cccoueveecrerrresesisieeeses s se e se s sssss e sssssessssssssesssssssassnns 45
B B 0 T T o 31 3 OO 45
B e (o] 14 L 0] PO 46
B T T 1111012 46

vi

CONTENTS

Chapter 4: Virtual Memoryccseeessmmmmmmmmmsss 47

o 07 T 3 o SRS 47
4.2 MOTIVALION.....ccueeieerrcriese s s a s s r s r e s nn s s 47
4.3 AUArESS SPACES ..eeverrerrrrreerersserssssesssessesssessesssessssssessssssessssssssssesssssnessssssesasssnssansssssans 48
L (1 (N 49
4.5 Example: Accessing Forbidden Address..........ccoveevvereniennsesessssessssseses s 50
8 1< 1 S 52
4.7 IMplementation..........c.ccvcvcrrrsrr s —————————— 52
4.7.1 Virtual Address STUCTUIE. ..o 53
4.7.2 Address Translation in DEPtN ..o 53
4.7.3 PAGE SIZESceerierrecrreieresssesssses e s e e e s s s s e st se e e s R b e R e e R e e R e R e Re A e e R e e Re R e Re R e e R e e R e e Renrnnn 56
4.8 MemOory MapPing.......ccccvcerrerrersessessessessessesssssessessessesses e s e s s s s s sssssssnssnsssssssssssssssssssssnnes 56
4.9 Example: Mapping File into MEMOIYc.ccocvvrvrirrrsrerrer e ses e e sassenns 57
4.9.1 Mnemonic Names for CONSTANTScovummnn s 57
4.9.2 COmMPIELE EXAMPIE.......cceeeeeerererereercreesere s res e raesersesesaesessesassesassessesesaesasassassesassesasssassessesassesssnesassnaes 58
o 0BT T 0111 SRS 60

Chapter 5: Compilation Pipeline........cccccunmmmmmsmssnnnnmsmmmssssssssnsssssssssssssssssssssssss 63
ST o T 0 T (00T 64
5.1.1 Simple SUDSTIIUTIONS.coe e a e a e a s s a e sa e e a e a e sa e saennens 64
5.1.2 Substitutions With ArQUMENLTS ... sn e n e e 65
5.1.3 Simple Conditional SUDSTIULIONceceiiriecrr e e e 66
5.1.4 Conditioning on Definitionccoevieciecsc e 67
5.1.5 Conditioning on TeXt IAENTILYccceccereeiieericrr e r e ne s 67
5.1.6 Conditioning on ArguMENt TYPEccceerierrierneresire e e e r e r e r e sn s p e n e e nennnnas 68
5.1.7 Evaluation Order: Define, Xdefing, ASSIQNccovecierienniensers e sn s sss e sesnesnsnes 69
Lo R0 (=T 1] (SRS 70
5.1.9 Example: Computing Prime NUMDEIS.........cccrcrirre e sss e sse s s snssessssessssesnssnnes 71
5.1.10 Labels INSide MACK0S........uuriririiriririsisisssss bbb 72
LT T 0T o 73

vii

CONTENTS

B.2 TrANSIALION ...t 74
TG T 0 (] 74
5.3.1 Executable and Linkable FOrmMat ... 74
5.3.2 Relocatable ODJECTE FIlEScccvurrereerereerererereressersesersesessesessessssessssessssessesassessssessesessssssssssssesassessssesssssnaes 76
5.3.3 EXECULADIE ODJECT FlBScovreeerereeereereree s res s reraesessesessesassesaesesaesessesasaesassesae e sassssassssesassessssesasnsnaes 80
5.3.4 DYNAMIC LIDIANIES.....coveeereecererererte st re e seses e se e s aesesse e ssesassesassesae e saesasaesassesas e sassesasssassassesassesasnsnaes 81
5.3.5 LOAUC ...ttt 85
5.4 Assignment: DICHONArY........ccccveecrcecr s nn s 87
8.5 SUMMANY ...t a e s e n e s n e ne e e s 89

Chapter 6: Interrupts and System Calls...........cccoinssmmmmmmsssnnnmmmsssssnnmmsssssnmsssasnn 91
6.1 Input and QUEPUL........ooee s 91
6.1.1 TR register and Task State SEGMENL............ccoveeeerncierree e 92
L3 |) (=] (1]] 94
6.3 SYSIEM CallS........ccocerereririr i e 97
6.3.1 M0del-SPECIfiC REGISLEISccoceuieeeeririresere e se s n s 97
6.3.2 SYSCAl @NA SYSTEL ...t e e e s e R e e R e R e e s 97
6.4 SUMMANY ..ot se e e s s s e s s s e s e s s ae e s sa e s ae e s re e s ae e n e ns 99

Chapter 7: Models of Computationccccccvnsmmmssmmmssssmssssesssssssssssssssssssssssas 101
7.1 Finite State MacChines........c.cccvceeeniernsrcsres e 101
78 T8 I =10 P 101
7.1.2 EXAMPIE: BitS PAitY......cccovevieeeeirirreieseresieescsissse s sa s nnns 103
7.1.3 Implementation in ASSEMBIY LANGUAGE.........ccoveeeererrrenerirreeesessssesesesssssesesssssssessssssssessssssssssssssssssnns 103
A T o (e ez LY T 105
7.1.5 REQUIAT EXPIESSIONScuceveerreereresseesesessesesesessssesessssssssesesssssssssssssssssssssssssssssssssnssssssssssssssssssssssssssnssns 106
7.2 FOrth Machineg........cvviiicinin s 109
7.2.1 ArCRIEECIUNE ..ot 109
7.2.2 Tracing an Exemplary FOrth Programccccvcevrernreresereseresesesesessesessesessssessessssessssessssesssssssssansens 111
48 3 0110 - 112
7.2.4 How Words Are IMpIEMENTEAc.ooevieiiririire e sse e ss e ss s s ss e sr s e s ss e s s s e s s saesn s sassne s 112
28 3 070 11 1T R 117

viii

CONTENTS

7.3 Assignment: Forth Compiler and Interpreter..........ccovvrvrcrcrcrcrcrcrcr e 118
7.3.1 Static Dictionary, INTEIPIETEN ..ot 118
A I T 4 1 Lo OO 121
7.3.3 FOrth With BOOTSIFAP......coveeieeccricecccre e 123
A 1T 11 1 TS 125

Part II: The C Programming Language.........cccevvernnssssssssssssssssssnssnns 127

Chapter 8: BaSICS ...uuuuseermrmssssnmmmssssssnmmssssnsnssssssnsnssssssnsnssssssnsnssssssnnnssssssnnnsssssnnnnss 129
T 100 1T (0] 129
8.2 Program StrUCLUIEcccvcercerrere s n s n s sn e sn s nn e nn s nn e 130
L D L Q] 0T 132
8.3 CONEIOl FIOW.......ciueeeeireeese et sss s s s sne s sn s s sn s 133
T T | TSRS 134
8.3.2 WHII ...ttt AR AR E AR e e e R e e e e R e e e eas 135
T TR I] TR TTRPSO 135
LT T) (T 136
8.3.5 SWITCN ..t e R e AR e e R R e e e s 137
8.3.6 EXAMPI: DIVISOLevreeeererreesesesse s es s s s se s se s s s ssss s e s se et s sse s e s ssesssssssnssnnnees 138
8.3.7 Example: Is It @ FibonacCi NUMDEI? ..ot 138
8.4 Statements and EXPreSSiONScuvveeririeerieriseresssesesssssessssssssssessssssssssssssssssssesssssaesns 139
B B ==Y 41T 01 T - 140
8.4.2 BUIlAING EXPrESSIONScoveereerereerersereesersesersesessessssessssessssesssssssessssessssessesessessssssssssssssessenssssssssesssassansens 14
8.5 FUNCHIONS ..ottt a e s a e s sa e s sa e s e e ae s e e nne 142
8.6 PrEPIOCESSONeeeerueeeeeree e ssne e ssee s s s e s s s e s s s s e e s s e s e s sne e e e sne e e e enesannenesnnennnns 144
A 1111 11 T 146

Chapter 9: Type System.........cccucmmismmmsmmmssmmmsmmssmms s s s ssnss s snsnsnnes 147
9.1 BasiC Type SyStem Of C.........ccocrvririrrrrererrir s se e s e snssnssnenes 147
9.1.1 NUMEHIC TYPES c.vrvereruerreereererserersersrsersesessessssessssessssessssessssessssssessssessssessssessssssssssssessssessssessessssensssssassens 147
9.1.2 TYPE CASHING ..eeereereeereeereerereser s s e rae s e raesesaesa s e s e s e sae e s ae e saesesaesassesae e saenesaesesae e ssesaenesaeenaeananranaens 149
0.1.3 BOOIBAN TYPE ...uveeereierterierie e see st e e s sa e s s a e e e b e e s e b e e e e e b e e e e e b e e e e e neenennns 150
9.1.4 IMPLICIt CONVEISIONScuerveereerererersersesersesessesessessssessssessesesssssssessssessssessssessssssasssssessssesssnessessssensnsssansens 150

CONTENTS

0.1.5 POINTEIS 1.vuvsisisisississss i 151
L0 B A SRS 153
9.1.7 Arrays as FUNCHION ArQUMENTS........coi i s sa e sa st sa s e e sa s st sassn s saesa s sassne s 153
9.1.8 Designated INtialiZers iN ArTAYSccvveveririre e ss s s ss s s e sa s sa e sa s s e s sae e s e sae s 154
Lo e N0 TC I T S 155
9.1.10 The Main Function ReVISItEd..........cuuiiiiini 156
Lo I 00 TcT (0] -) 157
L0 TR I 04 1 T3 158
L0 TR I 20 T 160
Lo O I T T (g P L TSRS 160
0.1.15 COUING WEIL........eeereeeereereseeeesessessesseseessssessessessesss s s ssess s s s s s s ses s s s s s ensnans 162
9.1.16 AsSignment: SCAIAr PrOUUCT..........ccovrererere s reresss e ree s sae e e ses e sas e saesesassesassessesassessssessesesssnssasansens 166
9.1.17 Assignment: Prime NUMDEI ChECKETovvvrerererrrereerere et seresessesessesessesessesassesassessssessssessssansens 167
0.2 TAQUEA TYPELS ...eeruererrreris s st s s s se s s e e n e e e e sn e n e n e sn e e nnann e nnennenrenan 167
0.2.1 SHUCTUIES ...ttt b bbb bbb E s bbb b b s s b s b s b s bbb s b bR s b b 167
L8 310 169
9.2.3 Anonymous Structures and UNIONS...........ccoceurueerererencncsersesesesess e sss e sssssssssssssssssens 170
0.2.4 ENUMEIALIONS......ocuiuiiiiitiiiiiiis bbb bbb bbb bbb bbb bbb bbb b e 171
9.3 Data Types in Programming LANQUAGEScccerererersersesessessssessessssessessssessssesssssssenns 172
9.3.1 KindS OF TYPING ...vcueerrreeereresreesessssesssessssssssessssssesessssssssessssssssssssssssssssssssssssssssssssnssssssssssssssssssssssnssnsnns 172
9.3.2 POIYMOIPRISIMN......eeeecececececececeeese e ss e s essasssssssnsrsssssrnasanans 174
9.4 PolymorphiSm QN C.......ccvverieriererrersesserses s sse s s sesses s sesssssssssssassasssssasssssassssssssnns 175
9.4.1 Parametric POIYMOIPRISIN ... sa e s a e sa e s a e sn e a e s e sn s e e s 175
0.4.2 INCIUSION ...vvvvsiririsisesss s 177
LI 011 0 Voo T 178
LT 0T (o] 179
0.5 SUMMANY ..ottt s e e e e e s e e e e e nn e nnennennenrnnan 179

Chapter 10: Code Structurecccmsmmsmmmsmmsssmssmssmsssmssss s s ssas s nnsns 181
10.1 Declarations and Definitions............ccovinrnnnnn e 181
10.1.1 Function Declarations...........c.coevnnnininnnnns s 182
10.1.2 Structure DEClarations..........cocovcrerenirininninnn s 183

CONTENTS

10.2 Accessing Code from Other Files........coveernerenennennsssesrssessse s snessssens 184
10.2.1 Functions from Other Fles ... 184
10.2.2 Data in Other FIleS ... 185
QO 1T T g 187
10.3 StaNAard LIDrarycoccvevevererererers s sss s ssssssssssasssssssssssasssssassasssssssses 188
10.4 PrEPIOCESSONcveererreesersessessessessessessessessesssssessessesssssesssssessssssssesssssessssssssssssssssssssanes 190
10.4.7 INCIUAE GUAIT ...ttt bbb bbb bbb b 192
10.4.2 Why IS PreproCeSSOr EVIl? ... sas e s s snessssssss e s sns s 194
10.5 Example: Sum of @ DYyNamiC ArTay.........ccccerverenesnerensmsesessesssssssessssessssessssessssssssssens 195
10.5.1 Sneak Peek into Dynamic Memory AlIOCALIONccoverererenienererneseser s sesens 195
T0.5.2 EXAMIPIC ...t see e e s ne e st nRe e e s s e e e e nannn e e nnans 195
10.6 Assignment: LINKEd LiSt.........cccverererererrsrsssssssss e ssssssssssssssssssssssesssssssssssssssssssses 197
02 T T T 10T 197
10.7 The StatiC KEYWOI........cc.coveeeeeeeee e e e s sns e snesns s snssnssnssnssnssnsnne s 198
10.8 LINKAGE ...cueeruereerseresessesessesssssssessssesssssssesessssssssssssssssssssssssssnsssssssssssssssssssssssssanens 199
10.9 SUMMANY ..o sa e s sa s s sae e e s saesa e e e e e e e e e e e saena e na e snenaenn e s 200

Chapter 11: MemOrYccccurrmmmmmssssssssnmmmmssssssssssssnssssssssssssssnsnssssssssssssnnnnnnnssssssssns 201
11.1 Pointers ReVISIted..........cocurrinninnnsss s 201
11.1.1 Why D0 We NEEA POINTEIS?.......ceoeeererererereerereesessesessesessessssessssessssessesssssssssessssessenesssssssssssasssssesassenes 201
11.1.2 Pointer AfthMELIC ... ———————— 202
B 3 TC IR 1 T 203
L T 203
B 0 04T 0 204
11.1.6 FUNCLION POINTEIS......cviiiisiirisisssss s 205
11.2 MeMOrY MOGEL........coeeeeeeeeecece e sn e r e n e n e sn e sr e sn e sn e sn e nn e nn s 206
11.2.1 MemOry AlIOCAEON.......c.cceeecce et e a s e e e e p e p e s 207
11.3 Arrays and POINEIScccucceeieriennseresssesesse s sns e snesnnens 209
11.3.7 SYNEAX DOLAIIS......vcveecrereecertrire e se e s e e a e e e nnans 210
B T 1o I S 211
0 140 1 114 213

xi

CONTENTS

11.5 DAt MOEIS......ceeeeeeeee e 213
11.6 Data SIreams.........cccvvirnn i —————— 215
11.7 Assignment: Higher-Order Functions and Listsccccceeererereceseseesssses s sesseenns 217
11.7.1 Common Higher-0rder FUNCLIONS ..o e s s sns e sns s 217
T1.7.2 ASSINMENL ... e e e e e e R e R e e R e e e Re e e e R e e re e 218
11.8 SUMMANY ...t s r s n e s nn s snen s 220

Chapter 12: Syntax, Semantics, and Pragmaticscccccemmmmrrssssssssssssnnnsssssssnns 221
12.1 What Is a Programming Language?.........ccccueeeenernernsesesessessssssessssessssssssssssesssssssens 221
12.2 Syntax and FOrmal Grammars.........cccecevererersersssssssesssssessssssssssssssssassssssssassssssssssses 222
12.2.1 Example: Natural NUMDEISccoi i ssesse e ssessessessessesassssssssssssssssssssassssssssssssssessasssssens 223
12.2.2 Example: Simple AfTNMETICScoveverererererere e s s s rae s e e se e s e sas e saesesaesesassesaesassesasseres 224
12.2.3 RECUISIVE DESCENL......ccociriiricissr i 224
12.2.4 Example: Arithmetics With PriOFties.......cccveeverrerere s s e s e sae e saesessesassesassenes 227
12.2.5 Example: Simple IMPerative LANQUAGEcoeocvrererrererererseresersesersssessesessessssessssessessssesssssssssessssessssenes 229
12.2.6 ChOMSKY HIBIAICNY.........coveereeerrerererereresersssessesessesessessssessssesassesssssssesssssssssessssessensssesssasssssesssesasneres 229
12.2.7 ADSTIACE SYNTAX TIB ...veuerreerrererrerersererereserseseraesessesessesessessssesaesessssessesessessssessssessenessenssasssssessssesssneres 230
12.2.8 LEXICAI ANAIYSISuveueereereeereerersesersesesserssersssessesssssssssessssessssessssesssssssessssessssessssessensssssssasssssessssesssseres 231
12.2.9 SUMMAIY ON PAISING ..veueeveerrererrererereressssersssessesessessssessssessssessssesssssssesssssssssessssessessssssssssssssessssessssees 231
12.3 SEBMANTICS......ctreiciriiet e 231
12.3.1 Undefined BERAVION ... s 232
12.3.2 UNSPECIfied BENAVIOLcoeiereeceerierere et sae e s s saesae s saesaesae s e saesaesa e s e saesaesassaesassaesanssnnnns 233
12.3.3 Implementation-Defined BENAVIOLccccevereierererese et sas e see e saesae e sassassassaesnesnes 234
12.3.4 SEQUENCE POINES.....ueeicieececr ettt e p e e s e e p e n e s 234
12.4 PragmatiCs........coviererneresessessnsssessssessssssesessesssss e sesssnees 235
L I Y 1140 OO 235
12.4.2 Data Structure Paddingcccccceeereicrerinesesirree et 235
125 AlIgNMENT N CTT oo e e e se e e sn e n e nn s 238
12.6 SUMMANY ... se e s s e a e sa e r e r e sa e a e a e nn e n e srsnnennennennnnnennnns 239

xii

CONTENTS

Chapter 13: Good Code PractiCesccuummmsssmmsnnmmmsssssssssssssssssssssssssssssssssssssssnns 241
13.1 MAKing CROICEScovrereeirerrriresnr et sn s 241
13.2 Code EIBMENTS........coeeceeeeececeecierse e sn e n e n e n e n e sr e sn e sn e sn e sn e nn e nn s 242
13.2.1 GeNeral NAMING.......ccoveeeiereiiesese e ses s e e s e e s st a e ae e e e ae e s e et b e e Re e s Re e s Re e e e nre e ns 242
13.2.2 File SITUCIUIE ...ttt a e p e e p et p e e R e R e s p e p e e 243
13,2, 3 TYPES. et e e e e s s R e e R e e s e e s Re R e R e e AR R AR R e AR R e e RS e RS R e Re R e AR R e Rn R e e nRe e ns 243
T3 2.4 VANIADIEScoveeereeresererre e e s s e e s s R e e e s Re e s R e R e e e R e e e Re e e e R e e R e e 244
13.2.5 0N GIODAI VArIADIES.......cvceeeeeereecric ettt s n s 245
13.2.6 FUNCLIONSececcrcrccscres e sa s e e s e st b s e R e e e e nene e e nnans 246
13.3 Files and Documentation..........cccceceeeeerenesessesesesse e sse e sss e ssessssssssssnssnssnssnnnes 246
13.4 ENCAPSUIALION ...t sn e sn e s sn e n e n e sn e n e sn e sn e nn e nnnnn s 248
13.5 IMMUEADITITY.....ccveeeiceerce e 251
13.6 ASSEITIONScuceveereereserrese s sse e e se e s s se e s e s ae e s e ae s aenn s e e re e naennn e nnnnnnnns 251
13.7 Error HANAIiNg......cccoeeeeeeeserecsessesse e e ssessesse e sssssssssssessssnssssssssssssssssssssssssssssnsnnes 252
13.8 0N MemOry AlIOCALION.........coeeeeeececeere e n e sn e nn e nn s 254
13.9 0N FIEXIDITY ...coveereeeeeresesee e n e 255
13.10 Assignment: Image Rotation...........ccocevevererrre s 256
13.10.1 BMP File FOMMAL ...u..vveureesreessesesseesssssessssssssssssssesssssessssmssssssssssssssssssssesssssssssessssssssssessssensssssssssnnees 256
T 0T 4T T (O 258
13.11 Assignment: Custom Memory AllOCatOr..........ccccvevererrersrr s 259
13,12 SUMMANY ... a e a e s e e r e s sn e ne e anns 262

Part lil: Between C and Assemblycccccnnnsseeeennnnnssssssssssssnsnnnnns 263

Chapter 14: Translation DetailScccccvvimmmmmmssmnnnnmmmmmssssssn s —————— 265
14.1 Function Calling SEQUENCEcccrveeerirerirere s se s sns e snesenaens 265
T4.1.1 XMM REUISTIEISeeeeereieccre et sn e s st e s b et p e e ne e e s n e nn e s 265
14.1.2 Calling CONVENTION.......cceieeecccecece e e s r e p e s ne e e s p e r e s 266
14.1.3 Example: Simple Function and IS STACKccocevevinininnscrrrr e 268
B T 271
14.1.5 Variable Number of ArgUMENTS.........coiirr e s r s n s sp e 271
B B0 T L u =T (o T Lo SRS 273

CONTENTS

142 VOIALIE ... 273
14.2.1 Lazy MemOry AlIOCATION.........ceeeeeererecrereseesesessse e s e s e e s s s e ss e s s sssssssesssssssssnsnsns 274
14.2.2 GENErated COUEcvriiiririisss s 274
14.3 Non-Local JumpPS—SetjmpP.....cccccerererrrirr e ss e e snssassassassne s 276
14.3.1V0latile and SELIMP ...covceeeeererererererererererse s rsesessese e sessesss e saesesassessesesassassesassessesesassssasssssessssesasseres 277
144 INIINE..ceccrtr s ——————— 280
14.5 TESTCT ... —————————— 281
14.6 STHCT AlIASING .vevvereereereerere e sae e sa e saesa e e sa e sa e a e e e sa e sa e sa e sn e nn e nn e s 283
14.7 SECUILY ISSUBS ...eeueeeererrereerre e e ssessessessesse e ssessesaesne s snesn s nesnesnesnesnesnennssnesnnnnenna s 284
14.7.1 Stack BUTFEI OVEITUN ...ttt bbb bbb s 284
14.7.2 rEHUM-T0-lIDC ..o 285
14.7.3 Format Output VUINErabilitieSccevereererererie st s sae e sae e sa e e e e sa s sn e sa e sa e saesnennen 285
14.8 Protection MeChaniSmS..........cccoricnrncnnnes s s 287
14.8.1 SECUILY COOKIB.......cueeererreueererrsseesessssesesesessessesssssss e e ss s e s sss s e s ssss s e ass s e ssse s e ssssesssssssssssssnsans 287
14.8.2 Address Space Layout RaNdOmizationccccvevrenniennscne s sesessssesessesns 288
TAB.3DEP ...ttt AR AR e e Re e AR e e e e e Re e e e Eans 288
14.9 SUMMAIY ..o s sas s sas s e sas e e e e saesa e e e sa e sa e sa e e e sa e na e e e snennenn e s 288

Chapter 15: Shared Objects and Code Models...........oussummmmmmmnnnnssssssssnssnsssnssssnns 291
15.1 DYyNamic LOAAINGccorererererererserseseesssssessesssssessssasssssaesassassassasssssassasssssassssssssssses 291
15.2 Relocations and PIC..........connn s 293
15.3 Example: Dynamic LiDrary in C........ccoccoviennnenensnesnsesessssesssss e ssssessssssssssssssssssssens 293
L0 140 0 P 294
15.4.1 Accessing EXtErnal VariabIEs..........ccovecvrvererererereseresesesssessesessssessesesssssssessssessssesssssssssssssssssesassenes 294
15.4.2 Calling External FUNCLONS ..o 297
15.4.3 PLT EXAMPIE ...ttt e ae s a e s a e st sa e sa e s a e s b e e na e e e na e e e e e e e e e s e naenaennennes 299
15.5 Preloading......ccccoceeeerresesesessessessessessessesssssessessesssssssssssesssssssssssssssssssssssssssssssssssanes 301
15.6 Symbol AddreSSing SUMMAY........c.coererrerenseresrssesessesesessesss s sessessssssssssssssssssssens 302
15.7 EXAMPIES ...ttt n e e 303
15.7.1 Calling @ FUNCHON ...t 303
15.7.2 On Various DYNAMIC LINKEIScceevereriererrerserersesessesessessssessssessesesssssssessssessssesssessesssssssssssssasssssesasseres 305

xiv

CONTENTS

15.7.3 Accessing an External Variable...........coovveninine s 306
15.7.4 Complete ASSEMDBIY EXAMPIEccceererererereerererersesesesessesssessesesssssssesssssssssessssessesessesssssssssessssesssneres 307
15.7.5 MiXing C and ASSEMDIY.......cceeerrererererererersesersesessesessesassesssessesesssssssesssssssssessssessessssssssasssssessssesssneres 308
15.8 Which Objects Are LINKEA?ccceeeeeerereceeree e ssesse s s s sns s sns s s s 310
15.9 OPtimMIZAtIONS.......cceereererree e s s ra s s a e a e e n e e n e ae s nenas 313
15.10 Code MOGEIS ... 315
15.10.1 Small Code MOAEl (NO PIC)corererererereerereesersssessesessessssessesesssssssesssssssssessssessssessssssssssssessssesasseres 317
15.10.2 Large Code MOdel (NO PIC)ccvererererereerereerersesessesessessssessesessssessessssessssessssessssssssnsssssssssssssesasneres 318
15.10.3 Medium Code Model (NO PIC)cccvurererrereerererersererereserssessesessssessesesssssssessssessesessssssssssssessssesasseres 318
15.10.4 SMall PIC COUE MOUEL........ccreinrririinsisirisissss s 319
15.10.5 Large PIC COAE MOUEL.........ccceeererererererereesereesessssessesessesssessesesssssssessssessssessssessessssssssassssssssssesssneres 320
15.10.6 Medium PIC COdE MOGEL.........ccrmriniiririsisrisss s ssses 322
ST I T 1714 - S 324

Chapter 16: Performance.......ccccuusessmmssssssssmsssssssssssssssssssssssssssssssnnsssssssnnnsssssnnnnss 327
16.1 OptiMIZALIONS......eeceececeeeece e n e nn e r s 327
16.1.1 Myth AbOut FaSt LANQUAGEScccourureerererneeisesseesesesssssesesss s sesssssss e ssss s s sssssssessssssssssssssssssssssnns 327
16.1.2 GENEIAI AUVICE.......ceeeeeiieieee e 328
16.1.3 Omit Stack Frame POINTEN ... s 329
L 0 1 =T o 330
16.1.5 Common Subexpressions Emination ... ens 333
16.1.6 Constant Propagation ... s 334
16.1.7 (Named) Return Value Optimization.............cccoereiennnnicscrnecsissee s 336
16.1.8 Influence of Branch PrediCtion ... 338
16.1.9 Influence of EXECULION UNIES ... 338
16.1.10 Grouping Reads and Writes in COUEcccerureerererreenerereeesese e 340
B L2 07 T 11 o SRS 340
16.2.1 How Do We use Cache EffECHVEIY?ccoveeererneererssesesssss e sssssssssssssns 340
16.2.2 PrefelCRiNGcoceeeveccrececsestri e p e g a e nnnn s 341
16.2.3 Example: Binary Search with PrefetChingoccccovinvennnsscscrnssscssse e 342
16.2.4 ByPasSiNGg CACHEccuvveeeerrrirecrerre e sss e se s s ss s s s s s ssasessnnnsnns 345
16.2.5 Example: MatriX INitialiZation...........ccoceceermenesennesesesssesesssssssessssssse s ssssssssesssssssssssssens 346

XV

CONTENTS

16.3 SIMD INSTruCHioN ClASS......c.coeruereereereerre e sse e sae e sse e sae s sn e snssassnssn e sn e snennn s 348
16.4 SSE and AVX EXTENSIONScceceeeerrserresessessnsessessssessssesssssssessssssssssssessssssssssssssssnsssens 349
16.4.1 AsSIgNMENt: SEPIA FIlEYceeveeererere et re s se e ra e sae e e sesae e sae e s e e e sae e es 351
16.5 SUMMAIY ..o sa e s s sa e s saesa e s e s s sa e sa e e sa e e e sa e sa e e e sa e sn e nn e nn s 354

Chapter 17: Multithreadingcccuusesmmssasmmssssnsssssnssssssssssssssssssssssnsssssnsssssanssssnnsnss 357
17.1 Processes and TRreads.........ccoceeererrersersersessessessessessesssssesssssssssssssssssssssssssssssssssssenes 357
17.2 What Makes Multithreading Hard? ..o ssesenaens 358
17.3 EXECULION OFAEK ...t sn e n e sn e sn e sn e n e sn e sn e n e e n e nn e nn s 358
17.4 Strong and Weak Memory MOdEIS...........ccoveeeenenernnmnesessesssss e ssssessssssssssssessessssens 359
17.5 Reordering EXAMPIEccoeverererereree e ree e sassss s ssessssassassssssssassssssssassasssssssses 360
17.6 What Is Volatile and What IS NOtccoeeeeerecececeecre e ses e 362
17.7 MEMOIY BaITIiErS.....ccceeeeeereeeeree e sn e snesne s sn e sn e n e sn e sn e sn e sn e sn e nn e nna s 363
17.8 Introduction t0 pthreadsccceeererercrerrrr e s 365
17.8.1 When to Use MUIEIthreadingcveeceerereicnirinccscreneesesess e ss s ssssans 365
17.8.2 Creating THIEAUScoeveeeerererecrerise e e s e e s e s e e e s e s e e nnans 366
17.8.3 MaNAGINg THIEAUSccveveuecrererecirire et esa e nnnn s 369
17.8.4 Example: Distributed FACIONZation..........coeveieiere e sae e 370
17.8.5 IMULEXES ..ottt e e e e A e Re e e A e R e e e A s Re e e e A e R e e e e s Rnnn e e nnans 374
17.8.6 DBAGIOCKS ...ttt R s 377
LR A T o 378
17.8.8 CONAItioN VAIADIEScocoeeereceseseeesesesesesesesese e se s s s s s s s s s s s s sesss s s s s s s s s sssssssnas 379
17.8.9 SPINIOCKSceveereerereererersesersesessesessesessesassesssessssssssssssessssessssessssesssssssessssesssessssessenssssnssasssssensssesssneres 381
17.9 SEMAPNOTES.......ccereercceer e sn e 382
17.10 How Strong IS INel 647 ..ot 385
17.11 What Is Lock-Free Programming?cocucevennnennsmsessnsesssssssssssessssssssssssesssssnsens 388
17.12 C11 MemOry MOGEIcoveveereereerereeree e sae e s sa e sa e sassnssnssassassn s sne s 390
0 0 - T 390
B 0 (0] 390
17.12.3 Memory OrderingS iN Gl Tcoveoeeeeere e sere s e re s e res e rae e rae e sesesaesas e sas e saesesaesesassesassassesassenes 392
B 0T 392
1713 SUMMANY ... a s a s sr e r s sn s ne e 394

xvi

CONTENTS

Part IV: ApPendiCes ...ccuuussemmmmmmmmssssssnnnannmmssssssssnsnsnnsssssssssnnnnnnnnssssnan 397

Chapter 18: Appendix A. USing gdbcccemmssummmmmssssnsnmsssssssnsssssssssssssssssnsssssnnnnss 399

Chapter 19: Appendix B. USing MaKecccuuussseenssssssnnssssssssssssssssnnsssssssnnssssssnnnnss 409
19.1 Simple MaKETIlE......cccoeeeeecererere e sn e sr e sr e sr e snesn e nn e nne s 409
19.2 Throwing in VariabIes ..o 410
19.3 Automatic Variables..........coceecieenscresrrerr e 412

Chapter 20: Appendix C. System Calls.........ccuccmmrmsssnmnnmmssssnnnmsssssssssssssssssssssssnnns 415
R 7 PSP 415
20.1.1 AFQUIMEBNTSeveieieciccte st ss e e e s s s e e sa e s e e e e e e e s e b e e e e e b e nee e e neenennes 416
20.2 WIILE ..veeeeeeeeceeseessssssssssssssssssssssessss s s snssa s s s sn e s e s s s e nn s r e e s s e s e nn e s e nsennennnnnennnnnnnnnnnnnnans 416
20.2.1 AFQUMEBNTS ...ttt e e s s e e e e e AR e e R e e Re e e Re b e e e R e e e Re e e Re e naeenanns 416
P] o= RSSO 416
20.3.1 AFQUIMENTS ...t se s se s se s se s s e ne s s ae e e s s Re e e e s Re e e s e s Re e e e nsenn e s nansnannees 417
20.3.2 FIAGS ... veveueereresseesesssseesessssessessssessesssssssssssssssssssssssssssssssssesssssssessssssasesssssssassnsssssessasssnsesssssssnssnnsns 417
20.4 ClOSEeeeeeereeressessesssssssssssasssssassensassesssssessnsssssesssssnssnnsans 417
20.4.1 AFQUIMEBNTSeveieeierierte et see s e ssess e s s e e e sae s e sa e s e e s e e e s e e s e e e e e e s e e e e se e e e sE e ee e e e e e e e b e e e b e nee e e nennennes 418
PN 1112 SRS 418
20.5.1 AFQUMEBNTS ...t a et a e s e e e s A e A et R e e Re e e Re e d et e R e e Re e e Re e nan e nanns 418
20.5.2 ProteCtion FIAQS......ccoucieeeiirirerise st n e s s s re s e e b p e ne e ne e s nennenens 419
20.5.3 BERAVIOE FIAQS......cciuicireiriesire sttt ae e s e b s a e e e e b e n e p e e ne e s ae e nnens 419
20.6 MUNMAP ..eeciieerirce e s e s e s s s s se s e s sse s s e s ae s s e s ae s snesaessne s e s nnesanasnessnennnns 419
20.6.1 AFQUIMENTS ...t se s e se s e e e s e s s se e s s se e e s s Re e e e s Re e e s e nResn e e nse e s e nensnannees 419
20.7 BXI...eoreeereersserressserss e s e e e R Re e R e e e R e e RenE e e Re e nnn 420
20.7.1 AFQUIMEBNTSeveeeieiccteste st ss e s e ss e s s e sa e sae s e sa e sa e e e e e s e b e e e b e nee e e nensennes 420

Chapter 21: Appendix D. Performance Tests Information............ooeceeemnnnrrnssssnns 421

Chapter 22: Bibliography.....cccuuussemsmmmmmmmmsssssssssssssmmsssssssssssssssssssssssssssssnssssessssnns 425
INA@X..eeiiiisnnnnnsssnnnnmssssnnnnnssssnnnnnssssnnnssssssnnnssssssnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnnsssnnnnnssss 429

xvii

About the Author

Igor Zhirkov teaches his highly successful “System Programming
Languages” course in ITMO University in Saint-Petersburg, which is a
six-time winner of the ACM-ICPC Intercollegiate World Programming
Championship. He studied at Saint Petersburg Academic University
and received his master’s degree from ITMO University. Currently he
is doing research in verified C refactorings as part of his PhD thesis
and formalization of Bulk Synchronous Parallelism library in C at
IMT Atlantique in Nantes, France. His main interests are low-level
programming, programming language theory, and type theory.

His other interests include playing piano, calligraphy, art, and the
philosophy of science.

Xix

About the Technical Reviewer

Ivan Loginov is a researcher and lecturer at ITMO University of Saint
Petersburg, Russia (University of Information Technologies, Mechanics
and Optics), teaching the course “Introduction to Programming
Languages” to bachelor degree students of computer science.

He received his master’s degree from ITMO University. His research
focuses on compiler theory, language workbenches, and distributed
and parallel programming as well as new teaching techniques and their
application to IT (information technology).

Currently, he is writing his PhD dissertation on a cloud-based
modeling toolkit for system dynamics.

His hobbies include playing the trumpet and reading classic (Russian)
« literature.

XXi

Acknowledgments

I was blessed to meet a great number of persons, both very gifted and extremely dedicated, who helped me
and often guided me toward the areas of knowledge I could never have imagined myself.

I thank Vladimir Nekrasov, my most beloved math teacher, for his course and his influence on me,
which enabled me to think better and more logically.

I thank Andrew Dergachev, who entrusted me to create and teach my course and helped me so much
during these years, Boris Timchenko, Arkady Kluchev, Ivan Loginov (who also kindly agreed to be the
technical reviewer for this book), and all my colleagues from ITMO university, who helped me to shape this
course in one way or another.

I thank all my students who provided feedback or even helped me in teaching. You are the very reason
I am doing this. Several students helped by reviewing the draft of this book, I want to note the most useful
remarks of Dmitry Khalansky and Valery Kireev.

For me, the years I have spent in Saint-Petersburg Academic University are easily the best of my life.
Never have I had more opportunities to study with world-class specialists working in the leading companies
along with other students, much smarter than me. I want to express my deepest gratitude to Alexander
Omelchenko, Alexander Kulikov, Andrey Ivanov, and everyone contributing to the quality of computer
science education in Russia. I also thank Dmitry Boulytchev, Andrey Breslav, and Sergey Sinchuk from
JetBrains, my supervisors who have taught me a lot.

I am also very grateful to my french colleagues: Ali Ed-Dbali, Frédéric Loulergue, Rémi Douence, and
Julien Cohen.

I also want to thank Sergei Gorlatch and Tim Humernbrum for providing much necessary feedback on
Chapter 17, which helped me shape it into a much more consistent and understandable version. Special
thanks go to Dmitry Shubin for his most useful impact on fixing the imperfections of this book.

I am very grateful to my friend Alexey Velikiy and to his agency CorpGlory.com, which focused on data
visualizations and infographics and crafted the best illustrations in this book.

Behind every little success of mine is an infinite amount of support from my family and friends. I would
not have achieved anything without you.

Last, but not least, I thank the Apress team, including Robert Hutchinson, Rita Fernando, Laura
Berendson, and Susan McDermott, for putting their trust in me and this project and doing everything they
could to bring this book into reality.

xxiii

http://dx.doi.org/10.1007/978-1-4842-2403-8_17

Introduction

This book aims to help you develop a consistent vision of the domain of low-level programming. We want to
enable a careful reader to

o Freely write in assembly language.

e Understand the Intel 64 programming model.

e Write maintainable and robust code in C11.

e Understand the compilation process and decipher assembly listings.

e Debug errors in compiled assembly code.

e Use appropriate models of computation to greatly reduce program complexity.
e Write performance-critical code.

There are two kinds of technical books: those used as a reference and those used to learn. This book
is, without doubt, the second kind. It is pretty dense on purpose, and in order to successfully digest the
information we highly suggest continuous reading. To quickly memorize new information you should try to
connect it with the information with which you are already familiar. That is why we tried, whenever possible,
to base our explanation of each topic on the information you received from previous topics.

This book is written for programming students, intermediate-to-advanced programmers, and low-level
programming enthusiasts. The prerequisites are a basic understanding of binary and hexadecimal systems
and a basic knowledge of Unix commands.

Questions and Answers Throughout this book you will encounter numerous questions. Most of them
are meant to make you think again about what you have just learned, but some of them encourage you to do
additional research, pointing to the relevant keywords.

We propose the answers to these questions in our GitHub page, which also hosts all listings and starting
code for assignments, updates and other goodies.

Refer to the book’s page on Apress site for additional information: http://www.apress.com/us/
book/9781484224021.

There you can also find several preconfigured virtual machines with Debian Linux installed, with and
without a graphical user interface (GUI), which allows you to start practicing right away without spending
time setting up your system. You can find more information in section 2.1.

We start with the very simple core ideas of what a computer is, explaining concepts of model of
computation and computer architecture. We expand the core model with extensions until it becomes
adequate enough to describe a modern processor as a programmer sees it. From Chapter 2 onward we start
programming in the real assembly language for Intel 64 without resorting to older 16-bit architectures, that
are often taught for historical reasons. It allows us to see the interactions between applications and operating

XXV

http://www.apress.com/us/book/9781484224021
http://www.apress.com/us/book/9781484224021
http://dx.doi.org/10.1007/978-1-4842-2403-8_2

INTRODUCTION

system through the system calls interface and the specific architecture details such as endianness. After a
brief overview of legacy architecture features, some of which are still in use, we study virtual memory in great
detail and illustrate its usage with the help of procfs and examples of using mmap system call in assembly.
Then we dive into the process of compilation, overviewing preprocessing, static, and dynamic linking. After
exploring interrupts and system calls mechanisms in greater detail, we finish the first part with a chapter
about different models of computations, studying examples of finite state machines, stack machines, and
implementing a fully functional compiler of Forth language in pure assembly.

The second part is dedicated to the C language. We start from the language overview, building a core
understanding of its model of computation necessary to start writing programs. In the next chapter we study
the type system of C and illustrate different kinds of typing, ending with about a discussion of polymorphism
and providing exemplary implementations for different kinds of polymorphism in C. Then we study the
ways of correctly structuring the program by splitting it into multiple files and also viewing its effect on the
linking process. The next chapter is dedicated to the memory management, input and output. After that,
we elaborate three facets of each language: syntax, semantics, and pragmatics and concentrate on the first
and the third ones. We see how the language propositions are transformed into abstract syntax trees, the
difference between undefined and unspecified behavior in C, and the effect of language pragmatics on
the assembly code produced by the compiler. In the end of the second part, we dedicate a chapter to the
good code practices to give readers an idea of how the code should be written depending on its specific
requirements. The sequence of the assignments for this part is ended by the rotation of a bitmap file and a
custom memory allocator.

The final part is a bridge between the two previous ones. It dives into the translation details such as
calling conventions and stack frames and advanced C language features, requiring a certain understanding
of assembly, such as volatile and restrict keywords. We provide an overview of several classic low-level
bugs such as stack buffer overflow, which can be exploited to induce an unwanted behavior in the program.
The next chapter tells about shared objects in great details and studies them on the assembly level, providing
minimal working examples of shared libraries written in C and assembly. Then, we discuss a relatively
rare topic of code models. The chapter studies the optimizations that modern compilers are capable of
and how that knowledge can be used to produce readable and fast code. We also provide an overview of
performance-amplifying techniques such as specialized assembly instructions usage and cache usage
optimization. This is followed by an assignment where you will implement a sepia filter for an image using
specialized SSE instructions and measure its performance. The last chapter introduces multithreading via
pthreads library usage, memory models, and reorderings, which anyone doing multithreaded programming
should be aware of, and elaborates the need for memory barriers.

The appendices include short tutorials on gdb (debugger), make (automated build system), and a table
of the most frequently used system calls for reference and system information to make performance tests
given throughout the book easier to reproduce. They should be read when necessary, but we recommend
that you get used to gdb as soon as you start assembly programming in Chapter 2.

Most illustrations were produced using VSVG library aimed to produce complex interactive vector
graphics, written by Alexey Velikiy (http://www.corpglory.com). The sources for the library and book
illustrations are available at VSVG Github page: https://github.com/corpglory/vsvg

We hope that you find this book useful and wish you an enjoyable read!

XXVi

http://dx.doi.org/10.1007/978-1-4842-2403-8_2
http://www.corpglory.com/
https://github.com/corpglory/vsvg

PART I

Assembly Language and
Computer Architecture

CHAPTER 1

Basic Computer Architecture

This chapter is going to give you a general understanding of the fundamentals of computer functioning. We
will describe a core model of computation, enumerate its extensions, and take a closer look at two of them,
namely, registers and hardware stack. It will prepare you to start assembly programming in the next chapter.

1.1 The Core Architecture
1.1.1 Model of Computation

What does a programmer do? A first guess would probably be “construction of algorithms and their
implementation.” So, we grasp an idea, then we code, and this is the common way of thinking.

Can we construct an algorithm to describe some daily routine, like going out for a walk or shopping?
The question does not sound particularly hard, and many people will gladly provide you with their solutions.

However, all these solutions will be fundamentally different. One will operate with such actions as
“opening the door” or “taking the key”; the other will rather “leave the house,” omitting details. The third
one, however, will go rogue and provide a detailed description of the movement of his hands and legs, or
even describe his muscle contraction patterns.

The reason those answers are so different is the incompleteness of the initial question.

All ideas (including algorithms) need a way to be expressed. To describe a new notion we use other,
simpler notions. We also want to avoid vicious cycles, so the explanation will follow the shape of a pyramid.
Each level of explanation will grow horizontally. We cannot build this pyramid infinitely, because the
explanation has to be finite, so we stop at the level of basic, primitive notions, which we have deliberately
chosen not to expand further. So, choosing the basics is a fundamental requirement to express anything.

It means that algorithm construction is impossible unless we have fixed a set of basic actions, which act
as its building blocks.

Model of computation is a set of basic operations and their respective costs.

The costs are usually integer numbers and are used to reason about the algorithms’ complexity via
calculating the combined cost of all their operations. We are not going to discuss computational complexity
in this book.

Most models of computation are also abstract machines. It means that they describe a hypothetical
computer, whose instructions correspond to the model’s basic operations. The other type of models,
decision trees, is beyond the scope of this book.

1.1.2 von Neumann Architecture

Now let us imagine we are living in 1930s, when today’s computers did not yet exist. People wanted to
automate calculations somehow, and different researchers were coming up with different ways to achieve
such automation. Common examples are Church’s Lambda calculus or the Turing machine. These are
typical abstract machines, describing imaginary computers.

© Igor Zhirkov 2017 3
1. Zhirkov, Low-Level Programming, DOI 10.1007/978-1-4842-2403-8_1

CHAPTER 1 © BASIC COMPUTER ARCHITECTURE

One type of machine soon became dominant: the von Neumann architecture computer.

Computer architecture describes the functionality, organization, and implementation of computer
systems. It is a relatively high-level description, compared to a calculation model, which does not omit even
a slight detail.

von Neumann architecture had two crucial advantages: it was robust (in a world where electronic
components were highly unstable and short-lived) and easy to program.

In short, this is a computer consisting of one processor and one memory bank, connected to a common
bus. A central processing unit (CPU) can execute instructions, fetched from memory by a control unit.
The arithmetic logic unit (ALU) performs the needed computations. The memory also stores data. See
Figures 1-1 and 1-2.

Following are the key features of this architecture:

e Memory stores only bits (a unit of information, a value equal to 0 or 1).

e Memory stores both encoded instructions and data to operate on. There are no means
to distinguish data from code: both are in fact bit strings.

e Memory is organized into cells, which are labeled with their respective indices in
a natural way (e.g., cell #43 follows cell #42). The indices start at 0. Cell size may
vary (John von Neumann thought that each bit should have its address); modern
computers take one byte (eight bits) as a memory cell size. So, the 0-th byte holds the
first eight bits of the memory, etc.

¢ The program consists of instructions that are fetched one after another. Their
execution is sequential unless a special jump instruction is executed.

s N
CPU
s Ty
Control Unit
> |- - Memory
ALU
A vy

Figure 1-1. von Neumann architecture—QOverview

Assembly language for a chosen processor is a programming language consisting of mnemonics for
each possible binary encoded instruction (machine code). It makes programming in machine codes much
easier, because the programmer then does not have to memorize the binary encoding of instructions, only
their names and parameters.

Note, that instructions can have parameters of different sizes and formats.

An architecture does not always define a precise instruction set, unlike a model of computation.

A common modern personal computer have evolved from old von Neumann architecture computers,
so we are going to investigate this evolution and see what distinguishes a modern computer from the simple
schematic in Figure 1-2.

CHAPTER 1 " BASIC COMPUTER ARCHITECTURE

Memory

00000000|11011100

00000001|10011110

00000002|11111001

FFFF FFFF (0|01 /1(0|0/ 1|0

\ J

Figure 1-2. von Neumann architecture—Memory

Note Memory state and values of registers fully describe the CPU state (from a programmer’s point of
view). Understanding an instruction means understanding its effects on memory and registers.

1.2 Evolution

1.2.1 Drawbacks of von Neumann Architecture

The simple architecture described previously has serious drawbacks.

First of all, this architecture is not interactive at all. A programmer is limited by manual memory editing
and visualizing its contents somehow. In the early days of computers, it was pretty straightforward, because
the circuits were big and bits could have been flipped literally with bare hands.

Moreover, this architecture is not multitask friendly. Imagine your computer is performing a very
slow task (e.g., controlling a printer). It is slow because a printer is much slower than the slowest CPU. The
CPU then has to wait for a device reaction a percentage of time close to 99%, which is a waste of resources
(namely, CPU time).

Then, when everyone can execute any kind of instruction, all sorts of unexpected behavior can occur.
The purpose of an operating system (OS) is (among others) to manage the resources (such as external
devices) so that user applications will not cause chaos by interacting with the same devices concurrently.
Because of this we would like to prohibit all user applications from executing some instructions related to
input/output or system management.

Another problem is that memory and CPU performance differ drastically.

Back in the old times, computers were not only simpler: they were designed as integral entities.
Memory, bus, network interfaces—everything was created by the same engineering team. Every part was
specialized to be used in this specific model. So parts were not destined to be interchangeable. In these
circumstances none tried to create a part capable of higher performance than other parts, because it could
not possibly increase overall computer performance.

But as the architectures became more or less stable, hardware developers started to work on different
parts of computers independently. Naturally, they tried to improve their performance for marketing
purposes. However, not all parts were easy and cheap' to speed up. This is the reason CPUs soon became
much faster than memory. It is possible to speed up memory by choosing other types of underlying circuits,
but it would be much more expensive [12].

"Note how often solutions the engineers come up with are dictated by economic reasons rather than technical limitations.

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par13

CHAPTER 1 © BASIC COMPUTER ARCHITECTURE

When a system consists of different parts and their performance characteristics differ a lot, the slowest
part can become a bottleneck. It means that if is the slowest part is replaced with a faster analogue, the
overall performance will increase significantly. That’s where the architecture had to be heavily modified.

1.2.2 Intel 64 Architecture

In this book we only describe the Intel 64 architecture.?

Intel has been developing its main processor family since the 1970s. Each model was intended to
preserve the binary compatibility with older models. It means that even modern processors can execute
code written and compiled for older models. It leads to a tremendous amount of legacy. Processors can
operate in a number of modes: real mode, protected, virtual, etc. If not specified explicitly, we will describe
how a CPU operates in the newest, so-called long mode.

1.2.3 Architecture Extensions

Intel 64 incorporates multiple extensions of von Neumann'’s architecture. The most important ones are listed
here for a quick overview.

Registers These are memory cells placed directly on the CPU chip. Circuit-wise they are much faster,
but they are also more complicated and expensive. Register accesses do not use the bus. The response time
is quite small and usually equals a couple of CPU cycles. See section 1.3 “Registers”.

Hardware stack A stack in general is a data structure. It supports two operations: pushing an element
on top of it and popping the topmost element. A hardware stack implements this abstraction on top of
memory through special instructions and a register, pointing at the last stack element. A stack is used not
only in computations but to store local variables and implement function call sequence in programming
languages. See section 1.5 “Hardware stack”.

Interrupts This feature allows one to change program execution order based on events external to
the program itself. After a signal (external or internal) is caught, a program’s execution is suspended, some
registers are saved, and the CPU starts executing a special routine to handle the situation. Following are
exemplary situations when an interrupt occurs (and an appropriate piece of code is executed to handle it):

¢ Asignal from an external device.
e Zero division.

¢ Invalid instruction (when CPU failed to recognize an instruction by its binary
representation).

e An attempt to execute a privileged instruction in a non-privileged mode.
See section 6.2 “Interrupts” for a more detailed description.

Protection rings A CPU is always in a state corresponding to one of the so-called protection rings. Each
ring defines a set of allowed instructions. The zero-th ring allows executing any instruction from the entire
CPU'’s instruction set, and thus it is the most privileged. The third allows only the safest ones. An attempt to
execute a privileged instruction results in an interrupt. Most applications are working inside the third ring
to ensure that they do not modify crucial system data structures (such as page tables) and do not work with
external devices, bypassing the OS. The other two rings (first and second) are intermediate, and modern
operating systems are not using them.

See section 3.2 “Protected mode” for a more detailed description.

Virtual memory This is an abstraction over physical memory, which helps distribute it between
programs in a safer and more effective way. It also isolates programs from one another.

2Also known as x86 64 and AMD64.

6

http://dx.doi.org/10.1007/978-1-4842-2403-8_6#Sec3
http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Sec2

CHAPTER 1 " BASIC COMPUTER ARCHITECTURE

See section 4.2 “Motivation” for a more detailed description.

Some extensions are not directly accessible by a programmer (e.g., caches or shadow registers). We will
mention some of them as well.

Table 1-1 summarizes information about some von Neumann architecture extensions seen in modern
computers.

Table 1-1. von Neumann Architecture: Modern Extensions

Problem Solution
Nothing is possible without querying slow memory Registers, caches
Lack of interactivity Interrupts

No support for code isolation in procedures, or for context saving Hardware stack
Multitasking: any program can execute any instruction Protection rings

Multitasking: programs are not isolated from one another Virtual memory

Sources of information No book should cover the instruction set and processor architecture completely.
Many books try to include exhaustive information about instruction set. It gets outdated quite soon; moreover, it
bloats the book unnecessarily.

We will often refer you to Intel® 64 and IA-32 Architectures Software Developer’s Manual available online:
see [15]. Get it now!

There is no virtue in copying the instruction descriptions from the “original” place they appear in; it is much
more mature to learn to work with the source.

The second volume covers instruction set completely and has a very useful table of contents. Please, always use
it to get information about instruction set: it is not only a very good practice, but also a quite reliable source.

Note, that many educational resources devoted to assembly language in the Internet are often heavily outdated

(as few people program in assembly these days) and do not cover the 64-bit mode at all. The instructions present
in older modes often have their updated counterparts in long mode, and those are working in a different way. This
is a reason we strongly discourage using search engines to find instruction descriptions, as tempting as it might be.

1.3 Registers

The data exchange between CPU and memory is a crucial part of computations in a von Neumann
computer. Instructions have to be fetched from memory, operands have to be fetched from memory; some
instructions store results also in memory. It creates a bottleneck and leads to wasted CPU time when it waits
for the data response from the memory chip. To avoid constant wait, a processor was equipped with its own
memory cells, called registers. These are few but fast. Programs are usually written in such a way that most of
the time the working set of memory cells is small enough. This fact suggests that programs can be written so
that most of the time the CPU will be working with registers.

http://dx.doi.org/10.1007/978-1-4842-2403-8_4#Sec2
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16

CHAPTER 1 © BASIC COMPUTER ARCHITECTURE

Registers are based on transistors, while main memory uses condensers. We could have implemented
main memory on transistors and gotten a much faster circuit. There are several reasons engineers prefer
other ways of speeding up computations.

e Registers are more expensive.

¢ Instructions encode the register’s number as part of their codes. To address more
registers the instructions have to grow in size.

e Registers add complexity to the circuits to address them. More complex circuits are
harder to speed up. It is not easy to set up a large register file to work on 5 GHz.

Naturally, register usage slows down computers in the worst case. If everything has to be fetched into
registers before the computations are made and flushed into memory after, where’s the profit?

The programs are usually written in such a way, that they have one particular property. It is a result of
using common programming patterns such as loops, function, and data reusage, not some law of nature.
This property is called locality of reference and there are two main types of it: temporal and spatial.

Temporal locality means that accesses to one address are likely to be close in time.

Spatial locality means that after accessing an address X the next memory access will likely to be close
to X, (like X — 16 or X + 28).

These properties are not binary: you can write a program exhibiting stronger or weaker locality.

Typical programs are using the following pattern: the data working set is small and can be kept inside
registers. After fetching the data into registers once we will work with them for quite some time, and then the
results will be flushed into memory. The data stored in memory will rarely be used by the program. In case
we need to work with this data we will lose performance because

e We need to fetch data into the registers.

o Ifall registers are occupied with data we still need later on, we will have to spill some of
them, which means save their contents into temporally allocated memory cells.

Note A widespread situation for an engineer: decreasing performance in the worst case to improve it in average
case. It does work quite often, but it is prohibited when building real-time systems, which impose constraints on the
worst system reaction time. Such systems are required to issue a reaction to events in no more than a certain amount
of time, so decreasing performance in the worst case to improve it in other cases is not an option.

1.3.1 General Purpose Registers

Most of the time, programmer works with general purpose registers. They are interchangeable and can be
used in many different commands.

These are 64-bit registers with the names 10, r1, ..., r15. The first eight of them can be named
alternatively; these names represent the meaning they bear for some special instructions. For example, 11 is
alternatively named rcx, where c stands for “cycle.” There is an instruction loop, which uses rcx as a cycle
counter but accepts no operands explicitly. Of course, such kind of special register meaning is reflected in
documentation for corresponding commands (e.g., as a counter for 1oop instruction). Table 1-2 lists all of
them; see also Figure 1-3.

CHAPTER 1 " BASIC COMPUTER ARCHITECTURE

Note Unlike the hardware stack, which is implemented on top of the main memory, registers are a
completely different kind of memory. Thus they do not have addresses, as the main memory’s cells do!

The alternate names are in fact more common for historical reasons. We will provide both for reference
and give a tip for each one. These semantic descriptions are given for a reference; you don’t have to
memorize them right now.

Table 1-2. 64-bit General Purpose Registers

Name Alias Description

10 rax Kind of an “accumulator,” used in arithmetic instructions. For example, an instruction
divis used to divide two integers. It accepts one operand and uses rax implicitly as
the second one. After executing div rcx a big 128-bit wide number, stored in parts in
two registers rdx and rax is divided by rcx and the result is stored again in rax.

