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Introduction

This book aims to help you develop a consistent vision of the domain of low-level programming. We want to 
enable a careful reader to

•	 Freely write in assembly language.

•	 Understand the Intel 64 programming model.

•	 Write maintainable and robust code in C11.

•	 Understand the compilation process and decipher assembly listings.

•	 Debug errors in compiled assembly code.

•	 Use appropriate models of computation to greatly reduce program complexity.

•	 Write performance-critical code.

There are two kinds of technical books: those used as a reference and those used to learn. This book 
is, without doubt, the second kind. It is pretty dense on purpose, and in order to successfully digest the 
information we highly suggest continuous reading. To quickly memorize new information you should try to 
connect it with the information with which you are already familiar. That is why we tried, whenever possible, 
to base our explanation of each topic on the information you received from previous topics.

This book is written for programming students, intermediate-to-advanced programmers, and low-level 
programming enthusiasts. The prerequisites are a basic understanding of binary and hexadecimal systems 
and a basic knowledge of Unix commands.

■■ Questions and Answers T hroughout this book you will encounter numerous questions. Most of them 
are meant to make you think again about what you have just learned, but some of them encourage you to do 
additional research, pointing to the relevant keywords.

We propose the answers to these questions in our GitHub page, which also hosts all listings and starting 
code for assignments, updates and other goodies.

Refer to the book’s page on Apress site for additional information: http://www.apress.com/us/
book/9781484224021.

There you can also find several preconfigured virtual machines with Debian Linux installed, with and 
without a graphical user interface (GUI), which allows you to start practicing right away without spending 
time setting up your system. You can find more information in section 2.1.

We start with the very simple core ideas of what a computer is, explaining concepts of model of 
computation and computer architecture. We expand the core model with extensions until it becomes 
adequate enough to describe a modern processor as a programmer sees it. From Chapter 2 onward we start 
programming in the real assembly language for Intel 64 without resorting to older 16-bit architectures, that 
are often taught for historical reasons. It allows us to see the interactions between applications and operating 

http://www.apress.com/us/book/9781484224021
http://www.apress.com/us/book/9781484224021
http://dx.doi.org/10.1007/978-1-4842-2403-8_2
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system through the system calls interface and the specific architecture details such as endianness. After a 
brief overview of legacy architecture features, some of which are still in use, we study virtual memory in great 
detail and illustrate its usage with the help of procfs and examples of using mmap system call in assembly. 
Then we dive into the process of compilation, overviewing preprocessing, static, and dynamic linking. After 
exploring interrupts and system calls mechanisms in greater detail, we finish the first part with a chapter 
about different models of computations, studying examples of finite state machines, stack machines, and 
implementing a fully functional compiler of Forth language in pure assembly.

The second part is dedicated to the C language. We start from the language overview, building a core 
understanding of its model of computation necessary to start writing programs. In the next chapter we study 
the type system of C and illustrate different kinds of typing, ending with about a discussion of polymorphism 
and providing exemplary implementations for different kinds of polymorphism in C. Then we study the 
ways of correctly structuring the program by splitting it into multiple files and also viewing its effect on the 
linking process. The next chapter is dedicated to the memory management, input and output. After that, 
we elaborate three facets of each language: syntax, semantics, and pragmatics and concentrate on the first 
and the third ones. We see how the language propositions are transformed into abstract syntax trees, the 
difference between undefined and unspecified behavior in C, and the effect of language pragmatics on 
the assembly code produced by the compiler. In the end of the second part, we dedicate a chapter to the 
good code practices to give readers an idea of how the code should be written depending on its specific 
requirements. The sequence of the assignments for this part is ended by the rotation of a bitmap file and a 
custom memory allocator.

The final part is a bridge between the two previous ones. It dives into the translation details such as 
calling conventions and stack frames and advanced C language features, requiring a certain understanding 
of assembly, such as volatile and restrict keywords. We provide an overview of several classic low-level 
bugs such as stack buffer overflow, which can be exploited to induce an unwanted behavior in the program. 
The next chapter tells about shared objects in great details and studies them on the assembly level, providing 
minimal working examples of shared libraries written in C and assembly. Then, we discuss a relatively 
rare topic of code models. The chapter studies the optimizations that modern compilers are capable of 
and how that knowledge can be used to produce readable and fast code. We also provide an overview of 
performance-amplifying techniques such as specialized assembly instructions usage and cache usage 
optimization. This is followed by an assignment where you will implement a sepia filter for an image using 
specialized SSE instructions and measure its performance. The last chapter introduces multithreading via 
pthreads library usage, memory models, and reorderings, which anyone doing multithreaded programming 
should be aware of, and elaborates the need for memory barriers.

The appendices include short tutorials on gdb (debugger), make (automated build system), and a table 
of the most frequently used system calls for reference and system information to make performance tests 
given throughout the book easier to reproduce. They should be read when necessary, but we recommend 
that you get used to gdb as soon as you start assembly programming in Chapter 2.

Most illustrations were produced using VSVG library aimed to produce complex interactive vector 
graphics, written by Alexey Velikiy (http://www.corpglory.com). The sources for the library and book 
illustrations are available at VSVG Github page: https://github.com/corpglory/vsvg.

We hope that you find this book useful and wish you an enjoyable read!

http://dx.doi.org/10.1007/978-1-4842-2403-8_2
http://www.corpglory.com/
https://github.com/corpglory/vsvg
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CHAPTER 1

Basic Computer Architecture

This chapter is going to give you a general understanding of the fundamentals of computer functioning. We 
will describe a core model of computation, enumerate its extensions, and take a closer look at two of them, 
namely, registers and hardware stack. It will prepare you to start assembly programming in the next chapter.

1.1 � The Core Architecture
1.1.1 � Model of Computation
What does a programmer do? A first guess would probably be “construction of algorithms and their 
implementation.” So, we grasp an idea, then we code, and this is the common way of thinking.

Can we construct an algorithm to describe some daily routine, like going out for a walk or shopping? 
The question does not sound particularly hard, and many people will gladly provide you with their solutions.

However, all these solutions will be fundamentally different. One will operate with such actions as 
“opening the door” or “taking the key”; the other will rather “leave the house,” omitting details. The third 
one, however, will go rogue and provide a detailed description of the movement of his hands and legs, or 
even describe his muscle contraction patterns.

The reason those answers are so different is the incompleteness of the initial question.
All ideas (including algorithms) need a way to be expressed. To describe a new notion we use other, 

simpler notions. We also want to avoid vicious cycles, so the explanation will follow the shape of a pyramid. 
Each level of explanation will grow horizontally. We cannot build this pyramid infinitely, because the 
explanation has to be finite, so we stop at the level of basic, primitive notions, which we have deliberately 
chosen not to expand further. So, choosing the basics is a fundamental requirement to express anything.

It means that algorithm construction is impossible unless we have fixed a set of basic actions, which act 
as its building blocks.

Model of computation is a set of basic operations and their respective costs.
The costs are usually integer numbers and are used to reason about the algorithms’ complexity via 

calculating the combined cost of all their operations. We are not going to discuss computational complexity 
in this book.

Most models of computation are also abstract machines. It means that they describe a hypothetical 
computer, whose instructions correspond to the model’s basic operations. The other type of models, 
decision trees, is beyond the scope of this book.

1.1.2 � von Neumann Architecture
Now let us imagine we are living in 1930s, when today’s computers did not yet exist. People wanted to 
automate calculations somehow, and different researchers were coming up with different ways to achieve 
such automation. Common examples are Church’s Lambda calculus or the Turing machine. These are 
typical abstract machines, describing imaginary computers.
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One type of machine soon became dominant: the von Neumann architecture computer.
Computer architecture describes the functionality, organization, and implementation of computer 

systems. It is a relatively high-level description, compared to a calculation model, which does not omit even 
a slight detail.

von Neumann architecture had two crucial advantages: it was robust (in a world where electronic 
components were highly unstable and short-lived) and easy to program.

In short, this is a computer consisting of one processor and one memory bank, connected to a common 
bus. A central processing unit (CPU) can execute instructions, fetched from memory by a control unit. 
The arithmetic logic unit (ALU) performs the needed computations. The memory also stores data. See 
Figures 1-1 and 1-2.

Following are the key features of this architecture:

•   Memory stores only bits (a unit of information, a value equal to 0 or 1).

•   Memory stores both encoded instructions and data to operate on. There are no means 
to distinguish data from code: both are in fact bit strings.

•   Memory is organized into cells, which are labeled with their respective indices in 
a natural way (e.g., cell #43 follows cell #42). The indices start at 0. Cell size may 
vary (John von Neumann thought that each bit should have its address); modern 
computers take one byte (eight bits) as a memory cell size. So, the 0-th byte holds the 
first eight bits of the memory, etc.

•   The program consists of instructions that are fetched one after another. Their 
execution is sequential unless a special jump instruction is executed.

Assembly language for a chosen processor is a programming language consisting of mnemonics for 
each possible binary encoded instruction (machine code). It makes programming in machine codes much 
easier, because the programmer then does not have to memorize the binary encoding of instructions, only 
their names and parameters.

Note, that instructions can have parameters of different sizes and formats.
An architecture does not always define a precise instruction set, unlike a model of computation.
A common modern personal computer have evolved from old von Neumann architecture computers, 

so we are going to investigate this evolution and see what distinguishes a modern computer from the simple 
schematic in Figure 1-2.

Figure 1-1.  von Neumann architecture—Overview
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■■ Note   Memory state and values of registers fully describe the CPU state (from a programmer’s point of 
view). Understanding an instruction means understanding its effects on memory and registers.

1.2 � Evolution
1.2.1 � Drawbacks of von Neumann Architecture
The simple architecture described previously has serious drawbacks.

First of all, this architecture is not interactive at all. A programmer is limited by manual memory editing 
and visualizing its contents somehow. In the early days of computers, it was pretty straightforward, because 
the circuits were big and bits could have been flipped literally with bare hands.

Moreover, this architecture is not multitask friendly. Imagine your computer is performing a very 
slow task (e.g., controlling a printer). It is slow because a printer is much slower than the slowest CPU. The 
CPU then has to wait for a device reaction a percentage of time close to 99%, which is a waste of resources 
(namely, CPU time).

Then, when everyone can execute any kind of instruction, all sorts of unexpected behavior can occur. 
The purpose of an operating system (OS) is (among others) to manage the resources (such as external 
devices) so that user applications will not cause chaos by interacting with the same devices concurrently. 
Because of this we would like to prohibit all user applications from executing some instructions related to 
input/output or system management.

Another problem is that memory and CPU performance differ drastically.
Back in the old times, computers were not only simpler: they were designed as integral entities. 

Memory, bus, network interfaces—everything was created by the same engineering team. Every part was 
specialized to be used in this specific model. So parts were not destined to be interchangeable. In these 
circumstances none tried to create a part capable of higher performance than other parts, because it could 
not possibly increase overall computer performance.

But as the architectures became more or less stable, hardware developers started to work on different 
parts of computers independently. Naturally, they tried to improve their performance for marketing 
purposes. However, not all parts were easy and cheap1 to speed up. This is the reason CPUs soon became 
much faster than memory. It is possible to speed up memory by choosing other types of underlying circuits, 
but it would be much more expensive [12].

Figure 1-2.  von Neumann architecture—Memory

1Note how often solutions the engineers come up with are dictated by economic reasons rather than technical limitations.

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par13
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When a system consists of different parts and their performance characteristics differ a lot, the slowest 
part can become a bottleneck. It means that if is the slowest part is replaced with a faster analogue, the 
overall performance will increase significantly. That’s where the architecture had to be heavily modified.

1.2.2 � Intel 64 Architecture
In this book we only describe the Intel 64 architecture.2

Intel has been developing its main processor family since the 1970s. Each model was intended to 
preserve the binary compatibility with older models. It means that even modern processors can execute 
code written and compiled for older models. It leads to a tremendous amount of legacy. Processors can 
operate in a number of modes: real mode, protected, virtual, etc. If not specified explicitly, we will describe 
how a CPU operates in the newest, so-called long mode.

1.2.3 � Architecture Extensions
Intel 64 incorporates multiple extensions of von Neumann’s architecture. The most important ones are listed 
here for a quick overview.

Registers These are memory cells placed directly on the CPU chip. Circuit-wise they are much faster, 
but they are also more complicated and expensive. Register accesses do not use the bus. The response time 
is quite small and usually equals a couple of CPU cycles. See section 1.3 “Registers”.

Hardware stack A stack in general is a data structure. It supports two operations: pushing an element 
on top of it and popping the topmost element. A hardware stack implements this abstraction on top of 
memory through special instructions and a register, pointing at the last stack element. A stack is used not 
only in computations but to store local variables and implement function call sequence in programming 
languages. See section 1.5 “Hardware stack”.

Interrupts This feature allows one to change program execution order based on events external to 
the program itself. After a signal (external or internal) is caught, a program’s execution is suspended, some 
registers are saved, and the CPU starts executing a special routine to handle the situation. Following are 
exemplary situations when an interrupt occurs (and an appropriate piece of code is executed to handle it):

•   A signal from an external device.

•   Zero division.

•   Invalid instruction (when CPU failed to recognize an instruction by its binary 
representation).

•   An attempt to execute a privileged instruction in a non-privileged mode.  
See section 6.2 “Interrupts” for a more detailed description.

Protection rings A CPU is always in a state corresponding to one of the so-called protection rings. Each 
ring defines a set of allowed instructions. The zero-th ring allows executing any instruction from the entire 
CPU’s instruction set, and thus it is the most privileged. The third allows only the safest ones. An attempt to 
execute a privileged instruction results in an interrupt. Most applications are working inside the third ring 
to ensure that they do not modify crucial system data structures (such as page tables) and do not work with 
external devices, bypassing the OS. The other two rings (first and second) are intermediate, and modern 
operating systems are not using them.

See section 3.2 “Protected mode” for a more detailed description.
Virtual memory This is an abstraction over physical memory, which helps distribute it between 

programs in a safer and more effective way. It also isolates programs from one another.

2Also known as x86_64 and AMD64.

http://dx.doi.org/10.1007/978-1-4842-2403-8_6#Sec3
http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Sec2
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See section 4.2 “Motivation” for a more detailed description.
Some extensions are not directly accessible by a programmer (e.g., caches or shadow registers). We will 

mention some of them as well.
Table 1-1 summarizes information about some von Neumann architecture extensions seen in modern 

computers.

■■ Sources of information  No book should cover the instruction set and processor architecture completely. 
Many books try to include exhaustive information about instruction set. It gets outdated quite soon; moreover, it 
bloats the book unnecessarily.

We will often refer you to Intel® 64 and IA-32 Architectures Software Developer’s Manual available online:  
see [15]. Get it now!

There is no virtue in copying the instruction descriptions from the “original” place they appear in; it is much 
more mature to learn to work with the source.

The second volume covers instruction set completely and has a very useful table of contents. Please, always use 
it to get information about instruction set: it is not only a very good practice, but also a quite reliable source.

Note, that many educational resources devoted to assembly language in the Internet are often heavily outdated  
(as few people program in assembly these days) and do not cover the 64-bit mode at all. The instructions present 
in older modes often have their updated counterparts in long mode, and those are working in a different way. This 
is a reason we strongly discourage using search engines to find instruction descriptions, as tempting as it might be.

1.3 � Registers
The data exchange between CPU and memory is a crucial part of computations in a von Neumann 
computer. Instructions have to be fetched from memory, operands have to be fetched from memory; some 
instructions store results also in memory. It creates a bottleneck and leads to wasted CPU time when it waits 
for the data response from the memory chip. To avoid constant wait, a processor was equipped with its own 
memory cells, called registers. These are few but fast. Programs are usually written in such a way that most of 
the time the working set of memory cells is small enough. This fact suggests that programs can be written so 
that most of the time the CPU will be working with registers.

Table 1-1.  von Neumann Architecture: Modern Extensions

Problem Solution

Nothing is possible without querying slow memory Registers, caches

Lack of interactivity Interrupts

No support for code isolation in procedures, or for context saving Hardware stack

Multitasking: any program can execute any instruction Protection rings

Multitasking: programs are not isolated from one another Virtual memory

http://dx.doi.org/10.1007/978-1-4842-2403-8_4#Sec2
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
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Registers are based on transistors, while main memory uses condensers. We could have implemented 
main memory on transistors and gotten a much faster circuit. There are several reasons engineers prefer 
other ways of speeding up computations.

•   Registers are more expensive.

•   Instructions encode the register’s number as part of their codes. To address more 
registers the instructions have to grow in size.

•   Registers add complexity to the circuits to address them. More complex circuits are 
harder to speed up. It is not easy to set up a large register file to work on 5 GHz.

Naturally, register usage slows down computers in the worst case. If everything has to be fetched into 
registers before the computations are made and flushed into memory after, where’s the profit?

The programs are usually written in such a way, that they have one particular property. It is a result of 
using common programming patterns such as loops, function, and data reusage, not some law of nature. 
This property is called locality of reference and there are two main types of it: temporal and spatial.

Temporal locality means that accesses to one address are likely to be close in time.
Spatial locality means that after accessing an address X the next memory access will likely to be close 

to X, (like X − 16 or X + 28).
These properties are not binary: you can write a program exhibiting stronger or weaker locality.
Typical programs are using the following pattern: the data working set is small and can be kept inside 

registers. After fetching the data into registers once we will work with them for quite some time, and then the 
results will be flushed into memory. The data stored in memory will rarely be used by the program. In case 
we need to work with this data we will lose performance because

•   We need to fetch data into the registers.

•   If all registers are occupied with data we still need later on, we will have to spill some of 
them, which means save their contents into temporally allocated memory cells.

■■ Note   A widespread situation for an engineer: decreasing performance in the worst case to improve it in average 
case. It does work quite often, but it is prohibited when building real-time systems, which impose constraints on the 
worst system reaction time. Such systems are required to issue a reaction to events in no more than a certain amount 
of time, so decreasing performance in the worst case to improve it in other cases is not an option.

1.3.1 � General Purpose Registers
Most of the time, programmer works with general purpose registers. They are interchangeable and can be 
used in many different commands.

These are 64-bit registers with the names r0, r1, …, r15. The first eight of them can be named 
alternatively; these names represent the meaning they bear for some special instructions. For example, r1 is 
alternatively named rcx, where c stands for “cycle.” There is an instruction loop, which uses rcx as a cycle 
counter but accepts no operands explicitly. Of course, such kind of special register meaning is reflected in 
documentation for corresponding commands (e.g., as a counter for loop instruction). Table 1-2 lists all of 
them; see also Figure 1-3.
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■■ Note   Unlike the hardware stack, which is implemented on top of the main memory, registers are a 
completely different kind of memory. Thus they do not have addresses, as the main memory’s cells do!

The alternate names are in fact more common for historical reasons. We will provide both for reference 
and give a tip for each one. These semantic descriptions are given for a reference; you don’t have to 
memorize them right now.

You usually do not want to use rsp and rbp registers because of their very special meaning (later we 
will see how they corrupt stack and stack frame). However, you can perform arithmetic operations on them 
directly, which makes them general purpose.

Table 1-3 shows registers sorted by their names following an indexing convention.

Addressing a part of a register is possible. For each register you can address its lowest 32 bits, lowest 16 
bits, or lowest 8 bits.

When using the names r0,...,r15 it is done by adding an appropriate suffix to a register’s name:

•   d for double word—lower 32 bits;

•   w for word—lower 16 bits;

•   b for byte—lower 8 bits.

Table 1-2.  64-bit General Purpose Registers

Name Alias Description

r0 rax Kind of an “accumulator,” used in arithmetic instructions. For example, an instruction 
div is used to divide two integers. It accepts one operand and uses rax implicitly as 
the second one. After executing div rcx a big 128-bit wide number, stored in parts in 
two registers rdx and rax is divided by rcx and the result is stored again in rax.

r3 rbx Base register. Was used for base addressing in early processor models.

r1 rcx Used for cycles (e.g., in loop).

r2 rdx Stores data during input/output operations.

r4 rsp Stores the address of the topmost element in the hardware stack. See section 1.5 
“Hardware stack”.

r5 rbp Stack frame’s base. See section 14.1.2 “Calling convention”.

r6 rsi Source index in string manipulation commands (such as movsd)

r7 rdi Destination index in string manipulation commands (such as movsd)

r8

r9 … r15 no Appeared later. Used mostly to store temporal variables (but sometimes used 
implicitly, like r10, which saves the CPU flags when syscall instruction is 
executed. See Chapter 6 “Interrupts and system calls”).

Table 1-3.  64-Bit General Purpose Registers—Different Naming Conventions

r0 r1 r2 r3 r4 r5 r6 r7

rax rcx rdx rbx rsp rbp rsi rdi

http://dx.doi.org/10.1007/978-1-4842-2403-8_14#Sec3
http://dx.doi.org/10.1007/978-1-4842-2403-8_6
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For example,

•   r7b is the lowest byte of register r7;

•   r3w consists of the lowest two bytes of r3; and

•   r0d consists of the lowest four bytes of r0.

The alternate names also allow addressing the smaller parts.
Figure 1-4 shows decomposition of wide general purpose registers into smaller ones.
The naming convention for accessing parts of rax, rbx, rcx, and rdx follows the same pattern; only the 

middle letter (a for rax) is changing. The other four registers do not allow an access to their second lowest 
bytes (like rax does by the name of ah). The lowest byte naming differs slightly for rsi, rdi, rsp, and rbp.

•   The smallest parts of rsi and rdi are sil and dil (see Figure 1-5).

•   The smallest parts pf rsp and rbp are spl and bpl (see Figure 1-6).

In practice, the names r0-r7 are rarely seen. Usually programmers stick with alternate names for the 
first eight general purpose registers. It is done for both legacy and semantic reasons: rsp relates a lot more 
information, than r4. The other eight (r8-r15) can only be named using an indexed convention.

■■ Inconsistency in writes A ll reads from smaller registers act in an obvious way. The writes into 32-bit 
parts, however, fill the upper 32 bits of the full register with sign bits. For example, zeroing eax will zero the 
entire rax, storing -1 into eax will fill the upper 32 bits with ones. Other writes (e.g., in 16-bit parts) act as 
intended: they leave all other bits unaffected. See section 3.4.2 “CISC and RISC” for the explanation.

http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Sec6
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1.3.2 � Other Registers
The other registers have special meaning. Some registers have system-wide importance and thus cannot be 
modified except by the OS.

Figure 1-3.  Approximation of Intel 64: general purpose registers
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A programmer has access to rip register. It is a 64-bit register, which always stores an address of the 
next instruction to be executed. Branching instructions (e.g., jmp) are in fact modifying it. So, every time any 
instruction is being executed, rip stores the address of the next instruction to be executed.

■■ Note   All instructions have different size!

Another accessible register is called rflags. It stores flags, which reflect the current program state—for 
example, what was the result of the last arithmetic instruction: was it negative, did an overflow happened, 
etc. Its smaller parts are called eflags (32 bit) and flags (16 bit).

■■ Question 1 I t is time to do preliminary research based on the documentation [15]. Refer to section 3.4.3 
of the first volume to learn about register rflags. What is the meaning of flags CF, AF, ZF, OF, SF? What is the 
difference between OF and CF?

In addition to these core registers there are also registers used by instructions working with floating 
point numbers or special parallelized instructions able to perform similar actions on multiple pairs of 
operands at the same time. These instructions are often used for multimedia purposes (they help speed up 
multimedia decoding algorithms). The corresponding registers are 128-bit wide and named xmm0 - xmm15. 
We will talk about them later.

Some registers have appeared as non-standard extensions but became standardized shortly after. These 
are so-called model-specific registers. See section 6.3.1 “Model specific registers” for more details.

1.3.3 � System Registers
Some registers are designed specifically to be used by the OS. They do not hold values used in computations. 
Instead, they store information required by system-wide data structures. Thus their role is supporting a 
framework, born from a symbiosis of the OS and CPU. All applications are running inside this framework. 
The latter ensures that applications are well isolated from the system itself and from one another; it also 
manages resources in a way more or less transparent for a programmer.

It is extremely important that these registers are inaccessible by applications themselves (at least the 
applications should not be able to modify them). This is the goal of privileged mode (see section 3.2).

We will list some of these registers here. Their meaning will be explained in detail later.

•   cr0, cr4 store flags related to different processor modes and virtual memory;

•   cr2, cr3 are used to support virtual memory (see sections 4.2 “Motivation”,  4.7.1 
“Virtual address structure”);

Figure 1-4.  rax decomposition

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Sec7
http://dx.doi.org/10.1007/978-1-4842-2403-8_6#Sec5
http://dx.doi.org/10.1007/978-1-4842-2403-8_6#Sec5
http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Sec2
http://dx.doi.org/10.1007/978-1-4842-2403-8_4#Sec2
http://dx.doi.org/10.1007/978-1-4842-2403-8_4#Sec8
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•   cr8 (aliased as tpr) is used to perform a fine tuning of the interrupts mechanism  
(see section 6.2 “Interrupts”).

•   efer is another flag register used to control processor modes and extensions  
(e.g., long mode and system calls handling).

•   idtr stores the address of the interrupt descriptors table (see section 6.2 “Interrupts”).

•   gdtr and ldtr store the addresses of the descriptor tables (see section 3.2 “Protected 
mode”).

•   cs, ds, ss, es, gs, fs are so-called segment registers. The segmentation mechanism 
they provide is considered legacy for many years now, but a part of it is still used to 
implement privileged mode. See section 3.2 “Protected mode”.

Figure 1-5.  rsi and rdi decomposition

Figure 1-6.  rsp and rbp decomposition

http://dx.doi.org/10.1007/978-1-4842-2403-8_6#Sec3
http://dx.doi.org/10.1007/978-1-4842-2403-8_6#Sec3
http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Sec2
http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Sec2
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1.4 � Protection Rings
Protection rings are one of the mechanisms designed to limit the applications’ capabilities for security and 
robustness reasons. They were invented for Multics OS, a direct predecessor of Unix. Each ring corresponds 
to a certain privilege level. Each instruction type is linked with one or more privilege levels and is not 
executable on others. The current privilege level is stored somehow (e.g., inside a special register).

Intel 64 has four privilege levels, of which only two are used in practice: ring-0 (the most privileged) 
and ring-3 (the least privileged). The middle rings were planned to be used for drivers and OS services, but 
popular OSs did not adopt this approach.

In long mode, the current protection ring number is stored in the lowest two bits of register cs (and 
duplicated in those of ss). It can only be changed when handling an interrupt or a system call. So an 
application cannot execute an arbitrary code with elevated privilege levels: it can only call an interrupt 
handler or perform a system call. See Chapter 3 “Legacy” for more information.

1.5 � Hardware Stack
If we are talking about data structures in general, a stack is a data structure, a container with two operations: a 
new element can be placed on top of the stack (push); the top element can be taken away from the stack (pop).

There is a hardware support for such data structure. It does not mean there is also a separate stack 
memory. It is just sort of an emulation implemented with two machine instructions (push and pop) and 
a register (rsp). The rsp register holds an address of the topmost element of the stack. The instructions 
perform as follows:

•   push argument

1.	� Depending on argument size (2, 4, and 8 bytes are allowed), the rsp value is 
decreased by 2, 4, or 8.

2.	� An argument is stored in memory starting at the address, taken from the 
modified rsp.

•   pop argument

1.	 The topmost stack element is copied into the register/memory.

2.	� rsp is increased by the size of its argument. An augmented architecture is 
represented in Figure 1-7.

http://dx.doi.org/10.1007/978-1-4842-2403-8_3


Chapter 1 ■ Basic Computer Architecture

15

The hardware stack is most useful to implement function calls in higher-level languages. When a 
function A calls another function B, it uses the stack to save the context of computations to return to it after B 
terminates.

Here are some important facts about the hardware stack, most of which follow from its description:

	 1.	 There is no such situation as an empty stack, even if we performed push zero times. 
A pop algorithm can be executed anyway, probably returning a garbage “topmost” 
stack element.

	 2.	 Stack grows toward zero address.

	 3.	 Almost all kinds of its operands are considered signed integers and thus can be 
expanded with sign bit. For example, performing push with an argument B9

16
 will 

result in the following data unit being stored on the stack:

0xff b9, 0xffffffb9 or 0xff ff ff ff ff ff ff b9.

By default, push uses an 8-byte operand size. Thus an instruction push -1 will 
store 0xff ff ff ff ff ff ff ff on the stack.

	 4.	 Most architectures that support stack use the same principle with its top defined 
by some register. What differs, however, is the meaning of the respective address. 
On some architectures it is the address of the next element, which will be written 
on the next push. On others it is the address of the last element already pushed into 
the stack.

Figure 1-7.  Intel 64, registers and stack
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■■ Working with Intel docs: How to read instruction descriptions O pen the second volume of [15]. Find 
the page corresponding to the push instruction. It begins with a table. For our purpose we will only investigate 
the columns OPCODE, INSTRUCTION, 64-BIT MODE, and DESCRIPTION. The OPCODE field defines the machine 
encoding of an instruction (operation code). As you see, there are options and each option corresponds to a different 
DESCRIPTION. It means that sometimes not only the operands vary but also the operation codes themselves.

INSTRUCTION describes the instruction mnemonics and allowed operand types. Here R stands for any general 
purpose register, M stands for memory location, IMM stands for immediate value (e.g., integer constant like 42 
or 1337). A number defines operand size. If only specific registers are allowed, they are named. For example:

•	 push r/m16—push a general purpose 16-bit register or a 16-bit number taken from 
memory into the stack.

•	 push CS—push a segment register cs.

The DESCRIPTION column gives a brief explanation of the instruction’s effects. It is often enough to understand 
and use the instruction.

•	 Read the further explanation of push. When is the operand not sign extended?

•	 Explain all effects of the instruction push rsp on memory and registers.

1.6 � Summary
In this chapter we provided a quick overview of von Neumann architecture. We have started adding features to this 
model to make it more adequate for describing modern processors. So far we took a closer look at registers and the 
hardware stack. The next step is to start programming in assembly, and that is what the next chapter is dedicated 
to. We are going to view some sample programs, pinpoint several new architectural features (such as endianness 
and addressing modes), and design a simple input/output library for *nix to ease interaction with a user.

■■ Question 2  What are the key principles of von Neumann architecture?

■■ Question 3  What are registers?

■■ Question 4  What is the hardware stack?

■■ Question 5  What are the interrupts?

■■ Question 6 � What are the main problems that the modern extensions of the von Neumann model are trying 
to solve?

■■ Question 7  What are the main general purpose registers of Intel 64?

■■ Question 8  What is the purpose of the stack pointer?

■■ Question 9  Can the stack be empty?

■■ Question 10  Can we count elements in a stack?

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
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CHAPTER 2

Assembly Language

In this chapter we will start practicing assembly language by gradually writing more complex programs for Linux. 
We will observe some architecture details that impact the writing of all kinds of programs (e.g., endianness).

We have chosen a *nix system in this book because it is much easier to program in assembly compared 
to doing so in Windows.

2.1 � Setting Up the Environment
It is impossible to learn programming without trying to program. So we are going to start programming in 
assembly right now.

We are using the following setup in order to complete assembler and C assignments:

•   Debian GNU\Linux 8.0 as an operating system.

•	 NASM 2.11.05 as an assembly language compiler.

•	 GCC 4.9.2 as C language compiler. This exact version is used to produce assembly from 
C programs. Clang compiler can be used as well.

•	 GNU Make 4.0 as a build system.

•	 GDB 7.7.1 as a debugger.

•	 The text editor you like (preferably with syntax highlighting). We advocate ViM usage.

If you want to set up your own system, install any Linux distribution you like and make sure you install 
the programs just listed. To our knowledge, Windows Subsystem for Linux is also well suited to do all the 
assignments. You can install it and then install necessary packages using apt-get. Refer to the official guide 
located at: https://msdn.microsoft.com/en-us/commandline/wsl/install_guide.

On Apress web site for this book, http://www.apress.com/us/book/9781484224021, you can find the 
following:

•   Two preconfigured virtual machines with the whole toolchain installed. One of them 
has a desktop environment; the other one is just the minimal system that can be 
accessed through SSH (Secure Shell). The installation instructions and other usage 
information is located in the README.txt file in the downloaded archive.

•	 A link to GitHub page with all the book’s listings, answers to the questions, and 
solutions.

https://msdn.microsoft.com/en-us/commandline/wsl/install_guide
http://www.apress.com/us/book/9781484224021
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2.1.1 � Working with Code Examples
Throughout this chapter, you will see numerous code examples. Compile them and if you have difficulty 
grasping their logic, try to execute them step by step using gdb. It is a great help in studying code. See 
Appendix A for a quick tutorial on gdb.

Appendix D provides more information about the system used for performance tests.

2.2 � Writing “Hello, world”
2.2.1 � Basic Input and Output
Unix ideology postulates that “everything is a file.” A file, in a large sense, is anything that looks like a stream 
of bytes. Through files one can abstract such things as

•   data access on a hard drive/SSD;

•	 data exchange between programs; and

•	 interaction with external devices.

We will follow the tradition of writing a simple “Hello, world!” program for a start. It displays a welcome 
message on screen and terminates. However, such a program must show characters on screen, which 
cannot be done directly if a program is not running on bare metal, without an operating system babysitting 
its activity. An operating system’s purpose is, among other things, to abstract and manage resources, and 
display is surely one of them. It provides a set of routines to handle communication with external devices, 
other programs, file systems, and so on. A program usually cannot bypass the operating system and interact 
directly with the resources it controls. It is limited to system calls, which are routines provided by an 
operating system to user applications.

Unix identifies a file with its descriptor as soon as it is opened by a program. A descriptor is nothing 
more than an integer value (like 42 or 999). A file is opened explicitly by invoking the open system call; 
however, three important files are opened as soon as a program starts and thus should not be managed 
manually. These are stdin, stdout, and stderr. Their descriptors are 0, 1, and 2, respectively. stdin is used 
to handle input, stdout to handle output, and stderr is used to output information about the program 
execution process but not its results (e.g., errors and diagnostics).

By default, keyboard input is linked to stdin and terminal output is linked to stdout. It means that 
“Hello, world!” should write into stdout.

Thus we need to invoke the write system call. It writes a given amount of bytes from memory starting at 
a given address to a file with a given descriptor (in our case, 1). The bytes will encode string characters using 
a predefined table (ASCII-table). Each entry is a character; an index in the table corresponds to its code in a 
range from 0 to 255.

See Listing 2-1 for our first complete example of an assembly program.

Listing 2-1.  hello.asm

global _start

section .data
message: db 'hello, world!', 10

section .text
_start:
    mov     rax, 1           ;system call number should be stored in rax
    mov     rdi, 1           ; argument #1 in rdi: where to write (descriptor)?



Chapter 2 ■ Assembly Language

19

    mov     rsi, message     ; argument #2 in rsi: where does the string start?
    mov     rdx, 14          ; argument #3 in rdx: how many bytes to write?
    syscall                  ; this instruction invokes a system call

This program invokes a write system call with correct arguments on lines 6-9. It is really the only thing it 
does. The next sections will explain this sample program in greater detail.

2.2.2 � Program Structure
As we remember from the von Neumann machine description, there is only one memory, for both code and 
data; those are indistinguishable. However, a programmer wants to separate them. An assembly program is 
usually divided into sections. Each section has its use: for example, .text holds instructions, .data is for global 
variables (data available in every moment of the program execution). One can switch back and forth between 
sections; in the resulting program all data, corresponding to each section, will be gathered in one place.

To get rid of numeric address values programmers use labels. They are just readable names and 
addresses. They can precede any command and are usually separated from it by a colon. There is one label 
in this program at line 5. _start.

A notion of variable is typical for higher-level languages. In assembly language, in fact, notions of 
variables and procedures are quite subtle. It is more convenient to speak about labels (or addresses).

An assembly program can be divided into multiple files. One of them should contain the _start label. It 
is the entry point; it marks the first instruction to be executed.

This label should be declared global (see line 1). The meaning of it will be evident later.
Comments start with a semicolon and last until the end of the line.
Assembly language consists of commands, which are directly mapped into machine code. However, not all 

language constructs are commands. Others control the translation process and are usually called directives.1

In the “Hello, world!” example there are three directives: global, section, and db.

■■ Note   Assembly language is, in general, case insensitive, but label names are not!

mov, mOV, Mov are all the same thing, but global _start and global _START are not! Section names are case 
sensitive too: section .DATA and section .data differ!

The db directive is used to create byte data. Usually data is defined using one of these directives, which 
differ by data format:

•   db—bytes;

•	 dw—so-called words, equal to 2 bytes each;

•	 dd—double words, equal to 4 bytes; and

•	 dq—quad words, equal to 8 bytes.

Let’s see an example, in Listing 2-2.

Listing 2-2.  data_decl.asm

section .data
   example1: db 5, 16, 8, 4, 2, 1
   example2: times 999 db 42
   example3: dw 999

1The NASM manual also uses the name “pseudo instruction” for a specific subset of directives.
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times n cmd is a directive to repeat cmd n times in program code. As if you copy-pasted it n times. It also 
works with central processor unit (CPU) instructions.

Note that you can create data inside any section, including .text. As we told you earlier, for a CPU data 
and instructions are all alike and the CPU will try to interpret data as encoded instructions when asked to.

These directives allow you to define several data objects one by one, as in Listing 2-3, where a sequence 
of characters is followed by a single byte equal to 10.

Listing 2-3.  hello.asm

message: db 'hello, world!', 10

Letters, digits, and other characters are encoded in ASCII. Programmers have agreed upon a table, 
where each character is assigned a unique number—its ASCII-code. We start at address corresponding to the 
label message. We store the ASCII codes for all letters of string "hello, world!", then we add a byte equal to 
10. Why 10? By convention, to start a new line we output a special character with code 10.

■■ Terminological chaos  It is quite common to refer to the integer format most native to the computer as 
machine word. As we are programming a 64-bit computer, where addresses are 64-bit, general purpose 
registers are 64-bit, it is pretty convenient to take the machine word size as 64 bits or 8 bytes.

In assembly programming for Intel architecture the term word was indeed used to describe a 16-bit data entry, 
because on the older machines it was exactly the machine word. Unfortunately, for legacy reasons, it is still 
used as in old times. That’s why 32-bit data is called double words and 64-bit data is referred to as quad words.

2.2.3 � Basic Instructions
The mov instruction is used to write a value into either register or memory. The value can be taken from other 
register or from memory, or it can be an immediate one. However,

	 1.	 mov cannot copy data from memory to memory;

	 2.	 the source and the destination operands must be of the same size.

The syscall instruction is used to perform system calls in *nix systems. The input/output operations 
depend on hardware (which can be also used by multiple programs at the same time), so programmers are 
not allowed to control them directly, bypassing the operating system.

Each system call has a unique number. To perform it

	 1.	 The rax register has to hold system call’s number;

	 2.	 The following registers should hold its arguments: rdi, rsi, rdx, r10, r8, and r9.

System call cannot accept more than six arguments.

	 3.	 Execute syscall instruction.

It does not matter in which order the registers are initialized.
Note, that the syscall instruction changes rcx and r11! We will explain the cause later. When we wrote 

the “Hello, world!” program we used a simple write syscall. It accepts

	 1.	 File descriptor;

	 2.	 The buffer address. We start taking consecutive bytes for writing from here;

	 3.	 The amount of bytes to write.
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To compile our first program, save the code in hello.asm2 and then launch these commands in the shell:

> nasm -felf64 hello.asm -o hello.o
> ld -o hello hello.o
> chmod u+x hello

The details of compilation process along with compilation stages will be discussed in Chapter 5. Let’s 
launch “Hello, world!”

> ./hello
hello, world!
Segmentation fault

We have clearly output what we wanted. However, the program seems to have caused an error. What 
did we do wrong? After executing a system call, the program continues its work. We did not write any 
instructions after syscall, but the memory holds indeed some random values in the next cells.

■■ Note   If you did not put anything at some memory address, it will certainly hold some kind of garbage, not 
zeroes or any kind of valid instructions.

A processor has no idea whether these values were intended to encode instructions or not. So, following 
its very nature, it tries to interpret them, because rip register points at them. It is highly unlikely these values 
encode correct instructions, so an interrupt with code 6 will occur (invalid instruction).3

So what do we do? We have to use the exit system call, which terminates the program in a correct way, 
as shown in Listing 2-4.

Listing 2-4.  hello_proper_exit.asm

section .data
message: db 'hello, world!', 10

section .text
global _start

_start:
    mov     rax, 1           ; 'write' syscall number
    mov     rdi, 1           ; stdout descriptor
    mov     rsi, message     ; string address
    mov     rdx, 14          ; string length in bytes
    syscall

    mov     rax, 60          ; 'exit' syscall number
    xor     rdi, rdi
    syscall

2Remember: all source code, including listings, can be found on www.apress.com/us/book/9781484224021 and is also 
stored in the home directory of the preconfigured virtual machine!
3Even if not, soon the sequential execution will lead the processor to the end of allocated virtual addresses, see section 
4.2. In the end, the operating system will terminate the program because it is unlikely that the latter will recover from it.

http://dx.doi.org/10.1007/978-1-4842-2403-8_5
http://www.apress.com/us/book/9781484224021
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■■ Question 11  What does instruction xor rdi, rdi do?

■■ Question 12  What is the program return code?

■■ Question 13  What is the first argument of the exit system call?

2.3 � Example: Output Register Contents
Time to try something a bit harder. Let’s output rax value in hexadecimal format, as shown in Listing 2-5.

Listing 2-5.  Print rax Value:  print_rax.asm

section .data
codes:
    db      '0123456789ABCDEF'

section .text
global _start
_start:
    ; number 1122... in hexadecimal format
    mov rax, 0x1122334455667788

    mov rdi, 1
    mov rdx, 1
    mov rcx, 64
   ; Each 4 bits should be output as one hexadecimal digit
   ; Use shift and bitwise AND to isolate them
   ; the result is the offset in 'codes' array
.loop:
    push rax
    sub rcx, 4
   ; cl is a register, smallest part of rcx
   ; rax -- eax -- ax -- ah + al
   ; rcx -- ecx -- cx -- ch + cl
    sar rax, cl
    and rax, 0xf

    lea rsi, [codes + rax]
    mov rax, 1

   ; syscall leaves rcx and r11 changed
    push rcx
    syscall
    pop rcx

    pop rax
   ; test can be used for the fastest 'is it a zero?' check
   ; see docs for 'test' command
    test rcx, rcx
    jnz .loop
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    mov     rax, 60 ;          invoke 'exit' system call
    xor      rdi, rdi
    syscall

By shifting rax value and logical ANDing it with mask 0xF we transform the whole number into one of 
its hexadecimal digits. Each digit is a number from 0 to 15. Use it as an index and add it to the address of the 
label codes to get the representing character.

For example, given rax = 0x4A we will use indices 0x4 = 4
10

 and 0xA = 10
10.

4 The first one will give us a 
character '4' whose code is 0x34. The second one will result into character 'a' whose code is 0x61.

■■ Question 14  Check that the ASCII codes mentioned in the last example are correct.

We can use a hardware stack to save and restore register values, like around syscall instruction.

■■ Question 15  What is the difference between sar and shr? Check Intel docs.

■■ Question 16 H ow do you write numbers in different number systems in a way understandable to NASM? 
Check NASM documentation.

■■ Note  When a program starts, the value of most registers is not well defined (it can be absolutely random). 
It is a great source of rookie mistakes, as one tends to assume that they are zeroed.

2.3.1 � Local Labels
Notice the unusual label name .loop: it starts with a dot. This label is local. We can reuse the label names 
without causing name conflicts as long as they are local.

The last used dotless global label is a base one for all subsequent local labels (until the next global label 
occurs). The full name for .loop label is _start.loop. We can use this name to address it from anywhere in 
the program, even after other global labels occurs.

2.3.2 � Relative Addressing
This demonstrates how to address memory in a more complex way than just by immediate address.

Listing 2-6.  Relative Addressing:  print_rax.asm

lea rsi, [codes + rax]

Square brackets denote indirect addressing; the address is written inside them.

•   mov rsi, rax—copies rax into rsi

•	 mov rsi, [rax]—copies memory contents (8 sequential bytes) starting at address, stored 
in rax, into rsi. How do we know that we have to copy exactly 8 bytes? As we know, mov 
operands are of the same size, and the size of rsi is 8 bytes. Knowing these facts, the 
assembler is able to deduce that exactly 8 bytes should be taken from memory.

4The subscript denotes the number system’s base.
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The instructions lea and mov have a subtle difference between their meanings. lea means “load 
effective address.”

It allows you to calculate an address of a memory cell and store it somewhere. This is not always trivial, 
because there are tricky address modes (as we will see later): for example, the address can be a sum of 
several operands.

Listing 2-7 provides a quick demonstration of what lea and mov are doing.

Listing 2-7.  lea_vs_mov.asm

; rsi <- address of label 'codes', a number
mov rsi, codes

; rsi <- memory contents starting at 'codes' address
; 8 consecutive bytes are taken because rsi is 8 bytes long
mov rsi, [codes]

; rsi <- address of 'codes'
; in this case it is equivalent of mov rsi, codes
; in general the address can contain several components
lea rsi, [codes]

; rsi <- memory contents starting at (codes+rax)
mov rsi, [codes + rax]

; rsi <- codes + rax
; equivalent of combination:
; -- mov rsi, codes
; -- add rsi, rax
; Can't do it with a single mov!
lea rsi, [codes + rax]

2.3.3 � Order of Execution
All commands are executed consecutively except when special jump instructions occur. There is an 
unconditional jump instruction jmp addr. It can be viewed as a substitute of mov rip, addr.5

Conditional jumps rely on contents of rflags register. For example, jz address jumps to address only if 
zero flag is set.

Usually one uses either a test or a cmp instruction to set up necessary flags coupled with conditional 
jump instruction.

cmp subtracts the second operand from the first; it does not store the result anywhere, but it sets the 
appropriate flags based on it (e.g., if operands are equal, it will set zero flag). test does the same thing but 
uses logical AND instead of subtraction.

An example shown in Listing 2-8 incorporates writing 1 in rbx if rax < 42, and 0 otherwise.

5This action is impossible to encode using the mov command. Check Intel docs to verify that it is not implemented.
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Listing 2-8.  jumps_example.asm

    cmp rax, 42
    jl yes
    mov rbx, 0
    jmp ex
yes:
    mov rbx, 1
ex:

It is a common (and fast) way to test register value for being zero with test reg,reg instruction.
At least two commands exist for each arithmetic flag F: jF and jnF. For example, sign flag: js and jns. 

Other useful commands include

	 1.	 ja (jump if above)/jb (jump if below) for a jump after a comparison of unsigned 
numbers with cmp.

	 2.	 jg (jump if greater)/jl (jump if less) for signed.

	 3.	 jae (jump if above or equal), jle (jump if less or equal) and similar. Some of 
common jump instructions are shown in Listing 2-9.

Listing 2-9.  Jump Instructions:  jumps.asm

mov rax, -1
mov rdx, 2

cmp rax, rdx
jg location
ja location           ; different logic!

cmp rax, rdx
je  location          ; if rax equals rdx
jne location          ; if rax is not equal to rdx

■■ Question 17  What is the difference between je and jz?

2.4 � Function Calls
Routines (functions) allow one to isolate a piece of program logic and use it as a black box. It is a necessary 
mechanism to provide abstraction. Abstraction allows you to build more complex systems by encapsulating 
complex algorithms under opaque interfaces.

Instruction call <address> is used to perform calls. It does exactly the following:

push rip
jmp <address>

The address now stored in the stack (former rip contents) is called return address.
Any function can accept an unlimited number of arguments. The first six arguments are passed in rdi, 

rsi, rdx, rcx, r8, and r9, respectively. The rest is passed on to the stack in reverse order.
What we consider an end to a routine is unclear. The most straightforward thing to say is that ret 

instruction denotes the function end. Its semantic is fully equivalent to pop rip.
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Apparently, the fragile mechanism of call and ret only works when the state of the stack is carefully 
managed. One should not invoke ret unless the stack is exactly in the same state as when the function 
started. Otherwise, the processor will take whatever is on top of the stack as a return address and use it as the 
new rip content, which will certainly lead to executing garbage.

Now let’s talk about how functions use registers. Obviously, executing a function can change registers. 
There are two types of registers.

•   Callee-saved registers must be restored by the procedure being called. So, if it needs 
to change them, it has to change them back.

These registers are callee-saved: rbx, rbp, rsp, r12-r15, a total of seven registers.

•	 Caller-saved registers should be saved before invoking a function and restored after. One 
does not have to save and restore them if their value will not be of importance after.

All other registers are caller-saved.

These two categories are a convention. That is, a programmer must follow this agreement by

•   Saving and restoring callee-saved registers.

•	 Being always aware that caller-saved registers can be changed during function execution.

■■ A source of bugs A  common mistake is not saving caller-saved registers before call and using them after 
returning from function. Remember:

	 1.	 If you change rbx, rbp, rsp, or r12-r15, change them back!

	 2.	 If you need any other register to survive function call, save it yourself before calling!

Some functions can return a value. This value is usually the very essence of why the function is written and 
executed. For example, we can write a function that accepts a number as its argument and returns it squared.

Implementation-wise, we are returning values by storing them in rax before the function ends its 
execution. If you need to return two values, you are allowed to use rdx for the second one.

So, the pattern of calling a function is as follows:

•   Save all caller-saved registers you want to survive function call  
(you can use push for that).

•	 Store arguments in the relevant registers (rdi, rsi, etc.).

•	 Invoke function using call.

•	 After function returns, rax will hold the return value.

•	 Restore caller-saved registers stored before the function call.

■■ Why do we need conventions? A  function is used to abstract a piece of logic, forgetting completely about 
its internal implementation and changing it when necessary. Such changes should be completely transparent to 
the outside program. The convention described previously allows you to call any function from any given place 
and be sure about its effects (may change any caller-saved register; will keep callee-saved registers intact).

Some system calls also return values—be careful and read the docs!
You should never use rbp and rsp. They are implicitly used during the execution. As you already know, 

rsp is used as a stack pointer.
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■■ On system call arguments T he arguments for system calls are stored in a different set of registers than 
those for functions. The fourth argument is stored in r10, while a function accepts the fourth argument in rcx!

The reason is that syscall instruction implicitly uses rcx. System calls cannot accept more than six 
arguments. 

If you do not follow the described convention, you will be unable to change your functions without 
introducing bugs in places where they are called.

Now it is time to write two more functions: print_newline will print the newline character; print_hex 
will accept a number and print it in hexadecimal format (see Listing 2-10).

Listing 2-10.  print_call.asm

section .data

newline_char: db 10
codes: db '0123456789abcdef'

section .text
global _start

print_newline:
    mov rax, 1            ; 'write' syscall identifier
    mov rdi, 1            ; stdout file descriptor
    mov rsi, newline_char ; where do we take data from
    mov rdx, 1            ; the amount of bytes to write
    syscall
   ret

print_hex:
    mov rax, rdi

    mov rdi, 1
    mov rdx, 1
    mov rcx, 64           ; how far are we shifting rax?
iterate:
    push rax              ; Save the initial rax value
    sub rcx, 4
    sar rax, cl           ; shift to 60, 56, 52, ... 4, 0
                          ; the cl register is the smallest part of rcx
    and rax, 0xf          ; clear all bits but the lowest four
    lea rsi, [codes + rax]; take a hexadecimal digit character code

    mov rax, 1            ;

    push rcx              ; syscall will break rcx
    syscall               ; rax = 1 (31) -- the write identifier,
                          ;   rdi = 1 for stdout,
                          ; rsi = the address of a character, see line 29
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    pop rcx

    pop rax               ; ˆ see line 24 ˆ
    test rcx, rcx         ; rcx = 0 when all digits are shown
    jnz iterate

    ret
_start:
    mov rdi, 0x1122334455667788
    call print_hex
    call print_newline

    mov rax, 60
    xor rdi, rdi
    syscall

2.5 � Working with Data
2.5.1 � Endianness
Let’s try to output a value stored in memory using the function we just wrote. We are going to do it in two 
different ways: first we will enumerate all its bytes separately and then we will type it as usual (see Listing 2-11).

Listing 2-11.  endianness.asm

section .data
demo1: dq 0x1122334455667788
demo2: db 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88

section .text

_start:
    mov rdi, [demo1]
    call print_hex
    call print_newline

    mov rdi, [demo2]
    call print_hex
    call print_newline

    mov rax, 60
    xor rdi, rdi
    syscall

When we launch it, to our surprise, we get completely different results for demo1 and demo2.

> ./main
1122334455667788
8877665544332211

As we see, multi-byte numbers are stored in reverse order!
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The bits in each byte are stored in a straightforward way, but the bytes are stored from the least 
significant to the most significant.

This applies only to memory operations: in registers, the bytes are stored in a natural way. Different 
processors have different conventions on how the bytes are stored.

•   Big endian multibyte numbers are stored in memory starting with the most  
significant bytes.

•	 Little endian multibyte numbers are stored in memory starting with the least 
significant bytes.

As the example shows, Intel 64 is following the little endian convention. In general, choosing one 
convention over the other is a matter of choice, made by hardware engineers.

These conventions do not concern arrays and strings. However, if each character is encoded using 2 
bytes rather than just 1, those bytes will be stored in reverse order.

The advantage of little endian is that we can discard the most significant bytes effectively converting the 
number from a wider format to a narrower one, like 8 bytes.

For example,  demo3: dq 0x1234. Then, to convert this number into dw we have to read a dword number 
starting at the same address demo3. See Table 2-1 for a complete memory layout.

Big endian is a native format often used inside network packets (e.g., TCP/IP). It is also an internal 
number format for Java Virtual Machine.

Middle endian is a not very well-known notion. Assume we want to create a set of routines to perform 
arithmetic with 128-bit numbers. Then the bytes can be stored as follows: first will be the 8 least significant 
bytes in reversed order and then the 8 most significant bytes also in reverse order:

7 6 5 4 3 2 1 0, 16 15 14 13 12 11 10 9 8

2.5.2 � Strings
As we already know, the characters are encoded using the ASCII table. A code is assigned to each character. 
A string is obviously a sequence of character codes. However, it does not say anything about how to 
determine its length.

	 1.	 Strings start with their explicit length.

db 27, 'Selling England by the Pound'

Table 2-1.  Little Endian and Big Endian for quad word number 0x1234

ADDRESS VALUE – LE VALUE – BE

demo3 0x34 0x00

demo3 + 1 0x12 0x00

demo3 + 2 0x00 0x00

demo3 + 3 0x00 0x00

demo3 + 4 0x00 0x00

demo3 + 5 0x00 0x00

demo3 + 6 0x00 0x12

demo3 + 7 0x00 0x34
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	 2.	 A special character denotes the string ending. Traditionally, the zero code is used. 
Such strings are called null-terminated.

db 'Selling England by the Pound', 0

2.5.3 � Constant Precomputation
It is not uncommon to see such code:

lab: db 0
...
   mov rax, lab + 1 + 2*3

NASM supports arithmetic expressions with parentheses and bit operations. Such expressions can only 
include constants known to the compiler. This way it can precompute all such expressions and insert the 
computation results (as constant numbers) in executable code. So, such expressions are NOT calculated at 
runtime.

A runtime analogue would need to use such instructions as add or mul.

2.5.4 � Pointers and Different Addressing Types
Pointers are addresses of memory cells. They can be stored in memory or in registers.

The pointer size is 8 bytes. Data usually occupies several memory cells (i.e., several consecutive 
addresses). The pointers hold no information about the pointed data length. When trying to write somewhere 
a value whose size is not specified and can not be deduced (for example, mov [myvariable], 4), we can get 
compilation errors. In such cases we have to provide size explicitly as shown below:

section .data
test: dq -1

section .text

mov byte[test], 1 ;1
mov word[test], 1 ;2
mov dword[test], 1 ;4
mov qword[test], 1 ;8

■■ Question 18  What is test equal to after each of the commands listed previously?

Let’s see how one can encode operands in instructions.

	 1.	 Immediately:

An instruction is itself contained in memory. The operands in some form are its 
parts; those parts have addresses of their own. Many instructions can contain the 
operand values themselves.

This is the way to move a number 10 into rax.

mov rax, 10
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	 2.	 Through a register:

This instruction transfers rbx value into rax.

mov rax, rbx

	 3.	 By direct memory addressing:

This instruction transfers 8 bytes starting at the tenth address into rax:

mov rax, [10]

We can also take the address from register:

mov r9, 10
mov  rax, [r9]

We can use precomputations:

buffer: dq 8841, 99, 00
...
mov rax, [buffer+8]

The address inside this instruction was precomputed, because both base and 
offset are constants in control of compiler. Now it is just a number.

	 4.	 Base-indexed with scale and displacement

Most addressing modes are generalized by this mode. The address here is 
calculated based on the following components:

Address = base + index ∗ scale + displacement

•   Base is either immediate or a register;

•	 Scale can only be immediate equal to 1, 2, 4, or 8;

•	 Index is immediate or a register; and

•	 Displacement is always immediate.

Listing 2-12 shows examples of different addressing types.

Listing 2-12.  addressing.asm

mov rax, [rbx + 4* rcx + 9]
mov rax, [4*r9]
mov rdx, [rax + rbx]
lea rax, [rbx + rbx * 4]     ; rax = rbx * 5
add r8, [9 + rbx*8 + 7]

A big picture You can think about byte, word, etc. as about type specifiers. For instance, you can either 
push 16-, 32-, or 64-bit numbers into the stack. Instruction push 1 is unclear about how many bits wide the 
operand is. In the same way mov word[test], 1 signifies, that [test] is a word; there is an information about 
number format encoded in push word 1.
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2.6 � Example: Calculating String Length
Let’s start by writing a function to calculate the length of a null-terminated string.

As we do not have a routine to print something to standard output, the only way to output value is to 
return it as an exit code through exit system call. To see the exit code of the last process use the $? variable.

> true
> echo $?
0
> false
> echo $?
1

Let’s write an assembly program that mimics the false shell command, as shown in Listing 2-13.

Listing 2-13.  false.asm

global _start

section .text
_start:
    mov rdi, 1
    mov rax, 60
    syscall

Now we have everything needed to calculate string length. Listing 2-14 shows the code.