13 rbx Base register. Was used for base addressing in early processor models.

r1 rCcx Used for cycles (e.g., in Loop).

12 rdx Stores data during input/output operations.

14 Isp Stores the address of the topmost element in the hardware stack. See section 1.5
“Hardware stack”.

15 rbp Stack frame’s base. See section 14.1.2 “Calling convention”.

16 rsi Source index in string manipulation commands (such as movsd)

17 rdi Destination index in string manipulation commands (such as movsd)

18

19..115 no Appeared later. Used mostly to store temporal variables (but sometimes used

implicitly, like r10, which saves the CPU flags when syscall instruction is
executed. See Chapter 6 “Interrupts and system calls”).

You usually do not want to use rsp and rbp registers because of their very special meaning (later we
will see how they corrupt stack and stack frame). However, you can perform arithmetic operations on them
directly, which makes them general purpose.

Table 1-3 shows registers sorted by their names following an indexing convention.

Table 1-3. 64-Bit General Purpose Registers—Different Naming Conventions

10 rl 12 r3 4 r5 16 r7

rax rcx rdx rbx Isp rbp rsi rdi

Addressing a part of a register is possible. For each register you can address its lowest 32 bits, lowest 16
bits, or lowest 8 bits.
When using the names 10, . .., 115 it is done by adding an appropriate suffix to a register’s name:

e dfor double word—lower 32 bits;
e wfor word—lower 16 bits;

¢ b for byte—lower 8 bits.

http://dx.doi.org/10.1007/978-1-4842-2403-8_14#Sec3
http://dx.doi.org/10.1007/978-1-4842-2403-8_6

CHAPTER 1 © BASIC COMPUTER ARCHITECTURE

For example,
e 17bis the lowest byte of register r7;
¢ 13w consists of the lowest two bytes of r3; and
¢ 10d consists of the lowest four bytes of r0.

The alternate names also allow addressing the smaller parts.

Figure 1-4 shows decomposition of wide general purpose registers into smaller ones.

The naming convention for accessing parts of rax, rbx, rcx, and rdx follows the same pattern; only the
middle letter (a for rax) is changing. The other four registers do not allow an access to their second lowest
bytes (like rax does by the name of ah). The lowest byte naming differs slightly for rsi, rdi, rsp, and rbp.

e The smallest parts of rsi and rdi are sil and dil (see Figure 1-5).
o The smallest parts pf rsp and rbp are spl and bp1 (see Figure 1-6).

In practice, the names r0-r7 are rarely seen. Usually programmers stick with alternate names for the
first eight general purpose registers. It is done for both legacy and semantic reasons: rsp relates a lot more
information, than r4. The other eight (8-115) can only be named using an indexed convention.

Inconsistency in writes All reads from smaller registers act in an obvious way. The writes into 32-bit
parts, however, fill the upper 32 bits of the full register with sign bits. For example, zeroing eax will zero the
entire rax, storing -1 into eax will fill the upper 32 bits with ones. Other writes (e.g., in 16-bit parts) act as
intended: they leave all other bits unaffected. See section 3.4.2 “CISC and RISC” for the explanation.

10

http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Sec6

CHAPTER 1 " BASIC COMPUTER ARCHITECTURE

1.3.2 Other Registers

The other registers have special meaning. Some registers have system-wide importance and thus cannot be
modified except by the OS.

- a
CPU

4 N

Control Unit

\ Y,

r N
ALU

\ Y,

(. ™

Registers
rax rsi

[p[6]a]9fo/s E[5] [E[2 8]0][9]4[7]3]
[E[9]2]0]0]a D[3] [3[7]D[4]2]3]9]1]

rbx rdi
1l0/7 1/1] [5 3/4/cl9 7]2]c|
[8[6]p[B[5]3 7]2] [3]a/D[1]2]4[8]F]

rcx rsp
[6/8[6/ p[B 5 c|5] [B3/a|D/8|0 A[B|
[3]9/6/3]7 1 3[3] [p/8lo/2]E 1]1]2]

rdx rbp
[713]s]4[3]7 p]4a] [7]5/7]3]2]E[3]E]
[2]3]9]6|E 5 a[1] [8/ B/ 7|D|4 2[1]1]

rip rflags
3[9]e/4 3]7] [F[F 8[B[2]4[8]9]
3/9/6 E 33| [118EB[D2B[5|

L

D

=]

\
. J

Figure 1-3. Approximation of Intel 64: general purpose registers

11

CHAPTER 1 © BASIC COMPUTER ARCHITECTURE

A programmer has access to rip register. It is a 64-bit register, which always stores an address of the
next instruction to be executed. Branching instructions (e.g., jmp) are in fact modifying it. So, every time any
instruction is being executed, rip stores the address of the next instruction to be executed.

Note All instructions have different size!

Another accessible register is called rflags. It stores flags, which reflect the current program state—for
example, what was the result of the last arithmetic instruction: was it negative, did an overflow happened,
etc. Its smaller parts are called eflags (32 bit) and flags (16 bit).

Question 1 [t is time to do preliminary research based on the documentation [15]. Refer to section 3.4.3
of the first volume to learn about register rflags. What is the meaning of flags CF, AF, ZF, OF, SF? What is the
difference between OF and CF?

63 31 15 7 0

rax (r0)

ecax

ax

ah al

Figure 1-4. rax decomposition

In addition to these core registers there are also registers used by instructions working with floating
point numbers or special parallelized instructions able to perform similar actions on multiple pairs of
operands at the same time. These instructions are often used for multimedia purposes (they help speed up
multimedia decoding algorithms). The corresponding registers are 128-bit wide and named xmm0 - xmm15.
We will talk about them later.

Some registers have appeared as non-standard extensions but became standardized shortly after. These
are so-called model-specific registers. See section 6.3.1 “Model specific registers” for more details.

1.3.3 System Registers

Some registers are designed specifically to be used by the OS. They do not hold values used in computations.
Instead, they store information required by system-wide data structures. Thus their role is supporting a
framework, born from a symbiosis of the OS and CPU. All applications are running inside this framework.
The latter ensures that applications are well isolated from the system itself and from one another; it also
manages resources in a way more or less transparent for a programmer.

It is extremely important that these registers are inaccessible by applications themselves (at least the
applications should not be able to modify them). This is the goal of privileged mode (see section 3.2).

We will list some of these registers here. Their meaning will be explained in detail later.

e 10, cr4 store flags related to different processor modes and virtual memory;

e 12, cr3are used to support virtual memory (see sections 4.2 “Motivation’, 4.7.1
“Virtual address structure”);

12

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Sec7
http://dx.doi.org/10.1007/978-1-4842-2403-8_6#Sec5
http://dx.doi.org/10.1007/978-1-4842-2403-8_6#Sec5
http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Sec2
http://dx.doi.org/10.1007/978-1-4842-2403-8_4#Sec2
http://dx.doi.org/10.1007/978-1-4842-2403-8_4#Sec8

CHAPTER 1 " BASIC COMPUTER ARCHITECTURE

e cr8 (aliased as tpr) is used to perform a fine tuning of the interrupts mechanism
(see section 6.2 “Interrupts”).

o efer is another flag register used to control processor modes and extensions
(e.g., long mode and system calls handling).

e idtr stores the address of the interrupt descriptors table (see section 6.2 “Interrupts”).

e gdtr and 1dtr store the addresses of the descriptor tables (see section 3.2 “Protected
mode”).

e cs,ds, ss, es, gs, fs are so-called segment registers. The segmentation mechanism
they provide is considered legacy for many years now, but a part of it is still used to
implement privileged mode. See section 3.2 “Protected mode”.

63 31 15 7 0
rsi
esi
si
sil
63 31 15 7 0
rdi
edi
di
dil

Figure 1-5. rsi and rdi decomposition

) 3t 15 7 0
rsp
esp
Sp
spl
] 31 15 7 0
rbp
ebp
bp
bpl

Figure 1-6. rsp and rbp decomposition

13

http://dx.doi.org/10.1007/978-1-4842-2403-8_6#Sec3
http://dx.doi.org/10.1007/978-1-4842-2403-8_6#Sec3
http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Sec2
http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Sec2

CHAPTER 1 © BASIC COMPUTER ARCHITECTURE

1.4 Protection Rings

Protection rings are one of the mechanisms designed to limit the applications’ capabilities for security and
robustness reasons. They were invented for Multics OS, a direct predecessor of Unix. Each ring corresponds
to a certain privilege level. Each instruction type is linked with one or more privilege levels and is not
executable on others. The current privilege level is stored somehow (e.g., inside a special register).

Intel 64 has four privilege levels, of which only fwo are used in practice: ring-0 (the most privileged)
and ring-3 (the least privileged). The middle rings were planned to be used for drivers and OS services, but
popular OSs did not adopt this approach.

In long mode, the current protection ring number is stored in the lowest two bits of register cs (and
duplicated in those of ss). It can only be changed when handling an interrupt or a system call. So an
application cannot execute an arbitrary code with elevated privilege levels: it can only call an interrupt
handler or perform a system call. See Chapter 3 “Legacy” for more information.

1.5 Hardware Stack

If we are talking about data structures in general, a stack is a data structure, a container with two operations: a
new element can be placed on top of the stack (push); the top element can be taken away from the stack (pop).

There is a hardware support for such data structure. It does not mean there is also a separate stack
memory. It is just sort of an emulation implemented with two machine instructions (push and pop) and
aregister (rsp). The rsp register holds an address of the topmost element of the stack. The instructions
perform as follows:

e push argument

1. Depending on argument size (2, 4, and 8 bytes are allowed), the rsp value is
decreased by 2, 4, or 8.

2. An argument is stored in memory starting at the address, taken from the
modified rsp.

e pop argument
1. The topmost stack element is copied into the register/memory.

2. rspisincreased by the size of its argument. An augmented architecture is
represented in Figure 1-7.

14

http://dx.doi.org/10.1007/978-1-4842-2403-8_3

CHAPTER 1 " BASIC COMPUTER ARCHITECTURE

' ™
CPU
e =,
Control Unit Memory
\ <——{ 0000 0000 [1]1]0][1]1]1]0]0]
0000 0001 [10_ 01‘11 10
ALU : ’.
0000 000z |1]1]1]1]1]0]0]1
A A '
s ™
Registers
rax rsi ,--®E280 9473 [0/ 0[0[1]0]1]1]0]
rbx rdi
rcx rsp o 1
rdx [o[o[eo[olo[o[o]_[|.* FFFF FFFF[OO 1 1‘0010%
rbp E[2/8 0[3]a 7[3] /
rip rflags
\ J

AN

Figure 1-7. Intel 64, registers and stack

The hardware stack is most useful to implement function calls in higher-level languages. When a
function A calls another function B, it uses the stack to save the context of computations to return to it after B
terminates.

Here are some important facts about the hardware stack, most of which follow from its description:

1.

2.
3.

There is no such situation as an empty stack, even if we performed push zero times.
A pop algorithm can be executed anyway, probably returning a garbage “topmost”
stack element.

Stack grows toward zero address.

Almost all kinds of its operands are considered signed integers and thus can be
expanded with sign bit. For example, performing push with an argument B9, will
result in the following data unit being stored on the stack:

OxFf bo, OXFFFFFFbY or OxFf ff Ff Ff £f £f £F bo.

By default, push uses an 8-byte operand size. Thus an instruction push -1 will
store Oxff ff ff ff ff ff ff ffonthe stack.

Most architectures that support stack use the same principle with its top defined
by some register. What differs, however, is the meaning of the respective address.
On some architectures it is the address of the next element, which will be written
on the next push. On others it is the address of the last element already pushed into
the stack.

15

CHAPTER 1 © BASIC COMPUTER ARCHITECTURE

Working with Intel docs: How to read instruction descriptions Open the second volume of [15]. Find
the page corresponding to the push instruction. It begins with a table. For our purpose we will only investigate
the columns OPCODE, INSTRUCTION, 64-BIT MODE, and DESCRIPTION. The OPCODE field defines the machine
encoding of an instruction (operation code). As you see, there are options and each option corresponds to a different
DESCRIPTION. It means that sometimes not only the operands vary but also the operation codes themselves.

INSTRUCTION describes the instruction mnemonics and allowed operand types. Here R stands for any general
purpose register, M stands for memory location, IMM stands for immediate value (e.g., integer constant like 42
or 1337). A number defines operand size. If only specific registers are allowed, they are named. For example:

® push r/mi6—push a general purpose 16-bit register or a 16-bit number taken from
memory into the stack.

® push CS—push a segment register cs.

The DESCRIPTION column gives a brief explanation of the instruction’s effects. It is often enough to understand
and use the instruction.

¢ Read the further explanation of push. When is the operand not sign extended?

¢ Explain all effects of the instruction push rsp on memory and registers.

1.6 Summary

In this chapter we provided a quick overview of von Neumann architecture. We have started adding features to this
model to make it more adequate for describing modern processors. So far we took a closer look at registers and the
hardware stack. The next step is to start programming in assembly, and that is what the next chapter is dedicated
to. We are going to view some sample programs, pinpoint several new architectural features (such as endianness
and addressing modes), and design a simple input/output library for *nix to ease interaction with a user.

Question 2 What are the key principles of von Neumann architecture?
Question 3 What are registers?

Question 4 What is the hardware stack?

Question 5 What are the interrupts?

Question 6 What are the main problems that the modern extensions of the von Neumann model are trying
to solve?

Question 7 What are the main general purpose registers of Intel 64?
Question 8 What is the purpose of the stack pointer?
Question 9 Can the stack be empty?

Question 10 Can we count elements in a stack?

16

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16

CHAPTER 2

Assembly Language

In this chapter we will start practicing assembly language by gradually writing more complex programs for Linux.
We will observe some architecture details that impact the writing of all kinds of programs (e.g., endianness).

We have chosen a *nix system in this book because it is much easier to program in assembly compared
to doing so in Windows.

2.1 Setting Up the Environment

It is impossible to learn programming without trying to program. So we are going to start programming in
assembly right now.
We are using the following setup in order to complete assembler and C assignments:

e Debian GNU\Linux 8.0 as an operating system.
e NASM 2.11.05 as an assembly language compiler.

e GCC4.9.2 as Clanguage compiler. This exact version is used to produce assembly from
C programs. Clang compiler can be used as well.

e GNU Make 4.0 as a build system.
e GDB7.7.1 as a debugger.
e The text editor you like (preferably with syntax highlighting). We advocate ViM usage.

If you want to set up your own system, install any Linux distribution you like and make sure you install
the programs just listed. To our knowledge, Windows Subsystem for Linux is also well suited to do all the
assignments. You can install it and then install necessary packages using apt-get. Refer to the official guide
located at: https://msdn.microsoft.com/en-us/commandline/wsl/install guide.

On Apress web site for this book, http://www.apress.com/us/book/9781484224021, you can find the
following:

e Two preconfigured virtual machines with the whole toolchain installed. One of them
has a desktop environment; the other one is just the minimal system that can be
accessed through SSH (Secure Shell). The installation instructions and other usage
information is located in the README . txt file in the downloaded archive.

e Alink to GitHub page with all the book’s listings, answers to the questions, and
solutions.

© Igor Zhirkov 2017 17
1. Zhirkov, Low-Level Programming, DOI 10.1007/978-1-4842-2403-8_2

https://msdn.microsoft.com/en-us/commandline/wsl/install_guide
http://www.apress.com/us/book/9781484224021

CHAPTER 2 © ASSEMBLY LANGUAGE

2.1.1 Working with Code Examples

Throughout this chapter, you will see numerous code examples. Compile them and if you have difficulty
grasping their logic, try to execute them step by step using gdb. It is a great help in studying code. See
Appendix A for a quick tutorial on gdb.

Appendix D provides more information about the system used for performance tests.

2.2 Writing “Hello, world”
2.2.1 Basic Input and Output

Unix ideology postulates that “everything is a file.” A file, in a large sense, is anything that looks like a stream
of bytes. Through files one can abstract such things as

e data access on a hard drive/SSD;
¢ data exchange between programs; and
¢ interaction with external devices.

We will follow the tradition of writing a simple “Hello, world!” program for a start. It displays a welcome
message on screen and terminates. However, such a program must show characters on screen, which
cannot be done directly if a program is not running on bare metal, without an operating system babysitting
its activity. An operating system'’s purpose is, among other things, to abstract and manage resources, and
display is surely one of them. It provides a set of routines to handle communication with external devices,
other programs, file systems, and so on. A program usually cannot bypass the operating system and interact
directly with the resources it controls. It is limited to system calls, which are routines provided by an
operating system to user applications.

Unix identifies a file with its descriptor as soon as it is opened by a program. A descriptor is nothing
more than an integer value (like 42 or 999). A file is opened explicitly by invoking the open system call;
however, three important files are opened as soon as a program starts and thus should not be managed
manually. These are stdin, stdout, and stderr. Their descriptors are 0, 1, and 2, respectively. stdin is used
to handle input, stdout to handle output, and stderr is used to output information about the program
execution process but not its results (e.g., errors and diagnostics).

By default, keyboard input is linked to stdin and terminal output is linked to stdout. It means that
“Hello, world!” should write into stdout.

Thus we need to invoke the write system call. It writes a given amount of bytes from memory starting at
a given address to a file with a given descriptor (in our case, 1). The bytes will encode string characters using
a predefined table (ASCII-table). Each entry is a character; an index in the table corresponds to its code in a
range from 0 to 255.

See Listing 2-1 for our first complete example of an assembly program.

Listing 2-1. hello.asm

global _start

section .data
message: db "hello, world!', 10

section .text

_start:
mov rax, 1 ;system call number should be stored in rax
mov rdi, 1 ; argument #1 in rdi: where to write (descriptor)?

18

CHAPTER 2 © ASSEMBLY LANGUAGE

mov Isi, message ; argument #2 in rsi: where does the string start?
mov rdx, 14 ; argument #3 in rdx: how many bytes to write?
syscall ; this instruction invokes a system call

This program invokes a write system call with correct arguments on lines 6-9. It is really the only thing it
does. The next sections will explain this sample program in greater detail.

2.2.2 Program Structure

As we remember from the von Neumann machine description, there is only one memory, for both code and
data; those are indistinguishable. However, a programmer wants to separate them. An assembly program is
usually divided into sections. Each section has its use: for example, . text holds instructions, .data is for global
variables (data available in every moment of the program execution). One can switch back and forth between
sections; in the resulting program all data, corresponding to each section, will be gathered in one place.

To get rid of numeric address values programmers use labels. They are just readable names and
addresses. They can precede any command and are usually separated from it by a colon. There is one label
in this program at line 5. _start.

A notion of variable is typical for higher-level languages. In assembly language, in fact, notions of
variables and procedures are quite subtle. It is more convenient to speak about labels (or addresses).

An assembly program can be divided into multiple files. One of them should contain the _start label. It
is the entry point; it marks the first instruction to be executed.

This label should be declared global (see line 1). The meaning of it will be evident later.

Comments start with a semicolon and last until the end of the line.

Assembly language consists of commands, which are directly mapped into machine code. However, not all
language constructs are commands. Others control the translation process and are usually called directives.

In the “Hello, world!” example there are three directives: global, section, and db.

Note Assembly language is, in general, case insensitive, but label names are not!

mov, mOV, Mov are all the same thing, but global _start and global _START are not! Section names are case
sensitive t00: section .DATA and section .data differ!

The db directive is used to create byte data. Usually data is defined using one of these directives, which
differ by data format:

db—Dbytes;

dw—so-called words, equal to 2 bytes each;

dd—double words, equal to 4 bytes; and
e dg—quad words, equal to 8 bytes.

Let’s see an example, in Listing 2-2.

Listing 2-2. data_decl.asm

section .data
example1: db 5, 16, 8, 4, 2, 1
example2: times 999 db 42
example3: dw 999

'The NASM manual also uses the name “pseudo instruction” for a specific subset of directives.

19

CHAPTER 2 © ASSEMBLY LANGUAGE

times n cmd is a directive to repeat cmd n times in program code. As if you copy-pasted it n times. It also
works with central processor unit (CPU) instructions.

Note that you can create data inside any section, including . text. As we told you earlier, for a CPU data
and instructions are all alike and the CPU will try to interpret data as encoded instructions when asked to.

These directives allow you to define several data objects one by one, as in Listing 2-3, where a sequence
of characters is followed by a single byte equal to 10.

Listing 2-3. hello.asm

message: db "hello, world!', 10

Letters, digits, and other characters are encoded in ASCII. Programmers have agreed upon a table,
where each character is assigned a unique number—its ASCII-code. We start at address corresponding to the
label message. We store the ASCII codes for all letters of string "hello, world!", then we add a byte equal to
10. Why 10? By convention, to start a new line we output a special character with code 10.

Terminological chaos It is quite common to refer to the integer format most native to the computer as
machine word. As we are programming a 64-bit computer, where addresses are 64-bit, general purpose
registers are 64-bit, it is pretty convenient to take the machine word size as 64 bits or 8 bytes.

In assembly programming for Intel architecture the term word was indeed used to describe a 16-bit data entry,
because on the older machines it was exactly the machine word. Unfortunately, for legacy reasons, it is still
used as in old times. That’s why 32-bit data is called double words and 64-bit data is referred to as quad words.

2.2.3 Basic Instructions

The mov instruction is used to write a value into either register or memory. The value can be taken from other
register or from memory, or it can be an immediate one. However,

1. mov cannot copy data from memory to memory;
2. the source and the destination operands must be of the same size.

The syscall instruction is used to perform system calls in *nix systems. The input/output operations
depend on hardware (which can be also used by multiple programs at the same time), so programmers are
not allowed to control them directly, bypassing the operating system.

Each system call has a unique number. To perform it

1. The rax register has to hold system call’'s number;

2. The following registers should hold its arguments: rdi, rsi, rdx, r10, r8, and r9.
System call cannot accept more than six arguments.

3. Execute syscall instruction.

It does not matter in which order the registers are initialized.
Note, that the syscall instruction changes rcx and r11! We will explain the cause later. When we wrote
the “Hello, world!” program we used a simple write syscall. It accepts

1. File descriptor;
2. The buffer address. We start taking consecutive bytes for writing from here;

3. The amount of bytes to write.
20

CHAPTER 2 © ASSEMBLY LANGUAGE

To compile our first program, save the code in hello.asm? and then launch these commands in the shell:

> nasm -felf64 hello.asm -o hello.o
> 1d -0 hello hello.o
> chmod u+x hello

The details of compilation process along with compilation stages will be discussed in Chapter 5. Let’s
launch “Hello, world!”

> ./hello
hello, world!
Segmentation fault

We have clearly output what we wanted. However, the program seems to have caused an error. What
did we do wrong? After executing a system call, the program continues its work. We did not write any
instructions after syscall, but the memory holds indeed some random values in the next cells.

Note If you did not put anything at some memory address, it will certainly hold some kind of garbage, not
zeroes or any kind of valid instructions.

A processor has no idea whether these values were intended to encode instructions or not. So, following
its very nature, it tries to interpret them, because rip register points at them. It is highly unlikely these values
encode correct instructions, so an interrupt with code 6 will occur (invalid instruction).?

So what do we do? We have to use the exit system call, which terminates the program in a correct way,
as shown in Listing 2-4.

Listing 2-4. hello_proper_exit.asm

section .data
message: db "hello, world!', 10

section .text
global _start

_start:
mov rax, 1 ; 'write' syscall number
mov rdi, 1 ; stdout descriptor
mov rsi, message ; string address
mov rdx, 14 ; string length in bytes
syscall
mov rax, 60 ; 'exit' syscall number
XOr rdi, rdi
syscall

“Remember: all source code, including listings, can be found on www.apress.com/us/book/9781484224021 and is also
stored in the home directory of the preconfigured virtual machine!

3Even if not, soon the sequential execution will lead the processor to the end of allocated virtual addresses, see section
4.2. In the end, the operating system will terminate the program because it is unlikely that the latter will recover from it.

21

http://dx.doi.org/10.1007/978-1-4842-2403-8_5
http://www.apress.com/us/book/9781484224021

CHAPTER 2 © ASSEMBLY LANGUAGE

Question 11 What does instruction xor rdi, rdi do?
Question 12 What is the program return code?

Question 13 What is the first argument of the exit system call?

2.3 Example: Output Register Contents

Time to try something a bit harder. Let’s output rax value in hexadecimal format, as shown in Listing 2-5.

Listing 2-5. PrintraxValue: print_rax.asm

section .data
codes:
db '0123456789ABCDEF'

section .text

global _start

_start:
; number 1122... in hexadecimal format
mov rax, 0x1122334455667788

mov rdi, 1

mov rdx, 1

mov rcx, 64

; Each 4 bits should be output as one hexadecimal digit

; Use shift and bitwise AND to isolate them

; the result is the offset in 'codes' array
.1loop:

push rax

sub rcx, 4

; cl is a register, smallest part of rcx

; rax -- eax -- ax -- ah + al

; TCX -- ecX -- cx -- ch + cl

sar rax, cl

and rax, oxf

lea rsi, [codes + rax]
mov rax, 1

; syscall leaves rcx and ri1 changed
push rcx
syscall
pop rcx

pop rax
; test can be used for the fastest 'is it a zero?' check
; see docs for 'test' command

test rcx, rex

jnz .loop

22

CHAPTER 2 © ASSEMBLY LANGUAGE

mov rax, 60 ; invoke 'exit' system call
X0r rdi, rdi
syscall

By shifting rax value and logical ANDing it with mask OxF we transform the whole number into one of
its hexadecimal digits. Each digit is a number from 0 to 15. Use it as an index and add it to the address of the
label codes to get the representing character.

For example, given rax = 0x4A we will use indices 0x4 =4, and OxA =10, *The first one will give us a
character '4' whose code is 0x34. The second one will result into character 'a' whose code is 0x61.

Question 14 Check that the ASCII codes mentioned in the last example are correct.

We can use a hardware stack to save and restore register values, like around syscall instruction.

Question 15 What is the difference between sar and shx? Check Intel docs.

Question 16 How do you write numbers in different number systems in a way understandable to NASM?
Check NASM documentation.

Note When a program starts, the value of most registers is not well defined (it can be absolutely random).
It is a great source of rookie mistakes, as one tends to assume that they are zeroed.

2.3.1 Local Labels

Notice the unusual label name . loop: it starts with a dot. This label is local. We can reuse the label names
without causing name conflicts as long as they are local.

The last used dotless global label is a base one for all subsequent local labels (until the next global label
occurs). The full name for .1loop label is _start.loop. We can use this name to address it from anywhere in
the program, even after other global labels occurs.

2.3.2 Relative Addressing

This demonstrates how to address memory in a more complex way than just by immediate address.

Listing 2-6. Relative Addressing: print_rax.asm

lea rsi, [codes + rax]

Square brackets denote indirect addressing; the address is written inside them.
e mov rsi, rax—copies rax into rsi

e mov rsi, [rax]—copies memory contents (8 sequential bytes) starting at address, stored
in rax, into rsi. How do we know that we have to copy exactly 8 bytes? As we know, mov
operands are of the same size, and the size of rsi is 8 bytes. Knowing these facts, the
assembler is able to deduce that exactly 8 bytes should be taken from memory.

4The subscript denotes the number system’s base.

23

CHAPTER 2 © ASSEMBLY LANGUAGE

The instructions lea and mov have a subtle difference between their meanings. lea means “load
effective address.”

It allows you to calculate an address of a memory cell and store it somewhere. This is not always trivial,
because there are tricky address modes (as we will see later): for example, the address can be a sum of
several operands.

Listing 2-7 provides a quick demonstration of what lea and mov are doing.

Listing 2-7. lea_vs_mov.asm

; rsi <- address of label 'codes', a number
mov rsi, codes

; rsi <- memory contents starting at 'codes' address
; 8 consecutive bytes are taken because rsi is 8 bytes long
mov rsi, [codes]

; Isi <- address of 'codes'

; in this case it is equivalent of mov rsi, codes

; in general the address can contain several components
lea rsi, [codes]

; rsi <- memory contents starting at (codes+rax)
mov rsi, [codes + rax]

; rsi <- codes + rax

; equivalent of combination:

; -- mov rsi, codes

; -- add rsi, rax

; Can't do it with a single mov!
lea rsi, [codes + rax]

2.3.3 Order of Execution

All commands are executed consecutively except when special jump instructions occur. There is an
unconditional jump instruction jmp addr. It can be viewed as a substitute of mov rip, addr.’

Conditional jumps rely on contents of rflags register. For example, jz address jumps to address only if
zero flag is set.

Usually one uses either a test or a cmp instruction to set up necessary flags coupled with conditional
jump instruction.

cmp subtracts the second operand from the first; it does not store the result anywhere, but it sets the
appropriate flags based on it (e.g., if operands are equal, it will set zero flag). test does the same thing but
uses logical AND instead of subtraction.

An example shown in Listing 2-8 incorporates writing 1 in rbx if rax < 42, and 0 otherwise.

SThis action is impossible to encode using the mov command. Check Intel docs to verify that it is not implemented.

24

CHAPTER 2 © ASSEMBLY LANGUAGE

Listing 2-8. jumps_example.asm

cmp rax, 42

jl yes

mov rbx, O

jmp ex
yes:

mov rbx, 1
ex:

Itis a common (and fast) way to test register value for being zero with test reg,reg instruction.
At least two commands exist for each arithmetic flag F: jF and jnF. For example, sign flag: js and jns.
Other useful commands include

1. ja (jump if above)/jb (jump if below) for a jump after a comparison of unsigned
numbers with cmp.

2. jg (jump if greater)/j1 (jump if less) for signed.
3. jae (jump if above or equal), jle (jump if less or equal) and similar. Some of
common jump instructions are shown in Listing 2-9.
Listing 2-9. Jump Instructions: jumps.asm

mov rax, -1
mov rdx, 2

cmp rax, rdx
jg location
ja location ; different logic!

cmp rax, rdx
je location ; if rax equals rdx
jne location ; if rax is not equal to rdx

Question 17 What is the difference between je and jz?

2.4 Function Calls

Routines (functions) allow one to isolate a piece of program logic and use it as a black box. It is a necessary
mechanism to provide abstraction. Abstraction allows you to build more complex systems by encapsulating
complex algorithms under opaque interfaces.

Instruction call <address> is used to perform calls. It does exactly the following:

push rip
jmp <address>

The address now stored in the stack (former rip contents) is called return address.

Any function can accept an unlimited number of arguments. The first six arguments are passed in rdi,
rsi, rdx, rcx, 18, and 19, respectively. The rest is passed on to the stack in reverse order.

What we consider an end to a routine is unclear. The most straightforward thing to say is that ret
instruction denotes the function end. Its semantic is fully equivalent to pop rip.

25

CHAPTER 2 © ASSEMBLY LANGUAGE

Apparently, the fragile mechanism of call and ret only works when the state of the stack is carefully
managed. One should not invoke ret unless the stack is exactly in the same state as when the function
started. Otherwise, the processor will take whatever is on top of the stack as a return address and use it as the
new rip content, which will certainly lead to executing garbage.

Now let’s talk about how functions use registers. Obviously, executing a function can change registers.
There are two types of registers.

¢ Callee-saved registers must be restored by the procedure being called. So, if it needs
to change them, it has to change them back.

These registers are callee-saved: rbx, rbp, rsp, r12-115, a total of seven registers.

¢ (Caller-saved registers should be saved before invoking a function and restored after. One
does not have to save and restore them if their value will not be of importance after.

All other registers are caller-saved.
These two categories are a convention. That is, a programmer must follow this agreement by
e Saving and restoring callee-saved registers.

e Being always aware that caller-saved registers can be changed during function execution.

A source of bugs A common mistake is not saving caller-saved registers before call and using them after
returning from function. Remember:

1. If you change rbx, rbp, rsp, or r12-r15, change them back!
2. If you need any other register to survive function call, save it yourself before calling!

Some functions can return a value. This value is usually the very essence of why the function is written and
executed. For example, we can write a function that accepts a number as its argument and returns it squared.

Implementation-wise, we are returning values by storing them in rax before the function ends its
execution. If you need to return two values, you are allowed to use rdx for the second one.

So, the pattern of calling a function is as follows:

e Save all caller-saved registers you want to survive function call
(you can use push for that).

e Store arguments in the relevant registers (rdi, rsi, etc.).
¢ Invoke function using call.
e After function returns, rax will hold the return value.

e Restore caller-saved registers stored before the function call.

Why do we need conventions? A function is used to abstract a piece of logic, forgetting completely about
its internal implementation and changing it when necessary. Such changes should be completely transparent to
the outside program. The convention described previously allows you to call any function from any given place
and be sure about its effects (may change any caller-saved register; will keep callee-saved registers intact).

Some system calls also return values—be careful and read the docs!
You should never use rbp and rsp. They are implicitly used during the execution. As you already know,
rsp is used as a stack pointer.

26

CHAPTER 2 © ASSEMBLY LANGUAGE

On system call arguments The arguments for system calls are stored in a different set of registers than
those for functions. The fourth argument is stored in r10, while a function accepts the fourth argument in rcx!

The reason is that syscall instruction implicitly uses rcx. System calls cannot accept more than six
arguments.

If you do not follow the described convention, you will be unable to change your functions without
introducing bugs in places where they are called.

Now it is time to write two more functions: print_newline will print the newline character; print_hex
will accept a number and print it in hexadecimal format (see Listing 2-10).

Listing 2-10. print_call.asm

section .data

newline_char: db 10
codes: db '0123456789abcdef’

section .text
global _start

print_newline:
mov rax, 1 ; 'write' syscall identifier

mov rdi, 1 ; stdout file descriptor
mov rsi, newline char ; where do we take data from
mov rdx, 1 ; the amount of bytes to write
syscall
ret
print_hex:

mov rax, rdi

mov rdi, 1
mov rdx, 1
mov rcx, 64 ; how far are we shifting rax?
iterate:
push rax ; Save the initial rax value
sub rcx, 4
sar rax, cl ; shift to 60, 56, 52, ... 4, 0
; the cl register is the smallest part of rcx
and rax, Oxf ; clear all bits but the lowest four

lea rsi, [codes + rax]; take a hexadecimal digit character code
mov rax, 1 5

push rcx
syscall

syscall will break rcx

rax = 1 (31) -- the write identifier,

; rdi = 1 for stdout,

; Isi = the address of a character, see line 29

-

-

27

CHAPTER 2 © ASSEMBLY LANGUAGE

pop rcx
pop rax ; ~ see line 24 ©
test rcx, rcx ; rcx = 0 when all digits are shown

jnz iterate

ret
_start:
mov rdi, 0x1122334455667788
call print_hex
call print _newline

mov rax, 60
xor rdi, rdi
syscall

2.5 Working with Data

2.5.1 Endianness

Let’s try to output a value stored in memory using the function we just wrote. We are going to do it in two
different ways: first we will enumerate all its bytes separately and then we will type it as usual (see Listing 2-11).

Listing 2-11. endianness.asm

section .data
demol: dq 0x1122334455667788
demo2: db 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, Ox88

section .text

_start:
mov rdi, [demo1]
call print_hex
call print_newline

mov rdi, [demo2]
call print_hex
call print_newline

mov rax, 60
xor rdi, rdi
syscall

When we launch it, to our surprise, we get completely different results for demo1 and demo2.

> ./main
1122334455667788
8877665544332211

As we see, multi-byte numbers are stored in reverse order!

28

CHAPTER 2 © ASSEMBLY LANGUAGE

The bits in each byte are stored in a straightforward way, but the bytes are stored from the least
significant to the most significant.

This applies only to memory operations: in registers, the bytes are stored in a natural way. Different
processors have different conventions on how the bytes are stored.

¢ Big endian multibyte numbers are stored in memory starting with the most
significant bytes.

¢ Little endian multibyte numbers are stored in memory starting with the least
significant bytes.

As the example shows, Intel 64 is following the little endian convention. In general, choosing one
convention over the other is a matter of choice, made by hardware engineers.

These conventions do not concern arrays and strings. However, if each character is encoded using 2
bytes rather than just 1, those bytes will be stored in reverse order.

The advantage of little endian is that we can discard the most significant bytes effectively converting the
number from a wider format to a narrower one, like 8 bytes.

For example, demo3: dq 0x1234. Then, to convert this number into dw we have to read a dword number
starting at the same address demo3. See Table 2-1 for a complete memory layout.

Table 2-1. Little Endian and Big Endian for quad word number 0x1234

ADDRESS VALUE-LE VALUE -BE
demo3 0x34 0x00
demo3 + 1 0x12 0x00
demo3 +2 0x00 0x00
demo3 + 3 0x00 0x00
demo3 + 4 0x00 0x00
demo3 +5 0x00 0x00
demo3 + 6 0x00 0x12
demo3 + 7 0x00 0x34

Big endian is a native format often used inside network packets (e.g., TCP/IP). It is also an internal
number format for Java Virtual Machine.

Middle endian is a not very well-known notion. Assume we want to create a set of routines to perform
arithmetic with 128-bit numbers. Then the bytes can be stored as follows: first will be the 8 least significant
bytes in reversed order and then the 8 most significant bytes also in reverse order:

76543210,1615141312111098

2.5.2 Strings

As we already know, the characters are encoded using the ASCII table. A code is assigned to each character.
A string is obviously a sequence of character codes. However, it does not say anything about how to
determine its length.

1. Strings start with their explicit length.

db 27, 'Selling England by the Pound'

29

CHAPTER 2 © ASSEMBLY LANGUAGE

2. A special character denotes the string ending. Traditionally, the zero code is used.
Such strings are called null-terminated.

db 'Selling England by the Pound', 0

2.5.3 Constant Precomputation

It is not uncommon to see such code:
lab: db 0
mov rax, lab + 1 + 2%*3

NASM supports arithmetic expressions with parentheses and bit operations. Such expressions can only
include constants known to the compiler. This way it can precompute all such expressions and insert the
computation results (as constant numbers) in executable code. So, such expressions are NOT calculated at
runtime.

A runtime analogue would need to use such instructions as add or mul.

2.5.4 Pointers and Different Addressing Types

Pointers are addresses of memory cells. They can be stored in memory or in registers.

The pointer size is 8 bytes. Data usually occupies several memory cells (i.e., several consecutive
addresses). The pointers hold no information about the pointed data length. When trying to write somewhere
a value whose size is not specified and can not be deduced (for example, mov [myvariable], 4), we can get
compilation errors. In such cases we have to provide size explicitly as shown below:

section .data
test: dq -1

section .text

mov byte[test], 1 ;1
mov word[test], 1 ;2
mov dword[test], 1 ;4
mov qword[test], 1 ;8

Question 18 What is test equal to after each of the commands listed previously?

Let’s see how one can encode operands in instructions.
1. Immediately:

An instruction is itself contained in memory. The operands in some form are its
parts; those parts have addresses of their own. Many instructions can contain the
operand values themselves.

This is the way to move a number 10 into rax.

mov rax, 10

30

CHAPTER 2 © ASSEMBLY LANGUAGE

2. Through aregister:

This instruction transfers rbx value into rax.
mov rax, rbx

3. Bydirect memory addressing:

This instruction transfers 8 bytes starting at the tenth address into rax:

mov rax, [10]
We can also take the address from register:

mov r9, 10
mov rax, [r9]

We can use precomputations:

buffer: dq 8841, 99, 00

mov rax, [buffer+8]

The address inside this instruction was precomputed, because both base and
offset are constants in control of compiler. Now it is just a number.

4. Base-indexed with scale and displacement

Most addressing modes are generalized by this mode. The address here is
calculated based on the following components:

Address = base + index * scale + displacement
¢ Base is either immediate or a register;
e Scale can only be immediate equal to 1, 2, 4, or 8;
¢ Indexis immediate or a register; and
¢ Displacement is always immediate.

Listing 2-12 shows examples of different addressing types.

Listing 2-12. addressing.asm

mov rax, [rbx + 4% rcx + 9]

mov rax, [4*r9]

mov rdx, [rax + rbx]

lea rax, [rbx + rbx * 4] ; rax = rbx * §
add r8, [9 + rbx*8 + 7]

A big picture You can think about byte, word, etc. as about type specifiers. For instance, you can either
push 16-, 32-, or 64-bit numbers into the stack. Instruction push 1 is unclear about how many bits wide the
operand is. In the same way mov word[test], 1 signifies, that [test] is aword; there is an information about
number format encoded in push word 1.

31

CHAPTER 2 © ASSEMBLY LANGUAGE

2.6 Example: Calculating String Length

Let’s start by writing a function to calculate the length of a null-terminated string.
As we do not have a routine to print something to standard output, the only way to output value is to
return it as an exit code through exit system call. To see the exit code of the last process use the $? variable.

true
echo $?

false
echo $?

>
>
0
>
>
1
Let’s write an assembly program that mimics the false shell command, as shown in Listing 2-13.

Listing 2-13. false.asm

global _start
section .text
_start:
mov rdi, 1
mov rax, 60
syscall

Now we have everything needed to calculate string length. Listing 2-14 shows the code.

Listing 2-14. String Length: strlen.asm
global _start

section .data
test_string: db "abcdef", 0

section .text

strlen: ; by our convention, first and the only argument
; is taken from rdi
XOr rax, rax ; rax will hold string length. If it is not

; zeroed first, its value will be totally random

.1loop: ; main loop starts here

cmp byte [rdi+rax], 0 ; Check if the current symbol is null-terminator.
; We absolutely need that 'byte' modifier since
; the left and the right part of cmp should be
; of the same size. Right operand is immediate
; and holds no information about its size,
; hence we don't know how many bytes should be
; taken from memory and compared to zero

je .end ; Jump if we found null-terminator

32

CHAPTER 2 © ASSEMBLY LANGUAGE

inc rax ; Otherwise go to next symbol and increase
; counter
jmp .loop
.end:
ret ; When we hit 'ret', rax should hold return value
_start:

mov rdi, test_string
call strlen
mov rdi, rax

mov rax, 60
syscall
The important part (and the only part we will leave) is the strlen function. Notice, that

1. strlen changes registers, so after performing call strlen the registers can
change their values.

2. strlen does not change rbx or any other callee-saved registers.

Question 19 Can you spot a bug or two in Listing 2-15? When will they occur?

Listing 2-15. Alternative Version of strlen: strlen_bugl.asm

global _start

section .data
test_string: db "abcdef", 0

section .text

strlen:
.loop:
cmp byte [rdi+r13], o
je .end
inc r13
jmp .loop
.end:
mov rax, ri3
ret
_start:

mov rdi, test string
call strlen
mov rdi, rax

mov rax, 60
syscall

33

CHAPTER 2 © ASSEMBLY LANGUAGE

2.7 Assignment: Input/Output Library

Before we start doing anything cool looking, we are going to ensure we won't have to code the same basic
routines over and over again. As for now, we do not have anything; even getting keyboard input is a pain. So,
let’s build a small library for basic input and output functions.

First you have to read Intel docs [15] for the following instructions (remember, they are all described in
details in the second volume):

* Xxor
e jmp, ja, and similar ones

e cmp

e mov

e inc,dec

e add, imul, mul, sub, idiv, div
* neg

e call, ret

e push, pop

These commands are core to us and you should know them well. As you might have noticed, Intel
64 supports thousands of commands. Of course, there is no need for us to dive there. Using system calls
together with instructions listed earlier will get us pretty much anywhere.

You also have to read docs for the read system call. Its code is 0; otherwise it is similar to write. Refer to
the Appendix C in case of difficulties.

Edit 1ib.inc and provide definitions for the functions instead of stub xor rax, rax instructions. Refer
to Table 2-2 for the required functions’ semantics. We do recommend implementing them in the given order
because sometimes you will be able to reuse your code by calling functions you have already written.

34

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
http://dx.doi.org/10.1007/978-1-4842-2403-8_20

CHAPTER 2 © ASSEMBLY LANGUAGE

Table 2-2. Input/Output Library Functions

Function

Definition

exit

string length
print_string
print _char
print_newline

print_uint

print_int
read_char

read_word

parse_uint

parse_int

string_equals

string_copy

Accepts an exit code and terminates current process.

Accepts a pointer to a string and returns its length.

Accepts a pointer to a null-terminated string and prints it to stdout.

Accepts a character code directly as its first argument and prints it to stdout.
Prints a character with code 0xA.

Outputs an unsigned 8-byte integer in decimal format.

We suggest you create a buffer on the stack® and store the division results there. Each
time you divide the last value by 10 and store the corresponding digit inside the
buffer. Do not forget, that you should transform each digit into its ASCII code

(e.g., 0x04 becomes0x34).

Output a signed 8-byte integer in decimal format.
Read one character from stdin and return it. If the end of input stream occurs, return 0.

Accepts a buffer address and size as arguments. Reads next word from stdin
(skipping whitespaces’ into buffer). Stops and returns 0 if word is too big for the
buffer specified; otherwise returns a buffer address.

This function should null-terminate the accepted string.
Accepts a null-terminated string and tries to parse an unsigned number from its start.
Returns the number parsed in rax, its characters count in rdx.

Accepts a null-terminated string and tries to parse a signed number from its start.
Returns the number parsed in rax; its characters count in rdx (including sign if any).
No spaces between sign and digits are allowed.

Accepts two pointers to strings and compares them. Returns 1 if they are equal,
otherwise 0.

Accepts a pointer to a string, a pointer to a buffer, and buffer’s length. Copies string
to the destination. The destination address is returned if the string fits the buffer;
otherwise zero is returned.

Use test.py to perform automated tests of correctness. Just run it and it will do the rest.

Remember, that a string of characters needs 7 + 1 bytes to be stored in memory because of a null-terminator.

Read Appendix A to see how you can execute the program step by step observing the changes in register
values and memory state.

2.7.1 Self-Evaluation

Before testing or when facing an unexpected result, check the following quick list:

1. Labels denoting functions should be global; others should be local.

2. You do not assume that registers hold zero “by default”

3. You save and restore callee-saved registers if you are using them.

%In fact, by decreasing rsp you allocate memory on the stack.
"We consider spaces, tabulation, and line breaks as whitespace characters. Their codes are 0x20, 0x9, and 0x10, respectively.

35

http://dx.doi.org/10.1007/978-1-4842-2403-8_18

CHAPTER 2 © ASSEMBLY LANGUAGE

4. You save caller-saved registers you need before call and restore them after.

5. You do not use buffers in . data. Instead, you allocate them on the stack, which
allows you to adapt multithreading if needed.

6. Your functions accept arguments in rdi, rsi, rdx, rcx, r8, and r9.

7. You do not print numbers digit after digit. Instead you transform them into strings of
characters and use print_string.

8. parse_intand parse_uint are setting rdx correctly. It will be really important in the
next assignment.

9. All parsing functions and read_word work when the input is terminated via Ctrl-D.

Done right, the code will not take more than 250 lines.

Question 20 Try to rewrite print_newline without calling print_char or copying its code. Hint: read
about tail call optimization.

Question 21 Try to rewrite print_int without calling print_uint or copying its code. Hint: read about tail
call optimization.

Question 22 Try to rewrite print_int without calling print_uint, copying its code, or using jmp. You will
only need one instruction and a careful code placement.

Read about co-routines.

2.8 Summary

In this chapter we started to do real things and apply our basic knowledge about assembly language. We
hope that you have overcome any possible fear of assembly. Despite being verbose to an extreme, it is not
a hard language to use. We have learned to make branches and cycles and perform basic arithmetic and
system calls; we have also seen different addressing modes, little and big endian. The following assembly
assignments will use the little library we have built to facilitate interaction with user.

Question 23 What is the connection between rax, eax, ax, ah, and al?

Question 24 How do we gain access to the parts of r9?
Question 25 How can you work with a hardware stack? Describe the instructions you can use.

Question 26 Which ones of these instructions are incorrect and why?

mov [rax], O
cmp [rdx], bl
mov bh, bl
mov al, al

36

add
add
mov
mov
mov
mov
mov
mov
mov

bpl,
(9],
18d,
13b,
9w,

rcx,

r2d

[rax + rbx + rdx]
19, [r9 + 8*rax]
[r8+r7+10], 6
[r8+r7+10], 16

Question 27

Question 28

Question 29

Question 30

Question 31

Question 32

sar
shr

Xor

jmp

Enumerate the callee-saved registers

Enumerate the caller-saved registers
What is the meaning of rip register?
What is the SF flag?

What is the ZF flag?

Describe the effects of the following instructions:

ja, jb, and similar ones.

cmp

mov

inc,dec

add

imul,

sub

idiv,
call,
push,

mul

div
ret

pop

CHAPTER 2 © ASSEMBLY LANGUAGE

37

CHAPTER 2 © ASSEMBLY LANGUAGE

Question 33
Question 34
Question 35
Question 36
Question 37
Question 38
Question 39

Question 40
stored in rax.

Question 41
Question 42
Question 43

Question 44

What is a label and does it have a size?

How do you check whether an integer number is contained in a certain range (x, y)?
What is the difference between ja/jb and jg/j1?

What is the difference between je and jz?

How do you test whether rax is zero without the cmp command?

What is the program return code?

How do we multiply rax by 9 using exactly one instruction?

By using exactly two instructions (the first is neg), take an absolute value of an integer

What is the difference between little and big endian?
What is the most complex type of addressing?
Where does the program execution start?

rax = 0x112233445567788. We have performed push rax. What will be the contents of

byte at address [rsp+3]?

38

CHAPTER 3

Legacy

This chapter will introduce you to the legacy processor modes, which are no longer used, and to their mostly
legacy features, which are still relevant today. You will see how processors evolved and learn the details
of protection rings implementation (privileged and user mode). You will also understand the meaning of
Global Descriptor Table. While this information helps you understanding the architecture better, it is not
crucial for assembly programming in user space.

As processors evolved, each new mode increased the machine word’s length and added new features.
A processor can function in one of the following modes:

e Real mode (the most ancient, 16-bit one);

e Protected (commonly referred as 32-bit one);

e Virtual (to emulate real mode inside protected);

¢ System management mode (for sleep mode, power management, etc.);
¢ Long mode, with which we are already a bit familiar.

We are going to take a closer look at real and protected mode.

3.1 Real mode

Real mode is the most ancient. It lacks virtual memory; the physical memory is addressed directly and
general purpose registers are 16-bit wide.

So, neither rax nor eax exist yet, but ax, al, and ah do.

Such registers can hold values from 0 to 65535, so the amount of bytes we can address using one of them
is 65536 bytes. Such memory region is called segment. Do not confuse it with protected mode segments or
ELF (Executable and Linkable Format) file sections!

These are the registers usable in real mode:

e ip, flags;
® ax, bx, cx, dx, sp, bp, si, di;
e Segment registers: cs, ds, ss, es, (later also gs and fs).

As it was not straightforward to address more than 64 kilobytes of memory, engineers came up with a
solution to use special segment registers in the following way:

o EBach physical address consists of 20 bits (so, 5 hexadecimal digits).

© Igor Zhirkov 2017 39
1. Zhirkov, Low-Level Programming, DOI 10.1007/978-1-4842-2403-8_3

CHAPTER 3 © LEGACY

e Each logical address consists of two components. One is taken from a segment register
and encodes the segment start. The other is an offset inside this segment. The hardware
calculates the physical address from these components the following way:

physical address = segment base * 16 + offset

You can often see addresses written in form of segment: offset, for example:
4a40:0002, ds:0001, 7bd3:ah.

As we already stated, programmers want to separate code from data (and stack), so they intend to use
different segments for these code sections. Segment registers are specialized for that: cs stores the code
segment start address, ds corresponds to data segment, and ss to stack segment. Other segment registers are
used to store additional data segments.

Note that strictly speaking, the segment registers do not hold segments’ starting addresses but rather
their parts (the four most significant hexadecimal digits). By adding another zero digit to multiply it by 16
we get the real segment starting address.

Each instruction referencing memory implicitly assumes usage of one of segment registers.
Documentation clarifies the default segment registers for each instruction. However, common sense can
help as well. For instance, mov is used to manipulate data, so the address is relative to the data segment.

mov al, [0004] ; === mov al, ds:0004
It is possible to redefine the segment explicitly:
mov al, cs:[0004]

When the program is loaded, the loader sets ip, cs, ss, and sp registers so that cs: ip corresponds to the
entry point, and ss: sp points on top of the stack.

The central processing unit (CPU) always starts in real mode, and then the main loader usually executes
the code to explicitly switch it to protected mode and then to the long mode.

Real mode has numerous drawbacks.

o It makes multitasking very hard. The same address space is shared between all
programs, so they should be loaded at different addresses. Their relative placement
should usually be decided during compilation.

e Programs can rewrite each other’s code or even operating system as they all live in the
same address space.

e Any program can execute any instruction, including those used to set up the
processor’s state. Some instructions should only be used by the operating system
(like those used to set up virtual memory, perform power management, etc.) as their
incorrect usage can crash the whole system.

The protected mode was intended to solve these problems.

3.2 Protected Mode

Intel 80386 was the first processor implementing protected 32-bit mode.

It provides wider versions of registers (eax, ebx, ..., esi, edi) as well as new protection mechanisms:
protection rings, virtual memory, and an improved segmentation.

These mechanisms isolated programs from one another, so an abnormal termination of one of them did
not harm the others. Furthermore, programs were not able to corrupt other processes’ memory.

40

CHAPTER 3 © LEGACY

The way of obtaining a segment starting address has changed compared to real mode. Now the start is
calculated based on an entry in a special table, not by direct multiplication of segment register contents.

Linear address = segment base (taken from system table) + offset

Each of segment registers cs, ds, ss, es, gs, and fs stores so-called segment selector, containing
an index in a special segment descriptor table and a little additional information. There are two types of
segment descriptor tables: possibly numerous LDT (Local Descriptor Table) and only one GDT (Global
Descriptor Table).

LDTs were intended for a hardware task-switching mechanism; however, operating system
manufacturers did not adapt it. Today programs are isolated by virtual memory, and LDTs are not used.

GDTR is a register to store GDT address and size.

Segment selectors are structured as shown in Figure 3-1.

Index T| rec

Figure 3-1. Segment selector (contents of any segment register)

Index denotes descriptor position in either GDT or LDT. The T bit selects either LDT or GDT. As LDTs
are no longer used, it will be zero in all cases.

The table entries in GDT/LDT also store information about which privilege level is assigned to the
described segment. When a segment is accessed through segment selector, a check of Request Privilege
Level (RPL) value (stored in selector = segment register) against Descriptor Privilege Level (stored in
descriptor table) is performed. If RPL is not privileged enough to access a high privileged segment, an error
will occur. This way we could create numerous segments with various permissions and use RPL values in
segment selectors to define which of them are accessible to us right now (given our privilege level).

Privilege levels are the same thing as protection rings!

It is safe to say that current privilege level (e.g., current ring) is stored in the lowest two bits of cs or ss
(these numbers should be equal). This is what affects the ability to execute certain critical instructions
(e.g., changing GDT itself).

It's easy to deduce that for ds, changing these bits allows us to override the current privilege level to be
less privileged specifically for data access to a selected segment.

For example, we are currently in ring0 and ds= 0x02. Even though the lowest two bits of cs and ss are 0
(as we are inside ring0), we can’t access data in a segment with privilege level higher than 2 (like 1 or 0).

In other words, the RPL field stores how privileged we are when requesting access to a segment.
Segments in turn are assigned to one of four protection rings. When requesting access with a certain
privilege level, the privilege level should be higher than the privilege level attributed to segment itself.

Note You can't change cs directly.

Figure 3-2 shows the GDT descriptor format'.

'In this book we are approximating things a bit because certain data structures can have a different format based on page
size, etc. The documentation will give you most precise answers (read volume 3, chapter 3 of [15]

41

http://dx.doi.org/10.1007/978-1-4842-2403-8_3
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16

CHAPTER 3 © LEGACY

31 24 23 22 21 20 19 16 15 14 13 12 11 8 7 0
Base 31:24 G|D|L|V Size 19:16 P|DPL|S|X|8|E|A Base 23:16
31 16 15 0
Base 15:0 | Size 15:0

Figure 3-2. Segment descriptor (inside GDT or LDT)

G—Granularity, e.g., size is in 0 = bytes, 1 = pages of size 4096 bytes each.

D—Default operand size (0 = 16 bit, 1 = 32 bit).

L—Is it a 64-bit mode segment?

V—Available for use by system software.

P—Present in memory right now.

S—Isitdata/code (1) or is it just some system information holder (0).

X—Data (0) or code (1).

RW—For data segment, is writing allowed? (reading is always allowed); for code segment, is reading
allowed? (writing is always prohibited).

DC—Growth direction: to lower or to higher addresses? (for data segment); can it be executed from
higher privilege levels? (if code segment)

A—Was it accessed?

DPL—Descriptor Privilege Level (to which ring is it attached?)

The processor always (even today) starts in real mode. To enter protected mode one has to create GDT
and set up gdtr; set a special bit in cx0 and make a so-called far jump. Far jump means that the segment
(or segment selector) is explicitly given (and thus can be different from default), as follows:

jmp 0x08:addr

Listing 3-1 shows a small snippet of how we can turn on protected mode (assuming start32 is a label
on 32-bit code start).

Listing 3-1. Enabling Protected Mode loader_ start32.asm
lgdt cs:[_gdtr]

mov eax, cro ; !l Privileged instruction
or al, 1 ; this is the bit responsible for protected mode
mov cr0, eax ; !l Privileged instruction

jmp (0x1 << 3):start32 ; assign first seg selector to cs

align 16

_gdtr: ; stores GDT's last entry index + GDT address
dw 47

dq _gdt

align 16
_gdt:

5 Null descriptor (should be present in any GDT)
dd 0x00, 0x00

42

CHAPTER 3 © LEGACY

; X32 code descriptor:

db OxFF, OxFF, 0x00, 0x00, 0x00, Ox9A, OxCF, 0x00 ; differ by exec bit
; x32 data descriptor:
db OxFF, OxFF, 0x00, 0x00, 0x00, 0x92, OxCF, 0x00 ; execution off (0x92)

; size size base base base util util|size base

Align directives control alignment, the essence of which we explain later in this book.