Listing 2-14.  String Length: strlen.asm

global _start

section .data

test_string: db "abcdef", 0

section .text

strlen:                   ; by our convention, first and the only argument
                          ; is taken from rdi
    xor rax, rax          ; rax will hold string length. If it is not
                          ; zeroed first, its value will be totally random

.loop:                    ; main loop starts here
    cmp byte [rdi+rax], 0 ; Check if the current symbol is null-terminator.
                          ; We absolutely need that 'byte' modifier since
                          ; the left and the right part of cmp should be
                          ; of the same size. Right operand is immediate
                          ; and holds no information about its size,
                          ; hence we don't know how many bytes should be
                          ; taken from memory and compared to zero
    je .end               ; Jump if we found null-terminator



Chapter 2 ■ Assembly Language

33

    inc rax               ; Otherwise go to next symbol and increase
                          ; counter
    jmp .loop

.end:
    ret                   ; When we hit 'ret', rax should hold return value

_start:

    mov rdi, test_string
    call strlen
    mov rdi, rax

    mov rax, 60
    syscall

The important part (and the only part we will leave) is the strlen function. Notice, that

	 1.	 strlen changes registers, so after performing call strlen the registers can 
change their values.

	 2.	 strlen does not change rbx or any other callee-saved registers.

■■ Question 19  Can you spot a bug or two in Listing 2-15? When will they occur?

Listing 2-15.  Alternative Version of strlen:  strlen_bug1.asm

global _start

section .data
test_string: db "abcdef", 0

section .text

strlen:
.loop:
    cmp byte [rdi+r13], 0
    je .end
    inc r13
    jmp .loop
.end:
    mov rax, r13
    ret

_start:
    mov rdi, test_string
    call strlen
    mov rdi, rax

    mov rax, 60
    syscall
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2.7 � Assignment: Input/Output Library
Before we start doing anything cool looking, we are going to ensure we won’t have to code the same basic 
routines over and over again. As for now, we do not have anything; even getting keyboard input is a pain. So, 
let’s build a small library for basic input and output functions.

First you have to read Intel docs [15] for the following instructions (remember, they are all described in 
details in the second volume):

•   xor

•	 jmp, ja, and similar ones

•	 cmp

•	 mov

•	 inc, dec

•	 add, imul, mul, sub, idiv, div

•	 neg

•	 call, ret

•	 push, pop

These commands are core to us and you should know them well. As you might have noticed, Intel 
64 supports thousands of commands. Of course, there is no need for us to dive there. Using system calls 
together with instructions listed earlier will get us pretty much anywhere.

You also have to read docs for the read system call. Its code is 0; otherwise it is similar to write. Refer to 
the Appendix C in case of difficulties.

Edit lib.inc and provide definitions for the functions instead of stub xor rax, rax instructions. Refer 
to Table 2-2 for the required functions’ semantics. We do recommend implementing them in the given order 
because sometimes you will be able to reuse your code by calling functions you have already written.

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
http://dx.doi.org/10.1007/978-1-4842-2403-8_20
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Use test.py to perform automated tests of correctness. Just run it and it will do the rest.
Remember, that a string of n characters needs n + 1 bytes to be stored in memory because of a null-terminator.
Read Appendix A to see how you can execute the program step by step observing the changes in register 

values and memory state.

2.7.1 � Self-Evaluation
Before testing or when facing an unexpected result, check the following quick list:

	 1.	 Labels denoting functions should be global; others should be local.

	 2.	 You do not assume that registers hold zero “by default.”

	 3.	 You save and restore callee-saved registers if you are using them.

6In fact, by decreasing rsp you allocate memory on the stack.
7We consider spaces, tabulation, and line breaks as whitespace characters. Their codes are 0x20, 0x9, and 0x10, respectively.

Table 2-2.  Input/Output Library Functions

Function Definition

exit Accepts an exit code and terminates current process.

string_length Accepts a pointer to a string and returns its length.

print_string Accepts a pointer to a null-terminated string and prints it to stdout.

print_char Accepts a character code directly as its first argument and prints it to stdout.

print_newline Prints a character with code 0xA.

print_uint Outputs an unsigned 8-byte integer in decimal format.

We suggest you create a buffer on the stack6 and store the division results there. Each 
time you divide the last value by 10 and store the corresponding digit inside the 
buffer. Do not forget, that you should transform each digit into its ASCII code  
(e.g., 0x04 becomes0x34).

print_int Output a signed 8-byte integer in decimal format.

read_char Read one character from stdin and return it. If the end of input stream occurs, return 0.

read_word Accepts a buffer address and size as arguments. Reads next word from stdin 
(skipping whitespaces7 into buffer). Stops and returns 0 if word is too big for the 
buffer specified; otherwise returns a buffer address.

This function should null-terminate the accepted string.

parse_uint Accepts a null-terminated string and tries to parse an unsigned number from its start.

Returns the number parsed in rax, its characters count in rdx.

parse_int Accepts a null-terminated string and tries to parse a signed number from its start. 
Returns the number parsed in rax; its characters count in rdx (including sign if any). 
No spaces between sign and digits are allowed.

string_equals Accepts two pointers to strings and compares them. Returns 1 if they are equal, 
otherwise 0.

string_copy Accepts a pointer to a string, a pointer to a buffer, and buffer’s length. Copies string 
to the destination. The destination address is returned if the string fits the buffer; 
otherwise zero is returned.

http://dx.doi.org/10.1007/978-1-4842-2403-8_18
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	 4.	 You save caller-saved registers you need before call and restore them after.

	 5.	 You do not use buffers in .data. Instead, you allocate them on the stack, which 
allows you to adapt multithreading if needed.

	 6.	 Your functions accept arguments in rdi, rsi, rdx, rcx, r8, and r9.

	 7.	 You do not print numbers digit after digit. Instead you transform them into strings of 
characters and use print_string.

	 8.	 parse_int and parse_uint are setting rdx correctly. It will be really important in the 
next assignment.

	 9.	 All parsing functions and read_word work when the input is terminated via Ctrl-D. 

Done right, the code will not take more than 250 lines.

■■ Question 20 T ry to rewrite print_newline without calling print_char or copying its code. Hint: read 
about tail call optimization.

■■ Question 21 T ry to rewrite print_int without calling print_uint or copying its code. Hint: read about tail 
call optimization.

■■ Question 22 T ry to rewrite print_int without calling print_uint, copying its code, or using jmp. You will 
only need one instruction and a careful code placement.

Read about co-routines.

2.8 � Summary
In this chapter we started to do real things and apply our basic knowledge about assembly language. We 
hope that you have overcome any possible fear of assembly. Despite being verbose to an extreme, it is not 
a hard language to use. We have learned to make branches and cycles and perform basic arithmetic and 
system calls; we have also seen different addressing modes, little and big endian. The following assembly 
assignments will use the little library we have built to facilitate interaction with user.

■■ Question 23  What is the connection between rax, eax, ax, ah, and al?

■■ Question 24 H ow do we gain access to the parts of r9?

■■ Question 25 H ow can you work with a hardware stack? Describe the instructions you can use.

■■ Question 26  Which ones of these instructions are incorrect and why?

mov [rax], 0

cmp [rdx], bl

mov bh, bl

mov al, al



Chapter 2 ■ Assembly Language

37

add bpl, 9

add [9], spl

mov r8d, r9d

mov r3b, al

mov r9w, r2d

mov rcx, [rax + rbx + rdx]

mov r9, [r9 + 8*rax]

mov [r8+r7+10], 6

mov [r8+r7+10], r6

■■ Question 27 E numerate the callee-saved registers

■■ Question 28 E numerate the caller-saved registers

■■ Question 29  What is the meaning of rip register?

■■ Question 30  What is the SF flag?

■■ Question 31  What is the ZF flag?

■■ Question 32  Describe the effects of the following instructions:

•	 sar

•	 shr

•	 xor

•	 jmp

•	 ja, jb, and similar ones.

•	 cmp

•	 mov

•	 inc,dec

•	 add

•	 imul, mul

•	 sub

•	 idiv, div

•	 call, ret

•	 push, pop
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■■ Question 33  What is a label and does it have a size?

■■ Question 34 H ow do you check whether an integer number is contained in a certain range (x, y )?

■■ Question 35  What is the difference between ja/jb and jg/jl?

■■ Question 36  What is the difference between je and jz?

■■ Question 37 H ow do you test whether rax is zero without the cmp command?

■■ Question 38  What is the program return code?

■■ Question 39 H ow do we multiply rax by 9 using exactly one instruction?

■■ Question 40 B y using exactly two instructions (the first is neg), take an absolute value of an integer 
stored in rax.

■■ Question 41  What is the difference between little and big endian?

■■ Question 42  What is the most complex type of addressing?

■■ Question 43  Where does the program execution start?

■■ Question 44  rax = 0x112233445567788. We have performed push rax. What will be the contents of 
byte at address [rsp+3]?
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CHAPTER 3

Legacy

This chapter will introduce you to the legacy processor modes, which are no longer used, and to their mostly 
legacy features, which are still relevant today. You will see how processors evolved and learn the details 
of protection rings implementation (privileged and user mode). You will also understand the meaning of 
Global Descriptor Table. While this information helps you understanding the architecture better, it is not 
crucial for assembly programming in user space.

As processors evolved, each new mode increased the machine word’s length and added new features. 
A processor can function in one of the following modes:

•   Real mode (the most ancient, 16-bit one);

•   Protected (commonly referred as 32-bit one);

•   Virtual (to emulate real mode inside protected);

•   System management mode (for sleep mode, power management, etc.);

•	 Long mode, with which we are already a bit familiar.

We are going to take a closer look at real and protected mode.

3.1 � Real mode
Real mode is the most ancient. It lacks virtual memory; the physical memory is addressed directly and 
general purpose registers are 16-bit wide.

So, neither rax nor eax exist yet, but ax, al, and ah do.
Such registers can hold values from 0 to 65535, so the amount of bytes we can address using one of them 

is 65536 bytes. Such memory region is called segment. Do not confuse it with protected mode segments or 
ELF (Executable and Linkable Format) file sections!

These are the registers usable in real mode:

•   ip, flags;

•   ax, bx, cx, dx, sp, bp, si, di;

•	 Segment registers: cs, ds, ss, es, (later also gs and fs).

As it was not straightforward to address more than 64 kilobytes of memory, engineers came up with a 
solution to use special segment registers in the following way:

•   Each physical address consists of 20 bits (so, 5 hexadecimal digits).
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•	 Each logical address consists of two components. One is taken from a segment register 
and encodes the segment start. The other is an offset inside this segment. The hardware 
calculates the physical address from these components the following way:

physical address = segment base * 16 + offset

You can often see addresses written in form of segment:offset, for example: 
4a40:0002, ds:0001, 7bd3:ah.

As we already stated, programmers want to separate code from data (and stack), so they intend to use 
different segments for these code sections. Segment registers are specialized for that: cs stores the code 
segment start address, ds corresponds to data segment, and ss to stack segment. Other segment registers are 
used to store additional data segments.

Note that strictly speaking, the segment registers do not hold segments’ starting addresses but rather 
their parts (the four most significant hexadecimal digits). By adding another zero digit to multiply it by 16

10
 

we get the real segment starting address.
Each instruction referencing memory implicitly assumes usage of one of segment registers. 

Documentation clarifies the default segment registers for each instruction. However, common sense can 
help as well. For instance, mov is used to manipulate data, so the address is relative to the data segment.

mov al, [0004]   ; === mov al, ds:0004

It is possible to redefine the segment explicitly:

mov al, cs:[0004]

When the program is loaded, the loader sets ip, cs, ss, and sp registers so that cs:ip corresponds to the 
entry point, and ss:sp points on top of the stack.

The central processing unit (CPU) always starts in real mode, and then the main loader usually executes 
the code to explicitly switch it to protected mode and then to the long mode.

Real mode has numerous drawbacks.

•   It makes multitasking very hard. The same address space is shared between all 
programs, so they should be loaded at different addresses. Their relative placement 
should usually be decided during compilation.

•   Programs can rewrite each other’s code or even operating system as they all live in the 
same address space.

•	 Any program can execute any instruction, including those used to set up the 
processor’s state. Some instructions should only be used by the operating system 
(like those used to set up virtual memory, perform power management, etc.) as their 
incorrect usage can crash the whole system.

The protected mode was intended to solve these problems.

3.2 � Protected Mode
Intel 80386 was the first processor implementing protected 32-bit mode.

It provides wider versions of registers (eax, ebx, ..., esi, edi) as well as new protection mechanisms: 
protection rings, virtual memory, and an improved segmentation.

These mechanisms isolated programs from one another, so an abnormal termination of one of them did 
not harm the others. Furthermore, programs were not able to corrupt other processes’ memory.
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The way of obtaining a segment starting address has changed compared to real mode. Now the start is 
calculated based on an entry in a special table, not by direct multiplication of segment register contents.

Linear address = segment base (taken from system table) + offset

Each of segment registers cs, ds, ss, es, gs, and fs stores so-called segment selector, containing 
an index in a special segment descriptor table and a little additional information. There are two types of 
segment descriptor tables: possibly numerous LDT (Local Descriptor Table) and only one GDT (Global 
Descriptor Table).

LDTs were intended for a hardware task-switching mechanism; however, operating system 
manufacturers did not adapt it. Today programs are isolated by virtual memory, and LDTs are not used.

GDTR is a register to store GDT address and size.
Segment selectors are structured as shown in Figure 3-1.

Figure 3-1.  Segment selector (contents of any segment register)

Index denotes descriptor position in either GDT or LDT. The T bit selects either LDT or GDT. As LDTs 
are no longer used, it will be zero in all cases.

The table entries in GDT/LDT also store information about which privilege level is assigned to the 
described segment. When a segment is accessed through segment selector, a check of Request Privilege 
Level (RPL) value (stored in selector = segment register) against Descriptor Privilege Level (stored in 
descriptor table) is performed. If RPL is not privileged enough to access a high privileged segment, an error 
will occur. This way we could create numerous segments with various permissions and use RPL values in 
segment selectors to define which of them are accessible to us right now (given our privilege level).

Privilege levels are the same thing as protection rings!
It is safe to say that current privilege level (e.g., current ring) is stored in the lowest two bits of cs or ss 

(these numbers should be equal). This is what affects the ability to execute certain critical instructions 
(e.g., changing GDT itself).

It’s easy to deduce that for ds, changing these bits allows us to override the current privilege level to be 
less privileged specifically for data access to a selected segment.

For example, we are currently in ring0 and ds= 0x02. Even though the lowest two bits of cs and ss are 0 
(as we are inside ring0), we can’t access data in a segment with privilege level higher than 2 (like 1 or 0).

In other words, the RPL field stores how privileged we are when requesting access to a segment. 
Segments in turn are assigned to one of four protection rings. When requesting access with a certain 
privilege level, the privilege level should be higher than the privilege level attributed to segment itself.

■■ Note Y ou can’t change cs directly.

Figure 3-2 shows the GDT descriptor format1.

1In this book we are approximating things a bit because certain data structures can have a different format based on page 
size, etc. The documentation will give you most precise answers (read volume 3, chapter 3 of [15]

http://dx.doi.org/10.1007/978-1-4842-2403-8_3
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
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G—Granularity, e.g., size is in 0 = bytes, 1 = pages of size 4096 bytes each.
D—Default operand size (0 = 16 bit, 1 = 32 bit).
L—Is it a 64-bit mode segment?
V—Available for use by system software.
P—Present in memory right now.
S—Is it data/code (1) or is it just some system information holder (0).
X—Data (0) or code (1).
RW—For data segment, is writing allowed? (reading is always allowed); for code segment, is reading 

allowed? (writing is always prohibited).
DC—Growth direction: to lower or to higher addresses? (for data segment); can it be executed from 

higher privilege levels? (if code segment)
A—Was it accessed?
DPL—Descriptor Privilege Level (to which ring is it attached?)

The processor always (even today) starts in real mode. To enter protected mode one has to create GDT 
and set up gdtr; set a special bit in cr0 and make a so-called far jump. Far jump means that the segment  
(or segment selector) is explicitly given (and thus can be different from default), as follows:

jmp 0x08:addr

Listing 3-1 shows a small snippet of how we can turn on protected mode (assuming start32 is a label 
on 32-bit code start).

Listing 3-1.  Enabling Protected Mode loader_start32.asm

lgdt cs:[_gdtr]

mov eax, cr0                 ; !! Privileged instruction
or al, 1                     ; this is the bit responsible for protected mode
mov cr0, eax                 ; !! Privileged instruction

    jmp (0x1 << 3):start32   ; assign first seg selector to cs

align 16
_gdtr:                       ; stores GDT's last entry index + GDT address
dw 47
dq _gdt

align 16

_gdt:
; Null descriptor (should be present in any GDT)
dd 0x00, 0x00

Figure 3-2.  Segment descriptor (inside GDT or LDT)
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; x32 code descriptor:
db 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x9A, 0xCF,     0x00 ; differ by exec bit
; x32 data descriptor:
db 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x92, 0xCF,     0x00 ; execution off (0x92)
;  size  size  base  base  base  util  util|size  base

Align directives control alignment, the essence of which we explain later in this book.

■■ Question 45  Decipher this segment selector: 0x08.

You might think that every memory transaction needs another one now to read GDT contents. This is 
not true: for each segment register there is a so-called shadow register, which cannot be directly referenced. 
It serves as a cache for GDT contents. It means that once a segment selector is changed, the corresponding 
shadow register is loaded with the corresponding descriptor from GDT. Now this register will serve as a 
source of all information needed about this segment.

The D flag needs a little explanation, because it depends on segment type.

•   It is a code segment: default address and operand sizes. One means 32-bit addresses 
and 32-bit or 8-bit operands; zero corresponds to 16-bit addresses and 16-bit or 8-bit 
operands. We are talking about encoding of machine instructions here. This behavior 
can be altered by preceding an instruction by a prefix 0x66 (to alter operand size) or 
0x67 (to alter address size).

•   Stack segment (it is a data segment AND we are talking about one selected by ss).2 It is 
again default operand size for call, ret, push/pop, etc. If the flag is set, operands are 
32-bit wide and instructions affect esp; otherwise operands are 16-bit wide and sp is 
affected.

•	 For data segments, growing toward low addresses, it denotes their limits (0 for 64 KB, 1 
for 4 GB). This bit should always be set in long mode.

As you see, the segmentation is quite a cumbersome beast. There are reasons it was not largely adopted 
by operating systems and programmers alike (and is now pretty much abandoned).

•   No segmentation is easier for programmers;

•   No commonly used programming language includes segmentation in its memory 
model. It is always flat memory. So it is a compiler’s job to set up segments (which is 
hard to implement).

•   Segments make memory fragmentation a disaster.

•   A descriptor table can hold up to 8192 segment descriptors. How can we use this small 
amount efficiently? 

After the introduction of long mode segmentation was purged from processor, but not completely. It is 
still used for protection rings and thus a programmer should understand it.

2In this case, documentation names this flag B.
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3.3 � Minimal Segmentation in Long Mode
Even in long mode each time an instruction is selected, the processor is using segmentation. It provides 
us with a flat linear virtual address, which is then turned into a physical one by virtual memory routines 
(see section 4.2).

LDT is a part of a hardware context-switching mechanism that no one really adopted; for this reason it 
was disabled in long mode completely.

All memory addressing through main segment registers (cs, ds, es, and ss) do not consider the GDT 
values of base and offset anymore. The segment base is always fixed at 0x0 no matter the descriptor contents; 
the segment sizes are not limited at all. The other descriptor fields, however, are not ignored.

It means, that in long mode at least three descriptors should be present in GDT: the null descriptor 
(should be always present in any GDT), code, and data segments. If you want to use protection rings to 
implement privileged and user modes, you need also code and data descriptors for user-level code.

■■ Why do we need separate descriptors for code and data?  No combination of descriptor flags allows a 
programmer to set up read/write permissions and execution permission simultaneously.

Even with the very small experience in assembly language we already have, it is not hard to decipher 
this loader fragment, showing an exemplary GDT. It is taken from Pure64, an open source operating system 
loader. As it is executed before the operating system, it does not contain user-level code or data descriptors 
(see Listing 3-2).

Listing 3-2.  A Sample GDT gdt64.asm

align 16  ; This ensures that the next command or data element is
; stored starting at an address divisible by 16 (even if we need
; to skip some bytes to achieve that).

; The following will be copied to GDTR via LGDTR instruction:

GDTR64:                 ; Global Descriptors Table Register
    dw gdt64_end - gdt64 - 1 ; limit of GDT (size minus one)
    dq 0x0000000000001000    ; linear address of GDT

; This structure is copied to 0x0000000000001000
gdt64:
SYS64_NULL_SEL equ $-gdt64      ; Null Segment
    dq 0x0000000000000000
; Code segment, read/exec, nonconforming
SYS64_CODE_SEL equ $-gdt64
    dq 0x0020980000000000       ; 0x00209A0000000000
; Data segment, read/write, expand down
SYS64_DATA_SEL equ $-gdt64
    dq 0x0000900000000000       ; 0x0020920000000000
gdt64_end:

; Dollar sign denotes the current memory address, so
; $-gdt64 means an offset from `gdt64` label in bytes

http://dx.doi.org/10.1007/978-1-4842-2403-8_4#Sec2
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3.4 � Accessing Parts of Registers
3.4.1 � An Unexpected Behavior
We are usually thinking about eax, rax, ax, etc. as parts of a same physical register. The observable behavior 
mostly supports this hypothesis unless we are writing into a 32-bit part of a 64-bit register. Let us take a look 
at the example shown in Listing 3-3.

Listing 3-3.  The Land of Registry Wonders risc_cisc.asm

mov rax, 0x1122334455667788      ; rax = 0x1122334455667788
mov eax, 0x42                    ; !rax = 0x00 00 00 00 00 00 00 42
                                 ; why not rax = 0x1122334400000042 ??

mov rax, 0x1122334455667788      ; rax = 0x1122334455667788
mov ax, 0x9999                   ; rax = 0x1111222233339999, as expected
                                 ; this works as expected

mov rax, 0x1122334455667788      ; rax = 0x1122334455667788
xor eax, eax                     ; rax = 0x0000000000000000
                                 ; why not rax = 0x1122334400000000?

As you see, writing in 8-bit or 16-bit parts leaves the rest of bits intact. Writing to 32-bit parts, however, 
fills the upper half of a wide register with sign bit!

The reason is that how programmers are used to perceiving a processor is much different from how 
things are really done inside. In reality, registers rax, eax, and all others do not exist as fixed physical entities.

To explain this inconsistency, we have to first elaborate two types of instruction sets: CISC and RISC.

3.4.2 � CISC and RISC
One of possible processors’ classification divides processors based on their instruction set. When designing 
one there are two extremes.

•   Make loads of specialized, high-level instructions. It corresponds to CISC (Complete 
Instruction Set Computer) architectures.

•	 Use only few primitive instructions, making a RISC (Reduced Instruction Set 
Computer) architecture.

CISC instructions are usually slower but also do more; sometimes it is possible to implement complex 
instructions in a better way, than by combining primitive RISC instructions (we will see an example of that 
later in this book when studying SSE (Streaming SIMD Extensions) in Chapter 16). However, most programs 
are written in high-level languages and thus depend on compilers. It is very hard to write a compiler that 
makes a good use of a rich instruction set.

RISC eases the job of compilers and is also friendlier to optimizations on a lower, microcode level, such 
as pipelines.

■■ Question 46 R ead about microcode in general and processor pipelines.

http://dx.doi.org/10.1007/978-1-4842-2403-8_16
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The Intel 64 instruction set is indeed a CISC one. It has thousands of instructions—just look at the 
second volume of [15]! However, these instructions are decoded and translated into a stream of simpler 
microcode instructions. Here various optimizations take effect; the microcode instructions are reordered 
and some of them can even be executed simultaneously. This is not a native feature of processors but rather 
an adaptation aimed at better performance together with backward compatibility with older software.

It is quite unfortunate that there is not much information available on the microcode-level details of 
modern processors. By reading technical reviews such as [17] and optimization manuals such as the one 
provided by Intel, you can develop a certain intuition about it.

3.4.3 � Explanation
Now back to the example shown in Listing 3-3. Let’s think about instruction decoding. The part of a CPU 
called instruction decoder is constantly translating commands from an older CISC system to a more 
convenient RISC one. Pipelines allow for a simultaneous execution of up to six smaller instructions. 
To achieve that, however, the notion of registers should be virtualized. During microcode execution, 
the decoder chooses an available register from a large bank of physical registers. As soon as the bigger 
instruction ends, the effects become visible to programmer: the value of some physical registers may be 
copied to those, currently assigned to be, let’s say, rax.

The data interdependencies between instructions stall the pipeline, decreasing performance. The worst 
cases occur when the same register is read and modified by several consecutive instructions (think about 
rflags!).

If modifying eax means keeping upper bits of rax intact, it introduces an additional dependency 
between current instruction and whatever instruction modified rax or its parts before. By discarding upper 
32 bits on each write to eax we eliminate this dependency, because we do not care anymore about previous 
rax value or its parts.

This kind of a new behavior was introduced with the latest general purpose registers’ growth to 64 bits 
and does not affect operations with their smaller parts for the sake of compatibility. Otherwise, most older 
binaries would have stopped working because assigning to, for example, bl, would have modified the entire 
ebx, which was not true back when 64-bit registers had not yet been introduced.

3.5 � Summary
This chapter was a brief historical note on processor evolution over the last 30 years. We have also elaborated 
on the intended use of segments back in the 32-bit era, as well as which leftovers of segmentation we are 
stuck with for legacy reasons. In the next chapter we are going to take a closer look at the virtual memory 
mechanism and its interaction with protection rings.

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par18
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CHAPTER 4

Virtual Memory

This chapter covers virtual memory as implemented in Intel 64. We are going to start by motivating an 
abstraction over physical memory and then getting a general understanding of how it looks like from a 
programmer’s perspective. Finally, we will dive into implementation details to achieve a more complete 
understanding.

4.1 � Caching
Let’s start with a truly omnipresent concept called caching.

The Internet is a big data storage. You can access any part of it, but the delay after you made a query can 
be significant. To smoothen your browsing experience, web browser caches web pages and their elements 
(images, style sheets, etc.). This way it does not have to download the same data over and over again. In 
other words, the browser saves the data on the hard drive or in RAM (random access memory) to give much 
faster access to a local copy. However, downloading the whole Internet is not an option, because the storage 
on your computer is very limited.

A hard drive is much bigger than RAM but also a great deal slower. This is why all work with data is done 
after preloading it in RAM. Thus main memory is being used as a cache for data from external storage.

Anyway, a hard drive also has a cache on its own...
On CPU crystal there are several levels of data caches (usually three: L1, L2, L3). Their size is much 

smaller than the size of main memory, but they are much faster too (the closest level to the CPU is almost as 
close as registers). Additionally, CPUs possess at least an instruction cache (queue storing instructions) and 
a Translation Lookaside Buffer to improve virtual memory performance.

Registers are even faster than caches (and smaller) so they are a cache on their own.
Why is this situation so pervasive? In information system, which does not need to give strict guarantees 

about its performance levels, introducing caches often decreases the average access time (the time between 
a request and a response). To make it work we need our old friend locality: in each moment of time we only 
have a small working set of data.

The virtual memory mechanism allows us, among other things, to use physical memory as a cache for 
chunks of program code and data.

4.2 � Motivation
Naturally, given a single task system where there is only one program running at any moment of time, it is 
wise just to put it directly into physical memory starting at some fixed address. Other components (device 
drivers, libraries) can also be placed into memory in some fixed order.



Chapter 4 ■ Virtual Memory

48

In a multitasking-friendly system, however, we prefer a framework supporting a parallel (or pseudo 
parallel) execution of multiple programs. In this case an operating system needs some kind of memory 
management to deal with these challenges:

•	 Executing programs of arbitrary size (maybe even greater than physical memory 
size). It demands an ability to load only those parts of program we need in the near 
future.

•	 Having several programs in memory at the same time.

Programs can interact with external devices, whose response time is usually slow. 
During a request to a slow piece of hardware that may last thousands of cycles, we 
want to lend precious CPUs to other programs. Fast switching between programs 
is only possible if they are already in memory; otherwise we have to spend much 
time retrieving them from external storage.

•	 Storing programs in any place of physical memory.

If we achieve that, we can load pieces of programs in any free part of the memory, 
even if they are using absolute addressing.

In case of absolute addressing, like mov rax, [0x1010ffba], all addresses 
including starting address become fixed: all exact address values are written into 
machine code.

•	 Freeing programmers from memory management tasks as much as possible.

While programming, we do not want to think about how different memory chips 
on our target architectures can function, what is the amount of physical memory 
available, etc. Programmers should pay closer attention to program logic instead.

•	 Effective usage of shared data and code.

Whenever several programs want to access the same data or code (libraries) files, it 
is a waste to duplicate them in memory for each additional user.

Virtual memory usage addresses these challenges.

4.3 � Address Spaces
Address space is a range of addresses. We see two types of address spaces:

•	 Physical address, which is used to access the bytes on the real hardware. Naturally, 
there is a certain memory capacity a processor cannot exceed. It is based on 
addressing capabilities. For example, a 32-bit system cannot address more than 
4GB of memory per process, because 232 different addresses roughly correspond to 
4GB of addressed memory. However, we could put less memory inside the machine 
capable of addressing 4GB, like, 1GB or 2GB. In this case some addresses of the 
physical address space will become forbidden, because there are no real memory 
cells behind them.
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•	 Logical address is the address as an application sees it.

In instruction mov rax, [0x10bfd] there is a logical address: 0x10bfd.

A programmer has an illusion that he is the sole memory user. Whatever memory 
cell he addresses, he never sees data or instructions of other programs, which are 
running with his own in parallel. Physical memory holds several programs at time, 
however.

In our circumstances virtual address is synonymous to logical address.

Translation between these two address types is performed by a hardware entity called Memory 
Management Unit (MMU) with help of multiple translation tables, residing in memory.

4.4 � Features
Virtual memory is an abstraction over physical memory. Without it we would work directly with physical 
memory addresses.

In the presence of virtual memory we can pretend that every program is the only memory consumer, 
because it is isolated from others in its own address space.

The address space of a single process is split into pages of equal length (usually 4KB). These pages are 
then dynamically managed. Some of them can be backed up to external storage (in a swap file), and brought 
back in case of a need.

Virtual memory offers some useful features, by assigning an unusual meaning to memory operations 
(read, write) on certain memory pages.

•	 We can communicate with external devices by means of Memory Mapped Input/
Output (e.g., by writing to the addresses, assigned to some device, and reading from 
them).

•	 Some pages can correspond to files, taken from external storage with the help of the 
operating system and file system.

•	 Some pages can be shared among several processes.

•	 Most addresses are forbidden—their value is not defined, and an attempt to access 
them results in an error.1 This situation usually results in abnormal termination of 
program.

Linux and other Unix-based systems use a signal mechanism to notify 
applications of exceptional situations. It is possible to assign a handler to almost all 
types of signals.

Accessing a forbidden address will be intercepted by the operating system, which 
will throw a SIGSEGV signal at the application. It is quite common to see an error 
message, Segmentation fault, in this situation.

•	 Some pages correspond to files, taken from storage (executable file itself, libraries, 
etc.), but some do not. These anonymous pages correspond to memory regions of 
stack and heap —dynamically allocated memory. They are called so because there 
are no names in file system to which they correspond. To the contrary, an image of the 
running executable data files and devices (which are abstracted as files too) all have 
names in the file system.

1An interrupt #PF (Page Fault) occurs.
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A continuous area of memory is called a region if:

•	 It starts at an address, which is multiple of a page size (e.g., 4KB).

•	 All its pages have the same permissions.

If the free physical memory is over, some pages can be swapped to external storage and stored in a swap 
file, or just discarded (in case they correspond to some files in file system and were not changed, for example). 
In Windows, the file is called PageFile.sys, in *nix systems a dedicated partition is usually allocated on disk. 
The choice of pages to be swapped is described by one of the replacement strategies, such as:

•	 Least recently used.

•	 Last recently used.

•	 Random (just pick a random page).

Any kind of a system with caching has a replacement strategy.

■■ Question 47 R ead about different replacement strategies. What other strategies exist?

Each process has a working set of pages. It consists of his exclusive pages present in physical memory.

■■ Allocation  What happens when a process needs more memory? It cannot get more pages on its own, so it 
asks the operating system for more pages. The system provides it with additional addresses.

Dynamic memory allocation in higher-level languages (C++, Java, C#, etc.) eventually ends up querying pages 
from the operating system, using the allocated pages until the process runs out of memory and then querying 
more pages.

4.5 � Example: Accessing Forbidden Address
Now we are going to see a memory map of a single process with our own eyes. It shows which pages are 
available and what they correspond to. We will observe different kinds of memory regions:

	 1.	 Corresponding to executable file, loaded into memory, itself.

	 2.	 Corresponding to code libraries.

	 3.	 Corresponding to stack and heap (anonymous pages).

	 4.	 Just empty regions of forbidden addresses.

Linux offers us an easy-to-use mechanism to explore various useful information about processes, called 
procfs. It implements a special purpose file system, where by navigating directories and viewing files, one 
can get access to any process’s memory, environment variables, etc. This file system is mounted in the /proc 
directory.

Most notably, the file /proc/PID/maps shows a memory map of process with identifier PID.2

2To find the process identifier, use such standard programs as ps or top.
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Let’s write a simple program, which enters a loop (and thus does not terminate) (Listing 4-1). It will 
allow us to see its memory layout while it is running.

Listing 4-1.  mappings_loop.asm

section .data
correct: dq -1
section .text

global _start
_start:
jmp _start

Now we have to launch a file /proc/?/maps, where ? is the process ID. See the complete terminal 
contents in Listing 4-2.

Listing 4-2.  mappings_loop

> nasm -felf64 -o main.o mappings_loop.asm
> ld -o main main.o
> ./main &
[1] 2186
> cat /proc/2186/maps
00400000-00401000 r-xp 00000000 08:01 144225 /home/stud/main
00600000-00601000 rwxp 00000000 08:01 144225 /home/stud/main
7fff11ac0000-7fff11ae1000 rwxp 00000000 00:00 0 [stack]
7fff11bfc000-7fff11bfe000 r-xp 00000000 00:00 0 [vdso]
7fff11bfe000-7fff11c00000 r--p 00000000 00:00 0 [vvar]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

Left column defines the memory region range. As you may notice, all regions are contained between 
addresses ending with three hexadecimal zeros. The reason is that they are composed of pages whose size is 
4KB each (= 0x1000 bytes).

We observe that different sections defined in the assembly file were loaded as different regions. The first 
region corresponds to the code section and holds encoded instructions; the second corresponds to data.

As you see, the address space is huge and spans from 0-th to 264 −1-th byte. However, only a few 
addresses are allocated; the rest are being forbidden.

The second column shows read, write, and execution permissions on pages. It also indicates whether 
the page is shared among several processes or it is private to this specific process.

■■ Question 48 R ead about meaning of the fourth (08:01) and fifth (144225) column in man procfs.

So far we did nothing wrong. Now let’s try to write into a forbidden location.

Listing 4-3.  Producing segfault: segfault_badaddr.asm

section .data
correct: dq -1
section .text
global _start
_start:
mov rax, [0x400000-1]
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; exit
mov rax, 60
xor rdi, rdi
syscall

We are accessing memory at address 0x3fffff, which is one byte before the code segment start. This 
address is forbidden and hence the writing attempt results in a segmentation fault, as the message suggests.

> ./main Segmentation fault

4.6 � Efficiency
Loading a missing page into physical memory from a swap file is a very costly operation, involving a huge 
amount of work from operating system. How come this mechanism turned out not only to be effective 
memory-wise but also to perform adequately? The key success factors are:

	 1.	 Thanks to locality, the need to load additional pages occurs rarely. In the worst 
case we have indeed very slow access; however, such cases are extremely rare. 
Average access time stays low.

In other words, we rarely try to access a page which is not loaded in physical  
memory.

	 2.	 It is clear that efficiency could not be achieved without the help of special 
hardware. Without a cache of translated page addresses TLB (Translation 
Lookaside Buffer) we would have to use a translation mechanism all the time. 
TLB stores the starting physical addresses for some pages we will likely to work 
with. If we translate a virtual address inside one of these pages, the page start will 
be immediately fetched from TLB.

In other words, we rarely try to translate an address from a page, that we did not 
recently locate in physical memory.

Remember that a program that uses less memory can be faster because it produces fewer page faults.

■■ Question 49  What is an associative cache? Why is TLB one?

4.7 � Implementation
Now we are going to dive into details and see how exactly the translation happens.

■■ Note   For now we are only talking about a dominant case of 4KB pages. Page size can be tuned and other 
parameters will change accordingly; refer to section 4.7.3 and [15] for additional details.

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
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4.7.1 � Virtual Address Structure
Each virtual 64-bit address (e.g., ones we are using in our programs) consists of several fields, as shown in 
Figure 4-1.

Figure 4-1.  Structure of virtual address

3Theoretically we could support all 64 bits of physical addresses, but we do not need that many addresses yet.

The address itself is in fact only 48 bits wide; it is sign-extended to a 64-bit canonical address. Its 
characteristic is that its 17 left bits are equal. If the condition is not satisfied, the address gets rejected 
immediately when used.

Then 48 bits of virtual address are transformed into 52 bits of physical address with the help of special 
tables.3

■■ Bus Error  When occasionally using a non-canonical address you will see another error message: 
Bus error.

Physical address space is divided into slots to be filled with virtual pages. These slots are called page 
frames. There are no gaps between them, so they always start from an address ending with 12 zero bits.

The least significant 12 bits of virtual address and of physical page correspond to the address offset 
inside page, so they are equal.

The other four parts of virtual address represent indexes in translation tables. Each table occupies 
exactly 4KB to fill an entire memory page. Each record is 64 bits wide; it stores a part of the next table’s 
starting address as well as some service flags.

4.7.2 � Address Translation in Depth
Figure 4-2 reflects the address translation process.
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Figure 4-2.  Virtual address translation schematic

First, we take the first table starting address from cr3. The table is called Page Map Level 4 (PML4). 
Fetching elements from PML4 is performed as follows:

•	 Bits 51:12 are provided by cr3.

•	 Bits 11:3 are bits 47:39 of the virtual address.

•	 The last three bits are zeroes.

The entries of PML4 are referred as PML4E. The next step of fetching an entry from the Page Directory 
Pointer table mimics the previous one:

•	 Bits 51:12 are provided by selected PML4E.

•	 Bits 11:3 are bits 38:30 of the virtual address.

•	 The last three bits are zeroes.
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The process iterates through two more tables until at last we fetch the page frame address (to be precise, 
its 51:12 bits). The physical address will use them and 12 bits will be taken directly from the virtual address.

Are we going to perform so many memory reads instead of one now? Yes, it does look bulky. However, 
thanks to the page address cache, TLB, we usually access memory on already translated and memorized 
pages. We should only add the correct offset inside page, which is blazingly fast.

As TLB is an associative cache; it is quickly providing us with translated page addresses given a starting 
virtual address of the page.

Note that translation pages can be cached for a faster access. Figure 4-3 specifies the Page Table Entry 
format.

Figure 4-3.  Page table entry

P           Present (in physical memory)
W         Writable (writing is allowed)
U          User (can be accessed from ring3)
A           Accessed
D          Dirty (page was modified after being loaded—e.g., from disk)
EXB     Execution-Disabled Bit (forbids executing instructions on this page)
AVL     Available (for operating system developers)
PCD    Page Cache Disable
PWT    Page Write-Through (bypass cache when writing to page)

If P is not set, an attempt to access the page results in an interrupt with code #PF (Page fault). The 
operating system can handle it and load the respective page. It can also be used to implement lazy file 
memory mapping. The file parts will be loaded in memory as needed.

The operating system uses W bit to protect the page from being modified. It is needed when we want to 
share code or data between processes, avoiding unnecessary doubling. Shared pages marked with W can be 
used for data exchange between processes.

Operating system pages have U bit cleared. If we try to access them from ring3, an interrupt will occur.
In absence of segment protection the virtual memory is the ultimate memory guarding mechanism.

■■ On segmentation faults I n general, segmentation faults occurs when there is an attempt to access 
memory with insufficient permissions (e.g., writing into read-only memory). In case of forbidden addresses we 
can consider them to have no valid permissions, so accessing them is just a particular case of memory access 
with insufficient permissions.

EXB (also called NX) bit forbids code execution. The DEP (Data Execution Prevention) technology is based 
on it. When a program is being executed, parts of its input can be stored in a stack or its data section. A malicious 
user can exploit its vulnerabilities to mix encoded instructions into the input and then execute them. However, 
if data and stack section pages are marked with EXB, no instructions can be executed from them. The .text 
section, however, will remain executable, but it is usually protected from any modifications by W bit anyway.
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4.7.3 � Page Sizes
The structure of tables of a different hierarchy level is very much alike. The page size may be tuned to be 
4KB, 2MB, or 1GB. Depending on the structure, this hierarchy can shrink to a minimum of two levels. In this 
case PDP will function as a page table and will store part of a 1GB frame. See Figure 4-4 to see how the entry 
format changes depending on page size.

Table 4-1.  mmap System Call

REGISTER VALUE MEANING

rax 9 System call identifier

rdi addr An operating system attempts to map into pages starting from this specific 
address. This address should correspond to a page start. A zero address indicates 
that the operating system is free to choose any start.

rsi len Region size

rdx prot Protection flags (read, write, execute…)

r10 flags Utility flags (shared or private, anonymous pages, etc.)

r8 fd Optional descriptor of a mapped file. The file should therefore be opened.

r9 offset Offset in file.

Figure 4-4.  Page Directory Pointer table and Page Directory table entry format

This is controlled by the 7-th bit in the respective PDP or PD entry. If it is set, the respective table maps 
pages; otherwise, it stores addresses of the next level tables.

4.8 � Memory Mapping
Mapping means “projection,” making correspondence between entities (files, devices, physical memory), 
and virtual memory regions. When the loader fills the process’s address space, when a process requests 
pages from the operating system, when the operating system projects files from a disk into processes’ 
address spaces—these are examples of memory mapping.

A system call mmap is used for all types of memory mapping. To perform it we follow the same simple 
steps described in Chapter 2. Table 4-1 shows its arguments.

http://dx.doi.org/10.1007/978-1-4842-2403-8_2
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After a call to mmap, rax will hold a pointer to the newly allocated pages.

4.9 � Example: Mapping File into Memory
We need another system call, namely, open. It is used to open a file by name and to acquire its descriptor. 
See Table 4-2 for details.

Table 4-2.  open System Call

REGISTER VALUE MEANING

rax 2 System call identifier

rdi file name Pointer to a null-terminated string, name.holding file

rsi flags A combination of permission flags (read only, write only, or both).

rdx mode If sys open is called to create a file, it will hold its file system permissions.

Mapping file in memory is done in three simple steps:

•	 Open file using open system call. rax will hold file descriptor.

•	 Call mmap with relevant arguments. One of them will be the file descriptor, acquired at 
step 1.

•	 Use print_string routine we have created in Chapter 2. For the sake of brevity we 
omit file closing and error checks.

4.9.1 � Mnemonic Names for Constants
Linux was written in C, so to ease interaction with it some useful constants are predefined in a C way. The line

#define NAME 42

defines a substitution performed in compile time. Whenever a programmer writes NAME, the compiler 
substitutes it with 42. This is useful to create mnemonic names for various constants. NASM provides similar 
functionality using

%define directive
%define NAME  42

See section 5.1 “Preprocessor” for more details on how such substitutions are made.
Let’s take a look at a man page for mmap system call, describing its third argument prot.
The prot argument describes the desired memory protection of the mapping (and must not conflict 

with the open mode of the file). It is either PROT_NONE or the bitwise OR of one or more of the following flags:

     PROT_EXEC  Pages may be executed.

     PROT_READ  Pages may be read.

http://dx.doi.org/﻿10.1007/978-1-4842-2403-8_2#Sec4
http://dx.doi.org/10.1007/978-1-4842-2403-8_2
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     PROT_WRITE Pages may be written.

     PROT_NONE  Pages may not be accessed.

PROT_NONE and its friends are examples of such mnemonic names for integers used to control mmap 
behavior. Remember that both C and NASM allow you to perform compile-time computations on constant 
values, including bitwise AND and OR operations. Following is an example of such computation:

%define PROT_EXEC 0x4
%define PROT_READ 0x1

   mov rdx, PROT_READ | PROT_EXEC

Unless you are writing in C or C++, you will have to check these predefined values somewhere and copy 
them to your program.

Following is how to know the specific values of these constants for Linux:

	 1.	 Search them in header files of the Linux API in /usr/include.

	 2.	 Use one of the Linux Cross Reference (lxr) online, like: http://lxr.free-
electrons.com.

We do recommend the second way for now, as we do not know C yet. You may even use a search engine 
like Google and type lxr PROT_READ as a search query to get relevant results immediately after following the 
first link.

For example, here is what LXR shows when being queried PROT_READ:

PROT_READ

Defined as a preprocessor macro in:
arch/mips/include/uapi/asm/mman.h, line 18
arch/xtensa/include/uapi/asm/mman.h, line 25
arch/alpha/include/uapi/asm/mman.h, line 4
arch/parisc/include/uapi/asm/mman.h, line 4
include/uapi/asm-generic/mman-common.h, line 9

By following one of these links you will see

18 #define PROT_READ      0x01          /* page can be read */

So, we can type %define PROT_READ 0x01 in the beginning of the assembly file to use this constant 
without memorizing its value.

4.9.2 � Complete Example
Create a file test.txt with any contents and then compile and launch the file listed in Listing 4-4 in the 
same directory. You will see file contents written to stdout.

http://lxr.free-electrons.com/
http://lxr.free-electrons.com/
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Listing 4-4.  mmap.asm

; These macrodefinitions are copied from linux sources
; Linux is written in C, so the definitions looked a bit
; different there.
; We could have just looked up their values and use
; them directly in right places
; However it would have made the code much less legible

%define O_RDONLY 0
%define PROT_READ 0x1
%define MAP_PRIVATE 0x2

section .data
; This is the file name. You are free to change it.
fname: db 'test.txt', 0

section .text
global _start

; These functions are used to print a null terminated string
print_string:
    push rdi
    call string_length
    pop rsi
    mov rdx, rax
    mov rax, 1
    mov rdi, 1
    syscall
    ret
string_length:
    xor rax, rax
.loop:
    cmp byte [rdi+rax], 0
    je .end
    inc rax
    jmp .loop
.end:
    ret

_start:
; call open
mov rax, 2
mov rdi, fname
mov rsi, O_RDONLY     ; Open file read only
mov rdx, 0            ; We are not creating a file
                      ; so this argument has no meaning
syscall
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; mmap
mov r8, rax           ; rax holds opened file descriptor
                      ; it is the fourth argument of mmap
mov rax, 9            ; mmap number
mov rdi, 0            ; operating system will choose mapping destination
mov rsi, 4096         ; page size
mov rdx, PROT_READ    ; new memory region will be marked read only
mov r10, MAP_PRIVATE  ; pages will not be shared

mov r9, 0             ; offset inside test.txt
syscall               ; now rax will point to mapped location

mov rdi, rax
call print_string

mov rax, 60           ; use exit system call to shut down correctly
xor rdi, rdi
syscall

4.10 � Summary
In this chapter we have studied the concept and the implementation of virtual memory. We have elaborated 
it as a particular case of caching. Then we have reviewed the different types of address spaces (physical, 
virtual) and the connection between them through a set of translation tables. Then we dived into the virtual 
memory implementation details.

Finally, we have provided a minimal working example of the memory the mapping using Linux system 
calls. We will use it again in the assignment for Chapter 13, where we will base our dynamic memory 
allocator on it. In the next chapter we are going to study the process of translation and linkage to see how an 
operating system uses the virtual memory mechanism to load and execute programs.

■■ Question 50  What is virtual memory region?

■■ Question 51  What will happen if you try to modify the program execution code during its execution?

■■ Question 52  What are forbidden addresses?

■■ Question 53  What is a canonical address?

■■ Question 54  What are the translation tables?

■■ Question 55  What is a page frame?

■■ Question 56  What is a memory region?

■■ Question 57  What is the virtual address space? How is it different from the physical one?

■■ Question 58  What is a Translation Lookaside Buffer?

■■ Question 59  What makes the virtual memory mechanism performant?

http://dx.doi.org/10.1007/978-1-4842-2403-8_13
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■■ Question 60 H ow is the address space switched?

■■ Question 61  Which protection mechanisms does the virtual memory incorporate?

■■ Question 62  What is the purpose of EXB bit?

■■ Question 63  What is the structure of the virtual address?

■■ Question 64  Does a virtual and a physical address have anything in common?

■■ Question 65  Can we write a string in .text section? What happens if we read it? And if we overwrite it?

■■ �Question 66  Write a program that will call stat, open, and mmap system calls (check the system calls table 
in Appendix C). It should output the file length and its contents.

■■ �Question 67  Write the following programs, which all map a text file input.txt containing an integer x in 
memory using a mmap system call, and output the following:

	 1.	 x! (factorial, x! = 1 · 2 · · · · · (x − 1) · x). It is guaranteed that x ≥ 0.

	 2.	 0 if the input number is prime, 1 otherwise.

	 3.	 Sum of all number’s digits.

	 4.	 x-th Fibonacci number.

	 5.	 Checks if x is a Fibonacci number.
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CHAPTER 5

Compilation Pipeline

This chapter covers the compilation process. We divide it into three main stages: preprocessing, translation, 
and linking. Figure 5-1 shows an exemplary compilation process. There are two source files: first.asm and 
second.asm. Each is treated separately before linking stage.

Figure 5-1.  Compilation pipeline
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Preprocessor transforms the program source to obtain other program in the same language. The 
transformations are usually substitutions of one string instead of others.

Compiler transforms each source file into a file with encoded machine instructions. However, such a 
file is not yet ready to be executed because it lacks the right connections with the other separately compiled 
files. We are talking about cases in which instructions address data or instructions, which are declared in 
other files.

Linker establishes connections between files and makes an executable file. After that, the program is 
ready to be run. Linkers operate with object files, whose typical formats are ELF (Executable and Linkable 
Format) and COFF (Common Object File Format).

Loader accepts an executable file. Such files usually have a structured view with metadata included. It 
then fills the fresh address space of a newborn process with its instructions, stack, globally defined data, and 
runtime code provided by the operating system.

5.1 � Preprocessor
Each program is created as a text. The first stage of compilation is called preprocessing. During this stage, 
a special program is evaluating preprocessor directives found in the program source. According to them, 
textual substitutions are made. As a result we get a modified source code without preprocessor directives 
written in the same programming language. In this section we are going to discuss the usage of the NASM 
macro processor.

5.1.1 � Simple Substitutions
One of the basic preprocessor directives is called %define. It performs a simple substitution.

Given the code shown in Listing 5-1, a preprocessor will substitute cat_count by 42 whenever it 
encounters such a substring in the program source.

Listing 5-1.  define_cat_count.asm

%define cat_count 42

mov rax, cat_count

To see the preprocessing results for an input file.asm, run nasm -E file.asm. It is often very useful for 
debug purposes. Let’s see the result in Listing 5-2 for the file in Listing 5-1.

Listing 5-2.  define_cat_count_preprocessed.asm

%line 2+1 define_cat_count.asm

mov rax, 42

The commands to declare substitutions are called macros. During a process called macro expansion 
their occurrences are replaced with pieces of text. The resulting text fragments are called macro instances. 
In Listing 5-2, a number 42 in line mov rax, cat_count is a macro instance. Names such as cat_count are 
often referred to as preprocessor symbols.

■■ Redefinition NA SM allows you to redefine existing preprocessor symbols.



Chapter 5 ■ Compilation Pipeline

65

It is important that the preprocessor knows little to nothing about the programming language syntax. 
The latter defines valid language constructions.

For example, the code shown in Listing 5-3 is correct. It doesn’t matter if neither a nor b alone 
constitutes a valid assembly construction; as long as the final result of substitutions is syntactically valid, the 
compiler is fine with it.

Listing 5-3.  macro_asm_parts.asm

%define a mov rax,
    %define b rbx

    a b

In another example, in higher-level languages, an if statement has a form of if (<expression>) then 
<statement> else <statement>. Macros can operate parts of this construction which on their own are not 
syntactically correct (e.g., a sole else <statement> clause). As long as the result is syntactically correct, the 
compiler will have no problems with it.

Contrarily, other types of macros exist, namely, syntactic macros, tied to the language structure and 
operating with its constructions. Such macros modify them in a structured way. Languages like LISP, OCaml, 
and Scala use syntactic macros.

Why are we using macros at all? Apart from automation, which we will see later, they provide 
mnemonics for pieces of code.1

For constants, it allows us distinguish occurrences of 42 which are used to count cats from those used 
to count dogs or whatever else. Otherwise, certain program modifications would be more painful and error 
prone, since we would have had to make more decisions based on what this specific number means.

For packs of language constructs, it provides us with a certain automatization just as subroutines do. 
Macros are expanded at compile time, while routines are executed in runtime. The choice is up to you.

For assembly, no optimizations are performed on programs. However, in higher-level languages 
people use global constant variables for that matter. A good compiler will substitute its occurrences with its 
value. A bad one, however, cannot be aware of optimizations, which can be the case when programming 
microcontrollers or applications for exotic operating systems. In such cases people often do a compiler’s job 
by using macros as in assembly language.

■■ Style I t is a good practice to name all constants in your program.

In assembly and C people usually define global constants using macro definitions.

5.1.2 � Substitutions with Arguments
Macros are better than that: they can have arguments. Listing 5-4 shows a simple macro with three 
arguments.

1D. Knuth takes this idea to extreme in his approach called Literate Programming
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Listing 5-4.  macro_simple_3arg.asm

%macro test 3
dq %1
dq %2
dq %3
%endmacro

Its action is simple: for each argument it will create a quad word data entry. As you see, arguments 
are referred by their indices starting at 1. When this macro is defined, a line test 666, 555, 444 will be 
replaced by those shown in Listing 5-5

Listing 5-5.  macro_simple_3arg_inst.asm

dq 666
dq 555
dq 444

■■ Question 68  Find more examples of %define and %macro usage in NASM documentation.

5.1.3 � Simple Conditional Substitution
Macros in NASM support various conditionals. The simplest of them is %if. Listing 5-6 shows a minimal 
example.

Listing 5-6.  macroif.asm

BITS 64
%define x 5

%if x == 10

mov rax, 100

%elif x == 15

mov rax, 115

%elif x == 200
mov rax, 0
%else
mov rax, rbx
%endif

Listing 5-7 shows an instantiated macro. Remember, you can check the preprocessing result using nasm -E.

Listing 5-7.  macroif_preprocessed.asm

%line 1+1 if.asm
[bits 64]
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%line 15+1 if.asm
mov rax, rbx

The condition is an expression similar to what you might see in high-level languages: arithmetics and 
logical conjectures (and, or, not).

5.1.4 � Conditioning on Definition
It is possible to decide in compile time whether a part of file should be assembled or not. One of many %if 
counterparts is %ifdef. It works in a similar way, but the condition is satisfied if a certain preprocessor 
symbol is defined. An example shown in Listing 5-8 incorporates such a directive.

Listing 5-8.  defining_in_cla.asm

%ifdef flag
hellostring: db "Hello",0
%endif

As you can see, the symbol flag is not defined here using %define directive. Thus, we have the line 
labeled by hellostring.

It is worth mentioning that preprocessor symbols can be defined directly when calling NASM thanks to 
-d key. For example, the macro condition in Listing 5-8 will be satisfied when NASM is called with -d myflag 
argument.

■■ Question 69  Check the preprocessor output on file, shown in Listing 5-8.

In the next sections we are going to see more preprocessor directives similar to %if.

5.1.5 � Conditioning on Text Identity
%ifidn is used to test if two text strings are equal (spacing differences are not taken into account). 
Depending on the comparison result the subsequent code will or will not be assembled.

This allows us to create very flexible macros which will depend, for example, on the argument name.
To illustrate, let’s create a pushr macro instruction (see Listing 5-9). It will function exactly the same way 

as a push assembly instruction but will also accept rip and rflags registers.

Listing 5-9.  pushr.asm

%macro pushr 1
%ifidn %1, rflags
pushf
%else
push %1
%endif
%endmacro

pushr rax
pushr rflags
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Listing 5-10 shows what the two macros in Listing 5-9 become after instantiation.

Listing 5-10.  pushr_preprocessed.asm

%line 8+1 pushr/pushr.asm

push rax
pushf

As you can see, the macro adjusted its behavior based on the argument’s text representation. Notice that 
%else clauses are allowed just like for regular %if. To make the comparison case insensitive, use the %ifidni 
directive instead.

5.1.6 � Conditioning on Argument Type
The NASM preprocessor is a bit aware of the assembly language elements (token types). It can distinguish 
quoted strings from numbers and identifiers. There is a triple of %if counterparts for this purpose: %ifid to check 
whether its argument is an identifier, %ifstr for a string check, and %ifnum to check whether it is a number or not.

Listing 5-11 shows an example of a macro, which prints either a number or a string (using an identifier). 
It uses several routines developed during the first assignment to calculate string length, output string, and 
output integer.

Listing 5-11.  macro_arg_types.asm

%macro print 1
   %ifid %1
      mov rdi, %1
      call print_string
   %else

     %ifnum %1
        mov rdi, %1
        call print_uint
     %else
        %error "String literals are not supported yet"
     %endif
   %endif

%endmacro

myhello: db 'hello', 10, 0
_start:
   print myhello
   print 42
   mov rax, 60
   syscall
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The indentation is completely optional and is done for the sake of readability.
In case the argument is neither string nor identifier, we use the %error directive to force NASM into 

throwing an error. If we had used %fatal instead, we would have stopped assembling completely and 
any further errors would be ignored; a simple %error, however, will give NASM a chance to signal about 
following errors too before it stops processing input files.

Let’s observe the macro instantiations in Listing 5-12

Listing 5-12.  macro_arg_types_preprocessed.asm

%line 73+1 macro_arg_types/macro_arg_types.asm

myhello: db 'hello', 10, 0
_start:
 mov rdi, myhello
%line 76+0 macro_arg_types/macro_arg_types.asm
 call print_string

%line 77+1 macro_arg_types/macro_arg_types.asm

%line 77+0 macro_arg_types/macro_arg_types.asm
 mov rdi, 42
 call print_uint

%line 78+1 macro_arg_types/macro_arg_types.asm
 mov rax, 60
 syscall

5.1.7 � Evaluation Order: Define, xdefine, Assign
All programming languages have a notion of evaluation strategy. It describes the order of evaluation in 
complex expressions. How should we evaluate f (g(1), h(4))? Should we evaluate g(1) and h(4) first and then 
let f act on the results? Or should we inline g(1) and h(4) inside the body of f and defer their own evaluations 
until they are really needed?

Macros are evaluated by NASM macroprocessor, and they do have a complex structure, as any macro 
instantiation can include other macros to be instantiated. A fine tuning of evaluation order is possible, 
because NASM provides slightly different versions of macro definition directives, namely

•	 %define for a deferred substitution. If macro body contains other macros, they will be 
expanded after the substitution.

•	 %xdefine performs substitutions when being defined. Then the resulting string will be 
used in substitutions.

•	 %assign is like %xdefine, but it also forces the evaluation of arithmetic expressions 
and throws an error if the computation result is not a number.

To better understand the subtle difference between %define and %xdefine take a look at the example 
shown in Listing 5-13.
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Listing 5-13.  defines.asm

%define i 1

%define d i * 3
%xdefine xd i * 3
%assign a i * 3

mov rax, d
mov rax, xd
mov rax, a

; let's redefine i
%define i 100
mov rax, d
mov rax, xd
mov rax, a

Listing 5-14 shows the preprocessing result.

Listing 5-14.  defines_preprocessed.asm

%line 2+1 defines.asm

%line 6+1 defines.asm

mov rax, 1 * 3
mov rax, 1 * 3
mov rax, 3

mov rax, 100 * 3
mov rax, 1 * 3
mov rax, 3

The key differences are that

•	 %define may change its value between instantiations if parts of it are redefined.

•	 %xdefine has other macros on which it directly depends glued to it after being defined.

•	 %assign forces evaluation and substitutes values. Where xdefine would have left you 
with the preprocessor symbol equal to 4+2+3, %assign will compute it and assign 
value 9 to it.

We will use the wonderful properties of %assign to show some magic after becoming familiar with 
macro repetitions.

5.1.8 � Repetition
The times directive is executed after all macro definitions are fully expanded and thus cannot be used to 
repeat pieces of macros.

But there is another way NASM can make macro loops: by placing the loop body between %rep and 
%endrep directives. Loops can be executed only a fixed amount of times, specified as %rep argument.  
An example in Listing 5-15 shows how a preprocessor calculates a sum of integers from 1 to 10 and then uses 
this value to initialize a global variable result.
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Listing 5-15.  rep.asm

%assign x 1
%assign a 0
%rep 10
%assign a x + a
%assign x x + 1
%endrep

result: dq a

After preprocessing the result value is correctly initialized to 55 (see Listing 5-16). You can check it 
manually.2

Listing 5-16.  rep_preprocessed.asm

%line 7+1 rep/rep.asm

result: dq 55

We can use %exitrep to immediately leave the cycle. It is thus analogous to break instruction in 
high-level languages.

5.1.9 � Example: Computing Prime Numbers
The macro shown in Listing 5-17 is used to produce a sieve of prime numbers. It means that it defines a 
static array of bytes, where each i-th byte is equal to 1 if and only if i is a prime number.

A prime number is a natural number greater than 1 such that it has no positive divisors other than 1 
and itself.

The algorithm is simple:

•	 0 and 1 are not primes.

•	 2 is a prime number.

•	 For each current up to limit we check whether no i from 2 up to n/2 is n’s divisor.

Listing 5-17.  prime.asm

%assign limit 15
is_prime: db 0, 0, 1
%assign n 3
%rep limit
    %assign current 1
    %assign i 1
        %rep n/2
           %assign i i+1
           %if n % i = 0
                %assign current 0
                %exitrep

2A simple formula for the sum of first n natural numbers is: n n+( )1
2
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           %endif
        %endrep
db current ; n
    %assign n n+1
%endrep

By accessing the n-th element of the is_prime array we can find out whether n is a prime number or 
not. After preprocessing the following code in Listing 5-18 will be generated:

Listing 5-18.  prime_preprocessed.asm

%line 2+1 prime/prime.asm
is_prime: db 0, 0, 1
%line 16+1 prime/prime.asm
db 1
%line 16+0 prime/prime.asm
db 0
db 1
db 0
db 1
db 0
db 0
db 0
db 1
db 0
db 1
db 0
db 0
db 0

db 1

By reading the i-th byte starting at is_prime we get 1 if i is prime; 0 otherwise.

■■ Question 70 M odify the macro the way it would produce a bit table, taking eight times less space in 
memory. Add a function that will check number for primarily and return 0 or 1, based on this precomputed table.

■■ Hint  for the macro you will probably have to copy and paste a lot.

5.1.10 � Labels Inside Macros
There is not much we can do in assembly without labels. Using fixed label names inside macros is not quite 
common. When the macro is instantiated many times inside the same file, the multiply defined labels can 
produce clashes which stop compilation.

There is an option to use macro local labels, which is a label you cannot access outside current 
macro instantiation. In order to do that, you can prefix such label name with double percent, as follows: 
%%labelname. Each macro local label will get a random prefix, which will change between macro instances 
but will remain the same inside one instance. Listing 5-19 shows an example. Listing 5-20 contains the 
preprocessing results.
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Listing 5-19.  macro_local_labels.asm

%macro mymacro 0
%%labelname:
%%labelname:
%endmacro

Mymacro

Mymacro

mymacro

The macro mymacro is instantiated three times. Each time the local label gets a unique name. The base 
name (after double percent) becomes prepended with a numerical prefix different in each instance. The first 
prefix is ..@0., the second is ..@1., and so on.

Listing 5-20.  macro_local_labels_inst.asm

%line 5+1 macro_local_labels/macro_local_labels.asm

..@0.labelname:
%line 6+0 macro_local_labels/macro_local_labels.asm
..@0.labelname:
%line 7+1 macro_local_labels/macro_local_labels.asm

..@1.labelname:
%line 8+0 macro_local_labels/macro_local_labels.asm
..@1.labelname:
%line 9+1 macro_local_labels/macro_local_labels.asm

..@2.labelname:
%line 10+0 macro_local_labels/macro_local_labels.asm
..@2.labelname:

5.1.11 � Conclusion
You can think about macros as about a programming meta-language executed during compilation. It can do 
quite complex computations and is limited in two ways:

•	 These computations cannot depend on user input (so they can only operate 
constants).

•	 The cycles can be executed no more than a fixed amount of times. It means that while-
like constructions are impossible to encode.
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5.2 � Translation
A compiler usually translates source code from one language into another language. In case of translation 
from high-level programming languages into machine code, this process incorporates multiple inner steps. 
During these stages we gradually push the code IR (Intermediate Representation) toward the target 
language. Each push of IR is closer to the target language. Right before producing assembly code the IR will be 
very close to assembly, so we can flush the assembly into a readable listing instead of encoding instructions.

Not only is translation a complex process, it also loses information about source code structure, so 
reconstructing readable high-level code from the assembly file is impossible.

A compiler works with atomic code entities called modules. A module usually corresponds to a code 
source file (but not a header or include file). Each module is compiled independently from the other 
modules. The object file is produced from each module. It contains binary encoded instructions but usually 
cannot be executed right away. There are several reasons.

For instance, the object file is completed separately from other files but refers to outside code and data. 
It is not yet clear whether that code or data will reside in memory, or the position of the object file itself.

The assembly language translation is quite straightforward because the correspondence between 
assembly mnemonics and machine instructions is almost one to one. Apart from label resolution there is 
not much nontrivial work. Thus, for now we will concentrate on the following compilation stage, namely, 
linking.

5.3 � Linking
Let’s return to our first examples of assembly programs. To transform a “Hello, world!” program from source 
code to executable file, we used the following two commands:

> nasm -f elf64 -o hello.o hello.asm
> ld -o hello hello.o

We used NASM first to produce an object file. Its format, elf64, was specified by the -f key. Then we 
used another program, ld (a linker), to produce a file ready to be executed. We will take this file format as an 
example to show you what the linker really does.

5.3.1 � Executable and Linkable Format
ELF (Executable and Linkable Format) is a format for object files quite typical for *nix systems. We will limit 
ourselves to its 64-bit version.

ELF allows for three types of files.

	 1.	 Relocatable object files are .o-files, produced by compiler.

Relocation is a process of assigning definitive addresses to various program parts 
and changing the program code the way all links are attributed correctly. We are 
speaking about all kinds of memory accesses by absolute addresses. Relocation is 
needed, for example, when the program consists of multiple modules, which are 
referencing one another. The order in which they will be placed in memory is not 
yet fixed, so the absolute addresses are not determined. Linkers can combine these 
files to produce the next type of object files.

	 2.	 Executable object file can be loaded in memory and executed right away. It is 
essentially a structured storage for code, data, and utility information.



Chapter 5 ■ Compilation Pipeline

75

	 3.	 Shared object files can be loaded when needed by the main program. They are 
linked to it dynamically. In Windows OS these are well known dll-files; in *nix 
systems their names often end with .so.

The purpose of any linker is to make an executable (or shared) object file, given a set of relocatable 
ones. In order to do it, a linker must perform the following tasks:

•	 Relocation

•	 Symbol resolution. Each time a symbol (function, variable) is dereferenced, a linker 
has to modify the object file and fill the instruction part, corresponding to the operand 
address, with the correct value.

5.3.1.1 � Structure
An ELF file starts with the main header, which stores global meta-information.

See Listing 5-21 for a typical ELF header. The hello file is a result of compiling a “Hello, world!” 
program shown in Listing 2-4.

Listing 5-21.  hello_elfheader ELF Header:

ELF Header:
  Magic:   7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
  Class:                             ELF64
  Data:                              2's complement, little endian
  Version:                           1 (current)
  OS/ABI:                            UNIX - System V
  ABI Version:                       0
  Type:                              EXEC (Executable file)
  Machine:                           Advanced Micro Devices X86-64
  Version:                           0x1
  Entry point address:               0x4000b0
  Start of program headers:          64 (bytes into file)
  Start of section headers:          552 (bytes into file)
  Flags:                             0x0
  Size of this header:               64 (bytes)
  Size of program headers:           56 (bytes)
  Number of program headers:         2
  Size of section headers:           64 (bytes)
  Number of section headers:         6
  Section header string table index: 3

ELF files then provide information about a program that can be observed from two points of view:

•	 Linking view, consisting of sections.

	 It is described by section table, which is accessible through readelf -S.

	 Each section in turn can be:

–– Raw data to be loaded into memory.

–– Formatted metadata about other sections, used by loader (e.g., .bss), linker (e.g., relocation 
tables), or debugger (e.g., .line).
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Code and data are stored inside sections.

•	 Execution view, consisting of segments.

	 It is described by a Program Header Table, which can be studied using readelf -l. 
We will take a closer look at it in section 5.3.5.

	 Each entry can describe

–– Some kind of information the system needs to execute the program.

–– An ELF segment, containing zero or more sections. They have the same set of permissions 
(read, write, execute) enforced by virtual memory. Each segment has a starting address and is 
loaded in a separate memory region, consisting of consecutive pages.

After revising Listing 5-21, we notice, that it describes precisely the position and dimensions of program 
headers and section headers.

We start with the sections view since the linker works mainly with them.

5.3.1.2 � Sections in ELF Files
Assembly language allows manual section controls. NASM’s section corresponds to object file sections. You 
have already seen a couple of those, namely, .text and .data. The list of the most used sections follows; the 
full list can be found in [24].

.text stores machine instructions.

.rodata stores read only data.

.data stores initialized global variables.

.bss stores readable and writable global variables, initialized to zero. There is no need to dump their 
contents into an object file as they are all filled with zeros anyway. Instead, a total section size is stored. An 
operating system may know faster ways of initializing such memory than zeroing it manually.

In assembly, you can put data here by placing resb, resw, and similar directives after the section .bss.
.rel.text stores relocation table for the .text section. It is used to memorize places where a linker 

should modify .text after choosing the loading address for this specific object file.
.rel.data stores a relocation table for data referenced in module.
.debug stores a symbol table used to debug program. If the program was written in C or C++, it will store 

information not only about global variables (as .symtab does) but also about local variables.
.line defines correspondence with pieces of code and line numbers in source code. We need it because 

the correspondence between lines of source code in higher-level languages and assembly instructions is not 
straightforward. This information allows one to debug a program in a higher-level language line by line.

.strtab stores character strings. It is like an array of strings. Other sections, such, as .symtab and .debug, 
use not immediate strings but their indices in .strtab.

.symtab stores a symbol table. Whenever a programmer defines a label, NASM will create a symbol for 
it.3 This table also stores utility information, which we are going to examine later.

Now that we have a general understanding of the ELF file linking view, we will observe some examples 
to show particularities of three different ELF file types.

5.3.2 � Relocatable Object Files
Let’s investigate an object file, obtained by compiling a simple program, shown in Listing 5-22.

3Not to be confused with preprocessor symbols!

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par25
http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec13
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Listing 5-22.  symbols.asm

section .data
datavar1: dq 1488
datavar2: dq 42

section .bss
bssvar1: resq 4*1024*1024
bssvar2: resq 1

section .text

extern somewhere
global _start
    mov rax, datavar1
    mov rax, bssvar1
    mov rax, bssvar2
    mov rdx, datavar2
_start:
jmp _start
    ret
textlabel: dq 0

This program uses extern and global directives to mark symbols in a different way. These two 
directives control the creation of a symbol table. By default, all symbols are local to the current module. 
extern defines a symbol that is defined in other modules but referenced in the current one. On the other 
hand, global defines a globally available symbol that other modules can refer to by defining it as extern 
inside them.

■■ Avoid confusion  Do not confuse global and local symbols with global and local labels!

The GNU binutils is a collection of binary tools used to work with object files. It includes several tools 
used to explore the object file contents. Several of them are of particular interest for us.

•	 If you only need to look up the symbol table, use nm.

•	 Use objdump as a universal tool to display general information about an object file. In 
addition to ELF, it does support other object file formats.

•	 If you know that the file is in ELF format, readelf is often the best and most 
informative choice.

Let’s feed this program to objdump to produce the results shown in Listing 5-23.

Listing 5-23.  Symbols

> nasm -f elf64 main.asm && objdump -tf -m intel main.o
main.o:     file format elf64-x86-64

architecture: i386:x86-64, flags 0x00000011:
HAS_RELOC, HAS_SYMS
start address 0x0000000000000000
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SYMBOL TABLE:
0000000000000000 l    df *ABS*   0000000000000000 main.asm
0000000000000000 l    d  .data   0000000000000000 .data
0000000000000000 l    d  .bss    0000000000000000 .bss
0000000000000000 l    d  .text   0000000000000000 .text
0000000000000000 l       .data   0000000000000000 datavar1
0000000000000008 l       .data   0000000000000000 datavar2
0000000000000000 l       .bss    0000000000000000 bssvar1
0000000002000000 l       .bss    0000000000000000 bssvar2
0000000000000029 l       .text   0000000000000000 textlabel
0000000000000000         *UND*   0000000000000000 somewhere
0000000000000028 g       .text   0000000000000000 _start

We are shown a symbol table, where each symbol is annotated with useful information. What do its 
columns mean?

	 1.	 Virtual address of the given symbol. For now we do not know the section starting 
addresses, so all virtual addresses are given relative to section start. For example, 
datavar1 is the first variable stored in .data, its address is 0, and its size is 8 bytes. 
The second variable, datavar2, is located in the same section with a greater offset 
of 8, next to datavar1. As somewhere is defined as extern, it is obviously located in 
some other module, so for now its address has no meaning and is left zero.

	 2.	 A string of seven letters and spaces; each letter characterizes a symbol in some 
way. Some of them are of interest to us.

(a)	 l, g,- – local, global, or neither.

(b)	 …

(c)	 …

(d)	 …

(e)	 I,- – a link to another symbol or an ordinary symbol.

(f)	 d, D,- – debug symbol, dynamic symbol, or an ordinary symbol.

(g)	 F, f, O,- – function name, file name, object name, or an ordinary symbol.

	 3.	 What section does this label correspond to? *UND* for unknown section (symbol is 
referenced, but not defined here), *ABS* means no section at all.

	 4.	 Usually, this number shows an alignment (or its absence).

	 5.	 Symbol name.

For example, let’s investigate the first symbol shown in Listing 5-23. It is

f a file name,
d only necessary for debug purposes,
l local to this module.

The global label _start (which is also an entry point) is marked with the letter g in the second column.

■■ Note   Symbol names are case sensitive: _start and _STaRT are different.

http://dx.doi.org/10.1007/978-1-4842-2403-8_2#Sec5
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As the addresses in the symbol table are not yet the real virtual addresses but ones relative to sections, 
we might ask ourselves: how do these look in machine code? NASM has already performed its duty, and 
the machine instructions should be assembled. We can look inside interesting sections of object files by 
invoking objdump with parameters -D (disassemble) and, optionally, -M intel-mnemonic (to make it show 
Intel-style syntax rather than AT&T one). Listing 5-24 shows the results.

■■ How to read disassembly dumps T he left column usually is the absolute address where the data will be 
loaded. Before linking, it is an address relative to the section start.

The second column shows raw bytes as hexadecimal numbers.

The third column can contain the results of disassembling the assembly command mnemonics.

Listing 5-24.  objdump_d

> objdump -D -M intel-mnemonic main.o
main.o:     file format elf64-x86-64
Disassembly of section .data:
0000000000000000 <datavar1>:        ...
0000000000000008 <datavar2>:        ...
Disassembly of section .bss:
0000000000000000 <bssvar1>:         ...
0000000002000000 <bssvar2>:         ...
Disassembly of section .text:
0000000000000000 <_start-0x28>:
   0:   48 b8 00 00 00 00 00      movabs rax,0x0
   7:   00 00 00
   a:   48 b8 00 00 00 00 00      movabs rax,0x0
   11:  00 00 00
   14:  48 b8 00 00 00 00 00      movabs rax,0x0
   1b:  00 00 00
   1e:  48 ba 00 00 00 00 00      movabs rdx,0x0
   25:  00 00 00
0000000000000028 <_start>:
   28:  c3                        ret
0000000000000029 <textlabel>:

The mov operand in section .text with offsets 0 and 14 relative to section start should be datavar1 
address, but it is equal to zero! The same thing happened with bssvar. It means that the linker has to change 
compiled machine code, filling the right absolute addresses in instruction arguments. To achieve that, for 
each symbol all references to it are remembered in relocation table. As soon as the linker understands what 
its true virtual address will be, it goes through the list of symbol occurrences and fills in the holes.

A separate relocation table exists for each section in need of one.
To see the relocation tables use readelf --relocs. See Listing 5-25.
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Listing 5-25.  readelf_relocs

> readelf --relocs  main.o
Relocation section '.rela.text' at offset 0x440 contains 4 entries:
  Offset          Info       Type            Sym. Value    Name+Addend
000000000002  000200000001 R_X86_64_64       0000000000000000 .data + 0
00000000000c  000300000001 R_X86_64_64       0000000000000000 .bss + 0

000000000016  000300000001 R_X86_64_64       0000000000000000 .bss + 2000000
000000000020  000200000001 R_X86_64_64       0000000000000000 .data + 8

An alternative way to display the symbol table is to use a more lightweight and minimalistic nm utility. 
For each symbol it shows the symbol’s virtual address, type, and name. Note that the type flag is in different 
format compared to objdump. See Listing 5-26 for a minimal example.

Listing 5-26.  nm

> nm main.o
0000000000000000 b bssvar
0000000000000000 d datavar
                 U somewhere
000000000000000a T _start
000000000000000b t textlabel

5.3.3 � Executable Object Files
The second type of object file can be executed right away. It retains its structure, but the addresses are now 
bound to exact values.

We shall take a look at another example, shown in Listing 5-27. It includes two global variables, 
somewhere and private, one of which is available to all modules (marked global). Additionally, a symbol 
func is marked as global.

Listing 5-27.  executable_object.asm

global somewhere
global func

section .data

somewhere: dq 999
private: dq 666

section .text

func:
    mov rax, somewhere
    ret

We are going to compile it as usual using nasm -f elf64, and then link it using ld with the previous object 
file, obtained by compiling the file shown in Listing 5-22. Listing 5-28 shows the changes in objdump output.
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Listing 5-28.  objdump_tf

> nasm -f elf64 symbols.asm
> nasm -f elf64  executable_object.asm
> ld symbols.o executable_object.o -o main
> objdump -tf main

main:     file format elf64-x86-64
architecture: i386:x86-64, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED

start address 0x0000000000000000

SYMBOL TABLE:
00000000004000b0 l    d  .code  0000000000000000 .code
00000000006000bc l    d  .data  0000000000000000 .data
0000000000000000 l    df *ABS*  0000000000000000 executable_object.asm
00000000006000c4 l       .data  0000000000000000 private
00000000006000bc g       .data  0000000000000000 somewhere
0000000000000000         *UND*  0000000000000000 _start
00000000006000cc g       .data  0000000000000000 __bss_start
00000000004000b0 g     F .code  0000000000000000 func
00000000006000cc g       .data  0000000000000000 _edata
00000000006000d0 g       .data  0000000000000000 _end

The flags are different: now the file can be executed (EXEC_P); there are no more relocation tables  
(the HAS_RELOC flag is cleared). Virtual addresses are now intact, and so are addresses in code. This file 
is ready to be loaded and executed. It retains a symbol table, and if you want to cut it out making the 
executable smaller, use the strip utility.

■■ Question 71  Why does ld issue a warning if _start is not marked global? Look the entry point address in 
this case by using readelf with appropriate arguments.

■■ Question 72  Find out the ld option to automatically strip the symbol table after linking.

5.3.4 � Dynamic Libraries
Almost every program uses code from libraries. There are two types of libraries: static and dynamic.

Static libraries consist of several relocatable object files. These are linked to the main program and are 
merged with the result executable file.

In the Windows world, these files have an extension .lib.

In the Unix world, these are either .o files or .a archives holding several .o files 
inside.

Dynamic libraries are also known as shared object files the third of three object file types we have 
defined previously.

They are linked with the program during its execution.

In the Windows world, these are the infamous .dll files.

In the Unix world, these files have an .so extension (shared objects).
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While static libraries are just undercooked executables without entry points, dynamic libraries have 
some differences which we are going to look at now.

Dynamic libraries are loaded when they are needed. As they are object files on their own, they have all 
kind of meta-information about which code they provide for external usage. This information is used by a 
loader to determine the exact addresses of exported functions and data.

Dynamic libraries can be shipped separately and updated independently. It is both good and bad. 
While the library manufacturer can provide bug fixes, he can also break backward compatibility by, for 
example, changing functions arguments, effectively shipping a delayed action mine.

A program can work with any amount of shared libraries. Such libraries should be loadable at any 
address. Otherwise they would be stuck at the same address, which puts us in exactly the same situation as 
when we are trying to execute multiple programs in the same physical memory address space. There are two 
ways to achieve that:

•	 We can perform a relocation in runtime, when the library is being loaded. However, 
it steals a very attractive feature from us: the possibility to reuse library code in 
physical memory without its duplication when several processes are using it. If each 
process performs library relocation to a different address, the corresponding pages 
become patched with different address values and thus become different for different 
processes.

Effectively the .data section would be relocated anyway because of its mutable 
nature. Renouncing global variables allows us to throw away both the section and 
the need to relocate it.

Another problem is that .text section must be left writable in order to perform its 
modification during the relocation process. It introduces certain security risks, 
leaving its modification possible by malicious code. Moreover, changing .text of 
every shared object when multiple libraries are required for an executable to run 
can take a great deal of time.

•	 We can write PIC (Position Independent Code). It is now possible to write code 
which can be executed no matter where it resides in memory. For that we have to 
get rid of absolute addresses completely. These days processors support rip-relative 
addressing, like mov rax, [rip + 13]. This feature facilitates PIC generation. 

	 This technique allows for .text section sharing. Today programmers are strongly 
encouraged to use PIC instead of relocations.

■■ Note   Whenever you are using non-constant global variables, you prevent your code from being 
reenterable, that is, being executable inside multiple threads simultaneously without changes. Consequently, 
you will have difficulties reusing it in a shared library. It is one of many arguments against a global mutable 
state in program.

Dynamic libraries spare disk space and memory. Remember that pages may be either marked private or 
shared among several processes. If a library is used by multiple processes, most parts of it are not duplicated 
in physical memory.

We will show you how to build a minimal shared object now. However, we will defer the explanation of 
things like Global Offset Tables and Procedure Linkage Tables until Chapter 15.

Listing 5-29 shows minimal shared object contents. Notice the external symbol _GLOBAL_OFFSET_TABLE 
and :function specification for the global symbol func. Listing 5-30 shows a minimal launcher that calls a 
function in a shared object file and exits correctly.

http://dx.doi.org/10.1007/978-1-4842-2403-8_15


Chapter 5 ■ Compilation Pipeline

83

Listing 5-29.  libso.asm

Extern  _GLOBAL_OFFSET_TABLE_

global func:function

section .rodata
message: db "Shared object wrote this", 10, 0

section .text
func:
    mov     rax, 1
    mov     rdi, 1
    mov     rsi, message
    mov     rdx, 14
    syscall
ret

Listing 5-30.  libso_main.asm

global _start

extern func

section .text
_start:
    mov rdi, 10
    call func
    mov rdi, rax
    mov rax, 60
    syscall

Listing 5-31 shows build commands and two views of an ELF file.
Notice that dynamic library has more specific sections such as .dynsym. Sections .hash, .dynsym, and 

.dynstr are necessary for relocation.
.dynsym stores symbols visible from outside the library.
.hash is a hash table, needed to decrease the symbol search time for .dynsym.
.dynstr stores strings, requested by their indices from .dynsym.

Listing 5-31.  libso

> nasm -f elf64 -o main.o main.asm
> nasm -f elf64 -o libso.o libso.asm
> ld -o main main.o -d libso.so
> ld -shared -o libso.so libso.o --dynamic-linker=/lib64/ld-linux-x86-64.so.2
> readelf -S libso.so
There are 13 section headers, starting at offset 0x5a0:
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Section Headers:
  [Nr] Name              Type             Address           Offset
       Size              EntSize          Flags  Link  Info  Align
  [ 0]                   NULL             0000000000000000   00000000
       0000000000000000  0000000000000000           0     0     0
  [ 1] .hash             HASH             00000000000000e8   000000e8
       000000000000002c  0000000000000004   A       2     0      8
  [ 2] .dynsym           DYNSYM           0000000000000118   00000118
       0000000000000090  0000000000000018   A       3     2      8
  [ 3] .dynstr           STRTAB           00000000000001a8   000001a8
       000000000000001e  0000000000000000   A       0     0      1
  [ 4] .rela.dyn         RELA             00000000000001c8   000001c8
       0000000000000018  0000000000000018   A       2     0      8
  [ 5] .text             PROGBITS         00000000000001e0   000001e0
       000000000000001c  0000000000000000   AX      0     0      16
  [ 6] .rodata           PROGBITS         00000000000001fc   000001fc
       000000000000001a  0000000000000000   A       0     0      4
  [ 7] .eh_frame         PROGBITS         0000000000000218   00000218
       0000000000000000  0000000000000000   A       0     0      8
  [ 8] .dynamic          DYNAMIC          0000000000200218   00000218
       00000000000000f0  0000000000000010   WA      3     0      8
  [ 9] .got.plt          PROGBITS         0000000000200308   00000308
       0000000000000018  0000000000000008   WA      0     0      8
  [10] .shstrtab         STRTAB           0000000000000000   00000320
       0000000000000065  0000000000000000           0     0      1
  [11] .symtab           SYMTAB           0000000000000000   00000388
       00000000000001c8  0000000000000018          12    15      8
  [12] .strtab           STRTAB           0000000000000000   00000550
       000000000000004f  0000000000000000           0     0      1
Key to Flags:
  W (write), A (alloc), X (execute), M (merge), S (strings), l (large)
  I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
  O (extra OS processing required) o (OS specific), p (processor specific)

> readelf -S main
There are 14 section headers, starting at offset 0x650:

Section Headers:
  [Nr] Name              Type             Address           Offset
       Size              EntSize          Flags  Link  Info  Align
  [ 0]                   NULL             0000000000000000  00000000
       0000000000000000  0000000000000000           0     0     0
  [ 1] .interp           PROGBITS         0000000000400158  00000158
       000000000000000f  0000000000000000   A       0     0     1
  [ 2] .hash             HASH             0000000000400168  00000168
       0000000000000028  0000000000000004   A       3     0     8
  [ 3] .dynsym           DYNSYM           0000000000400190  00000190
       0000000000000078  0000000000000018   A       4     1     8
  [ 4] .dynstr           STRTAB           0000000000400208  00000208
       0000000000000027  0000000000000000   A       0     0     1
  [ 5] .rela.plt         RELA             0000000000400230  00000230
       0000000000000018  0000000000000018  AI       3     6     8
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  [ 6] .plt              PROGBITS         0000000000400250  00000250
       0000000000000020  0000000000000010  AX       0     0     16
  [ 7] .text             PROGBITS         0000000000400270  00000270
       0000000000000014  0000000000000000  AX       0     0     16
  [ 8] .eh_frame         PROGBITS         0000000000400288  00000288
       0000000000000000  0000000000000000   A       0     0     8
  [ 9] .dynamic          DYNAMIC          0000000000600288  00000288
       0000000000000110  0000000000000010  WA       4     0     8
  [10] .got.plt          PROGBITS         0000000000600398  00000398
       0000000000000020  0000000000000008  WA       0     0     8
  [11] .shstrtab         STRTAB           0000000000000000  000003b8
       0000000000000065  0000000000000000           0     0     1
  [12] .symtab           SYMTAB           0000000000000000  00000420
       00000000000001e0  0000000000000018          13    15     8
  [13] .strtab           STRTAB           0000000000000000  00000600
       000000000000004d  0000000000000000           0     0     1

■■ Question 73  Study the symbol tables for an obtained shared object using readelf --dyn-syms and 
objdump -ft.

■■ Question 74  What is the meaning behind the environment variable LD_LIBRARY_PATH?

■■ Question 75  Separate the first assignment into two modules. The first module will store all functions 
defined in lib.inc. The second will have the entry point and will call some of these functions.

■■ Question 76 T ake one of the standard Linux utilities (from coreutils). Study its object file structure using 
readelf and objdump.

The things we observed in this section apply in most situations. However, there is a bigger picture of 
different code models that affect the addressing. We will dive into those details in Chapter 15 after getting 
more familiar with assembly and C. There we will also revise the dynamic libraries again and introduce the 
notions of Global Offset Table and Procedure Linkage Table.

5.3.5 � Loader
Loader is a part of the operating system that prepares executable file for execution. It includes mapping its 
relevant sections into memory, initializing .bss, and sometimes mapping other files from disk.

The program headers for a file symbols.asm, shown in Listing 5-22, are shown in Listing 5-32.

Listing 5-32.  symbols_pht

> nasm -f elf64 symbols.asm
> nasm -f elf64 executable_object.asm
> ld symbols.o executable_object.o -o main
> readelf -l main
Elf file type is EXEC (Executable file)
Entry point 0x4000d8
There are 2 program headers, starting at offset 64

http://dx.doi.org/10.1007/978-1-4842-2403-8_15
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Program Headers:
  Type           Offset             VirtAddr             PhysAddr
                 FileSiz            MemSiz                Flags  Align
  LOAD           0x0000000000000000 0x0000000000400000   0x0000000000400000
                 0x00000000000000e3 0x00000000000000e3    R E    200000
  LOAD           0x00000000000000e4 0x00000000006000e4   0x00000000006000e4
                 0x0000000000000010 0x000000000200001c    RW     200000

 Section to Segment mapping:
  Segment Sections...
   00     .text
   01     .data .bss

The table tells us that two segments are present.

	 1.	 00 segment

•   Is loaded at 0x400000 aligned at 0x200000.

•   Contains section .text.

•   Can be executed and can be read. Cannot be written to (so you cannot  
overwrite code).

	 2.	 01 segment

•   Is loaded at 0x6000e4 aligned to 0x200000.

•   Can be read and written to.

Alignment means that the actual address will be the closest one to the start, divisible by 0x200000.
Thanks to virtual memory, you can load all programs at the same starting address. Usually it is 

0x400000.
There are some important observations to be made:

•	 Assembly sections with similar names, defined in different files, are merged.

•	 A relocation table is not needed in a pure executable file. Relocations partially remain 
for shared objects.

Let’s launch the resulting file and see its /proc/<pid>/maps file as we did in Chapter 4. Listing 5-33 
shows its sample contents. The executable is crafted to loop infinitely.

Listing 5-33.  symbols_maps

00400000-00401000 r-xp 00000000 08:01 1176842
                           /home/sayon/repos/spbook/en/listings/chap5/main

00600000-00601000 rwxp 00000000 08:01 1176842
                           /home/sayon/repos/spbook/en/listings/chap5/main

00601000-02601000 rwxp 00000000 00:00 0

7ffe19cf2000-7ffe19d13000 rwxp 00000000 00:00 0
                          [stack]
7ffe19d3e000-7ffe19d40000 r-xp 00000000 00:00 0
                          [vdso]

http://dx.doi.org/10.1007/978-1-4842-2403-8_4
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7ffe19d40000-7ffe19d42000 r--p 00000000 00:00 0
                          [vvar]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0
                          [vsyscall]

As we see, the program header is telling us the truth about section placement.

■■ Note   In some cases, you will find that the linker needs to be finely tuned. The section loading addresses 
and relative placement can be adjusted by using linker scripts, which describe the resulting file. Such cases 
usually occur when you are programming an operating system or a microcontroller firmware. This topic is 
beyond the scope of this book, but we recommend that you look at [4] in case you encounter such a need.

5.4 � Assignment: Dictionary
This assignment will further advance us to a working Forth interpreter. Some things about it might seem 
forced, like the macro design, but it will make a good foundation for an interpreter we are going to do later.

Our task is to implement a dictionary. It will provide a correspondence between keys and values. 
Each entry contains the address of the next entry, a key, and a value. Keys and values in our case are null-
terminated strings.

The dictionary entries form a data structure are called a linked list. An empty list is represented by a 
null pointer, equal to zero. A non-empty list is a pointer to its first element. Each element holds some kind of 
value and a pointer to the next element (or zero, if it is the last element).

Listing 5-34 shows an exemplary linked list, holding elements 100, 200, and 300. It can be referred to by 
a pointer to its first element, that is, x1.

Listing 5-34.  linked_list_ex.asm

section .data

x1:
dq x2
dq 100

x2:
dq x3
dq 200

x3:
dq 0
dq 300

Linked lists are often useful in situations that have numerous insertions and removals in the middle 
of the list. Accessing elements by index, however, is hard because it does not boil down to simple pointer 
addition. Linked list elements’ mutual positions in flat memory are usually not predictable.

In this assignment the dictionary will be constructed statically as a list and each newly defined element 
will be prepended to it. You have to use macros with local labels and symbol redefinition to automatize the 
linked list creation. We explicitly instruct you to make a macro colon with two arguments, where the first 
will hold a dictionary key string and the second will hold the internal element representation name. This 
differentiation is needed because key strings can sometimes contain characters which are not parts of valid 
label names (space, punctuation, arithmetic signs, etc.). Listing 5-35 shows an example of such a dictionary.

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par5
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Listing 5-35.  linked_list_ex_macro.asm

section .data

colon "third word", third_word
db "third word explanation", 0

colon "second word", second_word
db "second word explanation", 0

colon "first word", first_word
db "first word explanation", 0

The assignment will contain the following files:

	 1.	 main.asm

	 2.	 lib.asm

	 3.	 dict.asm

	 4.	 colon.inc

Follow these steps to complete the assignment:

	 1.	 Make a separate assembly file containing functions that you have already written 
in the first assignment. We will call it lib.o.

Do not forget to mark all necessary labels global, otherwise they won’t be visible 
outside of this object file!

	 2.	 Create a file colon.inc and define a colon macro there to create dictionary words.

This macro will take two arguments:

•	 Dictionary key (inside quotes).

•	 Assembly label name. Keys can contain spaces and other characters, which are not 
allowed in label names.

Each entry should start with a pointer to the next entry, then hold a key as a null-
terminated string. The content is then directly described by a programmer—for 
example, using db directives, as in the example shown in Listing 5-35.

	 3.	 Create a function find_word inside a new file dict.asm. It accepts two arguments:

(a)	 A pointer to a null terminated key string.

(b)	 A pointer to the last word in the dictionary. Having a pointer to the last word 
defined, we can follow the consecutive links to enumerate all words in the 
dictionary.

find_word will loop through the whole dictionary, comparing a given key with 
each key in dictionary. If the record is not found, it returns zero; otherwise it 
returns record address.

	 4.	 A separate include file words.inc to define dictionary words using the colon 
macro. Include it in main.asm.
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	 5.	 A simple _start function. It should perform the following actions:

•   Read the input string in a buffer of maximum 255 characters long.

•   Try to find this key in dictionary. If found, print the corresponding value. If not, 
print an error message.

Do not forget: all error messages should be written in stderr rather than stdout!
We ship a set of stub files (see Section 2.1 “Setting Up the Environment”); you are free to use them. 

An additional Makefile describes the building process; type make in the assignment directory to build an 
executable file main. A quick tutorial to the GNU Make system is available in Appendix B.

As in the first assignment, there is a test.py file to perform automated tests.

5.5 � Summary
In this chapter we have looked at the different compilation stages. We have studied the NASM 
macroprocessor in detail and learned conditionals and loops. Then we talked about three object file types: 
relocatable, executable, and shared. We elaborated the ELF file structure and observed the relocation 
process performed by the linker. We have touched on the shared object files, and we will revisit them again 
in the Chapter 15.

■■ Question 77  What is the linked list?

■■ Question 78  What are the compilation stages?

■■ Question 79  What is preprocessing?

■■ Question 80  What is a macro instantiation?

■■ Question 81  What is the %define directive?

■■ Question 82  What is the %macro directive?

■■ Question 83  What is the difference between %define, %xdefine, and %assign?

■■ Question 84  Why do we need the %% operator inside macro?

■■ Question 85  What types of conditions are supported by NASM macroprocessor?  
Which directives are used for it?

■■ Question 86  What are the three types of ELF object files?

■■ Question 87  What kinds of headers are present in an ELF file?

■■ Question 88  What is relocation?

■■ Question 89  What sections can be present in ELF files?

■■ Question 90  What is a symbol table? What kind of information does it store?

■■ Question 91 I s there a connection between sections and segments?

■■ Question 92 I s there a connection between assembly sections and ELF sections?

http://dx.doi.org/10.1007/978-1-4842-2403-8_15
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■■ Question 93  What symbol marks the program entry point?

■■ Question 94  Which are the two different kind of libraries?

■■ Question 95 I s there a difference between a static library and a relocatable object file?
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CHAPTER 6

Interrupts and System Calls

In this chapter we are going to discuss two topics.
First, as von Neumann architecture lacks interactivity, the interrupts were introduced to change 

that. Although we are not diving into the hardware part of interrupts, we are going to learn exactly how 
programmer views the interrupts. Additionally, we will speak about input and output ports used to 
communicate with external devices.

Second, the operating system (OS) usually provides an interface to interact with the resources it 
controls: memory, files, CPU (central processing unit), etc. This is implemented via system calls mechanism. 
Transferring control to the operating system routines requires a well defined mechanism of privilege 
escalation, and we are going to see how it works in Intel 64 architecture.

6.1 � Input and Output
When we were extending the von Neumann architecture to work with external devices, we mentioned 
interrupts only as a way to communicate with them. In fact, there is a second feature, input/output (I/O) 
ports, which complements it and allows data exchange between CPU and devices.

The applications can access I/O ports in two ways:

	 1.	 Through a separate I/O address space.

There are 216 1-byte addressable I/O ports, from 0 through FFFFH. The commands 
in and out are used to exchange data between ports and eax register (or its parts).

The permissions to perform writes and reads from ports are controlled by 
checking:

•   IOPL (I/O privilege level) field of rflags registers

•   I/O Permission bit map of a Task State Segment. We will speak about  
it in section 6.1.1.

	 2.	 Through memory-mapped I/O.

A part of address space is specifically mapped to provide interaction with such 
external devices that respond like memory components. Consecutively, any 
memory addressing instructions (mov, movsb, etc.) can be used to perform I/O 
with these devices.

Standard segmentation and paging protection mechanisms are applied to such 
I/O tasks.
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The IOPL field in rflags register works as follows: if the current privilege level is less or equal to the 
IOPL, the following instructions are allowed to be executed:

•	 in and out (normal input/output).

•	 ins and outs (string input/output).

•	 cli and sti (clear/set interrupt flag).

Thus, setting IOPL in an application individually allows us to forbid it from writing even if it is working 
at a higher privilege level than the user applications.

Additionally, Intel 64 allows an even finer permission control through an I/O permission bit map. If the 
IOPL check has passed, the processor checks the bit corresponding to the used port. The operation proceeds 
only if this bit is not set.

The I/O permission bit map is a part of Task State Segment (TSS), which was created to be an entity 
unique to a process. However, as the hardware task-switching mechanism is considered obsolete, only one 
TSS (and I/O permission bit map) can exist in long mode.

6.1.1 � TR register and Task State Segment
There are some artifacts from the protected mode that are still somehow used in long mode. A segmentation 
is an example, now mostly used to implement protection rings. Another is a pair of a tr register and Task 
State Segment control structure.

The tr register holds the segment selector to the TSS descriptor. The latter resides in the GDT (Global 
Descriptor Table) and has a format similar to segment descriptors.

Likewise for segment registers, there is a shadow register, which is updated from GDT when tr is 
updated via ltr (load task register) instruction.

The TSS is a memory region used to hold information about a task in the presence of a hardware 
task-switching mechanism. Since no popular OS has used it in protected mode, this mechanism was 
removed from long mode. However, TSS in long mode is still used, albeit with a completely different 
structure and purpose.

These days there is only one TSS used by an operating system, with the structure described in 
Figure 6-1.

http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Par59
http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Sec2
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The first 16 bits store an offset to an Input/Output Port Permission Map, which we already discussed in 
section 6.1. The TSS then holds eight pointers to special interrupt stack tables (ISTs) and stack pointers for 
different rings. Each time a privilege level changes, the stack is automatically changed accordingly. Usually, 
the new rsp value will be taken from the TSS field corresponding to the new protection ring. The meaning of 
ISTs is explained in section 6.2.

Figure 6-1.  Task State Segment in long mode
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Figure 6-3.  Interrupt descriptor

Figure 6-2.  idtr register

6.2 � Interrupts
Interrupts allow us to change the program control flow at an arbitrary moment in time. While the program 
is executing, external events (device requires CPU attention) or internal events (division by zero, insufficient 
privilege level to execute an instruction, a non-canonical address) may provoke an interrupt, which results 
in some other code being executed. This code is called an interrupt handler and is a part of an operating 
system or driver software.

In [15], Intel separates external asynchronous interrupts from internal synchronous exceptions, but 
both are handled alike.

Each interrupt is labeled with a fixed number, which serves as its identifier. For us it is not important 
exactly how the processor acquires the interrupt number from the interrupt controller.

When the n-th interrupt occurs, the CPU checks the Interrupt Descriptor Table (IDT), which resides in 
memory. Analogously to GDT, its address and size are stored in idtr. Figure 6-2 describes the idtr.

Each entry in IDT takes 16 bytes, and the n-th entry corresponds to the n-th interrupt. The entry 
incorporates some utility information as well as an address of the interrupt handler. Figure 6-3 describes the 
interrupt descriptor format.

DPL  Descriptor Privilege Level

Current privilege level should be less or equal to DPL in order to call this handler 
using int instruction. Otherwise the check does not occur.

Type 1110 (interrupt gate, IF is automatically cleared in the handler) or 1111 (trap gate, IF is not cleared).
The first 30 interrupts are reserved. It means that you can provide interrupt handlers for them, but the 

CPU will use them for its internal events such as invalid instruction encoding. Other interrupts can be used 
by the system programmer.

When the IF flag is set, the interrupts are handled; otherwise they are ignored.

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Sec2
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■■ Question 96  What are non-maskable interrupts? What is their connection with the interrupt with code 2 
and IF flag?

The application code is executed with low privileges (in ring3). Direct device control is only possible 
on higher privilege levels. When a device requires attention by sending an interrupt to the CPU, the handler 
should be executed in a higher privilege ring, thus requiring altering the segment selector.

What about the stack? The stack should also be switched. Here we have several options based on how 
we set up the IST field of interrupt descriptor.

•	 If the IST is 0, the standard mechanism is used. When an interrupt occurs, ss is 
loaded with 0, and the new rsp is loaded from TSS. The RPL field of ss then is set to an 
appropriate privilege level. Then old ss and rsp are saved in this new stack.

•	 If an IST is set, one of seven ISTs defined in TSS is used. The reason ISTs are created is 
that some serious faults (non-maskable interrupts, double fault, etc.) might profit from 
being executed on a known good stack. So, a system programmer might create several 
stacks even for ring0 and use some of them to handle specific interrupts.

There is a special int instruction, which accepts the interrupt number. It invokes an interrupt handler 
manually with respect to its descriptor contents. It ignores the IF flag: whether it is set or cleared, the handler 
will be invoked. To control execution of privileged code using int instruction, a DPL field exists.

Before an interrupt handler starts its execution, some registers are automatically saved into stack. These 
are ss, rsp, rflags, cs, and rip. See a stack diagram in Figure 6-4. Note how segment selectors are padded 
to 64 bit with zeros.

Figure 6-4.  Stack when an interrupt handler starts
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Sometimes an interrupt handler needs additional information about the event. An interrupt error 
code is then pushed into stack. This code contains various information specific for this type of interrupt.

Many interrupts are described using special mnemonics in Intel documentation. For example, the 
13-th interrupt is referred to as #GP (general protection).1 You will find the short description of the some 
interesting interrupts in the Table 6-1.

Table 6-1.  Some Important Interrupts

VECTOR MNEMONIC DESCRIPTION

0 #DE Divide error

2 Non-maskable external interrupt

3 #BP Breakpoint

6 #UD Invalid instruction opcode

8 #DF A fault while handling interrupt

13 #GP General protection

14 #PF Page fault

Not all binary code corresponds to correctly encoded machine instructions. When rip is not addressing 
a valid instruction, the CPU generates the #UD interrupt.

The #GP interrupt is very common. It is generated when you try to dereference a forbidden address 
(which does not correspond to any allocated page), when trying to perform an action, requiring a higher 
privilege level, and so on.

The #PF interrupt is generated when addressing a page which has its present flag cleared in the 
corresponding page table entry. This interrupt is used to implement the swapping mechanism and file 
mapping in general. The interrupt handler can load missing pages from disk.

The debuggers rely heavily on the #BP interrupt. When the TF is set in rflags, the interrupt with 
this code is generated after each instruction is executed, allowing a step-by-step program execution. 
Evidently, this interrupt is handled by an OS. It is thus an OS’s responsibility to provide an interface for user 
applications that allows programmers to write their own debuggers.

To sum up, when an n-th interrupt occurs, the following actions are performed from a programmer’s 
point of view:

	 1.	 The IDT address is taken from idtr.

	 2.	 The interrupt descriptor is located starting from 128 × n-th byte of IDT.

	 3.	 The segment selector and the handler address are loaded from the IDT entry into 
cs and rip, possibly changing privilege level. The old ss, rsp, rflags, cs, and rip 
are stored into stack as shown in Figure 6-4.

	 4.	 For some interrupts, an error code is pushed on top of handler’s stack. It provides 
additional information about interrupt cause.

	 5.	 If the descriptor’s type field defines it as an Interrupt Gate, the interrupt flag IF is 
cleared. The Trap Gate, however, does not clear it automatically, allowing nested 
interrupt handling.

1See section 6.3.1 of the third volume of [15]

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
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If the interrupt flag is not cleared immediately after the interrupt handler start, we cannot have any 
kind of guarantees that we will execute even its first instruction without another interrupt appearing 
asynchronously and requiring our attention.

■■ Question 97  Is the TF flag cleared automatically when entering interrupt handlers? Refer to [15].

The interrupt handler is ended by a iretq instruction, which restores all registers saved in the stack, as 
shown in Figure 6-4, compared to the simple call instruction, which restores only rip.

6.3 � System Calls
System calls are, as you already know, functions that an OS provides for user applications. This section 
describes the mechanism that allows their secure execution with higher privilege level.

The mechanisms used to implement system calls vary in different architectures. Overall, any instruction 
resulting in an interrupt will do, for example, division by zero or any incorrectly encoded instruction. 
The interrupt handler will be called and then the CPU will handle the rest. In protected mode on Intel 
architecture, the interrupt with code 0x80 was used by *nix operating systems. Each time a user executed int 
0x80, the interrupt handler checked the register contents for system call number and arguments.

System calls are quite frequent, and you cannot perform any interaction with the outside world without 
them. Interrupts, however, can be slow, especially in Intel 64, since they require memory accesses to IDT.

So in Intel 64 there is a new mechanism to perform system calls, which uses syscall and sysret 
instructions to implement them.

Compared to interrupts, this mechanism has some key differences:

•	 The transition can only happen between ring0 and ring3.As pretty much no one uses 
ring1 and ring2, this limitation is not considered important.

•	 Interrupt handlers differ, but all system calls are handled by the same code with only 
one entry point.

•	 Some general purpose registers are now implicitly used during system call.

–– rcx is used to store old rip

–– r11 is used to store old rflags

6.3.1 � Model-Specific Registers
Sometimes when a new CPU appears it has additional registers, which other, more ancient ones, do not 
have. Quite often these are so-called Model-Specific Registers. When these registers are rarely modified, 
their manipulation is performed via two commands: rdmsr to read them and wrmsr to change them. These 
two commands operate on the register identifying number.

rdmsr accepts the MSR number in ecx, returns the register value in edx:eax.
wrmsr accepts the MSR number in ecx and stores the value taken from edx:eax in it.

6.3.2 � syscall and sysret
The syscall instruction depends on several MSRs.

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
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•	 STAR (MSR number 0xC0000081), which holds two pairs of cs and ss values: for 
system call handler and for sysret instruction. Figure 6-5 shows its structure.

Figure 6-5.  MSR STAR

•	 LSTAR (MSR number 0xC0000082) holds the system call handler address (new rip).

•	 SFMASK (MSR number 0xC0000084) shows which bits in rflags should be cleared in 
the system call handler.

The syscall performs the following actions:

•	 Loads cs from STAR;

•	 Changes rflags with regards to SFMASK;

•	 Saves rip into rcx; and

•	 Initializes rip with LSTAR value and takes new cs and ss from STAR.

Note that now we can explain why system calls and procedures accept arguments in slightly different 
sets of registers. The procedures accept their fourth argument in rcx, which, as we know, is used to store the 
old rip value.

Contrary to the interrupts, even if the privilege level changes, the stack pointer should be changed by 
the handler itself.

System call handling ends with sysret instruction, which loads cs and ss from STAR and rip from rcx.
As we know, the segment selector change leads to a read from GDT to update its paired shadow 

register. However, when executing syscall, these shadow registers are loaded with fixed values and no 
reads from GDT are performed.

Here are these two fixed values in deciphered form:

•	 Code Segment shadow register:

–– Base = 0

–– Limit = FFFFFH

–– Type = 11
2
 (can be executed, was accessed)

–– S = 1 (System)

–– DPL = 0

–– P = 1

–– L = 1 (Long mode)

–– D = 0

–– G = 1 (always the case in long mode)

http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Sec2
http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Par59
http://dx.doi.org/10.1007/978-1-4842-2403-8_3#Par59
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Additionally, CPL (current privilege level) is set to 0

•	 Stack Segment shadow register:

–– Base = 0

–– Limit = FFFFFH

–– Type = 11
2
 (can be executed, was accessed)

–– S = 1 (System)

–– DPL = 0

–– P = 1

–– L = 1 (Long mode)

–– D = 1

–– G = 1

However, the system programmer is responsible for fulfilling a requirement: GDT should have the 
descriptors corresponding to these fixed values.

So, GDT should store two particular descriptors for code and data specifically for syscall support.

6.4 � Summary
In this chapter we have provided an overview of interrupts and system call mechanisms. We have studied 
their implementation down to the system data structures residing in memory. In the next chapter we 
are going to review different models of computation, including stack machines akin to Forth and finite 
automatons, and finally work on a Forth interpreter and compiler in assembly language.

■■ Question 98  What is an interrupt?

■■ Question 99  What is IDT?

■■ Question 100  What does setting IF change?

■■ Question 101  In which situation does the #GP error occur?

■■ Question 102  In which situations does the #PF error occur?

■■ Question 103 H ow is #PF error related to the swapping? How does the operating system use it?

■■ Question 104  Can we implement system calls using interrupts?

■■ Question 105  Why do we need a separate instruction to implement system calls?

■■ Question 106  Why does the interrupt handler need a DPL field?

■■ Question 107  What is the purpose of interrupt stack tables?
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■■ Question 108 D oes a single thread application have only one stack?

■■ Question 109  What kinds of input/output mechanisms does Intel 64 provide?

■■ Question 110  What is a model-specific register?

■■ Question 111  What are the shadow registers?

■■ Question 112 H ow are the model-specific registers used in the system call mechanism?

■■ Question 113  Which registers are used by syscall instruction?
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CHAPTER 7

Models of Computation

In this chapter we are going to study two models of computations: finite state machines and stack machines.
Model of computation is akin to the language you are using to describe the solution to a problem. 

Typically, a problem that is really hard to solve correctly in one model of computation can be close to 
trivial in another. This is the reason programmers who are knowledgeable about many different models 
of computations can be more productive. They solve problems in the model of computation that is most 
suitable and then they implement the solution with the tools they have at their disposal.

When you are trying to learn a new model of computation, do not think about it from the “old” point of 
view, like trying to think about finite state machines in terms of variables and assignments. Try to start fresh 
and logically build the new system of notions.

We already know much about Intel 64 and its model of computation, derived from von Neumann’s. This 
chapter will introduce finite state machines (used to implement regular expressions) and stack machines 
akin to the Forth machine.

7.1 � Finite State Machines
7.1.1 � Definition
Deterministic finite state machine (deterministic finite automaton) is an abstract machine that acts on 
input string, following some rules.

We will use “Finite automatons” and “state machines” interchangeably. To define a finite automaton, 
the following parts should be provided:

	 1.	 A set of states.

	 2.	 Alphabet—a set of symbols that can appear in the input string.

	 3.	 A selected start state.

	 4.	 One or multiple selected end states

	 5.	 Rules of transition between states. Each rule consumes a symbol from input string. 
Its action can be described as: “if automaton is in state S and an input symbol C 
occurs, the next current state will be Z.”

If the current state has no rule for the current input symbol, we consider the automaton behavior 
undefined.

The undefined behavior is a concept known more to mathematicians than to engineers. For the sake 
of brevity we are describing only the “good” cases. The “bad” cases are of no interest to us, so we are not 
defining the machine behavior in them. However, when implementing such machines, we will consider all 
undefined cases as erroneous and leading to a special error state.

http://dx.doi.org/10.1007/978-1-4842-2403-8_1#Sec2
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Why bother with automatons? Some tasks are particularly easy to solve when applying such paradigm 
of thinking. Such tasks include controlling embedded devices and searching substrings that match a certain 
pattern.

For example, we are checking, whether a string can be interpreted as an integer number. Let’s draw a 
diagram, shown in Figure 7-1. It defines several states and shows possible transitions between them.

•	 The alphabet consists of letters, spaces, digits, and punctuation signs.

•	 The set of states is {A, B, C}.

•	 The initial state is A.

•	 The final state is C.

Figure 7-1.  Number recognition

Table 7-1.  Tracing a finite state machine shown in Figure 7-1, input is: +34

OLD STATE RULE NEW STATE

A + B

B 3 C

C 4 C

We start execution from the state A. Each input symbol causes us to change current state based on 
available transitions.

■■ Note   Arrows labeled with symbol ranges like 0. . . 9 actually denote multiple rules. Each of these rules 
describes a transition for a single input character.

Table 7-1 shows what will happen when this machine is being executed with an input string +34. This is 
called a trace of execution.

The machine has arrived into the final state C. However, given an input idkfa, we could not have 
arrived into any state, because there are no rules to react to such input symbols. This is where the 
automaton’s behavior is undefined. To make it total and always arrive in either yes- state or no-state, we have 
to add one more final state and add rules in all existing states. These rules should direct the execution into 
the new state in case no old rules match the input symbol.
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7.1.2 � Example: Bits Parity
We are given a string of zeros and ones. We want to find out whether there is an even or an odd number of 
ones. Figure 7-2 shows the solver in the form of a finite state machine.

Figure 7-2.  Is the number of ones even in the input string?

The empty string has zero ones; zero is an even number. Because of this, the state A is both the starting 
and the final state.

All zeros are ignored no matter the state. However, each one occurring in input changes the state to the 
opposite one. If, given an input string, we arrive into the finite state A, then the number of ones is even. If we 
arrive into the finite state B, then it is odd.

■■ Confusion I n finite state machines, there is no memory, no assignments, no if-then-else constructions. 
This is thus a completely different abstract machine comparing to the von Neumann’s. There is really nothing 
but states and transitions between them. In the von Neumann model, the state is the state of memory and 
register values.

7.1.3 � Implementation in Assembly Language
After designing a finite state machine to solve a specific problem, it is trivial to implement this machine in an 
imperative programming language such as assembly or C.

Following is a straightforward way to implement such machines in assembly:

	 1.	 Make the designed automaton total: every state should possess transition rules for 
any possible input symbol. If this is not the case, add a separate state to design an 
error or an answer “no” to the problem being solved.

For simplicity we will call it the else-rule.

	 2.	 Implement a routine to get an input symbol. Keep in mind that a symbol is not 
necessarily a character: it can be a network packet, a user action, and other kinds 
of global events.

	 3.	 For each state we should

•   Create a label.

•   Call the input reading routine.

•   Match input symbol with the ones described in transition rules and jump to 
corresponding states if they are equal.

•   Handle all other symbols by the else-rule.
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To implement the exemplary automaton in assembly, we will make it total first, as shown in Figure 7-3

Figure 7-3.  Check if the string is a number: a total automaton

Figure 7-4.  Check if the string is a number: a total automaton for a null-terminated string

We will modify this automaton a bit to force the input string to be null-terminated, as shown in Figure 7-4. 
Listing 7-1 shows a sample implementation.

Listing 7-1.  automaton_example_bits.asm

section .text
; getsymbol is a routine to
; read a symbol (e.g. from stdin)
; into al

_A:
    call getsymbol
    cmp al, '+'
    je _B
    cmp al, '-'
    je _B
; The indices of the digit characters in ASCII
; tables fill a range from '0' = 0x30 to '9' = 0x39
; This logic implements the transitions to labels
; _E and _C
    cmp al, '0'
    jb _E
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    cmp al, '9'
    ja _E
    jmp _C

_B:
    call getsymbol
    cmp al, '0'
    jb _E
    cmp al, '9'
    ja _E
    jmp _C

_C:
    call getsymbol
    cmp al, '0'
    jb _E
    cmp al, '9'
    ja _E
    test al, al
    jz _D
    jmp _C

_D:
; code to notify about success

_E:
; code to notify about failure

This automaton is arriving into states D or E; the control will be passed to the instructions on either the 
_D or _E label.