Question 45 Decipher this segment selector: 0x08.

You might think that every memory transaction needs another one now to read GDT contents. This is
not true: for each segment register there is a so-called shadow register, which cannot be directly referenced.
It serves as a cache for GDT contents. It means that once a segment selector is changed, the corresponding
shadow register is loaded with the corresponding descriptor from GDT. Now this register will serve as a
source of all information needed about this segment.

The D flag needs a little explanation, because it depends on segment type.

e Itisa code segment: default address and operand sizes. One means 32-bit addresses
and 32-bit or 8-bit operands; zero corresponds to 16-bit addresses and 16-bit or 8-bit
operands. We are talking about encoding of machine instructions here. This behavior
can be altered by preceding an instruction by a prefix 0x66 (to alter operand size) or
0x67 (to alter address size).

o Stack segment (it is a data segment AND we are talking about one selected by ss).? It is
again default operand size for call, ret, push/pop, etc. If the flag is set, operands are
32-bit wide and instructions affect esp; otherwise operands are 16-bit wide and sp is
affected.

¢ For data segments, growing toward low addresses, it denotes their limits (0 for 64 KB, 1
for 4 GB). This bit should always be set in long mode.

Asyou see, the segmentation is quite a cumbersome beast. There are reasons it was not largely adopted
by operating systems and programmers alike (and is now pretty much abandoned).

o No segmentation is easier for programmers;

e No commonly used programming language includes segmentation in its memory
model. It is always flat memory. So it is a compiler’s job to set up segments (which is
hard to implement).

e Segments make memory fragmentation a disaster.

o A descriptor table can hold up to 8192 segment descriptors. How can we use this small
amount efficiently?

After the introduction of long mode segmentation was purged from processor, but not completely. It is
still used for protection rings and thus a programmer should understand it.

’In this case, documentation names this flag B.

43

CHAPTER 3 © LEGACY

3.3 Minimal Segmentation in Long Mode

Even in long mode each time an instruction is selected, the processor is using segmentation. It provides
us with a flat linear virtual address, which is then turned into a physical one by virtual memory routines
(see section 4.2).

LDT is a part of a hardware context-switching mechanism that no one really adopted; for this reason it
was disabled in long mode completely.

All memory addressing through main segment registers (cs, ds, es, and ss) do not consider the GDT
values of base and offset anymore. The segment base is always fixed at 0x0 no matter the descriptor contents;
the segment sizes are not limited at all. The other descriptor fields, however, are not ignored.

It means, that in long mode at least three descriptors should be present in GDT: the null descriptor
(should be always present in any GDT), code, and data segments. If you want to use protection rings to
implement privileged and user modes, you need also code and data descriptors for user-level code.

Why do we need separate descriptors for code and data? No combination of descriptor flags allows a
programmer to set up read/write permissions and execution permission simultaneously.

Even with the very small experience in assembly language we already have, it is not hard to decipher
this loader fragment, showing an exemplary GDT. It is taken from Pure64, an open source operating system
loader. As it is executed before the operating system, it does not contain user-level code or data descriptors
(see Listing 3-2).

Listing 3-2. A Sample GDT gdt64.asm

align 16 ; This ensures that the next command or data element is
; stored starting at an address divisible by 16 (even if we need
; to skip some bytes to achieve that).

5 The following will be copied to GDTR via LGDTR instruction:

GDTR64: ; Global Descriptors Table Register
dw gdt64 end - gdt64 - 1 ; limit of GDT (size minus one)
dq 0x0000000000001000 ; linear address of GDT

; This structure is copied to 0x0000000000001000
gdt64:
SYS64 NULL_SEL equ $-gdt64 5 Null Segment

dq 0x0000000000000000
; Code segment, read/exec, nonconforming
SYS64_CODE_SEL equ $-gdt64

dq 0x0020980000000000 ; 0x00209A0000000000
; Data segment, read/write, expand down
SYS64 DATA SEL equ $-gdt64

dq 0x0000900000000000 ; 0x0020920000000000
gdt64 _end:

; Dollar sign denotes the current memory address, so
; $-gdt64 means an offset from “gdt64 label in bytes

44

http://dx.doi.org/10.1007/978-1-4842-2403-8_4#Sec2

CHAPTER 3 © LEGACY

3.4 Accessing Parts of Registers
3.4.1 An Unexpected Behavior

We are usually thinking about eax, rax, ax, etc. as parts of a same physical register. The observable behavior
mostly supports this hypothesis unless we are writing into a 32-bit part of a 64-bit register. Let us take a look
at the example shown in Listing 3-3.

Listing 3-3. The Land of Registry Wonders risc_cisc.asm

mov rax, 0x1122334455667788 ; rax = 0x1122334455667788
mov eax, 0x42 ; lrax = 0x00 00 00 00 00 00 00 42
; why not rax = 0x1122334400000042 ??

mov rax, 0x1122334455667788 ; rax = 0x1122334455667788
mov ax, 0x9999 ; rax = 0x1111222233339999, as expected
; this works as expected

mov rax, 0x1122334455667788 ; rax = 0x1122334455667788
X0r eax, eax ; rax = 0x0000000000000000
; why not rax = 0x1122334400000000?

Asyou see, writing in 8-bit or 16-bit parts leaves the rest of bits intact. Writing to 32-bit parts, however,
fills the upper half of a wide register with sign bit!

The reason is that how programmers are used to perceiving a processor is much different from how
things are really done inside. In reality, registers rax, eax, and all others do not exist as fixed physical entities.

To explain this inconsistency, we have to first elaborate two types of instruction sets: CISC and RISC.

3.4.2 CISC and RISC

One of possible processors’ classification divides processors based on their instruction set. When designing
one there are two extremes.

e Make loads of specialized, high-level instructions. It corresponds to CISC (Complete
Instruction Set Computer) architectures.

¢ Use only few primitive instructions, making a RISC (Reduced Instruction Set
Computer) architecture.

CISC instructions are usually slower but also do more; sometimes it is possible to implement complex
instructions in a better way, than by combining primitive RISC instructions (we will see an example of that
later in this book when studying SSE (Streaming SIMD Extensions) in Chapter 16). However, most programs
are written in high-level languages and thus depend on compilers. It is very hard to write a compiler that
makes a good use of a rich instruction set.

RISC eases the job of compilers and is also friendlier to optimizations on a lower, microcode level, such
as pipelines.

Question 46 Read about microcode in general and processor pipelines.

45

http://dx.doi.org/10.1007/978-1-4842-2403-8_16

CHAPTER 3 © LEGACY

The Intel 64 instruction set is indeed a CISC one. It has thousands of instructions—just look at the
second volume of [15]! However, these instructions are decoded and translated into a stream of simpler
microcode instructions. Here various optimizations take effect; the microcode instructions are reordered
and some of them can even be executed simultaneously. This is not a native feature of processors but rather
an adaptation aimed at better performance together with backward compatibility with older software.

It is quite unfortunate that there is not much information available on the microcode-level details of
modern processors. By reading technical reviews such as [17] and optimization manuals such as the one
provided by Intel, you can develop a certain intuition about it.

3.4.3 Explanation

Now back to the example shown in Listing 3-3. Let’s think about instruction decoding. The part of a CPU
called instruction decoder is constantly translating commands from an older CISC system to a more
convenient RISC one. Pipelines allow for a simultaneous execution of up to six smaller instructions.

To achieve that, however, the notion of registers should be virtualized. During microcode execution,

the decoder chooses an available register from a large bank of physical registers. As soon as the bigger
instruction ends, the effects become visible to programmer: the value of some physical registers may be
copied to those, currently assigned to be, let’s say, rax.

The data interdependencies between instructions stall the pipeline, decreasing performance. The worst
cases occur when the same register is read and modified by several consecutive instructions (think about
rflags!).

If modifying eax means keeping upper bits of rax intact, it introduces an additional dependency
between current instruction and whatever instruction modified rax or its parts before. By discarding upper
32 bits on each write to eax we eliminate this dependency, because we do not care anymore about previous
rax value or its parts.

This kind of a new behavior was introduced with the latest general purpose registers’ growth to 64 bits
and does not affect operations with their smaller parts for the sake of compatibility. Otherwise, most older
binaries would have stopped working because assigning to, for example, b1, would have modified the entire
ebx, which was not true back when 64-bit registers had not yet been introduced.

3.5 Summary

This chapter was a brief historical note on processor evolution over the last 30 years. We have also elaborated
on the intended use of segments back in the 32-bit era, as well as which leftovers of segmentation we are
stuck with for legacy reasons. In the next chapter we are going to take a closer look at the virtual memory
mechanism and its interaction with protection rings.

46

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par18

CHAPTER 4

Virtual Memory

This chapter covers virtual memory as implemented in Intel 64. We are going to start by motivating an
abstraction over physical memory and then getting a general understanding of how it looks like from a
programmer’s perspective. Finally, we will dive into implementation details to achieve a more complete
understanding.

4.1 Caching

Let’s start with a truly omnipresent concept called caching.

The Internet is a big data storage. You can access any part of it, but the delay after you made a query can
be significant. To smoothen your browsing experience, web browser caches web pages and their elements
(images, style sheets, etc.). This way it does not have to download the same data over and over again. In
other words, the browser saves the data on the hard drive or in RAM (random access memory) to give much
faster access to a local copy. However, downloading the whole Internet is not an option, because the storage
on your computer is very limited.

A hard drive is much bigger than RAM but also a great deal slower. This is why all work with data is done
after preloading it in RAM. Thus main memory is being used as a cache for data from external storage.

Anyway, a hard drive also has a cache on its own...

On CPU crystal there are several levels of data caches (usually three: L1, L2, L3). Their size is much
smaller than the size of main memory, but they are much faster too (the closest level to the CPU is almost as
close as registers). Additionally, CPUs possess at least an instruction cache (queue storing instructions) and
a Translation Lookaside Buffer to improve virtual memory performance.

Registers are even faster than caches (and smaller) so they are a cache on their own.

Why is this situation so pervasive? In information system, which does not need to give strict guarantees
about its performance levels, introducing caches often decreases the average access time (the time between
arequest and a response). To make it work we need our old friend locality: in each moment of time we only
have a small working set of data.

The virtual memory mechanism allows us, among other things, to use physical memory as a cache for
chunks of program code and data.

4.2 Motivation

Naturally, given a single task system where there is only one program running at any moment of time, it is
wise just to put it directly into physical memory starting at some fixed address. Other components (device
drivers, libraries) can also be placed into memory in some fixed order.

© Igor Zhirkov 2017 47
1. Zhirkov, Low-Level Programming, DOI 10.1007/978-1-4842-2403-8_4

CHAPTER 4 © VIRTUAL MEMORY

In a multitasking-friendly system, however, we prefer a framework supporting a parallel (or pseudo
parallel) execution of multiple programs. In this case an operating system needs some kind of memory
management to deal with these challenges:

e Executing programs of arbitrary size (maybe even greater than physical memory
size). It demands an ability to load only those parts of program we need in the near
future.

e Having several programs in memory at the same time.

Programs can interact with external devices, whose response time is usually slow.
During a request to a slow piece of hardware that may last thousands of cycles, we
want to lend precious CPUs to other programs. Fast switching between programs
is only possible if they are already in memory; otherwise we have to spend much
time retrieving them from external storage.

e Storing programs in any place of physical memory.

If we achieve that, we can load pieces of programs in any free part of the memory,
even if they are using absolute addressing.

In case of absolute addressing, like mov rax, [0x1010ffba], all addresses
including starting address become fixed: all exact address values are written into
machine code.

¢ Freeing programmers from memory management tasks as much as possible.

While programming, we do not want to think about how different memory chips
on our target architectures can function, what is the amount of physical memory
available, etc. Programmers should pay closer attention to program logic instead.

o Effective usage of shared data and code.

Whenever several programs want to access the same data or code (libraries) files, it
is a waste to duplicate them in memory for each additional user.

Virtual memory usage addresses these challenges.

4.3 Address Spaces

Address space is a range of addresses. We see two types of address spaces:

e Physical address, which is used to access the bytes on the real hardware. Naturally,
there is a certain memory capacity a processor cannot exceed. It is based on
addressing capabilities. For example, a 32-bit system cannot address more than
4GB of memory per process, because 2% different addresses roughly correspond to
4GB of addressed memory. However, we could put less memory inside the machine
capable of addressing 4GB, like, 1GB or 2GB. In this case some addresses of the
physical address space will become forbidden, because there are no real memory
cells behind them.

48

CHAPTER 4 ' VIRTUAL MEMORY

e Logical address is the address as an application sees it.
In instructionmov rax, [0x10bfd] there is alogical address: 0x10bfd.

A programmer has an illusion that he is the sole memory user. Whatever memory
cell he addresses, he never sees data or instructions of other programs, which are
running with his own in parallel. Physical memory holds several programs at time,
however.

In our circumstances virtual address is synonymous to logical address.

Translation between these two address types is performed by a hardware entity called Memory
Management Unit (MMU) with help of multiple translation tables, residing in memory.

4.4 Features

Virtual memory is an abstraction over physical memory. Without it we would work directly with physical
memory addresses.

In the presence of virtual memory we can pretend that every program is the only memory consumer,
because it is isolated from others in its own address space.

The address space of a single process is split into pages of equal length (usually 4KB). These pages are
then dynamically managed. Some of them can be backed up to external storage (in a swap file), and brought
back in case of a need.

Virtual memory offers some useful features, by assigning an unusual meaning to memory operations
(read, write) on certain memory pages.

e We can communicate with external devices by means of Memory Mapped Input/
Output (e.g., by writing to the addresses, assigned to some device, and reading from
them).

e Some pages can correspond to files, taken from external storage with the help of the
operating system and file system.

e Some pages can be shared among several processes.

e Most addresses are forbidden—their value is not defined, and an attempt to access
them results in an error.! This situation usually results in abnormal termination of
program.

Linux and other Unix-based systems use a signal mechanism to notify
applications of exceptional situations. It is possible to assign a handler to almost all
types of signals.

Accessing a forbidden address will be intercepted by the operating system, which
will throw a SIGSEGV signal at the application. It is quite common to see an error
message, Segmentation fault, in this situation.

e Some pages correspond to files, taken from storage (executable file itself, libraries,
etc.), but some do not. These anonymous pages correspond to memory regions of
stack and heap —dynamically allocated memory. They are called so because there
are no names in file system to which they correspond. To the contrary, an image of the
running executable data files and devices (which are abstracted as files too) all have
names in the file system.

'An interrupt #PF (Page Fault) occurs.

49

CHAPTER 4 © VIRTUAL MEMORY

A continuous area of memory is called a region if:
e Itstarts at an address, which is multiple of a page size (e.g., 4KB).
e Allits pages have the same permissions.

If the free physical memory is over, some pages can be swapped to external storage and stored in a swap
file, or just discarded (in case they correspond to some files in file system and were not changed, for example).
In Windows, the file is called PageFile.sys, in *nix systems a dedicated partition is usually allocated on disk.
The choice of pages to be swapped is described by one of the replacement strategies, such as:

e Leastrecently used.
e Lastrecently used.
e Random (just pick a random page).

Any kind of a system with caching has a replacement strategy.

Question 47 Read about different replacement strategies. What other strategies exist?

Each process has a working set of pages. It consists of his exclusive pages present in physical memory.

Allocation What happens when a process needs more memory? It cannot get more pages on its own, so it
asks the operating system for more pages. The system provides it with additional addresses.

Dynamic memory allocation in higher-level languages (C++, Java, C#, etc.) eventually ends up querying pages
from the operating system, using the allocated pages until the process runs out of memory and then querying
more pages.

4.5 Example: Accessing Forbidden Address

Now we are going to see a memory map of a single process with our own eyes. It shows which pages are
available and what they correspond to. We will observe different kinds of memory regions:

1. Corresponding to executable file, loaded into memory;, itself.
Corresponding to code libraries.

Corresponding to stack and heap (anonymous pages).

Eal N

Just empty regions of forbidden addresses.

Linux offers us an easy-to-use mechanism to explore various useful information about processes, called
procfts. It implements a special purpose file system, where by navigating directories and viewing files, one
can get access to any process’s memory, environment variables, etc. This file system is mounted in the /proc
directory.

Most notably, the file /proc/PID/maps shows a memory map of process with identifier PID.?

*To find the process identifier, use such standard programs as ps or top.

50

CHAPTER 4 ' VIRTUAL MEMORY

Let’s write a simple program, which enters a loop (and thus does not terminate) (Listing 4-1). It will
allow us to see its memory layout while it is running.

Listing 4-1. mappings loop.asm

section .data
correct: dq -1
section .text

global _start
_start:
jmp _start

Now we have to launch a file /proc/?/maps, where ? is the process ID. See the complete terminal
contents in Listing 4-2.

Listing 4-2. mappings_loop

> nasm -felf64 -o main.o mappings_loop.asm

> 1d -o main main.o

> ./main &

[1] 2186

> cat /proc/2186/maps

00400000-00401000 r-Xxp 00000000 08:01 144225 /home/stud/main
00600000-00601000 rwxp 00000000 08:01 144225 /home/stud/main
7fff11ac0000-7fff11ae1000 rwxp 00000000 00:00 0 [stack]
7fff11bfc000-7fff11bfe000 r-xp 00000000 00:00 O [vdso]
7fff11bfe000-7fff11c00000 r--p 00000000 00:00 O [vvar]

- fff600000-fff{ffffff601000 r-xp 00000000 00:00 O [vsyscall]

Left column defines the memory region range. As you may notice, all regions are contained between
addresses ending with three hexadecimal zeros. The reason is that they are composed of pages whose size is
4KB each (= 0x1000 bytes).

We observe that different sections defined in the assembly file were loaded as different regions. The first
region corresponds to the code section and holds encoded instructions; the second corresponds to data.

Asyou see, the address space is huge and spans from 0-th to 2% —1-th byte. However, only a few
addresses are allocated; the rest are being forbidden.

The second column shows read, write, and execution permissions on pages. It also indicates whether
the page is shared among several processes or it is private to this specific process.

Question 48 Read about meaning of the fourth (08:01) and fifth (144225) column in man procfs.

So far we did nothing wrong. Now let’s try to write into a forbidden location.

Listing 4-3. Producing segfault: segfault_badaddr.asm

section .data
correct: dq -1
section .text

global _start

_start:

mov rax, [0x400000-1]

51

CHAPTER 4 © VIRTUAL MEMORY

; exit
mov rax, 60
xor rdi, rdi
syscall

We are accessing memory at address 0x3fffff, which is one byte before the code segment start. This
address is forbidden and hence the writing attempt results in a segmentation fault, as the message suggests.

> ./main Segmentation fault

4.6 Efficiency

Loading a missing page into physical memory from a swap file is a very costly operation, involving a huge
amount of work from operating system. How come this mechanism turned out not only to be effective
memory-wise but also to perform adequately? The key success factors are:

1. Thanks to locality, the need to load additional pages occurs rarely. In the worst
case we have indeed very slow access; however, such cases are extremely rare.
Average access time stays low.

In other words, we rarely try to access a page which is not loaded in physical
memory.

2. Ttis clear that efficiency could not be achieved without the help of special
hardware. Without a cache of translated page addresses TLB (Translation
Lookaside Buffer) we would have to use a translation mechanism all the time.
TLB stores the starting physical addresses for some pages we will likely to work
with. If we translate a virtual address inside one of these pages, the page start will
be immediately fetched from TLB.

In other words, we rarely try to translate an address from a page, that we did not
recently locate in physical memory.

Remember that a program that uses less memory can be faster because it produces fewer page faults.

Question 49 What is an associative cache? Why is TLB one?

4.7 Implementation

Now we are going to dive into details and see how exactly the translation happens.

Note For now we are only talking about a dominant case of 4KB pages. Page size can be tuned and other
parameters will change accordingly; refer to section 4.7.3 and [15] for additional details.

52

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16

CHAPTER 4 ' VIRTUAL MEMORY

4.7.1 Virtual Address Structure

Each virtual 64-bit address (e.g., ones we are using in our programs) consists of several fields, as shown in
Figure 4-1.

63 48 47 39 38 30

Index in Level 4 Index in Page Directory

Sign extention: repeating 47-th bit (16) Pagemap Table (9) Pointer Table (9)

29 21 20 12 11 0

Index in Page Directory

©) Index in Page table (9) Offset from page start (12)

Figure 4-1. Structure of virtual address

The address itself is in fact only 48 bits wide; it is sign-extended to a 64-bit canonical address. Its
characteristic is that its 17 left bits are equal. If the condition is not satisfied, the address gets rejected
immediately when used.

Then 48 bits of virtual address are transformed into 52 bits of physical address with the help of special
tables.?

Bus Error When occasionally using a non-canonical address you will see another error message:
Bus error.

Physical address space is divided into slots to be filled with virtual pages. These slots are called page
frames. There are no gaps between them, so they always start from an address ending with 12 zero bits.

The least significant 12 bits of virtual address and of physical page correspond to the address offset
inside page, so they are equal.

The other four parts of virtual address represent indexes in translation tables. Each table occupies
exactly 4KB to fill an entire memory page. Each record is 64 bits wide; it stores a part of the next table’s
starting address as well as some service flags.

4.7.2 Address Translation in Depth

Figure 4-2 reflects the address translation process.

STheoretically we could support all 64 bits of physical addresses, but we do not need that many addresses yet.

53

CHAPTER 4 VIRTUAL MEMORY

Page Map Page Directory ,
Level 4 Pointer Tables Page Directory Page Table
—
M L= 7 - 1 Physical Memory
cr3 ; L. | - el page frame
.‘.
: : : page frame .

page frame
o E

aee

page frame

48 39 30 21 12 [4]
| A B

Figure 4-2. Virtual address translation schematic

First, we take the first table starting address from cr3. The table is called Page Map Level 4 (PML4).
Fetching elements from PML4 is performed as follows:

e Bits 51:12 are provided by cr3.
e Bits 11:3 are bits 47:39 of the virtual address.
e The last three bits are zeroes.

The entries of PML4 are referred as PMLAE. The next step of fetching an entry from the Page Directory
Pointer table mimics the previous one:

e Bits 51:12 are provided by selected PMLAE.
e Bits 11:3 are bits 38:30 of the virtual address.

e The last three bits are zeroes.

54

CHAPTER 4 ' VIRTUAL MEMORY

The process iterates through two more tables until at last we fetch the page frame address (to be precise,
its 51:12 bits). The physical address will use them and 12 bits will be taken directly from the virtual address.

Are we going to perform so many memory reads instead of one now? Yes, it does look bulky. However,
thanks to the page address cache, TLB, we usually access memory on already translated and memorized
pages. We should only add the correct offset inside page, which is blazingly fast.

As TLB is an associative cache; it is quickly providing us with translated page addresses given a starting
virtual address of the page.

Note that translation pages can be cached for a faster access. Figure 4-3 specifies the Page Table Entry
format.

62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Page frame 47:32

EXB| 2
HE
[¢]
&
[¢]
=
<
[¢]
(=%

Page frame 31:12 AVL | misc |[D|A

PWT| -
c
=
8]

PCD| ~

Figure 4-3. Page table entry

Present (in physical memory)

Writable (writing is allowed)

User (can be accessed from ring3)

Accessed

Dirty (page was modified after being loaded—e.g., from disk)

EXB Execution-Disabled Bit (forbids executing instructions on this page)
AVL Available (for operating system developers)

PCD Page Cache Disable

PWT Page Write-Through (bypass cache when writing to page)

oras

If P is not set, an attempt to access the page results in an interrupt with code #PF (Page fault). The
operating system can handle it and load the respective page. It can also be used to implement lazy file
memory mapping. The file parts will be loaded in memory as needed.

The operating system uses W bit to protect the page from being modified. It is needed when we want to
share code or data between processes, avoiding unnecessary doubling. Shared pages marked with W can be
used for data exchange between processes.

Operating system pages have U bit cleared. If we try to access them from ring3, an interrupt will occur.

In absence of segment protection the virtual memory is the ultimate memory guarding mechanism.

On segmentation faults In general, segmentation faults occurs when there is an attempt to access
memory with insufficient permissions (e.g., writing into read-only memory). In case of forbidden addresses we
can consider them to have no valid permissions, so accessing them is just a particular case of memory access
with insufficient permissions.

EXB (also called NX) bit forbids code execution. The DEP (Data Execution Prevention) technology is based
on it. When a program is being executed, parts of its input can be stored in a stack or its data section. A malicious
user can exploit its vulnerabilities to mix encoded instructions into the input and then execute them. However,
if data and stack section pages are marked with EXB, no instructions can be executed from them. The . text
section, however, will remain executable, but it is usually protected from any modifications by W bit anyway.

55

CHAPTER 4 © VIRTUAL MEMORY

4.7.3 Page Sizes

The structure of tables of a different hierarchy level is very much alike. The page size may be tuned to be
4KB, 2MB, or 1GB. Depending on the structure, this hierarchy can shrink to a minimum of two levels. In this
case PDP will function as a page table and will store part of a 1GB frame. See Figure 4-4 to see how the entry
format changes depending on page size.

PDP partial format: either maps 1GB pages or transfers to the next level

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 2 19 18 17 16 15 14 13 12

1 GB page frame address Reserved

Address of page directory

PD partial format: either maps 2MB pages or transfers to the next level

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

2 MB page frame address Reserved

Address of page table

Figure 4-4. Page Directory Pointer table and Page Directory table entry format

This is controlled by the 7-th bit in the respective PDP or PD entry. If it is set, the respective table maps
pages; otherwise, it stores addresses of the next level tables.

4.8 Memory Mapping

Mapping means “projection,” making correspondence between entities (files, devices, physical memory),
and virtual memory regions. When the loader fills the process’s address space, when a process requests
pages from the operating system, when the operating system projects files from a disk into processes’
address spaces—these are examples of memory mapping.

A system call mmap is used for all types of memory mapping. To perform it we follow the same simple
steps described in Chapter 2. Table 4-1 shows its arguments.

Table 4-1. mmap System Call

REGISTER VALUE MEANING

rax 9 System call identifier

rdi addr An operating system attempts to map into pages starting from this specific
address. This address should correspond to a page start. A zero address indicates
that the operating system is free to choose any start.

rsi len Region size

rdx prot Protection flags (read, write, execute...)

110 flags Utility flags (shared or private, anonymous pages, etc.)

18 fd Optional descriptor of a mapped file. The file should therefore be opened.
19 offset Offset in file.

56

http://dx.doi.org/10.1007/978-1-4842-2403-8_2

CHAPTER 4 ' VIRTUAL MEMORY

After a call to mmap, rax will hold a pointer to the newly allocated pages.

4.9 Example: Mapping File into Memory

We need another system call, namely, open. It is used to open a file by name and to acquire its descriptor.
See Table 4-2 for details.

Table 4-2. open System Call

REGISTER VALUE MEANING

rax 2 System call identifier

rdi file name Pointer to a null-terminated string, name.holding file

rsi flags A combination of permission flags (read only, write only, or both).

rdx mode If sys openis called to create a file, it will hold its file system permissions.

Mapping file in memory is done in three simple steps:
¢ Open file using open system call. rax will hold file descriptor.

e (Call mmap with relevant arguments. One of them will be the file descriptor, acquired at
step 1.

e Use print_string routine we have created in Chapter 2. For the sake of brevity we
omit file closing and error checks.

4.9.1 Mnemonic Names for Constants

Linux was written in C, so to ease interaction with it some useful constants are predefined in a C way. The line
#define NAME 42

defines a substitution performed in compile time. Whenever a programmer writes NAME, the compiler
substitutes it with 42. This is useful to create mnemonic names for various constants. NASM provides similar

functionality using

%define directive
%define NAME 42

See section 5.1 “Preprocessor” for more details on how such substitutions are made.
Let’s take a look at a man page for mmap system call, describing its third argument prot.
The prot argument describes the desired memory protection of the mapping (and must not conflict
with the open mode of the file). It is either PROT_NONE or the bitwise OR of one or more of the following flags:
PROT_EXEC Pages may be executed.

PROT_READ Pages may be read.

57

http://dx.doi.org/﻿10.1007/978-1-4842-2403-8_2#Sec4
http://dx.doi.org/10.1007/978-1-4842-2403-8_2

CHAPTER 4 © VIRTUAL MEMORY

PROT_WRITE Pages may be written.
PROT_NONE Pages may not be accessed.

PROT_NONE and its friends are examples of such mnemonic names for integers used to control mmap
behavior. Remember that both C and NASM allow you to perform compile-time computations on constant
values, including bitwise AND and OR operations. Following is an example of such computation:

%define PROT_EXEC 0x4
%define PROT_READ Ox1

mov rdx, PROT _READ | PROT EXEC

Unless you are writing in C or C++, you will have to check these predefined values somewhere and copy
them to your program.
Following is how to know the specific values of these constants for Linux:

1. Search them in header files of the Linux API in /usr/include.

2. Use one of the Linux Cross Reference (Ixr) online, like: http://1xr.free-
electrons.com.

We do recommend the second way for now, as we do not know C yet. You may even use a search engine
like Google and type 1xr PROT_READ as a search query to get relevant results immediately after following the
first link.

For example, here is what LXR shows when being queried PROT_READ:

PROT_READ

Defined as a preprocessor macro in:
arch/mips/include/uapi/asm/mman.h, line 18
arch/xtensa/include/uapi/asm/mman.h, line 25
arch/alpha/include/uapi/asm/mman.h, line 4
arch/parisc/include/uapi/asm/mman.h, line 4
include/uapi/asm-generic/mman-common.h, line 9

By following one of these links you will see
18 #define PROT_READ 0x01 /* page can be read */
So, we can type %define PROT_READ 0x01 in the beginning of the assembly file to use this constant

without memorizing its value.

4.9.2 Complete Example

Create a file test. txt with any contents and then compile and launch the file listed in Listing 4-4 in the
same directory. You will see file contents written to stdout.

58

http://lxr.free-electrons.com/
http://lxr.free-electrons.com/

CHAPTER 4

Listing 4-4. mmap.asm

These macrodefinitions are copied from linux sources
Linux is written in C, so the definitions looked a bit
different there.

We could have just looked up their values and use
them directly in right places

However it would have made the code much less legible

“e we we Wwe we W

%define O_RDONLY 0
%define PROT_READ Ox1
%define MAP_PRIVATE Ox2

section .data
; This is the file name. You are free to change it.
fname: db 'test.txt', 0

section .text
global _start

; These functions are used to print a null terminated string
print_string:
push rdi
call string_length
pop rsi
mov rdx, rax
mov rax, 1
mov rdi, 1
syscall
ret
string_length:
X0 rax, rax

.1loop:
cmp byte [rdi+rax], 0
je .end
inc rax
jmp .loop
.end:
ret
_start:
; call open
mov rax, 2

mov rdi, fname
mov rsi, O_RDONLY ; Open file read only
mov rdx, O ; We are not creating a file
; so this argument has no meaning
syscall

VIRTUAL MEMORY

59

CHAPTER 4 © VIRTUAL MEMORY

5 mmap
mov r8, rax

mov rax, 9
mov rdi, O

mov rsi, 4096
mov rdx, PROT_READ
mov 110, MAP_PRIVATE

mov 19, O
syscall

mov rdi, rax

rax holds opened file descriptor

it is the fourth argument of mmap

mmap number

operating system will choose mapping destination
page size

new memory region will be marked read only

pages will not be shared

e e v e Wl we W

; offset inside test.txt
; now rax will point to mapped location

call print_string

mov rax, 60
xor rdi, rdi
syscall

; use exit system call to shut down correctly

410 Summary

In this chapter we have studied the concept and the implementation of virtual memory. We have elaborated
it as a particular case of caching. Then we have reviewed the different types of address spaces (physical,
virtual) and the connection between them through a set of translation tables. Then we dived into the virtual
memory implementation details.

Finally, we have provided a minimal working example of the memory the mapping using Linux system
calls. We will use it again in the assignment for Chapter 13, where we will base our dynamic memory
allocator on it. In the next chapter we are going to study the process of translation and linkage to see how an
operating system uses the virtual memory mechanism to load and execute programs.

Question 50

Question 51
Question 52
Question 53
Question 54
Question 55
Question 56
Question 57
Question 58

Question 59

60

What is virtual memory region?

What will happen if you try to modify the program execution code during its execution?
What are forbidden addresses?

What is a canonical address?

What are the translation tables?

What is a page frame?

What is a memory region?

What is the virtual address space? How is it different from the physical one?

What is a Translation Lookaside Buffer?

What makes the virtual memory mechanism performant?

http://dx.doi.org/10.1007/978-1-4842-2403-8_13

Question 60
Question 61
Question 62
Question 63

Question 64

Question 65

Question 66

CHAPTER 4 ' VIRTUAL MEMORY

How is the address space switched?

Which protection mechanisms does the virtual memory incorporate?
What is the purpose of EXB bit?

What is the structure of the virtual address?

Does a virtual and a physical address have anything in common?

Can we write a string in . text section? What happens if we read it? And if we overwrite it?

Write a program that will call stat, open, and mmap system calls (check the system calls table

in Appendix C). It should output the file length and its contents.

Question 67

Write the following programs, which all map a text file input.txt containing an integer xin

memory using a mmap system call, and output the following:

1. x!(factorial, x!=1-2..... (x-1) - x). It is guaranteed that x > 0.

LA

0 if the input number is prime, 1 otherwise.
Sum of all number’s digits.
x-th Fibonacci number.

Checks if x is a Fibonacci number.

61

CHAPTER 5

Compilation Pipeline

This chapter covers the compilation process. We divide it into three main stages: preprocessing, translation,
and linking. Figure 5-1 shows an exemplary compilation process. There are two source files: first.asmand
second.asm. Each is treated separately before linking stage.

first.asm second.asm
\
Preprocessor Preprocessor
| |
code with substitutions code with substitutions
\ v
Compiler Compiler
\ \
first.o libraries second.o
Linker
vy

executable file

|

Loader

Figure 5-1. Compilation pipeline

© Igor Zhirkov 2017 63
1. Zhirkov, Low-Level Programming, DOI 10.1007/978-1-4842-2403-8_5

CHAPTER 5 © COMPILATION PIPELINE

Preprocessor transforms the program source to obtain other program in the same language. The
transformations are usually substitutions of one string instead of others.

Compiler transforms each source file into a file with encoded machine instructions. However, such a
file is not yet ready to be executed because it lacks the right connections with the other separately compiled
files. We are talking about cases in which instructions address data or instructions, which are declared in
other files.

Linker establishes connections between files and makes an executable file. After that, the program is
ready to be run. Linkers operate with object files, whose typical formats are ELF (Executable and Linkable
Format) and COFF (Common Object File Format).

Loader accepts an executable file. Such files usually have a structured view with metadata included. It
then fills the fresh address space of a newborn process with its instructions, stack, globally defined data, and
runtime code provided by the operating system.

5.1 Preprocessor

Each program is created as a text. The first stage of compilation is called preprocessing. During this stage,
a special program is evaluating preprocessor directives found in the program source. According to them,

textual substitutions are made. As a result we get a modified source code without preprocessor directives
written in the same programming language. In this section we are going to discuss the usage of the NASM
Macro processor.

5.1.1 Simple Substitutions

One of the basic preprocessor directives is called %define. It performs a simple substitution.
Given the code shown in Listing 5-1, a preprocessor will substitute cat_count by 42 whenever it
encounters such a substring in the program source.

Listing 5-1. define_cat_count.asm

%define cat count 42
mov rax, cat_count

To see the preprocessing results for an input file.asm, run nasm -E file.asm. It is often very useful for
debug purposes. Let’s see the result in Listing 5-2 for the file in Listing 5-1.
Listing 5-2. define_cat_count_preprocessed.asm

%line 2+1 define cat count.asm
mov rax, 42

The commands to declare substitutions are called macros. During a process called macro expansion
their occurrences are replaced with pieces of text. The resulting text fragments are called macro instances.
In Listing 5-2, a number 42 in linemov rax, cat_count is a macro instance. Names such as cat_count are
often referred to as preprocessor symbols.

Redefinition NASM allows you to redefine existing preprocessor symbols.

64

CHAPTER 5 © COMPILATION PIPELINE

It is important that the preprocessor knows little to nothing about the programming language syntax.
The latter defines valid language constructions.

For example, the code shown in Listing 5-3 is correct. It doesn’t matter if neither a nor b alone
constitutes a valid assembly construction; as long as the final result of substitutions is syntactically valid, the
compiler is fine with it.

Listing 5-3. macro_asm_parts.asm

%define a mov rax,
%define b rbx

ab

In another example, in higher-level languages, an if statement has a form of if (<expression>) then
<statement> else <statement>. Macros can operate parts of this construction which on their own are not
syntactically correct (e.g., a sole else <statement> clause). As long as the result is syntactically correct, the
compiler will have no problems with it.

Contrarily, other types of macros exist, namely, syntactic macros, tied to the language structure and
operating with its constructions. Such macros modify them in a structured way. Languages like LISP, OCaml,
and Scala use syntactic macros.

Why are we using macros at all? Apart from automation, which we will see later, they provide
mnemonics for pieces of code.!

For constants, it allows us distinguish occurrences of 42 which are used to count cats from those used
to count dogs or whatever else. Otherwise, certain program modifications would be more painful and error
prone, since we would have had to make more decisions based on what this specific number means.

For packs of language constructs, it provides us with a certain automatization just as subroutines do.
Macros are expanded at compile time, while routines are executed in runtime. The choice is up to you.

For assembly, no optimizations are performed on programs. However, in higher-level languages
people use global constant variables for that matter. A good compiler will substitute its occurrences with its
value. A bad one, however, cannot be aware of optimizations, which can be the case when programming
microcontrollers or applications for exotic operating systems. In such cases people often do a compiler’s job
by using macros as in assembly language.

Style It is a good practice to name all constants in your program.

In assembly and C people usually define global constants using macro definitions.

5.1.2 Substitutions with Arguments

Macros are better than that: they can have arguments. Listing 5-4 shows a simple macro with three
arguments.

'D. Knuth takes this idea to extreme in his approach called Literate Programming

65

CHAPTER 5 © COMPILATION PIPELINE

Listing 5-4. macro_simple 3arg.asm

%macro test 3
dq %1

dq %2

dq %3
%endmacro

Its action is simple: for each argument it will create a quad word data entry. As you see, arguments
are referred by their indices starting at 1. When this macro is defined, a line test 666, 555, 444 will be
replaced by those shown in Listing 5-5

Listing 5-5. macro_simple 3arg_inst.asm

dq 666
dq 555
dq 444

Question 68 Find more examples of %define and %macro usage in NASM documentation.

5.1.3 Simple Conditional Substitution

Macros in NASM support various conditionals. The simplest of them is %if. Listing 5-6 shows a minimal
example.

Listing 5-6. macroif.asm

BITS 64
%define x 5

%if x == 10
mov rax, 100
%elif x == 15
mov rax, 115
%elif x == 200
mov rax, O
%else

mov rax, rbx
%endif

Listing 5-7 shows an instantiated macro. Remember, you can check the preprocessing result using nasm -E.

Listing 5-7. macroif preprocessed.asm

%line 1+1 if.asm
[bits 64]

66

CHAPTER 5 © COMPILATION PIPELINE

%line 15+1 if.asm
mov rax, rbx

The condition is an expression similar to what you might see in high-level languages: arithmetics and
logical conjectures (and, or, not).

5.1.4 Conditioning on Definition

It is possible to decide in compile time whether a part of file should be assembled or not. One of many %if
counterparts is %ifdef. It works in a similar way, but the condition is satisfied if a certain preprocessor
symbol is defined. An example shown in Listing 5-8 incorporates such a directive.

Listing 5-8. defining_in cla.asm

%ifdef flag
hellostring: db "Hello",0
%endif

As you can see, the symbol flag is not defined here using %define directive. Thus, we have the line
labeled by hellostring.

It is worth mentioning that preprocessor symbols can be defined directly when calling NASM thanks to
-d key. For example, the macro condition in Listing 5-8 will be satisfied when NASM is called with -d myflag
argument.

Question 69 Check the preprocessor output on file, shown in Listing 5-8.

In the next sections we are going to see more preprocessor directives similar to %if.

5.1.5 Conditioning on Text Identity

%ifidn is used to test if two text strings are equal (spacing differences are not taken into account).
Depending on the comparison result the subsequent code will or will not be assembled.

This allows us to create very flexible macros which will depend, for example, on the argument name.

To illustrate, let’s create a pushr macro instruction (see Listing 5-9). It will function exactly the same way
as a push assembly instruction but will also accept rip and rflags registers.

Listing 5-9. pushr.asm

Zmacro pushr 1
%ifidn %1, rflags
pushf

%else

push %1

%endif

%endmacro

pushr rax
pushr rflags

67

CHAPTER 5 © COMPILATION PIPELINE

Listing 5-10 shows what the two macros in Listing 5-9 become after instantiation.

Listing 5-10. pushr_preprocessed.asm

%line 8+1 pushr/pushr.asm

push rax
pushf

As you can see, the macro adjusted its behavior based on the argument’s text representation. Notice that
%else clauses are allowed just like for regular %if. To make the comparison case insensitive, use the %ifidni
directive instead.

5.1.6 Conditioning on Argument Type

The NASM preprocessor is a bit aware of the assembly language elements (token types). It can distinguish

quoted strings from numbers and identifiers. There is a triple of %1f counterparts for this purpose: %ifid to check

whether its argument is an identifier, %1fstr for a string check, and %ifnumto check whether it is a number or not.
Listing 5-11 shows an example of a macro, which prints either a number or a string (using an identifier).

It uses several routines developed during the first assignment to calculate string length, output string, and

output integer.

Listing 5-11. macro_arg types.asm

Zmacro print 1
%ifid %1
mov rdi, %1
call print_string
%else

%ifnum %1
mov rdi, %1
call print uint
%else
%error "String literals are not supported yet"
%endif
%endif

%endmacro

myhello: db 'hello', 10, 0
_start:

print myhello

print 42

mov rax, 60

syscall

68

CHAPTER 5

The indentation is completely optional and is done for the sake of readability.

In case the argument is neither string nor identifier, we use the %error directive to force NASM into
throwing an error. If we had used %fatal instead, we would have stopped assembling completely and
any further errors would be ignored; a simple %error, however, will give NASM a chance to signal about

following errors too before it stops processing input files.

Let’s observe the macro instantiations in Listing 5-12

Listing 5-12. macro_arg_types_preprocessed.asm

%line 73+1 macro_arg types/macro_arg types.asm

myhello: db 'hello', 10, 0

_start:

mov rdi, myhello

%line 76+0 macro_arg types/macro_arg types.asm
call print_string

%line 77+1 macro_arg types/macro_arg types.asm

%line 77+0 macro_arg types/macro_arg types.asm
mov rdi, 42
call print_uint

%line 78+1 macro_arg types/macro_arg types.asm
mov rax, 60
syscall

5.1.7 Evaluation Order: Define, xdefine, Assign

COMPILATION PIPELINE

All programming languages have a notion of evaluation strategy. It describes the order of evaluation in
complex expressions. How should we evaluate f(g(1), h(4))? Should we evaluate g(1) and h(4) first and then
let fact on the results? Or should we inline g(1) and h(4) inside the body of fand defer their own evaluations

until they are really needed?

Macros are evaluated by NASM macroprocessor, and they do have a complex structure, as any macro
instantiation can include other macros to be instantiated. A fine tuning of evaluation order is possible,

because NASM provides slightly different versions of macro definition directives, namely

o %define for a deferred substitution. If macro body contains other macros, they will be

expanded after the substitution.

o %xdefine performs substitutions when being defined. Then the resulting string will be

used in substitutions.

o Zassignislike %xdefine, but it also forces the evaluation of arithmetic expressions

and throws an error if the computation result is not a number.

To better understand the subtle difference between %define and %xdefine take a look at the example

shown in Listing 5-13.

69

CHAPTER 5 © COMPILATION PIPELINE

Listing 5-13. defines.asm

%define i 1

%define d i * 3
%xdefine xd i * 3
%assign a i * 3

mov rax, d
mov rax, xd
mov rax, a

; let's redefine i
%define i 100

mov rax, d

mov rax, xd

mov rax, a

Listing 5-14 shows the preprocessing result.

Listing 5-14. defines_preprocessed.asm

%line 2+1 defines.asm
%line 6+1 defines.asm

mov rax, 1 * 3
mov rax, 1 *
mov rax, 3

mov rax, 100 * 3
mov rax, 1 * 3
mov rax, 3

The key differences are that
¢ %define may change its value between instantiations if parts of it are redefined.
o %xdefine has other macros on which it directly depends glued to it after being defined.

e J%assign forces evaluation and substitutes values. Where xdefine would have left you
with the preprocessor symbol equal to 4+2+3, %assign will compute it and assign
value 9 to it.

We will use the wonderful properties of %assign to show some magic after becoming familiar with
macro repetitions.

5.1.8 Repetition

The times directive is executed after all macro definitions are fully expanded and thus cannot be used to
repeat pieces of macros.

But there is another way NASM can make macro loops: by placing the loop body between %rep and
%endrep directives. Loops can be executed only a fixed amount of times, specified as %rep argument.
An example in Listing 5-15 shows how a preprocessor calculates a sum of integers from 1 to 10 and then uses
this value to initialize a global variable result.

70

CHAPTER 5 © COMPILATION PIPELINE

Listing 5-15. rep.asm

%assign x 1
%assign a 0
%rep 10

%assign a x + a
%assign x x + 1
%endrep

result: dq a

After preprocessing the result value is correctly initialized to 55 (see Listing 5-16). You can check it
manually.”

Listing 5-16. rep_preprocessed.asm

%line 7+1 rep/rep.asm
result: dq 55

We can use %exitrep to immediately leave the cycle. It is thus analogous to break instruction in
high-level languages.

5.1.9 Example: Computing Prime Numbers

The macro shown in Listing 5-17 is used to produce a sieve of prime numbers. It means that it defines a
static array of bytes, where each i-th byte is equal to 1 if and only if i is a prime number.

A prime number is a natural number greater than 1 such that it has no positive divisors other than 1
and itself.

The algorithm is simple:

¢ 0Oand1 are not primes.
e 2isaprime number.

e For each current up to limit we check whether no i from 2 up to n/2 is n’s divisor.

Listing 5-17. prime.asm

%assign limit 15
is_prime: db 0, 0, 1
%assign n 3
%rep limit
%assign current 1
%assign i 1
%rep n/2
%assign i i+1
ifn%i=0
%assign current 0
%exitrep

2A simple formula for the sum of first # natural numbers is: n(n+1)
2

71

CHAPTER 5 © COMPILATION PIPELINE

%endif
%endrep
db current ; n
%assign n n+1
%endrep

By accessing the n-th element of the is_prime array we can find out whether 7 is a prime number or
not. After preprocessing the following code in Listing 5-18 will be generated:

Listing 5-18. prime_preprocessed.asm

%line 2+1 prime/prime.asm
is_prime: db 0, 0, 1
%line 16+1 prime/prime.asm
db 1

%line 16+0 prime/prime.asm
db o

db
db
db
db
db
db
db
db
db
db
db
db

OO OPFrPr OFr OO0OO0ORFr OoORr

db 1

By reading the i-th byte starting at is_prime we get 1 if i is prime; 0 otherwise.

Question 70 Modify the macro the way it would produce a bit table, taking eight times less space in
memory. Add a function that will check number for primarily and return 0 or 1, based on this precomputed table.

Hint for the macro you will probably have to copy and paste a lot.

5.1.10 Labels Inside Macros

There is not much we can do in assembly without labels. Using fixed label names inside macros is not quite
common. When the macro is instantiated many times inside the same file, the multiply defined labels can
produce clashes which stop compilation.

There is an option to use macro local labels, which is a label you cannot access outside current
macro instantiation. In order to do that, you can prefix such label name with double percent, as follows:
%%Llabelname. Each macro local label will get a random prefix, which will change between macro instances
but will remain the same inside one instance. Listing 5-19 shows an example. Listing 5-20 contains the
preprocessing results.

72

CHAPTER 5 © COMPILATION PIPELINE

Listing 5-19. macro_local labels.asm

%macro mymacro O
%%labelname:
%%labelname:
%endmacro

Mymacro
Mymacro
mymacro

The macro mymacro is instantiated three times. Each time the local label gets a unique name. The base
name (after double percent) becomes prepended with a numerical prefix different in each instance. The first
prefixis . .@0., the second is . .@1., and so on.

Listing 5-20. macro_local labels inst.asm

%line 5+1 macro_local labels/macro_local labels.asm

..@0.1labelname:
%line 6+0 macro local labels/macro _local labels.asm
..@0.1abelname:
%line 7+1 macro_local labels/macro_local labels.asm

..@1.1abelname:
%line 8+0 macro local labels/macro_local labels.asm
..@1.1abelname:
%line 9+1 macro_local labels/macro_local labels.asm

..02.1abelname:
%line 10+0 macro_local labels/macro_local labels.asm
..®2.1abelname:

5.1.11 Conclusion

You can think about macros as about a programming meta-language executed during compilation. It can do
quite complex computations and is limited in two ways:

e These computations cannot depend on user input (so they can only operate
constants).

e The cycles can be executed no more than a fixed amount of times. It means that while-
like constructions are impossible to encode.

73

CHAPTER 5 © COMPILATION PIPELINE

5.2 Translation

A compiler usually translates source code from one language into another language. In case of translation
from high-level programming languages into machine code, this process incorporates multiple inner steps.
During these stages we gradually push the code IR (Intermediate Representation) toward the target
language. Each push of IR is closer to the target language. Right before producing assembly code the IR will be
very close to assembly, so we can flush the assembly into a readable listing instead of encoding instructions.

Not only is translation a complex process, it also loses information about source code structure, so
reconstructing readable high-level code from the assembly file is impossible.

A compiler works with atomic code entities called modules. A module usually corresponds to a code
source file (but not a header or include file). Each module is compiled independently from the other
modules. The object file is produced from each module. It contains binary encoded instructions but usually
cannot be executed right away. There are several reasons.

For instance, the object file is completed separately from other files but refers to outside code and data.
It is not yet clear whether that code or data will reside in memory, or the position of the object file itself.

The assembly language translation is quite straightforward because the correspondence between
assembly mnemonics and machine instructions is almost one to one. Apart from label resolution there is
not much nontrivial work. Thus, for now we will concentrate on the following compilation stage, namely,
linking.

5.3 Linking

Let’s return to our first examples of assembly programs. To transform a “Hello, world!” program from source
code to executable file, we used the following two commands:

> nasm -f elf64 -o hello.o hello.asm
> 1d -0 hello hello.o

We used NASM first to produce an object file. Its format, e1f64, was specified by the -f key. Then we
used another program, 1d (a linker), to produce a file ready to be executed. We will take this file format as an
example to show you what the linker really does.

5.3.1 Executable and Linkable Format

ELF (Executable and Linkable Format) is a format for object files quite typical for *nix systems. We will limit
ourselves to its 64-bit version.
ELF allows for three types of files.

1. Relocatable object files are .o-files, produced by compiler.

Relocation is a process of assigning definitive addresses to various program parts
and changing the program code the way all links are attributed correctly. We are
speaking about all kinds of memory accesses by absolute addresses. Relocation is
needed, for example, when the program consists of multiple modules, which are
referencing one another. The order in which they will be placed in memory is not
yet fixed, so the absolute addresses are not determined. Linkers can combine these
files to produce the next type of object files.

2. Executable object file can be loaded in memory and executed right away. It is
essentially a structured storage for code, data, and utility information.

74

CHAPTER 5 © COMPILATION PIPELINE

3. Shared object files can be loaded when needed by the main program. They are
linked to it dynamically. In Windows OS these are well known d11-files; in *nix
systems their names often end with .so.

The purpose of any linker is to make an executable (or shared) object file, given a set of relocatable
ones. In order to do it, a linker must perform the following tasks:

o Relocation

¢ Symbol resolution. Each time a symbol (function, variable) is dereferenced, a linker
has to modify the object file and fill the instruction part, corresponding to the operand
address, with the correct value.

5.3.1.1 Structure

An ELF file starts with the main header, which stores global meta-information.
See Listing 5-21 for a typical ELF header. The hello file is a result of compiling a “Hello, world!”
program shown in Listing 2-4.

Listing 5-21. hello _elfheader ELF Header:

ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
0S/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x4000b0

Start of program headers:
Start of section headers:
Flags:

Size of this header:

Size of program headers:
Number of program headers:
Size of section headers:
Number of section headers:

64 (bytes into file)
552 (bytes into file)
0x0

64 (bytes)

56 (bytes)

2

64 (bytes)

6

Section header string table index: 3

ELF files then provide information about a program that can be observed from two points of view:

¢ Linking view, consisting of sections.

It is described by section table, which is accessible through readelf -S.

Each section in turn can be:

— Raw data to be loaded into memory.

— Formatted metadata about other sections, used by loader (e.g., .bss), linker (e.g., relocation
tables), or debugger (e.g., .line).

75

CHAPTER 5 © COMPILATION PIPELINE

Code and data are stored inside sections.
¢ Execution view, consisting of segments.

It is described by a Program Header Table, which can be studied using readelf -1.
We will take a closer look at it in section 5.3.5.

Each entry can describe
— Some kind of information the system needs to execute the program.

— An ELF segment, containing zero or more sections. They have the same set of permissions
(read, write, execute) enforced by virtual memory. Each segment has a starting address and is
loaded in a separate memory region, consisting of consecutive pages.

After revising Listing 5-21, we notice, that it describes precisely the position and dimensions of program
headers and section headers.
We start with the sections view since the linker works mainly with them.

5.3.1.2 Sections in ELF Files

Assembly language allows manual section controls. NASM’s section corresponds to object file sections. You
have already seen a couple of those, namely, .text and .data. The list of the most used sections follows; the
full list can be found in [24].

.text stores machine instructions.

.rodata stores read only data.

.data stores initialized global variables.

.bss stores readable and writable global variables, initialized to zero. There is no need to dump their
contents into an object file as they are all filled with zeros anyway. Instead, a total section size is stored. An
operating system may know faster ways of initializing such memory than zeroing it manually.

In assembly, you can put data here by placing resb, resw, and similar directives after the section .bss.

.rel.text stores relocation table for the .text section. It is used to memorize places where a linker
should modify .text after choosing the loading address for this specific object file.

.rel.data stores a relocation table for data referenced in module.

.debug stores a symbol table used to debug program. If the program was written in C or C++, it will store
information not only about global variables (as .symtab does) but also about local variables.

Jine defines correspondence with pieces of code and line numbers in source code. We need it because
the correspondence between lines of source code in higher-level languages and assembly instructions is not
straightforward. This information allows one to debug a program in a higher-level language line by line.

.strtab stores character strings. It is like an array of strings. Other sections, such, as .symtab and .debug,
use not immediate strings but their indices in .strtab.

.symtab stores a symbol table. Whenever a programmer defines a label, NASM will create a symbol for
it.* This table also stores utility information, which we are going to examine later.

Now that we have a general understanding of the ELF file linking view, we will observe some examples
to show particularities of three different ELF file types.

5.3.2 Relocatable Object Files

Let’s investigate an object file, obtained by compiling a simple program, shown in Listing 5-22.

3Not to be confused with preprocessor symbols!

76

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par25
http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec13

CHAPTER 5 © COMPILATION PIPELINE

Listing 5-22. symbols.asm

section .data
datavar1l: dq 1488
datavar2: dq 42

section .bss
bssvarl: resq 4*1024*1024
bssvar2: resq 1

section .text

extern somewhere
global _start
mov rax, datavari
mov rax, bssvari
mov rax, bssvar2
mov rdx, datavar2
_start:
jmp _start
ret
textlabel: dq 0

This program uses extern and global directives to mark symbols in a different way. These two
directives control the creation of a symbol table. By default, all symbols are local to the current module.
extern defines a symbol that is defined in other modules but referenced in the current one. On the other
hand, global defines a globally available symbol that other modules can refer to by defining it as extern
inside them.

Avoid confusion Do not confuse global and local symbols with global and local labels!

The GNU binutils is a collection of binary tools used to work with object files. It includes several tools
used to explore the object file contents. Several of them are of particular interest for us.

e Ifyou only need to look up the symbol table, use nm.

e Use objdump as a universal tool to display general information about an object file. In
addition to ELF it does support other object file formats.

o Ifyou know that the file is in ELF format, readelf is often the best and most
informative choice.

Let’s feed this program to objdump to produce the results shown in Listing 5-23.

Listing 5-23. Symbols

> nasm -f elf64 main.asm 8& objdump -tf -m intel main.o
main.o: file format elf64-x86-64

architecture: i386:x86-64, flags 0x00000011:
HAS RELOC, HAS_SYMS
start address 0x0000000000000000

7

CHAPTER 5 © COMPILATION PIPELINE

SYMBOL TABLE:

0000000000000000 1 df *ABS* 0000000000000000 main.asm
0000000000000000 1 d .data 0000000000000000 .data
0000000000000000 1 d .bss 0000000000000000 .bss
0000000000000000 1 d .text 0000000000000000 .text
0000000000000000 1 .data 0000000000000000 datavari
0000000000000008 1 .data 0000000000000000 datavar2
0000000000000000 1 .bss 0000000000000000 bssvarl
0000000002000000 1 .bss 0000000000000000 bssvar2
0000000000000029 1 .text 0000000000000000 textlabel
0000000000000000 *UND* 0000000000000000 somewhere
0000000000000028 g .text 0000000000000000 start

We are shown a symbol table, where each symbol is annotated with useful information. What do its
columns mean?

1. Virtual address of the given symbol. For now we do not know the section starting
addresses, so all virtual addresses are given relative to section start. For example,
datavar1 is the first variable stored in .data, its address is 0, and its size is 8 bytes.
The second variable, datavar2, is located in the same section with a greater offset
of 8, next to datavarl. As somewhere is defined as extern, it is obviously located in
some other module, so for now its address has no meaning and is left zero.

2. Astring of seven letters and spaces; each letter characterizes a symbol in some
way. Some of them are of interest to us.

(a) 1, g,- -local, global, or neither.

(b) ...

(©)

@ ..

(e) I,--alinkto another symbol or an ordinary symbol.

(f) d, D,- - debugsymbol, dynamic symbol, or an ordinary symbol.

(g) F, f, 0,- -function name, file name, object name, or an ordinary symbol.

3. What section does this label correspond to? *UND* for unknown section (symbol is
referenced, but not defined here), *ABS* means no section at all.

4. Usually, this number shows an alignment (or its absence).
5. Symbol name.
For example, let’s investigate the first symbol shown in Listing 5-23. It is

f afile name,
d only necessary for debug purposes,
1local to this module.

The global label _start (which is also an entry point) is marked with the letter g in the second column.

Note Symbol names are case sensitive: _start and _STaRT are different.

78

http://dx.doi.org/10.1007/978-1-4842-2403-8_2#Sec5

CHAPTER 5 © COMPILATION PIPELINE

As the addresses in the symbol table are not yet the real virtual addresses but ones relative to sections,
we might ask ourselves: how do these look in machine code? NASM has already performed its duty, and
the machine instructions should be assembled. We can look inside interesting sections of object files by
invoking objdump with parameters -D (disassemble) and, optionally, -M intel-mnemonic (to make it show
Intel-style syntax rather than AT&T one). Listing 5-24 shows the results.

How to read disassembly dumps The left column usually is the absolute address where the data will be
loaded. Before linking, it is an address relative to the section start.

The second column shows raw bytes as hexadecimal numbers.

The third column can contain the results of disassembling the assembly command mnemonics.

Listing 5-24. objdump_d

> objdump -D -M intel-mnemonic main.o
main.o: file format elf64-x86-64
Disassembly of section .data:
0000000000000000 <datavari>:
0000000000000008 <datavar2>:
Disassembly of section .bss:
0000000000000000 <bssvarl>:
0000000002000000 <bssvar2>:
Disassembly of section .text:
0000000000000000 <_start-0x28>:

0: 48 b8 00 00 00 00 00 movabs rax,0x0
7: 00 00 00
a: 48 b8 00 00 00 00 00 movabs rax,0x0
11: 00 00 00
14: 48 b8 00 00 00 00 00 movabs rax,0x0
1b: 00 00 00
le: 48 ba 00 00 00 00 00 movabs rdx,0x0

25: 00 00 00
0000000000000028 <_start>:

28: c3 ret
0000000000000029 <textlabel>:

The mov operand in section . text with offsets 0 and 14 relative to section start should be datavar1
address, but it is equal to zero! The same thing happened with bssvar. It means that the linker has to change
compiled machine code, filling the right absolute addresses in instruction arguments. To achieve that, for
each symbol all references to it are remembered in relocation table. As soon as the linker understands what
its true virtual address will be, it goes through the list of symbol occurrences and fills in the holes.

A separate relocation table exists for each section in need of one.

To see the relocation tables use readelf --relocs. See Listing 5-25.

79

CHAPTER 5 © COMPILATION PIPELINE

Listing 5-25. readelf relocs

> readelf --relocs main.o
Relocation section '.rela.text' at offset 0x440 contains 4 entries:

Offset Info Type Sym. Value Name+Addend
000000000002 000200000001 R_X86_64_ 64 0000000000000000 .data + O
00000000000c 000300000001 R_X86_64 64 0000000000000000 .bss + O
000000000016 000300000001 R_X86_64 64 0000000000000000 .bss + 2000000
000000000020 000200000001 R_X86_64 64 0000000000000000 .data + 8

An alternative way to display the symbol table is to use a more lightweight and minimalistic nm utility.
For each symbol it shows the symbol’s virtual address, type, and name. Note that the type flag is in different
format compared to objdump. See Listing 5-26 for a minimal example.

Listing 5-26. nm

> nm main.o

0000000000000000 b bssvar

0000000000000000 d datavar
U somewhere

000000000000000a T _start

000000000000000b t textlabel

5.3.3 Executable Object Files

The second type of object file can be executed right away. It retains its structure, but the addresses are now
bound to exact values.

We shall take a look at another example, shown in Listing 5-27. It includes two global variables,
somewhere and private, one of which is available to all modules (marked global). Additionally, a symbol
func is marked as global.

Listing 5-27. executable_object.asm

global somewhere
global func

section .data

somewhere: dq 999
private: dq 666

section .text
func:
mov rax, somewhere

ret

We are going to compile it as usual using nasm -f elf64, and then link it using 1d with the previous object
file, obtained by compiling the file shown in Listing 5-22. Listing 5-28 shows the changes in objdump output.

80

CHAPTER 5 © COMPILATION PIPELINE

Listing 5-28. objdump_tf

> nasm -f elf64 symbols.asm

> nasm -f elf64 executable object.asm

> 1d symbols.o executable object.o -o main
> objdump -tf main

main: file format elf64-x86-64
architecture: i386:x86-64, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED

start address 0x0000000000000000

SYMBOL TABLE:

00000000004000b0 1 d .code 0000000000000000 .code
00000000006000bc 1 d .data 0000000000000000 .data
0000000000000000 1 df *ABS* 0000000000000000 executable object.asm

00000000006000c4 1 .data 0000000000000000 private
00000000006000bc g .data 0000000000000000 somewhere
0000000000000000 *UND* 0000000000000000 _start
00000000006000cC g .data 0000000000000000 _ bss_start
00000000004000b0 g F .code 0000000000000000 func
00000000006000cC g .data 0000000000000000 _edata
00000000006000d0 g .data 0000000000000000 _end

The flags are different: now the file can be executed (EXEC_P); there are no more relocation tables
(the HAS_RELOC flag is cleared). Virtual addresses are now intact, and so are addresses in code. This file
isready to be loaded and executed. It retains a symbol table, and if you want to cut it out making the
executable smaller, use the strip utility.

Question 71 Why does 1d issue a warning if _start is not marked global? Look the entry point address in
this case by using readelf with appropriate arguments.

Question 72 Find out the 1d option to automatically strip the symbol table after linking.

5.3.4 Dynamic Libraries

Almost every program uses code from libraries. There are two types of libraries: static and dynamic.
Static libraries consist of several relocatable object files. These are linked to the main program and are
merged with the result executable file.

In the Windows world, these files have an extension .1ib.

In the Unix world, these are either .o files or .a archives holding several .o files
inside.

Dynamic libraries are also known as shared object files the third of three object file types we have
defined previously.

They are linked with the program during its execution.
In the Windows world, these are the infamous . d11 files.

In the Unix world, these files have an . so extension (shared objects).

81

CHAPTER 5 © COMPILATION PIPELINE

While static libraries are just undercooked executables without entry points, dynamic libraries have
some differences which we are going to look at now.

Dynamic libraries are loaded when they are needed. As they are object files on their own, they have all
kind of meta-information about which code they provide for external usage. This information is used by a
loader to determine the exact addresses of exported functions and data.

Dynamic libraries can be shipped separately and updated independently. It is both good and bad.
While the library manufacturer can provide bug fixes, he can also break backward compatibility by, for
example, changing functions arguments, effectively shipping a delayed action mine.

A program can work with any amount of shared libraries. Such libraries should be loadable at any
address. Otherwise they would be stuck at the same address, which puts us in exactly the same situation as
when we are trying to execute multiple programs in the same physical memory address space. There are two
ways to achieve that:

e We can perform a relocation in runtime, when the library is being loaded. However,
it steals a very attractive feature from us: the possibility to reuse library code in
physical memory without its duplication when several processes are using it. If each
process performs library relocation to a different address, the corresponding pages
become patched with different address values and thus become different for different
processes.

Effectively the .data section would be relocated anyway because of its mutable
nature. Renouncing global variables allows us to throw away both the section and
the need to relocate it.

Another problem is that .text section must be left writable in order to perform its
modification during the relocation process. It introduces certain security risks,
leaving its modification possible by malicious code. Moreover, changing .text of
every shared object when multiple libraries are required for an executable to run
can take a great deal of time.

e We can write PIC (Position Independent Code). It is now possible to write code
which can be executed no matter where it resides in memory. For that we have to
getrid of absolute addresses completely. These days processors support rip-relative
addressing, like mov rax, [rip + 13]. This feature facilitates PIC generation.

This technique allows for .text section sharing. Today programmers are strongly
encouraged to use PIC instead of relocations.

Note Whenever you are using non-constant global variables, you prevent your code from being
reenterable, that is, being executable inside multiple threads simultaneously without changes. Consequently,
you will have difficulties reusing it in a shared library. It is one of many arguments against a global mutable
state in program.

Dynamic libraries spare disk space and memory. Remember that pages may be either marked private or
shared among several processes. If a library is used by multiple processes, most parts of it are not duplicated
in physical memory.

We will show you how to build a minimal shared object now. However, we will defer the explanation of
things like Global Offset Tables and Procedure Linkage Tables until Chapter 15.

Listing 5-29 shows minimal shared object contents. Notice the external symbol GLOBAL_OFFSET_TABLE
and :function specification for the global symbol func. Listing 5-30 shows a minimal launcher that calls a
function in a shared object file and exits correctly.

82

http://dx.doi.org/10.1007/978-1-4842-2403-8_15

CHAPTER 5 © COMPILATION PIPELINE

Listing 5-29. libso.asm
Extern _GLOBAL OFFSET TABLE

global func:function

section .rodata
message: db "Shared object wrote this", 10, 0

section .text

func:
mov rax, 1
mov rdi, 1
mov Isi, message
mov rdx, 14
syscall

ret

Listing 5-30. 1ibso_main.asm

global _start
extern func

section .text

_start:
mov rdi, 10
call func

mov rdi, rax
mov rax, 60
syscall

Listing 5-31 shows build commands and two views of an ELF file.

Notice that dynamic library has more specific sections such as .dynsym. Sections .hash, .dynsym, and
.dynstr are necessary for relocation.

.dynsym stores symbols visible from outside the library.

Jhash is a hash table, needed to decrease the symbol search time for .dynsym.

.dynstr stores strings, requested by their indices from .dynsym.

Listing 5-31. libso

> nasm -f elf64 -o main.o main.asm

> nasm -f elf64 -o libso.o libso.asm

> 1d -o main main.o -d libso.so

> 1d -shared -o libso.so libso.o --dynamic-linker=/1ib64/1d-1linux-x86-64.s0.2
> readelf -S libso.so

There are 13 section headers, starting at offset 0x5a0:

83

CHAPTER 5 © COMPILATION PIPELINE

Section Headers:
[Nr] Name
Size

[o]
[1]

0000000000000000

.hash

000000000000002c¢

.dynsym

0000000000000090

.dynstr

000000000000001e

.rela.dyn

0000000000000018

[5] .text

000000000000001c

[6] .rodata

000000000000001a

.eh_frame

0000000000000000

.dynamic

00000000000000f0

.got.plt

0000000000000018

[10] .shstrtab

0000000000000065

[11] .symtab

00000000000001c8

[12] .strtab

000000000000004F

Key to Flags:

Type

EntSize

NULL
0000000000000000
HASH
0000000000000004
DYNSYM
0000000000000018
STRTAB
0000000000000000
RELA
0000000000000018
PROGBITS
0000000000000000
PROGBITS
0000000000000000
PROGBITS
0000000000000000
DYNAMIC
0000000000000010
PROGBITS
0000000000000008
STRTAB
0000000000000000
SYMTAB
0000000000000018
STRTAB
0000000000000000

Address
Flags Link Inf
0000000000000000
0
00000000000000e8
A 2
0000000000000118
A 3
00000000000001a8
A 0
00000000000001c8
A 2
00000000000001€0
AX 0
00000000000001fc
A 0
0000000000000218
A 0
0000000000200218
WA 3
0000000000200308
WA 0
0000000000000000
0
0000000000000000
12 1
0000000000000000
0

(o]

0

0

2

0

0

0

0

0

0

0

0

5

0

Offset
Align
00000000

0
000000e8
8
00000118
8
00000128
1
000001c8
8
000001e0
16
000001fc
4
00000218
8
00000218
8
00000308
8
00000320
1
00000388
8
00000550
1

W (write), A (alloc), X (execute), M (merge), S (strings), 1 (large)
I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
0 (extra 0S processing required) o (0S specific), p (processor specific)

> readelf -S main
There are 14 section headers, starting at offset 0x650:

Section Headers:

[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align

[0] NULL 0000000000000000 00000000
0000000000000000 0000000000000000 0 0 0

[1] .interp PROGBITS 0000000000400158 00000158
000000000000000f 0000000000000000 A 0 0 1

[2] .hash HASH 0000000000400168 00000168
0000000000000028 0000000000000004 A 3 0 8

[3] .dynsym DYNSYM 0000000000400190 00000190
0000000000000078 0000000000000018 A 4 1 8

[4] .dynstr STRTAB 0000000000400208 00000208
0000000000000027 0000000000000000 A 0 0 1

[5] .rela.plt RELA 0000000000400230 00000230
0000000000000018 0000000000000018 Al 3 6 8

84

[6]
[7]
[8]
[9]
[10]
[11]
[12]

[13]

.plt
0000000000000020
.text
0000000000000014
.eh_frame
0000000000000000
.dynamic
0000000000000110
.got.plt
0000000000000020
.shstrtab
0000000000000065
.symtab
00000000000001€0
.strtab
000000000000004d

PROGBITS
0000000000000010
PROGBITS
0000000000000000
PROGBITS
0000000000000000
DYNAMIC
0000000000000010
PROGBITS
0000000000000008
STRTAB
0000000000000000
SYMTAB
0000000000000018
STRTAB
0000000000000000

0000000000400250
AX 0
0000000000400270
AX 0
0000000000400288
A 0
0000000000600288
WA 4
0000000000600398
WA 0
0000000000000000
0
0000000000000000
13 1
0000000000000000
0

0

0

0

0

0

0

5

0

CHAPTER 5

00000250
16
00000270
16
00000288
8
00000288
8
00000398
8
000003b8
1
00000420
8
00000600
1

COMPILATION PIPELINE

Question 73 Study the symbol tables for an obtained shared object using readelf --dyn-syms and
objdump -ft.

Question 74 What is the meaning behind the environment variable LD_LIBRARY PATH?

Question 75 Separate the first assignment into two modules. The first module will store all functions
defined in 1ib.inc. The second will have the entry point and will call some of these functions.

Question 76 Take one of the standard Linux utilities (from coreutils). Study its object file structure using
readelf and objdump.

The things we observed in this section apply in most situations. However, there is a bigger picture of
different code models that affect the addressing. We will dive into those details in Chapter 15 after getting
more familiar with assembly and C. There we will also revise the dynamic libraries again and introduce the
notions of Global Offset Table and Procedure Linkage Table.

5.3.5 Loader

Loader is a part of the operating system that prepares executable file for execution. It includes mapping its
relevant sections into memory, initializing .bss, and sometimes mapping other files from disk.
The program headers for a file symbols.asm, shown in Listing 5-22, are shown in Listing 5-32.

Listing 5-32. symbols_pht

> nasm -f elf64 symbols.asm

> nasm -f elf64 executable_ object.asm

> 1d symbols.o executable object.o -o main

> readelf -1 main

Elf file type is EXEC (Executable file)

Entry point 0x4000d8

There are 2 program headers, starting at offset 64

85

http://dx.doi.org/10.1007/978-1-4842-2403-8_15

CHAPTER 5 © COMPILATION PIPELINE

Program Headers:

Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align

LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000
0x00000000000000€3 0x00000000000000e3 RE 200000

LOAD 0x00000000000000e4 0x00000000006000e4 0x00000000006000e4
0x0000000000000010 0x000000000200001c¢ RW 200000

Section to Segment mapping:
Segment Sections...
00 .text
01 .data .bss
The table tells us that two segments are present.
1. 00 segment
e Isloaded at 0x400000 aligned at 0x200000.

e (Contains section .text.

¢ Can be executed and can be read. Cannot be written to (so you cannot
overwrite code).

2. 01segment
o Isloaded at 0x6000e4 aligned to 0x200000.
e (Can be read and written to.

Alignment means that the actual address will be the closest one to the start, divisible by 0x200000.

Thanks to virtual memory, you can load all programs at the same starting address. Usually it is
0x400000.

There are some important observations to be made:

e Assembly sections with similar names, defined in different files, are merged.

e Arelocation table is not needed in a pure executable file. Relocations partially remain
for shared objects.

Let’s launch the resulting file and see its /proc/<pid>/maps file as we did in Chapter 4. Listing 5-33
shows its sample contents. The executable is crafted to loop infinitely.
Listing 5-33. symbols_maps

00400000-00401000 r-Xp 00000000 08:01 1176842
/home/sayon/repos/spbook/en/1listings/chap5/main

00600000-00601000 rwxp 00000000 08:01 1176842
/home/sayon/repos/spbook/en/1istings/chap5/main

00601000-02601000 rwxp 00000000 00:00 O
7ffe19cf2000-7ffe19d13000 rwxp 00000000 00:00 O
[stack]

7ffe19d3e000-7ffe19d40000 r-xp 00000000 00:00 O
[vdso]

86

http://dx.doi.org/10.1007/978-1-4842-2403-8_4

CHAPTER 5 © COMPILATION PIPELINE

7ffe19d40000-7ffe19d42000 r--p 00000000 00:00 O
[vvar]

- ffff600000- ffffffffff601000 r-xp 00000000 00:00 O
[vsyscall]

As we see, the program header is telling us the truth about section placement.

Note In some cases, you will find that the linker needs to be finely tuned. The section loading addresses
and relative placement can be adjusted by using linker scripts, which describe the resulting file. Such cases
usually occur when you are programming an operating system or a microcontroller firmware. This topic is
beyond the scope of this book, but we recommend that you look at [4] in case you encounter such a need.

5.4 Assignment: Dictionary

This assignment will further advance us to a working Forth interpreter. Some things about it might seem
forced, like the macro design, but it will make a good foundation for an interpreter we are going to do later.

Our task is to implement a dictionary. It will provide a correspondence between keys and values.

Each entry contains the address of the next entry, a key, and a value. Keys and values in our case are null-
terminated strings.

The dictionary entries form a data structure are called a linked list. An empty list is represented by a
null pointer, equal to zero. A non-empty list is a pointer to its first element. Each element holds some kind of
value and a pointer to the next element (or zero, if it is the last element).

Listing 5-34 shows an exemplary linked list, holding elements 100, 200, and 300. It can be referred to by
a pointer to its first element, that is, x1.

Listing 5-34. linked list _ex.asm

section .data

dq x2
dg 100

dgq x3
dq 200

dq o
dq 300

Linked lists are often useful in situations that have numerous insertions and removals in the middle
of the list. Accessing elements by index, however, is hard because it does not boil down to simple pointer
addition. Linked list elements’ mutual positions in flat memory are usually not predictable.

In this assignment the dictionary will be constructed statically as a list and each newly defined element
will be prepended to it. You have to use macros with local labels and symbol redefinition to automatize the
linked list creation. We explicitly instruct you to make a macro colon with two arguments, where the first
will hold a dictionary key string and the second will hold the internal element representation name. This
differentiation is needed because key strings can sometimes contain characters which are not parts of valid
label names (space, punctuation, arithmetic signs, etc.). Listing 5-35 shows an example of such a dictionary.

87

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par5

CHAPTER 5 © COMPILATION PIPELINE

Listing 5-35. linked_list_ex_macro.asm

section .data

colon "third word", third word
db "third word explanation", 0

colon "second word", second word
db "second word explanation", 0

colon "first word", first word
db "first word explanation", 0

88

The assignment will contain the following files:

1.

2
3

4,

main.asm
lib.asm
dict.asm

colon.inc

Follow these steps to complete the assignment:

1.

Make a separate assembly file containing functions that you have already written
in the first assignment. We will call it 1ib.o.

Do not forget to mark all necessary labels global, otherwise they won’t be visible
outside of this object file!

Create a file colon. inc and define a colon macro there to create dictionary words.
This macro will take two arguments:
¢ Dictionary key (inside quotes).

e Assembly label name. Keys can contain spaces and other characters, which are not
allowed in label names.

Each entry should start with a pointer to the next entry, then hold a key as a null-
terminated string. The content is then directly described by a programmer—for
example, using db directives, as in the example shown in Listing 5-35.

Create a function find_word inside a new file dict.asm. It accepts two arguments:
(a) A pointer to a null terminated key string.

(b) A pointer to the last word in the dictionary. Having a pointer to the last word
defined, we can follow the consecutive links to enumerate all words in the
dictionary.

find_word will loop through the whole dictionary, comparing a given key with
each key in dictionary. If the record is not found, it returns zero; otherwise it
returns record address.

A separate include file words . inc to define dictionary words using the colon
macro. Include itinmain.asm.

CHAPTER 5 © COMPILATION PIPELINE

5. Asimple _start function. It should perform the following actions:
¢ Read the input string in a buffer of maximum 255 characters long.

e Try to find this key in dictionary. If found, print the corresponding value. If not,
print an error message.

Do not forget: all error messages should be written in stderr rather than stdout!

We ship a set of stub files (see Section 2.1 “Setting Up the Environment”); you are free to use them.
An additional Makefile describes the building process; type make in the assignment directory to build an
executable file main. A quick tutorial to the GNU Make system is available in Appendix B.

As in the first assignment, there is a test. py file to perform automated tests.

5.5 Summary

In this chapter we have looked at the different compilation stages. We have studied the NASM
macroprocessor in detail and learned conditionals and loops. Then we talked about three object file types:
relocatable, executable, and shared. We elaborated the ELF file structure and observed the relocation
process performed by the linker. We have touched on the shared object files, and we will revisit them again
in the Chapter 15.

Question 77 What is the linked list?

Question 78 What are the compilation stages?

Question 79 What is preprocessing?

Question 80 What is a macro instantiation?

Question 81 What is the %define directive?

Question 82 What is the %macro directive?

Question 83 What is the difference between %define, %xdefine, and %assign?
Question 84 Why do we need the %% operator inside macro?

Question 85 What types of conditions are supported by NASM macroprocessor?
Which directives are used for it?

Question 86 What are the three types of ELF object files?

Question 87 What kinds of headers are present in an ELF file?

Question 88 What is relocation?

Question 89 What sections can be present in ELF files?

Question 90 What is a symbol table? What kind of information does it store?
Question 91 s there a connection between sections and segments?

Question 92 s there a connection between assembly sections and ELF sections?

89

http://dx.doi.org/10.1007/978-1-4842-2403-8_15

CHAPTER 5 © COMPILATION PIPELINE

Question 93 What symbol marks the program entry point?
Question 94 Which are the two different kind of libraries?

Question 95 s there a difference between a static library and a relocatable object file?

90

CHAPTER 6

Interrupts and System Calls

In this chapter we are going to discuss two topics.

First, as von Neumann architecture lacks interactivity, the interrupts were introduced to change
that. Although we are not diving into the hardware part of interrupts, we are going to learn exactly how
programmer views the interrupts. Additionally, we will speak about input and output ports used to
communicate with external devices.

Second, the operating system (OS) usually provides an interface to interact with the resources it
controls: memory, files, CPU (central processing unit), etc. This is implemented via system calls mechanism.
Transferring control to the operating system routines requires a well defined mechanism of privilege
escalation, and we are going to see how it works in Intel 64 architecture.

6.1 Input and Output

When we were extending the von Neumann architecture to work with external devices, we mentioned
interrupts only as a way to communicate with them. In fact, there is a second feature, input/output (I/0)
ports, which complements it and allows data exchange between CPU and devices.

The applications can access I/0 ports in two ways:

1. Through a separate I/O address space.

There are 2'° 1-byte addressable I/0 ports, from 0 through FFFFH. The commands
in and out are used to exchange data between ports and eax register (or its parts).

The permissions to perform writes and reads from ports are controlled by
checking:

e IOPL (I/O privilege level) field of rflags registers

¢ I/0 Permission bit map of a Task State Segment. We will speak about
itin section 6.1.1.

2. Through memory-mapped I/0.

A part of address space is specifically mapped to provide interaction with such
external devices that respond like memory components. Consecutively, any
memory addressing instructions (mov, movsb, etc.) can be used to perform I/0
with these devices.

Standard segmentation and paging protection mechanisms are applied to such
I/0 tasks.

© Igor Zhirkov 2017 91
1. Zhirkov, Low-Level Programming, DOI 10.1007/978-1-4842-2403-8_6

CHAPTER 6 * INTERRUPTS AND SYSTEM CALLS

The IOPL field in rflags register works as follows: if the current privilege level is less or equal to the
IOPL, the following instructions are allowed to be executed:

e inand out (normal input/output).
e insand outs (string input/output).
e cliand sti (clear/set interrupt flag).

Thus, setting IOPL in an application individually allows us to forbid it from writing even if it is working
at a higher privilege level than the user applications.

Additionally, Intel 64 allows an even finer permission control through an I/O permission bit map. If the
IOPL check has passed, the processor checks the bit corresponding to the used port. The operation proceeds
only if this bit is not set.

The I/0 permission bit map is a part of Task State Segment (TSS), which was created to be an entity
unique to a process. However, as the hardware task-switching mechanism is considered obsolete, only one
TSS (and I/0 permission bit map) can exist in long mode.

6.1.1 TRregister and Task State Segment

There are some artifacts from the protected mode that are still somehow used in long mode. A segmentation
is an example, now mostly used to implement protection rings. Another is a pair of a tr register and Task
State Segment control structure.

The tr register holds the segment selector to the TSS descriptor. The latter resides in the GDT (Global
Descriptor Table) and has a format similar to segment descriptors.

Likewise for segment registers, there is a shadow register, which is updated from GDT when tr is
updated via 1tr (load task register) instruction.

The TSS is a memory region used to hold information about a task in the presence of a hardware
task-switching mechanism. Since no popular OS has used it in protected mode, this mechanism was
removed from long mode. However, TSS in long mode is still used, albeit with a completely different
structure and purpose.

These days there is only one TSS used by an operating system, with the structure described in
Figure 6-1.

92

http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Par59
http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Sec2

CHAPTER 6 ' INTERRUPTS AND SYSTEM CALLS

I/0 Map Base Address reserved

reserved

reserved
IST7
IST7
IST6
IST6
ISTS
ISTS
IST4
IST4
IST3
IST3
IST2
IST2
IST1
IST1
ISTO
ISTO

reserved

reserved

rsp, ring2

rsp, ring2

rsp, ringl

rsp, ringl

rsp, ring0

rsp, ring0

reserved

Figure 6-1. Task State Segment in long mode

The first 16 bits store an offset to an Input/Output Port Permission Map, which we already discussed in
section 6.1. The TSS then holds eight pointers to special interrupt stack tables (ISTs) and stack pointers for
different rings. Each time a privilege level changes, the stack is automatically changed accordingly. Usually,
the new rsp value will be taken from the TSS field corresponding to the new protection ring. The meaning of
ISTs is explained in section 6.2.

93

CHAPTER 6 * INTERRUPTS AND SYSTEM CALLS

6.2 Interrupts

Interrupts allow us to change the program control flow at an arbitrary moment in time. While the program
is executing, external events (device requires CPU attention) or internal events (division by zero, insufficient
privilege level to execute an instruction, a non-canonical address) may provoke an interrupt, which results
in some other code being executed. This code is called an interrupt handler and is a part of an operating
system or driver software.

In [15], Intel separates external asynchronous interrupts from internal synchronous exceptions, but
both are handled alike.

Each interrupt is labeled with a fixed number, which serves as its identifier. For us it is not important
exactly how the processor acquires the interrupt number from the interrupt controller.

When the n-th interrupt occurs, the CPU checks the Interrupt Descriptor Table (IDT), which resides in
memory. Analogously to GDT, its address and size are stored in idtr. Figure 6-2 describes the idtr.

79 e 16 15 .. 0
IDT address IDT size

Figure 6-2. idtr register

Each entry in IDT takes 16 bytes, and the n-th entry corresponds to the n-th interrupt. The entry
incorporates some utility information as well as an address of the interrupt handler. Figure 6-3 describes the
interrupt descriptor format.

31 0

‘ Always 0 (reserved) ‘

31 0

‘ Handler address bits 63:32 ‘

31 8 7 2 0

6 5 13 2
‘ Handler address bits 31:16 1 |;3‘ 1];PL Ijl - Type 00000 | IST ‘
16 15

31

‘ Segment Selector | Handler address bits 15:0 ‘

Figure 6-3. Interrupt descriptor

DPL Descriptor Privilege Level

Current privilege level should be less or equal to DPL in order to call this handler
using int instruction. Otherwise the check does not occur.

Type 1110 (interrupt gate, IF is automatically cleared in the handler) or 1111 (trap gate, IF is not cleared).

The first 30 interrupts are reserved. It means that you can provide interrupt handlers for them, but the
CPU will use them for its internal events such as invalid instruction encoding. Other interrupts can be used
by the system programmer.

When the IF flag is set, the interrupts are handled; otherwise they are ignored.

94

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Sec2

CHAPTER 6 * INTERRUPTS AND SYSTEM CALLS

Question 96 What are non-maskable interrupts? What is their connection with the interrupt with code 2
and IF flag?

The application code is executed with low privileges (in ring3). Direct device control is only possible
on higher privilege levels. When a device requires attention by sending an interrupt to the CPU, the handler
should be executed in a higher privilege ring, thus requiring altering the segment selector.

What about the stack? The stack should also be switched. Here we have several options based on how
we set up the IST field of interrupt descriptor.

e IftheISTis 0, the standard mechanism is used. When an interrupt occurs, ss is
loaded with 0, and the new rsp is loaded from TSS. The RPL field of ss then is set to an
appropriate privilege level. Then old ss and rsp are saved in this new stack.

e Ifan IST is set, one of seven ISTs defined in TSS is used. The reason ISTs are created is
that some serious faults (non-maskable interrupts, double fault, etc.) might profit from
being executed on a known good stack. So, a system programmer might create several
stacks even for ring0 and use some of them to handle specific interrupts.

There is a special int instruction, which accepts the interrupt number. It invokes an interrupt handler
manually with respect to its descriptor contents. It ignores the IF flag: whether it is set or cleared, the handler
will be invoked. To control execution of privileged code using int instruction, a DPL field exists.

Before an interrupt handler starts its execution, some registers are automatically saved into stack. These
are ss, rsp, rflags, cs, and rip. See a stack diagram in Figure 6-4. Note how segment selectors are padded
to 64 bit with zeros.

63 0

<— rsp

error code (optional)

rip (top of stack)

cs

rflags

rsp

SS

ring 0 stack

Figure 6-4. Stack when an interrupt handler starts

95

CHAPTER 6 * INTERRUPTS AND SYSTEM CALLS

Sometimes an interrupt handler needs additional information about the event. An interrupt error
code is then pushed into stack. This code contains various information specific for this type of interrupt.

Many interrupts are described using special mnemonics in Intel documentation. For example, the
13-th interrupt is referred to as #GP (general protection).! You will find the short description of the some
interesting interrupts in the Table 6-1.

Table 6-1. Some Important Interrupts

VECTOR MNEMONIC DESCRIPTION

0 #DE Divide error

2 Non-maskable external interrupt
3 #BP Breakpoint

6 #UD Invalid instruction opcode

8 #DF A fault while handling interrupt
13 #GP General protection

14 #PF Page fault

Not all binary code corresponds to correctly encoded machine instructions. When rip is not addressing
avalid instruction, the CPU generates the #UD interrupt.

The #GP interrupt is very common. It is generated when you try to dereference a forbidden address
(which does not correspond to any allocated page), when trying to perform an action, requiring a higher
privilege level, and so on.

The #PF interrupt is generated when addressing a page which has its present flag cleared in the
corresponding page table entry. This interrupt is used to implement the swapping mechanism and file
mapping in general. The interrupt handler can load missing pages from disk.

The debuggers rely heavily on the #BP interrupt. When the TF is set in rflags, the interrupt with
this code is generated after each instruction is executed, allowing a step-by-step program execution.
Evidently, this interrupt is handled by an OS. It is thus an OS’s responsibility to provide an interface for user
applications that allows programmers to write their own debuggers.

To sum up, when an n-th interrupt occurs, the following actions are performed from a programmer’s
point of view:

1. The IDT address is taken from idtr.
2. The interrupt descriptor is located starting from 128 x n-th byte of IDT.

3. The segment selector and the handler address are loaded from the IDT entry into
¢s and rip, possibly changing privilege level. The old ss, rsp, rflags, cs, and rip
are stored into stack as shown in Figure 6-4.

4. For some interrupts, an error code is pushed on top of handler’s stack. It provides
additional information about interrupt cause.

5. Ifthe descriptor’s type field defines it as an Interrupt Gate, the interrupt flag IF is
cleared. The Trap Gate, however, does not clear it automatically, allowing nested
interrupt handling.

'See section 6.3.1 of the third volume of [15]

96

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16

CHAPTER 6 * INTERRUPTS AND SYSTEM CALLS

If the interrupt flag is not cleared immediately after the interrupt handler start, we cannot have any
kind of guarantees that we will execute even its first instruction without another interrupt appearing
asynchronously and requiring our attention.

Question 97 s the TF flag cleared automatically when entering interrupt handlers? Refer to [15].

The interrupt handler is ended by a iretq instruction, which restores all registers saved in the stack, as
shown in Figure 6-4, compared to the simple call instruction, which restores only rip.

6.3 System Calls

System calls are, as you already know, functions that an OS provides for user applications. This section
describes the mechanism that allows their secure execution with higher privilege level.

The mechanisms used to implement system calls vary in different architectures. Overall, any instruction
resulting in an interrupt will do, for example, division by zero or any incorrectly encoded instruction.
The interrupt handler will be called and then the CPU will handle the rest. In protected mode on Intel
architecture, the interrupt with code 0x80 was used by *nix operating systems. Each time a user executed int
0x80, the interrupt handler checked the register contents for system call number and arguments.

System calls are quite frequent, and you cannot perform any interaction with the outside world without
them. Interrupts, however, can be slow, especially in Intel 64, since they require memory accesses to IDT.

So in Intel 64 there is a new mechanism to perform system calls, which uses syscall and sysret
instructions to implement them.

Compared to interrupts, this mechanism has some key differences:

e The transition can only happen between ring0 and ring3.As pretty much no one uses
ringl and ring2, this limitation is not considered important.

¢ Interrupt handlers differ, but all system calls are handled by the same code with only
one entry point.

¢ Some general purpose registers are now implicitly used during system call.
— rcxisused to store old rip

— rillisused to store old rflags

6.3.1 Model-Specific Registers

Sometimes when a new CPU appears it has additional registers, which other, more ancient ones, do not
have. Quite often these are so-called Model-Specific Registers. When these registers are rarely modified,
their manipulation is performed via two commands: rdmsr to read them and wrmsr to change them. These
two commands operate on the register identifying number.

rdmsr accepts the MSR number in ecx, returns the register value in edx:eax.

wrmsr accepts the MSR number in ecx and stores the value taken from edx:eax in it.

6.3.2 syscall and sysret

The syscall instruction depends on several MSRs.

97

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16

CHAPTER 6 * INTERRUPTS AND SYSTEM CALLS

e STAR (MSR number 0xC0000081), which holds two pairs of c¢s and ss values: for
system call handler and for sysret instruction. Figure 6-5 shows its structure.

63 47 31 0

sysret cs =ss ‘ syscall cs=ss | Not used

Figure 6-5. MSR STAR

e LSTAR (MSR number 0xC0000082) holds the system call handler address (new rip).

e SFMASK (MSR number 0xC0000084) shows which bits in rflags should be cleared in
the system call handler.

The syscall performs the following actions:
e Loads cs from STAR;
¢ Changes rflags with regards to SFMASK;
e Saves rip into rcx; and
e Initializes rip with LSTAR value and takes new cs and ss from STAR.

Note that now we can explain why system calls and procedures accept arguments in slightly different
sets of registers. The procedures accept their fourth argument in rcx, which, as we know, is used to store the
old rip value.

Contrary to the interrupts, even if the privilege level changes, the stack pointer should be changed by
the handler itself.

System call handling ends with sysret instruction, which loads cs and ss from STAR and rip from rcx.

As we know, the segment selector change leads to a read from GDT to update its paired shadow
register. However, when executing syscall, these shadow registers are loaded with fixed values and no
reads from GDT are performed.

Here are these two fixed values in deciphered form:

¢ Code Segment shadow register:
— Base=0
— Limit=FFFFFH
— Type =11, (can be executed, was accessed)
— S§=1(System)
- DPL=0
- P=1
- L=1(Long mode)
- D=0

— G =1 (always the case in long mode)

98

http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Sec2
http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Par59
http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Par59

CHAPTER 6 * INTERRUPTS AND SYSTEM CALLS

Additionally, CPL (current privilege level) is set to 0

o Stack Segment shadow register:

— Base=0

— Limit=FFFFFH

— Type =11, (can be executed, was accessed)

— S=1(System)

- DPL=0

- P=1

- L=1(Long mode)

- D=1
- G=1

However, the system programmer is responsible for fulfilling a requirement: GDT should have the
descriptors corresponding to these fixed values.
So, GDT should store two particular descriptors for code and data specifically for syscall support.

6.4 Summary

In this chapter we have provided an overview of interrupts and system call mechanisms. We have studied
their implementation down to the system data structures residing in memory. In the next chapter we

are going to review different models of computation, including stack machines akin to Forth and finite
automatons, and finally work on a Forth interpreter and compiler in assembly language.

Question 98 What is an interrupt?

Question 99 What is IDT?

Question 100
Question 101
Question 102
Question 103
Question 104
Question 105
Question 106
Question 107

What does setting IF change?

In which situation does the #GP error occur?

In which situations does the #PF error occur?

How is #PF error related to the swapping? How does the operating system use it?
Can we implement system calls using interrupts?

Why do we need a separate instruction to implement system calls?

Why does the interrupt handler need a DPL field?

What is the purpose of interrupt stack tables?

99

CHAPTER 6 * INTERRUPTS AND SYSTEM CALLS

Question 108
Question 109
Question 110
Question 111
Question 112
Question 113

Does a single thread application have only one stack?

What kinds of input/output mechanisms does Intel 64 provide?

What is a model-specific register?

What are the shadow registers?

How are the model-specific registers used in the system call mechanism?

Which registers are used by syscall instruction?

100

CHAPTER 7

Models of Computation

In this chapter we are going to study two models of computations: finite state machines and stack machines.

Model of computation is akin to the language you are using to describe the solution to a problem.
Typically, a problem that is really hard to solve correctly in one model of computation can be close to
trivial in another. This is the reason programmers who are knowledgeable about many different models
of computations can be more productive. They solve problems in the model of computation that is most
suitable and then they implement the solution with the tools they have at their disposal.

When you are trying to learn a new model of computation, do not think about it from the “old” point of
view, like trying to think about finite state machines in terms of variables and assignments. Try to start fresh
and logically build the new system of notions.

We already know much about Intel 64 and its model of computation, derived from von Neumann’s. This
chapter will introduce finite state machines (used to implement regular expressions) and stack machines
akin to the Forth machine.

7.1 Finite State Machines
7.1.1 Definition

Deterministic finite state machine (deterministic finite automaton) is an abstract machine that acts on
input string, following some rules.

We will use “Finite automatons” and “state machines” interchangeably. To define a finite automaton,
the following parts should be provided:

1. Aset of states.
Alphabet—a set of symbols that can appear in the input string.
A selected start state.

One or multiple selected end states

LA

Rules of transition between states. Each rule consumes a symbol from input string.
Its action can be described as: “if automaton is in state S and an input symbol C
occurs, the next current state will be Z.”

If the current state has no rule for the current input symbol, we consider the automaton behavior
undefined.

The undefined behavior is a concept known more to mathematicians than to engineers. For the sake
of brevity we are describing only the “good” cases. The “bad” cases are of no interest to us, so we are not
defining the machine behavior in them. However, when implementing such machines, we will consider all
undefined cases as erroneous and leading to a special error state.

© Igor Zhirkov 2017 101
1. Zhirkov, Low-Level Programming, DOI 10.1007/978-1-4842-2403-8_7

http://dx.doi.org/10.1007/978-1-4842-2403-8_1#Sec2

CHAPTER 7 © MODELS OF COMPUTATION

Why bother with automatons? Some tasks are particularly easy to solve when applying such paradigm
of thinking. Such tasks include controlling embedded devices and searching substrings that match a certain
pattern.

For example, we are checking, whether a string can be interpreted as an integer number. Let’s draw a
diagram, shown in Figure 7-1. It defines several states and shows possible transitions between them.

The alphabet consists of letters, spaces, digits, and punctuation signs.

The set of states is {A, B, C}.

The initial state is A.

The final state is C.

Figure 7-1. Number recognition

We start execution from the state A. Each input symbol causes us to change current state based on
available transitions.

Note Arrows labeled with symbol ranges like 0. .. 9 actually denote multiple rules. Each of these rules
describes a transition for a single input character.

Table 7-1 shows what will happen when this machine is being executed with an input string +34. This is
called a trace of execution.

Table 7-1. Tracing a finite state machine shown in Figure 7-1, input is: +34

OLD STATE RULE NEW STATE
A + B
B 3 C
C 4 C

The machine has arrived into the final state C. However, given an input idkfa, we could not have
arrived into any state, because there are no rules to react to such input symbols. This is where the
automaton’s behavior is undefined. To make it total and always arrive in either yes- state or no-state, we have
to add one more final state and add rules in all existing states. These rules should direct the execution into
the new state in case no old rules match the input symbol.

102

CHAPTER 7 MODELS OF COMPUTATION

7.1.2 Example: Bits Parity

We are given a string of zeros and ones. We want to find out whether there is an even or an odd number of
ones. Figure 7-2 shows the solver in the form of a finite state machine.

1
start — @
1

0 0

Figure 7-2. Is the number of ones even in the input string?

The empty string has zero ones; zero is an even number. Because of this, the state A is both the starting
and the final state.

All zeros are ignored no matter the state. However, each one occurring in input changes the state to the
opposite one. If, given an input string, we arrive into the finite state A, then the number of ones is even. If we
arrive into the finite state B, then it is odd.

Confusion In finite state machines, there is no memory, no assignments, no if-then-else constructions.
This is thus a completely different abstract machine comparing to the von Neumann’s. There is really nothing
but states and transitions between them. In the von Neumann model, the state is the state of memory and
register values.

7.1.3 Implementation in Assembly Language

After designing a finite state machine to solve a specific problem, it is trivial to implement this machine in an
imperative programming language such as assembly or C.
Following is a straightforward way to implement such machines in assembly:

1. Make the designed automaton total: every state should possess transition rules for
any possible input symbol. If this is not the case, add a separate state to design an
error or an answer “no” to the problem being solved.

For simplicity we will call it the else-rule.

2. Implement a routine to get an input symbol. Keep in mind that a symbol is not
necessarily a character: it can be a network packet, a user action, and other kinds
of global events.

3. For each state we should
e C(Create a label.
e (Call the input reading routine.

e Match input symbol with the ones described in transition rules and jump to
corresponding states if they are equal.

¢ Handle all other symbols by the else-rule.
103

CHAPTER 7 © MODELS OF COMPUTATION

To implement the exemplary automaton in assembly, we will make it total first, as shown in Figure 7-3

Figure 7-3. Check if the string is a number: a total automaton

We will modify this automaton a bit to force the input string to be null-terminated, as shown in Figure 7-4.
Listing 7-1 shows a sample implementation.

Figure 7-4. Check if the string is a number: a total automaton for a null-terminated string

Listing 7-1. automaton_example_bits.asm

section .text

; getsymbol is a routine to

; read a symbol (e.g. from stdin)
; into al

A:
call getsymbol
cmp al, '+’
je _B
cmp al, '-
je B
; The indices of the digit characters in ASCII
; tables fill a range from '0' = 0x30 to '9' = 0x39
; This logic implements the transitions to labels
; Eand C
cmp al, 'o'
jb _E

104

CHAPTER 7 MODELS OF COMPUTATION

cmp al, 'o9’
ja _E
jmp _C

_B:
call getsymbol
cmp al, 'o'
jb _E
cmp al, '9’
ja _E
jmp _C

_C:
call getsymbol
cmp al, 'o’
jb _E
cmp al, '9’
ja _E
test al, al
jz D
jmp _C

D.

,T code to notify about success

E:
; code to notify about failure

This automaton is arriving into states D or E; the control will be passed to the instructions on either the
_Dor_Elabel.
The code can be isolated inside a function returning either 1 (true) in state D or 0 (false) in state _E.

7.1.4 Practical Value

First of all, there is an important limitation: not all programs can be encoded as finite state machines. This
model of computation is not Turing complete, it cannot analyze complex recursively constructed texts, such
as XML-code.

C and assembly language are Turing complete, which means that they are more expressive and can be
used to solve a wider range of problems.

For example, if the string length is not limited, we cannot count its length or the words in it. Each result
would have been a state, and there is only a limited number of states in finite state machines, while the word
count can be arbitrary large as well as the strings themselves.

Question 114 Draw a finite state machine to count the words in the input string. The input length is no
more than eight symbols.

The finite state machines are often used to describe embedded systems, such as coffee machines. The
alphabet consists of events (buttons pressed); the input is a sequence of user actions.

105

CHAPTER 7 © MODELS OF COMPUTATION

The network protocols can often also be described as finite state machines. Every rule can be annotated
with an optional output action: “if a symbol X is read, change state to Y and output a symbol Z.” The input
consists of packets received and global events such as timeouts; the output is a sequence of packets sent.

There are also several verification techniques, such as model checking, that allow one to prove certain
properties of finite automatons—for example, “if the automaton has reached the state B, he will never reach
the state C.” Such proofs can be of a great value when building systems required to be highly reliable.

Question 115 Draw a finite state machine to check whether there is an even or an odd number of words in
the input string.

Question 116 Draw and implement a finite state machine to answer whether a string should be trimmed
from left, right, or both or should not be trimmed at all. A string should be trimmed if it starts or ends with
consecutive spaces.

7.1.5 Regular Expressions

Regular expressions are a way to encode finite automatons. They are often used to define textual patterns to
match against. It can be used to search for occurences of a specific pattern or to replace them. Your favorite
text editor probably implements them already.

There are a number of regular expressions dialects. We will take as an example a dialect akin to one
used in the egrep utility.

A regular expression R can be:

1. Aletter.

A sequence of two regular expressions: R Q.

Metasymbols ~ and $, matching against the beginning and the end of the line.
A pair of grouping parentheses with a regular expression inside: (R).

An OR expression: R | Q.

R* denotes zero or more repetitions of R.

R+ denotes one or more repetitions of R.

R? denotes zero or one repetitions of R.

© ® N o g~ w D

A dot matches against any character.

—
o

Brackets denote a range of symbols, for example [0-9] is an equivalent of
(0]1]2]314[516]7(8]9).

You can test regular expressions using the egrep utility. It process its standard input and filters only
those lines that match a given pattern. To prevent the from being processed by the shell, enclose it in single
quotes like this: egrep 'expression'.

Following are some examples of simple regular expressions:

e hello .+ matchesagainsthello Frank or hello 12; does not match against hello.

e [0-9]+ matches against an unsigned integer, possibly starting with zeros.

e -?[0-9]+ matches against a possibly negative integer, possibly starting with zeros.

e 0] (-?[1-9][0-9]*) matches against any integer that does not start with zero (unless

it is zero).

106

CHAPTER 7 MODELS OF COMPUTATION

These rules allow us to define a complex search pattern. The regular expressions engine will try to
match the pattern starting with every position in text.
The regular expression engines usually follow one of these two approaches:

¢ Using a straightforward approach, trying to match all described symbol sequences. For
example, matching a string ab against regular expression aa?a?b may result in such
sequence of events:

1. Trying to match against aaab — failure.
2. Trying to match against aab — failure.
3. Trying to match against ab — success.

So, we are trying out different branches of decisions until we hit a successful one
or until we see definitively that all options lead to a failure.

This approach is usually quite fast and also simple to implement. However, there
is a worst-case scenario in which the complexity starts growing exponentially.
Imagine matching a string:

aaa...a (repeat a n times)
against a regular expression:
a?a?a?...a?aaa...a(repeat a? ntimes, then repeat a n times)

The given string will surely match the regular expression. However, when
applying a straightforward approach the engine will have to go through all
possible strings that do match this regular expression. To do it, it will consider
two possible options for each a? expression, namely, those containing a and
those not containing it. There will be 2” such strings. It is as many as there are
subsets in a set of 7 elements. You do not need more symbols than there are
in this line of text to write a regular expression, which a modern computer will
evaluate for days or even years. Even for a length n = 50 the number of options
will hit 25° = 1125899906842624 options.

Such regular expressions are called “pathological” because due to the matching
algorithm nature they are handled extremely slowly.

e Constructing a finite state machine based on a regular expression.

It is usually a NFA (Non-deterministic Finite Automaton). As opposed to DFA
(Deterministic Finite Automaton), they can have multiple rules for the same state
and input symbol. When such a situation occurs, the automaton performs both
transitions and now has several states simultaneously. In other words, there is no
single state but a set of states an automaton is in.

This approach is a bit slower in general but has no worst-case scenario with exponential
working time. Standard Unix utilities such as grep are using this approach.

How to build a NFA from a regular expression? The rules are pretty
straightforward:

— A character corresponds to an automaton, which accepts a string of one such
character, as shown in Figure 7-5.

— We can enlarge the alphabet with additional symbols, which we put in the beginning
and end of each line.

107

CHAPTER 7 © MODELS OF COMPUTATION

art character @
start — : >
N

Figure 7-5. NFA for one character

— This way we handle ~ and $ just as any other symbol.

— Grouping parentheses allow one to apply rules to the symbol groups. They are only
used for correct regular expression parsing. In other words, they provide the
structural information needed for a correct automaton construction.

— OR corresponds to combining two NFAs by merging their starting state. Figure 7-5
illustrates the idea.

SOURCE AUTOMATONS

ORS00

COMBINATION

OO

a /\ b
start —(A . D’ B
()

Figure 7-6. Combining NFAs via OR

— An asterisk has a transition to itself and a special thing called e-rule. This rule
occurs always. Figure 7-7 shows the automaton for an expression a*b.

Figure 7-7. NFA: implementing asterisk

— ?isimplemented in a similar fashion to *. R+ is encoded as RR*.

108

CHAPTER 7 MODELS OF COMPUTATION

Question 117 Using any language you know, implement a grep analogue based on NFA construction. You
can refer to [11] for additional information.

Question 118 Study this regular expression: “1?$ |~ (11+?)\1+$. What might be its purpose? Imagine that
the input is a string consisting of characters 1 uniquely. How does the result of this regular expression matching
correlate with the string length?

7.2 Forth Machine

Forth is a language created by Charles Moore in 1971 for the 11-meter radio telescope operated by the
National Radio Astronomy Observatory (NRAO) at Kitt Peak, Arizona. This system ran on two early
minicomputers joined by a serial link. Both a multiprogrammed system and a multiprocessor system (in
that both computers shared responsibility for controlling the telescope and its scientific instruments), it was
controlling the telescope, collecting data, and supporting an interactive graphics terminal to interact with
the telescope and analyze recorded data.

Today, Forth rests a unique and interesting language, both entertaining to learn and a great thing to
change the perspective. It is still used, mostly in embedded software, due to an amazing level of interactivity.
Forth can also be quite efficient.

Forth interpreters can be seen in such places as

FreeBSD loader.

Robot firmwares.
e Embedded software (printers).
e Space ships software.

It is thus safe to call Forth a system programming language.

Itis not hard to implement Forth interpreter and compiler for Intel 64 in assembly language. The rest of
this chapter will explain the details. There are almost as many Forth dialects as Forth programmers; we will
use our own simple dialect.

7.2.1 Architecture

Let’s start by studying a Forth abstract machine. It consists of a processor, two separate stacks for data and
return addresses, and linear memory, as shown in Figure 7-8.

109

http://dx.doi.org/10.1007/978-1-4842-2403-8_7#Par86
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par12

CHAPTER 7 © MODELS OF COMPUTATION

Data Stack
Memory)
¢ 0000 0000 [1[1]0[1][1]1]0]0]
0000 0001 [1][0]o[1[1]1]1]0]

CPU |
0000 0002 [1[1]1]1]1]0]0[1]
"y

¢ rrrr FrFF |0]0]1[1]0[0]1]0]
A

Return Stack

Figure 7-8. Forth machine: architecture

Stacks should not necessarily be part of the same memory address space.

The Forth machine has a parameter called cell size. Typically, it is equal to the machine word size of the
target architecture. In our case, the cell size is 8 bytes. The stack consists of elements of the same size.

Programs consist of words separated by spaces or newlines. Words are executed consecutively. The
integer words denote pushing into the data stack. For example, to push numbers 42, 13, and 9 into the data
stack you can write simply 42 13 9.

There are three types of words:

1. Integer words, described previously.
2. Native words, written in assembly.
3. Colon words, written in Forth as a sequence of other Forth words.

The return stack is necessary to be able to return from the colon words, as we will see later.

Most words manipulate the data stack. From now on when speaking about the stack in Forth we will
implicitly consider the data stack unless specified otherwise.

The words take their arguments from the stack and push the result there. All instructions operating on
the stack consume their operands. For example, words +, -, *, and / consume two operands from the stack,
perform an arithmetic operation, and push its result back in the stack. A program 1 4 8 8 + * +computes
the expression (8 +8) *4 + 1.

We will follow the convention that the second operand is popped from the stack first. It means that the
program '1 2 -' evaluates to -1, not 1.

The word : is used to define new words. It is followed by the new word’s name and a list of other words
terminated by the word ; . Both semicolon and colon are words on their own and thus should be separated
by spaces.

A word sq, which takes an argument from the stack and pushes its square back, will look as follows:

1 sq dup * ;
Each time we use sq in the program, two words will be executed: dup (duplicate cell in top of the stack)
and * (multiply two words on top of the stack).

To describe the word’s actions in Forth it is common to use stack diagrams:

swap (a b -- b a)

110

CHAPTER 7 MODELS OF COMPUTATION

In parentheses you see the stack state before and after word execution. The stack cells are names to
highlight the changes in stack contents. So, the swap word swaps two topmost elements in stack.

The topmost element is on the right, so the diagram 1 2 corresponds to Forth pushing first 1, then2 as a
result of execution of some words.

rot places on top the third number from stack:

rot (abc--bca)

7.2.2 Tracing an Exemplary Forth Program

Listing 7-2 shows a simple program to calculate the discriminant of a quadratic equation 1x*+ 2x + 3 =0.

Listing 7-2. forth_discr

1 sq dup * ;
: discr rot 4 * * swap sq swap - ;
1 2 3 discr

Now we are going to execute discr a b c step by step for some numbers a, b, and c. The stack state at
the end of each step is shown on the right.

a (a)
b (ab)
C (abc)
Then the discr word is executed. We are stepping into it.
rot (bca)
4 (bcaag)
¥ (bc(a*4))
* (b (c*a*4))
swap ((c*a*4) b)
sq ((c*a*s) (b*b))

swap ((b*b) (c*a*a))
- ((b*b - c*a*a))

Now we do the same from the start, butfora=1, b=2, and c=3.

1 (1)
2 (12)
3 (123)
rot (231)
4 (2314)
¥ (234)
* (212)
swap (12 2)
sq (124)
swap (4 12)
- (-8)

111

CHAPTER 7 © MODELS OF COMPUTATION

7.2.3 Dictionary

A dictionary is a part of a Forth machine that stores word definitions. Each word is a header followed by a

sequence of other words.

The header stores the link to the previous word (as in linked lists), the word name itself as a null-
terminated string, and some flags. We have already studied a similar data structure in the assignment,
described in section 5.4. You can reuse a great part of its code to facilitate defining new Forth words. See

Figure 7-9 for the word header generated for the discr word described in section 7.2.2

0 1 2 3 4 5 6 7 8 9 10 11 12

Address of previous word dlil|s|c|r

Figure 7-9. Word header for discr

7.2.4 How Words Are Implemented
There are three ways to implement words.

e Indirect threaded code

e Direct threaded code

e Subroutine threaded code

We are using a classic indirect threaded code way. This type of code needs two special cells (which we

can call Forth registers):

PC points at the next Forth command. We will see soon that the Forth command is
an address of an address of the respective word’s assembly implementation code.
In other words, this is a pointer to an executable assembly code with two levels of

indirection.

W is used in non-native words. When the word starts its execution, this register

points at its first word.

These two registers can be implemented through a real register usage. Alternatively, their contents can

be stored in memory.

Figure 7-10 shows how words are structured when using the indirect threaded code technique. It

incorporates two words: a native word dup and a colon word square.

112

http://dx.doi.org/10.1007/978-1-4842-2403_5.4
http://dx.doi.org/10.1007/978-1-4842-2403_7.2.2

CHAPTER 7 = MODELS OF COMPUTATION

‘ |xt_square ‘
T

Dictionary entry :
| link |s‘q]u ‘ a r‘elol flags |d0col ‘ xt_dup ‘ xt_mul ‘ xt_exit |

Dictionary Entry
docol: — l link Id ulp‘Ol dup impl |
sub rstack, 8
mov [rstack], pc

add w, 8 dup_impl;-l———-"/
mov pc, W push gword[rsp]
jmp next jmp next

Figure 7-10. Indirect threaded code

Each word stores the address of its native implementation (assembly code) immediately after the
header. For colon words the implementation is always the same: docol. The implementation is called using
the jmp instruction.