The code can be isolated inside a function returning either 1 (true) in state _D or 0 (false) in state _E.

7.1.4 � Practical Value
First of all, there is an important limitation: not all programs can be encoded as finite state machines. This 
model of computation is not Turing complete, it cannot analyze complex recursively constructed texts, such 
as XML-code.

C and assembly language are Turing complete, which means that they are more expressive and can be 
used to solve a wider range of problems.

For example, if the string length is not limited, we cannot count its length or the words in it. Each result 
would have been a state, and there is only a limited number of states in finite state machines, while the word 
count can be arbitrary large as well as the strings themselves.

■■ Question 114 D raw a finite state machine to count the words in the input string. The input length is no 
more than eight symbols.

The finite state machines are often used to describe embedded systems, such as coffee machines. The 
alphabet consists of events (buttons pressed); the input is a sequence of user actions.
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The network protocols can often also be described as finite state machines. Every rule can be annotated 
with an optional output action: “if a symbol X is read, change state to Y and output a symbol Z.” The input 
consists of packets received and global events such as timeouts; the output is a sequence of packets sent.

There are also several verification techniques, such as model checking, that allow one to prove certain 
properties of finite automatons—for example, “if the automaton has reached the state B, he will never reach 
the state C.” Such proofs can be of a great value when building systems required to be highly reliable.

■■ Question 115 D raw a finite state machine to check whether there is an even or an odd number of words in 
the input string.

■■ Question 116 D raw and implement a finite state machine to answer whether a string should be trimmed 
from left, right, or both or should not be trimmed at all. A string should be trimmed if it starts or ends with 
consecutive spaces.

7.1.5 � Regular Expressions
Regular expressions are a way to encode finite automatons. They are often used to define textual patterns to 
match against. It can be used to search for occurences of a specific pattern or to replace them. Your favorite 
text editor probably implements them already.

There are a number of regular expressions dialects. We will take as an example a dialect akin to one 
used in the egrep utility.

A regular expression R can be:

	 1.	 A letter.

	 2.	 A sequence of two regular expressions: R Q.

	 3.	 Metasymbols ˆ and $, matching against the beginning and the end of the line.

	 4.	 A pair of grouping parentheses with a regular expression inside: (R).

	 5.	 An OR expression: R | Q.

	 6.	 R* denotes zero or more repetitions of R.

	 7.	 R+ denotes one or more repetitions of R.

	 8.	 R? denotes zero or one repetitions of R.

	 9.	 A dot matches against any character.

	 10.	 Brackets denote a range of symbols, for example [0-9] is an equivalent of 
(0|1|2|3|4|5|6|7|8|9).

You can test regular expressions using the egrep utility. It process its standard input and filters only 
those lines that match a given pattern. To prevent the from being processed by the shell, enclose it in single 
quotes like this: egrep 'expression'.

Following are some examples of simple regular expressions:

•	 hello .+ matches against hello Frank or hello 12; does not match against hello.

•	 [0-9]+ matches against an unsigned integer, possibly starting with zeros.

•	 -?[0-9]+ matches against a possibly negative integer, possibly starting with zeros.

•	 0|(-?[1-9][0-9]*) matches against any integer that does not start with zero (unless 
it is zero).
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These rules allow us to define a complex search pattern. The regular expressions engine will try to 
match the pattern starting with every position in text.

The regular expression engines usually follow one of these two approaches:

•	 Using a straightforward approach, trying to match all described symbol sequences. For 
example, matching a string ab against regular expression aa?a?b may result in such 
sequence of events:

1.	 Trying to match against aaab — failure.

2.	 Trying to match against aab — failure.

3.	 Trying to match against ab — success.

So, we are trying out different branches of decisions until we hit a successful one 
or until we see definitively that all options lead to a failure.

This approach is usually quite fast and also simple to implement. However, there 
is a worst-case scenario in which the complexity starts growing exponentially. 
Imagine matching a string:

aaa...a (repeat a n times)

against a regular expression:

a?a?a?...a?aaa...a (repeat a? n times, then repeat a n times)

The given string will surely match the regular expression. However, when 
applying a straightforward approach the engine will have to go through all 
possible strings that do match this regular expression. To do it, it will consider 
two possible options for each a? expression, namely, those containing a and 
those not containing it. There will be 2n such strings. It is as many as there are 
subsets in a set of n elements. You do not need more symbols than there are 
in this line of text to write a regular expression, which a modern computer will 
evaluate for days or even years. Even for a length n = 50 the number of options 
will hit 250 = 1125899906842624 options.

Such regular expressions are called “pathological” because due to the matching 
algorithm nature they are handled extremely slowly.

•	 Constructing a finite state machine based on a regular expression.

It is usually a NFA (Non-deterministic Finite Automaton). As opposed to DFA 
(Deterministic Finite Automaton), they can have multiple rules for the same state 
and input symbol. When such a situation occurs, the automaton performs both 
transitions and now has several states simultaneously. In other words, there is no 
single state but a set of states an automaton is in.

This approach is a bit slower in general but has no worst-case scenario with exponential 
working time. Standard Unix utilities such as grep are using this approach.

How to build a NFA from a regular expression? The rules are pretty 
straightforward:

–– A character corresponds to an automaton, which accepts a string of one such 
character, as shown in Figure 7-5.

–– We can enlarge the alphabet with additional symbols, which we put in the beginning 
and end of each line.
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–– This way we handle ˆ and $ just as any other symbol.

–– Grouping parentheses allow one to apply rules to the symbol groups. They are only 
used for correct regular expression parsing. In other words, they provide the 
structural information needed for a correct automaton construction.

–– OR corresponds to combining two NFAs by merging their starting state. Figure 7-5 
illustrates the idea.

Figure 7-5.  NFA for one character

Figure 7-7.  NFA: implementing asterisk

Figure 7-6.  Combining NFAs via OR

–– An asterisk has a transition to itself and a special thing called ϵ-rule. This rule 
occurs always. Figure 7-7 shows the automaton for an expression a*b.

–– ? is implemented in a similar fashion to *. R+ is encoded as RR*.
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■■ Question 117 U sing any language you know, implement a grep analogue based on NFA construction. You 
can refer to [11] for additional information.

■■ Question 118 S tudy this regular expression: ˆ1?$|ˆ(11+?)\1+$. What might be its purpose? Imagine that 
the input is a string consisting of characters 1 uniquely. How does the result of this regular expression matching 
correlate with the string length?

7.2 � Forth Machine
Forth is a language created by Charles Moore in 1971 for the 11-meter radio telescope operated by the 
National Radio Astronomy Observatory (NRAO) at Kitt Peak, Arizona. This system ran on two early 
minicomputers joined by a serial link. Both a multiprogrammed system and a multiprocessor system (in 
that both computers shared responsibility for controlling the telescope and its scientific instruments), it was 
controlling the telescope, collecting data, and supporting an interactive graphics terminal to interact with 
the telescope and analyze recorded data.

Today, Forth rests a unique and interesting language, both entertaining to learn and a great thing to 
change the perspective. It is still used, mostly in embedded software, due to an amazing level of interactivity. 
Forth can also be quite efficient.

Forth interpreters can be seen in such places as

•	 FreeBSD loader.

•	 Robot firmwares.

•	 Embedded software (printers).

•	 Space ships software.

It is thus safe to call Forth a system programming language.
It is not hard to implement Forth interpreter and compiler for Intel 64 in assembly language. The rest of 

this chapter will explain the details. There are almost as many Forth dialects as Forth programmers; we will 
use our own simple dialect.

7.2.1 � Architecture
Let’s start by studying a Forth abstract machine. It consists of a processor, two separate stacks for data and 
return addresses, and linear memory, as shown in Figure 7-8.

http://dx.doi.org/10.1007/978-1-4842-2403-8_7#Par86
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par12
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Stacks should not necessarily be part of the same memory address space.
The Forth machine has a parameter called cell size. Typically, it is equal to the machine word size of the 

target architecture. In our case, the cell size is 8 bytes. The stack consists of elements of the same size.
Programs consist of words separated by spaces or newlines. Words are executed consecutively. The 

integer words denote pushing into the data stack. For example, to push numbers 42, 13, and 9 into the data 
stack you can write simply 42 13 9.

There are three types of words:

	 1.	 Integer words, described previously.

	 2.	 Native words, written in assembly.

	 3.	 Colon words, written in Forth as a sequence of other Forth words.

The return stack is necessary to be able to return from the colon words, as we will see later.
Most words manipulate the data stack. From now on when speaking about the stack in Forth we will 

implicitly consider the data stack unless specified otherwise.
The words take their arguments from the stack and push the result there. All instructions operating on 

the stack consume their operands. For example, words +, -, *, and / consume two operands from the stack, 
perform an arithmetic operation, and push its result back in the stack. A program 1 4 8 8 + * + computes 
the expression (8 + 8) * 4 + 1.

We will follow the convention that the second operand is popped from the stack first. It means that the 
program '1 2 -' evaluates to −1, not 1.

The word : is used to define new words. It is followed by the new word’s name and a list of other words 
terminated by the word ;. Both semicolon and colon are words on their own and thus should be separated 
by spaces.

A word sq, which takes an argument from the stack and pushes its square back, will look as follows:

: sq dup * ;

Each time we use sq in the program, two words will be executed: dup (duplicate cell in top of the stack) 
and * (multiply two words on top of the stack).

To describe the word’s actions in Forth it is common to use stack diagrams:

swap (a b -- b a)

Figure 7-8.  Forth machine: architecture
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In parentheses you see the stack state before and after word execution. The stack cells are names to 
highlight the changes in stack contents. So, the swap word swaps two topmost elements in stack.

The topmost element is on the right, so the diagram 1 2 corresponds to Forth pushing first 1, then 2 as a 
result of execution of some words.

rot places on top the third number from stack:

rot    (a b c -- b c a)

7.2.2 � Tracing an Exemplary Forth Program
Listing 7-2 shows a simple program to calculate the discriminant of a quadratic equation 1x2 + 2x + 3 = 0.

Listing 7-2.  forth_discr

: sq dup * ;
: discr rot 4 * * swap sq swap - ;
1 2 3 discr

Now we are going to execute discr a b c step by step for some numbers a, b, and c. The stack state at 
the end of each step is shown on the right.

a    ( a )
b    ( a b )
c    ( a b c )

Then the discr word is executed. We are stepping into it.

rot  ( b c a )
4    ( b c a 4 )
*    ( b c (a*4) )
*    ( b (c*a*4) )
swap ( (c*a*4) b )
sq   ( (c*a*4) (b*b) )
swap ( (b*b) (c*a*4) )
-    ( (b*b - c*a*4) )

Now we do the same from the start, but for a = 1, b = 2, and c = 3.

1    ( 1 )
2    ( 1 2 )
3    ( 1 2 3 )
rot  ( 2 3 1 )
4    ( 2 3 1 4 )
*    ( 2 3 4 )
*    ( 2 12 )
swap ( 12 2 )
sq   ( 12 4 )
swap ( 4 12 )
-    ( -8 )
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7.2.3 � Dictionary
A dictionary is a part of a Forth machine that stores word definitions. Each word is a header followed by a 
sequence of other words.

The header stores the link to the previous word (as in linked lists), the word name itself as a null-
terminated string, and some flags. We have already studied a similar data structure in the assignment, 
described in section 5.4. You can reuse a great part of its code to facilitate defining new Forth words. See 
Figure 7-9 for the word header generated for the discr word described in section 7.2.2

Figure 7-9.  Word header for discr

7.2.4 � How Words Are Implemented
There are three ways to implement words.

•	 Indirect threaded code

•	 Direct threaded code

•	 Subroutine threaded code

We are using a classic indirect threaded code way. This type of code needs two special cells (which we 
can call Forth registers):

PC points at the next Forth command. We will see soon that the Forth command is 
an address of an address of the respective word’s assembly implementation code. 
In other words, this is a pointer to an executable assembly code with two levels of 
indirection.

W is used in non-native words. When the word starts its execution, this register 
points at its first word.

These two registers can be implemented through a real register usage. Alternatively, their contents can 
be stored in memory.

Figure 7-10 shows how words are structured when using the indirect threaded code technique. It 
incorporates two words: a native word dup and a colon word square.

http://dx.doi.org/10.1007/978-1-4842-2403_5.4
http://dx.doi.org/10.1007/978-1-4842-2403_7.2.2
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Each word stores the address of its native implementation (assembly code) immediately after the 
header. For colon words the implementation is always the same: docol. The implementation is called using 
the jmp instruction.

Execution token is the address of this cell, pointing to an implementation. So, an execution token is an 
address of an address of the word implementation. In other words, given the address A of a word entry in the 
dictionary, you can obtain its execution token by simply adding the total header size to A.

Listing 7-3 provides us with a sample dictionary. It contains two native words (starting at w_plus and 
w_dup) and a colon word (w_sq).

Listing 7-3.  forth_dict_sample.asm

section .data
w_plus:
    dq 0        ; The first word's pointer to the previous word is zero
    db '+',0
    db 0        ; No flags
xt_plus:        ; Execution token for `plus`, equal to
                ; the address of its implementation
    dq plus_impl
w_dup:
    dq w_plus
    db 'dup', 0
    db 0
xt_dup:
    dq dup_impl
w_double:
    dq w_dup
    db 'double', 0
    db 0
    dq docol     ; The `docol` address -- one level of indirection
    dq xt_dup    ; The words consisting `dup` start here.

Figure 7-10.  Indirect threaded code
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    dq xt_plus
    dq xt_exit

last_word: dq w_double
section .text
    plus_impl:
        pop rax
        add rax, [rsp]
        mov [rsp], rax
        jmp next
    dup_impl:
        push qword [rsp]
        jmp next

The core of the Forth engine is the inner interpreter. It is a simple assembly routine fetching code from 
memory. It is shown in Listing 7-4.

Listing 7-4.  forth_next.asm

next:
     mov w, pc
     add pc, 8 ; the cell size is 8 bytes
     mov w, [w]
     jmp [w]

It does two things:

	 1.	 It reads memory starting at PC and sets up PC to the next instruction. Remember, 
that PC points to a memory cell, which stores execution token of a word.

	 2.	 It sets up W to the execution token value. In other words, after next is executed, W 
stores the address of a pointer to assembly implementation of the word.

	 3.	 Finally, it jumps to the implementation code.

Every native word implementation ends with the instruction jmp next. It ensures that the next 
instruction will be fetched.

To implement colon words we need to use a return stack in order to save and restore PC before and after 
a call.

While W is not useful when executing native words, it is quite important for the colon words. Let us take 
a look at docol, the implementation of all colon words, shown in Listing 7-5 It also features exit, another 
word designed to end all colon words.

Listing 7-5.  forth_docol.asm

docol:
   sub rstack, 8
   mov [rstack], pc
   add w, 8       ;     8
   mov pc, w
   jmp next
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exit:
   mov pc, [rstack]
   add rstack, 8
   jmp next

docol saves PC in the return stack and sets up new PC to the first execution token stored inside the 
current word. The return is performed by exit, which restores PC from the stack.

This mechanism is akin to a pair of instructions call/ret.

■■ Question 119 R ead [32]. What is the difference between our approach (indirect threaded code) and direct 
threaded code and subroutine threaded code? What advantages and disadvantages can you name?

To better grasp the concept of an indirect threaded code and the innards of Forth, we prepared a 
minimal example shown in Listing 7-6. It uses routines developed in the first assignment from section 2.7.

Take your time to launch it (the source code is shipped with the book) and check that it really reads a 
word from input and outputs it back.

Listing 7-6.  itc.asm

%include "lib.inc"

global _start

%define pc r15
%define w r14
%define rstack r13

section .bss
resq 1023
rstack_start: resq 1
input_buf: resb 1024

section .text

; this one cell is the program
main_stub: dq xt_main

; The dictionary starts here
; The first word is shown in full
; Then we omit flags and links between nodes for brevity
; Each word stores an address of its assembly implementation

; Drops the topmost element from the stack
dq 0 ; There is no previous node
db "drop", 0
db 0 ; Flags = 0
xt_drop: dq i_drop
i_drop:
    add rsp, 8
    jmp next

http://dx.doi.org/10.1007/978-1-4842-2403_32
http://dx.doi.org/10.1007/978-1-4842-2403_2.7
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; Initializes registers
xt_init: dq i_init
i_init:
    mov rstack, rstack_start
    mov pc, main_stub
    jmp next

; Saves PC when the colon word starts
xt_docol: dq i_docol
i_docol:
    sub rstack, 8
    mov [rstack], pc
    add w, 8
    mov pc, w
    jmp next

; Returns from the colon word
xt_exit: dq i_exit
i_exit:
    mov pc, [rstack]
    add rstack, 8
    jmp next

; Takes a buffer pointer from stack
; Reads a word from input and stores it
; starting in the given buffer
xt_word: dq i_word
i_word:
    pop rdi
    call read_word
    push rdx
    jmp next
; Takes a pointer to a string from the stack
; and prints it
xt_prints: dq i_prints
i_prints:
    pop rdi
    call print_string
    jmp next

; Exits program
xt_bye: dq i_bye
i_bye:
    mov rax, 60
    xor rdi, rdi
    syscall

; Loads the predefined buffer address
xt_inbuf: dq i_inbuf
i_inbuf:
    push qword input_buf
    jmp next
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; This is a colon word, it stores
; execution tokens. Each token
; corresponds to a Forth word to be
; executed
xt_main: dq i_docol
    dq xt_inbuf
    dq xt_word
    dq xt_drop
    dq xt_inbuf
    dq xt_prints
    dq xt_bye

; The inner interpreter. These three lines
; fetch the next instruction and start its
; execution
next:
    mov w, [pc]
    add pc, 8
    jmp [w]

; The program starts execution from the init word
_start: jmp i_init

7.2.5 � Compiler
Forth can work in either interpreter or compiler mode. Interpreter just reads commands and executes them.

When executing the colon : word, Forth switches into compiler mode. Additionally, the colon : reads 
one next word and uses it to create a new entry in the dictionary with docol as implementation. Then Forth 
reads words, locates them in dictionary, and adds them to the current word being defined.

So, we have to add another variable here, which stores the address of the current position to write 
words in compile mode. Each write will advance here by one cell.

To quit compiler mode we need special immediate words. They are executed no matter which mode 
we are in. Without them we would never be able to exit compiler mode. The immediate words are marked 
with an immediate flag.

The interpreter puts numbers in the stack. The compiler cannot embed them in words directly, because 
otherwise they will be treated as execution tokens. Trying to launch a command by an execution token 42 
will most certainly result in a segmentation fault. However, the solution is to use a special word lit followed 
by the number itself. The lit’s purpose is to read the next integer that PC points at and advance PC by one 
cell further, so that PC will never point at the embedded operand.

7.2.5.1 � Forth Conditionals
We will make two words stand out in our Forth dialect: branch n and 0branch n. They are only allowed in 
compilation mode!

They are similar to lit n because the offset is stored immediately after their execution token.
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7.3 � Assignment: Forth Compiler and Interpreter
This section will describe a big assignment: writing your own Forth interpreter.

Before we start, make sure you have understood the Forth language basics. If you are not certain of it, 
you can play around with any free Forth interpreter, such as gForth.

■■ Question 120 L ook the documentation for commands sete, setl, and their counterparts.

■■ Question 121  What does cqo instruction do? Refer to [15].

It is convenient to store PC and W in some general purpose registers, especially the ones that are 
guaranteed to survive function calls unchanged (caller-saved): r13, r14, or r15.

7.3.1 � Static Dictionary, Interpreter
We are going to start with a static dictionary of native words. Adapt the knowledge you received in section 5.4. 
From now on we cannot define new words in runtime.

For this assignment we will use the following macro definitions:

•	 native, which accepts three arguments:

–– Word name;

–– A part of word identifier; and

–– Flags.

It creates and fills in the header in .data and a label in .text. This label will denote the assembly code 
following the macro instance.

As most words will not use flags, we can overload native to accept either two or three arguments. To 
do it, we create a similar macro definition which accepts two arguments and launches native with three 
arguments, the third being substituted by zero and the first two passed as-is, as shown in Listing 7-7.

Listing 7-7.  native_overloading.asm

%macro native 2
native %1, %2, 0
%endmacro

Compare two ways of defining Forth dictionary: without macros (shown in Listing 7-8) and with them 
(shown in Listing 7-9).

Listing 7-8.  forth_dict_example_nomacro.asm

section .data
w_plus:
   dq w_mul ; previous
   db '+',0
   db 0
xt_plus:
   dq plus_impl

http://dx.doi.org/10.1007/978-1-4842-2403_15
http://dx.doi.org/10.1007/978-1-4842-2403-8_2#Par126
http://dx.doi.org/10.1007/978-1-4842-2403_5.4
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section .text
   plus_impl:
      pop rax
      add [rsp], rax
      jmp next

Listing  7-9.  forth_dict_example_macro.asm

native '+', plus
     pop rax
     add [rsp], rax
     jmp next

Then define a macro colon, analogous to the previous one. Listing 7-10 shows its usage.

Listing 7-10.  forth_colon_usage.asm

colon '>', greater
   dq xt_swap
   dq xt_less
   dq exit

Do not forget about docol address in every colon word! Then create and test the following assembly 
routines:

•	 find_word, which accepts a pointer to a null-terminated string and returns the address 
of the word header start. If there is no word with such name, zero is returned.

•	 cfa (code from address), which takes the word header start and skips the whole 
header till it reaches the XT value.

Using these two functions and the ones you have already written in section 2.7, you can write an 
interpreter loop. The interpreter will either push a number into the stack or fill the special stub, consisting of 
two cells, shown in Listing 7-11.

It should write the freshly found execution token to program_stub. Then it should point PC at the 
stub start and jump to next. It will execute the word we have just parsed, and then pass control back to 
interpreter.

Remember, that an execution token is just an address of an address of an assembly code. This is why the 
second cell of the stub points at the third, and the third stores the interpreter address—we simply feed this 
data to the existing Forth machinery.

Listing 7-11.  forth_program_stub.asm

program_stub: dq 0
xt_interpreter:  dq .interpreter
.interpreter: dq interpreter_loop

Figure 7-11 shows the pseudo code illustrating interpreter logic.

http://dx.doi.org/10.1007/978-1-4842-2403_15
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Remember that the Forth machine also has memory. We are going to pre-allocate 65536 Forth cells for it.

■■ Question 122 S hould we allocate these cells in .data section, or are there better options?

To let Forth know where the memory is, we are going to create the word mem, which will simply push the 
memory starting address on top of the stack.

7.3.1.1 � Word list
You should first make an interpreter that supports the following words:

•	 .S – prints all stack contents; does not change it. To implement it, save rsp before 
interpreter start.

•	 Arithmetic: + - * /, = <. The comparison operations push either 1 or 0 on top of the 
stack.

•	 Logic: and, not. All non-zero values are considered true; zero value is considered false. 
In case of success these instructions push 1, otherwise 0. They also destruct their 
operands.

•	 Simple stack manipulations:

rot (a b c -- b c a)
swap (a b -- b a)
dup (a -- a a)
drop (a -- )

•	 . ( a -- ) pops the number from the stack and outputs it.

Figure 7-11.  Forth interpreter: pseudocode
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•	 Input/output:

key ( -- c)—reads one character from stdin; The top cell in stack stores 8 bytes, 
it is a zero extended character code.

emit ( c -- )—writes one symbol into stdout.

number ( -- n )—reads a signed integer number from stdin (guaranteed to fit 
into one cell).

•	 mem—stores the user memory starting address on top of the stack.

•	 Working with memory:

!   (address data -- )—stores data from stack starting at address.

c!  (address char -- )—stores a single byte by address.

@  (address -- value)—reads one cell starting from address

c@ (address -- charvalue)—reads a single byte starting from address Then test 
the resulting interpreter.

Then create a memory region for the return stack and implement docol and exit. We recommend 
allocating a register to point at the return stack’s top.

Implement colon-words or and greater using macro colon and test them.

7.3.2 � Compilation
Now we are going to implement compilation. It is easy!

	 1.	 We need to allocate other 65536 Forth cells for the extensible part of the dictionary.

	 2.	 Add a variable state, which is equal to 1 when in compilation mode, 0 for 
interpretation mode.

	 3.	 Add a variable here, which points at the first free cell in the preallocated dictionary 
space.

	 4.	 Add a variable last_word, which stores the address of the last word defined.

	 5.	 Add two new colon words, namely, : and ;.

Colon:

1: word ← stdin

2: Fill the new word’s header starting at here. Do not forget to update it!

3: Add docol address immediately at here; update here.

4: Update last_word.

5: state ← 1;

6: Jump to next.
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Semicolon should be marked as Immediate!

1: here ← XT of the word exit ; update here.

2: state ← 0;

3: Jump to next.

	 6.	 Here is what the compiler loop looks like. You can implement it separately, or mix 
with interpreter loop you already implemented.

1: compiler loop:

2: word ← word from stdin

3: if word is empty then

4: exit

5: if word is present and has address addr then

6: xt ← cf a(addr)

7: if word is marked Immediate then

8: interpret word

9: else

10: [here] ← xt

11: here ← here + 8

12: else

13: if word is a number n then

14: if previous word was branch or 0branch then

15: [here] ← n

16: here ← here + 8

17: else

18: [here] ← xt lit

19: here ← here + 8

20: [here] ← n

21: here ← here + 8

22: else

23: Error: unknown word

Implement 0branch and branch and test them (refer to section 7.3.3 for a complete list of Forth words 
with their meanings).

■■ Question 123  Why do we need a separate case for branch and 0branch?
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7.3.3 � Forth with Bootstrap
We can divide the Forth interpreter into two parts. The very necessary one is called inner interpreter; it 
is written in assembly. Its purpose is to fetch the next XT from memory. This is the next routine, shown in 
Listing 7-4.

The other part is the outer interpreter, which accepts user input and either compiles the word to the 
current definition or executes it right away. The exciting thing about it is that this interpreter can be defined 
as a colon word. In order to accomplish that we have to define some additional Forth words.

We have created Forthress, a Forth dialect described in this chapter. The interpreter and compiler are 
shipped with this book as well. Here is the full set of words known to Forthress.

•	 drop( a -- )

•	 swap( a b -- b a )

•	 dup( a -- a a )

•	 rot( a b c -- b c a )

•	 Arithmetic:

–– +  ( y  x  -- [ x  +  y  ] )

–– *  ( y  x  -- [ x  *  y  ] )

–– / ( y  x  -- [ x  / y  ] )

–– %  ( y  x  -- [ x  mod  y  ] )

–– - ( y x -- [x - y] )

•	 Logic:

–– not( a -- a' ) a’ = 0 if a != 0 a’ = 1 if a == 0

–– =( a b  -- c ) c = 1 if a == b c = 0 if a != b

•	 count( str -- len ) Accepts a null-terminated string, calculates its length.

•	 . Drops element from stack and sends it to stdout.

•	 .S Shows stack contents. Does not pop elements.

•	 init Stores the data stack base. It is useful for .S.

•	 docol This is the implementation of any colon word. The XT itself is not used, but the 
implementation (known as docol) is.

•	 exit Exit from colon word.

•	 >r Push from return stack into data stack.

•	 r> Pop from data stack into return stack.

•	 r@ Non-destructive copy from the top of return stack to the top of data stack.

•	 find( str -- header addr ) Accepts a pointer to a string, returns pointer to the 
word header in dictionary.

•	 cfa( word addr -- xt ) Converts word header start address to the execution token.

•	 emit( c -- ) Outputs a single character to stdout.
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•	 word( addr -- len ) Reads word from stdin and stores it starting at address addr. 
Word length is pushed into stack.

•	 number ( str -- num len) Parses an integer from string.

•	 prints ( addr -- ) Prints a null-terminated string.

•	 bye Exits Forthress

•	 syscall ( call num a1 a2 a3 a4 a5 a6 -- new rax ) Executes syscall The 
following regis- ters store arguments (according to ABI) rdi, rsi, rdx, r10, r8, and r9.

•	 branch <offset> Jump to a location. Location is an offset relative to the argument end 
For example:

|branch|    24 | <next command>
                ˆ branch adds 24 to this address and stores it in PC

•	 0branch <offset> Branch is a compile-only word. Jump to a location if TOS = 0. 
Location is calculated in a similar way. 0branch is a compile-only word.

•	 lit <value> Pushes a value immediately following this XT.

•	 inbuf Address of the input buffer (is used by interpreter/compiler).

•	 mem Address of user memory.

•	 last word Header of last word address.

•	 state State cell address. The state cell stores either 1 (compilation mode) or 0 
(interpretation mode).

•	 here Points to the last cell of the word currently being defined.

•	 execute ( xt -- ) Execute word with this execution token on TOS.

•	 @   ( addr  -- value  ) Fetch value from memory.

•	 !   ( addr val -- ) Store value by address.

•	 @c ( addr -- char ) Read one byte starting at addr.

•	 , ( x -- ) Add x to the word being defined.

•	 c, ( c -- ) Add a single byte to the word being defined.

•	 create ( flags name -- ) Create an entry in the dictionary whose name is the new 
name. Only immediate flag is implemented ATM.

•	 : Read word from stdin and start defining it.

•	 ; End the current word definition

•	 interpreter Forthress interpreter/compiler.

We encourage you to try to build your own bootstrapped Forth. You can start with a working interpreter 
loop written in Forth. Modify the file itc.asm, shown in Listing 7-6, by introducing the word interpreter 
and writing it using Forth words only.
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7.4 � Summary
This chapter has introduced us to two new models of computation: finite state machines (also known as 
finite automatons) and stack machines akin to the Forth machine. We have seen the connection between 
finite state machines and regular expressions, used in multiple text editors and other text processing utilities. 
We have completed the first part of our journey by building a Forth interpreter and compiler, which we 
consider a wonderful summary of our introduction to assembly language. In the next chapter we are going 
to switch to the C language to write higher-level code. Your knowledge of assembly will serve as a foundation 
for your understanding of C because of how close its model of computation is to the classical von Neumann 
model of computation.

■■ Question 124  What is a model of computation?

■■ Question 125  Which models of computation do you know?

■■ Question 126  What is a finite state machine?

■■ Question 127  When are the finite state machines useful?

■■ Question 128  What is a finite automaton?

■■ Question 129  What is a regular expression?

■■ Question 130 H ow are regular expressions and finite automatons connected?

■■ Question 131  What is the structure of the Forth abstract machine?

■■ Question 132  What is the structure of the dictionary in Forth?

■■ Question 133  What is an execution token?

■■ Question 134  What is the implementation difference between embedded and colon words?

■■ Question 135  Why are two stacks used in Forth?

■■ Question 136  Which are the two distinct modes that Forth is operating in?

■■ Question 137  Why does the immediate flag exist?

■■ Question 138 D escribe the colon word and the semicolon word.

■■ Question 139  What is the purpose of PC and W registers?

■■ Question 140  What is the purpose of next?

■■ Question 141  What is the purpose of docol?

■■ Question 142  What is the purpose of exit?

■■ Question 143  When an integer literal is encountered, do interpreter and compiler behave alike?

■■ Question 144 A dd an embedded word to check the remainder of a division of two numbers. Write a word 
to check that one number is divisible by another.
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■■ Question 145 A dd an embedded word to check the remainder of a division of two numbers. Write a word 
to check the number for primarity.

■■ Question 146  Write a Forth word to output the first n number of the Fibonacci sequence.

■■ Question 147  Write a Forth word to perform system calls (it will take the register contents from stack). 
Write a word that will print “Hello, world!” in stdout.



PART II

The C Programming Language
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CHAPTER 8

Basics

In this chapter we are going to start exploring another language called C. It is a low-level language with 
quite minimal abstractions over assembly. At the same time it is expressive enough so we could illustrate 
some very general concepts and ideas applicable to all programming languages (such as type system or 
polymorphism).

C provides almost no abstraction over memory, so the memory management task is the programmer’s 
responsibility. Unlike in higher-level languages, such as C# or Java, the programmer must allocate and free 
the reserved memory himself, instead of relying on an automated system of garbage collection.

C is a portable language, so if you write correctly, your code can often be executed on other 
architectures after a simple recompilation. The reason is that the model of computation in C is practically 
the same old von Neumann model, which makes it close to the programming models of most processors.

When learning C remember that despite the illusion of being a higher-level language, it does not tolerate 
errors, nor will the system be kind enough to always notify you about things in your program that were 
broken. An error can show itself much later, on another input, in a completely irrelevant part of the program.

■■ Language standard described  The very important document about the language is the C language 
standard. You can acquire a PDF file of the standard draft online for free [7]. This document is just as important 
for us as the Intel Software Developer’s Manual [15].

8.1 � Introduction
Before we start, we need to state several important points.

•	 C is always case sensitive.

•	 C does not care about spacing as long as the parser can separate lexemes from one 
another. The programs shown in Listing 8-1 and Listing 8-2 are equivalent.

Listing 8-1.  spacing_1.c

int main      (int argc ,   char * * argv)
{
    return 0;
}

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par8
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
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Listing 8-2.  spacing_2.c

int main(int argc, char** argv)
{
    return 0;
}

•	 There are different C language standards. We do not study the GNU C (a version 
possessing various extensions), which is supported mostly by GCC. Instead, we 
concentrate on C89 (also known as ANSI C or C90) and C99, which are supported by 
many different compilers. We will also mention several new features of C11, some of 
which are not mandatory to implement in compilers.

Unfortunately C89 still remains the most pervasive standard, so there are 
compilers that support C89 for virtually every existing platform. This is why we will 
focus on this specific revision first and then extend it with the newer features.

To force the compiler to use only those features supported by a certain standard 
we use the following set of flags:

–– -std=c89 or -std=c99 to select either the C89 or C99 standard.

–– -pedantic-errors to disable non-standard language extensions.

–– -Wall to show all warnings no matter how important they are.

–– -Werror to transform warnings into errors so you would not be able to compile code with 
warnings.

■■ Warnings are errors  It is a very bad practice to ship code that does not compile without warnings. 
Warnings are emitted for a reason.

Sometimes there are very specific cases in which people are forced to do non-standard things, such as calling a 
function with more arguments than it accepts, but such cases are extremely rare. In these cases it is much better 
to turn off one specific warning type for one specific file via a corresponding compiler key. Sometimes compiler 
directives can make the compiler omit a certain warning for a selected code region, which is even better.

For example, to compile an executable file main from source files file1.c and file2.c you could use 
the following command:

> gcc -o main -ansi -pedantic-errors -Wall -Werror file1.c file2.c

This command will make a full compilation pass including object file generation and linking.

8.2 � Program Structure
Any program in C consists of

•	 Data types definitions (structures, new types, etc.) which are based on other existing 
types. For example, we can create a new name new_int_type_name_t for an integer 
type int.

typedef int new_int_type_name_t;
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•	 Global variables (declared outside functions). For example, we can create a global 
variable i_am_global of type int initialized to 42 outside all function scopes. Note that 
global variables can only be initialized with constant values.

int i_am_global = 42;

•	 Functions. For example, a function named square, which accepts an argument x of 
type int and returns its square.

int square( int x ) { return x * x; }

•	 Comments between /* and */.

/* this is a rather complex comment
which span over multiple lines */

•	 Comments starting at // until the end of the line (in C99 and more recent).

int x; // this is a one line comment, which ends at the end of the line

•	 Preprocessor and compiler directives. They often start with #.

#define CATS_COUNT 42
#define ADD(x, y) (x) + (y)

Inside functions, we can define variables or data types local to this function, or perform actions. Each 
action is a statement; these are usually separated by a semicolon. The actions are performed sequentially.

You cannot define functions inside other functions.
Statements will declare variables, perform computations and assignments, and execute different 

branches of code depending on conditions. A special case is a block between curly braces {}, which is used 
to group statements.

Listing 8-3 shows an exemplary C program. It outputs Hello, world! y=42 x=43. It defines a function 
main, which declares two variables x and y, the first is equal to 43, and the second is computed as the value 
of x minus one. Then a call to function printf is performed.

The function printf is used to output strings into stdout. The string has some parts (so-called format 
specifiers) replaced by the following arguments. The format specifier, as its name suggests, provides 
information about the argument nature, which usually includes its size and a presence of sign. For now, we 
will use very few format specifiers.

•	 %d for int arguments, as in the example.

•	 %f for float arguments.

Variable declarations, assignment, and a function call all ended by semicolons are statements.

■■ Spare printf for format output  Whenever possible, use puts instead of printf. This function can only 
output a single string (and ends it with a newline); no format specifiers are taken into account. Not only is it 
faster but it works uniformly with all strings and lacks security flaws described in section 14.7.3.

http://dx.doi.org/10.1007/978-1-4842-2403-8_2#Sec4
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For now, we will always start our programs with line #include <stdio.h>. It allows us to access a part 
of standard C library. However, we state firmly that this is not a library import of any sort and should never be 
treated as one.

Listing 8-3.  hello.c

/* This is a comment. The next line has a preprocessor directive */
#include <stdio.h>

/* `main` is the entry point for the program, like _start in assembly
 * Actually, the hidden function _start is calling `main`.
 * `main` returns the `return code` which is then given to the `exit` system
 * call.
 * The `void` keyword instead of argument list means that `main` accepts no

 * arguments */
int main(void) {
   /* A  variable local to `main`. Will be destructed as soon as `main` ends*/
   int x = 43;
   int y;
   y = x - 1;
   /* Calling a standard function `printf` with three arguments.
    * It will print 'Hello, world! y=42 x=43
    * All %d  will be replaced by the consecutive arguments */
   printf( "Hello, world! y=%d  x=%d\n", y, x);

   return 0;
}

Literal is a sequence of characters in the source code which represents an immediate value. In C, 
literals exist for

•	 Integers, for example, 42.

•	 Floating point numbers, for example, 42.0.

•	 ASCII-code of characters, written in single quotes, for example, 'a'.

•	 Pointers to null-terminated strings, for example, "abcde". 

The execution of any C program is essentially a data manipulation.
The C abstract machine has a von Neumann architecture. It is done on purpose, because C is a 

language that should be as close to the hardware as possible. The variables are stored in the linear memory 
and each of them has a starting address.

You can think of variables like labels in assembly.

8.2.1 � Data Types
As pretty much everything that happens is a manipulation on data, the nature of the said data is of a 
particular interest to us. All kinds of data in C has a type, which means that it falls into one of (usually) 
distinct categories. The typing in C is weak and static.

http://dx.doi.org/	10.1007/978-1-4842-2403-8_1#Sec2
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Static typing means that all types are known in compile time. There can be absolutely incertitude about 
data types. Whether you are using a variable, a literal, or a more complex expression, which evaluates to 
some data, its type will be known.

Weak typing means that sometimes a data element can be implicitly converted to another type when 
appropriate.

For example, when evaluating 1 + 3.0 it is apparent that these two numbers have different types. One 
of them is integer; the other is a real number. You cannot directly add one to another, because their binary 
representation differs. You need to convert them both to the same type (probably, floating point number). 
Only then will you be able to perform an addition. In strongly typed languages, such, as OCaml, this 
operation is not permitted; instead, there are two separate operations to add numbers: one acts on integers 
(and is written +), the other on real numbers (is written +. in OCaml).

Weak typing is in C for a reason: in assembly, it is absolutely possible to take virtually any data and 
interpret it as data of another type (pointer as an integer, part of the string as an integer, etc.)

Let’s see what happens when we try to output a floating point value as an integer (see Listing 8-4). The 
result will be the floating point value reinterpreted as an integer, which does not make much sense.

Listing 8-4.  float_reinterpret.c

#include <stdio.h>

int main(void) {
    printf("42.0 as an integer %d  \n", 42.0);
    return 0;
}

This program’s output depends on the target architecture. In our case, the output was

42.0 as an integer -266654968

For this brief introductory section, we will consider that all types in C fall into one of these categories:

•	 Integer numbers (int, char, …).

•	 Floating point numbers (double and float).

•	 Pointer types.

•	 Composite types: structures and unions.

•	 Enumerations.

In Chapter 9 we are going to explore the type system in more detail. If you come with a background in a 
higher-level language, you might find some commonly known items missing from this block. Unfortunately, 
there are no string and Boolean types in C89. An integer value equal to zero is considered false; any non-zero 
value is considered truth.

8.3 � Control Flow
According to von Neumann principles, the program execution is sequential. Each statement is executed one 
after another. There are several statements to change control flow.

http://dx.doi.org/10.1007/978-1-4842-2403-8_9
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8.3.1 � if
Listing 8-5 shows an if statement with an optional else part. If the condition is satisfied, the first block 
is executed. If the condition is not satisfied, the second block is executed, but the second block is not 
mandatory.

Listing 8-5.  if_example.c

int x  =  100;
if (42) {
    puts("42 is not equal to zero and thus considered truth");
}

if (x > 3) {
    puts("X is greater than 3");
}
else
{
    puts("X is less than 3");
}

The braces are optional. Without braces, only one statement will be considered part of each branch, as 
shown in Listing 8-6.

Listing 8-6.  if_no_braces.c

if (x == 0)
    puts("X is zero");
else
    puts("X is not zero");

Notice that there is a syntax fault, called dangling else. Check Listing 8-7 and see if you can certainly 
attribute the else branch to the first or the second if. To solve this disambiguation in case of nested ifs, use 
braces.

Listing 8-7.  dangling_else.c

if (x == 0)   if (y == 0) { puts("A"); }  else { puts("B"); }

/* You might have considered one of the following interpretations.
 * The compiler can issue a warning to prevent you */

if (x == 0) {
    if (y == 0) { printf("A"); }
    else { puts("B"); }
}

if (x == 0) {
    if (y == 0) { puts("A"); }
} else { puts("B"); }
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8.3.2 � while
A while statement is used to make cycles.

Listing 8-8.  while_example.c

int x = 10;
while ( x != 0 ) {
    puts("Hello");
    x = x - 1;
}

If the condition is satisfied, then the body is executed. Then the condition is checked once again, and if 
it is satisfied, then the body is executed again, and so on.

An alternative form do ... while ( condition ); allows you to check conditions after executing the 
loop body, thus guaranteeing at least one iteration. Listing 8-9 shows an example.

Notice that a body can be empty, as follows: while (x == 0);. The semicolon after the parentheses 
ends this statement.

Listing 8-9.  do_while_example.c

int x = 10;
do {
    printf("Hello\n");     x = x - 1;
}
while ( x != 0 );

8.3.3 � for
A for statement is ideal to iterate over finite collections, such as linked lists or arrays. It has the following 
form: for ( initializer ; condition; step ) body. Listing 8-10 shows an example.

Listing 8-10.  for_example.c

int a[] = {1, 2, 3, 4}; /* an array of 4 elements */
int i = 0;
for ( i = 0; i < 4; i++ ) {
    printf( "%d",  a[i])
}

First, the initializer is executed. Then there is a condition check, and if it holds, the loop body is 
executed, and then the step statement.

In this case, the step statement is an increment operator ++, which modifies a variable by increasing its 
value by one. After that, the loop begins again by checking the condition, and so on. Listing 8-11 shows two 
equivalent loops.
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Listing 8-11.  while_for_equiv.c

int i;

/* as a `while` loop */
i = 0;
while ( i < 10 ) {
    puts("Hello!");
    i = i + 1;
}

/* as a `for` loop */
for( i = 0; i < 10; i = i + 1 ) {
    puts("Hello!");
}

The break statement is used to end the cycle prematurely and fall to the next statement in the code. 
continue ends the current iteration and starts the next iteration right away. Listing 8-12 shows an example.

Listing 8-12.  loop_cont.c

int n = 0;
for( n = 0; n < 20; n++ ) {
    if (n % 2) continue;
    printf("%d is odd", n );
}

Note also that in the for loop, the initializer, step, or condition expressions can be left empty.  
Listing 8-13 shows an example.

Listing 8-13.  infinite_for.c

for( ; ; ) {
    /* this cycle will loop forever, unless `break` is issued in its body */
    break; /* `break` is here, so we stop iterating */
}

8.3.4 � goto
A goto statement allows you to make jumps to a label inside the same function. As in assembly, labels can 
mark any statement, and the syntax is the same: label: statement. This is often described a bad codestyle; 
however, it might be quite handy when encoding finite state machines. What you should not do is to 
abandon well-thought-out conditionals and loops for goto-spaghetti.

The goto statement is sometimes used as a way to break from several nested cycles. However, this is 
often a symptom of a bad design, because the inner loops can be abstracted away inside a function (thanks 
to the compiler optimizations, probably for no runtime cost at all). Listing 8-14 shows how to use goto to 
break out of all inner loops.

Listing 8-14.  goto.c

int i;
int j;
for (i = 0; i < 100; i++ )

http://dx.doi.org/10.1007/978-1-4842-2403-8_7#Sec2
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for( j = 0; j < 100; j++ ) {
    if (i * j == 432)
        goto end;
    else
        printf("%d * %d != 432\n", i, j );
}
end:

The goto statement mixed with the imperative style makes analyzing the program behavior harder for both 
humans and machines (compilers), so the cheesy optimizations the modern compilers are capable of become 
less likely, and the code becomes harder to maintain. We advocate restricting goto usage to the pieces of code that 
perform no assignments, like the implementations of finite state machines. This way you won’t have to trace all the 
possible program execution routes and how the values of certain variables change when the program executes one 
way or another.

8.3.5 � switch
A switch statement is used like multiple nested if’s when the condition is some integer variable being equal 
to one or another value. Listing 8-15 shows an example.

Listing 8-15.  case_example.c

int i = 10;
switch ( i ) {
    case 1: /* if i is equal to 1...*/
        puts( "It is one" );
        break; /* Break is mandatory */

    case 2: /* if i is equal to 2...*/
        puts( "It is two" );
        break;

    default: /* otherwise... */
        puts( "It is not one nor two" );
        break;
}

Every case is, in fact, a label. The cases are not limited by anything but an optional break statement to 
leave the switch block. It allows for some interesting hacks.1 However, a forgotten break is usually a source of 
bugs. Listing 8-16 shows these two behaviors: first, several labels are attributed to the same case, meaning no 
matter whether x is 0, 1 or 10, the code executed will be the same. Then, as the break is not ending this case, 
after executing the first printf the control will fall to the next instruction labeled case 15, another printf.

Listing 8-16.  case_magic.c

switch ( x ) {
    case 0:
    case 1:
    case 10:
        puts( "First case: x = 0, 1 or 10" );

1One of the most known hacks is called Duff’s device and incorporates a cycle which is defined inside a switch and 
contains several cases.
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        /* Notice the absence of `break`! */
    case 15:
        puts( "Second case: x = 0, 1, 10 or 15" );
        break;
}

8.3.6 � Example: Divisor
Listing 8-17 showcases a program that searches for the first divisor, which is then printed to stdout. The 
function first_divisor accepts an argument n and searches for an integer r from 1 exclusive to n inclusive, 
such that n is a multiple of r. If r = n, we have obviously found a prime number.

Notice how the statement after for was not put between curly braces because it is the only statement 
inside the loop. The same happened with the if body, which consists of a sole return i. You can of course 
put it inside braces, and some programmers actually encourage it.

Listing 8-17.  divisor.c

#include <stdio.h>

int first_divisor( int n ) {
    int i;
    if ( n == 1 ) return 1;
    for( i = 2; i <= n; i++ )
        if ( n %  i == 0 ) return i;
    return 0;
}

int main(void) {
    int i;
    for( i = 1; i < 11; i++ )
        printf( "%d \n", first_divisor( i ) );

    return 0;
}

8.3.7 � Example: Is It a Fibonacci Number?
Listing 8-18 shows a program that checks whether a number is a Fibonacci number or not. The Fibonacci 
series is defined recursively as follows:

f
1
 = 1

f
2
 = 1

f
n
 = f

n−1
 + f

n−2

This series has a large number of applications, notably in combinatorics. Fibonacci sequences appear 
even in biological settings, such as branching in trees, arrangement of the leaves on a stem, etc.

The first Fibonacci numbers are 1, 1, 2, 3, 5, 8, etc. As you see, each number is the sum of two previous 
numbers.

In order to check whether a given number n is contained in a Fibonacci sequence, we adopt a 
straightforward (not necessarily optimal) approach of calculating all sequence members prior to n. The 

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec10
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nature of a Fibonacci sequence implies that it is ascending, so if we found a member greater than n and still 
have not enumerated n, we conclude, that n is not in the sequence. The function is_fib accepts an integer 
n and calculates all elements less or equal to n. If the last element of this sequence is n, then n is a Fibonacci 
number and it returns 1; otherwise, it returns 0.

Listing 8-18.  is_fib.c

#include <stdio.h>

int is_fib( int n ) {

    int a = 1;
    int b = 1;
    if ( n == 1 ) return 1;

    while ( a <= n && b <= n ) {
        int t = b;

        if (n == a || n == b) return 1;
        b = a;
        a = t + a;
    }
    return 0;

}

void check(int n) { printf( "%d -> %d\n", n, is_fib( n ) ); }

int main(void) {
    int i;
    for( i = 1; i < 11; i = i + 1 ) {
        check( i );
    }
    return 0;
}

8.4 � Statements and Expressions
The C language is based on notions of statements and expressions. Expressions correspond to data entities.

All literals and variable names are expressions. Additionally, complex expressions can be constructed 
using operations (+, -, and other logical, arithmetic, and bit operations) and function calls (with the 
exception of routines returning void). Listing 8-19 shows some exemplary expressions.

Listing 8-19.  expr_example.c

1
13  +  37
17 + 89 * square( 1 )
x
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Expressions are data, so they can be used at the right side of the assignment operator =. Some of the 
expressions can be also used at the left side of the assignment. They should correspond to data entities 
having an address in memory.2

Such expressions are called lvalue; all other expressions, which have no address, are called rvalue. This 
difference is actually very intuitive as long as you think in terms of abstract machine. Expressions such as 
shown in Listing 8-20 bear no meaning, because an assignment means memory change.

Listing 8-20.  rvalue_example.c

4 = 2;
"abc"="bcd";
square(3)  =  9;

8.4.1 � Statement Types
Statements are commands to the C abstract machine. Each command is an imperative: do something! Thus 
the name“imperative programming”: it is a sequence of commands.

There are three types of statements:

	 1.	 Expressions terminated by a semicolon.

1 + 3;
42;
square(3);

The purpose of these statements is the computation of the given expressions. If 
these invoke no assignments (directly as a part of the expression itself or inside 
one of invoked functions) or input/output operations, their impact on the program 
state is not observable.

	 2.	 A block delimited by { and }. It contains an arbitrary number of sentences. A block 
should not be ended by a semicolon itself (but the statements inside it likely 
should). Listing 8-21 shows a typical block.

Listing 8-21.  block_example.c

int y = 1 + 3;
{
    int x;
    x = square( 2 ) + y;
    printf( "%d\n", x );
}

	 3.	 Control flow statements: if, while, for, switch. They do not require a semicolon.

2We are talking about abstract C machine memory here. Of course, the compiler has the right to optimize variables and 
never allocate real memory for them on the assembly level. The programmer, however, is not constrained by it and can 
think that every variable is an address of a memory cell.
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We have already talked about assignments; the evil truth is that assignments are expressions 
themselves, which means that they can be chained. For example, a = b = c means

•	 Assign c to b;

•	 Assign the new b value to a.

A typical assignment is thus a statement from the first category: expression ended by a semicolon.
Assignment is a right-associative operation. It means that when being parsed by a compiler (or your 

eye) the parentheses are implicitly put from right to left, the rightmost part becoming the most deeply 
nested. Listing 8-22 provides an example of two equivalent ways to write a complex assignment.

Listing 8-22.  assignment_assoc.c

x = y = z;
(x = (y = z));

On the other hand, the left-associative operations consider the opposite nesting order, as shown in 
Listing 8-23

Listing 8-23.  div_assoc.c

40 / 2 / 4
((40 / 2) / 4)

8.4.2 � Building Expressions
An expression is built using other expressions connected with operators and function calls. The operators 
can be classified

•	 Based on arity (operand count)

–– Unary (like unary minus: - expr)

–– Binary (like binary multiplication: expr1 * expr2)

–– Ternary. There is only one ternary operator: cond ? expr1 : expr2. If the condition  
holds, the value is equal to expr1, otherwise expr2

•	 Based on meaning

–– Arithmetic Operators: * / + - % ++ --

–– Relational Operators: == != > < >= <=

–– Logical Operators: ! && || << >>

–– Bitwise Operators: ∼ ˆ & |

–– Assignment Operators = += -= *= /= %= <<= >>= &= ˆ= |=

–– Misc Operators:

1.	 sizeof(var) as “replace this with the size of var in bytes”

2.	 & as “take address of an operand”

3.	 as “dereference this pointer”

4.	 ?: which is the ternary operator we have spoken about before.

5.	 ->, which is used to refer to a field of a structural or union type.
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Most operators have an evident meaning. We will mention some of the less used and more obscure ones.

•	 The increment and decrement operators can be used in either prefix or postfix 
form: either for a variable i it is i++ or ++i. Both expressions will have an 
immediate effect on i, meaning it is incremented by 1. However, the value of i++ 
is the “old” i, while the value of ++i is the “new,” incremented i.

•	 There is a difference between logical and bit-wise operators. For logical operators, 
any non-zero number is essentially the same in its meaning, while the bit-wise 
operations are applied to each bit separately. For example, 2 & 4 is equal to zero, 
because no bits are set in both 2 and 4. However, 2 && 4 will return 1, because 
both 2 and 4 are non-zero numbers (truth values).

•	 Logical operators are evaluated in a lazy way. Consider the logical and operator 
&&. When applied to two expressions, the first expression will be computed. If 
its value is zero, the computation ends immediately, because of the nature of 
AND operation. If any of its operands is zero, the result of the big conjunction 
will be zero as well, so there is no need to evaluate it further. It is important for 
us because this behavior is noticeable. Listing 8-24 shows an example where the 
program will output F and will never execute the function g.

Listing 8-24.  logic_lazy.c

#include <stdio.h>

int f(void) { puts( "F" ); return 0; }
int g(void) { puts( "G" ); return 1; }

int main(void) {
    f() && g();
    return  0;
}

•	 Tilde (∼) is a bit-wise unary negation, hat (ˆ) is a bitwise binary xor.

In the following chapters we will revisit some of these, such as address manipulation operands and sizeof.

8.5 � Functions
We can draw a line between procedures (which do not return a value) and functions (which return a value 
of a certain type). The procedure call cannot be embedded into a more complex expression, unlike the 
function call.

Listing 8-25 shows an exemplary procedure. Its name is myproc; it returns void, so it does not return 
anything. It accepts two integer parameters named a and b.

Listing 8-25.  proc_example.c

void myproc ( int a, int b )
{
    printf("%d",  a+b);
}
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Listing 8-26 shows an exemplary function. It accepts two arguments and returns a value of type int. 
A call to this function is used as a part of a more complex expression later.

Listing 8-26.  function_example.c

int myfunc ( int a, int b )
{
    return a + b;
}

int other( int x ) {
    return 1 + myfunc( 4, 5 );
}

Every function’s execution is ended with return statement; otherwise which value it will return is 
undefined. Procedures can have the return keyword omitted; it might be still used without an operand to 
immediately return from the procedure.

When there are no arguments, a keyword void should be used in function declaration, as shown in 
Listing 8-27.

Listing 8-27.  no_arguments_ex.c

int always_return_0( void ) { return 0; }

The body of function is a block statement, so it is enclosed in braces and is not ended with a semicolon. 
Each block defines a lexical scope for variables.

All variables should be declared in the block start, before any statements. That restriction is present in 
C89 but not in C99. We will adhere to it to make the code more portable.

Additionally, it forces a certain self-discipline. If you have a large amount of local variables declared at 
the scope start, it will look cluttered. At the same time it is usually sign of bad program decomposition and/
or poor choice of data structures.

Listing 8-28 shows examples of good and bad variable declarations.

Listing 8-28.  block_variables.c

/* Good */
void f(void) {
    int x;
    ...
}

/* Bad: `x` is declared after `printf` call */

void f(void) {
    int y = 12;
    printf( "%d", y);
    int x = 10;
    ...
}

/* Bad: `i` can not be declared in `for` initializer */
for( int i = 0; i < 10; i++ ) {
    ...
}
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/* Good: `i` is declared before `for` */
int f(void) {
    int i;
    for( i = 0; i < 10; i++ ) {
        ...
    }
}

/* Good: any block can have additional variables declared in its beginning */
/* `x` is local to one `for` iteration and is always reinitialized to 10 */
for( i = 0; i < 10; i++ ) {
    int x = 10;
}

If a variable in a certain scope has the same name as the variable already declared in a higher scope, the 
more recent variable hides the ancient one. There is no way to address the hidden variable syntactically (by 
not storing its address somewhere and using the address).

The local variables in different functions can of course have the same names.

■■ Note   The variables are visible until the end of their respective blocks. So a commonly used notion of ‘local‘ 
variables is in fact block-local, not function-local. The rule of thumb is: make variables as local as you can (including 
variables local to loop bodies, for example. It greatly reduces program complexity, especially in large projects.

8.6 � Preprocessor
The C preprocessor is acting similar to the NASM preprocessor. Its power, though, is much more limited. The 
most important preprocessor directives you are going to see are

•	 #define

•	 #include

•	 #ifndef

•	 #endif

The #define directive is very similar to its NASM %define counterpart. It has three main usages.

•	 Defining global constants (see Listing 8-29 for an example).

Listing 8-29.  define_example1.c

#define MY_CONST_VALUE 42

•	 Defining parameterized macro substitutions (as shown in Listing 8-30).

http://dx.doi.org/10.1007/978-1-4842-2403-8_2#Sec5
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Listing 8-30.  define_example2.c

#define MACRO_SQUARE( x ) ((x) * (x))

•	 Defining flags; depending on which, some additional code can be included or 
excluded from sources.

It is important to enclose in parentheses all argument occurrences inside macro definitions. The reason 
behind it is that C macros are not syntactic, which means that the preprocessor is not aware of the code 
structure. Sometimes this results in an unexpected behavior, as shown in Listing 8-31. Listing 8-32 shows the 
preprocessed code.

Listing 8-31.  define_parentheses.c

#define SQUARE( x ) (x * x)

int x = SQUARE( 4+1 )

As you see, the value of x will not be 25 but 4+(1∗4)+1 because of multiplication having a higher priority 
comparing to addition.

Listing 8-32.  define_parentheses_preprocessed.c

int x = 4+1 * 4+1

The #include directive pastes the given file contents in place of itself. The file name is enclosed in either 
quotes (#include "file.h") or angle brackets (#include <stdio.h>).

•	 In case of angle brackets, the file is searched in a set of predefined directories. For GCC 
it is usually:

–– /usr/local/include

–– <libdir>/gcc/target/version/include

Here <libdir> stands for the directory that holds libraries (a GCC setting) and 
is usually /usr/lib or /usr/local/lib by default.

–– /usr/target/include

–– /usr/include

	 Using the -I key one can add directories to this list. You can make a special include/ 
directory in your project root and add it to the GCC include search list.

•	 In case of quotes, the files are also searched in the current directory.

You can get the preprocessor output by evaluating a file filename.c in the same way as when working 
with NASM: gcc -E filename.c. This will execute all preprocessor directives and flush the results into 
stdout without doing anything.
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8.7 � Summary
In this chapter we have elaborated the C basics. All variables are labels in memory of the C language abstract 
machine, whose architecture greatly resembles the von Neumann architecture. After describing a universal 
program structure (functions, data types, global variables, . . . ), we have defined two syntactical categories: 
statements and expressions. We have seen that expressions are either lvalues or rvalues and learned to 
control the program execution using function calls and control statements such as if and while. We are 
already able to write simple programs which perform computations on integers. In the next chapter we are 
going to discuss the type system in C and the types in general to get a bigger picture of how types are used 
in different programming languages. Thanks to the notion of arrays our possible input and output data will 
become much more diverse.

■■ Question 148  What is a literal?

■■ Question 149  What are lvalue and rvalue?

■■ Question 150  What is the difference between the statements and expressions?

■■ Question 151  What is a block of statements?

■■ Question 152 H ow do you define a preprocessor symbol?

■■ Question 153  Why is break necessary at the end of each switch case?

■■ Question 154 H ow are truth and false values encoded in C89?

■■ Question 155  What is the first argument of printf function?

■■ Question 156  Is printf checking the types of its arguments?

■■ Question 157  Where can you declare variables in C89?
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CHAPTER 9

Type System

The notion of type is one of the key ones. A type is essentially a tag assigned to a data entity. Every data 
transformation is defined for specific data types, which ensures their correctness (you would not want to add 
the amount of active Reddit users to the average temperature at noon in Sahara, because it makes no sense).

This chapter will study the C type system in depth.

9.1 � Basic Type System of C
All types in C fall into one of these categories:

•	 Predefined numeric types (int, char, float, etc.).

•	 Arrays, multiple elements of the same type occupying consequent memory cells.

•	 Pointers, which are essentially the cells storing other cells’ addresses. The pointer 
type encodes the type of cell it is pointing to. A particular case of pointers are function 
pointers.

•	 Structures, which are packs of data of different types. For example, a structure can 
store an integer and a floating point number. Each of the data elements has its own 
name.

•	 Enumerations, which are essentially integers, take one of explicitly defined values. 
Each of these values has a symbolic name to refer to.

•	 Functional types.

•	 Constant types, built on top of some other type and making the data immutable.

•	 Type aliases for other types.

9.1.1 � Numeric Types
The most basic C types are the numeric ones. They have different sizes and are either signed or unsigned. 
Because of a long and loosely controlled language evolution, their description may seem sometimes arcane 
and quite often very ad hoc. Following is a list of the basic types:

	 1.	 char

•   Can be signed and unsigned. By default it is usually signed number, but it is not 
required by the language standard.

•   Its size is always 1 byte;
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•   Despite the name making a direct reference to the word “character,” this is an 
integer type and should be treated as such. It is often used to store the ASCII code 
of a character, but it can be used to store any 1-byte number.

•   A literal 'x' and corresponds to an ASCII code of the character “x.” Its type is int 
but it is safe to assign it to a variable of type char.1

Listing 9-1 shows an example.

Listing 9-1.  char_example.c

char number = 5;
char symbol_code = 'x';
char null_terminator = '\0';

	 2.	 int

•   An integer number.

•   Can be signed and unsigned. It is signed by default.

•   It can be aliased simply as: signed, signed int (similar for unsigned).

•   Can be short (2 bytes), long (4 bytes on 32-bit architectures, 8 bytes in Intel 64). Most 
compilers also support long long, but up to C99 it was not part of standard.

•   Other aliases: short, short int, signed short, signed short int.

•   The size of int without modifiers varies depending on architecture. It was designed 
to be equal to the machine word size. In the 16-bit era the int size was obviously 
2 bytes, in 32-bit machines it is 4 bytes. Unfortunately, this did not prevent 
programmers from relying on an int of size 4 in the era of 32-bit computing. 
Because of the large pool of software that would break if we change the size of int, 
its size is left untouched and remains 4 bytes.

•   It is important to note that all integer literals have the int format by default. If we add 
suffixes L or UL we will explicitly state that these numbers are of type long int or 
unsigned int. Sometimes it is of utter importance not to forget these suffixes.

Consider an expression 1 << 48. Its value is not 248 as you might have thought, 
but 0. Why? The reason is that 1 is a literal of the type int, which occupies 4 bytes 
and thus can vary from −231 to 231 − 1. By shifting 1 to the left 48 times, we are 
moving the only bit set outside of integer format. Thus the result is zero. However, 
if we do add a correct suffix, the answer will be more evident. An expression 1L 
<< 48 is evaluated to 248, because 1L is now 8 bytes long.

	 3.	 long long

•   In x64 architecture it is the same as a long (except for Windows, where long is  
4 bytes).

•   Its size is 8 bytes.

•   Its range is : −263 … 263 – 1 for signed and 0...264 –1 for unsigned.

1This language design flaw is corrected in C++, where 'x' has type char.
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	 4.	 float

•   Floating point number.

•   Its size is 4 bytes.

•   Its range is : ±1, 17549 × 10−38 … ± 3, 40282 × 1038 (approximately six digits precision).

	 5.	 double

•   Floating point number.

•   Its size is 8 bytes.

•   Its range is: ±2, 22507 × 10−308 … ± 1, 79769 × 10308 (approximately 15 digits precision).

	 6.	 long double

•   Floating point number.

•   Its size is usually 80 bits.

•   It was only introduced in C99 standard.

■■ Note   On floating point arithmetic

First of all, remember, that floating point types are a very rough approximation of the real numbers. For 
example, they are more precise near 0 and less precise for big values. This is exactly the reason their range is 
so great compared even to longs.

As a consequence, doing floating point arithmetic with values closer to zero yields more precise results.

Finally, in certain contexts (e.g., kernel programming) the floating point arithmetic is not available. As a rule of 
thumb, avoid it when you do not need it. For example, if your computations can be performed by manipulating a 
quotient and a remainder, calculated by using / and % operators, you should stick with them.

9.1.2 � Type Casting
The language allows you to relatively freely convert data between types. To do it you have to write the new 
type name in parentheses before the expression you want to convert.

Listing 9-2 shows an example.

Listing 9-2.  type_cast.c

int a = 4;

double b = 10.5 * (double)a; /* now a is a double */

int b = 129;
char k = (char)b; //???

Surely, this wonderful open world of possibilities is better controlled by your benevolent dictatorship 
because these implicit conversions often lead to subtle bugs when an expression is not evaluated to what it 
“should” be evaluated.
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For example, as char is a (usually) signed number in range -128 . . . 127, the number 129 is too big to 
fit into this range. The result of an action, shown in Listing 9-2, is not described in the language standard, 
but given how typical processors and compilers function, the result will be probably a negative number, 
consisting of the same bits as an unsigned representation of 129.

■■ Question 158  What will be the value of k? Try to compile and see in your own computer.

9.1.3 � Boolean Type
We have already stated that the C89 lacks Booleans. However, C99 introduced Booleans as a type _Bool. If 
you include stdbool.h, you will have access to the values true / false and the type bool, which is an alias 
of _Bool. The reasoning behind this is simple. Many existing projects already have Boolean type defined for 
themselves, usually as bool. To prevent naming conflicts, the C99 type name for Booleans is _Bool. Including 
the file stdbool.h signifies that your code is free from any custom bool definition, and you are picking the 
one conforming to the standard, but with a more humane name. We encourage you to use the aliased type 
bool whenever possible. In the future, the _Bool type name will be probably declared deprecated, and after 
several standard versions it will not be used anymore.

9.1.4 � Implicit Conversions
As a weakly typed language, C allows one to omit casts sometimes even when using data of different type 
than intended.

When the required numeric type is not equal as the actual type, an implicit conversion is performed, 
which is called integer promotion. If the type is lesser than an int, it gets promoted to signed int or 
unsigned int, depending on its initial signed or unsigned nature.2 Then if they are still different, we climb 
up the ladder, shown in Figure 9-1

■■ Note   Remember that long long and long double have appeared only in C99. They are, however, 
supported as a language extension by many compilers that do not support C99 yet.

The “convert to int first” rule means that the overflows in lesser types can be handled differently than in 
int type itself. The example shown in Listing 9-3 assumes that sizeof(int) == 4.

Listing 9-3.  int_promotion_pitfall.c

/* The lesser types */
unsigned char  x = 100, y = 100, z = 100;
unsigned char r = x + y + z; /* will give you 300 % 256 = 44 */

Figure 9-1.  Integer conversions

2The keyword is usual arithmetic conversions.
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unsigned int r_int = x + y + z; /* equals to 300, because the promotion to
                                   integers is performed first */

/* Now with the greater types */

unsigned int x = 1e9, y = 2e9, z = 3e9;

unsigned int r_int = x + y + z;   /* 1705032704 equals 6000000000 % (2ˆ32) */

unsigned long r_long = x + y + z;   /*  the same result: 1705032704 */

In the last line, neither x, y, nor z is promoted to long, because it is not required by standard. The 
arithmetic will be performed within the int type and then the result will be converted to long.

■■ Be understood A s a rule of thumb, when uncertain, always provide the types explicitly! For example, you 
can write long x = (long)a + (long)b + (long)c.

While the code might seem more verbose after that, it will at least work as intended.

Let’s look at an example shown in Listing 9-4. The expression in the third line will be computed as follows:

	 1.	 The value of i will be converted to float (of course, the variable itself will not 
change);

	 2.	 This value is added to the value of f, the resulting type is float again; and

	 3.	 This result is converted to double to be stored in d.

Listing 9-4.  int_float_conv.c

int i;
float f;
double d = f + i;

All these operations are not free and are encoded as assembly instructions. It means that whenever you 
are acting on numbers of different formats, it probably has runtime costs. Try to avoid it especially in cycles.

9.1.5 � Pointers
Given a type T, one can always construct a type T*. This new type corresponds to data units which hold 
address of another entity of type T.

As all addresses have the same size, all pointer types have the same size as well. It is specific for 
architecture and, in our case, is 8 bytes wide.

Using operands & and * one can take an address of a variable or dereference a pointer (look into the 
memory by the address this pointer stores). Listing 9-5 shows an example.

In section 2.5.4 we discussed a subtle problem: if a pointer is just an address, how do we know, the size 
of a data entity we are trying to read starting from this address? In assembly, it was straightforward: either the 
size could have been deduced based on the fact that two mov operands should have the same size or the size 
should have been explicitly given, for example, mov qword [rax], 0xABCDE. Here the type system takes care 
of it: if a pointer is of a type int*, we surely know that dereferencing it produces a value of size sizeof(int).
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Listing 9-5.  ptr_deref.c

int x = 10;
int* px = &x; /* Took address of `x` and assigned it to `px` */

*px = 42; /* We modified `x` here! */
printf( "*px = %d\n", *px ); /* outputs: '*px = 42' */
printf( "x = %d\n", x ); /* outputs: 'x = 42' */

When you program in C, pointers are your bread and butter. As long as you do not introduce a pointer 
to non-existing data, the pointers will serve you right.

A special pointer value is 0. When used in pointer context (specifically, comparison with 0), 0 signifies “a 
special value for a pointer to nowhere.” In place of 0 you can also write NULL, and you are advised to do so. It 
is a common practice to assign NULL to the pointers which are not yet initialized with a valid object address, 
or return NULL from functions returning an address of something to make the caller aware of an error.

■■ Is zero a zero? T here are two contexts in which you might use the 0 expression in C. The first context 
expects just a normal integer number. The second one is a pointer context, when you assign a pointer to 0 or 
compare it with 0. In the second context 0 does not always mean an integer value with all bits cleared, but will 
always be equal to this “invalid pointer” value. In some architectures it can be, for example, a value with all bits 
set. But this code will work no matter the architecture because of this rule:

int* px = ... ;

if ( px ) /* if `px` is not NULL */

if ( px == 0 ) /* same thing as the following: */
if (!px ) /* if `px` is NULL */

There is a special kind of pointer type: void*. This is the pointer to any kind of data. C allows us to 
assign any type of pointer to a variable of type void*; however, this variable cannot be dereferenced. Before 
we do it, we need to take its value and convert to a legit pointer type (e.g., int*). A simple cast is used to do it 
(see section 9.1.2). Listing 9-6 shows an example.

Listing 9-6.  void_deref.c

int a = 10;
void* pa = &a;

printf("%d\n", *( (int*) pa) );

You can also pass a pointer of type void* to any function that accepts a pointer to some other type. 
Pointers have many purposes, and we are going to list a couple of them.

•	 Changing a variable created outside a function.

•	 Creating and navigating complex data structures (e.g., linked lists).

•	 Calling functions by pointers means that by changing pointer we switch between 
different functions being called. This allows for pretty elegant architectural solutions.
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Pointers are closely tied with arrays, which are discussed in the next section.

9.1.6 � Arrays
In C, an array is a data structure that holds a fixed amount of data of the same type. So, to work with an array 
we need to know its start, size of a single element and the amount of elements that it can store. Refer to 
Listing 9-7 to see several variations of array declaration.

Listing 9-7.  array_decl.c

/* This array's size is computed by compiler */
int arr[] = {1,2,3,4,5};

/* This array is initialized with zeros, its size is 256 bytes */
long array[32] = {0};

As the amount of elements should be fixed, it cannot be read from a variable.3To allocate memory for 
such arrays whose dimensions we do not know in advance, memory allocators are used (which are even 
not always at your disposal, for example, when programming kernels). We will learn to use the standard C 
memory allocator (malloc / free) and will even write our own.

You can address elements by index. Indices start from 0. The origins of this solution is in the nature of 
address space. The zero-th element is located at an array’s starting address plus 0 times the element size.

Listing 9-8 shows an array declaration, two reads and one write.

Listing 9-8.  array_example_rw.c

int myarray[1024];
int y = myarray[64];

int first = myarray[0];

myarray[10] = 42;

If we think for a bit about the C abstract machine, the arrays are just continuous memory regions 
holding the data of the same type. There is no information about type itself or about the array length. It is 
fully a programmer’s responsibility to never address an element outside an allocated array.

Whenever you write the allocated array’s name, you are actually referring to its address. You can think 
about it as a constant pointer value. Here is the place where the analogy between assembly labels and 
variables is the strongest. So, in Listing 9-8, an expression myarray has actually a type int*, because it is a 
pointer to the first array element!

It also means that an expression *myarray will be evaluated to its first element, just as myarray[0].

9.1.7 � Arrays as Function Arguments
Let’s talk about functions accepting arrays as arguments. Listing 9-9 shows a function returning a first array 
element (or -1 if the array is empty).

3Until C99; but even nowadays variable length arrays are discouraged by many because if the array size is big enough, 
the stack will not be able to hold it and the program will be terminated.
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Listing 9-9.  fun_array1.c

int first (int array[], size_t sz ) {
    if ( sz == 0 ) return -1;
    return array[0];
}

Unsurprisingly, the same function can be rewritten keeping the same behavior, as shown in Listing 9-10.

Listing 9-10.  fun_array2.c

int first (int* array, size_t sz ) {
    if ( sz == 0 ) return -1;
    return *array;
}

But that’s not all. You can actually mix these and use the indexing notation with pointers, as shown in 
Listing 9-11.

Listing 9-11.  fun_array3.c

int first (int* array, size_t sz ) {
    if ( sz == 0 ) return -1;
    return array[0];
}

The compiler immediately demotes constructions such as int array[] in the arguments list to a 
pointer int* array, and then works with it as such. Syntactically, however, you can still specify the array 
length, as shown in Listing 9-12. This number indicates that the given array should have at least that many 
elements. However, the compiler treats it as a commentary and performs no runtime or compile-time checks.

Listing 9-12.  array_param_size.c

int first( int array[10], size_t sz ) { ... }

C99 introduced a special syntax, which corresponds essentially to your promise given to a compiler, 
that the corresponding array will have at least that many elements. It allows the compiler to perform some 
specific optimizations based on this assumption. Listing 9-13 shows an example.

Listing 9-13.  array_param_size_static.c

int fun(int array[static 10] ) {...}

9.1.8 � Designated Initializers in Arrays
C99 introduces an interesting way to initialize the arrays. It is possible to implicitly initialize an array to 
default values except for those on several designated positions, for which other values are provided. For 
example, to initialize an array of eight int elements to all zeros, except for the indices 1 and 5 which will hold 
values 15 and 29, respectively, the following code might be used:

int a[8] = { [5] = 29, [1] = 15 };
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The initialization order is irrelevant. It is often useful to use enum values or character values as indices. 
Listing 9-14 shows an example.

Listing 9-14.  designated_initializers_arrays.c

int whitespace[256] = {
    [' ' ] = 1,
    ['\t'] = 1,
    ['\f'] = 1,
    ['\n'] = 1,
    ['\r'] = 1 };

enum colors {
    RED,
    GREEN,
    BLUE,
    MAGENTA,
    YELLOW
};

int good[5] = { [ RED ] = 1, [ MAGENTA ] = 1 };

9.1.9 � Type Aliases
You can define your own types using existing types via the typedef keyword.

The code shown in Listing 9-15 is creating a new type mytype_t. It is absolutely equivalent to unsigned 
short int except for its name. These two types become fully interchangeable (unless later someone 
changes the typedef).

Listing 9-15.  typedef_example.c

typedef unsigned short int mytype_t;

You can see the suffix _t in type names quite often. All names ending with _t are reserved by POSIX 
standard.4

This way newer standards will be able to introduce new types without the fear of colliding with types 
in existing projects. So, using these type names is discouraged. We will speak about practical naming 
conventions later.

What are these new types for?

	 1.	 Sometimes they improve the ease of reading code.

	 2.	 They may enhance portability, because to change the format of all variables of 
your custom type you should only change the typedef.

	 3.	 Types are essentially another way of documenting program.

	 4.	 Type aliases are extremely useful when dealing with function pointer types 
because of their cumbersome syntax.

4POSIX is a family of standards specified by the IEEE Computer Society. It includes the description of utilities, 
application programming interface (API), etc. Its purpose is to ease the portability of software, mostly between different 
branches of UNIX-derived systems.
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A very important example of a type alias is size_t. This is a type defined in the language standard (it 
requires including one of the standard library headers, for example, #include <stddef.h>). Its purpose is to 
hold array lengths and array indices. It is usually an alias for unsigned long; thus, in Intel 64 it typically is an 
unsigned 8-byte integer.

■■ Never use int for array indices  Unless you are dealing with a poorly designed library which forces you to 
use int as an index, always favor size_t.

Always use types appropriately. Most standard library functions that deal with sizes return a value of type 
size_t (even the sizeof() operator returns size_t!). Let’s take a look at the example shown in Listing 9-16. 
An expression s of type size_t could have been obtained from one of library calls such as strlen. There are 
several problems that arise because of int usage:

•	 int is 4 bytes long and signed, so its maximal value is 231 − 1. What if i is used as an 
array index? It is more than possible to create a bigger array on modern systems, so all 
elements may not be indexed. The standard says that arrays are limited in size by an 
amount of elements encodable using a size_t variable (unsigned 64-bit integer).

•	 Every iteration is only performed if the current i value is less than s. Thus a 
comparison is needed, but these two variables have a different format! Because of it, a 
special number conversion code will be executed by each iteration, which can be quite 
significant for small loops with a lot of iterations.

•	 When dealing with bit arrays (not so uncommon) a programmer is likely to compute i/8 
for a byte offset in a byte array and i%8 to see which specific bit we are referring to. These 
operations can be optimized into shifts instead of actual division, but only for unsigned 
integers. The performance difference between shifts and “fair” division is radical.

Listing 9-16.  size_int_difference.c

size_t s;
int i;
...
for( i = 0; i < s; i++ ) {
    ...
}

9.1.10 � The Main Function Revisited
We are already used to writing the main function, which serves as an entry point, as a parameterless 
function. However, it should in fact accept two parameters: the command-line argument count and an array 
of arguments themselves. What are command-line arguments? Well, every time you launch a program (like 
ls) you might specify additional arguments, for example, ls -l -a. The ls application will be launched and 
it will have access to these arguments in its main function. In this case

•	 argv will contain three pointers to char sequences:

INDEX STRING

  0   "ls"
  1   "-l"
  2   "-a"
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The shell will split the whole calling string into pieces by spaces, tabs, and newline 
symbols and the loader and C standard library will ensure that main gets this 
information.

•	 argc will be equal to 3 as it is a number of elements in argv.

Listing 9-17 shows an example. This program prints all given arguments, each in a separate line.

Listing 9-17.  main_revisited.c

#include <stdio.h>

int main( int argc, char* argv[] ) {
    int i;
    for( i = 0; i < argc; i++ )
        puts( argv[i] );
    return 0;
}

9.1.11 � Operator sizeof
We already mentioned the operator sizeof in section 8.4.2. It returns a value of type size_t which holds the 
operand size in bytes. For example, sizeof(long) will return 8 on x64 computers.

sizeof is not a function because it has to be computed in compile time.
sizeof has an interesting usage: you can compute the total size of an array but only if the argument is in 

this exact array. Listing 9-18 shows an example.

Listing 9-18.  sizeof_array.c

#include <stdio.h>

long array[] = { 1, 2, 3 };

int main(void) {
    printf( "%zu \n", sizeof( array    ) ); /* output: 24 */
    printf( "%zu \n", sizeof( array[0] ) ); /* output: 8 */
    return 0;
}

Notice, how you cannot use sizeof to get the size of an array accepted by a function as an argument. 
Listing 9-19 shows an example. This program will output 8 in our architecture

Listing 9-19.  sizeof_array_fun.c

#include <stdio.h>
const int arr[] = {1, 2, 3, 4};
void f(int const arr[]) {
    printf("%zu\n", sizeof( arr ) );
}
int main( void ) {
    f(arr);
    return 0;
}
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■■ Which format specifier?  Starting at C99 you can use a format specifier %zu for size_t. In earlier versions 
you should use %lu which stands for unsigned long.

■■ Question 159  Create sample programs to study the values of these expressions:

•	 sizeof(void)

•	 sizeof(0)

•	 sizeof('x')

•	 sizeof("hello")

■■ Question 160  What will be the value of x?

int x = 10;

size_t t = sizeof(x=90);

■■ Question 161 H ow do you compute how many elements an array stores using sizeof?

9.1.12 � Const Types
For every type T we can also use a type T const (or, equivalently, const T). Variables of such type cannot be 
changed directly, so they are immutable. It means that such data should be initialized simultaneously with a 
declaration. Listing 9-20 shows an example of initializing and working with constant variables.

Listing 9-20.  const_def.c

int a;
a = 42 ;      /* ok */

...

const int a; /* compilation error */

...

const int a = 42; /* ok */
a = 99;  /* compilation error, should not change constant value */

int const a = 42;  /* ok */
const int b = 99;  /* ok, const int === int const */
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It is interesting to note how the const modifier interacts with the asterisk * modifier. The type is read from 
right to left and so the const modifiers as well as the asterisk are applied in this order. Following are the options:

•	 int const* x means “a mutable pointer to an immutable int.” Thus, *x = 10 is not 
allowed, but modifying x itself is allowed.

An alternate syntax is const int* x.

•	 int* const x = &y; means “an immutable pointer to a mutable int y.” In other 
words, x will never be pointing at anything but y.

•	 A superposition of the two cases: int const* const x = &y; is “an immutable 
pointer to an immutable int y.”

■■ Simple rule T he const modifier on the left of the asterisk protects the data we point at; the const modifier 
on the right protects the pointer itself.

Making a variable constant is not foolproof. There is still a way to modify it. Let’s demonstrate it for a 
variable const int x (see Listing 9-21).

•	 Take a pointer to it. It will have type const int*.

•	 Cast this pointer to int*.

•	 Dereference this new pointer. Now you can assign a new value to x.

Listing 9-21.  const_cast.c

#include <stdio.h>

int main(void) {
    const int x = 10;
    *( (int*)&x ) = 30;

    printf( "%d\n", x );
    return 0;
}

This technique is strongly discouraged but you might need it when dealing with poorly designed 
legacy code. const modifiers are made for a reason, and if your code does not compile it, it is by no means a 
justification for such hacks.

Note that you cannot assign a int const* pointer to int* (this is true for all types). The first pointer 
guarantees that its contents will never be changed, while the second one does not. Listing 9-22 shows an example.

Listing 9-22.  const_discard.c

int x;
int y;

int const* px = &x;
int * py = &y;

py = px; /* Error, const qualifier is discarded */
px = py; /* OK  */
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■■ Should I use const at all? It is cumbersome. A bsolutely. In large projects it can save you a lifetime of 
debugging. I myself recall several very subtle bugs that were caught by the compiler and resulted in compilation 
error. Without the variables being protected by const, the compiler would have accepted the program which 
would have resulted in the wrong behavior.

Additionally, the compiler may use this information to perform useful optimizations.

9.1.13 � Strings
In C, strings are null-terminated. A single character is represented by its ASCII code of type char. A string is 
defined by a pointer to its start, which means that the equivalent of a string type would be char*. Strings can 
also be thought of as character arrays, whose last element is always equal to zero.

The type of string literals is char*. Modifying them, however, while being syntactically possible (e.g., 
"hello"[1] = 32), yields an undefined result. It is one of the cases of undefined behavior in C. This usually 
results in a runtime error, which we will explain in the next chapter.

When two string literals are written one after another, they are concatenated (even if they are separated 
with line breaks). Listing 9-23 shows an example.

Listing 9-23.  string_literal_breaks.c

char const* hello = "Hel" "lo"
"world!";

■■ Note   The C++ language (unlike C) forces the string literal type to char const*, so if you want your code 
to be portable, consider it. Additionally, it forces the immutability of the strings (which is what you will often 
want) on the syntax level. So whenever you can, assign string literals to const char* variables.

9.1.14 � Functional Types
A rather obscure part of C are the functional types. Unlike most types, they cannot be instantiated as 
variables, but in a way functions themselves are literals of these types. However, you can declare function 
arguments of functional types, which will be automatically converted to function pointers.

Listing 9-24 shows an example of a function argument f of a functional type.

Listing 9-24.  fun_type_example.c

#include <stdio.h>

double g( int number ) { return 0.5 + number; }

double apply( double (f)(int), int x ) {
    return f( x ) ;
}
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int main( void ) {
    printf( "%f\n",  apply( g, 10 ) );
    return 0;
}

The syntax, as you see, is quite particular. The type declaration is mixed with the argument name itself, 
so the general pattern is:

return_type (pointer_name) ( arg1, arg2, ... )

You see an equivalent program in Listing 9-25.

Listing 9-25.  fun_type_example_alt.c

#include <stdio.h>

double g( int number ) { return 0.5 + number; }

double apply( double (*f)(int), int x ) {
    return f( x ) ;
}

int main( void ) {
    printf( "%f\n",  apply( g, 10 ) );
    return 0;
}

What are these types useful for? As the function pointer types are rather difficult to write and read, they 
are often hidden in a typedef. The bad (but very common) practice is to add an asterisk inside the type alias 
declaration. Listing 9-26 shows an example where a type to a procedure returning nothing is created.

Listing 9-26.  typedef_bad_fun_ptr.c

Typedef  void(*proc)(void);

In this case you can write directly proc my_pointer = &some_proc. However, this hides an information 
about proc being a pointer: you can deduce it but you do not see it right away, which is bad. The nature of 
the C language is, of course, to abstract things as much as you can, but pointers are such a fundamental 
concept and so pervasive in C that you should not abstract them, especially in the presence of weak typing.

So, a better solution would be to write down what is shown in Listing 9-27.

Listing 9-27.  typedef_good_fun_ptr.c

typedef void(proc)(void);

...

proc*  my_ptr  =  &some_proc;

Additionally, these types can be used to write function declarations. Listing 9-28 shows an example.

http://dx.doi.org/978-1-4842-2403-8_8#Par56
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Listing 9-28.  fun_types_decl.c

typedef double (proc)(int);

/* declaration */
proc myproc;

/* ... */

/* definition */
double myproc( int x ) { return 42.0 + x; }

9.1.15 � Coding Well

9.1.15.1 � General Considerations
In this book we are going to provide several assignments to be written in C. But first we want to state several 
rules that you should follow, not only here and now but virtually every time you are writing a program.

	 1.	 Always separate program logic from input and output operations. This will 
allow for a better code reuse. If a function performs actions on data and outputs 
messages at the same time, you won’t be able to reuse its logic in another situation 
(e.g., it can output messages to an application with a graphical user interface, and 
in another case you might want to use it on a remote server).

	 2.	 Always comment your code in plain English.

	 3.	 Name your variables based on their meaning for the program. It is very hard to 
deduce what variables with meaningless names like aaa mean.

	 4.	 Remember to put const wherever you can.

	 5.	 Use appropriate types for indexing.

9.1.15.2 � Example: Array Summation
This section is an absolute must read if you are a beginner with C and even more so if you are a self-taught 
programmer.

We are going to write a simple program in “beginner style,” see what’s wrong with it, and modify it 
appropriately to make it better.

Here is the task: implement an array summation functionality. As simple as it is, there is a huge 
difference between a solution written by a beginner or one written by a more experienced programmer.

The beginner will come up with a program similar to the one shown in Listing 9-29.

Listing 9-29.  beg1.c

#include <stdio.h>
int array[] = {1,2,3,4,5};

int main( int argc, char** argv ) {
    int i;
    int sum;
    for( i = 0; i < 5; i++ )
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        sum = sum + array[i];
    printf("The sum is: %d\n", sum );
    return 0;
}

Before we start polishing the code, we can immediately spot a bug: the starting value of sum is not 
defined and can be random. Local variables in C are not initialized by default, so you have to do it by hand. 
Check Listing 9-30.

Listing 9-30.  beg2.c

#include <stdio.h>
int array[] = {1,2,3,4,5};

int main( int argc, char** argv ) {
    int i;
    int sum = 0;
    for( i = 0; i < 5; i++ )
        sum = sum + array[i];
    printf("The sum is: %d\n", sum );
    return 0;
}

First of all, this code is totally not reusable. Let’s extract a piece of logic into an array_sum procedure, 
shown in Listing 9-31.

Listing 9-31.  beg3.c

#include <stdio.h>
int array[] = {1,2,3,4,5};

void array_sum( void ) {
    int i;
    int sum = 0;
    for( i = 0; i < 5; i++ )
        sum = sum + array[i];
    printf("The sum is: %d\n", sum );

}

int main( int argc, char** argv ) {
    array_sum();
    return 0;
}

What is this magic number 5? Every time we change an array we have to change this number as well, so 
we probably want to calculate it dynamically, as shown in Listing 9-32.

Listing 9-32.  beg4.c

#include <stdio.h>
int array[] = {1,2,3,4,5};
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void array_sum( void ) {
    int i;
    int sum = 0;
    for( i = 0; i < sizeof(array) / 4; i++ )
        sum = sum + array[i];
    printf("The sum is: %d\n", sum );

}

int main( int argc, char** argv ) {
    array_sum();
    return 0;
}

But why are we dividing the array size by 4? The size of int varies depending on the architecture, so we 
have to calculate it too (in compile time) as shown in Listing 9-33.

Listing 9-33.  beg5.c

#include <stdio.h>
int array[] = {1,2,3,4,5};

void array_sum( void ) {
    int i;
    int sum = 0;
    for( i = 0; i < sizeof(array) / sizeof(int); i++ )
        sum = sum + array[i];
    printf("The sum is: %d\n", sum );
}

int main( int argc, char** argv ) {
    array_sum();
    return 0;
}

We immediately face a problem: sizeof returns a number of type size_t, not int. So, we have to 
change the type of i and are doing it for a good reason (see section 9.1.9). Listing 9-34 shows the result.

Listing 9-34.  beg6.c

#include <stdio.h>

int array[] = {1,2,3,4,5};

void array_sum( void ) {
    size_t i;
    int sum = 0;
    for( i = 0; i < sizeof(array) / sizeof(int); i++ )
        sum = sum + array[i];
    printf("The sum is: %d\n", sum );
}
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int main( int argc, char** argv ) {
    array_sum();
    return 0;
}

Right now, array_sum works only on statically defined arrays, because they are the only ones whose size 
can be calculated by sizeof. Next we want to add enough parameters to array_sum so it would be able to 
sum any array. You cannot add only a pointer to an array, because the array size is unknown by default, so 
you give it two parameters: the array itself and the amount of elements in the array, as shown in Listing 9-35.

Listing 9-35.  beg7.c

#include <stdio.h>

int array[] = {1,2,3,4,5};

void array_sum( int* array, size_t count ) {
    size_t i;
    int sum = 0;
    for( i = 0; i < count; i++ )
        sum = sum + array[i];
    printf("The sum is: %d\n", sum );
}

int main( int argc, char** argv ) {
    array_sum(array, sizeof(array) / sizeof(int));
    return 0;
}

This code is much better but it still breaks the rule of not mixing input/output and logic. You cannot use 
array_sum anywhere in graphical programs, you also can do nothing with its result. We are going to get rid of 
the output in the summation function and make it return its result. Check Listing 9-36.

Listing 9-36.  beg8.c

#include <stdio.h>

int g_array[] = {1,2,3,4,5};

int array_sum( int* array, size_t count ) {
    size_t i;
    int sum = 0;
    for( i = 0; i < count; i++ )
        sum = sum + array[i];
    return sum;
}

int main( int argc, char** argv ) {
    printf(
            "The sum is: %d\n",
            array_sum(g_array, sizeof(g_array) / sizeof(int))
         );
    return 0;
}
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For convenience, we renamed the global array variable g_array, but it is not necessary.
Finally, we have to think about adding const qualifiers. The most important place is function arguments 

of pointer types. We really want to declare that array_sum will never change the array that its argument is 
pointing at. We can also like the idea of protecting the global array itself from being changed by adding a 
const qualifier.

Remember that if we make g_array itself constant but will not mark array in the argument list as such, 
we would not be able to pass g_array to array_sum, because there are no guarantees that array_sum will not 
change data that its argument is pointing at. Listing 9-37 shows the final result.

Listing 9-37.  beg9.c

#include <stdio.h>

const int g_array[] = {1,2,3,4,5};

int array_sum( const int* array, size_t count ) {
    size_t i;
    int sum = 0;
    for( i = 0; i < count; i++ )
        sum = sum + array[i];
    return sum;
}

int main( int argc, char** argv ) {
    printf(
            "The sum is: %d\n",
            array_sum(g_array, sizeof(g_array) / sizeof(int))
         );
    return 0;
}

When you write a solution for an assignment in this book, remember all the points stated previously 
and check whether your program conforms to them, and if not, how it can be improved.

Can this program be improved further? Of course, and we are going to give you some hints about how.

•	 Can the pointer array be NULL? If so, how do we signalize it without dereferencing a 
NULL pointer, which will probably result in crash?

•	 Can sum overflow?

9.1.16 � Assignment: Scalar Product
A scalar product of two vectors (a
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For example, the scalar product of vectors (1, 2, 3) and (4, 5, 6) is

1 . 4 + 2 . 5 + 3 . 6 = 4 + 10 + 18 = 32
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The solution should consist of

•	 Two global arrays of int of the same size.

•	 A function to compute the scalar product of two given arrays.

•	 A main function which calls the product computations and outputs its results.

9.1.17 � Assignment: Prime Number Checker
You have to write a function to test the number for primarity. The interesting thing is that the number will be 
of the type unsigned long and that it will be read from stdin.

•	 You have to write a function int is_prime( unsigned long n ), which checks 
whether n is a prime number or not. If it is the case, the function will return 1; 
otherwise 0.

•	 The main function will read an unsigned long number and call is_prime function on 
it. Then, depending on its result, it will output either yes or no.

Read man scanf and use scanf function with the format specifier %lu.
Remember, is_prime accepts unsigned long, which is not the same thing as unsigned int!

9.2 � Tagged Types
There are three “tagged” kinds of types in C: structures, unions, and enumerations. We call them that 
because their names consist of a keyword struct, union, or enum followed by a mnemonic tag, like struct 
pair or union pixel.

9.2.1 � Structures
Abstraction is absolutely key to all programming. It replaces the lower-level, more verbose concepts with 
those closer to our thinking: higher-level, less verbose. When you are thinking about visiting your favorite 
pizzeria and plan an optimal route, you do not think about “moving your right foot X centimeters forward,” 
but rather about “crossing the road” or “turning to the right.” While for program logic the abstraction 
mechanism is implemented using functions, the data abstraction is implemented using complex data types.

A structure is a data type which packs several fields. Each field is a variable of its own type. Mathematics 
would probably be happy calling structures “tuples with named fields.”

To create a variable of a structural type we can refer to the example shown in Listing 9-38. There we 
define a variable d which has two fields: a and b of types int and char, respectively. Then d.a and d.b 
become valid expressions that you can use just as you are using variable names.

Listing 9-38.  struct_anon.c

struct { int a; char b; } d;
d.a = 0;
d.b = 'k';

This way, however, you only create a one-time structure. In fact, you are describing a type of d but you 
are not creating a new named structural type. The latter can be done using a syntax shown in Listing 9-39.
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Listing 9-39.  struct_named.c

struct pair {
    int a;
    int b;
};

...

struct pair d;
d.a = 0;

d.b = 1;

Be very aware that the type name is not pair but struct pair, and you cannot omit the struct keyword 
without confusing the compiler. The C language has a concept of namespaces quite different from the 
namespaces in other languages (including C++). There is a global type namespace, and then there is a tag-
namespace, shared between struct, union, and enum datatypes. The name following the struct keyword is a 
tag. You can define a structural type whose name is the same as other type, and the compiler will distinguish 
them based on the struct keyword presence.

An example shown in Listing 9-40 demonstrates two variables of types struct type and type, which 
are perfectly accepted by the compiler.

Listing 9-40.  struct_namespace.c

typedef unsigned int type;
struct type {
    char c;
};

int main( int argc, char** argv ) {
    struct type st;
    type t;
    return 0;
}

It does not mean, though, that you really should make types with similar names.
However, as struct type is a perfectly fine type name, it can be aliased as type using the 

typedef keyword, as shown in Listing 9-41. Then the type and struct type names will be completely 
interchangeable.

Listing 9-41.  typedef_struct_simple.c

typedef struct type type;

■■ Please, do not do it  It is not a good practice to alias structural types using typedef, because it hides 
information about the type nature.

Structures can be initialized similarly to arrays (see Listing 9-42).
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Listing 9-42.  struct_init.c

struct S {char const* name; int value; };
...
struct S new_s = { "myname", 4 };

You can also assign 0 to all fields of a structure, as shown in Listing 9-43.

Listing 9-43.  struct_zero.c

struct pair { int a; int b; };

...
struct pair p = { 0 };

In C99, there is a better syntax for structure initialization, which allows you to name the fields to 
initialize. The unmentioned fields will be initialized to zeros. Listing 9-44 shows an example.

Listing 9-44.  struct_c99_init.c

struct pair {
    char a;
    char b;
};

struct pair st = { .a = 'a',.b = 'b' };

The fields of the structures are guaranteed to not overlap; however, unlike arrays, structures are not 
continuous in a sense that there can be free space between their fields. Thus, sizeof of a structural type can 
be greater than the sum of element sizes because of these gaps. We will talk about it in Chapter 12.

9.2.2 � Unions
Unions are very much like structures, but their fields are always overlapping. In other words, all union fields 
start at the same address. The unions share their namespace with structures and enumerations.

Listing 9-45 shows an example.

Listing 9-45.  union_example.c

union dword {
    int integer;
    short shorts[2];
};

...
dword test;
test.integer = 0xAABBCCDD;

We have just defined a union which stores a number of size 4 bytes (on x86 or x64 architectures). At the 
same time it stores an array of two numbers, each of which is 2 bytes wide. These two fields (a 4-byte number 
and a pair of 2-byte numbers) overlap. By changing the .integer field we are also modifying .shorts array. If 
we assign .integer = 0xAABBCCDD and then try to output shorts[0] and shorts[1], we will see ccdd aabb.

http://dx.doi.org/10.1007/978-1-4842-2403-8_12
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■■ Question 162  Why do these shorts seem reversed? Will it always be the case, or is it architecture 
dependent?

By mixing structures and unions we can achieve interesting results. An example shown in Listing 13-17  
demonstrates, how one can address parts of a 3-byte structure using indices.5

Listing 9-46.  pixel.c

union pixel {
    struct {
        char a,b,c;
    };
    char at[3];
};

Remember that if you assigned a union field to a value, the standard does not guarantee you anything 
about the values of other fields. An exception is made for the structures that have the same initial sequence 
of fields.

Listing 9-47 shows an example.

Listing 9-47.  union_guarantee.c

struct sa {
    int x;
    char y;
    char z;
};

struct sb {
    int x;
    char y;
    int notz;
};

union test {
    struct sa as_sa;
    struct sb as_sb;
};

9.2.3 � Anonymous Structures and Unions
Starting from C11, the unions and structures can be anonymous when inside other structures or unions.  
It allows for a less verbose syntax when accessing inner fields.

In the example shown in Listing 9-48, to access the x field of vec, you need to write vec.named.x. You 
cannot omit named.

5Note that this might not work out of the box for wider types due to possible gaps between struct fields.

http://dx.doi.org/10.1007/978-1-4842-2403-8_13#Par189
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Listing 9-48.  anon_no.c

union vec3d {
    struct {
        double x;
        double y;
        double z;
    } named ;
    double raw[3];
};

union vec3d vec;

Now, in the next example, shown in Listing 9-49, we got rid of the name of the first field (named). This is 
an anonymous structure, and now we can access its fields as if they were the fields of vec itself: vec.x.

Listing 9-49.  anon_struct.c

union vec3d {
    struct {
        double x;
        double y;

        double z;
    };
    double raw[3];
};

union vec3d vec;

9.2.4 � Enumerations
Enumerations are a simple data type based on int type. It fixes certain values and gives them names, similar 
to how DEFINE works.

For example, the traffic light can be in one of the following states (based on which lights are turned on):

•	 Red.

•	 Red and yellow.

•	 Yellow.

•	 Green.

•	 No lights.

This can be encoded in C as shown in Listing 9-50.

Listing 9-50.  enum_example.c

enum light {
    RED,
    RED_AND_YELLOW,
    YELLOW,
    GREEN,
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    NOTHING
};

...
enum light l = nothing;
...

When is it useful? It is often used to encode a state of an entity, for example, as a part of a finite 
automaton; it can serve as a bag of error codes or code mnemonics.

The constant value 0 was named RED, RED_AND_YELLOW stands for 1, etc.

9.3 � Data Types in Programming Languages
We have given an overview of data types in C; now let’s take a step back from C and look at the bigger picture 
and the types of systems in programming languages.

In many areas of computer science and programming the evolution went from untyped universe to 
typing. For example, the following entities are untyped:

	 1.	 Lambda terms in untyped lambda calculus;

	 2.	 Sets in many set theories, for example, ZF;

	 3.	 S expressions in LISP language; and

	 4.	 Bit strings.

We are mostly interested in bit strings right now. For the computer, everything is a bit string of some 
fixed size. Those can be interpreted as numbers (integer or real), sequences of character codes, or something 
else. We can say that the assembly is an untyped language.

However, when we start working in an untyped environment we are trying to divide objects into several 
categories. We are working with objects from one category in a similar way. So, we establish a convention: 
these bit strings are integer numbers, those are floating point numbers, etc.

Is this it, the typing? Not quite yet. We are still not limited in our capabilities and can add a floating point 
number to a string pointer, because the programming language does not enforce any type control. This type 
checking can be performed in compile time (static typing) or in runtime (dynamic typing).

So, not only we are dividing all kinds of possible objects into categories, we are also declaring which 
operations can be performed on each type. The data of different types is also often encoded in a different way.

9.3.1 � Kinds of Typing
Besides static and dynamic typing, there are also other, orthogonal classifications.

Strong typing means that all operations require exactly the argument they need. No implicit 
conversions from other types into the needed ones are allowed.

Weak typing means that there are implicit conversions between types which make possible the 
operations on data which is not of exactly the required type (but a conversion to a required type exists).

This division is not strictly binary; in the real world the languages tend to be closer to one of these two 
poles. We have quite extreme cases, such as Ada for strong typing and JavaScript for the weak one.

Sometimes we also divide languages based on verbosity.
With explicit typing we always annotate data with types.
With implicit typing we allow the compiler to infer the type whenever it is possible.
Now we are going to give real-world examples of all combinations of static/dynamic and strong/weak typing.

http://dx.doi.org/978-1-4842-2403-8_8#Par55
http://dx.doi.org/978-1-4842-2403-8_8#Par56
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9.3.1.1 � Static Strong Typing
Types are checked in compile time and the compiler is pedantic about them.

In OCaml language there are two different addition operators: + for integer numbers and +. for reals. So, 
this code will raise an error at compile time:

4 +. 1.0

We used the data of type int when the compiler expected a float and, unlike in C, where a conversion 
would have occurred, has thrown an error. This is the essence of very strong typing.

9.3.1.2 � Static Weak Typing
The C language has exactly this kind of typing. All types are known in compile time, but the implicit 
conversions occur quite often.

The almost identical line double x = 4 + 3.0; causes no compiler errors, because 4 gets automatically 
promoted to double and then added to 3.0. The weakness expresses itself in the fact that programmer does 
not specify conversion operations explicitly.

9.3.1.3 � Strong Dynamic Typing
This is the kind of typing used in Python. Python does not allow implicit conversions between types as much 
as JavaScript does. However, the type errors will not be reported until you launch the program and actually 
try to execute the erroneous statement.

Python has an interpreter where you can type expressions and statements and immediately execute 
them. If you try to evaluate an expression "3" + 2 and see its result in an interactive Python interpreter, 
you will get an error because the first object is a string, and the second is a number. Even though this string 
contains a number (so a conversion could have been written), the addition is not allowed. Listing 9-51 shows 
the dump.

Listing 9-51.  Python Typing Error

>>> "3" + 2
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'int' objects

Now let’s try to evaluate an expression 1 if True else "3" + 2. This expression is evaluated to 1 if 
True is true (which obviously holds); otherwise its value is a result of the same invalid operation "3" + 2. 
However, as we are never reaching into the else branch, there will be no error raised even in runtime.  
Listing 9-52 shows the terminal dump. When applied to two strings, the plus acts as a concatenation 
operator.

Listing 9-52.  Python Typing: No Error Because the Statement Is Not Executed

>>> 1 if True else "3" + 2
1
>>> "1" + "2"
'12'
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9.3.1.4 � Weak Dynamic Typing
Probably the most used language with such typing is JavaScript.

In the example we provided for Python we tried to add a number to a string. Despite the fact that the 
string contained a valid decimal number, an error was reported, because a string is a string, whatever it 
might hold. Its type won’t be automatically changed.

However, JavaScript is much less strict about what you are allowed to do. We are going to use the 
interactive JavaScript console (which you can access in virtually any modern web browser) and type some 
expressions. Listing 9-53 shows the result.

Listing 9-53.  JavaScript Implicit Conversions

>>> 3 == '3'
true
>>> 3 == '4'
false
>>> "7.0" == 7

true

By studying this example only we can deduce that when a number and a string are compared, both 
sides are apparently converted to a number and then compared. It is not clear whether the numbers are 
integers or reals, but the amount of implicit operations in action here is quite astonishing.

9.3.2 � Polymorphism
Now that we have a general understanding of typing, let’s go after one of the most important concepts 
related to the type systems, namely, polymorphism.

Polymorphism (from Greek: polys, “many, much” and morph, “form, shape”) is the possibility of 
calling different actions for different types in a uniform way. You can also think about it in another way: the 
data entities can take different types.

There are four different kinds of polymorphism [8], which we can also divide into two categories:

	 1.	 Universal polymorphism, when a function accepts an argument of an infinite 
number of types (including maybe even those who are not defined yet) and 
behaves in a similar way for each of them.

•   Parametric polymorphism, where a function accepts an additional argument, 
defining the type of another argument.

In languages such as Java or C#, the generic functions are an example of 
parametric compile-time polymorphism.

•   Inclusion, where some types are subtypes of other types. So, when given an 
argument of a child type, the function will behave in the same way as when the 
parent type is provided.

	 2.	 Ad hoc, where functions accept a parameter from a fixed set of types and these 
functions may operate differently on each type.

•   Overloading, several functions exist with the same name and one of them is called 
based on an argument type.

•   Coercion, where a conversion exists from type X to type Y and a function accepting 
an argument of type Y is called with an argument of type X.

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par9
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The popular object-oriented programming paradigm has popularized the notion of polymorphism, but 
in a very particular way. The object-oriented programming usually refers to only one kind of polymorphism, 
namely, subtyping, which is essentially the same as inclusion, because the objects of the child type form a 
subset of objects of the parent type.

Sometimes it is hard to say which type of polymorphism is used in a certain place. Consider the 
following four lines:

3 + 4
3 + 4.0
3.0 + 4
3.0 + 4.0

The “plus” operation here is obviously polymorphic, because it is used in the same way with all kinds of 
int and double operands. But how is it really implemented? We can think of different options, for example,

•	 This operator has four overloads for all combinations.

•	 This operator has two overloads for int + int and double + double cases. 
Additionally, a coercion from int to double is defined.

•	 This operator can only add up two reals, and all ints are coerced to double.

9.4 � Polymorphism in C
The C language allows for different types of polymorphisms, and some can be emulated through little tricks.

9.4.1 � Parametric Polymorphism
Can we make a function which will behave differently for different types of arguments based on an explicitly 
given type? We can do it to some extent, even in C89. However, we will need some rather heavy macro 
machinery in order to achieve a smooth result.

First, we have to know what this fancy # symbol does in a macro context. When used inside a macro, the 
# symbol will quote the symbol contents. Listing 9-54 shows an example.

Listing 9-54.  macro_str.c

#define mystr hello
#define res #mystr

puts( res );  /* will be replaced with `puts("hello")`

The ## operator is even more interesting. It allows us to form symbol names dynamically. Listing 9-55 
shows an example.

Listing 9-55.  macro_concat.c

#define x1 "Hello"
#define x2 " World"

#define str(i) x##i

puts( str(1) );  /* str(1) -> x1 -> "Hello" */
puts( str(2) );  /* str(2) -> x2 -> " World" */
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Some higher-level language features can be boiled down to compiler logic performing a program 
analysis and making a call to one or another function, using one or another data structure, etc. In C we can 
imitate it by relying on a preprocessor.

Listing 9-56 shows an example.

Listing 9-56.  c_parametric_polymorphism.c

#include <stdio.h>
#include <stdbool.h>

#define pair(T) pair_##T
#define DEFINE_PAIR(T) struct pair(T) {\
    T fst;\
    T snd;\
};\
bool pair_##T##_any(struct pair(T) pair, bool (*predicate)(T)) {\
    return predicate(pair.fst) || predicate(pair.snd); \
}

#define any(T) pair_##T##_any

DEFINE_PAIR(int)

bool is_positive( int x ) { return x > 0; }
int main( int argc, char** argv ) {
    struct pair(int) obj;
    obj.fst = 1;
    obj.snd = -1;
    printf("%d\n", any(int)(obj, is_positive) );
    return 0;
}

First, we included stdbool.h file to get access to the bool type, as we said in section 9.1.3.

•	 pair(T) when called like that: pair(int) will be replaced by the string pair_int.

•	 DEFINE_PAIR is a macro which, when called like that: DEFINE_PAIR(int), will be 
replaced by the code shown in Listing 9-57.

Notice the backslashes at the end of each line: they are used to escape the newline 
character, thus making this macro span across multiple lines. The last line of the 
macro is not ended by the backslash.

This code defines a new structural type called struct pair_int, which essentially 
contains two integers as fields. If we instantiated this macro with a parameter other 
than T, we would have had a pair of elements of a different type.

Then a function is defined, which will have a specific name for each macro 
instantiation, since the parameter name T is encoded into its name. In our case 
it is pair_int_any, whose purpose is to check whether any of two elements in 
the pair satisfies the condition. It accepts the pair itself as the first argument and 
the condition as the second. The condition is essentially a pointer to a function 
accepting T and returning bool, a predicate, as its name suggests.
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pair_int_any launches the condition function on the first element and then on the 
second element.

When used, DEFINE_PAIR defines the structure that holds two elements of a given 
type, and functions to work with it. We can have only one copy of these functions 
and structure definition for each type, but we need them, so we want to instantiate 
DEFINE_PAIR once for every type we want to work with.

Listing 9-57.  macro_define_pair.c

struct pair_int {
    int fst;
    int snd;
};
bool pair_int_any(struct pair_int pair, bool (*predicate)(int)) {
    return predicate(pair.fst) || predicate(pair.snd);
}

•	 Then a macro #define any(T) pair_##T##_any is defined. Notice that its sole 
purpose is apparently just to form a valid function name depending on type. It allows 
us to call pair_##T##_any in a rather elegant way: any(int), as if it was a function 
returning a pointer to a function.

So, syntactically we got very close to a concept of parametric polymorphism: we are providing an 
additional argument (int) which serves to determine the type of other argument (struct pair_int). Of 
course, it is not as good as the type arguments in functional languages or even generic type parameters in C# 
or Scala, but it is something.

9.4.2 � Inclusion
The inclusion is fairly easy to achieve in C for pointer types. The idea is that every struct’s address is the same 
as the address of its first member.

Take a look at the example shown in Listing 9-58.

Listing 9-58.  c_inclusion.c

#include <stdio.h>

struct parent {
    const char* field_parent;
};

struct child {
    struct parent base;
    const char* field_child;
};

void parent_print( struct parent* this ) {
    printf( "%s\n", this->field_parent );
}
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int main( int argc, char** argv ) {
    struct child c;
    c.base.field_parent = "parent";
    c.field_child = "child";
    parent_print( (struct parent*) &c );

    return 0;
}

The function parent_print accepts an argument of a type parent*. As the definition of child suggests, 
its first field has a type parent. So, every time we have a valid pointer child*, there exists a pointer to an 
instance of parent which is equal to the former. Thus it is safe to pass a pointer to a child when a pointer to 
the parent is expected.

The type system, however, is not aware of this; thus you have to convert the pointer child* to parent*, 
as seen in the call parent_print( (struct parent*) &c );. We could replace the type struct parent* 
with void* in this case, because any pointer type can be converted to void* (see section 9.1.5).

9.4.3 � Overloading
Automated overloading was not possible in C until C11. Until recently, people included the argument type names 
in the function names to provide different “overloadings” given some base name. Now the newer standard has 
included a special macro which expands based on the argument type: _Generic. It has a wide range of usages.

The _Generic macro accepts an expression E and then many association clauses, separated by a comma. 
Each clause is of the form type name: string. When instantiated, the type of E is checked against all types in 
the associations list, and the corresponding string to the right of colon will be the instantiation result.

In the example shown in Listing 9-59, we are going to define a macro print_fmt, which can choose an 
appropriate printf format specifier based on argument type, and a macro print, which forms a valid call to 
printf and then outputs newline.

print_fmt matches the type of the expression x with one of two types: int and double. In case the 
type of x is not in this list, the default case is executed, providing a fairly generic %x specifier. However, 
in absence of the default case, the program would not compile should you provide print_fmt with an 
expression of the type, say, long double. So in this case it would be probably wise to just omit default case, 
forcing the compilation to abort when we don’t really know what to do.

Listing 9-59.  c_overload_11.c

#include <stdio.h>

#define print_fmt(x) (_Generic( (x), \
            int: "%d",\
            double: "%f",\
            default: "%x"))

#define print(x) printf( print_fmt(x), x ); puts("");

int main(void) {
    int x = 101;
    double y = 42.42;
    print(x);
    print(y);
    return 0;
}
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We can use _Generic to write a macro that will wrap a function call and select one of differently named 
functions based on an argument type.

9.4.4 � Coercions
C has several coercions embedded into the language itself. We are speaking essentially about pointer 
conversions to void* and back and integer conversions, described in section 9.1.4. To our knowledge, there 
is no way to add user-defined coercions or anything that looks at least remotely similar, akin to Scala’s 
implicit functions or C++ implicit conversions.

As you see, in some form, C allows for all four types of polymorphism.

9.5 � Summary
In this chapter we have made an extensive study of the C type system: arrays, pointers, constant types. We 
learned to make simple function pointers, seen the caveats of sizeof, revised strings, and started to get used 
to better code practices. Then we learned about structures, unions, and enumerations. At the end we talked 
briefly about type systems in mainstream programming languages and polymorphism and provided some 
advanced code samples to demonstrate how to achieve similar results using plain C. In the next chapter we 
are going to take a closer look at the ways of organizing your code into a project and the language properties 
that are important in this context.

■■ Question 163  What is the purpose of & and * operators?

■■ Question 164 H ow do we read an integer from an address 0x12345?

■■ Question 165  What type does the literal 42 have?

■■ Question 166 H ow do we create a literal of types unsigned long, long, and long long?

■■ Question 167  Why do we need size_t type?

■■ Question 168 H ow do we convert values from one type to another?

■■ Question 169  Is there a Boolean type in C89?

■■ Question 170  What is a pointer type?

■■ Question 171  What is NULL?

■■ Question 172  What is the purpose of the void* type?

■■ Question 173  What is an array?

■■ Question 174  Can any consecutive memory cells be interpreted as an array?

■■ Question 175  What happens when trying to access an element outside the array’s bounds?

■■ Question 176  What is the connection between arrays and pointers?
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■■ Question 177  Is it possible to declare a pointer to a function?

■■ Question 178 H ow do we create an alias for a certain type?

■■ Question 179 H ow are the arguments passed to the main function?

■■ Question 180  What is the purpose of the sizeof operator?

■■ Question 181  Is sizeof evaluated during the program execution?

■■ Question 182  Why is the const keyword important?

■■ Question 183  What are structure types and why do we need them?

■■ Question 184  What are union types? How do they differ from the structure types?

■■ Question 185  What are enumeration types? How do they differ from the structure types?

■■ Question 186  What kinds of typing exist?