Execution token is the address of this cell, pointing to an implementation. So, an execution token is an
address of an address of the word implementation. In other words, given the address A of a word entry in the
dictionary, you can obtain its execution token by simply adding the total header size to A.

Listing 7-3 provides us with a sample dictionary. It contains two native words (starting atw_plus and
w_dup) and a colon word (w_sq).

Listing 7-3. forth_dict_sample.asm

section .data

w_plus:
dq o ; The first word's pointer to the previous word is zero
db '+',0
db o ; No flags

xt_plus: ; Execution token for “plus’, equal to

; the address of its implementation
dq plus_impl
w_dup:
dq w_plus
db 'dup', 0
db o
xt_dup:
dq dup_impl
w_double:
dq w_dup
db 'double', 0
db o
dq docol ; The “docol” address -- one level of indirection
dq xt_dup ; The words consisting “dup” start here.

113

CHAPTER 7 © MODELS OF COMPUTATION

dq xt_plus
dq xt_exit

last_word: dq w_double
section .text
plus_impl:
pop rax
add rax, [rsp]
mov [rsp], rax
jmp next
dup_impl:
push qword [rsp]
jmp next

The core of the Forth engine is the inner interpreter. It is a simple assembly routine fetching code from
memory. It is shown in Listing 7-4.

Listing 7-4. forth_next.asm

next:
mov w, pc
add pc, 8 ; the cell size is 8 bytes
mov w, [w]

jmp [w]

It does two things:

1. Itreads memory starting at PC and sets up PC to the next instruction. Remember,
that PC points to a memory cell, which stores execution token of a word.

2. Ttsets up W to the execution token value. In other words, after next is executed, W
stores the address of a pointer to assembly implementation of the word.

3. Finally, it jumps to the implementation code.

Every native word implementation ends with the instruction jmp next. It ensures that the next
instruction will be fetched.

To implement colon words we need to use a return stack in order to save and restore PC before and after
acall.

While W is not useful when executing native words, it is quite important for the colon words. Let us take
alook at docol, the implementation of all colon words, shown in Listing 7-5 It also features exit, another
word designed to end all colon words.

Listing 7-5. forth_docol.asm

docol:
sub rstack, 8
mov [rstack], pc
add w, 8 5 8
mov pc, w
jmp next

114

CHAPTER 7 MODELS OF COMPUTATION

exit:
mov pc, [rstack]
add rstack, 8
jmp next

docol saves PC in the return stack and sets up new PC to the first execution token stored inside the
current word. The return is performed by exit, which restores PC from the stack.
This mechanism is akin to a pair of instructions call/ret.

Question 119 Read [32]. What is the difference between our approach (indirect threaded code) and direct
threaded code and subroutine threaded code? What advantages and disadvantages can you name?

To better grasp the concept of an indirect threaded code and the innards of Forth, we prepared a
minimal example shown in Listing 7-6. It uses routines developed in the first assignment from section 2.7.

Take your time to launch it (the source code is shipped with the book) and check that it really reads a
word from input and outputs it back.

Listing 7-6. itc.asm

%include "lib.inc"
global _start

%define pc r15
%define w r14
%define rstack ri3

section .bss

resq 1023

rstack start: resq 1
input_buf: resb 1024

section .text

; this one cell is the program
main_stub: dq xt _main

; The dictionary starts here

; The first word is shown in full

; Then we omit flags and links between nodes for brevity

; Each word stores an address of its assembly implementation

; Drops the topmost element from the stack
dq 0 ; There is no previous node
db "drop", 0
db 0 ; Flags =0
xt_drop: dq i_drop
i _drop:
add rsp, 8
jmp next

115

http://dx.doi.org/10.1007/978-1-4842-2403_32
http://dx.doi.org/10.1007/978-1-4842-2403_2.7

CHAPTER 7 © MODELS OF COMPUTATION

; Initializes registers
xt_init: dq i_init
i_init:
mov rstack, rstack_start
mov pc, main_stub
jmp next

; Saves PC when the colon word starts
xt_docol: dq i_docol
i_docol:

sub rstack, 8

mov [rstack], pc

add w, 8

mov pc, w

jmp next

; Returns from the colon word
xt_exit: dq i_exit
i exit:

mov pc, [rstack]

add rstack, 8

jmp next

; Takes a buffer pointer from stack
; Reads a word from input and stores it
; starting in the given buffer
xt_word: dq i_word
i_word:
pop rdi
call read word
push rdx
jmp next
; Takes a pointer to a string from the stack
; and prints it
xt_prints: dq i prints
i prints:
pop rdi
call print_string
jmp next

; Exits program
xt_bye: dq i_bye
i_bye:
mov rax, 60
xor rdi, rdi
syscall

; Loads the predefined buffer address
xt_inbuf: dq i_inbuf

i_inbuf:
push qword input_buf
jmp next

116

CHAPTER 7 MODELS OF COMPUTATION

; This is a colon word, it stores
; execution tokens. Each token
; corresponds to a Forth word to be
; executed
xt_main: dq i_docol

dq xt_inbuf

dq xt_word

dq xt_drop

dq xt_inbuf

dgq xt_prints

dq xt_bye

; The inner interpreter. These three lines
; fetch the next instruction and start its
; execution
next:

mov w, [pc]

add pc, 8

jmp [w]

5 The program starts execution from the init word
_start: jmp i_init

7.2.5 Compiler

Forth can work in either interpreter or compiler mode. Interpreter just reads commands and executes them.

When executing the colon : word, Forth switches into compiler mode. Additionally, the colon : reads
one next word and uses it to create a new entry in the dictionary with docol as implementation. Then Forth
reads words, locates them in dictionary, and adds them to the current word being defined.

So, we have to add another variable here, which stores the address of the current position to write
words in compile mode. Each write will advance here by one cell.

To quit compiler mode we need special immediate words. They are executed no matter which mode
we are in. Without them we would never be able to exit compiler mode. The immediate words are marked
with an immediate flag.

The interpreter puts numbers in the stack. The compiler cannot embed them in words directly, because
otherwise they will be treated as execution tokens. Trying to launch a command by an execution token 42
will most certainly result in a segmentation fault. However, the solution is to use a special word 1it followed
by the number itself. The 1it’s purpose is to read the next integer that PC points at and advance PC by one
cell further, so that PC will never point at the embedded operand.

7.2.5.1 Forth Conditionals

We will make two words stand out in our Forth dialect: branch nand Obranch n. They are only allowed in
compilation mode!
They are similar to 1it nbecause the offset is stored immediately after their execution token.

117

CHAPTER 7 © MODELS OF COMPUTATION

7.3 Assignment: Forth Compiler and Interpreter

This section will describe a big assignment: writing your own Forth interpreter.
Before we start, make sure you have understood the Forth language basics. If you are not certain of it,
you can play around with any free Forth interpreter, such as gForth.

Question 120 Look the documentation for commands sete, setl, and their counterparts.

Question 121 What does cqo instruction do? Refer to [15].

Itis convenient to store PC and W in some general purpose registers, especially the ones that are
guaranteed to survive function calls unchanged (caller-saved): r13, r14, or r15.

7.3.1 Static Dictionary, Interpreter

We are going to start with a static dictionary of native words. Adapt the knowledge you received in section 5.4.
From now on we cannot define new words in runtime.
For this assignment we will use the following macro definitions:

e native, which accepts three arguments:
— Word name;
— Apart of word identifier; and
— Flags.

It creates and fills in the header in .data and a label in . text. This label will denote the assembly code
following the macro instance.

As most words will not use flags, we can overload native to accept either two or three arguments. To
do it, we create a similar macro definition which accepts two arguments and launches native with three
arguments, the third being substituted by zero and the first two passed as-is, as shown in Listing 7-7.

Listing 7-7. native_overloading.asm

%macro native 2
native %1, %2, 0
%endmacro

Compare two ways of defining Forth dictionary: without macros (shown in Listing 7-8) and with them
(shown in Listing 7-9).

Listing 7-8. forth_dict_example_nomacro.asm

section .data

w_plus:
dq w_mul ; previous
db "+',0
db o

xt_plus:

dq plus_impl

118

http://dx.doi.org/10.1007/978-1-4842-2403_15
http://dx.doi.org/10.1007/978-1-4842-2403-8_2#Par126
http://dx.doi.org/10.1007/978-1-4842-2403_5.4

CHAPTER 7 MODELS OF COMPUTATION

section .text
plus_impl:
pop rax
add [rsp], rax
jmp next

Listing 7-9. forth_dict_example_macro.asm

native '+', plus
pop rax
add [rsp], rax
jmp next

Then define a macro colon, analogous to the previous one. Listing 7-10 shows its usage.

Listing 7-10. forth_colon_usage.asm

colon '>', greater
dq xt_swap
dq xt_less
dq exit

Do not forget about docol address in every colon word! Then create and test the following assembly
routines:

e find_word, which accepts a pointer to a null-terminated string and returns the address
of the word header start. If there is no word with such name, zero is returned.

e cfa(code from address), which takes the word header start and skips the whole
header till it reaches the XT value.

Using these two functions and the ones you have already written in section 2.7, you can write an
interpreter loop. The interpreter will either push a number into the stack or fill the special stub, consisting of
two cells, shown in Listing 7-11.

It should write the freshly found execution token to program_stub. Then it should point PC at the
stub start and jump to next. It will execute the word we have just parsed, and then pass control back to
interpreter.

Remember, that an execution token is just an address of an address of an assembly code. This is why the
second cell of the stub points at the third, and the third stores the interpreter address—we simply feed this
data to the existing Forth machinery.

Listing 7-11. forth_program stub.asm

program_stub: dq 0
xt_interpreter: dq .interpreter
.interpreter: dq interpreter loop

Figure 7-11 shows the pseudo code illustrating interpreter logic.

119

http://dx.doi.org/10.1007/978-1-4842-2403_15

CHAPTER 7 © MODELS OF COMPUTATION

1: interpreter_loop:

2: word < word from stdin
3: if word is empty then

4: exit

5: if word is present in dictionary, its address is addr then
6: at < cfa(addr)

7. [program_stub] « xt

8: PC + program_stub

9: goto next
10: else
11 if word is a number n then
12: push n
13: else
14: Error: unknown word

Figure 7-11. Forth interpreter: pseudocode

Remember that the Forth machine also has memory. We are going to pre-allocate 65536 Forth cells for it.

Question 122 Should we allocate these cells in .data section, or are there better options?

To let Forth know where the memory is, we are going to create the word mem, which will simply push the
memory starting address on top of the stack.

7.3.1.1 Word list

You should first make an interpreter that supports the following words:

e .S - prints all stack contents; does not change it. To implement it, save rsp before
interpreter start.

e Arithmetic:+ - * /, = <. The comparison operations push either 1 or 0 on top of the
stack.

e Logic: and, not. All non-zero values are considered true; zero value is considered false.
In case of success these instructions push 1, otherwise 0. They also destruct their
operands.

e Simple stack manipulations:

rot (abc--bca)
swap (a b -- b a)

dup (a -- a a)
drop (a --)
e . (a --) pops the number from the stack and outputs it.

120

CHAPTER 7 MODELS OF COMPUTATION

e Input/output:

key (-- c)—reads one character from stdin; The top cell in stack stores 8 bytes,
itis a zero extended character code.

emit (¢ --)—writes one symbol into stdout.

number (-- n)—reads a signed integer number from stdin (guaranteed to fit
into one cell).

e mem-—stores the user memory starting address on top of the stack.

e Working with memory:
! (address data --)—stores data from stack starting at address.
c! (address char --)—stores a single byte by address.
@ (address -- value)—reads one cell starting from address

c@ (address -- charvalue)—reads a single byte starting from address Then test
the resulting interpreter.

Then create a memory region for the return stack and implement docol and exit. We recommend
allocating a register to point at the return stack’s top.
Implement colon-words or and greater using macro colon and test them.

7.3.2 Compilation
Now we are going to implement compilation. It is easy!
1. We need to allocate other 65536 Forth cells for the extensible part of the dictionary.

2. Add avariable state, which is equal to 1 when in compilation mode, 0 for
interpretation mode.

3. Add avariable here, which points at the first free cell in the preallocated dictionary
space.

4. Add avariable last_word, which stores the address of the last word defined.
5. Add two new colon words, namely, : and ;.

Colon:

1: word < stdin

2: Fill the new word’s header starting at here. Do not forget to update it!

3: Add docol address immediately at here; update here.

4: Update last_word.

5: state < 1;

6: Jump to next.

121

CHAPTER 7 © MODELS OF COMPUTATION

Semicolon should be marked as Immediate!
1: here < XT of the word exit ; update here.
2: state < 0;

3: Jump to next.

6. Here is what the compiler loop looks like. You can implement it separately, or mix
with interpreter loop you already implemented.

[u—

: compiler loop:

word < word from stdin

if word is empty then

exit

:if word is present and has address addr then
: xt < cfa(addr)

:if word is marked Immediate then

:interpret word

© ® N D G s W N

:else

10: [here] ¢« xt

11: here < here + 8

12: else

13: if word is a number n then
14: if previous word was branch or obranch then
15: [here] ¢ n

16: here < here + 8

17: else

18: [here] « xtlit

19: here < here + 8

20: [here] < n

21: here < here + 8

22: else

23: Error: unknown word

Implement Obranch and branch and test them (refer to section 7.3.3 for a complete list of Forth words

with their meanings).

Question 123 Why do we need a separate case for branch and obranch?

122

7.3.3

CHAPTER 7 MODELS OF COMPUTATION

Forth with Bootstrap

We can divide the Forth interpreter into two parts. The very necessary one is called inner interpreter; it
is written in assembly. Its purpose is to fetch the next XT from memory. This is the next routine, shown in
Listing 7-4.

The other part is the outer interpreter, which accepts user input and either compiles the word to the
current definition or executes it right away. The exciting thing about it is that this interpreter can be defined
as a colon word. In order to accomplish that we have to define some additional Forth words.

We have created Forthress, a Forth dialect described in this chapter. The interpreter and compiler are
shipped with this book as well. Here is the full set of words known to Forthress.

drop(a --)

swap(ab--ba)

dup(a --aa)

rot(abc--bca)

Arithmetic:

-+ (y x =[x +y 1)

- (y x =[x *y1])

-/ (y x =[x /7y 1)

- % (y x -=-[x mod y])

- - (yx--[x-yl)

Logic:

— not(a --a')a=0ifal=0a' =1lifa==0

- =(ab --c)c=lifa==bc=0ifal=b
count(str -- len) Accepts a null-terminated string, calculates its length.
. Drops element from stack and sends it to stdout.
.S Shows stack contents. Does not pop elements.
init Stores the data stack base. It is useful for .S.

docol This is the implementation of any colon word. The XT itself is not used, but the
implementation (known as docol) is.

exit Exit from colon word.

>1 Push from return stack into data stack.

1> Pop from data stack into return stack.

1@ Non-destructive copy from the top of return stack to the top of data stack.

find(str -- header addr) Accepts a pointer to a string, returns pointer to the
word header in dictionary.

cfa(word addr -- xt) Converts word header start address to the execution token.

emit(¢ --) Outputs a single character to stdout.

123

CHAPTER 7

MODELS OF COMPUTATION

word(addr -- len) Readsword from stdin and stores it starting at address addr .
Word length is pushed into stack.

number (str -- num len) Parses an integer from string.
prints (addr --) Prints a null-terminated string.
bye Exits Forthress

syscall (call num a1 a2 a3 a4 a5 a6 -- new rax) Executes syscall The
following regis- ters store arguments (according to ABI) rdi, rsi, rdx, 10, r8, and 19.

branch <offset> Jump to alocation. Location is an offset relative to the argument end

For example:

|branch| 24 | <next command>
" branch adds 24 to this address and stores it in PC

Obranch <offset> Branch is a compile-only word. Jump to a location if TOS = 0.
Location is calculated in a similar way. Obranch is a compile-only word.

lit <value> Pushes a value immediately following this XT.

inbuf Address of the input buffer (is used by interpreter/compiler).

mem Address of user memory.

last word Header of last word address.

state State cell address. The state cell stores either 1 (compilation mode) or 0
(interpretation mode).

here Points to the last cell of the word currently being defined.
execute (xt --) Execute word with this execution token on TOS.
@ (addr -- value) Fetch value from memory.

I (addr val --) Storevalue by address.

@c (addr -- char) Read one byte starting at addr.

, (x --) Addxto the word being defined.

¢, (¢ --) Add asingle byte to the word being defined.

create (flags name --) Create an entry in the dictionary whose name is the new
name. Only immediate flag is implemented ATM.

: Read word from stdin and start defining it.
; End the current word definition

interpreter Forthress interpreter/compiler.

We encourage you to try to build your own bootstrapped Forth. You can start with a working interpreter
loop written in Forth. Modify the file itc.asm, shown in Listing 7-6, by introducing the word interpreter
and writing it using Forth words only.

124

CHAPTER 7 MODELS OF COMPUTATION

7.4 Summary

This chapter has introduced us to two new models of computation: finite state machines (also known as
finite automatons) and stack machines akin to the Forth machine. We have seen the connection between
finite state machines and regular expressions, used in multiple text editors and other text processing utilities.
We have completed the first part of our journey by building a Forth interpreter and compiler, which we
consider a wonderful summary of our introduction to assembly language. In the next chapter we are going
to switch to the C language to write higher-level code. Your knowledge of assembly will serve as a foundation
for your understanding of C because of how close its model of computation is to the classical von Neumann
model of computation.

Question 124
Question 125
Question 126
Question 127
Question 128
Question 129
Question 130
Question 131
Question 132
Question 133
Question 134
Question 135
Question 136
Question 137
Question 138
Question 139
Question 140
Question 141
Question 142
Question 143
Question 144

What is a model of computation?

Which models of computation do you know?

What is a finite state machine?

When are the finite state machines useful?

What is a finite automaton?

What is a regular expression?

How are regular expressions and finite automatons connected?

What is the structure of the Forth abstract machine?

What is the structure of the dictionary in Forth?

What is an execution token?

What is the implementation difference between embedded and colon words?
Why are two stacks used in Forth?

Which are the two distinct modes that Forth is operating in?

Why does the immediate flag exist?

Describe the colon word and the semicolon word.

What is the purpose of PC and W registers?

What is the purpose of next?

What is the purpose of docol?

What is the purpose of exit?

When an integer literal is encountered, do interpreter and compiler behave alike?

Add an embedded word to check the remainder of a division of two numbers. Write a word

to check that one number is divisible by another.

125

CHAPTER 7 © MODELS OF COMPUTATION

Question 145 Add an embedded word to check the remainder of a division of two numbers. Write a word
to check the number for primarity.

Question 146 Write a Forth word to output the first n number of the Fibonacci sequence.

Question 147 Write a Forth word to perform system calls (it will take the register contents from stack).
Write a word that will print “Hello, world!” in stdout.

126

PART Il

The C Programming Language

CHAPTER 8

Basics

In this chapter we are going to start exploring another language called C. It is a low-level language with
quite minimal abstractions over assembly. At the same time it is expressive enough so we could illustrate
some very general concepts and ideas applicable to all programming languages (such as type system or
polymorphism).

C provides almost no abstraction over memory, so the memory management task is the programmer’s
responsibility. Unlike in higher-level languages, such as C# or Java, the programmer must allocate and free
the reserved memory himself, instead of relying on an automated system of garbage collection.

Cis a portable language, so if you write correctly, your code can often be executed on other
architectures after a simple recompilation. The reason is that the model of computation in C is practically
the same old von Neumann model, which makes it close to the programming models of most processors.

When learning C remember that despite the illusion of being a higher-level language, it does not tolerate
errors, nor will the system be kind enough to always notify you about things in your program that were
broken. An error can show itself much later, on another input, in a completely irrelevant part of the program.

Language standard described The very important document about the language is the C language
standard. You can acquire a PDF file of the standard draft online for free [7]. This document is just as important
for us as the Intel Software Developer’s Manual [15].

8.1 Introduction

Before we start, we need to state several important points.
e Cis always case sensitive.
e Cdoes not care about spacing as long as the parser can separate lexemes from one
another. The programs shown in Listing 8-1 and Listing 8-2 are equivalent.
Listing 8-1. spacing_1.c
int main (int argc , char * * argv)

{
}

return 0;

© Igor Zhirkov 2017 129
1. Zhirkov, Low-Level Programming, DOI 10.1007/978-1-4842-2403-8_8

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par8
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16

CHAPTER 8 = BASICS

Listing 8-2. spacing_2.c

int main(int argc, char** argv)

{
}

return 0;

o There are different C language standards. We do not study the GNU C (a version
possessing various extensions), which is supported mostly by GCC. Instead, we
concentrate on C89 (also known as ANSI C or C90) and C99, which are supported by
many different compilers. We will also mention several new features of C11, some of
which are not mandatory to implement in compilers.

Unfortunately C89 still remains the most pervasive standard, so there are
compilers that support C89 for virtually every existing platform. This is why we will
focus on this specific revision first and then extend it with the newer features.

To force the compiler to use only those features supported by a certain standard
we use the following set of flags:

-std=c89 or -std=c99 to select either the C89 or C99 standard.

— -pedantic-errors to disable non-standard language extensions.
— -Wall to show all warnings no matter how important they are.

— -Werror to transform warnings into errors so you would not be able to compile code with
warnings.

Warnings are errors It is a very bad practice to ship code that does not compile without warnings.
Warnings are emitted for a reason.

Sometimes there are very specific cases in which people are forced to do non-standard things, such as calling a
function with more arguments than it accepts, but such cases are extremely rare. In these cases it is much better
to turn off one specific warning type for one specific file via a corresponding compiler key. Sometimes compiler
directives can make the compiler omit a certain warning for a selected code region, which is even better.

For example, to compile an executable file main from source files file1.c and file2.c you could use
the following command:

> gcc -0 main -ansi -pedantic-errors -Wall -Werror filei.c file2.c

This command will make a full compilation pass including object file generation and linking.

8.2 Program Structure

Any program in C consists of

¢ Data types definitions (structures, new types, etc.) which are based on other existing
types. For example, we can create a new name new_int_type name_t for an integer

type int.

typedef int new_int_type name_t;
130

CHAPTER 8 = BASICS

o Global variables (declared outside functions). For example, we can create a global
variable i_am_global of type int initialized to 42 outside all function scopes. Note that
global variables can only be initialized with constant values.

int i_am_global = 42;

e Functions. For example, a function named square, which accepts an argument x of
type int and returns its square.

int square(int x) { return x * x; }
e Comments between /* and */.

/* this is a rather complex comment
which span over multiple lines */

e Comments starting at // until the end of the line (in C99 and more recent).
int x; // this is a one line comment, which ends at the end of the line
e Preprocessor and compiler directives. They often start with #.

#define CATS_COUNT 42
#define ADD(X, y) (x) + (y)

Inside functions, we can define variables or data types local to this function, or perform actions. Each
action is a statement; these are usually separated by a semicolon. The actions are performed sequentially.

You cannot define functions inside other functions.

Statements will declare variables, perform computations and assignments, and execute different
branches of code depending on conditions. A special case is a block between curly braces {}, which is used
to group statements.

Listing 8-3 shows an exemplary C program. It outputs Hello, world! y=42 x=43.It defines a function
main, which declares two variables x and y, the first is equal to 43, and the second is computed as the value
of x minus one. Then a call to function printf is performed.

The function printf is used to output strings into stdout. The string has some parts (so-called format
specifiers) replaced by the following arguments. The format specifier, as its name suggests, provides
information about the argument nature, which usually includes its size and a presence of sign. For now, we
will use very few format specifiers.

e %dfor int arguments, as in the example.
o %f for float arguments.

Variable declarations, assignment, and a function call all ended by semicolons are statements.

Spare printf for format output Whenever possible, use puts instead of printf. This function can only
output a single string (and ends it with a newline); no format specifiers are taken into account. Not only is it
faster but it works uniformly with all strings and lacks security flaws described in section 14.7.3.

131

http://dx.doi.org/10.1007/978-1-4842-2403-8_2#Sec4

CHAPTER 8 = BASICS

For now, we will always start our programs with line #include <stdio.h>.Itallows us to access a part
of standard C library. However, we state firmly that this is not a library import of any sort and should never be
treated as one.

Listing 8-3. hello.c

/* This is a comment. The next line has a preprocessor directive */
#include <stdio.h>

/* “main” is the entry point for the program, like _start in assembly
* Actually, the hidden function start is calling “main’.
* “main” returns the “return code™ which is then given to the “exit®™ system
* call.
* The “void™ keyword instead of argument list means that "main” accepts no
* arguments */
int main(void) {
/* A variable local to “main’. Will be destructed as soon as “main” ends*/

int x = 43;
int y;
y=x-1;

/* Calling a standard function “printf’ with three arguments.
* It will print 'Hello, world! y=42 x=43

* All %d will be replaced by the consecutive arguments */
printf("Hello, world! y=%d x=%d\n", y, x);

return 0;

Literal is a sequence of characters in the source code which represents an immediate value. In C,
literals exist for

¢ Integers, for example, 42.
¢ Floating point numbers, for example, 42.0.
e ASClII-code of characters, written in single quotes, for example, 'a".

e Pointers to null-terminated strings, for example, "abcde".

The execution of any C program is essentially a data manipulation.

The C abstract machine has a von Neumann architecture. It is done on purpose, because Cis a
language that should be as close to the hardware as possible. The variables are stored in the linear memory
and each of them has a starting address.

You can think of variables like labels in assembly.

8.2.1 Data Types

As pretty much everything that happens is a manipulation on data, the nature of the said data is of a
particular interest to us. All kinds of data in C has a type, which means that it falls into one of (usually)
distinct categories. The typing in C is weak and static.

132

http://dx.doi.org/	10.1007/978-1-4842-2403-8_1#Sec2

CHAPTER 8 = BASICS

Static typing means that all types are known in compile time. There can be absolutely incertitude about
data types. Whether you are using a variable, a literal, or a more complex expression, which evaluates to
some data, its type will be known.

Weak typing means that sometimes a data element can be implicitly converted to another type when
appropriate.

For example, when evaluating 1 + 3.0 it is apparent that these two numbers have different types. One
of them is integer; the other is a real number. You cannot directly add one to another, because their binary
representation differs. You need to convert them both to the same type (probably, floating point number).
Only then will you be able to perform an addition. In strongly typed languages, such, as OCaml, this
operation is not permitted; instead, there are two separate operations to add numbers: one acts on integers
(and is written +), the other on real numbers (is written +. in OCaml).

Weak typing is in C for a reason: in assembly, it is absolutely possible to take virtually any data and
interpret it as data of another type (pointer as an integer, part of the string as an integer, etc.)

Let’s see what happens when we try to output a floating point value as an integer (see Listing 8-4). The
result will be the floating point value reinterpreted as an integer, which does not make much sense.

Listing 8-4. float_reinterpret.c
#include <stdio.h>
int main(void) {

printf("42.0 as an integer %d \n", 42.0);
return 0;

This program’s output depends on the target architecture. In our case, the output was
42.0 as an integer -266654968

For this brief introductory section, we will consider that all types in C fall into one of these categories:
e Integer numbers (int, char, ...).
o Floating point numbers (double and float).
e DPointer types.
e Composite types: structures and unions.
e Enumerations.

In Chapter 9 we are going to explore the type system in more detail. If you come with a background in a
higher-level language, you might find some commonly known items missing from this block. Unfortunately,
there are no string and Boolean types in C89. An integer value equal to zero is considered false; any non-zero
value is considered truth.

8.3 Control Flow

According to von Neumann principles, the program execution is sequential. Each statement is executed one
after another. There are several statements to change control flow.

133

http://dx.doi.org/10.1007/978-1-4842-2403-8_9

CHAPTER 8 = BASICS

8.3.1 if

Listing 8-5 shows an if statement with an optional else part. If the condition is satisfied, the first block
is executed. If the condition is not satisfied, the second block is executed, but the second block is not
mandatory.

Listing 8-5. if_example.c

int x = 100;
if (42) |
puts("42 is not equal to zero and thus considered truth");
}
if (x > 3) {
puts("X is greater than 3");
}
else
{
puts("X is less than 3");
}

The braces are optional. Without braces, only one statement will be considered part of each branch, as
shown in Listing 8-6.

Listing 8-6. if no_braces.c

if (x == 0)

puts("X is zero");
else

puts("X is not zero");

Notice that there is a syntax fault, called dangling else. Check Listing 8-7 and see if you can certainly
attribute the else branch to the first or the second if. To solve this disambiguation in case of nested ifs, use
braces.

Listing 8-7. dangling else.c
if (x == 0) if (y == 0) { puts("A"); } else { puts("B"); }

/* You might have considered one of the following interpretations.
* The compiler can issue a warning to prevent you */

if (x == 0) {
if (y == 0) { printf("A"); }
else { puts("B"); }

if (x == 0) {

if (y == 0) { puts("A"); }
} else { puts("B"); }

134

CHAPTER 8 = BASICS

8.3.2 while

Awhile statement is used to make cycles.

Listing 8-8. while_example.c

int x = 10;

while (x =0) {
puts("Hello");
X =X -1;

If the condition is satisfied, then the body is executed. Then the condition is checked once again, and if
it is satisfied, then the body is executed again, and so on.

An alternative form do ... while (condition); allows you to check conditions after executing the
loop body, thus guaranteeing at least one iteration. Listing 8-9 shows an example.

Notice that a body can be empty, as follows: while (x == 0);.The semicolon after the parentheses
ends this statement.

Listing 8-9. do_while example.c

int x = 10;
do {
printf("Hello\n"); X =X - 1;

while (x =0);

8.3.3 for

A for statement is ideal to iterate over finite collections, such as linked lists or arrays. It has the following
form: for (initializer ; condition; step) body. Listing 8-10 shows an example.

Listing 8-10. for_example.c

int a[] = {1, 2, 3, 4}; /* an array of 4 elements */
int i = 0;
for (i=0; i< 4; it++) {
printf("%d", a[i])
}

First, the initializer is executed. Then there is a condition check, and if it holds, the loop body is
executed, and then the step statement.

In this case, the step statement is an increment operator ++, which modifies a variable by increasing its
value by one. After that, the loop begins again by checking the condition, and so on. Listing 8-11 shows two
equivalent loops.

135

CHAPTER 8 = BASICS

Listing 8-11. while for equiv.c
int i;

/* as a “while™ loop */

i=o0;

while (i < 10) {
puts("Hello!");
i=1+1;

}

/* as a “for’ loop */

for(i=0;1<120;i=1+1){
puts("Hello!");

}

The break statement is used to end the cycle prematurely and fall to the next statement in the code.
continue ends the current iteration and starts the next iteration right away. Listing 8-12 shows an example.

Listing 8-12. loop_cont.c

int n = 0;

for(n=0; n< 20; n++) {
if (n % 2) continue;
printf("%d is odd", n);

Note also that in the for loop, the initializer, step, or condition expressions can be left empty.
Listing 8-13 shows an example.

Listing 8-13. infinite for.c

for(;5) {
/* this cycle will loop forever, unless “break™ is issued in its body */
break; /* “break™ is here, so we stop iterating */

8.3.4 goto

A goto statement allows you to make jumps to a label inside the same function. As in assembly, labels can
mark any statement, and the syntax is the same: label: statement. This is often described a bad codestyle;
however, it might be quite handy when encoding finite state machines. What you should not do is to
abandon well-thought-out conditionals and loops for goto-spaghetti.

The goto statement is sometimes used as a way to break from several nested cycles. However, this is
often a symptom of a bad design, because the inner loops can be abstracted away inside a function (thanks
to the compiler optimizations, probably for no runtime cost at all). Listing 8-14 shows how to use goto to
break out of all inner loops.

Listing 8-14. goto.c

int i;

int j;

for (i = 0; i < 100; i++)

136

http://dx.doi.org/10.1007/978-1-4842-2403-8_7#Sec2

CHAPTER 8 = BASICS

for(j = 0; j < 100; j++) {
if (1 * j == 432)
goto end;
else
printf("%d * %d != 432\n", i, j);

end:

The goto statement mixed with the imperative style makes analyzing the program behavior harder for both
humans and machines (compilers), so the cheesy optimizations the modern compilers are capable of become
less likely, and the code becomes harder to maintain. We advocate restricting goto usage to the pieces of code that
perform no assignments, like the implementations of finite state machines. This way you won't have to trace all the
possible program execution routes and how the values of certain variables change when the program executes one
way or another.

8.3.5 switch

A switch statement is used like multiple nested if’s when the condition is some integer variable being equal
to one or another value. Listing 8-15 shows an example.

Listing 8-15. case_example.c

int i = 10;
switch (i) {
case 1: /* if i is equal to 1...*/
puts("It is one");
break; /* Break is mandatory */

case 2: /* if i is equal to 2...*/
puts("It is two");
break;

default: /* otherwise... */
puts("It is not one nor two");
break;

Every case is, in fact, a label. The cases are not limited by anything but an optional break statement to
leave the switch block. It allows for some interesting hacks.! However, a forgotten break is usually a source of
bugs. Listing 8-16 shows these two behaviors: first, several labels are attributed to the same case, meaning no
matter whether x is 0, 1 or 10, the code executed will be the same. Then, as the break is not ending this case,
after executing the first printf the control will fall to the next instruction labeled case 15, another printf.

Listing 8-16. case_magic.c

switch (x) {
case 0:
case 1:
case 10:
puts("First case: x = 0, 1 or 10");

'One of the most known hacks is called Duff’s device and incorporates a cycle which is defined inside a switch and
contains several cases.

137

CHAPTER 8 = BASICS

/* Notice the absence of “break™! */

case 15:
puts("Second case: x = 0, 1, 10 or 15");
break;

8.3.6 Example: Divisor

Listing 8-17 showcases a program that searches for the first divisor, which is then printed to stdout. The
function first_divisor accepts an argument n and searches for an integer r from 1 exclusive to » inclusive,
such that n is a multiple of r. If r = n, we have obviously found a prime number.

Notice how the statement after for was not put between curly braces because it is the only statement
inside the loop. The same happened with the if body, which consists of a sole return i. You can of course
put it inside braces, and some programmers actually encourage it.

Listing 8-17. divisor.c
#include <stdio.h>
int first divisor(int n) {
int i;
if (n==1) return 1;
i

for(i =2; i<=n; i++)
if (n% i==0) return i;
return 0;

int main(void) {
int i;
for(i =1; i < 11; i++)
printf("%d \n", first divisor(i));

return 0;

8.3.7 Example: Is It a Fibonacci Number?

Listing 8-18 shows a program that checks whether a number is a Fibonacci number or not. The Fibonacci
series is defined recursively as follows:

fi- 1
f,=1
fn: fn—1+ fn—2

This series has a large number of applications, notably in combinatorics. Fibonacci sequences appear
even in biological settings, such as branching in trees, arrangement of the leaves on a stem, etc.

The first Fibonacci numbers are 1, 1, 2, 3, 5, 8, etc. As you see, each number is the sum of two previous
numbers.

In order to check whether a given number 7 is contained in a Fibonacci sequence, we adopt a
straightforward (not necessarily optimal) approach of calculating all sequence members prior to n. The

138

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec10

CHAPTER 8 = BASICS

nature of a Fibonacci sequence implies that it is ascending, so if we found a member greater than » and still
have not enumerated 7, we conclude, that n is not in the sequence. The function is_fib accepts an integer
n and calculates all elements less or equal to n. If the last element of this sequence is n, then n is a Fibonacci
number and it returns 1; otherwise, it returns 0.

Listing 8-18. is_fib.c
#include <stdio.h>
int is fib(int n) {
int a = 1;
int b = 1;

if (n==1) return 1;

while (a<=n8 b<=n) {
int t = b;

if (n == a || n == b) return 1;

b =a;
a=1t+a;
}
return 0;

}
void check(int n) { printf("%d -> %d\n", n, is fib(n)); }

int main(void) {

int i;

for(i=1;i<11;i=1i+1) {
check(i);

}

return O;

8.4 Statements and Expressions

The C language is based on notions of statements and expressions. Expressions correspond to data entities.

All literals and variable names are expressions. Additionally, complex expressions can be constructed
using operations (+, -, and other logical, arithmetic, and bit operations) and function calls (with the
exception of routines returning void). Listing 8-19 shows some exemplary expressions.

Listing 8-19. expr_example.c

1

13 + 37

17 + 89 * square(1)
X

139

CHAPTER 8 = BASICS

Expressions are data, so they can be used at the right side of the assignment operator =. Some of the
expressions can be also used at the left side of the assignment. They should correspond to data entities
having an address in memory.?

Such expressions are called lvalue; all other expressions, which have no address, are called rvalue. This
difference is actually very intuitive as long as you think in terms of abstract machine. Expressions such as
shown in Listing 8-20 bear no meaning, because an assignment means memory change.

Listing 8-20. rvalue_example.c

4=72;
"abc"="bed";
square(3) = 9;

8.4.1 Statement Types

Statements are commands to the C abstract machine. Each command is an imperative: do something! Thus
the name“imperative programming”: it is a sequence of commands.
There are three types of statements:

1. Expressions terminated by a semicolon.

1+ 3;
42;
square(3);

The purpose of these statements is the computation of the given expressions. If
these invoke no assignments (directly as a part of the expression itself or inside
one of invoked functions) or input/output operations, their impact on the program
state is not observable.

2. Ablock delimited by { and }. It contains an arbitrary number of sentences. A block
should not be ended by a semicolon itself (but the statements inside it likely
should). Listing 8-21 shows a typical block.

Listing 8-21. block_example.c

inty =1+ 3;

{
int x;
x = square(2) +y;
printf("%d\n", x);

3. Control flow statements: if, while, for, switch. They do not require a semicolon.

2We are talking about abstract C machine memory here. Of course, the compiler has the right to optimize variables and
never allocate real memory for them on the assembly level. The programmer, however, is not constrained by it and can
think that every variable is an address of a memory cell.

140

CHAPTER 8 = BASICS

We have already talked about assignments; the evil truth is that assignments are expressions
themselves, which means that they can be chained. For example,a = b = c means

e Assignctob;
o Assign the new b value to a.

A typical assignment is thus a statement from the first category: expression ended by a semicolon.

Assignment is a right-associative operation. It means that when being parsed by a compiler (or your
eye) the parentheses are implicitly put from right to left, the rightmost part becoming the most deeply
nested. Listing 8-22 provides an example of two equivalent ways to write a complex assignment.

Listing 8-22. assignment_assoc.c

X =Yy =1z
(x = (y = 2));

On the other hand, the left-associative operations consider the opposite nesting order, as shown in
Listing 8-23
Listing 8-23. div_assoc.c

40 / 2/ 4
((40 7 2) / 4)

8.4.2 Building Expressions

An expression is built using other expressions connected with operators and function calls. The operators
can be classified

e Based on arity (operand count)
— Unary (like unary minus: - expr)
— Binary (like binary multiplication: expr1 * expr2)

— Ternary. There is only one ternary operator: cond ? exprl : expr2.Ifthe condition
holds, the value is equal to expr1, otherwise expr2

e Based on meaning

— Arithmetic Operators: * / + - % ++ --

— Relational Operators: == = > < >= <=

— Logical Operators: ! 88 || << >>

— Bitwise Operators: ~~ & |

— Assignment Operators = += -= *= /= %= <<= >>= 8= "= |=

— Misc Operators:
1. sizeof(var) as “replace this with the size of var in bytes”
2. &as “take address of an operand”
3. as “dereference this pointer”
4. ?: which is the ternary operator we have spoken about before.
5

. ->, which is used to refer to a field of a structural or union type.

141

CHAPTER 8 = BASICS

Most operators have an evident meaning. We will mention some of the less used and more obscure ones.

e Theincrement and decrement operators can be used in either prefix or postfix
form: either for a variable i it is i++ or ++i. Both expressions will have an
immediate effect on i, meaning it is incremented by 1. However, the value of i++
is the “old” i, while the value of ++1i is the “new,” incremented 1i.

e There is a difference between logical and bit-wise operators. For logical operators,
any non-zero number is essentially the same in its meaning, while the bit-wise
operations are applied to each bit separately. For example, 2 & 4 is equal to zero,
because no bits are set in both 2 and 4. However, 2 && 4 will return 1, because
both 2 and 4 are non-zero numbers (truth values).

e Logical operators are evaluated in a lazy way. Consider the logical and operator
&&. When applied to two expressions, the first expression will be computed. If
its value is zero, the computation ends immediately, because of the nature of
AND operation. If any of its operands is zero, the result of the big conjunction
will be zero as well, so there is no need to evaluate it further. It is important for
us because this behavior is noticeable. Listing 8-24 shows an example where the
program will output F and will never execute the function g.

Listing 8-24. logic_lazy.c
#include <stdio.h>

int f(void) { puts("F"); return o; }
int g(void) { puts("G"); return 1; }

int main(void) {

f() 88 g();
return O0;

¢ Tilde (~) is a bit-wise unary negation, hat (") is a bitwise binary xor.

In the following chapters we will revisit some of these, such as address manipulation operands and sizeof.

8.5 Functions

We can draw a line between procedures (which do not return a value) and functions (which return a value
of a certain type). The procedure call cannot be embedded into a more complex expression, unlike the
function call.

Listing 8-25 shows an exemplary procedure. Its name is myproc; it returns void, so it does not return
anything. It accepts two integer parameters named a and b.

Listing 8-25. proc_example.c

void myproc (int a, int b)

printf("%d", a+b);

142

CHAPTER 8 = BASICS

Listing 8-26 shows an exemplary function. It accepts two arguments and returns a value of type int.
A call to this function is used as a part of a more complex expression later.

Listing 8-26. function_example.c

int myfunc (int a, int b)

return a + b;

}

int other(int x) {
return 1 + myfunc(4, 5);
}

Every function’s execution is ended with return statement; otherwise which value it will return is
undefined. Procedures can have the return keyword omitted; it might be still used without an operand to
immediately return from the procedure.

When there are no arguments, a keyword void should be used in function declaration, as shown in
Listing 8-27.

Listing 8-27. no_arguments_ex.c

int always return o(void) { return 0; }

The body of function is a block statement, so it is enclosed in braces and is not ended with a semicolon.
Each block defines a lexical scope for variables.

All variables should be declared in the block start, before any statements. That restriction is present in
C89 but not in C99. We will adhere to it to make the code more portable.

Additionally, it forces a certain self-discipline. If you have a large amount of local variables declared at
the scope start, it will look cluttered. At the same time it is usually sign of bad program decomposition and/
or poor choice of data structures.

Listing 8-28 shows examples of good and bad variable declarations.

Listing 8-28. block_variables.c
/* Good */
void f(void) {
int x;
}
/* Bad: “x° is declared after “printf® call */

void f(void) {

int y = 12;
printf("%d", y);
int x = 10;

}

/* Bad: “i° can not be declared in “for" initializer */
for(int i = 0; i < 10; i++) {

}
143

CHAPTER 8 = BASICS

/* Good: “i° is declared before “for™ */
int f(void) {

int i;
for(i =0; i< 10; i++) {
}

}

/* Good: any block can have additional variables declared in its beginning */
/* *x* 1is local to one “for® iteration and is always reinitialized to 10 */
for(i =0; i< 10; i++) {

int x = 10;
}

If a variable in a certain scope has the same name as the variable already declared in a higher scope, the
more recent variable hides the ancient one. There is no way to address the hidden variable syntactically (by
not storing its address somewhere and using the address).

The local variables in different functions can of course have the same names.

Note The variables are visible until the end of their respective blocks. So a commonly used notion of ‘local’
variables is in fact block-local, not function-local. The rule of thumb is: make variables as local as you can (including
variables local to loop bodies, for example. It greatly reduces program complexity, especially in large projects.

8.6 Preprocessor

The C preprocessor is acting similar to the NASM preprocessor. Its power, though, is much more limited. The
most important preprocessor directives you are going to see are

e fdefine
e #include
o #ifndef
o f#endif
The #define directive is very similar to its NASM %define counterpart. It has three main usages.

¢ Defining global constants (see Listing 8-29 for an example).

Listing 8-29. define_examplel.c
#define MY_CONST VALUE 42

¢ Defining parameterized macro substitutions (as shown in Listing 8-30).

144

http://dx.doi.org/10.1007/978-1-4842-2403-8_2#Sec5

CHAPTER 8 = BASICS

Listing 8-30. define_example2.c
#define MACRO SQUARE(x) ((x) * (x))

e Defining flags; depending on which, some additional code can be included or
excluded from sources.

Itis important to enclose in parentheses all argument occurrences inside macro definitions. The reason
behind it is that C macros are not syntactic, which means that the preprocessor is not aware of the code
structure. Sometimes this results in an unexpected behavior, as shown in Listing 8-31. Listing 8-32 shows the
preprocessed code.

Listing 8-31. define_parentheses.c

#tdefine SQUARE(x) (x * x)
int x = SQUARE(4+1)

As you see, the value of x will not be 25 but 4+(1*4)+1 because of multiplication having a higher priority
comparing to addition.
Listing 8-32. define_parentheses_preprocessed.c
int x = 4+1 * 441

The #include directive pastes the given file contents in place of itself. The file name is enclosed in either
quotes (#include "file.h")or angle brackets (#include <stdio.h>).

e In case of angle brackets, the file is searched in a set of predefined directories. For GCC
itis usually:

— /usr/local/include
— <libdir>/gcc/target/version/include

Here <libdir> stands for the directory that holds libraries (a GCC setting) and
is usually /usr/1ib or /usr/local/1ib by default.

— /usr/target/include

— /usr/include

Using the -I key one can add directories to this list. You can make a special include/
directory in your project root and add it to the GCC include search list.

o In case of quotes, the files are also searched in the current directory.

You can get the preprocessor output by evaluating a file filename. c in the same way as when working
with NASM: gcc -E filename.c. This will execute all preprocessor directives and flush the results into
stdout without doing anything.

145

CHAPTER 8 = BASICS

8.7 Summary

In this chapter we have elaborated the C basics. All variables are labels in memory of the C language abstract
machine, whose architecture greatly resembles the von Neumann architecture. After describing a universal
program structure (functions, data types, global variables, . . .), we have defined two syntactical categories:
statements and expressions. We have seen that expressions are either 1values or rvalues and learned to
control the program execution using function calls and control statements such as if and while. We are
already able to write simple programs which perform computations on integers. In the next chapter we are
going to discuss the type system in C and the types in general to get a bigger picture of how types are used

in different programming languages. Thanks to the notion of arrays our possible input and output data will
become much more diverse.

Question 148 What is a literal?

Question 149 What are 1value and rvalue?

Question 150 What is the difference between the statements and expressions?
Question 151 What is a block of statements?

Question 152 How do you define a preprocessor symbol?

Question 153 Why is break necessary at the end of each switch case?
Question 154 How are truth and false values encoded in C89?

Question 155 What is the first argument of printf function?

Question 156 Is printf checking the types of its arguments?

Question 157 Where can you declare variables in C89?

146

CHAPTER 9

Type System

The notion of type is one of the key ones. A type is essentially a tag assigned to a data entity. Every data

transformation is defined for specific data types, which ensures their correctness (you would not want to add

the amount of active Reddit users to the average temperature at noon in Sahara, because it makes no sense).
This chapter will study the C type system in depth.

9.1 Basic Type System of C

All types in C fall into one of these categories:
e Predefined numeric types (int, char, float, etc.).
e Arrays, multiple elements of the same type occupying consequent memory cells.

¢ DPointers, which are essentially the cells storing other cells’ addresses. The pointer
type encodes the type of cell it is pointing to. A particular case of pointers are function
pointers.

e Structures, which are packs of data of different types. For example, a structure can
store an integer and a floating point number. Each of the data elements has its own
name.

¢ Enumerations, which are essentially integers, take one of explicitly defined values.
Each of these values has a symbolic name to refer to.

e Functional types.
e Constant types, built on top of some other type and making the data immutable.

e Type aliases for other types.

9.1.1 Numeric Types

The most basic C types are the numeric ones. They have different sizes and are either signed or unsigned.
Because of a long and loosely controlled language evolution, their description may seem sometimes arcane
and quite often very ad hoc. Following is a list of the basic types:

1. char

¢ Canbe signed and unsigned. By default it is usually signed number, but it is not
required by the language standard.

e [ts size is always 1 byte;

© Igor Zhirkov 2017 147
1. Zhirkov, Low-Level Programming, DOI 10.1007/978-1-4842-2403-8_9

CHAPTER 9 ' TYPE SYSTEM

Despite the name making a direct reference to the word “character,” this is an
integer type and should be treated as such. It is often used to store the ASCII code
of a character, but it can be used to store any 1-byte number.

Aliteral 'x' and corresponds to an ASCII code of the character “x” Its type is int
but it is safe to assign it to a variable of type char.!

Listing 9-1 shows an example.

Listing 9-1. char_example.c

char number = 5;
char symbol code = 'x';
char null terminator = '\0';

2. int

An integer number.
Can be signed and unsigned. It is signed by default.
It can be aliased simply as: signed, signed int (similar for unsigned).

Can be short (2 bytes), long (4 bytes on 32-bit architectures, 8 bytes in Intel 64). Most
compilers also support long long, but up to C99 it was not part of standard.

Other aliases: short, short int, signed short, signed short int.

The size of int without modifiers varies depending on architecture. It was designed
to be equal to the machine word size. In the 16-bit era the int size was obviously

2 bytes, in 32-bit machines it is 4 bytes. Unfortunately, this did not prevent
programmers from relying on an int of size 4 in the era of 32-bit computing.
Because of the large pool of software that would break if we change the size of int,
its size is left untouched and remains 4 bytes.

It is important to note that all integer literals have the int format by default. If we add
suffixes L or UL we will explicitly state that these numbers are of type long int or
unsigned int.Sometimes itis of utter importance not to forget these suffixes.

Consider an expression 1 << 48. Its value is not 2*® as you might have thought,
but 0. Why? The reason is that 1 is a literal of the type int, which occupies 4 bytes
and thus can vary from -2%' to 2% — 1. By shifting 1 to the left 48 times, we are
moving the only bit set outside of integer format. Thus the result is zero. However,
if we do add a correct suffix, the answer will be more evident. An expression 1L

<< 48is evaluated to 2%, because 1L is now 8 bytes long.

3. long long

In x64 architecture it is the same as a long (except for Windows, where long is
4 bytes).

Its size is 8 bytes.

Its range is : —2% ... 2% - 1 for signed and 0...2% -1 for unsigned.

'This language design flaw is corrected in C++, where ' X' has type char.

148

CHAPTER 9 * TYPE SYSTEM

4, float

¢ Floating point number.

e Itssize is 4 bytes.

e Itsrangeis:*1, 17549 x 10 + 3, 40282 x 10%* (approximately six digits precision).
5. double

¢ Floating point number.

e Itssize is 8 bytes.

o Itsrangeis: +2, 22507 x 10 ... + 1, 79769 x 10**® (approximately 15 digits precision).
6. long double

¢ Floating point number.

e [ts size is usually 80 bits.

e Itwas only introduced in C99 standard.

Note On floating point arithmetic

First of all, remember, that floating point types are a very rough approximation of the real numbers. For
example, they are more precise near 0 and less precise for big values. This is exactly the reason their range is
So great compared even to longs.

As a consequence, doing floating point arithmetic with values closer to zero yields more precise results.

Finally, in certain contexts (e.g., kernel programming) the floating point arithmetic is not available. As a rule of
thumb, avoid it when you do not need it. For example, if your computations can be performed by manipulating a
quotient and a remainder, calculated by using / and % operators, you should stick with them.

9.1.2 Type Casting

The language allows you to relatively freely convert data between types. To do it you have to write the new
type name in parentheses before the expression you want to convert.
Listing 9-2 shows an example.

Listing 9-2. type cast.c
int a = 4;
double b = 10.5 * (double)a; /* now a is a double */

int b = 129;
char k = (char)b; //22?

Surely, this wonderful open world of possibilities is better controlled by your benevolent dictatorship
because these implicit conversions often lead to subtle bugs when an expression is not evaluated to what it
“should” be evaluated.

149

CHAPTER 9 ' TYPE SYSTEM

For example, as char is a (usually) signed number in range -128 . . . 127, the number 129 is too big to
fit into this range. The result of an action, shown in Listing 9-2, is not described in the language standard,
but given how typical processors and compilers function, the result will be probably a negative number,
consisting of the same bits as an unsigned representation of 129.

Question 158 What will be the value of k? Try to compile and see in your own computer.

9.1.3 Boolean Type

We have already stated that the C89 lacks Booleans. However, C99 introduced Booleans as a type _Bool. If
you include stdbool. h, you will have access to the values true / false and the type bool, which is an alias
of Bool. The reasoning behind this is simple. Many existing projects already have Boolean type defined for
themselves, usually as bool. To prevent naming conflicts, the C99 type name for Booleans is _Bool. Including
the file stdbool.h signifies that your code is free from any custom bool definition, and you are picking the
one conforming to the standard, but with a more humane name. We encourage you to use the aliased type
bool whenever possible. In the future, the Bool type name will be probably declared deprecated, and after
several standard versions it will not be used anymore.

9.1.4 Implicit Conversions

As a weakly typed language, C allows one to omit casts sometimes even when using data of different type
than intended.

When the required numeric type is not equal as the actual type, an implicit conversion is performed,
which is called integer promotion. If the type is lesser than an int, it gets promoted to signed int or
unsigned int, depending on its initial signed or unsigned nature.? Then if they are still different, we climb
up the ladder, shown in Figure 9-1

int - unsigned int — long — unsigned long — long long —
unsigned long long — float — double — long double

Figure 9-1. Integer conversions

Note Remember that long long and long double have appeared only in C99. They are, however,
supported as a language extension by many compilers that do not support C99 yet.

The “convert to int first” rule means that the overflows in lesser types can be handled differently than in
int type itself. The example shown in Listing 9-3 assumes that sizeof(int) ==

Listing 9-3. int_promotion_pitfall.c

/* The lesser types */
unsigned char x = 100, y = 100, z = 100;
unsigned char r = x +y + z; /* will give you 300 % 256 = 44 */

*The keyword is usual arithmetic conversions.

150

CHAPTER 9 * TYPE SYSTEM

unsigned int r_int = x + y + z; /* equals to 300, because the promotion to
integers is performed first */

/* Now with the greater types */

unsigned int x = 1e9, y = 2e9, z = 3e9;

unsigned int r int = x + y + z; /* 1705032704 equals 6000000000 % (2°32) */
unsigned long r long = x +y + z; /* the same result: 1705032704 */

In the last line, neither X, y, nor z is promoted to long, because it is not required by standard. The
arithmetic will be performed within the int type and then the result will be converted to long.

Be understood As a rule of thumb, when uncertain, always provide the types explicitly! For example, you
can write long x = (long)a + (long)b + (long)c.

While the code might seem more verbose after that, it will at least work as intended.

Let’s look at an example shown in Listing 9-4. The expression in the third line will be computed as follows:

1. The value of i will be converted to float (of course, the variable itself will not
change);

2. This value is added to the value of f, the resulting type is float again; and

3. This result is converted to double to be stored in d.

Listing 9-4. int_float_conv.c
int i;

float f;

double d = f + i;

All these operations are not free and are encoded as assembly instructions. It means that whenever you
are acting on numbers of different formats, it probably has runtime costs. Try to avoid it especially in cycles.

9.1.5 Pointers

Given a type T, one can always construct a type T*. This new type corresponds to data units which hold
address of another entity of type T.

As all addresses have the same size, all pointer types have the same size as well. It is specific for
architecture and, in our case, is 8 bytes wide.

Using operands & and * one can take an address of a variable or dereference a pointer (look into the
memory by the address this pointer stores). Listing 9-5 shows an example.

In section 2.5.4 we discussed a subtle problem: if a pointer is just an address, how do we know, the size
of a data entity we are trying to read starting from this address? In assembly, it was straightforward: either the
size could have been deduced based on the fact that two mov operands should have the same size or the size
should have been explicitly given, for example, mov gqword [rax], OxABCDE. Here the type system takes care
of it: if a pointer is of a type int*, we surely know that dereferencing it produces a value of size sizeof(int).

151

CHAPTER 9 ' TYPE SYSTEM

Listing 9-5. ptr_deref.c

int x = 10;
int* px = &x; /* Took address of “x and assigned it to “px~ */

px = 42; / We modified “x° here! */
printf("*px = %d\n", *px); /* outputs: "*px = 42' */
printf("x = %d\n", x); /* outputs: 'x = 42" */

When you program in C, pointers are your bread and butter. As long as you do not introduce a pointer
to non-existing data, the pointers will serve you right.

A special pointer value is 0. When used in pointer context (specifically, comparison with 0), 0 signifies “a
special value for a pointer to nowhere.” In place of 0 you can also write NULL, and you are advised to do so. It
is a common practice to assign NULL to the pointers which are not yet initialized with a valid object address,
or return NULL from functions returning an address of something to make the caller aware of an error.

Is zero a zero? There are two contexts in which you might use the o expression in C. The first context
expects just a normal integer number. The second one is a pointer context, when you assign a pointer to 0 or
compare it with 0. In the second context o does not always mean an integer value with all bits cleared, but will
always be equal to this “invalid pointer” value. In some architectures it can be, for example, a value with all bits
set. But this code will work no matter the architecture because of this rule:

int* px = ... ;
if ((px) /* if “px is not NULL */

if (px == 0) /* same thing as the following: */
if (Ipx) /% if “px* is NULL */

There is a special kind of pointer type: void*. This is the pointer to any kind of data. C allows us to
assign any type of pointer to a variable of type void*; however, this variable cannot be dereferenced. Before
we do it, we need to take its value and convert to a legit pointer type (e.g., int*). A simple cast is used to do it
(see section 9.1.2). Listing 9-6 shows an example.