■■ Question 187  What kinds of polymorphism exist and what is the difference between them?
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CHAPTER 10

Code Structure

In this chapter we are going to study how to better split your code into multiple files and which relevant 
language features exist. Having a single file with a mess of functions and type definitions is far from 
convenient for large projects. Most programs are split into multiple modules. We are going to study which 
benefits it brings and how each module looks before linkage.

10.1 � Declarations and Definitions
The C compilers historically were written as single-pass programs. It means that they should have traversed 
the file once and translated it right away. However, it does mean a lot to us. When a function is called, and it 
is not yet defined, the compiler will reject such a program because it does not know what this name stands 
for. While we are aware of our intention of calling a function in this place, for it, this is just an undefined 
identifier, and due to the single-pass translation, the compiler can’t look ahead and try to find the definition.

In simple cases of linear dependency we can just define all functions before they are used. However, 
there are cases of circular dependencies, when this schema is not working, namely, the mutual recursive 
definitions, be they structures or functions.

In the case of functions, there are two functions calling each other. Apparently, in whatever order we define 
them, we cannot define both of them before the call to it is seen by the compiler. Listing 10-1 shows an example.

Listing 10-1.  fun_mutual_recursive_bad.c

void f(void) {
    g();   /* What is `g`, asks mr. Compiler? */
}

void g(void) {
    f();
}

In case of structures, we are talking about two structural types. Each of them has a field of pointer type, 
pointing to an instance of the other structure. Listing 10-2 shows an example.

Listing 10-2.  struct_mutual_recursive_bad.c

struct a {
    struct b* foo;
};
struct b {
    struct a* bar;
};
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The solution is in using split declarations and definitions. When a declaration precedes the definition, it 
is called forward declaration.

10.1.1 � Function Declarations
For functions, the declaration looks like bodyless definition, ended by a semicolon. Listing 10-3 shows an 
example.

Listing 10-3.  fun_decl_def.c

/* This is declaration */
void f( int x );

/* This is definition */
void f( int x )    {
    puts( "Hello!" );
}

Such declarations are sometimes called function prototypes. Every time you are using a function 
whose body is not yet defined OR is defined in another file, you should write its prototype first.

In function prototype the argument names can be omitted, as shown in Listing 10-4.

Listing 10-4.  fun_proto_omit_arguments.c

int square( int x );
/* same as */
int square( int );

To sum up, two scenarios are considered correct for functions.

	 1.	 Function is defined first, then called (see Listing 10-5).

Listing 10-5.  fun_sc_1.c

int square( int x ) { return x * x; }

...
int z = square(5);

	 2.	 Prototype first, then call, then the function is defined (see Listing 10-6).

Listing 10-6.  fun_sc_2.c

int square( int x );

...
int z = square(5);

...

int square( int x ) { return x * x; }
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Listing 10-7 shows a typical error situation, where the function body is declared after the call, but no 
declaration precedes the call.

Listing 10-7.  fun_sc_3.c

int z = square( 5 );
...

int square( int x ) { return x * x; }

10.1.2 � Structure Declarations
It is quite common to define a recursive data structure such as linked list. Each element stores a value and a link 
to the next element. The last element stores NULL instead of a valid pointer to mark the end of list. Listing 10-8 
shows the linked list definition.

Listing 10-8.  list_definition.c

struct list {
    int value;
    struct list* next;
};

However, in case of two mutually recursive structures, you have to add a forward declaration for at least 
one of them. Listing 10-9 shows an example.

Listing 10-9.  mutually_recursive_structures.c

struct b; /* forward declaration */
struct a {
    int value;
    struct b* next;
};

/* no need to forward declare struct a because it is already defined */
struct b {
    struct a* other;
};

If there is no definition of a tagged type but only a declaration, it is called an incomplete type. In this 
case we can work freely with pointers to it, but we can never create a variable of such type, dereference it, or 
work with arrays of such type. The functions must not return an instance of such type, but, similarly, they 
can return a pointer. Listing 10-10 shows an example.

Listing 10-10.  incomplete_type_example.c

struct llist_t;

struct llist_t* f() { ... }   /* ok  */
struct llist_t g();           /* ok  */
struct llist_t g()  { ... }   /* bad */

These types have a very specific use case which we will elaborate in Chapter 13.

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec22
http://dx.doi.org/10.1007/978-1-4842-2403-8_13
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10.2 � Accessing Code from Other Files
10.2.1 � Functions from Other Files
It is, of course, possible to call functions or reference global variables from other files. To perform a call, you 
have to add the called function’s prototype to the current file. For example, you have two files: square.c, 
which contains a function square, and main_square.c, which contains the main function. Listing 10-11 and 
Listing 10-12 show these files.

Listing 10-11.  square.c

int square( int x ) { return x * x; }

Listing 10-12.  main_square.c

#include <stdio.h>
int square( int x );

int main(void) {
    printf( "%d\n", square( 5 ) );
    return 0;
}

Each code file is a separate module and thus is compiled independently, just as in assembly. A .c file 
is translated into an object file. As for our educational purposes we stick with ELF (Executable and Linkable 
Format) files; let’s crack the resulting object files open and see what’s inside. Refer to Listing 10-13 to see the 
symbol table inside the main_square.o object file, and to Listing 10-14 for the file square.o. Refer to section 
5.3.2 for the symbol table format explanation.

Listing 10-13.  main_square

> gcc -c -std=c89 -pedantic -Wall main_square.c
> objdump -t main_square.o

main.o:     file format elf64-x86-64

SYMBOL TABLE:
0000000000000000 l    df *ABS*  0000000000000000 main.c
0000000000000000 l    d  .text  0000000000000000 .text
0000000000000000 l    d  .data  0000000000000000 .data
0000000000000000 l    d  .bss   0000000000000000 .bss
0000000000000000 l    d  .note.GNU-stack
0000000000000000 .note.GNU-stack
0000000000000000 l    d  .eh_frame
0000000000000000 .eh_frame
0000000000000000 l    d  .comment
0000000000000000 .comment
0000000000000000 g     F .text  000000000000001c main
0000000000000000         *UND*  0000000000000000 square
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Listing 10-14.  square

> gcc  -c -std=c89 -pedantic -Wall square.c
> objdump -t square.o
square.o:     file format elf64-x86-64

SYMBOL TABLE:
0000000000000000 l    df *ABS*  0000000000000000 square.c
0000000000000000 l    d  .text  0000000000000000 .text
0000000000000000 l    d  .data  0000000000000000 .data
0000000000000000 l    d  .bss   0000000000000000 .bss
0000000000000000 l    d  .note.GNU-stack
0000000000000000 .note.GNU-stack
0000000000000000 l    d  .eh_frame
0000000000000000 .eh_frame
0000000000000000 l    d  .comment
0000000000000000 .comment
0000000000000000 g     F .text  0000000000000010 square

As you see, all functions (namely, square and main) have become global symbols, as the letter g in the 
second column suggests, despite not being marked in some special way. It means that all functions are like 
labels marked with global keyword in assembly—in other words, visible to other modules.

The function prototype for square, located in main_square.c, is attributed to an undefined section.

0000000000000000    *UND*    0000000000000000   square

GCC is providing you an access to the whole compiler toolchain, which means that it is not only 
translating files but calling linker with appropriate arguments. It also links files against standard C library.

After linking, the symbol table becomes more populated due to standard library and utility symbols, 
such as .gnu.version.

■■ Question 188  Compile the file main by using gcc -o main main_square.o square.o line. Study its 
object table using objdump -t main. What can you tell about functions main and square?

10.2.2 � Data in Other Files
If there is a global variable defined in other .c file that we want to address, it should be declared, preferably, 
but not necessarily, with extern keyword. You should not initialize extern variables; otherwise, compiler 
issues a warning.

Listing 10-15 and Listing 10-16 show the first example of a global variable usage from another file.

Listing 10-15.  square_ext.c

extern int z;
int square( int x ) { return x * x + z; }
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Listing 10-16.  main_ext.c

int z = 0;
int square( int x );

int main(void) {
    printf( "%d\n", square( 5 ) );
    return 0;
}

The C standard marks the keyword extern as optional. We recommend that you never omit extern 
keyword so that you might easily distinguish in which file exactly you want to create a variable.

However, in case you do omit extern keyword, how does the compiler distinguish between variable 
definition and declaration, when no initializing is provided? It is especially interesting given that the files are 
compiled separately.

In order to study this question, we are going to take a look at the symbol tables for object files using the 
nm utility.

We write down files main.c and other.c, and then we compile them into .o files by using -c flag and 
then link them. Listing 10-17 shows the command sequence.

Listing 10-17.  glob_build

> gcc -c -std=c89 -pedantic -Wall -o main.o main.c
> gcc -c -std=c89 -pedantic -Wall -o other.o other.c
> gcc -o main main.o other.o

There is one global variable called x. It is not assigned with a value in main.c, but it is initialized in 
other.c.

Using nm we can quickly view the symbol table, as shown in Listing 10-18. We have shortened the table 
for the main executable file on purpose to avoid cluttering the listing with service symbols.

Listing 10-18.  glob_nm

> nm main.o
0000000000000000 T main
                 U printf
0000000000000004 C x

> nm other.o
0000000000000000 D x

> nm main
0000000000400526 T main
                 U printf@@GLIBC_2.2.5
0000000000601038 D x

As we see, in main.o the symbol x, corresponding to the variable int x, is marked with the flag C (global 
common), while in the other object file main.o it is marked D (global data). There can be as many similar 
global common symbols as you like, and in the resulting executable file they will all be squashed into one.

However, you cannot have multiple declarations of the same symbol in the same source file; you are 
limited to a maximum of one declaration and one definition.
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10.2.3 � Header Files
So, we know how to split the code into multiple files now. Every file that uses an external definition should 
have its declaration written before the actual usage. However, when the amount of files grows, maintaining 
consistency becomes hard. A common practice is to use header files in order to ease maintenance.

Let’s say there are two files: main_printer.c and printer.c. Listings 10-19 and 10-20 show them.

Listing 10-19.  main_printer.c

void print_one(void);
void print_two(void);
int main(void) {
    print_one();

    print_two();
    return 0;
}

Listing 10-20.  printer.c

#include <stdio.h>

void print_one(void) {
    puts( "One" );
}
void print_two(void) {
    puts( "Two" );
}

Here is the real-world scenario. In order to use a function from the file printer.c in some file other.c, 
you have to write down prototypes of the functions defined in printer.c somewhere in the beginning 
of other.c. To use them in the third file, you will have to write their prototypes in the third file too. So, 
why do it by hand when we can create a separate file that will only contain functions and global variables 
declarations, but not definitions, and then include it with the help of a preprocessor?

We are going to modify this example by introducing a new header file printer.h, containing all 
declarations from printer.c. Listing 10-21 shows the header file.

Listing 10-21.  printer.h

void print_one( void );
void print_two( void );

Now, every time you want to use functions defined in printer.c you just have to put the following line 
in the beginning of current code file:

#include "printer.h"

The preprocessor will replace this line with the contents of printer.h. Listing 10-22 shows the new 
main file.
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Listing 10-22.  main_printer_new.c

#include "printer.h"

int main(void) {
    print_one();
    print_two();
    return 0;
}

■■ Note   The header files are not compiled themselves. The compiler only sees them as parts of .c files.

This mechanism, which looks similar to the modules or libraries importing from such languages as Java 
or C#, is by its nature very different. So, telling that the line #include "some.h" means “importing a library 
called some” is very wrong. Including a text file is not importing a library! Static libraries, as we know, are 
essentially the same object files as the ones produced by compiling .c files. So, the picture for an exemplary 
file f.c looks as follows:

•	 Compilation of f.c starts.

•	 The preprocessor encounters the #include directives and includes corresponding .h 
files “as is.”

•	 Each .h file contains function prototypes, which will become entries in the symbol 
table after the code translation.

•	 For each such import-like entry, the linker will search through all object files in its 
input for a defined symbol (in section .data, .bss, or .text). In one place, it will find 
such a symbol and link the import-like entry with it.

This symbol might be found in the C standard library.
But wait, are we giving to the linker the standard library as input? We are going to discuss it in the next 

section.

10.3 � Standard Library
We have already used the headers, corresponding to parts of the standard library, such as stdio.h. They 
contain not the standard functions themselves but their prototypes. You don’t have to believe it, because you 
can check it for yourself.

In order to do it, create a file p.c which contains only one line: #include <stdio.h>. Then launch GCC 
on it, providing -E flag to stop after preprocessing and output the results into stdout. Use grep utility to 
search for printf occurrence, and you will find its prototype, as shown in Listing 10-23.

Listing 10-23.  printf_check_header

>  cat p.c
#include <stdio.h>

> gcc -E -pedantic -ansi p.c | grep " printf"
extern int printf (const char *__restrict__format, ...);

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec16
http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec16
http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec16
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We won’t speak about the restrict keyword yet, so let’s pretend it is not here. The file stdio.h, 
included in our test file p.c, obviously contains the function prototype of printf (pay attention to the 
semicolon at the end of the line!), which has no body. Three dots in place of the last argument mean an 
arbitrary arguments count. This feature will be discussed in Chapter 14. The same experiment can be 
conducted for any function that you gain access to by including stdio.h.

GCC is a universal interface of sort: you can use it to compile single files separately without linkage  
(-c flag), you can perform the whole compilation cycle including linkage on several files, but you can also 
call the linker indirectly by providing GCC with .o files as input:

gcc -o executable_file obj1.o obj2.o ...

When performing linkage, GCC does not just call ld blindly. It also provides it with the correct version 
of the C library, or libraries. Additional libraries can be specified with help of the -l flag.

In the most common scenario, C library consists of two parts:

•	 Static part (usually called crt0 – C RunTime, zero stands for “the very beginning”) 
contains _start routine, which performs initialization of the standard utility 
structures, required by this specific library implementation. Then it calls the main 
function. In Intel 64, the command-line arguments are passed onto the stack. It means 
that _start should copy argc and argv from the stack to rdi and rsi in order to 
respect the function calling convention.

	 If you link a single file and check its symbol table before and after linkage, you will see 
quite a lot of new symbols, which originate in crt0, for example, a familiar _start, 
which is the real entry point.

•	 Dynamic part, which contains the functions and global variables themselves. As these 
are used by a vast majority of running applications, it is wise not to copy it but to share 
between them for the sake of an overall smaller memory consumption and better 
locality. We are going to prove its existence by using the ldd utility on a compiled 
sample file main_ldd.c, shown in Listing 10-24. It will help us to locate the standard C 
library. Listing 10-25 shows the ldd output.

Listing 10-24.  main_ldd.c

#include <stdio.h>

int main( void )
{
    printf("Hello World!\n");
    return 0;
}

Listing 10-25.  ldd_locating_libc

>  gcc main.c -o main
    > ldd main
    linux-vdso.so.1 (0x00007fff4e7fc000)
    libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f2b7f6bf000)
/lib64/ld-linux-x86-64.so.2 (0x00007f2b7fa76000)

http://dx.doi.org/10.1007/978-1-4842-2403-8_14
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This file is linked against three dynamic libraries.

	 1.	 The ld-linux is the dynamic library loader itself, which is searching and loading 
all dynamic libraries, required by the executable.

	 2.	 vdso, which stands for “virtual dynamic shared object,” is a small utility library 
used by the C standard library to speed up the communication with the kernel in 
some situations.

	 3.	 Finally, libc itself, contains the executable code for standard functions.

Then, as the standard library is just another ELF file, we will launch readelf to print its symbol table 
and see the printf entry for ourselves. Listing 10-26 shows the result. The first entry is indeed the printf 
we are using; the tag after @@ marks the symbol version and is used to provide different versions of the same 
function. The old software, which uses older function versions, will continue using them, while the new 
software may switch to a better written, more recent variant without breaking compatibility.

Listing 10-26.  printf_lib_entry

> readelf -s /lib/x86_64-linux-gnu/libc.so.6  | grep " printf"
596: 0000000000050d50   161 FUNC    GLOBAL DEFAULT   12
printf@@GLIBC_2.2.5
1482: 0000000000050ca0    31 FUNC    GLOBAL DEFAULT   12
printf_size_info@@GLIBC_2.2.5
1890: 0000000000050480  2070 FUNC    GLOBAL DEFAULT   12
printf_size@@GLIBC_2.2.5

■■ Question 189 T ry to find the same symbols using nm utility instead of readelf.

10.4 � Preprocessor
Apart from defining global constants with #define, the preprocessor is also used as a workaround to solve a 
multiple inclusion problem. First, we are going to briefly review the relevant preprocessor features.

The #define directive is used in the following typical forms:

•	 #define FLAG means that the preprocessor symbol FLAG is defined, but its value is 
an empty string (or, you could say it has no value). This symbol is mostly useless in 
substitutions, but we can check whether a definition exists at all and include some 
code based on it.

•	 #define MY_CONST 42 is a familiar way to define global constants. Every time  
MY_CONST occurs in the program text, it is substituted with 42.

•	 #define MAX(a, b) ((a)>(b))?(a):(b) is a macrosubstitution with parameters.

A line int x = MAX(4+3, 9) will be then replaced with: int x = ((4+3)>(9))?(4+3):(9).
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■■ Macro parameters in parentheses  Note that all parameters in a macro body should be surrounded by 
parentheses. It ensures that the complex expressions, given to the macro as parameters, are parsed correctly. 
Imagine a simple macro SQ.

#define SQ(x) x*x

A line int z = SQ(4+3) will be then replaced with

int z = 4 + 3 * 4 + 3

which, due to multiplication having a higher priority than addition, will be parsed as 4 + (3*4) + 3, which is 
not quite an expression we intended to form.

If you want additional preprocessor symbols to be defined, you can also provide them when launching 
GCC with the -D key. For example, instead of writing #define SYM VALUE, you can launch gcc -DSYM=VALUE, 
or just gcc -DSYM for a simple #define SYM.

Finally, we need a macro conditional: #ifdef. This directive allows us to either include or exclude some 
text fragment from the preprocessed file, based on whether a symbol is defined or not.

You can include the lines between #ifdef SYMBOL and #endif if the SYMBOL is defined, as shown in 
Listing 10-27.

Listing 10-27.  ifdef_ex.c

#ifdef SYMBOL
/*code*/
#endif

You can include the lines between #ifdef SYMBOL and #endif if the SYMBOL is defined, OR ELSE include 
other code, as shown in Listing 10-28.

Listing 10-28.  ifdef_else_ex.c

#ifdef SYMBOL
/*code*/
#else
/*other code*/

#endif

You can also state that some code will only be included if a certain symbol is not defined, as shown in 
Listing 10-29.

Listing 10-29.  ifndef_ex.c

#ifndef MYFLAG
/*code*/
#else
/*other code*/
#endif
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10.4.1 � Include Guard
One file can contain a maximum of one declaration and one definition for any given symbol. While you 
will not write duplicate declarations, you will most probably use header files, which might include other 
header files, and so on. Knowing which declarations will be present in the current file is not easy: you have to 
navigate through each header file, and each header file that they include, and so on.

For example, there are three files: a.h, b.h, and main.c, shown in Listing 10-30.

Listing 10-30.  inc_guard_motivation.c

/* a.h */
void a(void);

/* b.h */
#include "a.h"
void b(void);

/* main.c */
#include "a.h"
#include "b.h"

What will the preprocessed main.c file look like? We are going to launch gcc -E main.c. Listing 10-31 
shows the result.

Listing 10-31.  multiple_inner_includes.c

# 1 "main.c"
# 1 "<built-in>"
# 1 "<command-line>"
# 1 "/usr/include/stdc-predef.h" 1 3 4
# 1 "<command-line>" 2
# 1 "main.c"
# 1 "a.h" 1
void a(void);
# 2 "main.c" 2
# 1 "b.h" 1
# 1 "a.h" 1
void a(void);
# 2 "b.h" 2

void b(void);
# 2 "main.c" 2

Now main.c contains a duplicate function declaration void a(void), which results in a compilation 
error. The first declaration comes from the a.h file directly; the second one comes from file b.h which 
includes a.h on its own.

There are two common techniques to prevent that.

•	 Using a directive #pragma once in the header start. This is a non-standard way of 
forbidding the multiple inclusion of a header file. Many compilers support it, but 
because it is not a part of the C standard, its usage is discouraged.

•	 Using so-called Include guards.
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Listing 10-32 shows an include guard for some file file.h.

Listing 10-32.  file.h

#ifndef _FILE_H_
#define _FILE_H_

void a(void);

#endif

The text between directives #ifndef _FILE_H_ and #endif will only be included if the symbol X is not 
defined. As we see, the very first line in this text is: #define _FILE_H_. It means that the next time all this 
text will be included as a result of #include directive execution; the same #ifndef _FILE_H_ directive will 
prevent the file contents from being included for the second time.

Usually, people name such preprocessor symbols based on the file name, one such convention was 
shown and consists of

–– Capitalizing file name.

–– Replacing dots with underscores.

–– Prepending and appending one or more underscores.

We crafted a typical include file for you to observe its structure. Listing 10-33 shows this example.

Listing 10-33.  pair.h

#ifndef _PAIR_H_
#define _PAIR_H_

#include <stdio.h>

struct pair {
    int x;
    int y;
};

void pair_apply( struct pair* pair, void (*f)(struct pair) );
void pair_tofile( struct pair* pair, FILE* file );

#endif

The include guard is the first thing we observe in this file. Then come other includes. Why do you need 
to include files in header files? Sometimes, your functions or structures rely on external types, defined 
elsewhere. In this example, the function pair_tofile accepts an argument of type FILE*, which is defined in 
the stdio.h standard header file (or in one of the headers it includes on its own). The type definition comes 
after that, and then the function prototypes.
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10.4.2 � Why Is Preprocessor Evil?
Extensive preprocessor usage is considered bad for a number of reasons:

•	 It often makes code smaller, but also much less readable.

•	 It introduces unnecessary abstractions.

•	 In most cases it makes debugging harder.

•	 Macros often confuse IDEs (integrated development environments) and their 
autocompletion engines, as well as different static analyzers. Do not be snobbish 
about these because in larger projects they are of a great help.

The preprocessor knows nothing about language structure, so every preprocessor structure in isolation 
can be an invalid language statement. For example, a macro #define OR else { can become a part of 
a valid statement after all substitutions, but it is not a valid statement alone. When macros mix and the 
statement limits are not well defined, understanding such code is hard.

Some tasks can be close to impossible to solve because of the preprocessor. It limits the amount of 
intelligence that can be put into the programming environment or static analysis tools. Let’s explore several 
pitfalls:

	 1.	 How clever should the static code analyzer be to understand what foo returns (see 
Listing 10-34)?

Listing 10-34.  ifdef_pitfall_sig.c

#ifdef SOMEFLAG
int foo() {
#else
    void  foo()  {
#endif
/* ... */
}

	 2.	 You have to find all occurrences of the min macro, which is defined as

#define min(x,y) ((x) < (y) ? (x) : (y)).

As you have seen in the previous example, to parse the program you have to first 
perform preprocessing passes, otherwise the tool might not even understand 
the functions boundaries. Once you perform preprocessing, all min macros are 
substituted and thus become untraceable and indistinguishable from such lines as

int z = ((10) < (y) ? (5) : (3)).

	 3.	 Static analysis (and even your own program understanding) will suffer because 
of macro usage. Syntactically, macro instantiations with parameters are 
indistinguishable from function calls. However, while function arguments are 
evaluated before a function call is performed, macro arguments are substituted 
and then the resulting lines of code are executed.

For example, take the same macro #define min(x,y) ((x) < (y) ? (x) : (y)). 
The instantiation with arguments a and b-- will look like: ((a) < (b--) ? (a) : 
(b--)). As you see, if a >= b, then the variable b will be decremented twice. If min 
was a function, b-- would have been executed only once.
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10.5 � Example: Sum of a Dynamic Array
10.5.1 � Sneak Peek into Dynamic Memory Allocation
In order to complete the next assignment, you have to learn to use the malloc and free functions. We will 
discuss them in greater detail later, but for now, we will do a quick introduction.

The local variables as well as the global ones allow you to allocate a fixed amount of bytes. However, 
when the allocated memory size depends on input, you can either allocate as much memory as you think 
will suffice in all cases or use malloc function, which allocates as much memory as you ask it to.

void* malloc(size_t sz) returns the start of an allocated memory buffer of size sz (in bytes) or NULL 
in case of failure. This buffer holds random values on start. As it returns void*, this pointer can be assigned 
to a pointer of any other type.

All these allocated regions of memory should be freed when they are no longer used by calling free 
on them.

In order to use these two functions, you have to include malloc.h. Listing 10-35 shows a minimal 
example of malloc and free usage.

Listing 10-35.  simple_malloc.c

#include <malloc.h>

int main( void ) {
    int* array;

    /* malloc returns the allocated memory starting address
     * Notice that its argument is the byte size, elements count multiplied
     * by element size */
array = malloc( 10 * sizeof( int ));

    /* actions on array are performed here */

    free( array ); /* now the related memory region is deallocated */
    return 0;
}

10.5.2 � Example
Listing 10-36 shows the example. It contains three functions of interest:

•	 array_read to read an array from stdin. The memory allocation happens here.

Notice the usage of scanf function to read from stdin. Do not forget that it accepts not the variable 
values but their addresses, so it could perform an actual writing into them.

•	 array_print to print a given array to stdout.

•	 array_sum to sum all elements in an array.

Notice that the array allocated somewhere using malloc persists until the moment free is called on its 
starting address. Freeing an already freed array is an error.
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Listing 10-36.  sum_malloc.c

#include <stdio.h>

#include <malloc.h>

int* array_read( size_t* out_count ) {
    int* array;
    size_t i;
    size_t cnt;
    scanf( "%zu", &cnt );
    array = malloc( cnt * sizeof( int ) );

    for( i = 0; i < cnt; i++ )
        scanf( "%d", & array[i] );

    *out_count = cnt;
    return array;
}

void array_print( int const* array, size_t count ) {
    size_t i;

    for( i = 0; i < count; i++ )
        printf( "%d  ", array[i] );
    puts("");
}

int array_sum( int const* array, size_t count ) {
    size_t i;
    int sum = 0;
    for( i = 0; i < count; i++ )
        sum = sum + array[i];
    return sum;
}

int main( void ) {
    int* array;
    size_t count;

    array = array_read( &count );
    array_print( array, count );
    printf( "Sum is: %d\n", array_sum( array, count ) );
    free( array );
    return 0;
}
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10.6 � Assignment: Linked List
10.6.1 � Assignment
The program accepts an arbitrary number of integers through stdin. What you have to do is

	 1.	 Save them all in a linked list in reverse order.

	 2.	 Write a function to compute the sum of elements in a linked list.

	 3.	 Use this function to compute the sum of elements in the saved list.

	 4.	 Write a function to output the n-th element of the list. If the list is too  
short, signal about it.

	 5.	 Free the memory allocated for the linked list.

You need to learn to use

•	 Structural types to encode the linked list itself.

•	 The EOF constant. Read the section “Return value” of the man scanf.

You can be sure that

•	 The input does not contain anything but integers separated by whitespaces.

•	 All input numbers can be contained into int variables.

Following is the recommended list of functions to implement:

•	 list_create – accepts a number, returns a pointer to the new linked list node.

•	 list_add_front – accepts a number and a pointer to a pointer to the linked list. 
Prepends the new node with a number to the list.

For example: a list (1,2,3), a number 5, and the new list is (5,1,2,3).

•	 list_add_back, adds an element to the end of the list. The signature is the same as 
list_add_front.

•	 list_get gets an element by index, or returns 0 if the index is outside the list bounds.

•	 list_free frees the memory allocated to all elements of list.

•	 list_length accepts a list and computes its length.

•	 list_node_at accepts a list and an index, returns a pointer to struct list, 
corresponding to the node at this index. If the index is too big, returns NULL.

•	 list_sum accepts a list, returns the sum of elements.

These are some additional requirements:

•	 All pieces of logic that are used more than once (or those which can be conceptually 
isolated) should be abstracted into functions and reused.

•	 The exception to the previous requirement is when the performance drop is becoming 
crucial because code reusage is changing the algorithm in a radically ineffective way. 
For example, you can use the function list_at to get the n-th element of a list in a 
loop to calculate the sum of all elements. However, the former needs to pass through 
the whole list to get to the element. As you increase n, you will pass the same elements 
again and again.

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec22
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In fact, for a list of length N, we can calculate the number of times elements will be addressed to 
compute a sum.

1 2 3
1

2
+ + + + =

+( )
... N

N N

We start with a sum equal to 0. Then we add the first element, for that we need to address it alone (1). 
Then we add the second element, addressing the first and the second (2). Then we add the third element, 
addressing the first, the second, and the third as we look through the list from its beginning. In the end what 
we get is something like O(N2) for those familiar with the O-notation. Essentially it means that by increasing 
the list size by 1, the time to sum such a list will have N added to it.

In such case it is indeed wiser to just pass through the list, adding a current element to the accumulator.

•	 Writing small functions is very good most of the time.

•	 Consider writing separate functions to: add an element to the front, add to the back, 
create a new linked list node.

•	 Do not forget to extensively use const, especially in functions accepting pointers as 
arguments!

10.7 � The Static Keyword
In C, the keyword static has several meanings depending on context.

	 1.	 Applying static to global variables or functions we make them available only in 
the current module (.c file).

To illustrate it, we are going to compile a simple program shown in Listing 10-37, and launch nm to look 
into the symbol table. Remember, that nm marks global symbols with capital letters.

Listing 10-37.  static_example.c

int global_int;
static int module_int;

static int module_function() {
    static  int  static_local_var;
    int  local_var;
    return 0;
}
int main( int argc, char** argv ) {
    return 0;
}

What we see is that all symbol names are marked global except for those marked static in C. In 
assembly level it means that most labels are marked global, and to prevent it we have to be explicit and use 
the static keyword.

>  gcc  -c  --ansi  --pedantic  -o  static_example.o  static_example.c
>   nm   static_example.o
0000000000000004  C  global_int
000000000000000b T main
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0000000000000000 t module_function
0000000000000000  b  module_int
0000000000000004  b  static_local_var.1464

	 2.	 By applying static to the local variable we make it global-like, but no other 
function can access it directly. In other words, it persists between function calls 
after being initialized once. Next time the same function is called the value of a 
local static variable will be the same as when this function terminated last time.

Listing 10-38 shows an example.

Listing 10-38.  static_loc_var_example.c

int demo (void)
{
    static int a = 42;
    printf("%d\n", a++);
}

...

demo();  //outputs  42
demo();  //outputs  43
demo();  //outputs  44

10.8 � Linkage
The concept of linkage is defined in the C standard and systematizes what we have studied in this chapter 
so far. According to it, “an identifier declared in different scopes or in the same scope more than once can be 
made to refer to the same object or function by a process called linkage” [7].

So, each identifier (variable or a function name) has an attribute called linkage. There are three types 
of linkage:

•	 No linkage, which corresponds to local (to a block) variables.

•	 External linkage, which makes an identifier available to all modules that might want to 
touch it. This is the case for global variables and any functions.

–– All instances of a particular name with external linkage refer to the same object in 
the program.

–– All objects with external linkage must have one and only one definition. However, 
the number of declarations in different files is not limited.

•	 Internal linkage, which restricts the visibility of the identifier to the .c file where it was 
defined.

It’s easy for us to map the kinds of language entities we know to the linkage types:

•	 Regular functions and global variables—external linkage.

•	 Static functions and global variables—internal linkage.

•	 Local variables (static or not)—internal linkage.

While being important to grasp in order to read the standard freely, this concept is rarely encountered 
in everyday programming activities.

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par8
http://dx.doi.org/10.1007/978-1-4842-2403-8_8#Sec2
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10.9 � Summary
In this chapter we learned how to split code into separate files. We have reviewed the concepts of header files 
and studied include guards and learned to isolate functions and variables inside a file. We have also seen what 
the symbol tables look like for the basic C programs and the effects the keyword static produces on object 
files. We have completed an assignment and implemented linked lists (one of the most fundamental data 
structures). In the next chapter we are going to study the memory from the C perspective in greater details.

■■ Question 190  What is the difference between a declaration and a definition?

■■ Question 191  What is a forward declaration?

■■ Question 192  When are function declarations needed?

■■ Question 193  When are structure declarations needed?

■■ Question 194 H ow can the functions defined in other files be called?

■■ Question 195  What effect does a function declaration make on the symbol table?

■■ Question 196 H ow do we access data defined in other files?

■■ Question 197  What is the concept of header files? What are they typically used for?

■■ Question 198  Which parts does the standard C library consist of?

■■ Question 199 H ow does the program accept command-line arguments?

■■ Question 200  Write a program in assembly that will display all command-line arguments, each on a 
separate line.

■■ Question 201 H ow can we use the functions from the standard C library?

■■ Question 202 D escribe the machinery that allows the programmer to use external functions by including 
relevant headers.

■■ Question 203 R ead about ld-linux.

■■ Question 204  What are the main directives of the C preprocessor?

■■ Question 205  What is the include guard used for and how do we write it?

■■ Question 206  What is the effect of static global variables and functions on the symbol table?

■■ Question 207  What are static local variables?

■■ Question 208  Where are static local variables created?

■■ Question 209  What is linkage? Which types of linkage exist?
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CHAPTER 11

Memory

Memory is a core part of the model of computation used in C. It stores all types of variables as well as 
functions. This chapter will study the C memory model and related language features closely.

11.1 � Pointers Revisited

■■ B. Kernighan and D. Ritchie on pointers  “Pointers have been lumped with the goto statement as 
a marvelous way to create impossible-to-understand programs. This is certainly true when they are used 
carelessly, and it is easy to create pointers that point somewhere unexpected. With discipline, however, pointers 
can also be used to achieve clarity and simplicity.” [18]

11.1.1 � Why Do We Need Pointers?
As the C language has a von Neumann model of computations, the program execution is essentially a 
sequence of data manipulation commands. The data resides in addressable memory, and the addressability 
of data is the propriety that allows for a more refined and effective data manipulation. Many higher-level 
languages lack this property because direct address manipulations are forbidden.

However, that advantage comes at a price: it becomes easier to produce subtle and usually irrecoverable 
errors in the code.

The necessity of storing and manipulating addresses is why we need pointers. Performing a typical case 
study for Listing 11-1, we observe, that in terms of the abstract C machine:

•   a - is the name of data cells of abstract machine, containing the number 4 of type int.

•   p_a - is the name of data cells of abstract machine, which contain the address of a 
variable of type int.

•   p_a stores the address of a.

•   *p_a is the same as a;

•   &a equals p_a, but these two entities are not the same. While p_a is the name for some 
consecutive data cells, &a is the contents of p_a, a bit string representing an address.

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par19
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Listing 11-1.  pointers_ex.c

int a = 4;
int* p_a = &a;
*p_a = 10; /* a = 10*/

■■ Note   You can only apply & once, because for any x the expression &x will already not be an lvalue.

11.1.2 � Pointer Arithmetic
Following are the only actions you can perform on pointers:

•   Add or subtract integers (also negatives);

So, we have pointers, and they contain addresses. For a computer, there is no 
difference between an address of an integer and an address of a string. In assembly 
language, as we have seen, all addresses are of the same type. Why do we need to 
keep the type information about what the pointer points to? What is the difference 
between int* and char*?

The size of the element we are pointing at matters. By adding or subtracting an integer 
value X from the pointer of type T *, we, in fact, change it by X * sizeof( T ).  
Let’s see an example shown in Listing 11-2.

Listing 11-2.  ptr_change_ex.c

int a = 42;             /* Assume this integer's address is 1000 */
int* p_a = &a;
p_a += 42;              /* 1000 + 42 * sizeof( int ) */
p_a = p_a + 1;          /* 1168 + 1 * sizeof( int ) */
p_a --;                 /* 1172 - 1 * sizeof( int ) */

•   Take its own address. If the pointer is a variable, it is located somewhere in memory 
too. So, it has an address on its own! Use the & operator to take it.

•   Dereference, which is a basic operation that we have also seen. We are taking a  
data entry from memory starting at the address, stored in the given pointer.  
The * operator does it. Listing 11-3 shows an example.

Listing 11-3.  deref_ex.c

int catsAreCool = 0;
int* ptr = &catsAreCool;
*ptr = 1; /* catsAreCool = 1 */

•   Compare (with <, >, == and alike).

We can compare two pointers. The result is only defined if they both point to the 
same memory block (e.g., at different elements of the same array). Otherwise the 
result is random, undefined by the language standard.

http://dx.doi.org/10.1007/978-1-4842-2403-8_8#Sec12
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•   Subtract another pointer.

If and only if we have two pointers, which are certainly pointing at the contiguous 
memory block, then by subtracting a smaller valued one from a greater valued one 
we get the amount of elements between them. For pointers x and y, we are talking 
about a range of elements from *x inclusive to *y exclusive (so x − x = 0).

Starting from C99, the type of the expression ptr2 - ptr1 is a special type 
ptrdiff_t. It is a signed type of the same size as size_t.

Note, that the result is different from the amount of bytes between *x and *y! The 
naively calculated difference would be the amount of bytes, while the result of 
subtraction is the amount of bytes divided by an element size. Listing 11-4 shows 
an example.

Listing 11-4.  ptr_diff_calc.c

int arr[128];
int* ptr1 = &arr[50]; /* `array` address + 50 int sizes */
int* ptr2 = &arr[90]; /* `array` address + 90 int sizes */
ptrdiff_t d = ptr2 - ptr1; /* exactly 40 */

In all other cases (subtracting greater pointer from lesser one, subtracting pointers pointing into 
different areas, etc.) the result can be absolutely random.

Addition, multiplication, and division of two pointers are syntactically incorrect; thus, they trigger an 
immediate compilation error.

11.1.3 � The void* Type
Apart from regular pointer types, a type void* exists, which is kind of special. It forgets all information about 
the entity it points to, apart from its address. The pointer arithmetic is forbidden for void* pointers, because 
the size of the entity we are pointing at is unknown and thus cannot be added or subtracted.

Before you can work with such a pointer, you should cast it to another type explicitly. Alternatively, C 
allows you to assign this pointer to any other pointer (and assign to void* a pointer of any type) without any 
warnings. In other words, while assigning short* to long is a clear error, assignments treats void* as equal to 
any pointer type.

Listing 11-5 shows an example.

Listing 11-5.  void_ptr_ex.c

void* a = (void*)4;
short* b = (short*) a;
b ++; /* correct, b = 6 */
b = a; /* correct */
a = b; /* correct */

11.1.4 � NULL
C defines a special preprocessor constant NULL equal to 0. It means a pointer “pointing to nowhere,” an 
invalid pointer. By writing this value to a pointer, we can be sure that it is not yet initialized to a valid address. 
Otherwise, we would not be able to distinguish initialized pointers.

In most architectures people reserve a special value for invalid pointers, assuming no program will 
actually hold a useful value by this address.
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As we already know, 0 in pointer context does not always mean a binary number with all bits cleared. 
Pointer-0 can be equal to 0, but this is not enforced by standard. The history knows architectures where the 
null-pointer was chosen in a rather exotic way. For example, some Prime 50 series computers used segment 
07777, offset 0 for the null pointer; some Honeywell-Bull mainframes use the bit pattern 06000 for a kind of 
null pointers.

Listing 11-6 shows the correct ways to check whether the pointer is NULL or not.

Listing 11-6.  null_check.c

if( x ) { ... }
if( NULL  != x ) { ... }
if( 0 != x ) { ... }

if( x != NULL  ) { ... }
if( x != 0 ) { ... }

11.1.5 � A Word on ptrdiff_t
Take a look at the example shown in Listing 11-7. Can you spot a bug?

Listing 11-7.  ptrdiff_bug.c

int* max;
int* cur;

int f( unsigned int e )
{
    if ( max - cur > e )
        return 1;
    else
        return 0;
}

What happens if cur > max? It implies, that the difference between cur and max is negative. Its type is 
ptrdiff_t. Comparing it with a value of type unsigned int is an interesting case to study.

ptrdiff_t has as many bits as the address on the target architecture. Let’s study two cases:

•   32-bit system, where sizeof( unsigned int ) ==  4 and sizeof( ptrdiff_t ) ==  4. 
In this case, the types in our comparison will pass through these conversions.

int < unsigned int
(unsigned  int)int <  unsigned  int

The compiler will issue a warning, because the cast from int to unsigned int is 
not always preserving values. You cannot freely map values in range −231 . . .  
231 − 1 to the range 0 . . . 232 − 1.

For example, in case the left-hand side was equal to -1, after the conversion to 
unsigned int type it will become the maximal value representable in unsigned 
int type (232 − 1). Apparently, the result of this comparison will be almost always 
equal to 0, which is wrong, because -1 is smaller than any unsigned integer.
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•   64-bit system, where sizeof( unsigned int ) ==  4 and sizeof( ptrdiff_t ) ==  8. 
In this situation, ptrdiff_t will be probably aliased to the signed long.

signed long < unsigned int
long < (signed long)unsigned int

Here the right-hand side is going to be cast. This cast preserves information, so the 
compiler will issue no warning.

As you see, the behavior of this code depends on target architecture, which is a big no. To avoid it, 
ptrdiff_t should always go in par with size_t, because only then their sizes are guaranteed to be the same.

11.1.6 � Function Pointers
The von Neumann model of computations implies that the code and data reside in the same addressable 
memory. So, functions have addresses on their own. We can take the starting addresses of functions, pass 
them to other functions, call functions by pointers, store them in variables or arrays, etc. Why, however, 
would we do all that? It allows us for better abstractions. We can write a function that launches another 
function and measures its working time, or transforms an array by applying the function to all its elements. 
This technique allows the code to be reused on a whole new level.

The function pointer stores information about the function type just as the data pointers do. The 
function type includes the argument types and the return value type. A syntax that mimics the function 
declaration is used to declare a function pointer:

<return_value_type> (*name) (arg1, arg2, ...);

Listing 11-8 shows an example.

Listing 11-8.  fun_ptr_example.c

double doubler (int a) { return a * 2.5; }
...
double (*fptr)( int );
double a;
fptr = &doubler;
a = fptr(10); /* a = 25.0 */

We have described the pointer fptr of type “a pointer to a function, that accepts int and returns 
double.” Then we assigned the doubler function address to it and performed a call by this pointer with an 
argument 10, storing the returned value in the variable a.

typedef works, and is sometimes a great help. The previous example can be rewritten as shown in 
Listing 11-9.

Listing 11-9.  fun_ptr_example_typedef.c

double doubler (int a) { return a * 2.5; }
typedef double (megapointer_type)( int );

...
double a;
megapointer_type*  variable  =  &doubler;
a  =  variable(10);  /*  a  =  25.0  */
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Now by means of typedef we have created a function type that cannot be instantiated directly. 
However, we can create variables of the said pointer type. We cannot create variables of the function types 
directly, so we add an asterisk.

First-class objects in programming languages are the entities that can be passed as a parameter, 
returned from functions, or assigned to a variable.

As we see, functions are not first-class objects in C. Sometimes they are called “second-class objects” 
because the pointers to them are first-class objects.

11.2 � Memory Model
The memory of the C abstract machine, while being uniform, has several regions. Pragmatically, each such 
region is mapped to a different memory region, consisting of consecutive pages.

Figure 11-1 shows this model.

Figure 11-1.  C memory model
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The regions that almost every C program has are

•   Code, which holds machine instructions.

•   Data, which stores regular global variables.

•   Constant data, which stores all immutable data, such as string literals and global 
variables, marked const. The operating system is usually protecting the corresponding 
pages through the virtual memory mechanism, by allowing or not allowing the reads/
writes.

•   Heap, which stores dynamically allocated data (by means of malloc, as we will show in 
section 11.2.1).

•   Stack, which stores all local variables, return addresses, and other utility information. 
If the program is executed in multiple threads, each one gets its own stack.

11.2.1 � Memory Allocation
Before you can use memory cells, you have to allocate memory. There are three types of memory allocation in C.

•   Automatic memory allocation occurs when we are entering a routine. When we 
enter the function, a part of the stack is dedicated to its local variables. When we leave 
the function, all information about these variables is lost. The lifetime of this data 
is limited by the lifetime of a function instance. Once the function terminates, the 
memory becomes unavailable.

•   In assembly level, we have already done it in the very first assignment. The functions 
that performed integer printing allocated a buffer on the stack to store the resulting 
string. It was achieved by simply decreasing rsp by the buffer size.

■■ Note  Never return pointers to local variables from functions! They point to the data that no longer exists.

•   Static memory allocation happens during compilation in the data or constant data 
region. These variables exist until the program terminates. By default, the variables are 
initialized with zeros, and thus end up in .bss section. The constant data is allocated in 
.rodata; the mutable data is allocated in .data.

•   Dynamic memory allocation is needed when we do not know the size of the memory 
we need to allocate until some external events happen. This type of allocation relies 
on an implementation in the standard C library. It means that when the C standard 
library is not available (e.g., bare metal programming), this type of memory allocation 
is also unavailable.

This type of memory allocation uses the heap.

A part of the standard library keeps track of the reserved and available memory 
addresses. This part’s interface consists of the following functions, whose 
prototypes are located in malloc.h header file.

–– void* malloc(size_t size) allocates size bytes in heap and returns an address of 
the first one. Returns NULL if it fails.

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec16
http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec17
http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec17
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This memory is not initialized and thus holds random values.

–– void* calloc(size_t size, size_t count) allocates size * count bytes  
in heap and initializes them to zero. Returns the address of the first one or NULL  
if it fails.

–– void free(void* p) frees memory, allocated in heap.

–– void* realloc(void* ptr, size_t newsize) changes the size of a memory block 
starting at ptr to newsize bytes. The added memory will not be initialized. The con-
tents are copied into the new block, and the old block is freed. Returns a pointer to 
the new memory block or NULL on failure.

When we no longer need a memory block we have to free it, otherwise it will stay in a “reserved” state 
forever, never to be reused. This situation is called memory leak. When you are using a heavy piece of 
software, which contains bugs related to memory management, its memory footprint can grow significantly 
over time without the program actually needing that much memory.

Usually, the operating system provides the program with a number of pages in advance. These pages 
are used until the program needs more dynamic memory to allocate. When it happens, the malloc call can 
internally trigger a system call (such as mmap) to request more pages.

As the void* pointer type can be assigned to any pointer type, the following code will issue no warning 
(see Listing 11-10) when compiling it as a C code.

Listing 11-10.  malloc_no_cast.c

#include <malloc.h>

...
int* a =  malloc(200);
a[4]  =  2;

However, in C++, a popular language that was originally derived from C (and which tries to maintain 
backward compatibility), the void* pointer should be explicitly cast to the type of the pointer you are 
assigning it to. Listing 11-11 shows the difference.

Listing 11-11.  malloc_cast_explicit.c

int* arr = (int*)malloc( sizeof(int) * 42 );

■■ Why some programmers recommend omitting the cast   The older C standards had an “implicit int” rule 
about function declarations. Lacking a valid function declaration, its first usage was considered a declaration. If 
a name that has not been previously declared occurs in an expression and is followed by a left parenthesis, it 
declares a function name. This function is also assumed to return an int value. The compiler can even create a 
stub function returning 0 for it (if it does not find an implementation).

In case you do not include a valid header file, containing a malloc declaration, this line will trigger an error, 
because a pointer is assigned an integer value, returned by malloc:

int* x = malloc( 40 );
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However, the explicit cast will hide this error, because in C we can cast whatever we want to whatever type we want.

int* x  =  (int*)malloc( 40  );

The modern versions of the C standard (starting at C99) drop this rule and the declarations become mandatory, 
so this reasoning becomes invalid.

A benefit in explicit casting is a better compatibility with C++.

11.3 � Arrays and Pointers
Arrays in C are particular, because any bunch of values residing consecutively in memory can be 
thought of as an array.

An abstract machine considers that the array name is the address of the first element, thus, a pointer 
value!

The i-th element of an array can be obtained by one of the following equivalent constructions:

a[i] = 2;
*(a+i)  =  2

The address of the i-th element can be obtained by one of these following constructions:

&a[i];
a+i;

As we see, every operation with pointers can be rewritten using the array syntax! And it even goes 
further. In fact, the braces syntax a[i] gets immediately translated into a + i, which is the same thing as 
i+a. Because of this, exotic constructions such as 4[a] are also possible (because 4+a is legitimate).

Arrays can be initialized with zeros using the following syntax:

int a[10] = {0};

Arrays have a fixed size. However, there are two notable exceptions to this rule, which are valid in C99 
and newer versions.

•   Stack allocated arrays can be of a size determined in runtime. These are called 
variable length arrays. It is evident that these cannot be marked static because the 
latter implies allocation in .data section.

•   Starting from C99, you can add a flexible array member as the last member of a 
structure, as shown in Listing 11-12.

Listing 11-12.  flex_array_def.c

struct char_array {
    size_t length; char  data[];
};

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec17


Chapter 11 ■ Memory

210

In this case, the sizeof operator, applied to a structure instance, will return the 
structure size without the array. The array will refer to the memory immediately 
following the structure instance. So, in the example given in Listing 11-12, 
sizeof(struct char_array) == sizeof(size_t). Assuming it’s equal to 8, 
data[0] refers to the 8-th byte (counting from 0) from the structure instance 
starting address.

Listing 11-13 shows an example.

Listing 11-13.  flex_array.c

#include <string.h>
#include <malloc.h>

struct int_array {
    size_t size;
    int  array[];
};

struct int_array* array_create( size_t size ) {
    struct int_array* array = malloc(
              sizeof( *array )
            + sizeof( int ) * size );
    array-> size = size;
    memset( array->array, 0, size );
    return array;
}

11.3.1 � Syntax Details
C allows us to define several variables in a row.

int a,b = 4, c;

To declare several pointers, however, you have to add an asterisk before every pointer.
Listing 11-14 shows an example: a and b are pointers, but the type of c is int.

Listing 11-14.  ptr_mult_decl.c

int* a, *b, c;

This rule can be worked around by creating a type alias for int* using typedef, hiding an asterisk.
Defining multiple variables in a row is a generally discouraged practice as in most cases it makes the 

code harder to read.
It is possible to create rather complex type definitions by mixing function pointers, arrays, pointers, etc. 

You can use the following algorithm to decipher them:

	 1.	 Find an identifier, and start from it.

	 2.	 Go to the right until the first closing parenthesis. Find its pair on the left. Interpret 
an expression between these parentheses.

	 3.	 Go “up” one level, relative to the expression we have parsed during the previous 
step. Find outer parentheses and repeat step 2.
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We will illustrate this algorithm in an example shown in Listing 11-15. Table 11-1 describes the 
parsing process.

Listing 11-15.  complex_decl_1.c

int* (* (*fp) (int) ) [10];

Table 11-1.  Parsing Complex Definition

Expression Interpretation

fp First identifier.

(*fp) Is a pointer.

(* (*fp) (int)) A function accepting int and returning a pointer…

int* (* (*fp) (int)) [10] … to an array of ten pointers to int

As you see, the process of deciphering complex declarations is not a breeze. It can be made simpler by 
using typedefs for parts of the declarations.

11.4 � String Literals
Any sequence of char elements ended by a null-terminator can be viewed as a string in C. Here, however,  
we want to speak about the immediately encoded strings, so, string literals. Most string literals are stored in  
.rodata if they are big enough.

Listing 11-16 shows an example of a string literal.

Listing 11-16.  str_lit_example.c

char* str = "when the music is over, turn out the lights";

str is just a pointer to the string’s first character.
According to the language standard, string literals (or pointers to strings created in such a way) cannot 

be changed.1 Listing 11-17 shows an example.

Listing 11-17.  string_literal_mut.c

char* str = "hello world abcdefghijkl";
/* the following line produces a runtime error */
str[15] = '\'';

In C++, the string literals have the type char const* by default, which reflects their immutable nature. 
Consider using variables of type char const* whenever you can when the strings you are dealing with are 
not intended to be mutated.

The constructions shown in Listing 11-18, are also correct, albeit you are most probably never going to 
use the second one.

1To be precise, the result of such an operation is not well defined.

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec17
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Listing 11-18.  str_lit_ptr_ex.c

char will_be_o = "hello, world!"[4];  /* is 'o' */
char const* tail = "abcde"+3 ; /* is "de", skipping 3 symbols */

When manipulating strings, there are several common scenarios based on where the string is allocated.

	 1.	 We can create a string among global variables. It will be mutable, and under no 
circumstances will it be doubled in constant data region. Listing 11-19 shows an example.

Listing 11-19.  str_glob.c

char str[] = "something_global";
void f (void) { ... }

In other words, it is just a global array initialized in place with character codes.

	 2.	 We can create a string in a stack, in a local variable. Listing 11-20  
shows an example.

Listing 11-20.  str_loc.c

void func(void) {
    char str[] = "something_local";
}

The string "something_local" itself, however, should be kept somewhere because 
the local variables are initialized every time the function is launched, and we have 
to know the values with which they should be initialized.

In case of relatively short strings, the compiler will try to inline them into the 
instructions stream. Apparently, for smaller strings, it is wiser to just split them 
into 8-byte chunks and perform mov instructions with each chunk as an immediate 
operand.

The long strings, however, are better kept in .rodata. The statement, shown in 
Listing 11-20, will allocate enough bytes in stack and then perform a copy from 
read-only data to this local stack buffer.

	 3.	 We can allocate a string dynamically via malloc. The header file string.h  
contains some very useful functions such as memcpy, used to perform fast copying. 

Listing 11-21 shows an example.

Listing 11-21.  str_malloc.c

#include <malloc.h>
#include <string.h>

int main( int argc, char** argv )
{
    char* str = (char*)malloc( 25 );
    strcpy( str, "wow, such a nice string!" );

    free( str );
}

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec17
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■■ Question 210  Why did we allocate 25 bytes for a 24-character string?

■■ Question 211 R ead man for the functions: memcpy, memset, strcpy.

11.4.1 � String Interning
“String interning” is a term more accustomed to Java or C# programmers. However, in reality, a similar 
thing is happening in C (but only in compile time). The compiler tries to avoid duplicating strings in the 
read-only data region. It means that usually the equal addresses will be assigned to all three variables in 
the code shown in Listing 11-22.

Listing 11-22.  str_intern.c

char* best_guitar_solo  = "Firth of fifth";
char* good_genesis_song = "Firth of fifth";
char* best_1973_live = "Firth of fifth";

String interning would be impossible if string literals were not protected from rewriting. Otherwise, by 
changing such strings in one place of a program we are introducing an unpredictable change in data used in 
another place, as both share the same copy of string.

11.5 � Data Models
We have spoken about the sizes of different integer types. The language standard is enforcing a set of rules 
like “the size of long is no less than the size of short” or “the size of signed short should be such that it 
could contain values in range −216 . . . 216 – 1.” The last rule, however, does not provide us with a fixed size, 
because short could have been 8 bytes wide and still satisfy this constraint. So, these requirements are far 
from setting the exact sizes in stone. In order to systematize different sets of sizes, the conventions called 
data model were created. Each of them defines sizes for basic types. Figure 11-2 shows some remarkable 
data models that could be of interest to us.

Figure 11-2.  Data models
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As we have chosen the GNU/Linux 64-bit system for studying purposes, it our data model is LP64. When 
you develop for 64-bit Windows system, the size of long will differ.

Everyone wants to write portable code that can be reused across different platforms, and fortunately 
there is a standard-conforming way to never run into data model changes.

Before C99, it was a common practice to make a set of type aliases of form int32 or uint64 and use 
them exclusively across the program in lieu of ever-changing ints or longs. Should the target architecture 
change, the type aliases were easy to fix. However, it created a chaos because everyone created their own set 
of types.

C99 introduced platform independent types. To use them, you should just include a header stdint.h. 
It gives access to the different integer types of fixed size. Each of them has a form:

•   u, if the type is unsigned;

•   int;

•   Size in bits: 8, 16, 32 or 64; and

•   _t.

For example, uint8_t, int64_t, int16_t.

The printf function (and similar format input/output) functions have been given 
a similar treatment by introducing special macros to select the correct format 
specifiers. These are defined in the file inttypes.h.

In the common cases, you want to read or write integer numbers or pointers. Then 
the macro name will be formed as follows:

•   PRI for output (printf, fprintf etc.) or SCN for input (scanf, fscanf etc.).

•   Format specifier:

–– d for decimal formatting.

–– x for hexadecimal formatting.

–– o for octal formatting.

–– u for unsigned int formatting.

–– i for integer formatting.

•   Additional information includes one of the following:

–– N for N bit integers.

–– PTR for pointers.

–– MAX for maximum supported bit size.

–– FAST is implementation defined.

We have to use the fact that several string literals, delimited by spaces, are concatenated automatically. 
The macro will produce a string containing a correct format specifier, which will be concatenated with 
whatever is around it.

Listing 11-23 shows an example.
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Listing 11-23.  inttypes.c

#include <inttypes.h>
#include <stdio.h>

void f( void ) {
    int64_t i64 = -10;
    uint64_t u64 = 100;
    printf( "Signed 64-bit integer:   %" PRIi64 "\n", i64 );
    printf( "Unsigned 64-bit integer: %" PRIu64 "\n", u64 );
}

Refer to section 7.8.1 of [7] for a full list of such macros.

11.6 � Data Streams
The C standard library provides us with a way to work with files in a platform-independent way. It abstracts 
files as data streams, from which we can read and to which we can write.

We have seen how the files are handled in Linux on the system calls level: the open system call opens 
a file and returns its descriptor, an integer number, the write and read system calls are used to perform 
writing and reading, respectively, and the close system call ensures that the file is properly closed. As 
the C language was created in par with the Unix operating system, they bear the same approach to file 
interactions. The library counterparts of these functions are called fopen, fwrite, fread, and fclose. On 
Unix-like systems, they act like an adapter for system calls, providing similar functionality, except that they 
also work on other platform in the same way. The main differences are as follows:

	 1.	 In place of file descriptors, we use a special type FILE, which stores all information 
about a certain stream. Its implementation is hidden and you should never change 
its internal state manually. So, instead of working with numeric file descriptors 
(which is platform-dependent), we use FILE as a black box.

The FILE instance is allocated in heap internally by the C library itself, so at 
anytime we will work with a pointer to it, not with the instance itself directly.

	 2.	 While file operations in Unix are more or less uniform, there are two types of data 
streams in C.

•	 Binary streams consist of raw bytes that are handled “as is.”

•	 Text streams include symbols grouped into lines; each line is ended by an end-of-
line character (implementation dependent).

Text streams are limited in a number of ways on some systems.

•	 The line length might be limited.

•	 They might only be able to work with printing characters,  
newlines, spaces, and tabs.

•	 Spaces before the newline may disappear.

On some operating systems, text and binary streams use different file formats, and 
thus to work with a text file in a way compatible between all its programs, the use of 
text streams is mandatory.

While GNU C library, usually associated with GCC, makes no difference between 
binary and text streams, on other platforms this is not the case, so distinguishing 
these is crucial.

http://dx.doi.org/10.1007/978-1-4842-2403-8_2#Sec4
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For example, I have seen a situation in which reading a large block from a picture file 
on Windows (the compiler was MSVC) ended prematurely because the picture was 
obviously binary, while the associated stream was created in text mode.

The standard library provides machinery to create and work with streams. Some functions it defines 
should only be used on text streams (like fscanf). The relevant header file is called stdio.h.

Let’s analyze the example shown in Listing 11-24.

Listing 11-24.  file_example.c

int smth[]={1,2,3,4,5};
FILE* f = fopen( "hello.img", "rwb" );

fread( smth, sizeof(int), 1, f);

/* This line is optional. By means of `fseek` function we can navigate the file */
fseek( f, 0, SEEK_SET );

fwrite(smth, 5 * sizeof( int ), 1, f);
fclose( f );

•   The instance of FILE is created via a call to fopen function. The latter accepts the path 
to file and a set of flags, squashed into a string.

The important flags of fopen are listed here.

–– b - �open file in a binary mode. That is what makes a real distinction between  
text and binary streams. By default, files are opened in text mode.

–– w - open a stream with a possibility to write into it.

–– r - open a stream with a possibility to read from it.

–– + - �if you write simply w, the file will be overwritten. When + is present,  
the writes will append data to the end of file.

If the file does not exist, it will be created.

The file hello.img is opened in binary mode for both reading and writing.  
The file contents will be overwritten.

•   After being created, the FILE holds a kind of a pointer to a position inside the file,  
a cursor of sorts. Reads and writes move this cursor further.

•   The fseek function is used to move cursor without performing reads or writes.  
It allows moving cursor relatively to either its current position or the file start.

•   fwrite and fread functions are used to write and read data from the opened FILE 
instance.

Taking fread, for example, it accepts the memory buffer to read from. The two integer parameters are 
the size of an individual block and the amount of blocks read. The returning value is the amount of blocks 
successfully read from the file. Every block’s read is atomic: either it is completely read, or not read at all.  
In this example, the block size equals sizeof(int), and the amount of blocks is one.

The fwrite usage is symmetrical.

•   fclose should be called when the work with file is complete.
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There exist a special constant EOF. When it is returned by a function that works with a file, it means that 
the end of file is reached.

Another constant BUFSIZ stores the buffer size that works best in the current environment for input and 
output operations.

Streams can use buffering. It means that they have an internal buffer that proxies all reads and writes. It 
allows for rarer system calls (which are expensive performance-wise due to context switching). Sometimes 
when the buffer is full the writing will actually trigger a write system call. A buffer can be manually flushed 
using fflush command. Any delayed writes will be executed and the buffer will be reset.

When the program starts, three FILE* instances are created and attached to the streams with descriptors 0, 
1, and 2. They can be referred to as stdin, stdout, and stderr. All three are usually using a buffer, but the stderr 
is automatically flushing the buffer after every writing. It is necessary to not delay or lose error messages.

■■ Note A gain, descriptors are integers, FILE instances are not. The int fileno( FILE* stream ) function 
is used to get the underlying descriptor for the file stream.

■■ Question 212 R ead man for functions: fread, fread, fwrite, fprintf, fscanf, fopen, fclose, fflush.

■■ Question 213  Do research and find out what will happen if the fflush function is applied to a bidirectional 
stream (opened for both reading and writing) when the last action on the stream before it was reading.

11.7 � Assignment: Higher-Order Functions and Lists
11.7.1 � Common Higher-Order Functions
In this assignment, we are going to implement several higher-order functions on linked lists, which should 
be familiar to those used to functional programming paradigm.

These functions are known under the names foreach, map, map_mut, and foldl.

•   foreach accepts a pointer to the list start and a function (which returns void and 
accepts an int). It launches the function on each element of the list.

•   map accepts a function f and a list. It returns a new list containing the results of the  
f applied to all elements of the source list. The source list is not affected.

For example, f (x) = x + 1 will map the list (1, 2, 3) into (2, 3, 4).

•   map_mut does the same but changes the source list.

•   foldl is a bit more complicated. It accepts:

–– The accumulator starting value.

–– A function f (x, a).

–– A list of elements.

It returns a value of the same type as the accumulator, computed in the following way:

	 1.	 We launch f on accumulator and the first element of the list. The result is the new 
accumulator value a′.

	 2.	 We launch f on a′ and the second element in list. The result is again the new 
accumulator value a′ ′.
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	 3.	 We repeat the process until the list is consumed. In the end the final accumulator 
value is the final result.

For example, let’s take f (x, a) = x * a. By launching foldl with the accumulator value 1 and this function 
we will compute the product of all elements in the list.

•   iterate accepts the initial value s, list length n, and function f. It then generates a list 
of length n as follows:

s f s f f s f f f s, , ,( ) ( )( ) ( )( )( )…





The functions described above are called higher-order functions, because they do accept other 
functions as arguments. Another example of such a function is the array sorting function qsort.

void qsort( void *base,
            size_t nmemb,
            size_t size,
            int (*compar)(const void *, const void *));

It accepts the array starting address base, elements count nmemb, size of individual elements size, and 
the comparator function compar. This function is the decision maker which tells which one of the given 
elements should be closer to the beginning of the array.

■■ Question 214 R ead man qsort.

11.7.2 � Assignment
The input contains an arbitrary number of integers.

	 1.	 Save these integers in a linked list.

	 2.	 Transfer all functions written in previous assignment into separate .h and c files. 
Do not forget to put an include guard!

	 3.	 Implement foreach; using it, output the initial list to stdout twice: the first time, 
separate elements with spaces, the second time output each element on the new line.

	 4.	 Implement map; using it, output the squares and the cubes of the numbers from list.

	 5.	 Implement foldl; using it, output the sum and the minimal and maximal element 
in the list.

	 6.	 Implement map_mut; using it, output the modules of the input numbers.

	 7.	 Implement iterate; using it, create and output the list of the powers of two (first 
10 values: 1, 2, 4, 8, …).

	 8.	 Implement a function bool save(struct list* lst, const char* filename);, 
which will write all elements of the list into a text file filename. It should return 
true in case the write is successful, false otherwise.

	 9.	 Implement a function bool load(struct list** lst, const char* filename);, 
which will read all integers from a text file filename and write the saved list into 
*lst. It should return true in case the write is successful, false otherwise.
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	 10.	 Save the list into a text file and load it back using the two functions above. Verify 
that the save and load are correct.

	 11.	 Implement a function bool serialize(struct list* lst, const char* 
filename);, which will write all elements of the list into a binary file filename. It 
should return true in case the write is successful, false otherwise.

	 12.	 Implement a function bool deserialize(struct list** lst, const char* 
filename);, which will read all integers from a binary file filename and write 
the saved list into *lst. It should return true in case the write is successful, false 
otherwise.

	 13.	 Serialize the list into a binary file and load it back using two functions above. Verify 
that the serialization and deserialization are correct.

	 14.	 Free all allocated memory.

You will have to learn to use

•   Function pointers.

•   limits.h and constants from it. For example, in order to find the minimal element in 
an array, you have to use foldl with the maximal possible int value as an accumulator 
and a function that returns a minimum of two elements.

•   The static keyword for functions that you only want to use in one module.

You are guaranteed, that

•   Input stream contains only integer numbers separated by whitespace characters.

•   All numbers from input can be contained as int.

It is probably wise to write a separate function to read a list from FILE.
The solution takes about 150 lines of code, not counting the functions, defined in the previous 

assignment.

■■ Question 215  In languages such as C#, code like the following is possible:

var count = 0;

mylist.Foreach(  x  =>  count  +=  1  );

Here we launch an anonymous function (i.e., a function which has no name, but whose address can be 
manipulated, for example, passed to other function) for each element of a list. The function is written as x => 
count += 1 and is the equivalent of

void no_name( int x ) { count += 1; }

The interesting thing about it is that this function is aware of some of the local variables of the caller and thus 
can modify them.

Can you rewrite the function forall so that it accepts a pointer to a “context” of sorts, which can hold an 
arbitrary number of variables addresses and then pass the context to the function called for each element?
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11.8 � Summary
In this chapter we have studied the memory model. We have gotten a better understanding of the type dimensions 
and the data models, studied pointer arithmetic, and learned to decipher complex type declarations. Additionally, 
we have seen how to use the standard library functions to perform the input and output. We have practiced it by 
implementing several higher-order functions and doing a little file input and output.

We will further deepen our understanding of memory layout in the next chapter, where we will 
elaborate the difference between three “facets” of a language (syntax, semantics, and pragmatics), study the 
notions of undefined and unspecified behavior, and show why the data alignment is important.

■■ Question 216  What arithmetic operations can you perform with pointers, and on what conditions?

■■ Question 217  What is the purpose of void*?

■■ Question 218  What is the purpose of NULL?

■■ Question 219  What is the difference between 0 in pointer context and 0 as an integer value?

■■ Question 220  What is ptrdiff_t and how is it used?

■■ Question 221  What is the difference between size_t and ptrdiff_t?

■■ Question 222  What are first-class objects?

■■ Question 223 A re functions first-class objects in C?

■■ Question 224  What data regions does the C abstract machine contain?

■■ Question 225  Is the constant data region usually write-protected by hardware?

■■ Question 226  What is the connection between pointers and arrays?

■■ Question 227  What is the dynamic memory allocation?

■■ Question 228  What is the sizeof operator? When is it computed?

■■ Question 229  When are the string literals stored in .rodata?

■■ Question 230  What is string interning?

■■ Question 231  Which data model are we using?

■■ Question 232  Which header contains platform-independent types?

■■ Question 233 H ow do we concatenate string literals in compile time?

■■ Question 234  What is the data stream?

■■ Question 235  Is there a difference between a data stream and a descriptor?

■■ Question 236 H ow do we get the descriptor from stream?

■■ Question 237 A re there any streams opened when the program starts?

■■ Question 238  What is the difference between binary and text streams?

■■ Question 239 H ow do we open a binary stream? A text stream?

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec17
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CHAPTER 12

Syntax, Semantics, and Pragmatics

In this chapter we are going to revise the very essence of what the programming language is. These 
foundations will allow us to better understand the language structure, the program behavior, and the details 
of translation that you should be aware of.

12.1 � What Is a Programming Language?
A programming language is a formal computer language designed to describe algorithms in a way 
understandable by a machine. Each program is a sequence of characters. But how do we tell the programs 
from all other strings? We need to define the language somehow.

The brute way is to say that the compiler itself is the language definition, since it parses programs 
and translates them into executable code. This approach is bad for a number of reasons. What do we do 
with compiler bugs? Are they really bugs, or do they affect the language definition? How do we write other 
compilers? Why should we mix the language definition and the implementation details?

Another way is to provide a cleaner and implementation-independent way of describing language. It is 
quite common to view three facets of a single language.

•	 The rules of statement constructions. Often the description of correctly structured 
programs is made using formal grammars. These rules form the language syntax.

•	 The effects of each language construction on the abstract machine. This is the 
language semantics.

•	 In any language there is also a third aspect, called pragmatics. It describes the 
influence of the real-world implementation on the program behavior.

–– In some situations, the language standard does not provide enough information 
about the program behavior. Then it is entirely up to compiler to decide how it will 
translate this program, so it is often assigning some specific behavior to such 
programs.

For example, in the call f(g(x), h(x)) the order of evaluation of g(x) and 
h(x) is not defined by standard. We can either compute g(x) and then h(x), or 
vice versa. But the compiler will pick a certain order and generate instructions 
that will perform calls in exactly this order.

–– Sometimes there are different ways to translate the language constructions into 
the target code. For example, do we want to prohibit the compiler from inlining 
certain functions, or do we stick with laissez-faire strategy?

In this chapter we are going to explore these three facets of languages and apply them to C.
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12.2 � Syntax and Formal Grammars
First of all, a language is a subset of all possible strings that we can construct from a certain alphabet.  
For example, a language of arithmetic expressions has an alphabet Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, −, ×, /, .},  
assuming only these four arithmetic operations are used and the dot separates an integer part. Not all 
combinations of these symbols form a valid string—for example, +++-+ is not a valid sentence of this 
language.

Formal grammars were first formalized by Noam Chomsky. They were created in attempt to formalize 
natural languages, such as English. According to them, sentences have a tree-like structure, where the leaves 
are kind of “basic blocks” and more complex parts are built from them (and other complex parts) according 
to some rules.

All those primitive and composite parts are usually called symbols. The atomic symbols are called 
terminals, and the complex ones are nonterminals.

This approach was adopted to construct synthetic languages with very simple (in comparison to natural 
languages) grammars.

Formally, a grammar consists of

•	 A finite set of terminal symbols.

•	 A finite set of nonterminal symbols.

•	 A finite set of production rules, which hold information about language structure.

•	 A starting symbol, a nonterminal which will correspond to any correctly constructed 
language statement. It is a starting point for us to parse any statement.

The class of grammars that we are interested in has a very particular form of production rules. Each of 
them looks like

<nonterminal> ::= sequence of terminals and nonterminals

As we see, this is exactly the description of a nonterminal complex structure. We can write multiple 
possible rules for the same nonterminal and the convenient one will be applied. To make it less verbose, we 
will use the notation with the symbol | to denote “or,” just as in regular expressions.

This way of describing grammar rules is called BNF (Backus-Naur form): the terminals are denoted 
using quoted strings, the production rules are written using ::= characters, and the nonterminal names are 
written inside brackets.

Sometimes it is also quite convenient to introduce a terminal ϵ, which, during parsing, will be matched 
with an empty (sub)string.

So, grammars are a way to describe language structure. They allow you to perform the following kinds 
of tasks:

•	 Test a language statement for syntactical correctness.

•	 Generate correct language statements.

•	 Parse language statements into hierarchical structures where, for example, the if 
condition is separated from the code around it and unfolded into a tree-like structure 
ready to be evaluated.
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12.2.1 � Example: Natural Numbers
The language of natural numbers can be represented using a grammar.

We will take this set of characters as the alphabet: Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. However, we want a more 
decent representation than just all possible strings built of the characters from Σ, because the numbers with 
leading zeros (000124) do not look nice.

We define several nonterminal symbols: first, <notzero> for any digit except zero, <digit> for any digit, 
and <raw> for any sequence of <digit>s.

As we know, several rules are possible for one nonterminal. So, to define <notzero>, we can write as 
many rules as there are different options:

<notzero> ::= '1'
<notzero> ::= '2'
<notzero> ::= '3'
<notzero> ::= '4'
<notzero> ::= '5'
<notzero> ::= '6'
<notzero> ::= '7'
<notzero> ::= '8'
<notzero> ::= '9'

However, as it is very cumbersome and not so easy to read, we will use the different notation to describe 
exactly the same rules:

<notzero> ::= '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

This notation is a part of canonical BNF.
After adding a zero, we get a rule for nonterminal <digit>, that encodes any digit.

<digit> ::= '0' | <notzero>

Then we define the nonterminal <raw> to encode all digit sequences. A sequence of digits is defined in a 
recursive way as either one digit or a digit followed by another sequence of digits.

<raw> ::= <digit> | <digit> <raw>

The <number> will serve us as a starting symbol. Either we deal with a one-digit number, which has no 
constraints on itself, or we have multiple digits, and then the first one should not be zero (otherwise it is a 
leading zero we do not want to see); the rest can be arbitrary.

Listing 12-1 shows the final result.

Listing 12-1.  grammar_naturals

<notzero> ::= '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
<digit> ::= '0' | <notzero>
<raw> ::= <digit> | <digit> <raw>
<number> ::=    <digit> | <notzero> <raw>
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12.2.2 � Example: Simple Arithmetics
Let’s add a couple of simple binary operations. For a start, we will limit ourselves to addition and 
multiplication. We will base it on an example shown in Listing 12-1.

Let’s add a nonterminal <expr> that will serve as a new starting symbol. An expression is either a 
number or a number followed by a binary operation symbol and another expression (so, an expression is 
also defined recursively).

Listing 12-2 shows an example.

Listing 12-2.  grammar_nat_pm

<notzero> ::= '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
<digit> ::= '0' | <notzero>
<raw> ::= <digit> | <digit> <raw>
<number> ::=    <digit> | <notzero> <raw>

<expr> ::= <number> | <number> '+' <expr> | <number> '-' <expr>

The grammar allows us to build a tree-like structure on top of the text, where each leaf is a terminal, and 
each other node is a nonterminal. For example, let’s apply the current set of rules to a string 1+42 and see 
how it is deconstructed. Figure 12-1 shows the result.

Figure 12-1.  Parse tree for the expression 1+42

The first expansion is performed according to the rule <expr> ::= number '+' <expr>. The latter 
expression is just a number, which in turn is a sequence of digit and a number.

12.2.3 � Recursive Descent
Writing parsers by hand is not hard. To illustrate it, we are going to show a parser that applies our new 
knowledge about grammars to literally translate the grammar description into the parsing code.

Let’s take a grammar for natural numbers that we have already described in section 12.2.1 and add just 
one more rule to it. The new starting symbol will be str, which corresponds to “a number ended by a  
null-terminator.” Listing 12-3 shows the revised grammar definition.
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Listing 12-3.  grammar_naturals_nullterm

<notzero> ::= '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
<digit> ::= '0' | <notzero>
<raw> ::= <digit> | <digit> <raw>
<number> ::= <digit> | <notzero> <raw>

<str> ::= <number> '\0'

People usually operate with a notion of stream when performing parsing with grammar rules. A stream 
is a sequence of whatever is considered symbols. Its interface consists of two functions:

•	 bool expect(symbol) accepts a single terminal and returns true if the stream contains 
exactly this kind of terminal in the current position.

•	 bool accept(symbol) does the same and then advances the stream position by one in 
case of success.

Up to now, we operated with abstractions such as symbols and streams. We can map all the abstract 
notions to the concrete instances. In our case, the symbol will correspond to a single char.1

Listing 12-4 shows an example text processor built based on grammar rules definitions. This is a 
syntactic checker, which verifies whether the string is holding a natural number without leading zeroes and 
nothing else (like spaces around the number).

Listing 12-4.  rec_desc_nat.c

#include <stdio.h>
#include  <stdbool.h>

char const* stream = NULL ;

bool accept(char c) {
    if (*stream == c) {
        stream++;
        return  true;
    }
    else return false;
}
bool notzero( void ) {
    return accept( '1' ) || accept( '2' ) || accept( '3' )
    || accept( '4' )     || accept( '5' ) || accept( '6' )
    || accept( '7' )     || accept( '8' ) || accept( '9' );

}
bool digit( void ) {
    return accept('0') || notzero();
}

1For parsers of programming languages it is much simpler to pick keywords and word classes (such as identifiers or 
literals) as terminal symbols. Breaking them into single characters introduces unnecessary complexity.
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bool raw( void ) {
    if ( digit() ) { raw(); return true; }
    return false;
}
bool number( void ) {
    if ( notzero() ) {
         raw();
         return true;
    }  else return accept('0');
}
bool str( void ) {
    return number() && accept( 0 );
}
void check( const char* string ) {
    stream = string;
    printf("%s -> %d\n", string, str() );
}
int main(void) {
    check("12345");
    check("hello12");
    check("0002");
    check("10dbd");
    check("0");
    return 0;
}

This example shows how each nonterminal is mapped to a function with the same name that tries to 
apply the relevant grammar rules. The parsing occurs in a top-down manner: we start with the most general 
starting symbol and try to break it into parts and parse them.

When the rules start alike we factorize them by applying the common part first and then trying to 
consume the rest, as in number function. The two branches start with overlapping nonterminals: <digit> 
and <notzero>. Each of them contains the range 1...9, the only difference being <digit>’s range including 
zero. So, if we found a terminal in range 1...9 we try to consume as many digits after that as we can and we 
succeed anyway. If not, we check for the first digit being 0 and stop if it is so, consuming no more terminals.

The <notzero> function succeeds if at least one of the symbols in range 1-9 is found. Due to the 
lazy application of ||, not all accept calls will be performed. The first of them that succeeds will end the 
expression evaluation, so only one advancement in stream will occur.

The <digit> function succeeds if a zero is found or if <notzero> succeeded, which is a literal translation 
of a rule:

<digit> ::= '0' | <notzero>

The other functions are performing in the same manner. Should we not limit ourselves with a null-
terminator, the parsing would answer us a question: “does this sequence of symbols start with a valid 
language sentence?”

In Listing 12-4 we have used a global variable on purpose in order to facilitate understanding. We still 
strongly advise against their usage in real programs.



Chapter 12 ■ Syntax, Semantics, and Pragmatics

227

The parsers for real programming languages are usually quite complex. In order to write them 
programmers use a special toolset that can generate parsers from the declarative description close to BNF. In 
case you need to write a parser for a complex language we recommend you taking a look at ANTLR or yacc 
parser generators.

Another popular technique of handwriting parsers is called parser combinators. It encourages creating 
parsers for the most basic generic text elements (a single character, a number, a name of a variable, etc.). 
Then these small parsers are combined (OR, AND, sequence…) and transformed (one or many occurences, 
zero or more occurences…) to produce more complex parsers. This technique, however, is easy to apply 
when the language supports a functional style of programming, because it often relies on higher-order 
functions.

■■ On recursion in grammars T he grammar rules can be recursive, as we see. However, depending on the 
parsing technique using certain types of recursion might be ill-advised. For example, a rule expr ::= expr '+' 
expr, while being valid, will not permit us to construct a parser easily. To write a grammar well in this sense, 
you should avoid left-recursive rules such as the one listed previously, because, encoded naively, it will only 
produce an infinite recursion, when the expr() function will start its execution with another call to expr(). The 
rules that refine the first nonterminal on the right-hand side of the production avoid this problem.

■■ Question 240  Write a recursive descent parser for floating point arithmetic with multiplication, subtraction, 
and addition. For this assignment, we consider no negative literals exist (so instead of writing -1.20 we will 
write 0-1.20.

12.2.4 � Example: Arithmetics with Priorities
The interesting part of expressions is that different operations have different priorities. For example, the 
addition operation has a lower priority than the multiplication operation, so all multiplications are done 
prior to addition.

Let’s see the naive grammar for natural numbers with addition and multiplication in Listing 12-5.

Listing 12-5.  grammar_nat_pm_mult

<notzero> ::= '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
<digit> ::= '0' | <notzero>
<raw> ::= <digit> | <digit> <raw>
<number> ::= <digit> | <notzero> <raw>

<expr> ::= <number> | <number> '+' <expr>
       | <number> '-' <expr> | <number> '*' <expr>
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However, as we notice, the multiplication and addition are equals here: they are expanded in order of 
appearance. Because of this, the expression 1*2+3 is parsed as 1*(2+3), breaking the common evaluation 
order, tied to the tree structure.

From a parser’s point of view, the priority means that in the parse tree the “add” nodes should 
be closer to the root than the “multiply” nodes, since addition is performed on the bigger parts of the 
expression. The evaluation of the arithmetical expressions is performed, informally, starting from leaves 
and ending in the root.

How do we prioritize some operations over others? It is acquired by splitting one syntactical category 
<expr> into several classes. Each class is a refinement of the previous class of sorts. Listing 12-6 shows an 
example.

Listing 12-6.  grammar_priorities

<expr> ::= <expr0> "<" <expr> | <expr0> "<=" <expr>
| <expr0> "==" <expr> | <expr0> ">" <expr> | <expr0> ">=" <expr> | <expr0>

<expr0> = <expr1> "+" <expr> | <expr1> "-" <expr> | <expr1>
<expr1> ::= <atom> "*" <expr1> | <atom> "/" <expr1> | <atom>
<atom> ::= "(" <expr> ")" | <NUMBER>

We can understand this example in the following way:

•	 <expr> is really any expression.

•	 <expr0> is an expression without <, >, == and other terminals, which are present in the 
first rule.

•	 <expr1> is also free of addition and subtraction.

Figure 12-2.  Parse trees without priorities for the expression 1*2+3

Without taking the multiplication priority into account, the parse tree for the expression 1*2+3 will look 
as shown in Figure 12-2.
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12.2.5 � Example: Simple Imperative Language
To illustrate that this knowledge can be applied to programming languages, we are giving an example of 
one’s syntax. This syntax description provides definitions for the statements, comprising typical imperative 
constructs: if, while, print and assignments. The keywords can be treated as atomic terminals.  
Listing 12-7 shows the grammar.

Listing 12-7.  imp

<statements> ::= <statement> | <statement> ";" <statements>
<statement> ::= "{" <statements> "}" | <assignment> | <if> | <while> | <print>
<print> ::= "print" "(" <expr> ")"
<assignment>  ::=  IDENT  "="  <expr>
<if> ::= "<if>" "(" <expr> ")" <statement> "<else>" <statement>
<while> ::= "<while>" "(" <expr> ")" <statement>

<expr> ::= <expr0> "<" <expr> | <expr0> "<=" <expr>
| <expr0> "==" <expr> | <expr0> ">" <expr> | <expr0> ">=" <expr> | <expr0>
<expr0> = <expr1> "+" <expr> | <expr1> "-" <expr> | <expr1>
<expr1> ::= <atom> "*" <expr1> | <atom> "/" <expr1> | <atom>
<atom> ::= "(" <expr> ")" | NUMBER

12.2.6 � Chomsky Hierarchy
The formal grammars as we have studied them are actually but a subclass of formal grammars as Chomsky 
viewed them. This class is called context-free grammars for reasons that will soon be apparent.

The hierarchy consists of four levels ranging from 3 to 0, lower levels being more expressive and 
powerful.

	 3.	 The regular grammars are surprisingly described by our old friends regular 
expressions. The finite automatons are the weakest type of parsers because they 
cannot handle the fractal structures such as arithmetical expressions.

Even in the simplest case, <expr> ::= number '+' <expr>, the part of the 
expression on the right-hand side of '+' is similar to the whole expression. This 
rule can be applied recursively an arbitrary amount of time.

	 2.	 The context-free grammars, which we have studied already, have rules that are of 
the form

nonterminal ::=
      <sequence  of  terminal  and  nonterminal  symbols>

Any regular expression can be also described in terms of context-free grammars.

	 1.	 The context-sensitive grammars have rules of form:

a A  b ::= a y b

a and b denote an arbitrary (possibly empty) sequence of terminals and/or 
nonterminals, y denotes a non-empty sequence of terminals and/or nonterminals, 
and A is the nonterminal being expanded.

http://dx.doi.org/10.1007/978-1-4842-2403-8_7#Sec6
http://dx.doi.org/10.1007/978-1-4842-2403-8_7#Sec6
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The difference between levels 2 and 1 is that the nonterminal on the left side is 
substituted for y only when it occurs between a and b (which are left untouched). 
Remember, both a and b can be rather complex.

	 0.	 The unrestricted grammars have rules of form:

sequence of terminal and nonterminal symbols ::=
    sequence of terminal and nonterminal symbols

As there are absolutely no restrictions on the left- and right-hand sides of the 
rules, these grammars are most powerful. It can be shown that these types of 
grammars can be used to encode any computer program, so these grammars are 
Turing-complete.

The real programming languages are almost never truly context-free. For example, a usage of a variable 
declared earlier is apparently a context-sensitive construction, because it is only valid when following a 
corresponding variable declaration. However, for simplicity, they are often approximated with context-free 
grammars and then additional passes on the parsing tree transform are done to check whether such context-
sensitive conditions are satisfied.

12.2.7 � Abstract Syntax Tree
There exists a notion of abstract syntax. It describes the trees that are constructed from the source code. The 
concrete syntax describes the exact mapping between keywords and the tree node types they are mapped 
to. For example, imagine that we have rewritten the C compiler so that the while keyword is replaced by 
_while_. Then imagine that we have rewritten all programs so that this new keyword is used instead of 
while. The concrete syntax did change indeed, but the abstract syntax is the same, because the language 
constructions stayed the same. On the contrary, if we add a finally clause to if, it incorporates a statement 
to be executed no matter the condition value, and we will change the abstract syntax as well.

The abstract syntax tree is usually also much more minimalistic in comparison to the parse trees. The 
parse tree would hold information that was only relevant for parsing (see Figure 12-3).

Figure 12-3.  Parse tree and abstract syntax tree of the expression 1  +  2*3

As we see, the tree on the right is much more concise and to the point. This tree can be directly 
evaluated by an interpreter or some executable code to calculate what might be generated.
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12.2.8 � Lexical Analysis
In reality, applying grammar rules directly to the individual characters is overkill. It can be convenient to add 
a prepass called lexical analysis. The raw text is first transformed into a sequence of lexemes (also called 
tokens). Each token is described with a regular expression and extracted from the character stream. For 
example, a number can be described with a regular expression [0-9]+, and an identifier can be [a-zA-Z_]
[0-9a-zA-Z_]*. After performing such processing, the text will no longer be a flat sequence of characters but 
rather a linked list of tokens. Each token will be marked with its type and for the parser, the token types will 
be mapped to terminals.

It is easy to ignore all formatting details (such as line breaks and other whitespace symbols) during 
this step.

12.2.9 � Summary on Parsing
The compiler parses the source code in several steps. Two important steps are lexical and syntactic analysis.

During the lexical analysis, the program text is broken into lexemes, such as integer literals or keywords. 
The text formatting is no more relevant after this step. Each lexeme type is best described using a regular 
expression.

During the syntactic analysis, a tree structure is built on top of the stream of tokens. This structure is 
called an abstract syntax tree. Each node corresponds to a language construct.

12.3 � Semantics
The language semantics is a correspondence between the sentences as syntactical constructions and their 
meaning. Each sentence is usually described as a type of node in the program abstract syntax tree. This 
description is performed in one of the following ways:

•	 Axiomatically. The current program state can be described with a set of logical 
formulas. Then each step of the abstract machine will transform these formulas in a 
certain way.

•	 Denotationally. Each language sentence is mapped into a mathematical object of 
a certain theory (e.g., domain theory). Then the program effects can be described 
in terms of this theory. It is of a particular interest when reasoning about program 
behavior of different programs written in different languages.

•	 Operationally. Each sentence produces a certain change of state in the abstract 
machine, which is subject to description. The descriptions in the C standard are 
informal but resemble the operational semantic description more than the other two.

The language standard is the language description in human-readable form. However, while being 
more comprehensible for an unprepared one, it is more verbose and sometimes less unambiguous. In order 
to write concise descriptions, a language of mathematical logic and lambda calculus is usually used. We will 
not dive into details in this book, because this topic demands a pedantic approach on its own. We refer you 
to the books [29] and [35] for an immaculate study of type theory and language semantics.

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par30
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par36
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12.3.1 � Undefined Behavior
The completeness of the semantics description is not enforced. It means that some language constructions 
are only defined for a subset of all possible situations. For example, a pointer dereference *x is only 
guaranteed to behave in a consistent way when x points to a “valid” memory location. When x is NULL or 
points to deallocated memory, the undefined behavior occurs. However, such expression is absolutely 
correct syntactically.

The standard intentionally introduces cases of undefined behavior. Why?
First of all, it is easier to write compilers that produce code with less guarantees. Second, all defined 

behavior has to be implemented. If we want that dereferencing null pointer triggers an error, the compiler 
has two do two things each time any pointer is dereferenced:

•	 Try to deduce that in this exact place the pointer can never have NULL as its value.

•	 If the compiler can not deduce, that this pointer is never NULL, it emits assembly code 
to check it. If the pointer is NULL, this code will execute a handler to it. Otherwise, it 
will proceed with dereferencing the pointer.

Listing 12-8 shows an example.

Listing 12-8.  ptr_analysis1.c

int x = 0;
int* p = &x;
...
/* there are no writes to `p` in these lines */
...
*p =  10; /* this pointer can not be NULL  */

However, this is much trickier than it might appear. In the example in Listing 12-8, we could have 
assumed, that as no writes to variable p are performed, it is always holding the address of x. However, this is 
not always true, as illustrated by the example shown in Listing 12-9.

Listing 12-9.  ptr_analysis2.c

int x = 0;
int* p = &x;
...
/* there are no writes to `p` in these lines */
int**  z  =  &p;
*z = NULL; /* Still not a direct write to `p` */
...
*p =  10; /* this pointer can not be NULL -- not true anymore */

So, solving this problem actually requires a very complex analysis in presence of pointer arithmetic. 
Once the variable’s address is taken, or worse still, its address is passed to a function, you have to analyze the 
entire function calling sequence, take function pointers into account, pointers to the pointers, etc.

The analysis will not always yield correct results (in the most general case this problem is even 
theoretically undecidable), and the performance can suffer because of it. So, in accordance with the C 
laissez-faire spirit, the correctness of pointer dereferencing is left to the responsibility of the programmer 
himself.
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In managed languages such as Java or C#, the defined behavior of pointer dereferencing is much easier 
to achieve. First, they are usually run inside a framework, which provides code for exception raising and 
handling. Second, the nullability analysis is much simpler in the absence of address arithmetic. Finally, 
they are usually compiled just-in-time, which means that the compiler has access to runtime information 
and can use it to perform some optimizations unavailable to an ahead-of-time compiler. For example, after 
the program has launched and given the user input, a compiler deduced that the pointer x is never NULL if 
a certain condition P holds. Then it can generate two versions of the function f containing this dereference: 
one with a check and the other without check. Then every time f is called, only one of two versions is called. 
If the compiler can prove that P holds in a calling situation, the non-checked version is called; otherwise the 
checked one is called.

The undefined behavior can be dangerous (and usually is). It leads to subtle bugs, because it does 
not guarantee an error in compile or in runtime. The program can encounter a situation with undefined 
behavior and continue execution silently; however, its behavior will randomly change after a certain amount 
of instructions are executed.

A typical situation is the heap corruption. The heap is in fact structured; each block is delimited with 
utility information, used by the standard library. Writing out of block bounds (but close to them) is likely to 
corrupt this information, which will result in a crash during one of future calls to malloc of free, making this 
bug a time-bomb.

Here are some cases of undefined behavior, explicitly specified by the C99 standard. We are not 
providing the full list, because there are at least 190 cases.

•	 Signed integer overflow.

•	 Dereferencing an invalid pointer.

•	 Comparing the pointers to elements of two different memory blocks.

•	 Calling function with arguments that do not match its initial signature (possible by 
taking a pointer to it and casting to other function type).

•	 Reading from an uninitialized local variable.

•	 Division by 0.

•	 Accessing an array element out of its bounds.

•	 Attempting to change a string literal.

•	 The return value of a function, which does not have an executed return statement.

12.3.2 � Unspecified Behavior
It is important to distinguish between undefined behavior and unspecified behavior. Unspecified behavior 
defines a set of behaviors that might happen but does not specify which one exactly will be selected. The 
selection will depend on the compiler.

For example,

•	 The function argument’s evaluation order is not specified. It means that while 
evaluating f(g(), h()) we have no guarantees that g() will be evaluated first and h() 
second. However, it is guaranteed that both g() and h() will be evaluated before f().

•	 The order of subexpression evaluation in general, f(x) + g(x), does not enforce f to 
be executed before g. Unspecified behavior describes the cases of nondeterminism in 
the abstract C machine.
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12.3.3 � Implementation-Defined Behavior
The standard also defines the implementation-defined behavior, such as the size of int (which, as we told 
you, is architecture-dependent). We can think about such choices as the abstract machine parameters: 
before we start it, we have to choose these parameters.

Another example of such behavior is the modulo operation x % y. The result in case of negative y is 
implementation-defined.

What is the difference between implementation-defined and unspecified behavior? The answer is that 
the implementation (compiler) has to explicitly document the choices it makes, while in cases of unspecified 
behavior anything from a set of possible behaviors can occur.

12.3.4 � Sequence Points
Sequence points are the places in the program where the state of the abstract machine is coherent to 
the state of the target machine. We can think about them this way: when we debug a program, we can 
execute it in a step-by-step fashion, where each step is roughly equivalent to a C statement. We usually 
stop on semicolon, function calls, || operator, etc. However, we can switch to the assembly view, where 
each statement will be encoded by possibly many instructions, and execute these instructions in the same 
manner. It allows us to execute only a part of statement, pausing in a halfway. In this moment, the state of 
the abstract C machine is not well defined. Once we finish executing instructions that implement one single 
statement, the machines’ states “synchronize,” allowing us to explore not only the state of assembly level but 
also the state of the C program itself. This is the sequence point.

The second, equivalent definition of sequence point is the place in the program where the side effects of 
previous expressions are already applied, but the side effects of the following ones are not yet applied.

The sequence points are

•	 Semicolon.

•	 Comma (which in C can act the same way as a semicolon, but also groups statements. 
Its usage is discouraged.).

•	 Logic AND/OR (not bitwise versions!).

•	 When the function arguments are evaluated but the function has not started its 
execution yet.

•	 Question mark in the ternary operator.

Multiple real-world cases of undefined behavior are tied to the notion of sequence points. Listing 12-10 
shows an example.

Listing 12-10.  seq_points.c

int i = 0;
i = i ++ * 10;

What is i equal to? Unfortunately, the best answer we can give is the following: there is an undefined 
behavior in this code. Apparently, we do not know whether the i will be incremented before assigning i*10 
to i or after that. There are two writes in the same memory location before the sequence point and it is 
undefined in which order will they occur.

The cause of this is as we have seen in section 12.3.2, the subexpression evaluation order is not fixed. 
As subexpressions might have effects on the memory state (think function calls or pre-or postincrement 
operators), and there is no enforced order in which these effects occur, even the result of one subexpression 
may depend on the effects of the other.
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12.4 � Pragmatics
12.4.1 � Alignment
From the point of view of the abstract machine, we are working with bytes of memory. Each byte has its 
address. The hardware protocols, used on the chip, are, however, quite different. It is quite common that the 
processor can only read packs of, say, 16 bytes, which start from an address divisible by 16. In other words, it 
can either read the first 16 byte-chunk from memory or the second one, but not a chunk that starts from an 
arbitrary address.

We say that the data is aligned on N-byte boundary if it starts from an address divisible by N. 
Apparently, if the data is aligned on kn-byte boundary, it is automatically aligned on n-byte boundary. For 
example, if the variable is aligned on 16-byte boundary, it is simultaneously aligned on an 8-byte boundary.

Aligned data (8-byte boundary):
0x00 00 00 00 00 00 00 00 :    11 22 33 44 55 66 77 88

Unaligned data (8-byte boundary):
0x00 00 00 00 00 00 00 00 :    .. .. .. 11 22 33 44 55
0x00 00 00 00 00 00 00 07 :    66 77 88 .. .. .. .. ..

What happens when the programmer requests a read of a multibyte value which spans over two such 
blocks (e.g., 8-byte value, whose first three bytes lie in one chunk, and the rest is in another one)? Different 
architectures give different answers to this question.

Some hardware architectures forbid unaligned memory access. It means that an attempt to read any 
value which is not aligned to, for example, an 8-byte boundary results in an interrupt. An example of such 
architecture is SPARC. The operating systems can emulate unaligned accesses by intercepting the generated 
interrupt and placing the complex accessing logic into the handler. Such operations, as you might imagine, 
are extremely costly because the interrupt handling is relatively slow.

Intel 64 adapts a less strict behavior. The unaligned accesses are allowed but bear an overhead. For 
example, if we want to read 8 bytes starting from the address 6 and we can only read chunks that are 8 
bytes long, the CPU (central processing unit) will perform two reads instead of one and then compose the 
requested value from the parts of two quad words.

So, aligned accesses are cheaper, because they require less reads. The memory consumption is often 
a lesser concern for a programmer than the performance; thus compilers automatically adjust variables 
alignment in memory even if it creates gaps of unused bytes. This is commonly referred to as data structure 
padding.

The alignment is a parameter of the code generation and program execution, so it is usually viewed as a 
part of language pragmatics.

12.4.2 � Data Structure Padding
For structures, the alignment exists in two different senses:

•	 The alignment of the structure instance itself. It affects the address the structure starts at.

•	 The alignment of the structure fields. Compiler can intentionally introduce gaps 
between structure fields in order to make accesses to them faster. Data structure 
padding relates to this.
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For example, we have created a structure, shown in Listing 12-11.

Listing 12-11.  align_str_ex1

struct mystr {
    uint16_t a;
    uint64_t b;
};

Assuming an alignment on an 8-byte boundary, the size of such structure, returned by sizeof, will be 
16 bytes. The a field starts at an address divisible by 8, and then six bytes are wasted to align b on an 8-byte 
boundary.

There are several instances in which we should be aware of it:

•	 You might want to change the trade-off between memory consumption and 
performance to lesser memory consumption. Imagine you are creating a million 
copies of structures and every structure wastes 30% of its size because of alignment 
gaps. Forcing the compiler to decrease these gaps will then lead to a memory usage 
gain of 30% which is nothing to sneeze at. It also brings benefits of better locality 
which can be far more beneficial than the alignment of individual fields.

•	 Reading file headers or accepting network data into structures should take possible 
gaps between structure fields into account. For example, the file header contains a 
field of 2 bytes and then a field of 8 bytes. There are no gaps between them. Now we 
are trying to read this header into a structure, as shown in Listing 12-12.

Listing 12-12.  align_str_read.c

struct str {
     uint16_t a; /* a gap of 4 bytes */
     uint64_t b;
};
struct str mystr;
fread( &mystr, sizeof( str ), 1, f );

The problem is that the structure’s layout has gaps inside it, while the file stores fields in a contiguous 
way. Assuming the values in file are a=0x1111 and b=0x 22 22 22 22 22 22 22, Figure 12-4 shows the 
memory state after reading.

Figure 12-4.  Memory layout structure and the data read from file

There are ways to control alignment; up until C11 they are compiler-specific. We will study them first.
The #pragma keyword allows us to issue one of the pragmatic commands to the compiler. It is supported 

in MSVC, Microsoft’s C compiler, and is also understood by GCC for compatibility reasons.
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Listing 12-13 shows how to use it to locally change the alignment choosing strategy by using the pack 
pragma.

Listing 12-13.  pragma_pack.c

#pragma pack(push, 2)
struct mystr {
    short a;
    long b;
};
#pragma pack(pop)

The second argument of pack is a presumed size of the chunk that the machine is able to read from 
memory on the hardware level.

The first argument of pack is either push or pop. During the translation process, the compiler keeps 
track of the current padding value by checking the top of the special internal stack. We can temporarily 
override the current padding value by pushing a new value into this new stack and restore the old value 
when we are done. Changing padding value globally is possible by using the following form of this pragma:

#pragma pack(2)

However, it is very dangerous because it leads to unpredictable subtle changes in other parts of 
program, which are very difficult to trace.

Let’s see how the alignment value affects the individual field’s alignment by analyzing an example 
shown in Listing 12-14.

Listing 12-14.  pack_2.c

#pragma pack(push, 2)
struct mystr {
    uint16_t a;
    int64_t b;
};
#pragma pack(pop)

The padding value tells us how many bytes a hypothetical target computer can fetch from memory in 
one read. The compiler tries to minimize the amount of reads for each field. There is no reason to skip bytes 
between a and b here, because it brings no benefits with regard to the padding value. Assuming that a=0x11 
11 and b=0x22 22 22 22 22 22 22 22, the memory layout will look like the following:

11 11 22 22 22 22 22 22 22 22

Listing 12-15 shows another example with the padding value equal to 4.

Listing 12-15.  pack_4.c

#pragma pack(push, 4)
struct mystr {
    uint16_t a;
    int64_t b;
};
#pragma pack(pop)
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What if we adapt the same memory layout without gaps? As we can only read 4 bytes at a time, it is not 
optimal. We have delimited the bounds of memory chunks that are readable atomically.

Pack: 2
11 11 | 22 22 | 22 22 | 22 22 | 22 22 | ?? ??
Pack: 4, same memory layout
11 11   22 22 | 22 22   22 22 | 22 22   ?? ??
Pack: 4, memory layout really used
11 11   ?? ?? | 22 22   22 22 | 22 22   22 22

As we see, when the padding is set to 4, adapting a gapless memory layout forces the CPU to perform 
three reads to access b. So, basically, the idea is to minimize the amount of reads while placing struct 
members as close as possible.

The GCC specific way of doing roughly the same thing is the packed specification of the __attribute__ 
directive. In general, __attribute__is describing the additional specification of a code entity such as a 
type or a function. This packed keyword means that the structure fields are stored consecutively in memory 
without gaps at all. Listing 12-16 shows an example.

Listing 12-16.  str_attribute_packed.c

Struct__attribute__(( packed )) mystr {
    uint8_t first;
    float delta;
    float position;
};

Remember that packed structures are not part of the language and are not supported on some 
architectures (such as SPARC) even on the hardware level, which means not only a performance hit but also 
program crashes or reading invalid values.

12.5 � Alignment in C11
C11 introduced a standardized way of alignment control. It consists of

•	 Two keywords:

–– _Alignas

–– _Alignof

•	 stdalign.h header file, which defines preprocessor aliases for _Alignas and _Alignof 
as alignas and alignof

•	 aligned_alloc function.

Alignment is only possible to the powers of 2: 1, 2, 4, 8, etc.
alignof is used to know an alignment of a certain variable or type. It is computed in compile time, just 

as sizeof. Listing 12-17 shows an example of its usage. Note the "%zu" format specifier used to print or scan 
values of type size_t.
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Listing 12-17.  alignof_ex.c

#include <stdio.h>
#include <stdalign.h>

int  main(void) {
    short x;
    printf("%zu\n", alignof(x));
    return 0;
}

In fact, alignof(x) returns the greatest power of two x is aligned at, since aligning anything at, for 
example, 8 implies alignment on 4, 2, and 1 as well (all its divisors).

Prefer using alignof to _Alignof and alignas to _Alignas.
alignas accepts a constant expression and is used to force an alignment on a certain variable or array. 

Listing 12-18 shows an example. Once launched, it outputs 8.

Listing 12-18.  alignas_ex.c

#include <stdio.h>
#include <stdalign.h>

int main( void ) {
    alignas( 8 ) short x;
    printf( "%zu\n", alignof( x ) );
    return 0;
}

By combining alignof and alignas we can align variables at the same boundary as other variables.
You cannot align variables to a value less than their size and alignas cannot be used to produce the 

same effect as __attribute__((packed)).

12.6 � Summary
In this chapter we have structured and expanded our knowledge about what the programming language is. 
We have seen the basics of writing parsers and studied the notions of undefined and unspecified behavior 
and why they are important. We then introduced the notion of pragmatics and elaborated one of the most 
important things

We defer an assignment for this chapter until the next one, where we will elaborate the most important 
good code practices. Assuming our readers are not yet very familiar with C, we want them to adapt good 
habits as early as possible in the course of their C journey.

■■ Question 241  What is the language syntax?

■■ Question 242  What are grammars used for?

■■ Question 243  What does a grammar consist of?

■■ Question 244  What is BNF?

■■ Question 245 H ow do we write a recursive descent parser having the grammar description in BNF?
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■■ Question 246 H ow do we incorporate priorities in grammar description?

■■ Question 247  What are the levels of the Chomsky hierarchy?

■■ Question 248  Why are regular languages less expressive than context-free grammars?

■■ Question 249  What is the lexical analysis?

■■ Question 250  What is the language semantic?

■■ Question 251  What is undefined behavior?

■■ Question 252  What is unspecified behavior and how is it different from undefined behavior?

■■ Question 253  What are the cases of undefined behavior in C?

■■ Question 254  What are the cases of unspecified behavior in C?

■■ Question 255  What are sequence points?

■■ Question 256  What is pragmatics?

■■ Question 257  What is data structure padding? Is it portable?

■■ Question 258  What is the alignment? How can it be controlled in C11?
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CHAPTER 13

Good Code Practices

In this chapter we want to concentrate on the coding style. When writing code a developer is constantly 
faced with a decision-making procedure. What kinds of data structures should he use? How should they 
be named? Where and when should they be allocated? Experienced programmers make these decisions 
in a different way compared to beginners, and we find it extremely important to speak about this decision 
making process.

13.1 � Making Choices
Decisions often require balancing between two poles that are mutually exclusive. The classical example 
is that you cannot ship a quality product cheaply and quickly. Fine performance tuning of the code often 
makes it harder to read and to debug. So, some code characteristics should be prioritized over others based 
on common sense and the task itself. Because of this, such code guidelines are a good start, but following 
them blindly is not the way to go.

Our code writing advices are based on the following premises:

	 1.	 We want the code to be as reusable as possible. This often requires careful planning 
and coordination between developers, which does not let you write code really fast 
but pays off very soon because it spares time for debugging and actually allows you 
to write complex software. Debugging programs is generally considered harder 
than writing them. So, less code often means less time spent debugging and more 
robust functions. It is especially important for such languages as C, which are

•   Unsafe in a large sense (allows for pointer arithmetic, does not perform bound 
checks, etc.)

•   Lack an expressive type system, seen in such languages as Scala, Haskell, or OCaml. 
Such types impose a number of restrictions on the program that should be satisfied, 
otherwise the compiler will reject it.

This rule has a notable exception. If reusing functions results in a drastic performance decrease, the 
algorithm has an unnecessary large O-complexity. For example, we have done an assignment with linked 
lists in Chapter 10. There was a function to calculate sum of all integers in a certain list. One way of creating 
it is roughly shown in Listing 13-1.

http://dx.doi.org/10.1007/978-1-4842-2403-8_10
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Listing 13-1.  list_sum_bad.c

int list_sum( const struct list* l ) {
    size_t i;
    int sum = 0;
    /* We do not want to launch the full computation
     * of size at each cycle iteration */
    size_t sz = list_size( l ) ;
    for( i = 0; i < sz; l = l-> next )
        sum = sum + l->value;
    return sum;
}

In this example, for each i in the range from 0 inclusive to the list length exclusive we actually start 
walking through the list from its very first element. This results in a drastic decrease in performance in 
comparison with the single summing pass through the list. In the latter case, appending another element to 
the list results in an additional list access, while in the program shown in Listing 13-1 this leads to  
list_length(l) additional list accesses!

	 2.	 The program should be easy to modify. This point is interdependent with 
the previous one. Smaller functions are often more reusable, and thus the 
modifications become easier, because more code can be left untouched from the 
previous version.

	 3.	 The code should be as easy to read as possible. The key factors here are

•   Sane naming. Even if you are not a native English speaker, you should not write 
variable names, function names, or commentary in your native language.

•   Consistency. Use the same naming conventions and uniform ways of performing 
similar operations.

•   Short and concise functions. If the logic description is overly verbose, it is often a 
sign of a lack of sane decomposition or you need an abstraction layer. It has also a 
good effect on maintainability.

	 4.	 The code should be easy to test. Testing assures us that at least in some elaborated 
cases the code behaves as intended.

Sometimes the task demands the opposite. For example, if we are writing the code for a controller in 
absence of a good optimizing compiler and with very restricted resources, we can be forced to abandon 
beautiful code structure because the compiler cannot inline functions properly; thus each call will impact 
the performance, often in an unacceptable way.

13.2 � Code Elements
13.2.1 � General Naming
The specific naming convention is often imposed by the language itself. In cases in which the project is 
based on an existing codebase, it might be reasonable to not deviate from it for the sake of consistency.  
In this book we are using the following naming conventions:

•	 All names are written in lowercase letters.

•	 The name parts are separated with an underscore, as follows: list_count.



Chapter 13 ■ Good Code Practices

243

The rest of this section concentrates on different language features and associated naming and usage 
conventions.

13.2.2 � File Structure
Include files should have an include guard.

They should be self-contained, which means that for each header file thisfile.h a .c file with only the 
line #include "thisfile.h" should compile. The order of includes is often chosen as follows:

•	 Related header.

•	 C library.

•	 Other libraries’ .h.

•	 Your project’s .h.

Then adhere to a consistent order of declaration of macros, types, functions, variables, etc. It greatly 
simplifies navigating the project. A typical order is

•	 for headers:

1.	 Include files.

2.	 Macros.

3.	 Types.

4.	 Variables (globals).

5.	 Functions.

•	 for .c files

1.	 Include files.

2.	 Macros.

3.	 Types.

4.	 Variables (globals).

5.	 Static variables.

6.	 Functions.

7.	 Static functions.

13.2.3 � Types
•	 When possible (C99 or newer), prefer the types defined in stdint.h, such as uint64_t 

or uint8_t.

•	 If you want to be POSIX-compliant, do not define your own types with _t suffix. It 
is reserved for standard types, so the new types that might be introduced in future 
revisions of standard will not clash with the custom types defined in some programs.

•	 Types are often named with a prefix common to the project. For example, you want to 
write a calculator, then the type tags will be prefixed with calc_.
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•	 When you are defining structures and if you can choose the order of fields, define 
them in the following order:

–– First try to minimize the memory losses from data structure padding.

–– Then order fields by size.

–– Finally, sort them alphabetically.

–– Sometimes structures have fields that should not be modified by user directly.  
For example, a library defines the structure shown in Listing 13-2.

Listing 13-2.  struct_private_ex.c

struct mypair {
    int x;
    int y;
    int _refcount;
};

The fields of such structure can be modified directly using dot or arrow syntax. 
Our convention, however, implies that only specific library functions should 
modify the _refcount field, and the library user should never do it by hand.

C lacks a concept of structure private fields, so it is as close as we can get 
without using more or less dirty hacks.

–– Enumeration members should be written in uppercase, like constants. The 
common prefix is suggested for the members of one enumeration. An example is 
shown in Listing 13-3.

Listing 13-3.  enum_ex.c

Enum exit_code   {
    EX_SUCCESS,
    EX_FAILURE,
    EX_INVALID_ARGUMENTS
};

13.2.4 � Variables
Choosing the right names for variables and functions is crucial.

•	 Use nouns for names.

•	 Boolean variables should have meaningful names too. Prefixing them with is_ is 
advisable. Then append the exact property that is being checked. is_good is probably 
too broad to be a good name in most cases, unlike is_prime or is_before_last.

Prefer positive names to negative ones, as the human brain parses them easily—
for example, is_even over is_not_odd.

•	 It is not advisable to use names that bear no meaning, like a, b, or x4. The notable 
exception is the code that illustrates an article or a paper, which describes an 
algorithm in pseudo code using such names. In this case, any naming change is more 
likely to confuse readers than to bring more clarity. The indices are traditionally 
named i and j and you will be understood if you stick to them.

http://dx.doi.org/10.1007/978-1-4842-2403-8_12#Par160
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•	 Including the measuring units might be a good idea—for example,  
uint32_t delay_msecs.

•	 Other suffixes are useful too, such as cnt, max, etc.

For example, attempts_max (maximum attempts allowed), attempts_cnt 
(attempts made).

•	 Global constants are named in all capital letters. Global mutable variables are prefixed 
with g_.

•	 The tradition says that the global constants should be defined using #define directive. 
However, the modern approach is to use const static or just const global variables. 
Contrary to #defines, they are typed and also better seen when debugging. If you have an 
access to a quality compiler, it will inline them anyway (if it decides that it will be faster).

•	 Use const modifier whenever appropriate. C99 allows you to create variables in 
arbitrary places inside functions, not just at the block start. Use it to store intermediate 
results in named constants.

•	 Do not define global variables in header files! Define them in .c files and declare them 
in .h file as extern.

13.2.5 � On Global Variables
Do not use global mutable variables if you can. We cannot stress this enough. Here are the most important 
problems they bring:

•	 In medium scale and more in large projects with a whopping number of lines, all 
information about the function effects is better localized in its signature. A function 
f might call another function g, and so on, and somewhere in this chain a global 
variable will be changed. We cannot see that this change might occur by looking at f; 
we have to study all functions it calls, and the functions they call, and so on.

•	 They make functions that are not reenterable. It means that a function f cannot be 
called if is already being executed. The latter can happen in two cases:

–– Function f is calling other functions, which after some inner calls might call f again, when the 
first instance of f has not yet been terminated.

Listing 13-4 shows an example of a function f that is not reenterable.

Listing 13-4.  reenterability.c

bool flag = true;
int var = 0;
void g(void) {
    f();
    flag = false;
}
void f(void) {
    if (flag) g();
}

–– The program is parallelized and the function is being used in multiple threads 
(which is often the case on modern computers).
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In case of a complex call hierarchy, knowing whether the function is reenterable or not requires an 
additional analysis.

•	 They introduce security risks, because usually their values have to be checked before 
being modified or used. Programmers tend to forget these checks. If something can go 
wrong, it will go wrong.

•	 They make testing function harder because of the data dependency they are introducing. 
Writing code without tests, however, is always a practice to avoid.

Global static mutable variables are evil too, but at least they do not pollute the global namespace in other files.
Global static immutable variables (const static) are, however, perfectly fine and can be often inlined 

by compiler.

13.2.6 � Functions
•	 Use verbs to name functions—for example, packet_checksum_calc.

•	 The prefix is_ is also quite common for functions checking conditions—for example, 
int is_prime( long num ).

•	 The functions that operate on a struct with a certain tag are often prefixed with the 
respective tag name—for example, bool list_is_empty(struct list* lst );.

As C does not allow for fine namespace control, this seems to be the simplest form of controlling the 
chaos that emerges when most functions are accessible from anywhere.

•	 Use the static modifier for all functions except for those you want to be available for everyone.

•	 Probably the most important place to use const is for function arguments of type 
“pointer to immutable data.” It ensures that function does not occasionally change 
them due to a programmer’s mistake.

13.3 � Files and Documentation
As the project grows, the number of files increases and it becomes more difficult to navigate them. To be 
able to cope with voluminous projects, you have to structure them from the very beginning.

Following is a common template for the project root directory.

src/ Source files

doc/ Documentation

res/ Resource files (such as images).

lib/ Static libraries that will be linked to the executable file.

build/ The artifacts: an executable file and other generated files.

include/ Include files. This directory is added to the compiler include search path by -I flag.

obj/ Generated object files. They are assembled in the executable files and libraries by the 
linker and are not needed after the compilation end.

configure The initial configuration script that should be launched prior to building. It can set up 
different target architectures or turn on and off features.

Makefile Contains instructions for the automated build system.
The file name and format varies depending on system used.
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There are many build systems; some of the most popular ones for C are make, cmake, and automake. 
Different languages have different ecosystems and often have dedicated build tools (e.g., Gradle or 
OCamlBuild).

•	 We recommend you study these projects, which, to our knowledge, are well organized 
www.gnu.org/software/gsl/

•	 www.gnu.org/software/gsl/design/gsl-design.html

•	 www.kylheku.com/kaz/kazlib.html

Doxygen is a de facto standard for creating documentation for C and C++ programs. It allows us to 
generate a fully structured set of HTML or LATEXpages from the program source code. The descriptions of 
functions and variables are taken from specifically formatted comments. Listing 13-5 shows an example of a 
source file which is accepted by Doxygen.