Listing 9-6. void deref.c

int a = 10;

void* pa = &a;

printf("%d\n", *((int*) pa));

You can also pass a pointer of type void* to any function that accepts a pointer to some other type.
Pointers have many purposes, and we are going to list a couple of them.

e Changing a variable created outside a function.
e C(Creating and navigating complex data structures (e.g., linked lists).

e (Calling functions by pointers means that by changing pointer we switch between
different functions being called. This allows for pretty elegant architectural solutions.

152

CHAPTER 9 * TYPE SYSTEM

Pointers are closely tied with arrays, which are discussed in the next section.

9.1.6 Arrays

In C, an array is a data structure that holds a fixed amount of data of the same type. So, to work with an array
we need to know its start, size of a single element and the amount of elements that it can store. Refer to
Listing 9-7 to see several variations of array declaration.

Listing 9-7. array_decl.c

/* This array's size is computed by compiler */
int arr[] = {1)213)415};

/* This array is initialized with zeros, its size is 256 bytes */
long array[32] = {0};

As the amount of elements should be fixed, it cannot be read from a variable.*To allocate memory for
such arrays whose dimensions we do not know in advance, memory allocators are used (which are even
not always at your disposal, for example, when programming kernels). We will learn to use the standard C
memory allocator (malloc / free) and will even write our own.

You can address elements by index. Indices start from 0. The origins of this solution is in the nature of
address space. The zero-th element is located at an array’s starting address plus 0 times the element size.

Listing 9-8 shows an array declaration, two reads and one write.

Listing 9-8. array_example rw.c

int myarray[1024];
int y = myarray[64];

int first = myarray[o0];
myarray[10] = 42;

If we think for a bit about the C abstract machine, the arrays are just continuous memory regions
holding the data of the same type. There is no information about type itself or about the array length. It is
fully a programmer’s responsibility to never address an element outside an allocated array.

Whenever you write the allocated array’s name, you are actually referring to its address. You can think
about it as a constant pointer value. Here is the place where the analogy between assembly labels and
variables is the strongest. So, in Listing 9-8, an expression myarray has actually a type int*, because itis a
pointer to the first array element!

It also means that an expression *myarray will be evaluated to its first element, just as myarray[0].

9.1.7 Arrays as Function Arguments

Let’s talk about functions accepting arrays as arguments. Listing 9-9 shows a function returning a first array
element (or -1 if the array is empty).

3Until C99; but even nowadays variable length arrays are discouraged by many because if the array size is big enough,
the stack will not be able to hold it and the program will be terminated.

153

CHAPTER 9 ' TYPE SYSTEM

Listing 9-9. fun_arrayil.c

int first (int array[], size t sz) {
if (sz == 0) return -1;
return array[0];

Unsurprisingly, the same function can be rewritten keeping the same behavior, as shown in Listing 9-10.

Listing 9-10. fun_array2.c

int first (int* array, size t sz) {
if (sz == 0) return -1;
return *array;

But that’s not all. You can actually mix these and use the indexing notation with pointers, as shown in
Listing 9-11.
Listing 9-11. fun_array3.c

int first (int* array, size t sz) {
if (sz == 0) return -1;
return array[0];

The compiler immediately demotes constructions such as int array[] in the arguments list to a
pointer int* array, and then works with it as such. Syntactically, however, you can still specify the array
length, as shown in Listing 9-12. This number indicates that the given array should have at least that many
elements. However, the compiler treats it as a commentary and performs no runtime or compile-time checks.
Listing 9-12. array param_size.c
int first(int array[10], size t sz) { ... }

C99 introduced a special syntax, which corresponds essentially to your promise given to a compiler,
that the corresponding array will have at least that many elements. It allows the compiler to perform some
specific optimizations based on this assumption. Listing 9-13 shows an example.

Listing 9-13. array param_size static.c

int fun(int array[static 10]) {...}

9.1.8 Designated Initializers in Arrays

C99 introduces an interesting way to initialize the arrays. It is possible to implicitly initialize an array to
default values except for those on several designated positions, for which other values are provided. For
example, to initialize an array of eight int elements to all zeros, except for the indices 1 and 5 which will hold
values 15 and 29, respectively, the following code might be used:

int a[8] = { [5] = 29, [1] = 15 };

154

CHAPTER 9 * TYPE SYSTEM

The initialization order is irrelevant. It is often useful to use enum values or character values as indices.
Listing 9-14 shows an example.

Listing 9-14. designated_initializers arrays.c

int whitespace[256] = {
[' " 1=1,

-

PR R R
-

\

\f']
"\n'] =
\r']

enum colors {
RED,
GREEN,
BLUE,
MAGENTA,
YELLOW

};

int good[5] = { [RED] = 1, [MAGENTA] = 1 };

9.1.9 Type Aliases

You can define your own types using existing types via the typedef keyword.

The code shown in Listing 9-15 is creating a new type mytype_t. It is absolutely equivalent to unsigned
short int except for its name. These two types become fully interchangeable (unless later someone
changes the typedef).

Listing 9-15. typedef example.c
typedef unsigned short int mytype t;

You can see the suffix _t in type names quite often. All names ending with _t are reserved by POSIX
standard.*

This way newer standards will be able to introduce new types without the fear of colliding with types
in existing projects. So, using these type names is discouraged. We will speak about practical naming

conventions later.
What are these new types for?

1. Sometimes they improve the ease of reading code.

2. They may enhance portability, because to change the format of all variables of
your custom type you should only change the typedef.

3. Types are essentially another way of documenting program.

4. Type aliases are extremely useful when dealing with function pointer types
because of their cumbersome syntax.

YPOSIX is a family of standards specified by the IEEE Computer Society. It includes the description of utilities,
application programming interface (API), etc. Its purpose is to ease the portability of software, mostly between different
branches of UNIX-derived systems.

155

CHAPTER 9 ' TYPE SYSTEM

A very important example of a type alias is size_t. This is a type defined in the language standard (it
requires including one of the standard library headers, for example, #include <stddef.h>). Its purpose is to
hold array lengths and array indices. It is usually an alias for unsigned long; thus, in Intel 64 it typically is an
unsigned 8-byte integer.

Never use int for array indices Unless you are dealing with a poorly designed library which forces you to
use int as an index, always favor size_t.

Always use types appropriately. Most standard library functions that deal with sizes return a value of type
size t(eventhe sizeof() operator returns size t!). Let’s take a look at the example shown in Listing 9-16.
An expression s of type size_t could have been obtained from one of library calls such as strlen. There are
several problems that arise because of int usage:

e intis4 bytes long and signed, so its maximal value is 23! — 1. What if i is used as an
array index? It is more than possible to create a bigger array on modern systems, so all
elements may not be indexed. The standard says that arrays are limited in size by an
amount of elements encodable using a size_t variable (unsigned 64-bit integer).

e Every iteration is only performed if the current i value is less than s. Thus a
comparison is needed, but these two variables have a different format! Because of it, a
special number conversion code will be executed by each iteration, which can be quite
significant for small loops with a lot of iterations.

¢ When dealing with bit arrays (not so uncommon) a programmer is likely to compute 1/8
for a byte offset in a byte array and i%8 to see which specific bit we are referring to. These
operations can be optimized into shifts instead of actual division, but only for unsigned
integers. The performance difference between shifts and “fair” division is radical.

Listing 9-16. size_int_difference.c
size t s;

int i,

for(i=0; i< s; i++) {

}

9.1.10 The Main Function Revisited

We are already used to writing the main function, which serves as an entry point, as a parameterless
function. However, it should in fact accept two parameters: the command-line argument count and an array
of arguments themselves. What are command-line arguments? Well, every time you launch a program (like
1s) you might specify additional arguments, for example, 1s -1 -a. The 1s application will be launched and
it will have access to these arguments in its main function. In this case

¢ argv will contain three pointers to char sequences:

INDEX STRING

0 ulsu
1 u_lu
2 Il_all

156

CHAPTER 9 * TYPE SYSTEM

The shell will split the whole calling string into pieces by spaces, tabs, and newline
symbols and the loader and C standard library will ensure that main gets this
information.

e argc will be equal to 3 as it is a number of elements in argv.

Listing 9-17 shows an example. This program prints all given arguments, each in a separate line.

Listing 9-17. main_revisited.c

#include <stdio.h>

int main(int argc, char* argv[]) {
int i;
for(i = 0; i < argc; i++)
puts(argvli]);
return 0;

9.1.11 Operator sizeof

We already mentioned the operator sizeof in section 8.4.2. It returns a value of type size_t which holds the
operand size in bytes. For example, sizeof(long) will return 8 on x64 computers.

sizeof is not a function because it has to be computed in compile time.

sizeof has an interesting usage: you can compute the total size of an array but only if the argument is in
this exact array. Listing 9-18 shows an example.

Listing 9-18. sizeof array.c

#include <stdio.h>
long array[] = { 1, 2, 3 };

int main(void) {
printf("%zu \n", sizeof(array)); /* output: 24 */
printf("%zu \n", sizeof(array[0])); /* output: 8 */
return O;

Notice, how you cannot use sizeof to get the size of an array accepted by a function as an argument.
Listing 9-19 shows an example. This program will output 8 in our architecture

Listing 9-19. sizeof array fun.c

#include <stdio.h>

const int arr[] = {1, 2, 3, 4};

void f(int const arr[]) {
printf("%zu\n", sizeof(arr));

}

int main(void) {
f(arr);
return 0;

}

157

CHAPTER 9 ' TYPE SYSTEM

Which format specifier? Starting at C99 you can use a format specifier %zu for size_t. In earlier versions
you should use %1u which stands for unsigned long.

Question 159 Create sample programs to study the values of these expressions:
e sizeof(void)
e sizeof(0)
e sizeof('x")
e sizeof("hello")
Question 160 What will be the value of x?
int x = 10;
size t t = sizeof(x=90);

Question 161 How do you compute how many elements an array stores using sizeof?

9.1.12 Const Types

For every type T we can also use a type T const (or, equivalently, const T). Variables of such type cannot be
changed directly, so they are immutable. It means that such data should be initialized simultaneously with a
declaration. Listing 9-20 shows an example of initializing and working with constant variables.

Listing 9-20. const_def.c

int a;
a=42; /* ok */

const int a; /* compilation error */

const int a = 42; /* ok */
a = 99; /* compilation error, should not change constant value */

int const a = 42; /* ok */
const int b = 99; /* ok, const int === int const */

158

CHAPTER 9 * TYPE SYSTEM

It is interesting to note how the const modifier interacts with the asterisk * modifier. The type is read from
right to left and so the const modifiers as well as the asterisk are applied in this order. Following are the options:

e int const* x means “a mutable pointer to an immutable int” Thus, *x = 10 is not
allowed, but modifying x itself is allowed.

An alternate syntax is const int* x.

e int* const x = &y; means “an immutable pointer to a mutable int y.” In other
words, x will never be pointing at anything buty.

e A superposition of the two cases: int const* const x = 8y; is “an immutable
pointer to an immutable int y”

Simple rule The const modifier on the left of the asterisk protects the data we point at; the const modifier
on the right protects the pointer itself.

Making a variable constant is not foolproof. There is still a way to modify it. Let’s demonstrate it for a
variable const int x (see Listing 9-21).

e Take a pointer to it. It will have type const int*.
e (Cast this pointer to int*.

e Dereference this new pointer. Now you can assign a new value to x.

Listing 9-21. const_cast.c

#include <stdio.h>

int main(void) {
const int x = 10;
((int)8x) = 30;

printf("%d\n", x);
return 0;

This technique is strongly discouraged but you might need it when dealing with poorly designed
legacy code. const modifiers are made for a reason, and if your code does not compile it, it is by no means a
justification for such hacks.

Note that you cannot assign a int const* pointer to int* (this is true for all types). The first pointer
guarantees that its contents will never be changed, while the second one does not. Listing 9-22 shows an example.

Listing 9-22. const_discard.c

int x;

int y;

int const* px = 8&x;

int * py = 8y;

py = px; /* Error, const qualifier is discarded */

py; /* OK */

pXx

159

CHAPTER 9 ' TYPE SYSTEM

Should I use const at all? It is cumbersome. Absolutely. In large projects it can save you a lifetime of
debugging. | myself recall several very subtle bugs that were caught by the compiler and resulted in compilation
error. Without the variables being protected by const, the compiler would have accepted the program which
would have resulted in the wrong behavior.

Additionally, the compiler may use this information to perform useful optimizations.

9.1.13 Strings

In C, strings are null-terminated. A single character is represented by its ASCII code of type char. A string is
defined by a pointer to its start, which means that the equivalent of a string type would be char*. Strings can
also be thought of as character arrays, whose last element is always equal to zero.

The type of string literals is char*. Modifying them, however, while being syntactically possible (e.g.,
"hello"[1] = 32), yields an undefined result. It is one of the cases of undefined behavior in C. This usually
results in a runtime error, which we will explain in the next chapter.

When two string literals are written one after another, they are concatenated (even if they are separated
with line breaks). Listing 9-23 shows an example.

Listing 9-23. string literal breaks.c

char const* hello = "Hel" "lo"
"world!";

Note The C++ language (unlike C) forces the string literal type to char const*, so if you want your code
to be portable, consider it. Additionally, it forces the immutability of the strings (which is what you will often
want) on the syntax level. So whenever you can, assign string literals to const char* variables.

9.1.14 Functional Types

A rather obscure part of C are the functional types. Unlike most types, they cannot be instantiated as
variables, but in a way functions themselves are literals of these types. However, you can declare function
arguments of functional types, which will be automatically converted to function pointers.

Listing 9-24 shows an example of a function argument f of a functional type.

Listing 9-24. fun_type_example.c

#include <stdio.h>
double g(int number) { return 0.5 + number; }

double apply(double (f)(int), int x) {
return f(x) ;
}

160

CHAPTER 9 * TYPE SYSTEM

int main(void) {
printf("%f\n", apply(g, 10));
return 0;

The syntax, as you see, is quite particular. The type declaration is mixed with the argument name itself,
so the general pattern is:
return_type (pointer name) (argi, arg2, ...)

You see an equivalent program in Listing 9-25.

Listing 9-25. fun_type_example alt.c

#include <stdio.h>
double g(int number) { return 0.5 + number; }

double apply(double (*f)(int), int x) {
return f(x) ;
}

int main(void) {
printf("%f\n", apply(g, 10));
return 0;

What are these types useful for? As the function pointer types are rather difficult to write and read, they
are often hidden in a typedef. The bad (but very common) practice is to add an asterisk inside the type alias
declaration. Listing 9-26 shows an example where a type to a procedure returning nothing is created.

Listing 9-26. typedef bad_fun_ptr.c
Typedef void(*proc)(void);

In this case you can write directly proc my_pointer = &some_proc. However, this hides an information
about proc being a pointer: you can deduce it but you do not see it right away, which is bad. The nature of
the Clanguage is, of course, to abstract things as much as you can, but pointers are such a fundamental
concept and so pervasive in C that you should not abstract them, especially in the presence of weak typing.

So, a better solution would be to write down what is shown in Listing 9-27.

Listing 9-27. typedef good fun ptr.c
typedef void(proc)(void);

proc* my ptr = &some proc;

Additionally, these types can be used to write function declarations. Listing 9-28 shows an example.

161

http://dx.doi.org/978-1-4842-2403-8_8#Par56

CHAPTER 9 ' TYPE SYSTEM

Listing 9-28. fun_types_decl.c
typedef double (proc)(int);

/* declaration */
proc myproc;

VAR

/* definition */
double myproc(int x) { return 42.0 + x; }

9.1.15 Coding Well
9.1.15.1 General Considerations

In this book we are going to provide several assignments to be written in C. But first we want to state several
rules that you should follow, not only here and now but virtually every time you are writing a program.

1. Always separate program logic from input and output operations. This will
allow for a better code reuse. If a function performs actions on data and outputs
messages at the same time, you won'’t be able to reuse its logic in another situation
(e.g., it can output messages to an application with a graphical user interface, and
in another case you might want to use it on a remote server).

2. Always comment your code in plain English.

3. Name your variables based on their meaning for the program. It is very hard to
deduce what variables with meaningless names like aaa mean.

4. Remember to put const wherever you can.

5. Use appropriate types for indexing.

9.1.15.2 Example: Array Summation

This section is an absolute must read if you are a beginner with C and even more so if you are a self-taught
programmer.

We are going to write a simple program in “beginner style,” see what’s wrong with it, and modify it
appropriately to make it better.

Here is the task: implement an array summation functionality. As simple as it is, there is a huge
difference between a solution written by a beginner or one written by a more experienced programmer.

The beginner will come up with a program similar to the one shown in Listing 9-29.

Listing 9-29. begl.c

#include <stdio.h>

int array[] = {1,2,3,4,5};

int main(int argc, char** argv) {
int i;
int sum;

for(i =0; i< 5; it++)

162

CHAPTER 9 * TYPE SYSTEM

sum = sum + array[i];
printf("The sum is: %d\n", sum);
return 0;

Before we start polishing the code, we can immediately spot a bug: the starting value of sumis not
defined and can be random. Local variables in C are not initialized by default, so you have to do it by hand.
Check Listing 9-30.

Listing 9-30. beg2.c

#include <stdio.h>
int array[] = {1,2,3,4,5};

int main(int argc, char** argv) {
int i;
int sum = 0;
for(i =0; i< 5; i++)
sum = sum + array[i];
printf("The sum is: %d\n", sum);
return 0;

First of all, this code is totally not reusable. Let’s extract a piece of logic into an array_sum procedure,
shown in Listing 9-31.

Listing 9-31. beg3.c

#include <stdio.h>
int array[] = {112:314:5};

void array sum(void) {
int i,
int sum = 0;
for(i =0; i< 5; it++)
sum = sum + array[i];
printf("The sum is: %d\n", sum);

}

int main(int argc, char** argv) {
array_sum();
return 0;

What is this magic number 5? Every time we change an array we have to change this number as well, so
we probably want to calculate it dynamically, as shown in Listing 9-32.

Listing 9-32. beg4.c

#include <stdio.h>
int array[] = {1,2,3,4,5};

163

CHAPTER 9 ' TYPE SYSTEM

void array sum(void) {
int i;
int sum = 0;
for(i = 0; i < sizeof(array) / 4; i++)
sum = sum + array[i];
printf("The sum is: %d\n", sum);

}

int main(int argc, char** argv) {
array_sum();
return 0;

But why are we dividing the array size by 4? The size of int varies depending on the architecture, so we
have to calculate it too (in compile time) as shown in Listing 9-33.

Listing 9-33. beg5.c

#include <stdio.h>
int array[] = {1,2,3,4,5};

void array sum(void) {
int i;
int sum = 0;
for(i = 0; i < sizeof(array) / sizeof(int); i++)
sum = sum + array[i];
printf("The sum is: %d\n", sum);

}

int main(int argc, char** argv) {
array_sum();
return 0;

We immediately face a problem: sizeof returns a number of type size_t, not int. So, we have to
change the type of i and are doing it for a good reason (see section 9.1.9). Listing 9-34 shows the result.

Listing 9-34. begb.c

#include <stdio.h>
int array[] = {1,2,3,4,5};

void array sum(void) {
size t i;
int sum = 0;
for(i = 0; i < sizeof(array) / sizeof(int); i++)
sum = sum + array[i];
printf("The sum is: %d\n", sum);

164

CHAPTER 9 * TYPE SYSTEM

int main(int argc, char** argv) {
array_sum();
return 0;

Right now, array_sumworks only on statically defined arrays, because they are the only ones whose size
can be calculated by sizeof. Next we want to add enough parameters to array_sum so it would be able to
sum any array. You cannot add only a pointer to an array, because the array size is unknown by default, so
you give it two parameters: the array itself and the amount of elements in the array, as shown in Listing 9-35.

Listing 9-35. beg7.c

#include <stdio.h>
int array[] = {1,2,3,4,5};

void array sum(int* array, size_t count) {
size t i,
int sum = 0;
for(i = 0; i < count; i++)
sum = sum + array[i];
printf("The sum is: %d\n", sum);

int main(int argc, char** argv) {
array sum(array, sizeof(array) / sizeof(int));
return O;

This code is much better but it still breaks the rule of not mixing input/output and logic. You cannot use
array_sum anywhere in graphical programs, you also can do nothing with its result. We are going to get rid of
the output in the summation function and make it return its result. Check Listing 9-36.

Listing 9-36. beg8.c

#include <stdio.h>

int g array[] = {1,2,3,4,5};

int array sum(int* array, size t count) {
size t i;
int sum = 0;
for(i = 0; i < count; i++)
sum = sum + array[i];
return sum;

}
int main(int argc, char** argv) {
printf(
"The sum is: %d\n",
array_sum(g_array, sizeof(g_array) / sizeof(int))
5
return 0;
}

165

CHAPTER 9 ' TYPE SYSTEM

For convenience, we renamed the global array variable g_array, but it is not necessary.

Finally, we have to think about adding const qualifiers. The most important place is function arguments
of pointer types. We really want to declare that array_sum will never change the array that its argument is
pointing at. We can also like the idea of protecting the global array itself from being changed by adding a
const qualifier.

Remember that if we make g_array itself constant but will not mark array in the argument list as such,
we would not be able to pass g_array to array_sum, because there are no guarantees that array_sumwill not
change data that its argument is pointing at. Listing 9-37 shows the final result.

Listing 9-37. beg9.c

#include <stdio.h>
const int g array[] = {1,2,3,4,5};

int array_sum(const int* array, size_t count) {
size t i;
int sum = 0;
for(i = 0; i < count; i++)
sum = sum + array[i];
return sum;

int main(int argc, char** argv) {
printf(
"The sum is: %d\n",
array _sum(g_array, sizeof(g array) / sizeof(int))

);

return 0;

When you write a solution for an assignment in this book, remember all the points stated previously
and check whether your program conforms to them, and if not, how it can be improved.
Can this program be improved further? Of course, and we are going to give you some hints about how.

¢ Can the pointer array be NULL? If so, how do we signalize it without dereferencing a
NULL pointer, which will probably result in crash?

e Can sumoverflow?

9.1.16 Assignment: Scalar Product

A scalar product of two vectors (a, a, ..., a) and (b, b, ..., b,) is the sum

n
Zal.bi =ab,+a,b,+---+a,b,
i=1

For example, the scalar product of vectors (1, 2, 3) and (4, 5, 6) is

1-4+2:5+3:6=4+10+18=32

166

CHAPTER 9 * TYPE SYSTEM

The solution should consist of
e Two global arrays of int of the same size.
e Afunction to compute the scalar product of two given arrays.

e Amain function which calls the product computations and outputs its results.

9.1.17 Assignment: Prime Number Checker

You have to write a function to test the number for primarity. The interesting thing is that the number will be
of the type unsigned long and that it will be read from stdin.

® You have to write a function int is_prime(unsigned long n), which checks
whether n is a prime number or not. If it is the case, the function will return 1;
otherwise 0.

e Themain function will read an unsigned long number and call is_prime function on
it. Then, depending on its result, it will output either yes or no.

Read man scanf and use scanf function with the format specifier %1u.
Remember, is_prime accepts unsigned long, which is not the same thing as unsigned int!

9.2 Tagged Types

There are three “tagged” kinds of types in C: structures, unions, and enumerations. We call them that
because their names consist of a keyword struct, union, or enum followed by a mnemonic tag, like struct
pair orunion pixel.

9.2.1 Structures

Abstraction is absolutely key to all programming. It replaces the lower-level, more verbose concepts with
those closer to our thinking: higher-level, less verbose. When you are thinking about visiting your favorite
pizzeria and plan an optimal route, you do not think about “moving your right foot X centimeters forward,”
but rather about “crossing the road” or “turning to the right” While for program logic the abstraction
mechanism is implemented using functions, the data abstraction is implemented using complex data types.

A structure is a data type which packs several fields. Each field is a variable of its own type. Mathematics
would probably be happy calling structures “tuples with named fields”

To create a variable of a structural type we can refer to the example shown in Listing 9-38. There we
define a variable d which has two fields: a and b of types int and char, respectively. Then d.aand d.b
become valid expressions that you can use just as you are using variable names.

Listing 9-38. struct_anon.c

struct { int a; char b; } d;
d.a = 0;
d.b = 'k';

This way, however, you only create a one-time structure. In fact, you are describing a type of d but you
are not creating a new named structural type. The latter can be done using a syntax shown in Listing 9-39.

167

CHAPTER 9 ' TYPE SYSTEM

Listing 9-39. struct_named.c

struct pair {
int a;
int b;

};

struct pair d;
d.a = 0;

Be very aware that the type name is not pair but struct pair, and you cannot omit the struct keyword
without confusing the compiler. The C language has a concept of namespaces quite different from the
namespaces in other languages (including C++). There is a global type namespace, and then there is a tag-
namespace, shared between struct, union, and enum datatypes. The name following the struct keyword is a
tag. You can define a structural type whose name is the same as other type, and the compiler will distinguish
them based on the struct keyword presence.

An example shown in Listing 9-40 demonstrates two variables of types struct type and type, which
are perfectly accepted by the compiler.

Listing 9-40. struct_namespace.c

typedef unsigned int type;
struct type {
char c;

};

int main(int argc, char** argv) {
struct type st;
type t;
return 0;

It does not mean, though, that you really should make types with similar names.

However, as struct type is a perfectly fine type name, it can be aliased as type using the
typedef keyword, as shown in Listing 9-41. Then the type and struct type names will be completely
interchangeable.

Listing 9-41. typedef struct_simple.c
typedef struct type type;

Please, do notdo it It is nota good practice to alias structural types using typedef, because it hides
information about the type nature.

Structures can be initialized similarly to arrays (see Listing 9-42).

168

CHAPTER 9 * TYPE SYSTEM

Listing 9-42. struct_init.c

struct S {char const* name; int value; };
struct S new_s = { "myname", 4 };
You can also assign 0 to all fields of a structure, as shown in Listing 9-43.

Listing 9-43. struct_zero.c

struct pair { int a; int b; };

struct pair p = { 0 };

In C99, there is a better syntax for structure initialization, which allows you to name the fields to
initialize. The unmentioned fields will be initialized to zeros. Listing 9-44 shows an example.

Listing 9-44. struct_c99_init.c

struct pair {
char a;
char b;

};
struct pair st = { .a="a',.b = 'b" };

The fields of the structures are guaranteed to not overlap; however, unlike arrays, structures are not
continuous in a sense that there can be free space between their fields. Thus, sizeof of a structural type can
be greater than the sum of element sizes because of these gaps. We will talk about it in Chapter 12.

9.2.2 Unions

Unions are very much like structures, but their fields are always overlapping. In other words, all union fields
start at the same address. The unions share their namespace with structures and enumerations.
Listing 9-45 shows an example.

Listing 9-45. union_example.c

union dword {
int integer;
short shorts[2];
};

dword test;
test.integer = OxAABBCCDD;

We have just defined a union which stores a number of size 4 bytes (on x86 or x64 architectures). At the
same time it stores an array of two numbers, each of which is 2 bytes wide. These two fields (a 4-byte number

and a pair of 2-byte numbers) overlap. By changing the .integer field we are also modifying . shorts array. If
we assign . integer = OxAABBCCDD and then try to output shorts[0] and shorts[1], we will see ccdd aabb.

169

http://dx.doi.org/10.1007/978-1-4842-2403-8_12

CHAPTER 9 ' TYPE SYSTEM

Question 162 Why do these shorts seem reversed? Will it always be the case, or is it architecture
dependent?

By mixing structures and unions we can achieve interesting results. An example shown in Listing 13-17
demonstrates, how one can address parts of a 3-byte structure using indices.’

Listing 9-46. pixel.c

union pixel {
struct {
char a,b,c;
};

char at[3];
};

Remember that if you assigned a union field to a value, the standard does not guarantee you anything
about the values of other fields. An exception is made for the structures that have the same initial sequence
of fields.

Listing 9-47 shows an example.

Listing 9-47. union_guarantee.c

struct sa {
int x;
char y;
char z;

};

struct sb {
int x;
char y;
int notz;

};

union test {
struct sa as_sa;
struct sb as_sb;

};

9.2.3 Anonymous Structures and Unions

Starting from C11, the unions and structures can be anonymous when inside other structures or unions.
It allows for a less verbose syntax when accessing inner fields.

In the example shown in Listing 9-48, to access the x field of vec, you need to write vec.named.x. You
cannot omit named.

Note that this might not work out of the box for wider types due to possible gaps between struct fields.

170

http://dx.doi.org/10.1007/978-1-4842-2403-8_13#Par189

Listing 9-48. anon_no.c

union vec3d {
struct {

double x;
double y;
double z;

} named ;
double raw[3];

};

union vec3d vec;

CHAPTER 9 * TYPE SYSTEM

Now, in the next example, shown in Listing 9-49, we got rid of the name of the first field (named). This is
an anonymous structure, and now we can access its fields as if they were the fields of vec itself: vec. x.

Listing 9-49. anon_struct.c

union vec3d {

struct {
double x;
double y;
double z;
};

double raw[3];

};

union vec3d vec;

9.24

Enumerations

Enumerations are a simple data type based on int type. It fixes certain values and gives them names, similar
to how DEFINE works.
For example, the traffic light can be in one of the following states (based on which lights are turned on):

This can be encoded in C as shown in Listing 9-50.

Red.

Red and yellow.
Yellow.

Green.

No lights.

Listing 9-50. enum_example.c

enum light {

RED,

RED_AND_YELLOW,
YELLOW,
GREEN,

171

CHAPTER 9 ' TYPE SYSTEM

NOTHING
};

enum light 1 = nothing;

When is it useful? It is often used to encode a state of an entity, for example, as a part of a finite
automaton; it can serve as a bag of error codes or code mnemonics.
The constant value 0 was named RED, RED_AND_YELLOW stands for 1, etc.

9.3 Data Types in Programming Languages

We have given an overview of data types in C; now let’s take a step back from C and look at the bigger picture
and the types of systems in programming languages.

In many areas of computer science and programming the evolution went from untyped universe to
typing. For example, the following entities are untyped:

1. Lambda terms in untyped lambda calculus;
Sets in many set theories, for example, ZF;

S expressions in LISP language; and

El A

Bit strings.

We are mostly interested in bit strings right now. For the computer, everything is a bit string of some
fixed size. Those can be interpreted as numbers (integer or real), sequences of character codes, or something
else. We can say that the assembly is an untyped language.

However, when we start working in an untyped environment we are trying to divide objects into several
categories. We are working with objects from one category in a similar way. So, we establish a convention:
these bit strings are integer numbers, those are floating point numbers, etc.

Is this it, the typing? Not quite yet. We are still not limited in our capabilities and can add a floating point
number to a string pointer, because the programming language does not enforce any type control. This type
checking can be performed in compile time (static typing) or in runtime (dynamic typing).

So, not only we are dividing all kinds of possible objects into categories, we are also declaring which
operations can be performed on each type. The data of different types is also often encoded in a different way.

9.3.1 Kinds of Typing

Besides static and dynamic typing, there are also other, orthogonal classifications.

Strong typing means that all operations require exactly the argument they need. No implicit
conversions from other types into the needed ones are allowed.

Weak typing means that there are implicit conversions between types which make possible the
operations on data which is not of exactly the required type (but a conversion to a required type exists).

This division is not strictly binary; in the real world the languages tend to be closer to one of these two
poles. We have quite extreme cases, such as Ada for strong typing and JavaScript for the weak one.

Sometimes we also divide languages based on verbosity.

With explicit typing we always annotate data with types.

With implicit typing we allow the compiler to infer the type whenever it is possible.

Now we are going to give real-world examples of all combinations of static/dynamic and strong/weak typing.

172

http://dx.doi.org/978-1-4842-2403-8_8#Par55
http://dx.doi.org/978-1-4842-2403-8_8#Par56

CHAPTER 9 * TYPE SYSTEM

9.3.1.1 Static Strong Typing

Types are checked in compile time and the compiler is pedantic about them.
In OCaml language there are two different addition operators: + for integer numbers and +. for reals. So,
this code will raise an error at compile time:

4 +. 1.0

We used the data of type int when the compiler expected a float and, unlike in C, where a conversion
would have occurred, has thrown an error. This is the essence of very strong typing.

9.3.1.2 Static Weak Typing

The C language has exactly this kind of typing. All types are known in compile time, but the implicit
conversions occur quite often.

The almost identical line double x = 4 + 3.0; causes no compiler errors, because 4 gets automatically
promoted to double and then added to 3.0. The weakness expresses itself in the fact that programmer does
not specify conversion operations explicitly.

9.3.1.3 Strong Dynamic Typing

This is the kind of typing used in Python. Python does not allow implicit conversions between types as much
as JavaScript does. However, the type errors will not be reported until you launch the program and actually
try to execute the erroneous statement.

Python has an interpreter where you can type expressions and statements and immediately execute
them. If you try to evaluate an expression "3" + 2 and see its result in an interactive Python interpreter,
you will get an error because the first object is a string, and the second is a number. Even though this string
contains a number (so a conversion could have been written), the addition is not allowed. Listing 9-51 shows
the dump.

Listing 9-51. Python Typing Error

>> "3" + 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'int' objects

Now let’s try to evaluate an expression 1 if True else "3" + 2.This expression is evaluated to 1 if
True is true (which obviously holds); otherwise its value is a result of the same invalid operation "3" + 2.
However, as we are never reaching into the else branch, there will be no error raised even in runtime.
Listing 9-52 shows the terminal dump. When applied to two strings, the plus acts as a concatenation
operator.

Listing 9-52. Python Typing: No Error Because the Statement Is Not Executed

>>> 1 if True else "3" + 2
1

>>> “1" + "2“

l12I

173

CHAPTER 9 ' TYPE SYSTEM

9.3.1.4 Weak Dynamic Typing

Probably the most used language with such typing is JavaScript.

In the example we provided for Python we tried to add a number to a string. Despite the fact that the
string contained a valid decimal number, an error was reported, because a string is a string, whatever it
might hold. Its type won't be automatically changed.

However, JavaScript is much less strict about what you are allowed to do. We are going to use the
interactive JavaScript console (which you can access in virtually any modern web browser) and type some
expressions. Listing 9-53 shows the result.

Listing 9-53. JavaScript Implicit Conversions

>»> 3 == "3'
true

>>> 3 == "4’
false

>>> "7.0" == 7

true

By studying this example only we can deduce that when a number and a string are compared, both
sides are apparently converted to a number and then compared. It is not clear whether the numbers are
integers or reals, but the amount of implicit operations in action here is quite astonishing.

9.3.2 Polymorphism

Now that we have a general understanding of typing, let’s go after one of the most important concepts
related to the type systems, namely, polymorphism.

Polymorphism (from Greek: polys, “many, much” and morph, “form, shape”) is the possibility of
calling different actions for different types in a uniform way. You can also think about it in another way: the
data entities can take different types.

There are four different kinds of polymorphism [8], which we can also divide into two categories:

1. Universal polymorphism, when a function accepts an argument of an infinite
number of types (including maybe even those who are not defined yet) and
behaves in a similar way for each of them.

e Parametric polymorphism, where a function accepts an additional argument,
defining the type of another argument.

In languages such as Java or C#, the generic functions are an example of
parametric compile-time polymorphism.

¢ Inclusion, where some types are subtypes of other types. So, when given an
argument of a child type, the function will behave in the same way as when the
parent type is provided.

2. Ad hoc, where functions accept a parameter from a fixed set of types and these
functions may operate differently on each type.

¢ Overloading, several functions exist with the same name and one of them is called
based on an argument type.

e Coercion, where a conversion exists from type X to type Y and a function accepting
an argument of type Yis called with an argument of type X.

174

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par9

CHAPTER 9 * TYPE SYSTEM

The popular object-oriented programming paradigm has popularized the notion of polymorphism, but
in a very particular way. The object-oriented programming usually refers to only one kind of polymorphism,
namely, subtyping, which is essentially the same as inclusion, because the objects of the child type form a
subset of objects of the parent type.

Sometimes it is hard to say which type of polymorphism is used in a certain place. Consider the
following four lines:

w W w w
oo + +
+ + &~
~ O

.0
The “plus” operation here is obviously polymorphic, because it is used in the same way with all kinds of
int and double operands. But how is it really implemented? We can think of different options, for example,
e This operator has four overloads for all combinations.

e This operator has two overloads for int + int and double + double cases.
Additionally, a coercion from int to double is defined.

e This operator can only add up two reals, and all ints are coerced to double.

9.4 Polymorphismin C

The C language allows for different types of polymorphisms, and some can be emulated through little tricks.

9.4.1 Parametric Polymorphism

Can we make a function which will behave differently for different types of arguments based on an explicitly
given type? We can do it to some extent, even in C89. However, we will need some rather heavy macro
machinery in order to achieve a smooth result.

First, we have to know what this fancy # symbol does in a macro context. When used inside a macro, the
symbol will quote the symbol contents. Listing 9-54 shows an example.
Listing 9-54. macro_str.c

#define mystr hello
#define res #mystr

puts(res); /* will be replaced with “puts("hello")"

The ## operator is even more interesting. It allows us to form symbol names dynamically. Listing 9-55
shows an example.

Listing 9-55. macro_concat.c

#define x1 "Hello"
#define x2 " World"

#tdefine str(i) xi#i

puts(str(1)); /* str(1) -> x1 -> "Hello" */
puts(str(2)); /* str(2) -> x2 -> " World" */

175

CHAPTER 9 ' TYPE SYSTEM

Some higher-level language features can be boiled down to compiler logic performing a program
analysis and making a call to one or another function, using one or another data structure, etc. In C we can
imitate it by relying on a preprocessor.

Listing 9-56 shows an example.

Listing 9-56. c_parametric_polymorphism.c

#include <stdio.h>
#include <stdbool.h>

#define pair(T) pair ##T
#define DEFINE_PAIR(T) struct pair(T) {\

T fst;\
T snd;\

B\

bool pair ##T## any(struct pair(T) pair, bool (*predicate)(T)) {\
return predicate(pair.fst) || predicate(pair.snd); \

}

#tdefine any(T) pair ##T## any
DEFINE_PAIR(int)

bool is positive(int x) { return x > 0; }
int main(int argc, char** argv) {
struct pair(int) obj;
obj.fst = 1;
obj.snd = -1;
printf("%d\n", any(int)(obj, is_positive));
return 0;

First, we included stdbool.h file to get access to the bool type, as we said in section 9.1.3.
e pair(T) when called like that: pair(int) will be replaced by the string pair_int.

e DEFINE_PAIR is a macro which, when called like that: DEFINE_PAIR(int), will be
replaced by the code shown in Listing 9-57.

Notice the backslashes at the end of each line: they are used to escape the newline
character, thus making this macro span across multiple lines. The last line of the
macro is not ended by the backslash.

This code defines a new structural type called struct pair_int, which essentially
contains two integers as fields. If we instantiated this macro with a parameter other
than T, we would have had a pair of elements of a different type.

Then a function is defined, which will have a specific name for each macro
instantiation, since the parameter name T is encoded into its name. In our case
itispair_int_any, whose purpose is to check whether any of two elements in
the pair satisfies the condition. It accepts the pair itself as the first argument and
the condition as the second. The condition is essentially a pointer to a function
accepting T and returning bool, a predicate, as its name suggests.

176

CHAPTER 9 * TYPE SYSTEM

pair_int_anylaunches the condition function on the first element and then on the
second element.

When used, DEFINE_PAIR defines the structure that holds two elements of a given
type, and functions to work with it. We can have only one copy of these functions
and structure definition for each type, but we need them, so we want to instantiate
DEFINE_PAIR once for every type we want to work with.

Listing 9-57. macro_define pair.c

struct pair_int {

int fst;
int snd;

b

bool pair int any(struct pair int pair, bool (*predicate)(int)) {
return predicate(pair.fst) || predicate(pair.snd);

}

e Then amacro #define any(T) pair ##T## anyis defined. Notice that its sole
purpose is apparently just to form a valid function name depending on type. It allows
usto call pair ##T## any in a rather elegant way: any(int), as if it was a function
returning a pointer to a function.

So, syntactically we got very close to a concept of parametric polymorphism: we are providing an
additional argument (int) which serves to determine the type of other argument (struct pair_int). Of
course, it is not as good as the type arguments in functional languages or even generic type parameters in C#
or Scala, but it is something.

9.4.2 Inclusion

The inclusion is fairly easy to achieve in C for pointer types. The idea is that every struct’s address is the same
as the address of its first member.
Take a look at the example shown in Listing 9-58.

Listing 9-58. ¢_inclusion.c

#include <stdio.h>

struct parent {
const char* field parent;

};

struct child {
struct parent base;
const char* field child;

};

void parent_print(struct parent* this) {
printf("%s\n", this->field parent);
}

177

CHAPTER 9 ' TYPE SYSTEM

int main(int argc, char** argv) {
struct child c;
c.base.field parent = "parent";
c.field_child = "child";
parent_print((struct parent*) &c);

return 0;

The function parent_print accepts an argument of a type parent*. As the definition of child suggests,
its first field has a type parent. So, every time we have a valid pointer child*, there exists a pointer to an
instance of parent which is equal to the former. Thus it is safe to pass a pointer to a child when a pointer to
the parent is expected.

The type system, however, is not aware of this; thus you have to convert the pointer child* to parent*,
as seen in the call parent_print((struct parent*) &c);.We could replace the type struct parent*
with void* in this case, because any pointer type can be converted to void* (see section 9.1.5).

9.4.3 Overloading

Automated overloading was not possible in C until C11. Until recently, people included the argument type names
in the function names to provide different “overloadings” given some base name. Now the newer standard has
included a special macro which expands based on the argument type: _Generic. It has a wide range of usages.

The _Generic macro accepts an expression E and then many association clauses, separated by a comma.
Each clause is of the form type name: string. When instantiated, the type of E is checked against all types in
the associations list, and the corresponding string to the right of colon will be the instantiation result.

In the example shown in Listing 9-59, we are going to define a macro print_fmt, which can choose an
appropriate printf format specifier based on argument type, and a macro print, which forms a valid call to
printf and then outputs newline.

print_fmt matches the type of the expression x with one of two types: int and double. In case the
type of x is not in this list, the default case is executed, providing a fairly generic %x specifier. However,
in absence of the default case, the program would not compile should you provide print_fmt with an
expression of the type, say, long double. So in this case it would be probably wise to just omit default case,
forcing the compilation to abort when we don’t really know what to do.

Listing 9-59. c_overload_11.c

#include <stdio.h>
#tdefine print fmt(x) (Generic((x), \
int: "%d",\
double: "%f",\
default: "%x"))
#define print(x) printf(print_fmt(x), x); puts("");

int main(void) {

int x = 101;
double y = 42.42;
print(x);
print(y);

return 0;

178

CHAPTER 9 * TYPE SYSTEM

We can use _Generic to write a macro that will wrap a function call and select one of differently named
functions based on an argument type.

9.4.4 Coercions

C has several coercions embedded into the language itself. We are speaking essentially about pointer
conversions to void* and back and integer conversions, described in section 9.1.4. To our knowledge, there
is no way to add user-defined coercions or anything that looks at least remotely similar, akin to Scala’s
implicit functions or C++ implicit conversions.

Asyou see, in some form, C allows for all four types of polymorphism.

9.5 Summary

In this chapter we have made an extensive study of the C type system: arrays, pointers, constant types. We
learned to make simple function pointers, seen the caveats of sizeof, revised strings, and started to get used
to better code practices. Then we learned about structures, unions, and enumerations. At the end we talked
briefly about type systems in mainstream programming languages and polymorphism and provided some
advanced code samples to demonstrate how to achieve similar results using plain C. In the next chapter we
are going to take a closer look at the ways of organizing your code into a project and the language properties
that are important in this context.

Question 163
Question 164

Question 165
Question 166
Question 167
Question 168
Question 169
Question 170
Question 171
Question 172
Question 173
Question 174
Question 175

Question 176

What is the purpose of & and * operators?

How do we read an integer from an address 0x12345?

What type does the literal 42 have?

How do we create a literal of types unsigned long, long, and long long?
Why do we need size t type?

How do we convert values from one type to another?

Is there a Boolean type in C89?

What is a pointer type?

What is NULL?

What is the purpose of the void* type?

What is an array?

Can any consecutive memory cells be interpreted as an array?

What happens when trying to access an element outside the array’s bounds?
What is the connection between arrays and pointers?

179

CHAPTER 9 ' TYPE SYSTEM

Question 177
Question 178
Question 179
Question 180
Question 181
Question 182
Question 183
Question 184
Question 185

Question 186
Question 187

Is it possible to declare a pointer to a function?

How do we create an alias for a certain type?

How are the arguments passed to the main function?

What is the purpose of the sizeof operator?

Is sizeof evaluated during the program execution?

Why is the const keyword important?

What are structure types and why do we need them?

What are union types? How do they differ from the structure types?

What are enumeration types? How do they differ from the structure types?

What kinds of typing exist?

What kinds of polymorphism exist and what is the difference between them?

180

CHAPTER 10

Code Structure

In this chapter we are going to study how to better split your code into multiple files and which relevant
language features exist. Having a single file with a mess of functions and type definitions is far from
convenient for large projects. Most programs are split into multiple modules. We are going to study which
benefits it brings and how each module looks before linkage.

10.1 Declarations and Definitions

The C compilers historically were written as single-pass programs. It means that they should have traversed
the file once and translated it right away. However, it does mean a lot to us. When a function is called, and it
is not yet defined, the compiler will reject such a program because it does not know what this name stands
for. While we are aware of our intention of calling a function in this place, for it, this is just an undefined
identifier, and due to the single-pass translation, the compiler can’t look ahead and try to find the definition.

In simple cases of linear dependency we can just define all functions before they are used. However,
there are cases of circular dependencies, when this schema is not working, namely, the mutual recursive
definitions, be they structures or functions.

In the case of functions, there are two functions calling each other. Apparently, in whatever order we define
them, we cannot define both of them before the call to it is seen by the compiler. Listing 10-1 shows an example.

Listing 10-1. fun_mutual_recursive_bad.c

void f(void) {
g(); /* What is “g°, asks mr. Compiler? */

}
void g(void) {
} 05

In case of structures, we are talking about two structural types. Each of them has a field of pointer type,
pointing to an instance of the other structure. Listing 10-2 shows an example.

Listing 10-2. struct_mutual_recursive bad.c

struct a {
struct b* foo;
};

struct b {
struct a* bar;

};

© Igor Zhirkov 2017 181
1. Zhirkov, Low-Level Programming, DOI 10.1007/978-1-4842-2403-8_10

CHAPTER 10 = CODE STRUCTURE

The solution is in using split declarations and definitions. When a declaration precedes the definition, it
is called forward declaration.

10.1.1 Function Declarations

For functions, the declaration looks like bodyless definition, ended by a semicolon. Listing 10-3 shows an
example.

Listing 10-3. fun_decl def.c

/* This is declaration */
void f(int x);

/* This is definition */

void f(int x) {
puts("Hello!");

Such declarations are sometimes called function prototypes. Every time you are using a function
whose body is not yet defined OR is defined in another file, you should write its prototype first.
In function prototype the argument names can be omitted, as shown in Listing 10-4.

Listing 10-4. fun_proto_omit_arguments.c

int square(int x);
/* same as */
int square(int);

To sum up, two scenarios are considered correct for functions.

1. Function is defined first, then called (see Listing 10-5).

Listing 10-5. fun_sc_1.c

int square(int x) { return x * x; }

int z = square(5);
2. Prototype first, then call, then the function is defined (see Listing 10-6).

Listing 10-6. fun_sc_2.c

int square(int x);

int z = square(5);
int square(int x) { return x * x; }

182

CHAPTER 10 ' CODE STRUCTURE

Listing 10-7 shows a typical error situation, where the function body is declared after the call, but no
declaration precedes the call.

Listing 10-7. fun_sc_3.c

int z = square(5);

int square(int x) { return x * x; }

10.1.2 Structure Declarations

It is quite common to define a recursive data structure such as linked list. Each element stores a value and a link
to the next element. The last element stores NULL instead of a valid pointer to mark the end of list. Listing 10-8
shows the linked list definition.

Listing 10-8. 1ist_definition.c

struct list {
int value;
struct list* next;

};

However, in case of two mutually recursive structures, you have to add a forward declaration for at least
one of them. Listing 10-9 shows an example.

Listing 10-9. mutually recursive structures.c

struct b; /* forward declaration */
struct a {

int value;

struct b* next;

};

/* no need to forward declare struct a because it is already defined */
struct b {
struct a* other;

};

If there is no definition of a tagged type but only a declaration, it is called an incomplete type. In this
case we can work freely with pointers to it, but we can never create a variable of such type, dereference it, or
work with arrays of such type. The functions must not return an instance of such type, but, similarly, they
can return a pointer. Listing 10-10 shows an example.

Listing 10-10. incomplete_type_example.c
struct 1list_t;

struct 1list t* f() { ... } /* ok */
struct 1list_t g(); /* ok */
struct 1list t g() { ... } /* bad */

These types have a very specific use case which we will elaborate in Chapter 13.

183

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec22
http://dx.doi.org/10.1007/978-1-4842-2403-8_13

CHAPTER 10 = CODE STRUCTURE

10.2 Accessing Code from Other Files

10.2.1 Functions from Other Files

It is, of course, possible to call functions or reference global variables from other files. To perform a call, you
have to add the called function’s prototype to the current file. For example, you have two files: square.c,
which contains a function square, and main_square.c, which contains the main function. Listing 10-11 and
Listing 10-12 show these files.

Listing 10-11. square.c

int square(int x) { return x * x; }

Listing 10-12. main_square.c

#include <stdio.h>
int square(int x);

int main(void) {
printf("%d\n", square(5));
return 0;

Each code file is a separate module and thus is compiled independently, just as in assembly. A . c file
is translated into an object file. As for our educational purposes we stick with ELF (Executable and Linkable
Format) files; let’s crack the resulting object files open and see what'’s inside. Refer to Listing 10-13 to see the
symbol table inside the main_square.o object file, and to Listing 10-14 for the file square.o. Refer to section
5.3.2 for the symbol table format explanation.

Listing 10-13. main_square

> gcc -c -std=c89 -pedantic -Wall main_square.c
> objdump -t main_square.o

main.o: file format elf64-x86-64

SYMBOL TABLE:

0000000000000000 1 df *ABS* 0000000000000000 main.c
0000000000000000 1 d .text 0000000000000000 .text
0000000000000000 1 d .data 0000000000000000 .data
0000000000000000 1 d .bss 0000000000000000 .bss
0000000000000000 1 d .note.GNU-stack

0000000000000000 .note.GNU-stack

0000000000000000 1 d .eh_frame

0000000000000000 .eh_frame

0000000000000000 1 d .comment

0000000000000000 .comment

0000000000000000 g F .text 000000000000001c main
0000000000000000 *UND* 0000000000000000 square

184

CHAPTER 10 ' CODE STRUCTURE

Listing 10-14. square

> gcc -c -std=c89 -pedantic -Wall square.c
> objdump -t square.o
square.o: file format elf64-x86-64

SYMBOL TABLE:

0000000000000000 1 df *ABS* 0000000000000000 square.c
0000000000000000 1 d .text 0000000000000000 .text
0000000000000000 1 d .data 0000000000000000 .data
0000000000000000 1 d .bss 0000000000000000 .bss
0000000000000000 1 d .note.GNU-stack

0000000000000000 .note.GNU-stack

0000000000000000 1 d .eh_frame

0000000000000000 .eh_frame

0000000000000000 1 d .comment

0000000000000000 .comment

0000000000000000 g F .text 0000000000000010 square

Asyou see, all functions (namely, square and main) have become global symbols, as the letter g in the
second column suggests, despite not being marked in some special way. It means that all functions are like
labels marked with global keyword in assembly—in other words, visible to other modules.

The function prototype for square, located in main_square.c, is attributed to an undefined section.

0000000000000000 *UND* 0000000000000000 square

GCC is providing you an access to the whole compiler toolchain, which means that it is not only
translating files but calling linker with appropriate arguments. It also links files against standard C library.

After linking, the symbol table becomes more populated due to standard library and utility symbols,
such as .gnu.version.

Question 188 Compile the file main by using gcc -o main main_square.o square.o line. Study its
object table using objdump -t main.What can you tell about functions main and square?

10.2.2 Data in Other Files

If there is a global variable defined in other . c file that we want to address, it should be declared, preferably,
but not necessarily, with extern keyword. You should not initialize extern variables; otherwise, compiler
issues a warning.

Listing 10-15 and Listing 10-16 show the first example of a global variable usage from another file.

Listing 10-15. square_ext.c

extern int z;
int square(int x) { return x * x + z; }

185

CHAPTER 10 = CODE STRUCTURE

Listing 10-16. main_ext.c

int z = 0;
int square(int x);

int main(void) {
printf("%d\n", square(5));
return 0;

The C standard marks the keyword extern as optional. We recommend that you never omit extern
keyword so that you might easily distinguish in which file exactly you want to create a variable.

However, in case you do omit extern keyword, how does the compiler distinguish between variable
definition and declaration, when no initializing is provided? It is especially interesting given that the files are
compiled separately.

In order to study this question, we are going to take a look at the symbol tables for object files using the
nm utility.

We write down files main.c and other. c, and then we compile them into .o files by using - c flag and
then link them. Listing 10-17 shows the command sequence.

Listing 10-17. glob_build

> gcc -c -std=c89 -pedantic -Wall -o main.o main.c
> gcc -c -std=c89 -pedantic -Wall -o other.o other.c
> gcc -o main main.o other.o

There is one global variable called x. It is not assigned with a value in main.c, but it is initialized in
other.c.

Using nm we can quickly view the symbol table, as shown in Listing 10-18. We have shortened the table
for the main executable file on purpose to avoid cluttering the listing with service symbols.

Listing 10-18. glob_nm

> nm main.o
0000000000000000 T main

U printf
0000000000000004 C x

> nm other.o
0000000000000000 D x

> nm main
0000000000400526 T main

U printf@@GLIBC 2.2.5
0000000000601038 D x

As we see, inmain. o the symbol x, corresponding to the variable int x, is marked with the flag C (global
common), while in the other object file main.o it is marked D (global data). There can be as many similar
global common symbols as you like, and in the resulting executable file they will all be squashed into one.

However, you cannot have multiple declarations of the same symbol in the same source file; you are
limited to a maximum of one declaration and one definition.

186

CHAPTER 10 ' CODE STRUCTURE

10.2.3 Header Files

So, we know how to split the code into multiple files now. Every file that uses an external definition should
have its declaration written before the actual usage. However, when the amount of files grows, maintaining
consistency becomes hard. A common practice is to use header files in order to ease maintenance.

Let’s say there are two files: main_printer.c and printer.c. Listings 10-19 and 10-20 show them.

Listing 10-19. main_printer.c

void print_one(void);

void print_two(void);

int main(void) {
print_one();

print_two();
return O;

}
Listing 10-20. printer.c
#include <stdio.h>

void print_one(void) {
puts("One");

void print two(void) {
puts("Two");
}

Here is the real-world scenario. In order to use a function from the file printer. c in some file other.c,
you have to write down prototypes of the functions defined in printer.c somewhere in the beginning
of other.c. To use them in the third file, you will have to write their prototypes in the third file too. So,
why do it by hand when we can create a separate file that will only contain functions and global variables
declarations, but not definitions, and then include it with the help of a preprocessor?

We are going to modify this example by introducing a new header file printer.h, containing all
declarations from printer.c. Listing 10-21 shows the header file.

Listing 10-21. printer.h

void print one(void);
void print two(void);

Now, every time you want to use functions defined in printer.c you just have to put the following line
in the beginning of current code file:

#include "printer.h"

The preprocessor will replace this line with the contents of printer.h. Listing 10-22 shows the new
main file.

187

CHAPTER 10 = CODE STRUCTURE

Listing 10-22. main_printer_new.c

#include "printer.h"

int main(void) {
print_one();
print_two();
return O;

Note The header files are not compiled themselves. The compiler only sees them as parts of . c files.

This mechanism, which looks similar to the modules or libraries importing from such languages as Java
or C#, is by its nature very different. So, telling that the line #include "some.h" means “importing a library
called some” is very wrong. Including a text file is not importing a library! Static libraries, as we know, are
essentially the same object files as the ones produced by compiling . c files. So, the picture for an exemplary
file f.c looks as follows:

e Compilation of f.c starts.

e The preprocessor encounters the #include directives and includes corresponding . h
files “as is.”

e Each .h file contains function prototypes, which will become entries in the symbol
table after the code translation.

e For each such import-like entry, the linker will search through all object files in its
input for a defined symbol (in section .data, .bss, or .text). In one place, it will find
such a symbol and link the import-like entry with it.

This symbol might be found in the C standard library.
But wait, are we giving to the linker the standard library as input? We are going to discuss it in the next
section.

10.3 Standard Library

We have already used the headers, corresponding to parts of the standard library, such as stdio.h. They
contain not the standard functions themselves but their prototypes. You don’t have to believe it, because you
can check it for yourself.

In order to do it, create a file p.c which contains only one line: #include <stdio.h>. Thenlaunch GCC
on it, providing -E flag to stop after preprocessing and output the results into stdout. Use grep utility to
search for printf occurrence, and you will find its prototype, as shown in Listing 10-23.

Listing 10-23. printf_check_header

> «cat p.c
#include <stdio.h>

> gcc -E -pedantic -ansi p.c | grep " printf"
extern int printf (const char * restrict format, ...);

188

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec16
http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec16
http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec16

CHAPTER 10 ' CODE STRUCTURE

We won'’t speak about the restrict keyword yet, so let’s pretend it is not here. The file stdio.h,
included in our test file p. ¢, obviously contains the function prototype of printf (pay attention to the
semicolon at the end of the line!), which has no body. Three dots in place of the last argument mean an
arbitrary arguments count. This feature will be discussed in Chapter 14. The same experiment can be

conducted for any function that you gain access to by including stdio.h.

GCC s a universal interface of sort: you can use it to compile single files separately without linkage

(-c flag), you can perform the whole compilation cycle including linkage on several files, but you can also
call the linker indirectly by providing GCC with .o files as input:

gcc -o executable file obji.0 obj2.0 ...

of the C library, or libraries. Additional libraries can be specified with help of the -1 flag.

In the most common scenario, C library consists of two parts:

e Static part (usually called crto - C RunTime, zero stands for “the very beginning”)

contains _start routine, which performs initialization of the standard utility
structures, required by this specific library implementation. Then it calls the main
function. In Intel 64, the command-line arguments are passed onto the stack. It means
that _start should copy argc and argv from the stack to rdi and rsi in order to
respect the function calling convention.

If you link a single file and check its symbol table before and after linkage, you will see
quite a lot of new symbols, which originate in crt0, for example, a familiar _start,
which is the real entry point.

Dynamic part, which contains the functions and global variables themselves. As these
are used by a vast majority of running applications, it is wise not to copy it but to share
between them for the sake of an overall smaller memory consumption and better
locality. We are going to prove its existence by using the 1dd utility on a compiled
sample file main_ldd.c, shown in Listing 10-24. It will help us to locate the standard C
library. Listing 10-25 shows the 1dd output.

Listing 10-24. main_ldd.c

#include <stdio.h>

int main(void)

{

printf("Hello World!\n");
return 0O;

Listing 10-25. 1dd locating libc

> gcc main.c -o main

> 1dd main
linux-vdso.so.1 (0x00007fff4e7fc000)
libc.so.6 => /1ib/x86 64-linux-gnu/libc.so.6 (0x00007f2b7f6bf000)

/1ib64/1d-1inux-x86-64.s0.2 (0x00007f2b7fa76000)

When performing linkage, GCC does not just call 1d blindly. It also provides it with the correct version

189

http://dx.doi.org/10.1007/978-1-4842-2403-8_14

CHAPTER 10 = CODE STRUCTURE

This file is linked against three dynamic libraries.

1. The 1d-1linux is the dynamic library loader itself, which is searching and loading
all dynamic libraries, required by the executable.

2. vdso, which stands for “virtual dynamic shared object,” is a small utility library
used by the C standard library to speed up the communication with the kernel in
some situations.

3. Finally, libc itself, contains the executable code for standard functions.

Then, as the standard library is just another ELF file, we will launch readelf to print its symbol table
and see the printf entry for ourselves. Listing 10-26 shows the result. The first entry is indeed the printf
we are using; the tag after @@ marks the symbol version and is used to provide different versions of the same
function. The old software, which uses older function versions, will continue using them, while the new
software may switch to a better written, more recent variant without breaking compatibility.

Listing 10-26. printf_lib_entry

> readelf -s /1ib/x86_64-linux-gnu/libc.so.6 | grep " printf"
596: 0000000000050d50 161 FUNC GLOBAL DEFAULT 12
printf@@GLIBC 2.2.5

1482: 0000000000050ca0 31 FUNC GLOBAL DEFAULT 12
printf_size info@@GLIBC 2.2.5

1890: 0000000000050480 2070 FUNC GLOBAL DEFAULT 12
printf_size@®GLIBC 2.2.5

Question 189 Try to find the same symbols using nm utility instead of readelf.

10.4 Preprocessor

Apart from defining global constants with #define, the preprocessor is also used as a workaround to solve a
multiple inclusion problem. First, we are going to briefly review the relevant preprocessor features.
The #define directive is used in the following typical forms:

o #define FLAGmeans thatthe preprocessor symbol FLAG is defined, but its value is
an empty string (or, you could say it has no value). This symbol is mostly useless in
substitutions, but we can check whether a definition exists at all and include some
code based on it.

e #define MY_CONST 42 is a familiar way to define global constants. Every time
MY_CONST occurs in the program text, it is substituted with 42.

e ftdefine MAX(a, b) ((a)>(b))?(a):(b) is a macrosubstitution with parameters.

Aline int x = MAX(4+3, 9) will be then replaced with: int x = ((4+3)>(9))?(4+3):(9).

190

CHAPTER 10 ' CODE STRUCTURE

Macro parameters in parentheses Note that all parameters in a macro body should be surrounded by
parentheses. It ensures that the complex expressions, given to the macro as parameters, are parsed correctly.
Imagine a simple macro SQ.

#define SQ(x) x*x
Aline int z = SQ(4+3) will be then replaced with
intz=4+3%4+3

which, due to multiplication having a higher priority than addition, will be parsed as 4 + (3*4) + 3, whichis
not quite an expression we intended to form.

If you want additional preprocessor symbols to be defined, you can also provide them when launching
GCC with the -D key. For example, instead of writing #define SYM VALUE, you can launch gcc -DSYM=VALUE,
orjustgcc -DSYMfor a simple #define SYM.

Finally, we need a macro conditional: #ifdef. This directive allows us to either include or exclude some
text fragment from the preprocessed file, based on whether a symbol is defined or not.

You can include the lines between #ifdef SYMBOL and #endif if the SYMBOL is defined, as shown in
Listing 10-27.

Listing 10-27. ifdef_ex.c

#ifdef SYMBOL
/*code*/
#endif

You can include the lines between #ifdef SYMBOL and #endif if the SYMBOL is defined, OR ELSE include
other code, as shown in Listing 10-28.

Listing 10-28. ifdef_else_ex.c

#ifdef SYMBOL
/*code*/

#else

/*other code*/

#endif

You can also state that some code will only be included if a certain symbol is not defined, as shown in
Listing 10-29.

Listing 10-29. ifndef_ex.c

#ifndef MYFLAG
/*code*/

#else

/*other code*/
#endif

191

CHAPTER 10 = CODE STRUCTURE

10.4.1 Include Guard

One file can contain a maximum of one declaration and one definition for any given symbol. While you
will not write duplicate declarations, you will most probably use header files, which might include other
header files, and so on. Knowing which declarations will be present in the current file is not easy: you have to
navigate through each header file, and each header file that they include, and so on.

For example, there are three files: a.h, b.h, and main. c, shown in Listing 10-30.

Listing 10-30. inc_guard motivation.c

/* a.h */
void a(void);

/* b.h */
#include "a.h"
void b(void);

/* main.c */
#include "a.h"
#include "b.h"

What will the preprocessed main. c file look like? We are going to launch gcc -E main.c. Listing 10-31
shows the result.

Listing 10-31. multiple inner_includes.c

"main.c"

"<built-in>"

"<command-1line>"
"/usr/include/stdc-predef.h" 1 3 4
"<command-line>" 2

"main.c"

1 "a.h" 1

void a(void);

2 "main.c" 2

H oH H H H R
PR R R R R

#1 "b.h" 1
#1 "a.h" 1
void a(void);
#2 "b.h" 2

void b(void);
2 "main.c" 2

Now main.c contains a duplicate function declaration void a(void), which results in a compilation
error. The first declaration comes from the a. h file directly; the second one comes from file b.h which
includes a.h on its own.

There are two common techniques to prevent that.

e Using a directive #pragma once in the header start. This is a non-standard way of
forbidding the multiple inclusion of a header file. Many compilers support it, but
because it is not a part of the C standard, its usage is discouraged.

e Using so-called Include guards.

192

CHAPTER 10 ' CODE STRUCTURE

Listing 10-32 shows an include guard for some file file.h.

Listing 10-32. file.h
#ifndef FILE H_
#define FILE H_
void a(void);

#endif

The text between directives #ifndef _FILE_H_and #endif will only be included if the symbol X is not
defined. As we see, the very first line in this text is: #define _FILE_H_.It means that the next time all this
text will be included as a result of #include directive execution; the same #ifndef FILE H_directive will
prevent the file contents from being included for the second time.

Usually, people name such preprocessor symbols based on the file name, one such convention was
shown and consists of

— Capitalizing file name.
— Replacing dots with underscores.
— Prepending and appending one or more underscores.

We crafted a typical include file for you to observe its structure. Listing 10-33 shows this example.

Listing 10-33. pair.h

#ifndef PAIR H_
#define _PAIR H_

#include <stdio.h>

struct pair {
int x;
int y;

};

void pair_ apply(struct pair* pair, void (*f)(struct pair));
void pair_tofile(struct pair* pair, FILE* file);

#endif

The include guard is the first thing we observe in this file. Then come other includes. Why do you need
to include files in header files? Sometimes, your functions or structures rely on external types, defined
elsewhere. In this example, the function pair_tofile accepts an argument of type FILE*, which is defined in
the stdio.h standard header file (or in one of the headers it includes on its own). The type definition comes
after that, and then the function prototypes.

193

CHAPTER 10 = CODE STRUCTURE

10.4.2 Why Is Preprocessor Evil?

Extensive preprocessor usage is considered bad for a number of reasons:
e It often makes code smaller, but also much less readable.
e Itintroduces unnecessary abstractions.
¢ Inmost cases it makes debugging harder.

e Macros often confuse IDEs (integrated development environments) and their
autocompletion engines, as well as different static analyzers. Do not be snobbish
about these because in larger projects they are of a great help.

The preprocessor knows nothing about language structure, so every preprocessor structure in isolation
can be an invalid language statement. For example, a macro #define OR else { canbecome a part of
a valid statement after all substitutions, but it is not a valid statement alone. When macros mix and the
statement limits are not well defined, understanding such code is hard.

Some tasks can be close to impossible to solve because of the preprocessor. It limits the amount of
intelligence that can be put into the programming environment or static analysis tools. Let’s explore several
pitfalls:

1. How clever should the static code analyzer be to understand what foo returns (see
Listing 10-34)?

Listing 10-34. ifdef pitfall sig.c

#ifdef SOMEFLAG
int foo() {
#else

void foo() {
#endif
VAR
}

2. You have to find all occurrences of the min macro, which is defined as
#define min(x,y) ((x) < (y) 2 (x) : (y)).

Asyou have seen in the previous example, to parse the program you have to first
perform preprocessing passes, otherwise the tool might not even understand

the functions boundaries. Once you perform preprocessing, all min macros are
substituted and thus become untraceable and indistinguishable from such lines as

int z = ((10) < (y) ? (5) : (3)).

3. Static analysis (and even your own program understanding) will suffer because
of macro usage. Syntactically, macro instantiations with parameters are
indistinguishable from function calls. However, while function arguments are
evaluated before a function call is performed, macro arguments are substituted
and then the resulting lines of code are executed.

For example, take the same macro #define min(x,y) ((x) < (y) ? (x) : (y)).
The instantiation with arguments a and b-- will look like: ((a) < (b--) ? (a) :
(b--)).Asyousee, ifa >= b, then the variable b will be decremented twice. If min
was a function, b- - would have been executed only once.

194

CHAPTER 10 ' CODE STRUCTURE

10.5 Example: Sum of a Dynamic Array
10.5.1 Sneak Peek into Dynamic Memory Allocation

In order to complete the next assignment, you have to learn to use the malloc and free functions. We will
discuss them in greater detail later, but for now, we will do a quick introduction.

The local variables as well as the global ones allow you to allocate a fixed amount of bytes. However,
when the allocated memory size depends on input, you can either allocate as much memory as you think
will suffice in all cases or use malloc function, which allocates as much memory as you ask it to.

void* malloc(size t sz) returns the start of an allocated memory buffer of size sz (in bytes) or NULL
in case of failure. This buffer holds random values on start. As it returns void*, this pointer can be assigned
to a pointer of any other type.

All these allocated regions of memory should be freed when they are no longer used by calling free
on them.

In order to use these two functions, you have to include malloc.h. Listing 10-35 shows a minimal
example of malloc and free usage.

Listing 10-35. simple_malloc.c
#include <malloc.h>

int main(void) {
int* array;

/* malloc returns the allocated memory starting address
* Notice that its argument is the byte size, elements count multiplied
* by element size */

array = malloc(10 * sizeof(int));

/* actions on array are performed here */

free(array); /* now the related memory region is deallocated */
return 0;

10.5.2 Example

Listing 10-36 shows the example. It contains three functions of interest:
e array_readto read an array from stdin. The memory allocation happens here.

Notice the usage of scanf function to read from stdin. Do not forget that it accepts not the variable
values but their addresses, so it could perform an actual writing into them.

e array printto print a given array to stdout.
e array_sumto sum all elements in an array.

Notice that the array allocated somewhere using malloc persists until the moment free is called on its
starting address. Freeing an already freed array is an error.

195

CHAPTER 10 = CODE STRUCTURE

Listing 10-36. sum_malloc.c

#include <stdio.h>
#include <malloc.h>

int* array read(size t* out_count) {
int* array;
size_t i;
size t cnt;
scanf("%zu", 8cnt);
array = malloc(cnt * sizeof(int));

for(i =0; i < cnt; i++)
scanf("%d", & array[i]);

*out_count = cnt;
return array;

}

void array print(int const* array, size t count) {
size t i;

for(i = 0; i < count; i++)
printf("%d ", array[i]);

puts("");
}
int array sum(int const* array, size t count) {
size t i;
int sum = 0;
for(i = 0; 1 < count; i++)
sum = sum + array[i];
return sum;
}

int main(void) {
int* array;
size t count;

array = array read(&count);

array print(array, count);

printf("Sum is: %d\n", array sum(array, count));
free(array);

return 0;

196

CHAPTER 10 ' CODE STRUCTURE

10.6 Assignment: Linked List

10.6.1 Assignment

The program accepts an arbitrary number of integers through stdin. What you have to do is
1. Save them all in a linked list in reverse order.
2. Write a function to compute the sum of elements in a linked list.
3. Use this function to compute the sum of elements in the saved list.

4. Write a function to output the n-th element of the list. If the list is too
short, signal about it.

5. Free the memory allocated for the linked list.
You need to learn to use
e Structural types to encode the linked list itself.
o The EOF constant. Read the section “Return value” of the man scanf.
You can be sure that
e The input does not contain anything but integers separated by whitespaces.
e Allinput numbers can be contained into int variables.
Following is the recommended list of functions to implement:
e list create - acceptsanumber, returns a pointer to the new linked list node.

e list add front - acceptsanumber and a pointer to a pointer to the linked list.
Prepends the new node with a number to the list.

For example: a list (1,2,3), a number 5, and the new list is (5,1,2,3).

e list_add_back, adds an element to the end of the list. The signature is the same as
list_add_front.

e list get gets an element by index, or returns 0 if the index is outside the list bounds.
o list free frees the memory allocated to all elements of list.
o list length accepts alist and computes its length.

e list node_at accepts alist and an index, returns a pointer to struct list,
corresponding to the node at this index. If the index is too big, returns NULL.

e list sumaccepts alist, returns the sum of elements.
These are some additional requirements:

o All pieces of logic that are used more than once (or those which can be conceptually
isolated) should be abstracted into functions and reused.

o The exception to the previous requirement is when the performance drop is becoming
crucial because code reusage is changing the algorithm in a radically ineffective way.
For example, you can use the function 1ist_at to get the n-th element ofalistin a
loop to calculate the sum of all elements. However, the former needs to pass through
the whole list to get to the element. As you increase n, you will pass the same elements
again and again.

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec22

CHAPTER 10 = CODE STRUCTURE

In fact, for a list of length N, we can calculate the number of times elements will be addressed to
compute a sum.

N(N+1)
2

1+2+3+...+N=

We start with a sum equal to 0. Then we add the first element, for that we need to address it alone (1).
Then we add the second element, addressing the first and the second (2). Then we add the third element,
addressing the first, the second, and the third as we look through the list from its beginning. In the end what
we get is something like O(\?) for those familiar with the O-notation. Essentially it means that by increasing
the list size by 1, the time to sum such a list will have N added to it.

In such case it is indeed wiser to just pass through the list, adding a current element to the accumulator.

e Writing small functions is very good most of the time.

e Consider writing separate functions to: add an element to the front, add to the back,
create a new linked list node.

¢ Do not forget to extensively use const, especially in functions accepting pointers as
arguments!

10.7 The Static Keyword

In C, the keyword static has several meanings depending on context.

1. Applying static to global variables or functions we make them available only in
the current module (. c file).

To illustrate it, we are going to compile a simple program shown in Listing 10-37, and launch nm to look
into the symbol table. Remember, that nm marks global symbols with capital letters.
Listing 10-37. static_example.c
int global_int;

static int module_int;

static int module function() {
static int static_local var;
int local var;

return 0;

}

int main(int argc, char** argv) {
return O;

}

What we see is that all symbol names are marked global except for those marked staticin C. In
assembly level it means that most labels are marked global, and to prevent it we have to be explicit and use
the static keyword.

> gcc -c --ansi --pedantic -o static_example.o static_example.c
> nm static_example.o

0000000000000004 C global int

000000000000000b T main

198

CHAPTER 10 ' CODE STRUCTURE

0000000000000000 t module_ function
0000000000000000 b module int
0000000000000004 b static_local var.1464

2. By applying static to the local variable we make it global-like, but no other
function can access it directly. In other words, it persists between function calls
after being initialized once. Next time the same function is called the value of a
local static variable will be the same as when this function terminated last time.

Listing 10-38 shows an example.

Listing 10-38. static_loc_var_example.c

int demo (void)

{

static int a = 42;
printf("%d\n", a++);

demo(); //outputs 42
demo(); //outputs 43
demo(); //outputs 44

10.8 Linkage

The concept of linkage is defined in the C standard and systematizes what we have studied in this chapter
so far. According to it, “an identifier declared in different scopes or in the same scope more than once can be
made to refer to the same object or function by a process called linkage” [7].

So, each identifier (variable or a function name) has an attribute called linkage. There are three types
of linkage:

¢ No linkage, which corresponds to local (to a block) variables.

o External linkage, which makes an identifier available to all modules that might want to
touch it. This is the case for global variables and any functions.

— All instances of a particular name with external linkage refer to the same object in
the program.

— All objects with external linkage must have one and only one definition. However,
the number of declarations in different files is not limited.

o Internal linkage, which restricts the visibility of the identifier to the . c file where it was
defined.

It's easy for us to map the kinds of language entities we know to the linkage types:
e Regular functions and global variables—external linkage.
e Static functions and global variables—internal linkage.
e Local variables (static or not)—internal linkage.

While being important to grasp in order to read the standard freely, this concept is rarely encountered
in everyday programming activities.

199

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par8
http://dx.doi.org/10.1007/978-1-4842-2403-8_8#Sec2

CHAPTER 10 = CODE STRUCTURE

10.9 Summary

In this chapter we learned how to split code into separate files. We have reviewed the concepts of header files
and studied include guards and learned to isolate functions and variables inside a file. We have also seen what
the symbol tables look like for the basic C programs and the effects the keyword static produces on object
files. We have completed an assignment and implemented linked lists (one of the most fundamental data
structures). In the next chapter we are going to study the memory from the C perspective in greater details.

Question 190
Question 191
Question 192
Question 193
Question 194
Question 195
Question 196
Question 197
Question 198
Question 199
Question 200

separate line.

Question 201
Question 202

relevant headers.

Question 203
Question 204
Question 205
Question 206
Question 207
Question 208
Question 209

What is the difference between a declaration and a definition?

What is a forward declaration?

When are function declarations needed?

When are structure declarations needed?

How can the functions defined in other files be called?

What effect does a function declaration make on the symbol table?
How do we access data defined in other files?

What is the concept of header files? What are they typically used for?
Which parts does the standard C library consist of?

How does the program accept command-line arguments?

Write a program in assembly that will display all command-line arguments, each on a

How can we use the functions from the standard C library?

Describe the machinery that allows the programmer to use external functions by including

Read about 1d-1inux.

What are the main directives of the C preprocessor?

What is the include guard used for and how do we write it?

What is the effect of static global variables and functions on the symbol table?
What are static local variables?

Where are static local variables created?

What is linkage? Which types of linkage exist?

200

CHAPTER 11

Memory

Memory is a core part of the model of computation used in C. It stores all types of variables as well as
functions. This chapter will study the C memory model and related language features closely.

11.1 Pointers Revisited

B. Kernighan and D. Ritchie on pointers “Pointers have been lumped with the goto statement as
a marvelous way to create impossible-to-understand programs. This is certainly true when they are used
carelessly, and it is easy to create pointers that point somewhere unexpected. With discipline, however, pointers
can also be used to achieve clarity and simplicity.” [18]

11.1.1 Why Do We Need Pointers?

As the C language has a von Neumann model of computations, the program execution is essentially a
sequence of data manipulation commands. The data resides in addressable memory, and the addressability
of data is the propriety that allows for a more refined and effective data manipulation. Many higher-level
languages lack this property because direct address manipulations are forbidden.

However, that advantage comes at a price: it becomes easier to produce subtle and usually irrecoverable
errors in the code.

The necessity of storing and manipulating addresses is why we need pointers. Performing a typical case
study for Listing 11-1, we observe, that in terms of the abstract C machine:

e a - isthe name of data cells of abstract machine, containing the number 4 of type int.

e p_a -isthe name of data cells of abstract machine, which contain the address of a
variable of type int.

e p_astores the address of a.
e *p_aisthesameasa;

¢ 3aequalsp_a, but these two entities are not the same. While p_a is the name for some
consecutive data cells, &a is the contents of p_a, a bit string representing an address.

© Igor Zhirkov 2017 201
1. Zhirkov, Low-Level Programming, DOI 10.1007/978-1-4842-2403-8_11

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par19

CHAPTER 11 = MEMORY

Listing 11-1. pointers_ex.c
int a = 4;

int* p_a = 8a;

p_a = 10; / a = 10*/

Note You can only apply & once, because for any x the expression &x will already not be an Ivalue.

11.1.2 Pointer Arithmetic

Following are the only actions you can perform on pointers:
¢ Add or subtract integers (also negatives);

So, we have pointers, and they contain addresses. For a computer, there is no
difference between an address of an integer and an address of a string. In assembly
language, as we have seen, all addresses are of the same type. Why do we need to
keep the type information about what the pointer points to? What is the difference
between int* and char*?

The size of the element we are pointing at matters. By adding or subtracting an integer
value X from the pointer of type T % we, in fact, change itby X* sizeof(T).
Let’s see an example shown in Listing 11-2.

Listing 11-2. ptr_change_ex.c

int a = 42; /* Assume this integer's address is 1000 */
int* p_a = 8a;

p_a += 42; /* 1000 + 42 * sizeof(int) */
pa=pa+i; /* 1168 + 1 * sizeof(int) */

pa--; /* 1172 - 1 * sizeof(int) */

e Take its own address. If the pointer is a variable, it is located somewhere in memory
too. So, it has an address on its own! Use the & operator to take it.

¢ Dereference, which is a basic operation that we have also seen. We are taking a
data entry from memory starting at the address, stored in the given pointer.
The * operator does it. Listing 11-3 shows an example.

Listing 11-3. deref_ex.c

int catsAreCool = 0;
int* ptr = &catsAreCool;
ptr = 1; / catsAreCool = 1 */

e Compare (with <, >, == and alike).

We can compare two pointers. The result is only defined if they both point to the
same memory block (e.g., at different elements of the same array). Otherwise the
result is random, undefined by the language standard.

202

http://dx.doi.org/10.1007/978-1-4842-2403-8_8#Sec12

CHAPTER 11 © MEMORY

¢ Subtract another pointer.

If and only if we have two pointers, which are certainly pointing at the contiguous
memory block, then by subtracting a smaller valued one from a greater valued one
we get the amount of elements between them. For pointers x and y, we are talking
about a range of elements from *x inclusive to *y exclusive (so x — x =0).

Starting from C99, the type of the expression ptr2 - ptrilisaspecial type
ptrdiff_t.Itis a signed type of the same size as size_t.

Note, that the result is different from the amount of bytes between *x and *y! The
naively calculated difference would be the amount of bytes, while the result of
subtraction is the amount of bytes divided by an element size. Listing 11-4 shows
an example.

Listing 11-4. ptr_diff calc.c

int arr[128];

int* ptri = 8arr[50]; /* “array’ address + 50 int sizes */
int* ptr2 = 8arr[90]; /* “array’ address + 90 int sizes */
ptrdiff t d = ptr2 - ptri; /* exactly 40 */

In all other cases (subtracting greater pointer from lesser one, subtracting pointers pointing into
different areas, etc.) the result can be absolutely random.

Addition, multiplication, and division of two pointers are syntactically incorrect; thus, they trigger an
immediate compilation error.

11.1.3 The void* Type

Apart from regular pointer types, a type void* exists, which is kind of special. It forgets all information about
the entity it points to, apart from its address. The pointer arithmetic is forbidden for void* pointers, because
the size of the entity we are pointing at is unknown and thus cannot be added or subtracted.

Before you can work with such a pointer, you should cast it to another type explicitly. Alternatively, C
allows you to assign this pointer to any other pointer (and assign to void* a pointer of any type) without any
warnings. In other words, while assigning short* to long is a clear error, assignments treats void* as equal to
any pointer type.

Listing 11-5 shows an example.

Listing 11-5. void_ptr_ex.c

void* a = (void*)4;

short* b = (short*) a;

b ++; /* correct, b = 6 */
b = a; /* correct */

a = b; /* correct */

11.1.4 NULL

C defines a special preprocessor constant NULL equal to 0. It means a pointer “pointing to nowhere,” an
invalid pointer. By writing this value to a pointer, we can be sure that it is not yet initialized to a valid address.
Otherwise, we would not be able to distinguish initialized pointers.

In most architectures people reserve a special value for invalid pointers, assuming no program will
actually hold a useful value by this address.

203

CHAPTER 11 = MEMORY

As we already know, 0 in pointer context does not always mean a binary number with all bits cleared.
Pointer-0 can be equal to 0, but this is not enforced by standard. The history knows architectures where the
null-pointer was chosen in a rather exotic way. For example, some Prime 50 series computers used segment
07777, offset 0 for the null pointer; some Honeywell-Bull mainframes use the bit pattern 06000 for a kind of
null pointers.

Listing 11-6 shows the correct ways to check whether the pointer is NULL or not.

Listing 11-6. null_check.c

if(x){...}
if(NULL !=x) { ...}
if(ol=x){ ...}

if(x 1= NULL) { ...}
if(x1=0){ ...}

11.1.5 A Word on ptrdiff_t

Take a look at the example shown in Listing 11-7. Can you spot a bug?

Listing 11-7. ptrdiff bug.c

int* max;
int* cur;

int f(unsigned int e)

if (max - cur > e)
return 1;

else
return 0;

What happens if cur > max?Itimplies, that the difference between cur and max is negative. Its type is
ptrdiff_t. Comparing it with a value of type unsigned int is an interesting case to study.
ptrdiff_t hasas many bits as the address on the target architecture. Let’s study two cases:

¢ 32-bitsystem, where sizeof(unsigned int) == 4andsizeof(ptrdiff t) == 4.
In this case, the types in our comparison will pass through these conversions.

int < unsigned int
(unsigned int)int < unsigned int

The compiler will issue a warning, because the cast from int to unsigned intis
not always preserving values. You cannot freely map values in range —23' . ..
2% —1totherange0...2%-1.

For example, in case the left-hand side was equal to -1, after the conversion to
unsigned int type it will become the maximal value representable in unsigned
int type (2% - 1). Apparently, the result of this comparison will be almost always
equal to 0, which is wrong, because -1 is smaller than any unsigned integer.

204

CHAPTER 11 © MEMORY

e 64-bit system, where sizeof(unsigned int) == 4andsizeof(ptrdiff t) == 8.
In this situation, ptrdiff_t will be probably aliased to the signed long.

signed long < unsigned int
long < (signed long)unsigned int

Here the right-hand side is going to be cast. This cast preserves information, so the
compiler will issue no warning.

Asyou see, the behavior of this code depends on target architecture, which is a big no. To avoid it,
ptrdiff tshould always go in par with size_t, because only then their sizes are guaranteed to be the same.

11.1.6 Function Pointers

The von Neumann model of computations implies that the code and data reside in the same addressable
memory. So, functions have addresses on their own. We can take the starting addresses of functions, pass
them to other functions, call functions by pointers, store them in variables or arrays, etc. Why, however,
would we do all that? It allows us for better abstractions. We can write a function that launches another
function and measures its working time, or transforms an array by applying the function to all its elements.
This technique allows the code to be reused on a whole new level.

The function pointer stores information about the function type just as the data pointers do. The
function type includes the argument types and the return value type. A syntax that mimics the function
declaration is used to declare a function pointer:

<return value type> (*name) (argi, arg2, ...);

Listing 11-8 shows an example.

Listing 11-8. fun_ptr_example.c

double doubler (int a) { return a * 2.5; }

double (*fptr)(int);
double a;

fptr = &doubler;

a = fptr(10); /* a = 25.0 */

We have described the pointer fptr of type “a pointer to a function, that accepts int and returns
double” Then we assigned the doubler function address to it and performed a call by this pointer with an
argument 10, storing the returned value in the variable a.

typedef works, and is sometimes a great help. The previous example can be rewritten as shown in
Listing 11-9.

Listing 11-9. fun_ptr_example_typedef.c

double doubler (int a) { return a * 2.5; }
typedef double (megapointer type)(int);

double a;
megapointer type* variable = &doubler;
a = variable(10); /* a = 25.0 */

205

CHAPTER 11 = MEMORY

Now by means of typedef we have created a function type that cannot be instantiated directly.
However, we can create variables of the said pointer type. We cannot create variables of the function types
directly, so we add an asterisk.

First-class objects in programming languages are the entities that can be passed as a parameter,
returned from functions, or assigned to a variable.

As we see, functions are not first-class objects in C. Sometimes they are called “second-class objects”
because the pointers to them are first-class objects.

11.2 Memory Model

The memory of the C abstract machine, while being uniform, has several regions. Pragmatically, each such
region is mapped to a different memeory region, consisting of consecutive pages.
Figure 11-1 shows this model.

CODE

DATA

CONST DATA

HEAP

STACK

Figure 11-1. C memory model

206

CHAPTER 11 © MEMORY

The regions that almost every C program has are
¢ Code, which holds machine instructions.
¢ Data, which stores regular global variables.

¢ Constant data, which stores all immutable data, such as string literals and global
variables, marked const. The operating system is usually protecting the corresponding
pages through the virtual memory mechanism, by allowing or not allowing the reads/
writes.

¢ Heap, which stores dynamically allocated data (by means of malloc, as we will show in
section 11.2.1).

e Stack, which stores all local variables, return addresses, and other utility information.
If the program is executed in multiple threads, each one gets its own stack.

11.2.1 Memory Allocation
Before you can use memory cells, you have to allocate memory. There are three types of memory allocation in C.

¢ Automatic memory allocation occurs when we are entering a routine. When we
enter the function, a part of the stack is dedicated to its local variables. When we leave
the function, all information about these variables is lost. The lifetime of this data
is limited by the lifetime of a function instance. Once the function terminates, the
memory becomes unavailable.

¢ Inassembly level, we have already done it in the very first assignment. The functions
that performed integer printing allocated a buffer on the stack to store the resulting
string. It was achieved by simply decreasing rsp by the buffer size.

Note Never return pointers to local variables from functions! They point to the data that no longer exists.

e Static memory allocation happens during compilation in the data or constant data
region. These variables exist until the program terminates. By default, the variables are
initialized with zeros, and thus end up in .bss section. The constant data is allocated in
.rodata; the mutable data is allocated in .data.

¢ Dynamic memory allocation is needed when we do not know the size of the memory
we need to allocate until some external events happen. This type of allocation relies
on an implementation in the standard C library. It means that when the C standard
library is not available (e.g., bare metal programming), this type of memory allocation
is also unavailable.

This type of memory allocation uses the heap.

A part of the standard library keeps track of the reserved and available memory
addresses. This part’s interface consists of the following functions, whose
prototypes are located in malloc.h header file.

— void* malloc(size t size) allocates size bytesin heap and returns an address of
the first one. Returns NULL if it fails.

207

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec16
http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec17
http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec17

CHAPTER 11 = MEMORY

This memory is not initialized and thus holds random values.

- void* calloc(size t size, size t count) allocates size * count bytes
in heap and initializes them to zero. Returns the address of the first one or NULL
if it fails.

— void free(void* p) frees memory, allocated in heap.

— void* realloc(void* ptr, size t newsize) changes the size of a memory block
starting at ptr to newsize bytes. The added memory will not be initialized. The con-
tents are copied into the new block, and the old block is freed. Returns a pointer to
the new memory block or NULL on failure.

When we no longer need a memory block we have to free it, otherwise it will stay in a “reserved” state
forever, never to be reused. This situation is called memory leak. When you are using a heavy piece of
software, which contains bugs related to memory management, its memory footprint can grow significantly
over time without the program actually needing that much memory.

Usually, the operating system provides the program with a number of pages in advance. These pages
are used until the program needs more dynamic memory to allocate. When it happens, the malloc call can
internally trigger a system call (such as mmap) to request more pages.

As the void* pointer type can be assigned to any pointer type, the following code will issue no warning
(see Listing 11-10) when compiling it as a C code.

Listing 11-10. malloc_no_cast.c

#include <malloc.h>

int* a = malloc(200);
al4] = 2;

However, in C++, a popular language that was originally derived from C (and which tries to maintain
backward compatibility), the void* pointer should be explicitly cast to the type of the pointer you are
assigning it to. Listing 11-11 shows the difference.

Listing 11-11. malloc_cast_explicit.c

int* arr = (int*)malloc(sizeof(int) * 42);

Why some programmers recommend omitting the cast The older C standards had an “implicit int” rule
about function declarations. Lacking a valid function declaration, its first usage was considered a declaration. If
a name that has not been previously declared occurs in an expression and is followed by a left parenthesis, it
declares a function name. This function is also assumed to return an int value. The compiler can even create a
stub function returning 0 for it (if it does not find an implementation).

In case you do not include a valid header file, containing a malloc declaration, this line will trigger an error,
because a pointer is assigned an integer value, returned by malloc:

int* x = malloc(40);

208

CHAPTER 11 © MEMORY

However, the explicit cast will hide this error, because in C we can cast whatever we want to whatever type we want.
int* x = (int*)malloc(40);

The modern versions of the C standard (starting at C99) drop this rule and the declarations become mandatory,
s0 this reasoning becomes invalid.

A benefit in explicit casting is a better compatibility with C++.

11.3 Arrays and Pointers

Arrays in C are particular, because any bunch of values residing consecutively in memory can be
thought of as an array.

An abstract machine considers that the array name is the address of the first element, thus, a pointer
value!

The i-th element of an array can be obtained by one of the following equivalent constructions:

a[i] = 2;
*(a+i) = 2

The address of the i-th element can be obtained by one of these following constructions:
&a[i];
a+i;

As we see, every operation with pointers can be rewritten using the array syntax! And it even goes
further. In fact, the braces syntax a[1] gets immediately translated into a + i, which is the same thing as
i+a. Because of this, exotic constructions such as 4[a] are also possible (because 4+a is legitimate).

Arrays can be initialized with zeros using the following syntax:

int a[10] = {o0};
Arrays have a fixed size. However, there are two notable exceptions to this rule, which are valid in C99
and newer versions.

e Stack allocated arrays can be of a size determined in runtime. These are called
variable length arrays. It is evident that these cannot be marked static because the
latter implies allocation in .data section.

e Starting from C99, you can add a flexible array member as the last member of a
structure, as shown in Listing 11-12.
Listing 11-12. flex_array _def.c

struct char_array {
size t length; char data[];
};

209

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec17

CHAPTER 11 = MEMORY

In this case, the sizeof operator, applied to a structure instance, will return the
structure size without the array. The array will refer to the memory immediately
following the structure instance. So, in the example given in Listing 11-12,
sizeof(struct char_array) == sizeof(size_ t).Assumingit’s equal to 8,
data[0] refers to the 8-th byte (counting from 0) from the structure instance
starting address.

Listing 11-13 shows an example.

Listing 11-13. flex_array.c

#include <string.h>
#include <malloc.h>

struct int_array {
size t size;
int array[];

};

struct int_array* array create(size t size) {
struct int_array* array = malloc(
sizeof(*array)
+ sizeof(int) * size);
array-> size = size;
memset(array->array, 0, size);
return array;

11.3.1 Syntax Details

C allows us to define several variables in a row.
int a,b = 4, c;

To declare several pointers, however, you have to add an asterisk before every pointer.
Listing 11-14 shows an example: a and b are pointers, but the type of c is int.

Listing 11-14. ptr_mult_decl.c

int* a, *b, c;

This rule can be worked around by creating a type alias for int* using typedef, hiding an asterisk.
Defining multiple variables in a row is a generally discouraged practice as in most cases it makes the

code harder to read.

It is possible to create rather complex type definitions by mixing function pointers, arrays, pointers, etc.

You can use the following algorithm to decipher them:
1. Find an identifier, and start from it.

2. Go to the right until the first closing parenthesis. Find its pair on the left. Interpret
an expression between these parentheses.

3. Go “up” one level, relative to the expression we have parsed during the previous
step. Find outer parentheses and repeat step 2.

210

CHAPTER 11 © MEMORY

We will illustrate this algorithm in an example shown in Listing 11-15. Table 11-1 describes the
parsing process.

Listing 11-15. complex_decl_l.c
int* (* (*fp) (int)) [10];

Table 11-1. Parsing Complex Definition

Expression Interpretation

fp First identifier.

(*fp) Is a pointer.

(* (*fp) (int)) A function accepting int and returning a pointer...
int* (* (*fp) (int)) [10] ... to an array of ten pointers to int

Asyou see, the process of deciphering complex declarations is not a breeze. It can be made simpler by
using typedefs for parts of the declarations.

11.4 String Literals

Any sequence of char elements ended by a null-terminator can be viewed as a string in C. Here, however,
we want to speak about the immediately encoded strings, so, string literals. Most string literals are stored in
.rodata if they are big enough.

Listing 11-16 shows an example of a string literal.

Listing 11-16. str_lit_example.c

char* str = "when the music is over, turn out the lights";

str is just a pointer to the string’s first character.
According to the language standard, string literals (or pointers to strings created in such a way) cannot
be changed.' Listing 11-17 shows an example.

Listing 11-17. string literal mut.c

char* str = "hello world abcdefghijkl";
/* the following line produces a runtime error */
str[15] = "\'";

In C++, the string literals have the type char const* by default, which reflects their immutable nature.
Consider using variables of type char const* whenever you can when the strings you are dealing with are
not intended to be mutated.

The constructions shown in Listing 11-18, are also correct, albeit you are most probably never going to
use the second one.

'To be precise, the result of such an operation is not well defined.

211

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec17

CHAPTER 11 = MEMORY

Listing 11-18. str_lit ptr _ex.c
char will be o = "hello, world!"[4]; /* is 'o' */
char const* tail = "abcde"+3 ; /* is "de", skipping 3 symbols */
When manipulating strings, there are several common scenarios based on where the string is allocated.
1. We can create a string among global variables. It will be mutable, and under no
circumstances will it be doubled in constant data region. Listing 11-19 shows an example.
Listing 11-19. str_glob.c

char str[] = "something global";
void f (void) { ... }

In other words, it is just a global array initialized in place with character codes.
2. We can create a string in a stack, in a local variable. Listing 11-20
shows an example.
Listing 11-20. str _loc.c

void func(void) {
char str[] = "something local";
}

The string "something_local" itself, however, should be kept somewhere because
the local variables are initialized every time the function is launched, and we have
to know the values with which they should be initialized.

In case of relatively short strings, the compiler will try to inline them into the
instructions stream. Apparently, for smaller strings, it is wiser to just split them
into 8-byte chunks and perform mov instructions with each chunk as an immediate
operand.

The long strings, however, are better kept in .rodata. The statement, shown in
Listing 11-20, will allocate enough bytes in stack and then perform a copy from
read-only data to this local stack buffer.

3. We can allocate a string dynamically viamalloc. The header file string.h
contains some very useful functions such as memcpy, used to perform fast copying.

Listing 11-21 shows an example.

Listing 11-21. str_malloc.c

#include <malloc.h>
#include <string.h>

int main(int argc, char** argv)

{
char* str = (char*)malloc(25);
strcpy(str, "wow, such a nice string!");
free(str);

}

212

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec17

CHAPTER 11 © MEMORY

Question 210 Why did we allocate 25 bytes for a 24-character string?

Question 211 Read man for the functions: memcpy, memset, strcpy.

11.4.1 String Interning

“String interning” is a term more accustomed to Java or C# programmers. However, in reality, a similar
thing is happening in C (but only in compile time). The compiler tries to avoid duplicating strings in the
read-only data region. It means that usually the equal addresses will be assigned to all three variables in
the code shown in Listing 11-22.

Listing 11-22. str_intern.c

char* best _guitar solo "Firth of fifth";
char* good_genesis_song = "Firth of fifth";
char* best 1973 _live = "Firth of fifth";

String interning would be impossible if string literals were not protected from rewriting. Otherwise, by
changing such strings in one place of a program we are introducing an unpredictable change in data used in
another place, as both share the same copy of string.

11.5 Data Models

We have spoken about the sizes of different integer types. The language standard is enforcing a set of rules
like “the size of long is no less than the size of short” or “the size of signed short should be such that it
could contain values in range —2'¢ ... 2!6 - 1" The last rule, however, does not provide us with a fixed size,
because short could have been 8 bytes wide and still satisfy this constraint. So, these requirements are far
from setting the exact sizes in stone. In order to systematize different sets of sizes, the conventions called
data model were created. Each of them defines sizes for basic types. Figure 11-2 shows some remarkable
data models that could be of interest to us.

short int long ptr long long Name Examples

- 16 - 16 - 1P16 PDP-11 Unix

16 16 32 32 - 116LP32 Apple Macintosh 68K; early Mi-
crosoft Windows

16 32 32 32 - ILP32 IBM 370; VAX Unix

16 32 32 32 64 ILP32LL Amdahl; Microsoft Win32

16 32 32 64 64 LLP64 or IL32LLP64 Microsoft Win64

16 32 64 64 64 LP64 Most Unix systems (Linux, Solaris,
HP UX 11, Mac OS...)

64 64 64 64 64 SILP64 UNICOS (Unix for Cray supercom-
puters)

Figure 11-2. Data models

213

CHAPTER 11 = MEMORY

As we have chosen the GNU/Linux 64-bit system for studying purposes, it our data model is LP64. When
you develop for 64-bit Windows system, the size of long will differ.

Everyone wants to write portable code that can be reused across different platforms, and fortunately
there is a standard-conforming way to never run into data model changes.

Before C99, it was a common practice to make a set of type aliases of form int32 or uint64 and use
them exclusively across the program in lieu of ever-changing ints or longs. Should the target architecture
change, the type aliases were easy to fix. However, it created a chaos because everyone created their own set

of types.
C99 introduced platform independent types. To use them, you should just include a header stdint.h.

It gives access to the different integer types of fixed size. Each of them has a form:
e uy, if the type is unsigned;
e int;
e Size in bits: 8, 16, 32 or 64; and
o t.

For example, uint8 t, int64 t, int16_t.

The printf function (and similar format input/output) functions have been given
a similar treatment by introducing special macros to select the correct format
specifiers. These are defined in the file inttypes.h.

In the common cases, you want to read or write integer numbers or pointers. Then
the macro name will be formed as follows:

o PRI for output (printf, fprintf etc.) or SCN for input (scanf, fscanf etc.).
e Format specifier:
— dfor decimal formatting.
— x for hexadecimal formatting.
— o for octal formatting.
— ufor unsigned int formatting.
— 1ifor integer formatting.
e Additional information includes one of the following:
— Nfor Nbit integers.
— PTR for pointers.
— MAX for maximum supported bit size.
— FAST is implementation defined.

We have to use the fact that several string literals, delimited by spaces, are concatenated automatically.
The macro will produce a string containing a correct format specifier, which will be concatenated with
whatever is around it.

Listing 11-23 shows an example.

214

CHAPTER 11 © MEMORY

Listing 11-23. inttypes.c

#include <inttypes.h>
#include <stdio.h>

void f(void) {
int64_t i64 = -10;
uint64_t u64 = 100;
printf("Signed 64-bit integer: %" PRIi64 "\n", i64);
printf("Unsigned 64-bit integer: %" PRIu64 "\n", ub4);

Refer to section 7.8.1 of [7] for a full list of such macros.

11.6 Data Streams

The C standard library provides us with a way to work with files in a platform-independent way. It abstracts
files as data streams, from which we can read and to which we can write.

We have seen how the files are handled in Linux on the system calls level: the open system call opens
a file and returns its descriptor, an integer number, the write and read system calls are used to perform
writing and reading, respectively, and the close system call ensures that the file is properly closed. As
the C language was created in par with the Unix operating system, they bear the same approach to file
interactions. The library counterparts of these functions are called fopen, fwrite, fread, and fclose. On
Unix-like systems, they act like an adapter for system calls, providing similar functionality, except that they
also work on other platform in the same way. The main differences are as follows:

1. In place of file descriptors, we use a special type FILE, which stores all information
about a certain stream. Its implementation is hidden and you should never change
its internal state manually. So, instead of working with numeric file descriptors
(which is platform-dependent), we use FILE as a black box.

The FILE instance is allocated in heap internally by the C library itself, so at
anytime we will work with a pointer to it, not with the instance itself directly.

2. While file operations in Unix are more or less uniform, there are two types of data
streams in C.

e Binary streams consist of raw bytes that are handled “as is.”

o Text streams include symbols grouped into lines; each line is ended by an end-of-
line character (implementation dependent).

Text streams are limited in a number of ways on some systems.
e The line length might be limited.

e They might only be able to work with printing characters,
newlines, spaces, and tabs.

e Spaces before the newline may disappear.

On some operating systems, text and binary streams use different file formats, and
thus to work with a text file in a way compatible between all its programs, the use of
text streams is mandatory.

While GNU C library, usually associated with GCC, makes no difference between
binary and text streams, on other platforms this is not the case, so distinguishing
these is crucial.
215

http://dx.doi.org/10.1007/978-1-4842-2403-8_2#Sec4

CHAPTER 11 = MEMORY

For example, I have seen a situation in which reading a large block from a picture file
on Windows (the compiler was MSVC) ended prematurely because the picture was
obviously binary, while the associated stream was created in text mode.

The standard library provides machinery to create and work with streams. Some functions it defines
should only be used on text streams (like fscanf). The relevant header file is called stdio.h.
Let’s analyze the example shown in Listing 11-24.
Listing 11-24. file_example.c
int smth[]={1,2,3,4,5};
FILE* f = fopen("hello.img", "rwb");
fread(smth, sizeof(int), 1, f);

/* This line is optional. By means of “fseek™ function we can navigate the file */
fseek(f, 0, SEEK SET);

fwrite(smth, 5 * sizeof(int), 1, f);
fclose(f);

¢ The instance of FILE is created via a call to fopen function. The latter accepts the path
to file and a set of flags, squashed into a string.
The important flags of fopen are listed here.

— b - openfile in a binary mode. That is what makes a real distinction between
text and binary streams. By default, files are opened in text mode.

— W - open a stream with a possibility to write into it.
— T - open a stream with a possibility to read from it.

— + - if you write simply w, the file will be overwritten. When + is present,
the writes will append data to the end of file.

If the file does not exist, it will be created.

The file hello. img is opened in binary mode for both reading and writing.
The file contents will be overwritten.

e After being created, the FILE holds a kind of a pointer to a position inside the file,
a cursor of sorts. Reads and writes move this cursor further.

e The fseek function is used to move cursor without performing reads or writes.
It allows moving cursor relatively to either its current position or the file start.

e fwrite and fread functions are used to write and read data from the opened FILE
instance.

Taking fread, for example, it accepts the memory buffer to read from. The two integer parameters are
the size of an individual block and the amount of blocks read. The returning value is the amount of blocks
successfully read from the file. Every block’s read is atomic: either it is completely read, or not read at all.
In this example, the block size equals sizeof(int), and the amount of blocks is one.

The fwrite usage is symmetrical.

e fclose should be called when the work with file is complete.

216

CHAPTER 11 © MEMORY

There exist a special constant EOF. When it is returned by a function that works with a file, it means that
the end of file is reached.

Another constant BUFSIZ stores the buffer size that works best in the current environment for input and
output operations.

Streams can use buffering. It means that they have an internal buffer that proxies all reads and writes. It
allows for rarer system calls (which are expensive performance-wise due to context switching). Sometimes
when the buffer is full the writing will actually trigger a write system call. A buffer can be manually flushed
using fflush command. Any delayed writes will be executed and the buffer will be reset.

When the program starts, three FILE* instances are created and attached to the streams with descriptors 0,
1, and 2. They can be referred to as stdin, stdout, and stderr. All three are usually using a buffer, but the stderr
is automatically flushing the buffer after every writing. It is necessary to not delay or lose error messages.

Note Again, descriptors are integers, FILE instances are not. The int fileno(FILE* stream) function
is used to get the underlying descriptor for the file stream.

Question 212 Read man for functions: fread, fread, furite, fprintf, fscanf, fopen, fclose, fflush.

Question 213 Do research and find out what will happen if the £f1ush function is applied to a bidirectional
stream (opened for both reading and writing) when the last action on the stream before it was reading.

11.7 Assignment: Higher-Order Functions and Lists

11.7.1 Common Higher-Order Functions

In this assignment, we are going to implement several higher-order functions on linked lists, which should
be familiar to those used to functional programming paradigm.
These functions are known under the names foreach, map, map_mut, and foldl.

o foreach accepts a pointer to the list start and a function (which returns void and
accepts an int). It launches the function on each element of the list.

e map accepts a function fand a list. It returns a new list containing the results of the
fapplied to all elements of the source list. The source list is not affected.

For example, f(x) = x + 1 will map the list (1, 2, 3) into (2, 3, 4).
e map_mut does the same but changes the source list.
e foldl is a bit more complicated. It accepts:
— The accumulator starting value.
— Afunction f(x, a).
— Alist of elements.
It returns a value of the same type as the accumulator, computed in the following way:

1. We launch fon accumulator and the first element of the list. The result is the new
accumulator value a’.

2. We launch fon a’and the second element in list. The result is again the new
accumulator value a”’.

217

CHAPTER 11 = MEMORY

3. We repeat the process until the list is consumed. In the end the final accumulator
value is the final result.

For example, let’s take f(x, a) = x *a. By launching foldl with the accumulator value 1 and this function

we will compute the product of all elements in the list.

e iterate accepts the initial value s, list length n, and function f. It then generates a list
of length n as follows:

(5 £ F(FF$)-]

The functions described above are called higher-order functions, because they do accept other

functions as arguments. Another example of such a function is the array sorting function gsort.

void gsort(void *base,

size_t nmemb,
size t size,
int (*compar)(const void *, const void *));

It accepts the array starting address base, elements count nmemb, size of individual elements size, and

the comparator function compar. This function is the decision maker which tells which one of the given
elements should be closer to the beginning of the array.

Question 214 Read man gsort.

11.

7.2 Assignment

The input contains an arbitrary number of integers.

218

1. Save these integers in a linked list.

2. Transfer all functions written in previous assignment into separate . h and c files.
Do not forget to put an include guard!

3. Implement foreach; using it, output the initial list to stdout twice: the first time,
separate elements with spaces, the second time output each element on the new line.

4. Implement map; using it, output the squares and the cubes of the numbers from list.

5. Implement foldl; using it, output the sum and the minimal and maximal element
in the list.

6. Implementmap_mut; using it, output the modules of the input numbers.

7. Implement iterate; using it, create and output the list of the powers of two (first
10values: 1,2, 4,8, ...).

8. Implement a function bool save(struct 1list* 1lst, const char* filename);,
which will write all elements of the list into a text file filename. It should return
true in case the write is successful, false otherwise.

9. Implement a function bool load(struct list** 1st, const char* filename);,
which will read all integers from a text file filename and write the saved list into
*1st. It should return true in case the write is successful, false otherwise.

CHAPTER 11 © MEMORY

10. Save the list into a text file and load it back using the two functions above. Verify
that the save and load are correct.

11. Implement a function bool serialize(struct list* 1st, const char*
filename);, which will write all elements of the list into a binary file filename. It
should return true in case the write is successful, false otherwise.

12. Implement a function bool deserialize(struct list** 1st, const char*
filename);, which will read all integers from a binary file filename and write
the saved list into *Ist. It should return true in case the write is successful, false
otherwise.

13. Serialize the list into a binary file and load it back using two functions above. Verify
that the serialization and deserialization are correct.

14. Free all allocated memory.
You will have to learn to use
e Function pointers.

e limits.hand constants from it. For example, in order to find the minimal element in
an array, you have to use foldl with the maximal possible int value as an accumulator
and a function that returns a minimum of two elements.

e The static keyword for functions that you only want to use in one module.

You are guaranteed, that
¢ Input stream contains only integer numbers separated by whitespace characters.
¢ All numbers from input can be contained as int.

It is probably wise to write a separate function to read a list from FILE.
The solution takes about 150 lines of code, not counting the functions, defined in the previous
assignment.

Question 215 In languages such as C#, code like the following is possible:
var count = 0;
mylist.Foreach(x => count += 1);

Here we launch an anonymous function (i.e., a function which has no name, but whose address can be
manipulated, for example, passed to other function) for each element of a list. The function is written as x =>
count += 1 and is the equivalent of

void no_name(int x) { count += 1; }

The interesting thing about it is that this function is aware of some of the local variables of the caller and thus
can modify them.

Can you rewrite the function forall so that it accepts a pointer to a “context” of sorts, which can hold an
arbitrary number of variables addresses and then pass the context to the function called for each element?

219

CHAPTER 11 = MEMORY

11.8 Summary

In this chapter we have studied the memory model. We have gotten a better understanding of the type dimensions
and the data models, studied pointer arithmetic, and learned to decipher complex type declarations. Additionally,
we have seen how to use the standard library functions to perform the input and output. We have practiced it by
implementing several higher-order functions and doing a little file input and output.

We will further deepen our understanding of memory layout in the next chapter, where we will
elaborate the difference between three “facets” of a language (syntax, semantics, and pragmatics), study the
notions of undefined and unspecified behavior, and show why the data alignment is important.

Question 216
Question 217
Question 218
Question 219
Question 220
Question 221
Question 222
Question 223
Question 224
Question 225
Question 226
Question 227
Question 228
Question 229
Question 230
Question 231
Question 232
Question 233
Question 234
Question 235
Question 236
Question 237
Question 238
Question 239

What arithmetic operations can you perform with pointers, and on what conditions?
What is the purpose of void*?

What is the purpose of NULL?

What is the difference between 0 in pointer context and 0 as an integer value?
What is ptrdiff_t and how is it used?

What is the difference between size t and ptrdiff t?

What are first-class objects?

Are functions first-class objects in C?

What data regions does the C abstract machine contain?

Is the constant data region usually write-protected by hardware?
What is the connection between pointers and arrays?

What is the dynamic memory allocation?

What is the sizeof operator? When is it computed?

When are the string literals stored in .rodata?

What is string interning?

Which data model are we using?

Which header contains platform-independent types?

How do we concatenate string literals in compile time?

What is the data stream?

Is there a difference between a data stream and a descriptor?
How do we get the descriptor from stream?

Are there any streams opened when the program starts?

What is the difference between binary and text streams?

How do we open a binary stream? A text stream?

220

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec17

CHAPTER 12

Syntax, Semantics, and Pragmatics/

In this chapter we are going to revise the very essence of what the programming language is. These
foundations will allow us to better understand the language structure, the program behavior, and the details
of translation that you should be aware of.

12.1 What Is a Programming Language?

A programming language is a formal computer language designed to describe algorithms in a way
understandable by a machine. Each program is a sequence of characters. But how do we tell the programs
from all other strings? We need to define the language somehow.

The brute way is to say that the compiler itself is the language definition, since it parses programs
and translates them into executable code. This approach is bad for a number of reasons. What do we do
with compiler bugs? Are they really bugs, or do they affect the language definition? How do we write other
compilers? Why should we mix the language definition and the implementation details?

Another way is to provide a cleaner and implementation-independent way of describing language. It is
quite common to view three facets of a single language.

e The rules of statement constructions. Often the description of correctly structured
programs is made using formal grammars. These rules form the language syntax.

o The effects of each language construction on the abstract machine. This is the
language semantics.

¢ In anylanguage there is also a third aspect, called pragmatics. It describes the
influence of the real-world implementation on the program behavior.

— In some situations, the language standard does not provide enough information
about the program behavior. Then it is entirely up to compiler to decide how it will
translate this program, so it is often assigning some specific behavior to such
programs.

For example, in the call f(g(x), h(x)) the order of evaluation of g(x) and
h(x) is not defined by standard. We can either compute g(x) and then h(x), or
vice versa. But the compiler will pick a certain order and generate instructions
that will perform calls in exactly this order.

— Sometimes there are different ways to translate the language constructions into
the target code. For example, do we want to prohibit the compiler from inlining
certain functions, or do we stick with laissez-faire strategy?

In this chapter we are going to explore these three facets of languages and apply them to C.

© Igor Zhirkov 2017 221
1. Zhirkov, Low-Level Programming, DOI 10.1007/978-1-4842-2403-8_12

CHAPTER 12 = SYNTAX, SEMANTICS, AND PRAGMATICS

12.2 Syntax and Formal Grammars

First of all, a language is a subset of all possible strings that we can construct from a certain alphabet.

For example, a language of arithmetic expressions has an alphabet>=1{0, 1,2, 3,4,5,6,7,8,9, +, -, %, /, .},
assuming only these four arithmetic operations are used and the dot separates an integer part. Not all
combinations of these symbols form a valid string—for example, +++-+ is not a valid sentence of this
language.

Formal grammars were first formalized by Noam Chomsky. They were created in attempt to formalize
natural languages, such as English. According to them, sentences have a tree-like structure, where the leaves
are kind of “basic blocks” and more complex parts are built from them (and other complex parts) according
to some rules.

All those primitive and composite parts are usually called symbols. The atomic symbols are called
terminals, and the complex ones are nonterminals.

This approach was adopted to construct synthetic languages with very simple (in comparison to natural
languages) grammars.

Formally, a grammar consists of

¢ A finite set of terminal symbols.
¢ Afinite set of nonterminal symbols.
¢ Afinite set of production rules, which hold information about language structure.

e A starting symbol, a nonterminal which will correspond to any correctly constructed
language statement. It is a starting point for us to parse any statement.

The class of grammars that we are interested in has a very particular form of production rules. Each of
them looks like

<nonterminal> ::= sequence of terminals and nonterminals

As we see, this is exactly the description of a nonterminal complex structure. We can write multiple
possible rules for the same nonterminal and the convenient one will be applied. To make it less verbose, we
will use the notation with the symbol | to denote “or,” just as in regular expressions.

This way of describing grammar rules is called BNF (Backus-Naur form): the terminals are denoted
using quoted strings, the production rules are written using ::= characters, and the nonterminal names are
written inside brackets.

Sometimes it is also quite convenient to introduce a terminal ¢, which, during parsing, will be matched
with an empty (sub)string.

So, grammars are a way to describe language structure. They allow you to perform the following kinds
of tasks:

o Test alanguage statement for syntactical correctness.
¢ Generate correct language statements.

e Parse language statements into hierarchical structures where, for example, the if
condition is separated from the code around it and unfolded into a tree-like structure
ready to be evaluated.

222

CHAPTER 12 SYNTAX, SEMANTICS, AND PRAGMATICS

12.2.1 Example: Natural Numbers

The language of natural numbers can be represented using a grammar.

We will take this set of characters as the alphabet: 2 =1{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. However, we want a more
decent representation than just all possible strings built of the characters from X, because the numbers with
leading zeros (000124) do not look nice.

We define several nonterminal symbols: first, <notzero> for any digit except zero, <digit> for any digit,
and <raw> for any sequence of <digit>s.

As we know, several rules are possible for one nonterminal. So, to define <notzero>, we can write as
many rules as there are different options:

<notzero> ::=
<notzero> ::=
<notzero»> ::=
<notzeroy> ::=
<notzero> ::=
<notzero> ::=
<notzero»> ::=
<notzero»> ::=
<notzeroy> ::=

W ooNOUVT A~ WN B

However, as it is very cumbersome and not so easy to read, we will use the different notation to describe
exactly the same rules:

<notzero> ::= "1' | '2' | '3" | '4" | ‘5" | ‘6" | ‘7" | '8 | '9'

This notation is a part of canonical BNF.
After adding a zero, we get a rule for nonterminal <digit>, that encodes any digit.

<digit> ::= '0' | <notzero>

Then we define the nonterminal <raw> to encode all digit sequences. A sequence of digits is defined in a
recursive way as either one digit or a digit followed by another sequence of digits.

<rawy ::= <digit> | «digit> <raw>

The <number> will serve us as a starting symbol. Either we deal with a one-digit number, which has no
constraints on itself, or we have multiple digits, and then the first one should not be zero (otherwise it is a
leading zero we do not want to see); the rest can be arbitrary.

Listing 12-1 shows the final result.

Listing 12-1. grammar_naturals

<notzero> ::= "1' | "2" | '3" | 4" | ‘5" | ‘6" | '7" | '8" | '9'
<digit> ::= '0' | <notzero>

<rawy ::= <digit> | «digit> <raw>

<number> ::= <digit> | <notzero> <raw>

223

CHAPTER 12 = SYNTAX, SEMANTICS, AND PRAGMATICS

12.2.2 Example: Simple Arithmetics

Let’s add a couple of simple binary operations. For a start, we will limit ourselves to addition and
multiplication. We will base it on an example shown in Listing 12-1.

Let’s add a nonterminal <expr> that will serve as a new starting symbol. An expression is either a
number or a number followed by a binary operation symbol and another expression (so, an expression is
also defined recursively).

Listing 12-2 shows an example.

Listing 12-2. grammar_nat_pm

(nOtZEI’O} ::: lll | I2l | l3l | I4l | l5I | I6l | l7l | I8l | l9l
<digit> ::= '0' | <notzero>

<raw> ::= <digit> | «digit> <raw>

<number> ::= <digit> | <notzero> <raw>

<expr> ::= <number> | <number> '+' <expr> | <number> '-' <expr>

The grammar allows us to build a tree-like structure on top of the text, where each leafis a terminal, and
each other node is a nonterminal. For example, let’s apply the current set of rules to a string 1+42 and see
how it is deconstructed. Figure 12-1 shows the result.

EXPR

S

NUMBER + EXPR

DIGIT NUMBER

| P

1 DIGIT NUMBER

4 DIGIT

|
2

Figure 12-1. Parse tree for the expression 1+42

The first expansion is performed according to the rule <expr> ::= number '+' <expr>. The latter
expression is just a number, which in turn is a sequence of digit and a number.

12.2.3 Recursive Descent

Writing parsers by hand is not hard. To illustrate it, we are going to show a parser that applies our new
knowledge about grammars to literally translate the grammar description into the parsing code.

Let’s take a grammar for natural numbers that we have already described in section 12.2.1 and add just
one more rule to it. The new starting symbol will be str, which corresponds to “a number ended by a
null-terminator” Listing 12-3 shows the revised grammar definition.

224

CHAPTER 12 SYNTAX, SEMANTICS, AND PRAGMATICS

Listing 12-3. grammar_naturals_nullterm

<n0tzer0> ce= |1| | |2| | |3| | |4| | |5| | |6| | |7| | |8| | |9|
<digit> ::= '0' | <notzero>

<raw> ::= <digit> | «digit> <raw>

<number> ::= <digit> | <notzero> <raw>

<str> ::= <number> '\o'

People usually operate with a notion of stream when performing parsing with grammar rules. A stream
is a sequence of whatever is considered symbols. Its interface consists of two functions:

e bool expect(symbol) accepts a single terminal and returns true if the stream contains
exactly this kind of terminal in the current position.

e bool accept(symbol) does the same and then advances the stream position by one in
case of success.

Up to now, we operated with abstractions such as symbols and streams. We can map all the abstract
notions to the concrete instances. In our case, the symbol will correspond to a single char.!

Listing 12-4 shows an example text processor built based on grammar rules definitions. This is a
syntactic checker, which verifies whether the string is holding a natural number without leading zeroes and
nothing else (like spaces around the number).

Listing 12-4. rec_desc_nat.c

#include <stdio.h>
#include <stdbool.h>

char const* stream = NULL ;

bool accept(char c¢) {
if (*stream == c) {
stream++;
return true;

}

else return false;

}

bool notzero(void) {
return accept('1') || accept('2') || accept('3')

|| accept('4') || accept('5") || accept('6"')
|| accept('7") || accept('8") || accept('9");
}
bool digit(void) {
return accept('0') || notzero();
}

'For parsers of programming languages it is much simpler to pick keywords and word classes (such as identifiers or
literals) as terminal symbols. Breaking them into single characters introduces unnecessary complexity.

225

CHAPTER 12 = SYNTAX, SEMANTICS, AND PRAGMATICS

bool raw(void) {
if (digit()) { raw(); return true; }
return false;
}
bool number(void) {
if (notzero()) {
raw();
return true;
} else return accept('0');
}
bool str(void) {
return number() &% accept(0);

void check(const char* string) {
stream = string;
printf("%s -> %d\n", string, str());
}
int main(void) {
check("12345");
check("hello12");
check("0002");
check("10dbd");
check("0");
return 0;

This example shows how each nonterminal is mapped to a function with the same name that tries to
apply the relevant grammar rules. The parsing occurs in a top-down manner: we start with the most general
starting symbol and try to break it into parts and parse them.

When the rules start alike we factorize them by applying the common part first and then trying to
consume the rest, as in number function. The two branches start with overlapping nonterminals: <digit>
and <notzero>. Each of them contains the range 1. . .9, the only difference being <digit>’s range including
zero. So, if we found a terminal in range 1. . .9 we try to consume as many digits after that as we can and we
succeed anyway. If not, we check for the first digit being 0 and stop if it is so, consuming no more terminals.

The <notzero> function succeeds if at least one of the symbols in range 1-9 is found. Due to the
lazy application of ||, not all accept calls will be performed. The first of them that succeeds will end the
expression evaluation, so only one advancement in stream will occur.

The <digit> function succeeds if a zero is found or if <notzero> succeeded, which is a literal translation
ofarule:

<digit> ::= '0' | <notzero>

The other functions are performing in the same manner. Should we not limit ourselves with a null-
terminator, the parsing would answer us a question: “does this sequence of symbols start with a valid
language sentence?”

In Listing 12-4 we have used a global variable on purpose in order to facilitate understanding. We still
strongly advise against their usage in real programs.

226

CHAPTER 12 SYNTAX, SEMANTICS, AND PRAGMATICS

The parsers for real programming languages are usually quite complex. In order to write them
programmers use a special toolset that can generate parsers from the declarative description close to BNE. In
case you need to write a parser for a complex language we recommend you taking a look at ANTLR or yacc
parser generators.

Another popular technique of handwriting parsers is called parser combinators. It encourages creating
parsers for the most basic generic text elements (a single character, a number, a name of a variable, etc.).
Then these small parsers are combined (OR, AND, sequence...) and transformed (one or many occurences,
zero or more occurences...) to produce more complex parsers. This technique, however, is easy to apply
when the language supports a functional style of programming, because it often relies on higher-order
functions.

On recursion in grammars The grammar rules can be recursive, as we see. However, depending on the
parsing technique using certain types of recursion might be ill-advised. For example, a rule expr ::= expr '+'
expr, while being valid, will not permit us to construct a parser easily. To write a grammar well in this sense,
you should avoid left-recursive rules such as the one listed previously, because, encoded naively, it will only
produce an infinite recursion, when the expr () function will start its execution with another call to expr (). The
rules that refine the first nonterminal on the right-hand side of the production avoid this problem.

Question 240 Write a recursive descent parser for floating point arithmetic with multiplication, subtraction,
and addition. For this assignment, we consider no negative literals exist (so instead of writing -1.20 we will
write 0-1.20.

12.2.4 Example: Arithmetics with Priorities

The interesting part of expressions is that different operations have different priorities. For example, the
addition operation has a lower priority than the multiplication operation, so all multiplications are done
prior to addition.

Let’s see the naive grammar for natural numbers with addition and multiplication in Listing 12-5.

Listing 12-5. grammar_nat_pm_mult

<notzero» ::= "'1' | '2" | '3" | '4" | '5' | '6" | '7" | '8 | '9'
<digit> ::= '0' | <notzero»
<raw> ::= <digit> | «digit> <raw>
<number> ::= <digit> | <notzero> <raw>
<expr> ::= <number> | <number> '+' <expr>
| <number> '-' <expr> | <number> '*' <expr>

227

CHAPTER 12 = SYNTAX, SEMANTICS, AND PRAGMATICS

Without taking the multiplication priority into account, the parse tree for the expression 1*2+3 will look
as shown in Figure 12-2.

EXPR

NUMBER * EXPR

‘ /’\
DIGIT

‘ NUMBER + EXPR

1 \ \
DIGIT NUMBER
| \
2 DIGIT
|
3

Figure 12-2. Parse trees without priorities for the expression 1%2+3

However, as we notice, the multiplication and addition are equals here: they are expanded in order of
appearance. Because of this, the expression 1*2+3 is parsed as 1*(2+3), breaking the common evaluation
order, tied to the tree structure.

From a parser’s point of view, the priority means that in the parse tree the “add” nodes should
be closer to the root than the “multiply” nodes, since addition is performed on the bigger parts of the
expression. The evaluation of the arithmetical expressions is performed, informally, starting from leaves
and ending in the root.

How do we prioritize some operations over others? It is acquired by splitting one syntactical category
<expr> into several classes. Each class is a refinement of the previous class of sorts. Listing 12-6 shows an
example.

Listing 12-6. grammar_priorities
<expr> ::= <expro> "<" <expr> | <expro> "<=" <expr>

| <expro> "==" <expr> | <expr0> ">" <expr> | <expro> ">=" <expr> | <expro>
<expro> = <expri> "+" <expr> | <expri> <expr> | <expri>
<expri> ::= <atomy> "*" <expri> | <atom> "/" <expri> | <atom>
<atom> ::= "(" <expr> ")" | <NUMBER>

We can understand this example in the following way:
e <expr> isreally any expression.

e <expr0> is an expression without <, >, == and other terminals, which are present in the
first rule.

e <expri> isalso free of addition and subtraction.

228

CHAPTER 12 SYNTAX, SEMANTICS, AND PRAGMATICS

12.2.5 Example: Simple Imperative Language

To illustrate that this knowledge can be applied to programming languages, we are giving an example of
one’s syntax. This syntax description provides definitions for the statements, comprising typical imperative
constructs: if, while, print and assignments. The keywords can be treated as atomic terminals.

Listing 12-7 shows the grammar.

Listing 12-7. imp

<statements> ::= <statement> | <statement> ";" <statements>

<statement> ::= "{" <statements> "}" | <assignment> | <if> | <while> | <print>
<print> ::= "print" "(" <expr> ")"

<assignment> ::= IDENT "=" <expr>

<ify o= "<df" (" <expr> ")" <statement> "<else>" <statement>

<while> ::= "<while>" "(" <expr> ")" <statement>

<expr> ::= <expro> "<" <expr> | <expro> "<=" <expr>

| <expro> "==" <expr> | <expr0> ">" <expr> | <expro> ">=" <expr> | <expro>
<expro> = <expri> "+" <expr> | <expril> "-" <expr> | <expri>

<expri> ::= <atomy> "*" <expri> | <atom> "/" <expri> | <atom>

<atom> ::= "(" <expr> ")" | NUMBER

12.2.6 Chomsky Hierarchy

The formal grammars as we have studied them are actually but a subclass of formal grammars as Chomsky
viewed them. This class is called context-free grammars for reasons that will soon be apparent.

The hierarchy consists of four levels ranging from 3 to 0, lower levels being more expressive and
powerful.

3. The regular grammars are surprisingly described by our old friends regular
expressions. The finite automatons are the weakest type of parsers because they
cannot handle the fractal structures such as arithmetical expressions.

Even in the simplest case, <expr> ::= number '+' <expr>, the part of the
expression on the right-hand side of '+' is similar to the whole expression. This
rule can be applied recursively an arbitrary amount of time.

2. The context-free grammars, which we have studied already, have rules that are of
the form

nonterminal ::=
<sequence of terminal and nonterminal symbols>

Any regular expression can be also described in terms of context-free grammars.

1. The context-sensitive grammars have rules of form:
aA b::=ayb
a and b denote an arbitrary (possibly empty) sequence of terminals and/or

nonterminals, y denotes a non-empty sequence of terminals and/or nonterminals,
and A is the nonterminal being expanded.

229

http://dx.doi.org/10.1007/978-1-4842-2403-8_7#Sec6
http://dx.doi.org/10.1007/978-1-4842-2403-8_7#Sec6

CHAPTER 12 = SYNTAX, SEMANTICS, AND PRAGMATICS

The difference between levels 2 and 1 is that the nonterminal on the left side is
substituted for y only when it occurs between a and b (which are left untouched).
Remember, both a and b can be rather complex.

0. The unrestricted grammars have rules of form:

sequence of terminal and nonterminal symbols ::=
sequence of terminal and nonterminal symbols

As there are absolutely no restrictions on the left- and right-hand sides of the
rules, these grammars are most powerful. It can be shown that these types of
grammars can be used to encode any computer program, so these grammars are
Turing-complete.

The real programming languages are almost never truly context-free. For example, a usage of a variable
declared earlier is apparently a context-sensitive construction, because it is only valid when following a
corresponding variable declaration. However, for simplicity, they are often approximated with context-free
grammars and then additional passes on the parsing tree transform are done to check whether such context-
sensitive conditions are satisfied.

12.2.7 Abstract Syntax Tree

There exists a notion of abstract syntax. It describes the trees that are constructed from the source code. The
concrete syntax describes the exact mapping between keywords and the tree node types they are mapped
to. For example, imagine that we have rewritten the C compiler so that the while keyword is replaced by
while. Then imagine that we have rewritten all programs so that this new keyword is used instead of
while. The concrete syntax did change indeed, but the abstract syntax is the same, because the language
constructions stayed the same. On the contrary, if we add a finally clause to if, itincorporates a statement
to be executed no matter the condition value, and we will change the abstract syntax as well.

The abstract syntax tree is usually also much more minimalistic in comparison to the parse trees. The
parse tree would hold information that was only relevant for parsing (see Figure 12-3).

EXPR +
N
1 ES
P
1 2
NUMBER + EXPR

‘ /’\
DIGIT

| NUMBER * EXPR

1 \ \
DIGIT NUMBER
| \
2 DIGIT
\
3

Figure 12-3. Parse tree and abstract syntax tree of the expression1 + 2%*3

As we see, the tree on the right is much more concise and to the point. This tree can be directly
evaluated by an interpreter or some executable code to calculate what might be generated.

230

CHAPTER 12 SYNTAX, SEMANTICS, AND PRAGMATICS

12.2.8 Lexical Analysis

In reality, applying grammar rules directly to the individual characters is overkill. It can be convenient to add
a prepass called lexical analysis. The raw text is first transformed into a sequence of lexemes (also called
tokens). Each token is described with a regular expression and extracted from the character stream. For
example, a number can be described with a regular expression [0-9]+, and an identifier can be [a-zA-Z_]
[0-9a-zA-Z_]*. After performing such processing, the text will no longer be a flat sequence of characters but
rather a linked list of tokens. Each token will be marked with its type and for the parser, the token types will
be mapped to terminals.

It is easy to ignore all formatting details (such as line breaks and other whitespace symbols) during
this step.

12.2.9 Summary on Parsing

The compiler parses the source code in several steps. Two important steps are lexical and syntactic analysis.
During the lexical analysis, the program text is broken into lexemes, such as integer literals or keywords.
The text formatting is no more relevant after this step. Each lexeme type is best described using a regular
expression.
During the syntactic analysis, a tree structure is built on top of the stream of tokens. This structure is
called an abstract syntax tree. Each node corresponds to a language construct.

12.3 Semantics

The language semantics is a correspondence between the sentences as syntactical constructions and their
meaning. Each sentence is usually described as a type of node in the program abstract syntax tree. This
description is performed in one of the following ways:

e Axiomatically. The current program state can be described with a set of logical
formulas. Then each step of the abstract machine will transform these formulas in a
certain way.

¢ Denotationally. Each language sentence is mapped into a mathematical object of
a certain theory (e.g., domain theory). Then the program effects can be described
in terms of this theory. It is of a particular interest when reasoning about program
behavior of different programs written in different languages.

e Operationally. Each sentence produces a certain change of state in the abstract
machine, which is subject to description. The descriptions in the C standard are
informal but resemble the operational semantic description more than the other two.

The language standard is the language description in human-readable form. However, while being
more comprehensible for an unprepared one, it is more verbose and sometimes less unambiguous. In order
to write concise descriptions, a language of mathematical logic and lambda calculus is usually used. We will
not dive into details in this book, because this topic demands a pedantic approach on its own. We refer you
to the books [29] and [35] for an immaculate study of type theory and language semantics.

231

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par30
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par36

CHAPTER 12 = SYNTAX, SEMANTICS, AND PRAGMATICS

12.3.1 Undefined Behavior

The completeness of the semantics description is not enforced. It means that some language constructions
are only defined for a subset of all possible situations. For example, a pointer dereference *x is only
guaranteed to behave in a consistent way when x points to a “valid” memory location. When x is NULL or
points to deallocated memory, the undefined behavior occurs. However, such expression is absolutely
correct syntactically.

The standard intentionally introduces cases of undefined behavior. Why?

First of all, it is easier to write compilers that produce code with less guarantees. Second, all defined
behavior has to be implemented. If we want that dereferencing null pointer triggers an error, the compiler
has two do two things each time any pointer is dereferenced:

e Tryto deduce that in this exact place the pointer can never have NULL as its value.

o If the compiler can not deduce, that this pointer is never NULL, it emits assembly code
to check it. If the pointer is NULL, this code will execute a handler to it. Otherwise, it
will proceed with dereferencing the pointer.

Listing 12-8 shows an example.

Listing 12-8. ptr_analysisl.c

int x = 0;

int* p = &x;

/* there are no writes to "p° in these lines */

p = 10; / this pointer can not be NULL */

However, this is much trickier than it might appear. In the example in Listing 12-8, we could have
assumed, that as no writes to variable p are performed, it is always holding the address of x. However, this is
not always true, as illustrated by the example shown in Listing 12-9.

Listing 12-9. ptr_analysis2.c
int x = 0;

int* p = 8&x;

/* there are no writes to “p° in these lines */
int** z = &p;
z = NULL; / Still not a direct write to “p~ */

10; /* this pointer can not be NULL -- not true anymore */

*p
So, solving this problem actually requires a very complex analysis in presence of pointer arithmetic.
Once the variable’s address is taken, or worse still, its address is passed to a function, you have to analyze the

entire function calling sequence, take function pointers into account, pointers to the pointers, etc.

The analysis will not always yield correct results (in the most general case this problem is even
theoretically undecidable), and the performance can suffer because of it. So, in accordance with the C
laissez-faire spirit, the correctness of pointer dereferencing is left to the responsibility of the programmer
himself.

232

CHAPTER 12 SYNTAX, SEMANTICS, AND PRAGMATICS

In managed languages such as Java or C#, the defined behavior of pointer dereferencing is much easier
to achieve. First, they are usually run inside a framework, which provides code for exception raising and
handling. Second, the nullability analysis is much simpler in the absence of address arithmetic. Finally,
they are usually compiled just-in-time, which means that the compiler has access to runtime information
and can use it to perform some optimizations unavailable to an ahead-of-time compiler. For example, after
the program has launched and given the user input, a compiler deduced that the pointer x is never NULL if
a certain condition P holds. Then it can generate two versions of the function f containing this dereference:
one with a check and the other without check. Then every time f is called, only one of two versions is called.
If the compiler can prove that P holds in a calling situation, the non-checked version is called; otherwise the
checked one is called.

The undefined behavior can be dangerous (and usually is). It leads to subtle bugs, because it does
not guarantee an error in compile or in runtime. The program can encounter a situation with undefined
behavior and continue execution silently; however, its behavior will randomly change after a certain amount
of instructions are executed.

A typical situation is the heap corruption. The heap is in fact structured; each block is delimited with
utility information, used by the standard library. Writing out of block bounds (but close to them) is likely to
corrupt this information, which will result in a crash during one of future calls to malloc of free, making this
bug a time-bomb.

Here are some cases of undefined behavior, explicitly specified by the C99 standard. We are not
providing the full list, because there are at least 190 cases.

¢ Signed integer overflow.
e Dereferencing an invalid pointer.
e Comparing the pointers to elements of two different memory blocks.

¢ (alling function with arguments that do not match its initial signature (possible by
taking a pointer to it and casting to other function type).

¢ Reading from an uninitialized local variable.
e Division by 0.

e Accessing an array element out of its bounds.
e Attempting to change a string literal.

e The return value of a function, which does not have an executed return statement.

12.3.2 Unspecified Behavior

Itis important to distinguish between undefined behavior and unspecified behavior. Unspecified behavior
defines a set of behaviors that might happen but does not specify which one exactly will be selected. The
selection will depend on the compiler.

For example,

e The function argument’s evaluation order is not specified. It means that while
evaluating f(g(), h()) we have no guarantees that g() will be evaluated first and h()
second. However, it is guaranteed that both g() and h() will be evaluated before ().

e The order of subexpression evaluation in general, f(x) + g(x), does not enforce f to
be executed before g. Unspecified behavior describes the cases of nondeterminism in
the abstract C machine.

233

CHAPTER 12 = SYNTAX, SEMANTICS, AND PRAGMATICS

12.3.3 Implementation-Defined Behavior

The standard also defines the implementation-defined behavior, such as the size of int (which, as we told
you, is architecture-dependent). We can think about such choices as the abstract machine parameters:
before we start it, we have to choose these parameters.

Another example of such behavior is the modulo operation x % y. The result in case of negative y is
implementation-defined.

What is the difference between implementation-defined and unspecified behavior? The answer is that
the implementation (compiler) has to explicitly document the choices it makes, while in cases of unspecified
behavior anything from a set of possible behaviors can occur.

12.3.4 Sequence Points

Sequence points are the places in the program where the state of the abstract machine is coherent to
the state of the target machine. We can think about them this way: when we debug a program, we can
execute it in a step-by-step fashion, where each step is roughly equivalent to a C statement. We usually
stop on semicolon, function calls, || operator, etc. However, we can switch to the assembly view, where
each statement will be encoded by possibly many instructions, and execute these instructions in the same
manner. It allows us to execute only a part of statement, pausing in a halfway. In this moment, the state of
the abstract C machine is not well defined. Once we finish executing instructions that implement one single
statement, the machines’ states “synchronize,” allowing us to explore not only the state of assembly level but
also the state of the C program itself. This is the sequence point.

The second, equivalent definition of sequence point is the place in the program where the side effects of
previous expressions are already applied, but the side effects of the following ones are not yet applied.

The sequence points are

e Semicolon.

e Comma (which in C can act the same way as a semicolon, but also groups statements.
Its usage is discouraged.).

e Logic AND/OR (not bitwise versions!).

¢ When the function arguments are evaluated but the function has not started its
execution yet.

e Question mark in the ternary operator.

Multiple real-world cases of undefined behavior are tied to the notion of sequence points. Listing 12-10
shows an example.

Listing 12-10. seq_points.c

int 1 = 0;
i=1++ *10;

What is i equal to? Unfortunately, the best answer we can give is the following: there is an undefined
behavior in this code. Apparently, we do not know whether the i will be incremented before assigning i*10
to i or after that. There are two writes in the same memory location before the sequence point and it is
undefined in which order will they occur.

The cause of this is as we have seen in section 12.3.2, the subexpression evaluation order is not fixed.
As subexpressions might have effects on the memory state (think function calls or pre-or postincrement
operators), and there is no enforced order in which these effects occur, even the result of one subexpression
may depend on the effects of the other.

234

CHAPTER 12 SYNTAX, SEMANTICS, AND PRAGMATICS

12.4 Pragmatics
12.4.1 Alignment

From the point of view of the abstract machine, we are working with bytes of memory. Each byte has its
address. The hardware protocols, used on the chip, are, however, quite different. It is quite common that the
processor can only read packs of, say, 16 bytes, which start from an address divisible by 16. In other words, it
can either read the first 16 byte-chunk from memory or the second one, but not a chunk that starts from an
arbitrary address.

We say that the data is aligned on N-byte boundary if it starts from an address divisible by N.
Apparently, if the data is aligned on kn-byte boundary;, it is automatically aligned on n-byte boundary. For
example, if the variable is aligned on 16-byte boundary, it is simultaneously aligned on an 8-byte boundary.

Aligned data (8-byte boundary):
0x00 00 00 00 00 00 00 00 : 11 22 33 44 55 66 77 88

Unaligned data (8-byte boundary):
0x00 00 00 00 00 00 00 00 : e oo oo 11 22 33 44 55
0x00 00 00 00 00 00 00 07 : 66 77 88

What happens when the programmer requests a read of a multibyte value which spans over two such
blocks (e.g., 8-byte value, whose first three bytes lie in one chunk, and the rest is in another one)? Different
architectures give different answers to this question.

Some hardware architectures forbid unaligned memory access. It means that an attempt to read any
value which is not aligned to, for example, an 8-byte boundary results in an interrupt. An example of such
architecture is SPARC. The operating systems can emulate unaligned accesses by intercepting the generated
interrupt and placing the complex accessing logic into the handler. Such operations, as you might imagine,
are extremely costly because the interrupt handling is relatively slow.

Intel 64 adapts a less strict behavior. The unaligned accesses are allowed but bear an overhead. For
example, if we want to read 8 bytes starting from the address 6 and we can only read chunks that are 8
bytes long, the CPU (central processing unit) will perform two reads instead of one and then compose the
requested value from the parts of two quad words.

So, aligned accesses are cheaper, because they require less reads. The memory consumption is often
a lesser concern for a programmer than the performance; thus compilers automatically adjust variables
alignment in memory even if it creates gaps of unused bytes. This is commonly referred to as data structure
padding.

The alignment is a parameter of the code generation and program execution, so it is usually viewed as a
part of language pragmatics.

12.4.2 Data Structure Padding
For structures, the alignment exists in two different senses:
e The alignment of the structure instance itself. It affects the address the structure starts at.

e The alignment of the structure fields. Compiler can intentionally introduce gaps
between structure fields in order to make accesses to them faster. Data structure
padding relates to this.

235

CHAPTER 12 = SYNTAX, SEMANTICS, AND PRAGMATICS

For example, we have created a structure, shown in Listing 12-11.

Listing 12-11. align_str_ex1

struct mystr {
uint16_t a;
uint64_t b;
1

Assuming an alignment on an 8-byte boundary, the size of such structure, returned by sizeof, will be
16 bytes. The a field starts at an address divisible by 8, and then six bytes are wasted to align b on an 8-byte
boundary.

There are several instances in which we should be aware of it:

e You might want to change the trade-off between memory consumption and
performance to lesser memory consumption. Imagine you are creating a million
copies of structures and every structure wastes 30% of its size because of alignment
gaps. Forcing the compiler to decrease these gaps will then lead to a memory usage
gain of 30% which is nothing to sneeze at. It also brings benefits of better locality
which can be far more beneficial than the alignment of individual fields.

o Reading file headers or accepting network data into structures should take possible
gaps between structure fields into account. For example, the file header contains a
field of 2 bytes and then a field of 8 bytes. There are no gaps between them. Now we
are trying to read this header into a structure, as shown in Listing 12-12.

Listing 12-12. align_str_read.c

struct str {
uint16_t a; /* a gap of 4 bytes */
uint64_t b;

b

struct str mystr;

fread(&mystr, sizeof(str), 1, f);

The problem is that the structure’s layout has gaps inside it, while the file stores fields in a contiguous
way. Assuming the values in file are a=0x1111 and b=0x 22 22 22 22 22 22 22, Figure 12-4 shows the
memory state after reading.

In file:
11 11 22 22 22 22 22 22 22 22 2?2 2? 7?7 1222 2?2 2?

In memory:
11 11 22 22 22 22 22 22 22 22 2?2 2? 2? 2?2 2?2 °?2°?

uintlé_t a uint64_t b

Figure 12-4. Memory layout structure and the data read from file

There are ways to control alignment; up until C11 they are compiler-specific. We will study them first.
The #pragma keyword allows us to issue one of the pragmatic commands to the compiler. It is supported
in MSVC, Microsoft’s C compiler, and is also understood by GCC for compatibility reasons.

236

CHAPTER 12 SYNTAX, SEMANTICS, AND PRAGMATICS

Listing 12-13 shows how to use it to locally change the alignment choosing strategy by using the pack
pragma.

Listing 12-13. pragma_pack.c

#pragma pack(push, 2)
struct mystr {
short a;
long b;
};
#tpragma pack(pop)

The second argument of pack is a presumed size of the chunk that the machine is able to read from
memory on the hardware level.

The first argument of pack is either push or pop. During the translation process, the compiler keeps
track of the current padding value by checking the top of the special internal stack. We can temporarily
override the current padding value by pushing a new value into this new stack and restore the old value
when we are done. Changing padding value globally is possible by using the following form of this pragma:

#pragma pack(2)

However, it is very dangerous because it leads to unpredictable subtle changes in other parts of
program, which are very difficult to trace.

Let’s see how the alignment value affects the individual field’s alignment by analyzing an example
shown in Listing 12-14.

Listing 12-14. pack_2.c

#pragma pack(push, 2)

struct mystr {
uint16_t a;
int64_t b;

};

#pragma pack(pop)

The padding value tells us how many bytes a hypothetical target computer can fetch from memory in
one read. The compiler tries to minimize the amount of reads for each field. There is no reason to skip bytes
between a and b here, because it brings no benefits with regard to the padding value. Assuming that a=0x11
11 and b=0x22 22 22 22 22 22 22 22, the memory layout will look like the following:

11 11 22 22 22 22 22 22 22 22
Listing 12-15 shows another example with the padding value equal to 4.

Listing 12-15. pack_4.c

#pragma pack(push, 4)

struct mystr {
uint16_t a;
int64_t b;

1;

#pragma pack(pop)

237

CHAPTER 12 = SYNTAX, SEMANTICS, AND PRAGMATICS

What if we adapt the same memory layout without gaps? As we can only read 4 bytes at a time, it is not
optimal. We have delimited the bounds of memory chunks that are readable atomically.

Pack: 2

1111 | 2222 | 2222 | 2222 | 2222 | 22 2
Pack: 4, same memory layout

1111 2222 | 2222 2222|2222 ?227?
Pack: 4, memory layout really used

1111 2?2 22 | 2222 2222 | 2222 2222

As we see, when the padding is set to 4, adapting a gapless memory layout forces the CPU to perform
three reads to access b. So, basically, the idea is to minimize the amount of reads while placing struct
members as close as possible.

The GCC specific way of doing roughly the same thing is the packed specification of the __attribute
directive. In general, attribute is describing the additional specification of a code entity such as a
type or a function. This packed keyword means that the structure fields are stored consecutively in memory
without gaps at all. Listing 12-16 shows an example.

Listing 12-16. str_attribute_packed.c

Struct_attribute_ ((packed)) mystr {
uint8_t first;
float delta;
float position;

};

Remember that packed structures are not part of the language and are not supported on some
architectures (such as SPARC) even on the hardware level, which means not only a performance hit but also
program crashes or reading invalid values.

12.5 Alignmentin C11

C11 introduced a standardized way of alignment control. It consists of
e Two keywords:
— _Alignas
— _Alignof

e stdalign.hheader file, which defines preprocessor aliases for Alignas and Alignof
asalignas and alignof

e aligned_alloc function.

Alignment is only possible to the powers of 2: 1, 2, 4, 8, etc.
alignof is used to know an alignment of a certain variable or type. It is computed in compile time, just
"o

as sizeof. Listing 12-17 shows an example of its usage. Note the "%zu" format specifier used to print or scan
values of type size_t.

238

CHAPTER 12 SYNTAX, SEMANTICS, AND PRAGMATICS

Listing 12-17. alignof_ex.c

#include <stdio.h>
#include <stdalign.h>

int main(void) {
short x;
printf("%zu\n", alignof(x));
return 0;

In fact, alignof(x) returns the greatest power of two x is aligned at, since aligning anything at, for
example, 8 implies alignment on 4, 2, and 1 as well (all its divisors).

Prefer using alignof to _Alignof and alignasto Alignas.

alignas accepts a constant expression and is used to force an alignment on a certain variable or array.
Listing 12-18 shows an example. Once launched, it outputs 8.

Listing 12-18. alignas_ex.c

#include <stdio.h>
#include <stdalign.h>

int main(void) {
alignas(8) short x;
printf("%zu\n", alignof(x));
return 0O;

By combining alignof and alignas we can align variables at the same boundary as other variables.
You cannot align variables to a value less than their size and alignas cannot be used to produce the
same effectas _attribute ((packed)).

12.6 Summary

In this chapter we have structured and expanded our knowledge about what the programming language is.
We have seen the basics of writing parsers and studied the notions of undefined and unspecified behavior
and why they are important. We then introduced the notion of pragmatics and elaborated one of the most
important things

We defer an assignment for this chapter until the next one, where we will elaborate the most important
good code practices. Assuming our readers are not yet very familiar with C, we want them to adapt good
habits as early as possible in the course of their C journey.

Question 241 What is the language syntax?
Question 242 What are grammars used for?
Question 243 What does a grammar consist of?
Question 244 What is BNF?

Question 245 How do we write a recursive descent parser having the grammar description in BNF?

239

CHAPTER 12 = SYNTAX, SEMANTICS, AND PRAGMATICS

Question 246 How do we incorporate priorities in grammar description?

Question 247 What are the levels of the Chomsky hierarchy?

Question 248 Why are regular languages less expressive than context-free grammars?
Question 249 What is the lexical analysis?

Question 250 What is the language semantic?

Question 251 What is undefined behavior?

Question 252 What is unspecified behavior and how is it different from undefined behavior?
Question 253 What are the cases of undefined behavior in C?

Question 254 What are the cases of unspecified behavior in C?

Question 255 What are sequence points?

Question 256 What is pragmatics?

Question 257 What is data structure padding? Is it portable?

Question 258 What is the alignment? How can it be controlled in C11?

240

CHAPTER 13

Good Code Practices

In this chapter we want to concentrate on the coding style. When writing code a developer is constantly
faced with a decision-making procedure. What kinds of data structures should he use? How should they
be named? Where and when should they be allocated? Experienced programmers make these decisions
in a different way compared to beginners, and we find it extremely important to speak about this decision
making process.

13.1 Making Choices

Decisions often require balancing between two poles that are mutually exclusive. The classical example
is that you cannot ship a quality product cheaply and quickly. Fine performance tuning of the code often
makes it harder to read and to debug. So, some code characteristics should be prioritized over others based
on common sense and the task itself. Because of this, such code guidelines are a good start, but following
them blindly is not the way to go.

Our code writing advices are based on the following premises:

1. We want the code to be as reusable as possible. This often requires careful planning
and coordination between developers, which does not let you write code really fast
but pays off very soon because it spares time for debugging and actually allows you
to write complex software. Debugging programs is generally considered harder
than writing them. So, less code often means less time spent debugging and more
robust functions. It is especially important for such languages as C, which are

¢ Unsafe in a large sense (allows for pointer arithmetic, does not perform bound
checks, etc.)

e Lack an expressive type system, seen in such languages as Scala, Haskell, or OCaml.
Such types impose a number of restrictions on the program that should be satisfied,
otherwise the compiler will reject it.

This rule has a notable exception. If reusing functions results in a drastic performance decrease, the
algorithm has an unnecessary large O-complexity. For example, we have done an assignment with linked
lists in Chapter 10. There was a function to calculate sum of all integers in a certain list. One way of creating
itis roughly shown in Listing 13-1.

© Igor Zhirkov 2017 241
1. Zhirkov, Low-Level Programming, DOI 10.1007/978-1-4842-2403-8_13

http://dx.doi.org/10.1007/978-1-4842-2403-8_10

CHAPTER 13 GOOD CODE PRACTICES

Listing 13-1. list_sum bad.c

int list sum(const struct list* 1) {
size t i;
int sum = 0;
/* We do not want to launch the full computation
* of size at each cycle iteration */
size t sz = list size(1) ;
for(i =0; i<sz;1=1->next)
sum = sum + 1->value;
return sum;

In this example, for each i in the range from 0 inclusive to the list length exclusive we actually start
walking through the list from its very first element. This results in a drastic decrease in performance in
comparison with the single summing pass through the list. In the latter case, appending another element to
the list results in an additional list access, while in the program shown in Listing 13-1 this leads to
list length(1l) additional list accesses!

2. The program should be easy to modify. This point is interdependent with
the previous one. Smaller functions are often more reusable, and thus the
modifications become easier, because more code can be left untouched from the
previous version.

3. The code should be as easy to read as possible. The key factors here are

¢ Sane naming. Even if you are not a native English speaker, you should not write
variable names, function names, or commentary in your native language.

¢ Consistency. Use the same naming conventions and uniform ways of performing
similar operations.

¢ Short and concise functions. If the logic description is overly verbose, it is often a
sign of a lack of sane decomposition or you need an abstraction layer. It has also a
good effect on maintainability.

4. The code should be easy to test. Testing assures us that at least in some elaborated
cases the code behaves as intended.

Sometimes the task demands the opposite. For example, if we are writing the code for a controller in
absence of a good optimizing compiler and with very restricted resources, we can be forced to abandon
beautiful code structure because the compiler cannot inline functions properly; thus each call will impact
the performance, often in an unacceptable way.

13.2 Code Elements
13.2.1 General Naming

The specific naming convention is often imposed by the language itself. In cases in which the project is
based on an existing codebase, it might be reasonable to not deviate from it for the sake of consistency.
In this book we are using the following naming conventions:

e All names are written in lowercase letters.

e The name parts are separated with an underscore, as follows: 1ist_count.

242

CHAPTER 13 © GOOD CODE PRACTICES

The rest of this section concentrates on different language features and associated naming and usage
conventions.

13.2.2 File Structure

Include files should have an include guard.
They should be self-contained, which means that for each header file thisfile.h a .c file with only the
line #include "thisfile.h" should compile. The order of includes is often chosen as follows:

e Related header.

e Clibrary.

e Other libraries’ .h.
¢ Your project’s . h.

Then adhere to a consistent order of declaration of macros, types, functions, variables, etc. It greatly
simplifies navigating the project. A typical order is

e for headers:
1. Include files.
2. Macros.
3. Types.
4. Variables (globals).
5. Functions.
o for .cfiles
1. Include files.
. Macros.
Types.
. Variables (globals).
. Static variables.

. Functions.

N o @A WD

. Static functions.

13.2.3 Types

e When possible (C99 or newer), prefer the types defined in stdint.h, such asuint64_t
oruint8 t.

¢ Ifyouwant to be POSIX-compliant, do not define your own types with _t suffix. It
is reserved for standard types, so the new types that might be introduced in future
revisions of standard will not clash with the custom types defined in some programs.

¢ Types are often named with a prefix common to the project. For example, you want to
write a calculator, then the type tags will be prefixed with calc_.

243

CHAPTER 13 GOOD CODE PRACTICES

e When you are defining structures and if you can choose the order of fields, define
them in the following order:

— First try to minimize the memory losses from data structure padding.
— Then order fields by size.
— Finally, sort them alphabetically.

— Sometimes structures have fields that should not be modified by user directly.
For example, a library defines the structure shown in Listing 13-2.

Listing 13-2. struct_private_ex.c

struct mypair {
int x;
int y;
int _refcount;

};

The fields of such structure can be modified directly using dot or arrow syntax.
Our convention, however, implies that only specific library functions should
modify the _refcount field, and the library user should never do it by hand.

C lacks a concept of structure private fields, so it is as close as we can get
without using more or less dirty hacks.

— Enumeration members should be written in uppercase, like constants. The
common prefix is suggested for the members of one enumeration. An example is
shown in Listing 13-3.

Listing 13-3. enum_ex.c

Enum exit_code {
EX_SUCCESS,
EX_FAILURE,
EX_INVALID ARGUMENTS

};

13.2.4 Variables

Choosing the right names for variables and functions is crucial.
¢ Use nouns for names.

e Boolean variables should have meaningful names too. Prefixing them with is_is
advisable. Then append the exact property that is being checked. is_good is probably
too broad to be a good name in most cases, unlike is_prime or is_before last.

Prefer positive names to negative ones, as the human brain parses them easily—
for example, is_even over is_not_odd.

e Itis not advisable to use names that bear no meaning, like a, b, or x4. The notable
exception is the code that illustrates an article or a paper, which describes an
algorithm in pseudo code using such names. In this case, any naming change is more
likely to confuse readers than to bring more clarity. The indices are traditionally
named i and j and you will be understood if you stick to them.

244

http://dx.doi.org/10.1007/978-1-4842-2403-8_12#Par160

CHAPTER 13 © GOOD CODE PRACTICES

¢ Including the measuring units might be a good idea—for example,
uint32_t delay msecs.

e Other suffixes are useful too, such as cnt, max, etc.

For example, attempts_max (maximum attempts allowed), attempts_cnt
(attempts made).

e Global constants are named in all capital letters. Global mutable variables are prefixed
withg_.

e The tradition says that the global constants should be defined using #define directive.
However, the modern approach is to use const static orjust const global variables.
Contrary to #defines, they are typed and also better seen when debugging. If you have an
access to a quality compiler, it will inline them anyway (if it decides that it will be faster).

e Use const modifier whenever appropriate. C99 allows you to create variables in
arbitrary places inside functions, not just at the block start. Use it to store intermediate
results in named constants.

¢ Do not define global variables in header files! Define them in . c files and declare them
in .h file as extern.

13.2.5 On Global Variables

Do not use global mutable variables if you can. We cannot stress this enough. Here are the most important
problems they bring:

¢ In medium scale and more in large projects with a whopping number of lines, all
information about the function effects is better localized in its signature. A function
f might call another function g, and so on, and somewhere in this chain a global
variable will be changed. We cannot see that this change might occur by looking at f;
we have to study all functions it calls, and the functions they call, and so on.

¢ They make functions that are not reenterable. It means that a function f cannot be
called if is already being executed. The latter can happen in two cases:

— Function f is calling other functions, which after some inner calls might call f again, when the
first instance of f has not yet been terminated.

Listing 13-4 shows an example of a function f that is not reenterable.

Listing 13-4. reenterability.c

bool flag = true;
int var = 0;
void g(void) {

fOs
flag = false;

}
void f(void) {
if (flag) g();

— The program is parallelized and the function is being used in multiple threads
(which is often the case on modern computers).

245

CHAPTER 13 GOOD CODE PRACTICES

In case of a complex call hierarchy, knowing whether the function is reenterable or not requires an
additional analysis.

¢ They introduce security risks, because usually their values have to be checked before
being modified or used. Programmers tend to forget these checks. If something can go
wrong, it will go wrong.

e They make testing function harder because of the data dependency they are introducing.
Writing code without tests, however, is always a practice to avoid.

Global static mutable variables are evil too, but at least they do not pollute the global namespace in other files.
Global static immutable variables (const static) are, however, perfectly fine and can be often inlined
by compiler.

13.2.6 Functions
e Use verbs to name functions—for example, packet_checksum_calc.

e The prefixis_is also quite common for functions checking conditions—for example,
int is_prime(long num).

¢ The functions that operate on a struct with a certain tag are often prefixed with the
respective tag name—for example, bool list is empty(struct list* 1st);.

As C does not allow for fine namespace control, this seems to be the simplest form of controlling the
chaos that emerges when most functions are accessible from anywhere.

e Use the static modifier for all functions except for those you want to be available for everyone.

¢ Probably the most important place to use const is for function arguments of type
“pointer to immutable data.” It ensures that function does not occasionally change
them due to a programmer’s mistake.

13.3 Files and Documentation

As the project grows, the number of files increases and it becomes more difficult to navigate them. To be
able to cope with voluminous projects, you have to structure them from the very beginning.
Following is a common template for the project root directory.

src/ Source files

doc/ Documentation

res/ Resource files (such as images).

lib/ Static libraries that will be linked to the executable file.

build/ The artifacts: an executable file and other generated files.

include/ Include files. This directory is added to the compiler include search path by -I flag.
obj/ Generated object files. They are assembled in the executable files and libraries by the

linker and are not needed after the compilation end.

configure The initial configuration script that should be launched prior to building. It can set up
different target architectures or turn on and off features.

Makefile Contains instructions for the automated build system.
The file name and format varies depending on system used.

246

CHAPTER 13 © GOOD CODE PRACTICES

There are many build systems; some of the most popular ones for C are make, cmake, and automake.
Different languages have different ecosystems and often have dedicated build tools (e.g., Gradle or
OCamlBuild).

e We recommend you study these projects, which, to our knowledge, are well organized
Www.gnu.org/software/gsl/

e www.gnu.org/software/gsl/design/gsl-design.html
o www.kylheku.com/kaz/kazlib.html

Doxygen is a de facto standard for creating documentation for C and C++ programs. It allows us to
generate a fully structured set of HTML or LATEXpages from the program source code. The descriptions of
functions and variables are taken from specifically formatted comments. Listing 13-5 shows an example of a
source file which is accepted by Doxygen.

Listing 13-5. doxygen_example.h

#pragma once
#include <common.h>
#include <vm.h>

/** @defgroup const_pool Constant pool */

/** Free allocated memory for the pool contents
*/
void const_pool deinit(struct vm const _pool* pool);

/** Non-destructive constant pool combination
* @param a First pool.
* @param b Second pool.
* @returns An initialized constant pool combining contents of both arguments
**/
struct vm_const_pool const_combine(
struct vm_const_pool const* a,
struct vm_const _pool const* b);

/** Change the constant pool by adding the other pool's contents in its end.
* @param[out] src The source pool which will be modified.
* @param fresh The pool to merge with the “src™ pool.
*/
void const_merge(
struct vm_const_pool* src,
struct vm_const_pool const* fresh);

/*¥*%@} */
The specially formatted comments (starting with /** and containing commands such as @defgroup)

are processed by Doxygen to generate documentation for the respective code entities. For more information,
refer to Doxygen documentation.

247

http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/design/gsl-design.html
www.kylheku.com/kaz/kazlib.html

CHAPTER 13 GOOD CODE PRACTICES

13.4 Encapsulation

One of the thinking fundamentals is abstraction. In software engineering, it is a process of hiding
implementation details and data.

If we want to implement a certain behavior like an image rotation, we would like to think only about
the image rotation. The input file format, the format of its headers, is of little importance to us. What is really
important is to be able to work with dots which form the image and know its dimensions. However, you
cannot write a program without considering all this information that is actually independent of the rotation
algorithm itself.

We are going to split the program into parts; each part will do its purpose and only it. This logic can
be used by calling a set of exposed functions and/or a set of exposed global variables. Together they form
an interface for this program part. To implement them, however, we usually have to write more functions,
which are better hidden from the end user.

Working with version control systems When working in a team where many people perform changes
simultaneously, making smaller functions is very important. If a function performs many actions, and its code is
huge, multiple independent changes will be harder to merge automatically.

In programming languages supporting packages or classes, these are used to hide pieces of code and
create interfaces for them. Unfortunately, C has none of them; furthermore, there is no concept of “private
fields” in structures: all fields are seen by everyone.

The support for separate code files, called translation units, is the only real language feature to help us
isolate parts of program code. We use a notion of module as a synonym for a translation unit, a . c file.

The C standard does not define a notion of module. In this book we are using them interchangeably
because for the C language they are roughly equivalent.

As we know, functions and global variables become public symbols by default and thus accessible to
other files. What is reasonable is to mark all “private” functions and global variables as static in the .c file
and declare all “public” functions in the .h file.

As an example, we are going to write a module that implements a stack.

The header file will describe the structure and the functions that can operate its instances. It resembles
object-oriented programming without subtyping (no inheritance).

The interface will consist of the following functions:

e Create or destroy a stack;

e Push and pop elements from a stack.

e Checkif the stack is empty.

e Launch a function for each element in the stack.

The code file will define all functions and probably some more, which won'’t be accessible outside of it
and are only created for the sake of decomposition and code reusability.

Listings 13-6 and 13-7 show the resulting code. stack.h describes an interface. It has an include guard,
enumerates all other headers (first standard headers, then custom ones), and defines custom types.

248

CHAPTER 13 © GOOD CODE PRACTICES

Listing 13-6. stack.h

#ifndef STACK H_
#define _STACK H_

#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>

struct list;

struct stack {
struct list* first;
struct list* last;
size t count;

};

struct stack stack_init (void);
void stack deinit(struct stack* st);

void stack push(struct stack* s, int value);
int stack pop (struct stack* s);
bool stack is empty(struct stack const* s);

void stack foreach(struct stack* s, void (f)(int));
#endif /* STACK H */

There are two types defined: 1ist and stack. The first one is only used internally inside the stack,
and so we declared it an incomplete type. Only pointers to instances of such type are allowed unless its
definition is specified later.

For everyone who includes stack.h, the type struct 1ist will remain incomplete. The implementation
file stack.c, however, will define the structure, completing the type and allowing to access its fields
(but only in stack.c).

Then the struct stackis defined and the functions that work with it are declared (stack_push,
stack_pop, etc.) (see Listing 13-7).

Listing 13-7. stack.c

#include <malloc.h>
#include "stack.h"

struct list { int value; struct list* next; };

static struct 1list* list new(int item, struct list* next) {
struct list* 1st = malloc(sizeof(*1st));
lst->value = item;
l1st->next = next;
return 1st;

249

http://dx.doi.org/10.1007/978-1-4842-2403-8_10#Par25

CHAPTER 13 GOOD CODE PRACTICES

void stack push(struct stack* s, int value) {
s->first = list new(value, s->first);
if (s->last == NULL) s->last = s-> first;
s->count++;

}

int stack pop(struct stack* s) {

struct list* const head = s->first;

int value;

if (head) {
if (head->next) s->first = head->next;
value = head->value;
free(head);
if(-- s->count) {

s->first = s->last = NULL;

}

return value;
}
return 0;

}

void stack foreach(struct stack* s, void (f)(int)) {
struct list* cur;
for(cur = s->first; cur; cur = cur-> next)
f(cur->value);

}

bool stack is empty(struct stack const* s) {
return s->count == 0;
}

struct stack stack init(void) {
struct stack empty = { NULL, NULL, O };
return empty;

}

void stack deinit(struct stack* st) {
while(! stack is empty(st)) stack pop(st);
st-> first = NULL;
st-> last = NULL;

This file defines all functions declared in the header. It can be split into multiple . c files, which will
sometimes do good for the project structure; what is important is that the compiler should accept them all
and then the compiled code should get to the linker.

A static function 1ist_new is defined to isolate the instance initialization of struct 1list.Itis not
exposed to the outside world. During optimizations, not only can the compiler inline it, but it can even
delete the function itself, effectively eliminating any possible implications on the code performance.
Marking function static is necessary (but not sufficient) for this optimization to occur. Additionally, the
instructions of static functions might be placed closer to their respective callers, improving locality.

By splitting the program on modules with well-described interfaces you reduce the overall complexity
and achieve better reusability.

250

CHAPTER 13 © GOOD CODE PRACTICES

The need to create header files makes modifications a bit cumbersome because the consistency of
headers with the code itself is the programmer’s responsibility. However, we can benefit from it as well by
specifying a clear interface description, which lacks the implementation details.

13.5 Immutability

It is quite common to have to choose between creating a new modified copy of a structure and performing
modifications in place.
Here are some advantages and disadvantages of both choices.

e (Creating copy:
— Easier to write: you won't accidentally pass the wrong instance to a function.
— Easier to debug, because you don’t have to track changes of variable.
— Can be optimized by the compiler.
— Friendly to parallelization.

— Can be slower.

e Mutating existing instance.
— Faster.
— Can become very hard to debug, especially in a multithreaded environment.

— Sometimes simpler because you don’t have to carefully and recursively copy struc-
tures with multiple pointers to other structures (this process is called deep
copying).

— For objects with a distinct identity, this approach may be more intuitive and is also
robust enough.

Our perception of the real world is based on mutable objects, because the objects in the real world often
have a distinct identity. When you are turning on your phone, the phone is not replaced by its copy, but the
state of the same phone is changed instead. In other words, the identity of the phone is maintained, while its
state is changing. Thus, in situations where you only have one instance of a certain type and the consecutive
changes are performed on it, it is fine to mutate it instead of making a copy at every change.

13.6 Assertions

There is a mechanism that allows you to test certain conditions during program execution. When such a
condition is not being satisfied, an error is produced and the program is terminated abnormally.

To use the assertion mechanism, we have to use #include <assert.h> and then use the assert macro.
Listing 13-8 shows an example.

Listing 13-8. assert.c

#include <assert.h>
int main() {

int x = 0;
assert(x !=0);
return 0;

251

CHAPTER 13 GOOD CODE PRACTICES

The condition, given to the assert macro, is obviously false; hence the program will terminate
abnormally and inform us about the failed assertion:

assert: assert.c:6: main: Assertion “x != 0' failed.

If the preprocessor symbol NDEBUG is defined (which can be achieved by using -D NDEBUG compiler
option or #define NDEBUG directive), the assert is replaced by an empty string and thus turned off. So,
assertions will produce zero overhead and the checks will not be performed.

You should use asserts to check for impossible conditions that signify the inconsistency of the program
state. Never use asserts to perform checks on user input.

13.7 Error Handling

While higher-level languages have some kind of error handling mechanism (which does not interfere with
the main logic description), C lacks one. There are three principal ways to deal with errors:

1. Use return codes. A function should not return a result as such but a code that
shows whether it has processed well or not. In the latter case the code reflects
the exact type of error that has occurred. The computation result is assigned by a
pointer that is accepted as an additional argument.

Listing 13-9 shows an example.

Listing 13-9. error_code.c

enum div res {
DIV OK,
DIV_BYZERO
};

enum div_res div(int x, int y, int* result) {
if (y !'=0) { *result = x/y; return DIV OK; }
else return DIV_BYZERO;

Symmetrically, you can return values as you do and set up error code using a pointer to a respective
variable.

Error codes can be described using an enum or with several #defines. Then you can use them as indices
in a static array of messages or use a switch statement. Listing 13-10 shows an example.

Listing 13-10. err_switch_arr.c

enum error code {
ERROR1,
ERROR2

};
enum error code err;
switch (err) {

case ERROR1: ... break;
case ERROR2: ... break;

252

CHAPTER 13 © GOOD CODE PRACTICES

default: ... break;
}

/* alternatively */

static const char* const messages[] = {
"It is the first error\n",
"The second error it is\n"

};
fprintf(stderr, messages[err]);

Never use global variables as error code holders (or to return a value from a function).

According to C standard,