Listing 13-5.  doxygen_example.h

#pragma once
#include <common.h>
#include <vm.h>

/** @defgroup const_pool Constant pool */

/** Free allocated memory for the pool contents
*/
void const_pool_deinit( struct vm_const_pool* pool );

/** Non-destructive constant pool combination
 * @param a First pool.
 * @param b Second pool.
 * @returns An initialized constant pool combining contents of both arguments
 * */
struct vm_const_pool const_combine(
        struct vm_const_pool const* a,
        struct vm_const_pool const* b );

/** Change the constant pool by adding the other pool's contents in its end.
 * @param[out] src The source pool which will be modified.
 * @param fresh The pool to merge with the `src` pool.
 */
void const_merge(
        struct vm_const_pool* src,
        struct vm_const_pool const* fresh );

/**@} */

The specially formatted comments (starting with /** and containing commands such as @defgroup) 
are processed by Doxygen to generate documentation for the respective code entities. For more information, 
refer to Doxygen documentation.

http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/design/gsl-design.html
www.kylheku.com/kaz/kazlib.html
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13.4 � Encapsulation
One of the thinking fundamentals is abstraction. In software engineering, it is a process of hiding 
implementation details and data.

If we want to implement a certain behavior like an image rotation, we would like to think only about 
the image rotation. The input file format, the format of its headers, is of little importance to us. What is really 
important is to be able to work with dots which form the image and know its dimensions. However, you 
cannot write a program without considering all this information that is actually independent of the rotation 
algorithm itself.

We are going to split the program into parts; each part will do its purpose and only it. This logic can 
be used by calling a set of exposed functions and/or a set of exposed global variables. Together they form 
an interface for this program part. To implement them, however, we usually have to write more functions, 
which are better hidden from the end user.

■■ Working with version control systems  When working in a team where many people perform changes 
simultaneously, making smaller functions is very important. If a function performs many actions, and its code is 
huge, multiple independent changes will be harder to merge automatically.

In programming languages supporting packages or classes, these are used to hide pieces of code and 
create interfaces for them. Unfortunately, C has none of them; furthermore, there is no concept of “private 
fields” in structures: all fields are seen by everyone.

The support for separate code files, called translation units, is the only real language feature to help us 
isolate parts of program code. We use a notion of module as a synonym for a translation unit, a .c file.

The C standard does not define a notion of module. In this book we are using them interchangeably 
because for the C language they are roughly equivalent.

As we know, functions and global variables become public symbols by default and thus accessible to 
other files. What is reasonable is to mark all “private” functions and global variables as static in the .c file 
and declare all “public” functions in the .h file.

As an example, we are going to write a module that implements a stack.
The header file will describe the structure and the functions that can operate its instances. It resembles 

object-oriented programming without subtyping (no inheritance).
The interface will consist of the following functions:

•	 Create or destroy a stack;

•	 Push and pop elements from a stack.

•	 Check if the stack is empty.

•	 Launch a function for each element in the stack.

The code file will define all functions and probably some more, which won’t be accessible outside of it 
and are only created for the sake of decomposition and code reusability.

Listings 13-6 and 13-7 show the resulting code. stack.h describes an interface. It has an include guard, 
enumerates all other headers (first standard headers, then custom ones), and defines custom types.
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Listing 13-6.  stack.h

#ifndef _STACK_H_
#define _STACK_H_

#include <stddef.h>
#include  <stdint.h>
#include  <stdbool.h>

struct list;

struct stack  {
    struct list* first;
    struct list* last;
    size_t count;
};

struct stack stack_init    ( void );
void stack_deinit( struct stack* st );

void stack_push( struct stack* s, int value );
int  stack_pop ( struct stack* s );
bool stack_is_empty( struct stack const* s );

void stack_foreach( struct stack* s, void (f)(int) );

#endif  /* _STACK_H_  */

There are two types defined: list and stack. The first one is only used internally inside the stack, 
and so we declared it an incomplete type. Only pointers to instances of such type are allowed unless its 
definition is specified later.

For everyone who includes stack.h, the type struct list will remain incomplete. The implementation 
file stack.c, however, will define the structure, completing the type and allowing to access its fields  
(but only in stack.c).

Then the struct stack is defined and the functions that work with it are declared (stack_push,  
stack_pop, etc.) (see Listing 13-7).

Listing 13-7.  stack.c

#include <malloc.h>
#include "stack.h"

struct list { int value; struct list* next; };

static struct list* list_new( int item, struct list* next ) {
    struct list* lst = malloc( sizeof( *lst ) );
    lst->value  =  item;
    lst->next  =  next;
    return lst;

}

http://dx.doi.org/10.1007/978-1-4842-2403-8_10#Par25
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void stack_push( struct stack* s, int value ) {
    s->first = list_new( value, s->first );
    if ( s->last ==  NULL  ) s->last =  s-> first;
    s->count++;
}

int stack_pop( struct stack* s ) {
    struct list* const head = s->first;
    int value;
    if ( head ) {
        if ( head->next ) s->first = head->next;
        value = head->value;
        free( head );
        if( -- s->count ) {
            s->first =  s->last =  NULL;
        }
        return value;
    }
    return 0;
}

void stack_foreach( struct stack* s, void (f)(int) ) {
    struct list* cur;
    for( cur = s->first; cur; cur = cur-> next )
        f( cur->value );

}

bool stack_is_empty( struct stack const* s ) {
    return s->count == 0;
}

struct stack stack_init( void ) {
    struct stack empty = { NULL, NULL, 0 };
    return empty;
}

void stack_deinit( struct stack* st ) {
    while( ! stack_is_empty( st ) ) stack_pop( st );
    st-> first = NULL;
    st-> last = NULL;
}

This file defines all functions declared in the header. It can be split into multiple .c files, which will 
sometimes do good for the project structure; what is important is that the compiler should accept them all 
and then the compiled code should get to the linker.

A static function list_new is defined to isolate the instance initialization of struct list. It is not 
exposed to the outside world. During optimizations, not only can the compiler inline it, but it can even 
delete the function itself, effectively eliminating any possible implications on the code performance. 
Marking function static is necessary (but not sufficient) for this optimization to occur. Additionally, the 
instructions of static functions might be placed closer to their respective callers, improving locality.

By splitting the program on modules with well-described interfaces you reduce the overall complexity 
and achieve better reusability.
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The need to create header files makes modifications a bit cumbersome because the consistency of 
headers with the code itself is the programmer’s responsibility. However, we can benefit from it as well by 
specifying a clear interface description, which lacks the implementation details.

13.5 � Immutability
It is quite common to have to choose between creating a new modified copy of a structure and performing 
modifications in place.

Here are some advantages and disadvantages of both choices.

•	 Creating copy:

–– Easier to write: you won’t accidentally pass the wrong instance to a function.

–– Easier to debug, because you don’t have to track changes of variable.

–– Can be optimized by the compiler.

–– Friendly to parallelization.

–– Can be slower.

•	 Mutating existing instance.

–– Faster.

–– Can become very hard to debug, especially in a multithreaded environment.

–– Sometimes simpler because you don’t have to carefully and recursively copy struc-
tures with multiple pointers to other structures (this process is called deep 
copying).

–– For objects with a distinct identity, this approach may be more intuitive and is also 
robust enough.

Our perception of the real world is based on mutable objects, because the objects in the real world often 
have a distinct identity. When you are turning on your phone, the phone is not replaced by its copy, but the 
state of the same phone is changed instead. In other words, the identity of the phone is maintained, while its 
state is changing. Thus, in situations where you only have one instance of a certain type and the consecutive 
changes are performed on it, it is fine to mutate it instead of making a copy at every change.

13.6 � Assertions
There is a mechanism that allows you to test certain conditions during program execution. When such a 
condition is not being satisfied, an error is produced and the program is terminated abnormally.

To use the assertion mechanism, we have to use #include <assert.h> and then use the assert macro. 
Listing 13-8 shows an example.

Listing 13-8.  assert.c

#include <assert.h>
int main() {
    int x = 0;
    assert( x != 0 );
    return 0;
}
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The condition, given to the assert macro, is obviously false; hence the program will terminate 
abnormally and inform us about the failed assertion:

assert: assert.c:6: main: Assertion `x != 0' failed.

If the preprocessor symbol NDEBUG is defined (which can be achieved by using -D NDEBUG compiler 
option or #define NDEBUG directive), the assert is replaced by an empty string and thus turned off. So, 
assertions will produce zero overhead and the checks will not be performed.

You should use asserts to check for impossible conditions that signify the inconsistency of the program 
state. Never use asserts to perform checks on user input.

13.7 � Error Handling
While higher-level languages have some kind of error handling mechanism (which does not interfere with 
the main logic description), C lacks one. There are three principal ways to deal with errors:

	 1.	 Use return codes. A function should not return a result as such but a code that 
shows whether it has processed well or not. In the latter case the code reflects 
the exact type of error that has occurred. The computation result is assigned by a 
pointer that is accepted as an additional argument.

Listing 13-9 shows an example.

Listing 13-9.  error_code.c

enum   div_res   {
      DIV_OK,
      DIV_BYZERO
};

enum div_res div( int x, int y, int* result ) {
    if ( y  != 0  ) { *result =  x/y; return DIV_OK;  }
    else return DIV_BYZERO;
}

Symmetrically, you can return values as you do and set up error code using a pointer to a respective 
variable.

Error codes can be described using an enum or with several #defines. Then you can use them as indices 
in a static array of messages or use a switch statement. Listing 13-10 shows an example.

Listing 13-10.  err_switch_arr.c

enum   error_code   {
      ERROR1,
      ERROR2
};
...
enum  error_code  err;
...
switch (err) {
    case ERROR1: ... break;
    case ERROR2: ... break;
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    default: ... break;
}

/* alternatively */

static const char* const messages[] = {
    "It is the first error\n",
    "The second error it is\n"
};

fprintf( stderr, messages[err] );

Never use global variables as error code holders (or to return a value from a function).
According to C standard, a standard variable-like entity errno exists. It should be a modifiable lvalue 

and must not be explicitly declared. Its usage is akin to a global variable, albeit its value is thread-local. The 
library functions use it as an error code holder, so after seeing a failure from a function (e.g., fopen returned 
NULL), one should check the errno value for an error code. The man pages for the respective function 
enumerate possible errno values (e.g., EEXIST).

Despite this feature having sneaked into the standard library, it is largely considered an anti-pattern and 
should not be imitated.

	 2.	 Using callbacks.

Callbacks are function pointers that are passed as arguments and called by the function that accepts 
them. They can be used to isolate the error handling code, but they often look weird to people who are more 
accustomed to traditional return code usage. Additionally, the execution order becomes less obvious.

Listing 13-11 shows an example.

Listing 13-11.  div_cb.c

#include <stdio.h>

int div( int x, int y, void (onerror)(int, int)) {
    if ( y != 0 )
        return x/y;
    else  {
        onerror(x,y);
        return 0;
    }
}

static void div_by_zero(int x, int y) {
    fprintf( stderr, "Division by zero: %d / %d\n", x, y );
}

int main(void) {
    printf("%d %d\n",
            div( 10, 2, div_by_zero ),
            div( 10, 0, div_by_zero ) );
    return 0;
}
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	 3.	 Using longjmp. This advanced technique will be explained in section 14.3.

There is a classical error recovering technique, which requires the goto usage. Listing 13-12 shows an 
example is shown.

Listing 13-12.  goto_error_recover.c

void foo(void)

{
    if (!doA()) goto exit;
    if (!doB()) goto revertA;
    if (!doC()) goto revertB;

    /* doA, doB and doC succeeded */
    return;

revertB:
    undoB();
revertA:
    undoA();
exit:
    return;
}

In this example, three actions have been performed, and they all can fail. The nature of these actions is 
such that we have to do a cleanup after. For example, doA might trigger dynamic memory allocation. In case 
doA succeeded but doB did not, we have to free this memory to prevent memory leak. This is what the code 
labeled revertA does.

The recoveries are performed in reverse order. If doA and doB succeeded, but doC failed, we have to 
revert to B, and then to A. So, we label the reverting stages with the labels and let the control fall through 
them. So, goto revertB will revert to doB first and then fall to the code, reverting to doA. This trick can often 
be seen in a Linux kernel. However, be wary, gotos usually make verification much harder, which is why they 
are sometimes banned.

13.8 � On Memory Allocation
•	 Many programmers advise against flexible arrays allocated on a stack. It is an easy way 

to get a stack overflow if you do not check the length well enough. What’s even worse, 
there is no way to tell whether you can safely allocate a said amount of bytes on a stack 
or not.

•	 Do not overuse malloc! As you will see in the last assignment of this chapter, malloc is 
not cheap at all. Whenever you want to allocate something reasonably small, do it on a 
stack, as a local variable. If some function needs an address of a structure, you can take 
the address of a stack allocated structure and pass to it. This prevents memory leaks 
and improves performance and code readability.

•	 Global variables pose no threat as long as they are constants. Static local variables are 
the same. Use them if you want to limit the usage of a certain constant by one function.
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13.9 � On Flexibility
We advocate code reusability indeed. However, taking this to the extreme results in an absurd amount of 
abstraction layers and boilerplate code that is only present to support a possible future need for additional 
features (which might never happen).

There is no silver bullet, in the large sense. Every programming style, every model of computation, 
is good and concise in some cases and bulky and verbose in other ones. Analogously, the best tool is 
specialized rather than a jack of all trades. You could transform an image viewer into a powerful editor, 
capable of playing video and editing IDv3 tags, but the image viewer facet will surely suffer, and so will the 
user experience.

Writing more abstract code can bring benefits because such code is easier to adapt to new contexts. At 
the same time, it introduces complexity that might be unnecessary. Only generalize to an extent that does no 
harm. To know when to stop you need to answer several questions for yourself, such as

•	 What is the purpose of your program or library?

•	 What are the limits of functionality that you imagine for your program?

•	 Will it be easier to write, use, and/or debug this function if it is written in a more general 
way?

While the first two questions are very subjective, the latter one can be provided with an example. Let’s 
take a look at the code shown in Listing 13-13.

Listing 13-13.  dump_1.c

void dump( char const* filename ) {
    FILE* f = fopen( filename, "w" );
    fprintf(f, "this is the dump %d", 42 );
    fclose( f );
}

Compare it to another version with the same logic, split in two functions, shown in Listing 13-14.

Listing 13-14.  dump_2.c

void dump( FILE* f ) {
    fprintf(f, "this is the dump %d", 42 );
}
void fun( void ) {
    FILE* f = fopen( "dump.txt", "w" );
    dump( f );
    fclose( f );
}

The second version is preferable for two reasons:

•	 The first version requires a filename, which means that you cannot use it to write to 
stderr or stdout.

•	 The second version decouples file opening logic and file writing logic. If you want 
to handle errors that might occur on fprintf, fopen, or fclose calls, you will do it 
separately for fopen, keeping the functions relatively simple. The dump function will not 
handle file opening errors: it will not be called at all if the opening failed.
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Listing 13-15 shows an example of the same logic with error handling. As you see, there is no error 
handling for file opening and closing in dump function; it is performed in fun instead.

Listing 13-15.  file_open_sep.c

#include <stdio.h>

enum stat {
    STAT_OK,
    STAT_ERR_OPEN,
    STAT_ERR_CLOSE,
    STAT_ERR_WRITE
};

enum stat dump( FILE * f ) {
    if ( fprintf( f, "this is the dump %d", 42 ) ) return STAT_OK;
    return  STAT_ERR_WRITE;
}

enum stat fun( void ) {

    enum stat dump_stat;
    FILE * f;

    f =  fopen(  "dump.txt",  "w"  );
    if (!f) return STAT_ERR_OPEN;
    dump_stat = dump( f );
    if ( dump_stat != STAT_OK ) return dump_stat;
    if (! fclose( f ) ) return STAT_ERR_CLOSE;

    return STAT_OK;
}

In case of multiple writes in the dump function, the function will become encumbered and thus less 
readable.

13.10 � Assignment: Image Rotation
You have to create a program to rotate a BMP image of any resolution to 90 degrees clockwise.

13.10.1 � BMP File Format
BMP (BitMaP) format is a raster graphics format, which means that it stores an image as a table of colored 
dots (pixels). In this format the color is encoded with numbers of a fixed size (can be 1, 4, 8, 16, or 24 bits). 
If 1 bit is used per pixel, the image is black and white. If 24 bits are used, the number of different colors 
possible is roughly 16 million. We only implement the rotation of 24-bit images.

The subset of BMP files that your program should be able to work with is described by the structure 
shown in Listing 13-16. It represents the file header, followed immediately by the pixel data.
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Listing 13-16.  bmp_struct.c

#include  <stdint.h>
Struct __attribute__((packed))
    bmp_header {
        uint16_t bfType;
        uint32_t  bfileSize;
        uint32_t bfReserved;
        uint32_t bOffBits;
        uint32_t biSize;

        uint32_t biWidth;
        uint32_t  biHeight;
        uint16_t  biPlanes;
        uint16_t biBitCount;
        uint32_t biCompression;
        uint32_t biSizeImage;
        uint32_t biXPelsPerMeter;
        uint32_t biYPelsPerMeter;
        uint32_t biClrUsed;
        uint32_t  biClrImportant;
};

■■ Question 259 R ead BMP file specifications to identify what these fields are responsible for.

The file format depends on the bit count per pixel. There are no color palettes when 16 or 24 bits per 
pixel are used.

Each pixel is encoded by 24 bits or 3 bytes as shown in Listing 13-17. Each component is a number from 
0 to 255 (one byte) which shows the presence of blue, green, or red color in this pixel. The resulting color is a 
superposition of these three base colors.

Listing 13-17.  pixel.c

struct  pixel  {
    unsigned char b, g, r;
}

Every row of pixels is padded so that its length would be a multiple of 4. For example, the image width 
is 15 pixels. It corresponds to 15 × 3 = 45 bytes. To pad it we skip 3 bytes (to the closest multiple of 4, 48) 
before starting the new row of pixels. Because of this, the real image size will differ from the product of width, 
height, and pixel size (3 bytes).

■■ Note R emember to open the image in a binary mode!
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13.10.2 � Architecture
We want to think about program architecture that is extensible and modular.

	 1.	 Describe the pixel structure struct pixel to not work with the raster table directly 
(as with completely structureless data). This should always be avoided.

	 2.	 Separate the inner image representation from the input format. The rotation is 
performed on the inner image format, which is then serialized back to BMP. There 
can be changes in BMP format, you might want to support other formats, and you 
do not want to couple the rotation algorithm tightly to BMP.

To achieve that, define a structure structure image to store the pixel array (continuous, now without 
padding) and some information that should really be kept. For example, there is absolutely no need to store 
BMP signature here, or any of the never-used header fields. We can get away with the image width and 
height in pixels.

You will need to create functions to read an image from BMP file and to write it to BMP file (probably 
also to generate a BMP header from the inner representation).

	 3.	 Separate file opening from its reading.

	 4.	 Make error handling unified and handle errors in exactly one place (for this very 
program it is enough).

To achieve that, define the from_bmp function, which will read a file from the stream and will return one 
of the codes that show whether the operation completed successfully or not.

Remember the flexibility concerns. Your code should be easy to use in applications with graphical user 
interface (GUI) as well as in those without GUI at all, so throwing prints into stderr all over the place is not 
a good option: restrict them to the error handling piece of code. Your code should be easily adaptable for 
different input formats as well.

Listing 13-18 shows several snippets of starting code.

Listing 13-18.  image_rot_stub.c

#include  <stdint.h>
#include <stdio.h>

struct pixel { uint8_t b,g,r; };

struct image {
    uint64_t width, height;
    struct pixel_t* data;
};

/*  deserializer   */
enum read_status  {
    READ_OK = 0,
    READ_INVALID_SIGNATURE,
    READ_INVALID_BITS,
    READ_INVALID_HEADER
        /* more codes  */
};

enum read_status from_bmp( FILE* in, struct image* const read );
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/*  image_t from_jpg( FILE* );...
 *  and other deserializers are possible
 *  All information needed will be
 *  stored in image structure */

/* makes a rotated copy */
struct image rotate( struct image const source );

/*  serializer   */
enum  write_status  {
     WRITE_OK = 0,
     WRITE_ERROR
         /* more codes */
};

enum write_status to_bmp( FILE* out, struct image const* img );

■■ Question 260 I mplement blurring. It is done in a very simple way: for each pixel you compute its new 
components as an average in a 3 × 3 pixels window (called kernel). The border pixels are left untouched.

■■ Question 261 I mplement rotation to an arbitrary angle (not only 90 or 180 degrees).

■■ Question 262 I mplement “dilate” and “erode” transformations. They are similar to the blur, but instead of 
doing an average in a window, you have to compute the minimal (erode) or maximal (dilate) component values.

13.11 � Assignment: Custom Memory Allocator
In this assignment, we are going to implement our own version of malloc and free based on the memory 
mapping system call mmap and a linked list of chunks of arbitrary sizes. It can be viewed as a simplified 
version of a memory manager typical for the standard C library and shares most of its weaknesses.

For this assignment, the usage of malloc/calloc, free and realloc is forbidden.
As we know, these functions are used to manipulate the heap. The heap consists of anonymous pages 

and is in fact a linked list of chunks. Each chunk consists of a header and the data itself. The header is 
described by a structure shown in Listing 13-19.

Listing 13-19.  mem_str.c

struct mem  {
    struct mem* next;
    size_t capacity;
    bool is_free;
};

http://dx.doi.org/10.1007/978-1-4842-2403-8_4#Par29
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The header is immediately followed by the usable area.
We need to store both the size and the link to the next block because in our case the heap can have gaps 

for two reasons.

•	 The heap start can be placed between two already mapped regions.

•	 The heap can grow to an arbitrary size.

An allocation in a heap is splitting the first available chunk in two (given its size is enough). It marks the 
first part as not free and returns its address. If there are no free chunks big enough for the requested size, the 
allocator attempts to get more memory from OS by calling mmap.

There is no point allocating blocks of 1 or 3 bytes; they are too small. It is usually a waste since the 
header size is superior anyway. So we are going to introduce a constant BLOCK_MIN_SIZE for the minimal 
allowed block size (not including header).

Given a request of query bytes, we first change it to BLOCK_MIN_SIZE if it is too small. Then we iterate 
over the block chain and apply the following logic to each block:

•	 query <= capacity-sizeof(struct mem) - MINIMAL_BLOCK_SIZE

In this case, we can split the block in two and use the first part as the allocated memory chunk, leaving 
the second one free.

•	 Otherwise the block is not large enough to hold a requested amount of bytes.

–– If the block is not last, we continue to the next block.

–– Otherwise we need to map more pages (enough to allocate query bytes).

First we try to do it immediately after the block end (flag MAP_FIXED for mmap), and if we succeed, we 
enlarge the current block to incorporate new pages. At the end, we split it in two and use the first of the pair.

If we cannot map more pages immediately at the heap end, we try to map them anywhere (enough to 
store query bytes). Then we split it in two and use the first of the pair.

If all mappings fail, we return NULL, just as malloc does.
The free is easier to implement. Given the block start we have to calculate the respective header start, 

which changes its status from “allocated” to “free.” If it is followed immediately by a free block, they are 
merged. This is not the case when the block is the last in its memory region and the next one is mapped after 
a certain gap. You can use the header file shown in Listing 13-20 as a starting point.

Listing 13-20.  mem.h

#ifndef _MEM_H_
#define _MEM_H_

#define _USE_MISC

#include <stddef.h>
#include  <stdint.h>
#include <stdio.h>

#include <sys/mman.h>

#define  HEAP_START  ((void*)0x04040000)

struct mem;
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#pragma pack(push, 1)
struct mem  {
    struct mem* next;
    size_t capacity;
    bool is_free;
};
#pragma pack(pop)

void* _malloc( size_t query );
void  _free( void* mem );
void* heap_init( size_t initial_size );

#define DEBUG_FIRST_BYTES 4

void memalloc_debug_struct_info( FILE* f,
        struct mem const* const address );

void memalloc_debug_heap( FILE* f,   struct mem  const* ptr );

#endif

Remember that complex logic begs for well-thought-out decomposition on smaller functions.
You can use the code shown in Listing 13-21 to debug the heap state. Do not forget that you can also 

wait for user input and check the /proc/PID/maps file to see the actual mappings of a process with the 
identifier PID.

Listing 13-21.  mem_debug.c

#include "mem.h"

void memalloc_debug_struct_info( FILE* f,
        struct mem const* const address ) {

    size_t i;

    fprintf( f,
            "start: %p\nsize: %lu\nis_free: %d\n",
            (void*)address,
            address-> capacity,
            address-> is_free );
    for ( i = 0;
            i <  DEBUG_FIRST_BYTES  &&  i <  address-> capacity;
            ++i )
        fprintf( f, "%hhX",
                ((char*)address)[ sizeof( struct mem_t ) + i ] );
    putc( '\n', f );
}

void memalloc_debug_heap( FILE* f, struct mem const* ptr ) {
    for( ; ptr; ptr = ptr->next )
        memalloc_debug_struct_info( f, ptr );
}

An estimated number of lines of code is 150 to 200. Do not forget to write a Makefile.
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13.12 � Summary
In this chapter we have extensively studied some of the most important recommendations considering 
coding style and program architecture. We have seen the naming conventions and the reasons behind the 
common code guidelines. When we write code, we should adhere to certain restrictions derived from our 
requirements for the code as well as the development process itself. We have seen such important concepts 
as encapsulation. Finally, we have provided two more advanced assignments, where you can apply your new 
knowledge about program architecture. In the next part we are going to dive into the details of translation, 
review some language features that are easier to understand on the assembly level, and talk about 
performance and compiler optimizations.



PART III

Between C and Assembly
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CHAPTER 14

Translation Details

In this chapter we are going to revisit the notion of calling convention to deepen our understanding and 
work through translation details. This process requires both understanding program functioning on the 
assembly level and a certain degree of familiarity with C. We are also going to review some classic low-level 
security vulnerabilities that might be opened by a careless programmer. Understanding these low-level 
translation details is sometimes crucial for eradicating very subtle bugs that do not reveal themselves at 
every execution.

14.1 � Function Calling Sequence
In Chapter 2 we studied how to call the procedures, how they return values, and how they accept arguments. 
The full calling sequence is described in [24] and we highly recommend you to take a look at it. We are going 
to revisit this process and add valuable details.

14.1.1 � XMM Registers
Besides the registers we have already talked about, the modern processors have several sets of special 
registers that come from processor extensions. An extension provides additional circuitry, expands an 
instruction set, and sometimes adds usable registers. A notable extension is called SSE (Streaming SIMD 
Extensions) and describes a set of xmm registers: xmm0, xmm1, ..., xmm15. They are 128 bits wide and are 
usually used for two kinds of tasks:

•	 Floating point arithmetic; and

•	 SIMD instructions (such instructions are performing an action on multiple data).

The usual mov command cannot work with xmm registers. The movq command is used instead to copy 
data between the least significant half of xmm registers (64 bits of 128) on one side and xmm registers, general 
purpose registers, or memory on the other side (also 64 bits).

To fill the whole xmm register, you have two options: movdqa and movdqu. The first one is deciphered as 
“move aligned double quad word,” the second is the unaligned version.

Most SSE instructions require the memory operands to be properly aligned. The unaligned versions 
of these instructions often exist with different mnemonic and imply a performance penalty due to an 
unaligned read. As SSE instructions are often used in performance sensitive places, it is usually wiser to stick 
to the instructions requiring operand alignment.

We will use the SSE instructions to perform high-performance computations in section 16.4.1.

■■ Question 263  Read about the movq, movdqa, and movdqu instructions in [15].

http://dx.doi.org/10.1007/978-1-4842-2403-8_2
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par25
http://dx.doi.org/10.1007/978-1-4842-2403-8_16#Sec18
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
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14.1.2 � Calling Convention
Calling convention is a set of rules about function calling sequence a programmer willingly adheres to. 
If everyone is following the same rules, a smooth interoperability is guaranteed. However, once someone 
breaks the rules, for example, makes changes, and does not restore rbp in a certain function, anything can 
happen: nothing, a delayed crash, or an immediate one. The reason is that other functions are written with 
the implication that these rules are respected and they count on rbp being left untouched.

The calling conventions declare, among other things, the argument passing algorithm. In the case of 
the typical *nix x86 64 convention we are using (described fully in [24]), the description that follows is an 
accurate enough approximation of how the function is called.

	 1.	 First, the registers that need to be preserved are saved. All registers except for 
seven callee-saved registers (rbx, rbp, rsp, and r12-r15) can be changed by 
the called function, so if their value is of any importance, they should be stored 
(probably in a stack).

	 2.	 The registers and stack are populated with arguments.

The size of each argument gets rounded up to 8 bytes.

The arguments are split into three lists:

(a)	 Integer or pointer arguments.

(b)	 Floats and doubles.

(c)	 Arguments passed in memory via stack (“memory”).

The first six arguments from the first list are passed in general purpose registers 
(rdi, rsi, rdx, rcx, r8, and r9). The first eight arguments from the second list 
are passed in registers xmm0 to xmm7. If there are more arguments from these lists 
to pass, they are passed on to the stack in reverse order. It means that the last 
argument will be on top of the stack before the call is performed.

While integers and floats are quite trivial to handle, structures are a bit trickier.

If a structure is bigger than 32 bytes, or has unaligned fields, it is passed in 
memory.

A smaller structure is decomposed in fields and each field is treated separately 
and, if in an inner structure, recursively. So, a structure of two elements can be 
passed the same way as two arguments. If one field of a structure is considered 
“memory,” it propagates to the structure itself.

The rbp register, as we will see, is used to address the arguments passed in 
memory and local variables.

What about return values? Integer and pointer values are returned in rax and rdx. 
Floating point values are returned in xmm0 and xmm1. Big structures are returned 
through a pointer, provided as an additional hidden argument, in the spirit of the 
following example:

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par25
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struct s {
    char vals[100];
};

struct s f( int x ) {
    struct s mys;
    mys.vals[10] = 42;
    return mys;
}

void f( int x, struct s* ret ) {
    ret->vals[10] = 42;
}

	 3.	 Then the call instruction should be called. Its parameter is the address of the first 
instruction of a called function. It pushes the return address into the stack.

Each program can have multiple instances of the same function launched at the 
same time, not only in different threads but also due to recursion. Each such 
function instance is stored in the stack, because its main principle—“last in, first 
out”—corresponds to how functions are launched and terminated. If a function f 
is launched and then invokes a function g, g is terminated first (but was invoked 
last), and f is terminated last (while being invoked first).

Stack frame is a part of a stack dedicated to a single function instance. It stores the 
values of the local variables, temporal variables, and saved registers.

The function code is usually enclosed inside a pair of prologue and epilogue, 
which are similar for all functions. Prologue helps initialize the stack frame, and 
epilogue deinitializes it.

During the function execution, rbp stays unchanged and points to the beginning 
of its stack frame. It is possible to address local variables and stack arguments 
relatively to rbp. It is reflected in the function prologue shown in Listing 14-1.

Listing 14-1.  prologue.asm

func:
push rbp
mov rbp, rsp

sub rsp, 24      ; given 24 is total size of local variables

The old rbp value is saved to be restored later in epilogue. Then a new rbp is set 
up to the current top of the stack (which stores the old rbp value now by the way). 
Then the memory for the local variables is allocated in the stack by subtracting 
their total size from rsp. This is the automatic memory allocation in C and the 
technique we have used in the very first assignment to allocate buffers on stack.

The functions end with an epilogue shown in Listing 14-2.

Listing 14-2.  epilogue.asm

mov rsp, rbp
pop rbp
ret
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By moving the stack frame the beginning address into rsp we can be sure that all 
memory allocated in the stack is deallocated. Then the old rbp value is restored, 
and now rbp points at the start of the previous stack frame. Finally, ret pops the 
return address from stack into rip.

A fully equivalent alternative form is sometimes chosen by the compiler. It is 
shown in Listing 14-3.

Listing 14-3.  epilogue_alt.asm

Leave
ret

The leave instruction is made especially for stack frame destruction. Its 
counterpart, enter, is not always used by compilers because it is more functional 
than the instruction sequence shown in Listing 14-1. It is aimed at languages with 
inner functions support.

	 4.	 After leaving the function, our work is not always done. In case there were 
arguments that were passed in memory (stack), we have to get rid of them too.

14.1.3 � Example: Simple Function and Its Stack
Let’s take a look at a simple function that calculates a maximum of two values. We are going to compile it 
without optimizations and see the assembly listing.

Listing 14-4 shows an example.

Listing 14-4.  maximum.c

int maximum( int a, int b ) {
    char buffer[4096];
    if (a < b) return b;
    return a;
}

int main(void) {
    int x = maximum( 42, 999 );
    return 0;
}

Listing 14-5 shows the disassembly produced by objdump.

Listing 14-5.  maximum.asm

00000000004004b6 <maximum>:
4004b6:       55                      push   rbp
4004b7:       48 89 e5                mov    rbp,rsp
4004ba:       48 81 ec 90 0f 00 00    sub    rsp,0xf90
4004c1:       89 bd fc ef ff ff       mov    DWORD PTR [rbp-0x1004],edi
4004c7:       89 b5 f8 ef ff ff       mov    DWORD PTR [rbp-0x1008],esi
4004cd:       8b 85 fc ef ff ff       mov    eax,DWORD PTR [rbp-0x1004]
4004d3:       3b 85 f8 ef ff ff       cmp    eax,DWORD PTR [rbp-0x1008]
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4004d9:       7d 08                   jge    4004e3 <maximum+0x2d>
4004db:       8b 85 f8 ef ff ff       mov    eax,DWORD PTR [rbp-0x1008]
4004e1:       eb 06                   jmp    4004e9 <maximum+0x33>
4004e3:       8b 85 fc ef ff ff       mov    eax,DWORD PTR [rbp-0x1004]
4004e9:       c9                      leave
4004ea:       c3                      ret

00000000004004eb <main>:
4004eb:       55                      push   rbp
4004ec:       48 89 e5                mov    rbp,rsp
4004ef:       48 83 ec 10             sub    rsp,0x10
4004f3:       be e7 03 00 00          mov    esi,0x3e7
4004f8:       bf 2a 00 00 00          mov    edi,0x2a
4004fd:       e8 b4 ff ff ff          call   4004b6 <maximum>
400502:       89 45 fc                mov    DWORD PTR [rbp-0x4],eax

After a bit of cleaning, we get a pure and more readable assembly code, which is shown in Listing 14-6.

Listing 14-6.  maximum_refined.asm

mov rsi, 999
mov rdi, 42
call maximum

...
maximum:
push rbp
mov rbp, rsp
sub rsp, 3984

mov [rbp-0x1004], edi
mov [rbp-0x1008], esi
mov eax, [rbp-0x1004]
...

Leave
ret

■■ Register assignment  Refer to section 3.4.2 for the explanation about why changing esi means a change 
in the whole rsi.

We are going to trace the function call and its prologue (check Listing 14-6) and show the stack contents 
immediately after its execution.



Chapter 14 ■ Translation Details

270

call maximum

push rbp

mov rbp, rsp
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sub rsp, 3984

14.1.4 � Red Zone
The red zone is an area of 128 bytes that spans from rsp to lower addresses. It relaxes the rule “no data 
below rsp”; it is safe to allocate data there and it will not be overwritten by system calls or interrupts. We are 
speaking about direct memory writes relative to rsp without changing rsp. The function calls will, however, 
still overwrite the red zone.

The red zone was created to allow a specific optimization. If a function never calls other functions, it can 
omit stack frame creation (rbp changes). Local variables and arguments will then be addressed relative to 
rsp, not rbp.

•	 The total size of local variables is less than 128 bytes.

•	 A function is a leaf function (does not call other functions).

•	 Function does not change rsp; otherwise it is impossible to address  
memory relative to it.

By moving rsp ahead you can still get more free space to allocate your data in, than 128 bytes in the stack. 
See also section 16.1.3.

14.1.5 � Variable Number of Arguments
The calling convention that we are using supports the variable arguments count. It means that the function 
can accept an arbitrary number of arguments. It is possible because arguments passing (and cleaning the 
stack after the function termination) is the responsibility of the calling function.

The declaration of such functions contains a so-called ellipsis—three dots instead of the last argument. 
The typical function with variable number of arguments is our old friend printf.

void printf( char const* format, ... );
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How does printf know the exact number of arguments? It knows for sure that at least one argument is 
passed (char const* format). By analyzing this string and counting the specifiers it will compute the total 
number of arguments as well as their types (in which registers they should be).

■■ Note I n case of variable number of arguments, al should contain the number of xmm registers used by 
arguments.

As you see, there is absolutely no way to know how many arguments have been exactly passed. The 
function deduces it from the arguments that are certainly present (format in this case). If there are more 
format specifiers than arguments, printf will not know about it and will try to get the contents of the 
respective registers and memory naively.

Apparently, this functionality cannot be encoded in C by a programmer directly, because the registers 
cannot be accessed directly. However, there is a portable mechanism of declaring functions with variable 
argument count that is a part of the standard library. Each platform has its own implementation of this 
mechanism. It can be used after stdarg.h file is included and consists of the following:

•	 va_list–a structure that stores information about arguments.

•	 va_start–a macro that initializes va_list.

•	 va_end–a macro that deinitializes va_list.

•	 va_arg–a macro that takes a next argument from the argument list when given an 
instance of va_list and an argument type.

Listing 14-7 shows an example. The function printer accepts a number of arguments and an arbitrary 
number of them.

Listing 14-7.  vararg.c

#include <stdarg.h>
#include <stdio.h>

void printer( unsigned long argcount, ... ) {
    va_list args;
    unsigned long i;
    va_start( args, argcount );
    for (i = 0; i < argcount; i++ )
        printf(" %d\n", va_arg(args, int )  );

    va_end( args );
}

int main () {
    printer(10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 );
    return 0;
}

First, va_list is initialized with the name of the last argument before dots by va_start. Then, each call 
to va_arg gets the next argument. The second parameter is the name of the fresh argument’s type. In the 
end, va_list is deinitialized using va_end.

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Par12
http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Par12
http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Par12
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Since a type name becomes an argument and va_list is used by name, but is mutated, this example 
can look confusing.

■■ Question 264  Can you imagine a situation in which a function, not a macro, accepts a variable by name 
(syntactically) and changes it? What should be the type of such variable?

14.1.6 � vprintf and Friends
Functions such as printf, fprintf, etc., have special versions. Those accept va_list as their last arguments. 
Their names are prefixed with a letter v, for example,

int vprintf(const char *format, va_list ap);

They are being used inside custom functions which in their turn accept an arbitrary number of 
arguments.

Listing 14-8 shows an example.

Listing 14-8.  vsprintf.c

#include <stdarg.h>
#include <stdio.h>

void logmsg( int client_id, const char* const str, ... ) {
    va_list args;
    char buffer[1024];
    char* bufptr = buffer;

va_start( args, str );

bufptr += sprintf(bufptr, "from client %d :", client_id );
vsprintf( bufptr, str, args );
fprintf( stderr, "%s", buffer );

va_end( args );
}

14.2 � volatile
The volatile keyword affects greatly the way the compiler optimizes the code.

The model of computation for C is a von Neumann one. It does not support parallel program execution 
and the compiler usually tries to do as many optimizations as it can without changing the observable 
program behavior. It might include reordering of instructions and caching variables in registers. Reading a 
value from memory which is not written anywhere is omitted.

However, reading and writing in volatile variables always happen. The order of operations is also 
preserved.
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The main use cases are as follows:

•	 memory mapped IO, when the communication with external devices is performed 
by interacting with a certain dedicated memory region. Writing a character into video 
memory (which results in it displayed on screen) really means it.

•	 Data sharing between threads. If memory is used to communicate with other threads, 
you do not want the writes or the reads to be optimized out.

Note that volatile alone is not enough to perform robust communication between threads.
Just like the const qualifier, in case of a pointer, volatile can be applied to the data it points to, as well 

as to the pointer itself. The rule is the same: volatile on the left of the asterisk relates to the data it points to, 
and on the right -- to the pointer itself.

14.2.1 � Lazy Memory Allocation
Many operating systems map pages lazily, at the time of the first usage rather than right after mmap call (or its 
equivalent).

If the programmer wants no delays on the first-page usages, he might choose to address each page 
individually so that the operating system really creates it, as shown in Listing 14-9.

Listing 14-9.  lma_bad.c

char* ptr;
for( ptr = start; ptr < start + size; ptr += pagesize )
*ptr;

However, this code has no observable effect from the point of view of the compiler, so it might be 
optimized away completely. However, when the pointer is marked volatile, this will not be the case.  
Listing 14-10 shows an example.

Listing 14-10.  lma_good.c

volatile char* ptr;
for( ptr = start; ptr < start + size; ptr += pagesize )
*ptr;

■■ Volatile pointers in the language standard I f the volatile pointer is pointing at the non-volatile memory, 
according to the standard there are no guarantees! They exist only when both the pointer and the memory are 
volatile. So, according to the standard, the example above is incorrect. However, as programmers are using the 
volatile pointers with exactly this reasoning, the most used compilers (MSVC, GCC, clang) do not optimize away 
the dereferencing of volatile pointers. There is no a standard-conforming way of doing this.

14.2.2 � Generated Code
We are going to study the example shown in Listing 14-11.
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Listing 14-11.  volatile_ex.c

#include <stdio.h>

int main( int argc, char** argv ) {
    int ordinary = 0;
    volatile int vol = 4;
    ordinary++;
    vol++;
    printf( "%d\n", ordinary );
    printf( "%d\n", vol );
    return 0;
}

There are two variables: one is volatile, the other is not. Both are incremented and given to printf as 
arguments. GCC will generate the following code (with -O2 optimization level), shown in Listing 14-12:

Listing 14-12.  volatile_ex.asm

; these are two arguments for `printf`
mov    esi,0x1
mov    edi,0x4005d4

; vol = 4
mov    DWORD PTR [rsp+0xc],0x4

; vol ++
mov    eax,DWORD PTR [rsp+0xc]
add    eax,0x1
mov    DWORD  PTR  [rsp+0xc],eax

xor    eax,eax

; printf( "%d\n", ordinary )
; the `ordinary` is not even created in stack frame
; its final precomputed value 1 was placed in `rsi` in the first line!
call   4003e0 <printf@plt>

; the second argument is taken from memory, it is volatile!
mov    esi,DWORD PTR [rsp+0xc]

; First argument is the address of "%d\n"
mov    edi,0x4005d4
xor    eax,eax

; printf( "%d\n", vol )
call   4003e0 <printf@plt>
xor    eax,eax

As we see, the contents of a volatile variable are really read and written each time it occurs in C. The 
ordinary variable will not even be created: the computations will be performed in compile time and the 
final result is stored in rsi, waiting to be used as the second argument of a call.
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14.3 � Non-Local jumps–setjmp
The standard C library contains machinery to perform a very tricky kind of hack. It allows storing a 
computation context and restoring it. The context describes the program execution state with the exception 
of the following:

•	 Everything related to the external world (e.g., opened descriptors).

•	 Floating point computations context.

•	 Stack variables.

It allows saving context and jumping back to it in case we feel like we have to return. We are not limited 
by the same function scope.

Include the setjmp.h to gain access to the following machinery:

•	 jmp_buf is a type of a variable which can store the context.

•	 int setjmp(jmp_buf env) is a function that accepts a jmp_buf instance and stores the 
current context in it. By default it returns 0.

•	 void longjmp(jmp_buf env, int val) is used to return to a saved context, stored in a 
certain variable of type jmp_buf.

When returning from the longjmp, setjmp returns not necessarily 0 but the value val fed to longjmp. 
Listing 14-13 shows an example. The first setjmp will return 0 by default and so will be the val value. 
However, the longjmp accepts 1 as its argument, and the program execution will continue from the setjmp 
call (because they are linked through the usage of the jb). This time setjmp will return 1 and this is the value 
that will be assigned to val.

Listing 14-13.  longjmp.c

#include <stdio.h>
#include <setjmp.h>

int main(void) {
    jmp_buf jb;
    int val;
    val = setjmp( jb );
    puts("Hello!");
    if (val == 0) longjmp( jb, 1 );
    else puts("End");
    return 0;
}

Local variables that are not marked volatile will all hold undefined values after longjmp. This is the 
source of bugs as well as memory freeing related issues: it is hard to analyze the control flow in presence of 
longjmp and ensure that all dynamically allocated memory is freed.

In general, it is allowed to call setjmp as a part of a complex expression, but only in rare cases. In most 
cases, this is an undefined behavior. So, better not to do it.

It is important to remember that all this machinery is based on stack frames usage. It means that you 
cannot perform longjmp in a function with a deinitialized stack frame. For example, the code, shown in 
Listing 14-14, yields an undefined behavior for this very reason.
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Listing 14-14.  longjmp_ub.c

jmp_buf jb;
void f(void) {
    setjmp( jb );
}

void g(void) {
    f();
    longjmp(jb);
}

The function f has terminated already, but we are performing longjmp into it. The program behavior is 
undefined because we are trying to restore a context inside a destroyed stack frame.

In other words, you can only jump into the same function or into a function that is launched.

14.3.1 � Volatile and setjmp
The compiler thinks that setjmp is just a function. However, this is not really so, because this is the point 
from which the program might start to execute again. In normal conditions, some local variables might have 
been cached in registers (or never allocated) before the call to setjmp. When we return to this point due to a 
longjmp call, they will not be restored.

Turning off optimizations changes this behavior. So optimizations turned off hide bugs related to 
setjmp usage.

To write correctly, remember that only volatile local variables are holding defined values after 
longjmp. They are not restored to their ancient values, because jmp_buf does not save stack variables but 
keeps the values from before longjmp.

Listing 14-15 shows an example.

Listing 14-15.  setjmp_volatile.c

#include <stdio.h>
#include <setjmp.h>

jmp_buf buf;

int main( int argc, char** argv ) {
    int var = 0;
    volatile int b = 0;
    setjmp( buf );
    if (b < 3) {
        b++;
        var ++;
        printf( "\n\n%d\n", var );
        longjmp( buf, 1 );
    }

    return 0;
}

We are going to compile it without optimizations (gcc -O0, Listing 14-16) and with optimizations 
(gcc -O2, Listing 14-17).

Without optimizations,
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Listing 14-16.  volatile_setjmp_o0.asm

main:
push     rbp
mov      rbp,rsp
sub      rsp,0x20

; `argc` and `argv` are saved in stack to make `rdi` and `rsi` available
mov    DWORD PTR [rbp-0x14],edi
mov    QWORD PTR [rbp-0x20],rsi

; var = 0
mov    DWORD PTR [rbp-0x4],0x0

; b = 0
mov    DWORD PTR [rbp-0x8],0x0

; 0x600a40 is the address of `buf` (a global variable of type `jmp_buf`)
mov    edi,0x600a40
call   400470 <_setjmp@plt>

; if (b < 3), the good branch is executed
; This is encoded by skipping several instructions to the `.endlabel` if b > 2
mov    eax,DWORD PTR [rbp-0x8]
cmp    eax,0x2
jg     .endlabel

; A fair increment
; b++
mov    eax,DWORD PTR [rbp-0x8]
add    eax,0x1
mov    DWORD PTR [rbp-0x8],eax

; var++
add    DWORD PTR [rbp-0x4],0x1

; `printf` call
mov    eax,DWORD PTR [rbp-0x4]
mov    esi,eax
mov    edi,0x400684
; There are no floating point arguments, thus rax = 0
mov    eax,0x0
call   400450 <printf@plt>

; calling `longjmp`
mov    esi,0x1
mov    edi,0x600a40
call   400490 <longjmp@plt>

.endlabel:
Mov    eax,0x0
Leave
ret
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The program output will be

1
2
3

With optimizations,

Listing 14-17.  volatile_setjmp_o2.asm

main:

; allocating memory in stack
sub    rsp,0x18

; a `setjmp` argument, the address of `buf`

mov    edi,0x600a40

; b = 0
mov    DWORD PTR [rsp+0xc],0x0
; instructions are placed in the order different
; from C statements to make better use of pipeline and other inner
; CPU mechanisms.
call   400470 <_setjmp@plt>

; `b` is read and checked in a fair way
mov    eax,DWORD PTR [rsp+0xc]
cmp    eax,0x2
jle    .branch

; return 0
xor    eax,eax
add    rsp,0x18
ret

.branch:

mov    eax,DWORD PTR [rsp+0xc]

; the second argument of `printf` is var + 1
; It was not even read from memory nor allocated.
; The computations were performed in compile time
mov    esi,0x1

; The first argument of `printf`
mov    edi,0x400674

; b = b + 1
add    eax,0x1
mov    DWORD PTR [rsp+0xc],eax
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xor    eax,eax
call   400450 <printf@plt>

; longjmp( buf, 1 )
mov    esi,0x1
mov    edi,0x600a40
call   400490 <longjmp@plt>

The program output will be

1
1
1

The volatile variable b, as you see, behaved as intended (otherwise, the cycle would have never ended). 
The variable var was always equal to 1, despite being “incremented” according to the program text.

■■ Question 265 H ow do you implement “try–catch”-alike constructions using setjmp and longjmp?

14.4 � inline
inline is a function qualifier introduced in C99. It mimics the behavior of its C++ counterpart.

Before you read an explanation, please, do not assume that this keyword is used to force function 
inlining!

Before C99, there was a static qualifier, which was often used in the following scenario:

•	 The header file includes not the function declaration but the full function definition, 
marked as static.

•	 The header is then included in multiple translation units. Each of them receives a copy 
of the emitted code, but as the corresponding symbol is object-local, the linker does 
not see it as a multiple definition conflict.

In a big project, this gives the compiler the access to the function source code, which enables it to really 
inline the function if needed. Obviously, the compiler might also decide that the function is better left not 
inlined. In this case we start getting the clones of this function pretty much everywhere. Each file is calling its 
own copy, which is bad for locality and bloats the memory image as well as the executable itself.

The inline keyword addresses this issue. Its correct usage is as follows:

•	 Describe an inline function in a relevant header, for example,

inline int inc( int x ) { return x+1; }

•	 In exactly one translation unit (i.e., a .c file), add the external declaration

extern inline int inc( int x ) ;
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This file will contain the function code, which will be referenced by every other file, where the function 
was not inlined.

■■ Semantics change I n GCC prior to 4.2.1 the inline keyword had a slightly other meaning. See the post 
[14] for an in-depth analysis.

14.5 � restrict
restrict is a keyword akin to volatile and const which first appeared in the C99 standard. It is used to 
mark pointers and is thus placed to the right of the asterisk, as follows:

int x;
int* restrict p_x = &x;

If we create a restricted pointer to an object, we make a promise that all accesses to this object will pass 
through the value of this pointer. A compiler can either ignore this or make use of it for certain optimizations, 
which is often possible.

In other words, any write by another pointer will not affect the value stored by a restricted pointer.
Breaking this promise leads to subtle bugs and is a clear case of undefined behavior.
Without restrict, every pointer is a source of possible memory aliasing, when you can access the same 

memory cells by using different names for them. Consider a very simple example, shown in Listing 14-18. Is 
the body of f equal to *x += 2 * (*add);?

Listing 14-18.  restrict_motiv.c

void f(int* x, int* add) {
    *x += *add;
    *x += *add;
}

The answer is, surprisingly, no, they are not equal. What if add and x are pointing to the same address? 
In this case, changing *x changes *add as well. So, in case x == add, the function will add *x to *x making it 
two times the initial value, and then repeat it making it four times the initial value. However, when x != add, 
even if *x == *add the final *x will be three times the initial value.

The compiler is well aware of it, and even with optimizations turned on it will not optimize away two 
reads, as shown in Listing 14-19.

Listing 14-19.  restrict_motiv_dump.asm

0000000000000000 <f>:
0:   8b 06                     mov   eax,DWORD PTR [rsi]
2:   03 07                     add   eax,DWORD PTR [rdi]
4:   89 07                     mov   DWORD PTR [rdi],eax
6:   03 06                     add   eax,DWORD PTR [rsi]
8:   89 07                     mov   DWORD PTR [rdi],eax
a:   c3                        ret

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par15
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However, add restrict, as shown in Listing 14-20, and the disassembly will demonstrate an 
improvement, as shown in Listing 14-21. The second argument is read exactly once, multiplied by 2, and 
added to the dereferenced first argument.

Listing 14-20.  restrict_motiv1.c

void f(int* restrict x, int* restrict add) {
    *x += *add;
    *x += *add;
}

Listing 14-21.  restrict_motiv_dump1.asm

0000000000000000 <f>:
   0:   8b 06                    mov   eax,DWORD PTR [rsi]
   2:   01 c0                    add   eax,eax
   4:   01 07                    add   DWORD PTR [rdi],eax
   6:   c3                       ret

Only use restrict if you are sure what you are doing. Writing a slightly ineffective program is much 
better than writing an incorrect one.

It is important to use restrict also to document code. For example, the signature for memcpy, a function 
that copies n bytes from some starting address s2 to a block starting with s1, has changed in C99:

void*
memcpy(void*       restrict s1,
       const void* restrict s2,

       size_t               n );

This reflects the fact that these two areas should not overlap; otherwise the correctness is not 
guaranteed.

Restricted pointers can be copied from one to another to create a hierarchy of pointers. However, the 
standard limits this by cases when the copy is not residing in the same block with the original pointer. 
Listing 14-22 shows an example.

Listing 14-22.  restrict_hierarchy.c

struct s {
    int* x;
} inst;

void f(void) {
    struct s* restrict p_s = &inst;
    int* restrict p_x = p_s->x; /* Bad */
    {
        int* restrict p_x2 = p_s->x; /* Fine, other block scope */
    }
}
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14.6 � Strict Aliasing
Before restrict was introduced, programmers sometimes achieved the same effect by using different 
structure names. The compiler thinks that different data types imply that the respective pointers cannot 
point to the same data (which is known as the strict aliasing rule).

The assumptions include the following:

•	 Pointers to different built-in types do not alias.

•	 Pointers to structures or unions with different tags do not alias  
(so struct foo and struct bar are never used one for another).

•	 Type aliases, created using typedef, can refer to the same data.

•	 The type char* is exceptional (signed or not). The compiler always assumes that char* 
can alias other types, but not vice versa. It means that we can create a char buffer, use 
it to get data, and then alias it as an instance of some struct packet.

Breaking these rules can lead to subtle optimization bugs, because it triggers undefined behavior.
The example shown in Listing 14-18, can be rewritten to achieve the same effect without the restrict 

keyword. The idea is to use the strict aliasing rules to our benefit, packing both parameters into the 
structures with different tags.

Listing 14-23 shows the modified source.

Listing 14-23.  restrict-hack.c

struct a {
    int v;
};
struct b {
    int v;
};

void f(struct a* x, struct b* add) {
    x->v += add->v;
    x->v += add->v;
}

To our satisfaction, the compiler optimizes the reads away just as we wanted. Listing 14-24 shows the 
disassembly.

Listing 14-24.  restrict-hack-dump

0000000000000000 <f>:
   0:   8b 06                     mov   eax,DWORD PTR [rsi]
   2:   01 c0                     add   eax,eax
   4:   01 07                     add   DWORD PTR [rdi],eax
   6:   c3                        ret

We discourage using aliasing rules for optimization purposes in code for C99 and newer standards 
because restrict makes the intention more obvious and does not introduce unnecessary type names.
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14.7 � Security Issues
C was not created as a language to create robust software. It allows working with memory directly and has no 
means of controlling the correctness, neither static, like Rust, nor dynamic, like Java. We are going to review 
some classical security holes, which we now can explain in full detail.

14.7.1 � Stack Buffer Overrun
Suppose that the program uses a function f with a local buffer, as shown in Listing 14-25.

Listing 14-25.  buffer_overrun.c

#include <stdio.h>

void f( void ) {
    char buffer[16];
    gets( buffer );
}

int main( int argc, char** argv ) {
    f();
    return 0;
}

After being initialized, the layout of the stack frame will look as follows:

The gets function reads a line from stdin and places it in the buffer, whose address is accepted as an 
argument. Unfortunately, it does not control the buffer size at all and thus can surpass it.

If the line is too long, it will overwrite the buffer, then the saved rbp value, and then the return address. 
When the ret instruction is executed, the program will most probably crash. Even worse, if the attacker 
forms a clever line, it can rewrite the return address with specific bytes forming a valid address.
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Should the attacker choose to redirect the return address directly into the buffer being overrun, he can 
transmit the executable code directly in this buffer. Such code is often called shellcode, because it is small 
and usually only opens a remote shell to work with.

Obviously, this is not only the flaw in gets but the feature of the language itself. The moral is never to 
use gets and always to provide a way to check the bounds of the target memory block.

14.7.2 � return-to-libc
As we have already elaborated, the malevolent user can rewrite the return address if the program allows him 
to overrun the stack buffer. The return-to-libc attack is performed when the return address is the address 
of a function in the standard C library. One function is of a particular interest, int system(const char* 
command). This function allows you to execute an arbitrary shell command. What’s even worse, it will be 
executed with the same privileges as the attacked program.

When the current function terminates by executing the ret command, we will start executing the 
function from libc. It is yet a question, how do we form a valid argument for it?

In the presence of ASLR (address space layout randomization), doing this attack is nontrivial (but still 
possible).

14.7.3 � Format Output Vulnerabilities
Format output functions can be a source of very nasty bugs. There are several such functions in standard 
library; Table 14-1 shows them.

Table 14-1.  String Format Functions

Function Description

printf Outputs a formatted string.

fprintf Writes the printf to a file.

sprintf Prints into a string.

snprintf Prints into a string checking the length.

vfprintf Prints the va_arg structure to a file.

vprintf Prints the va_arg structure to stdout.

vsprintf Prints the va_arg to a string.

vsnprintf Prints the va_arg to a string checking the length.

Listing 14-26 shows an example. Suppose that the user inputs less than 100 symbols. Can you crash this 
program or produce other interesting effects?

Listing 14-26.  printf_vuln.c

#include <stdio.h>
int main(void) {
    char buffer[1024];
    gets(buffer);
    printf( buffer );
    return 0;

}
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The vulnerability does not come from gets usage but from usage of the format string taken from the 
user. The user can provide a string that contains format specifiers, which will lead to an interesting behavior. 
We will mention several potentially unwanted types of behavior.

•	 The "%x" specifiers and its likes can be used to view the stack contents. First 5 "%x" will 
take arguments from registers (rdi is already occupied with the format string address), 
then the following ones will show the stack contents. Let’s compile the example  
shown in Listing 14-26 and see its reaction on an input "%x %x %x %x %x %x %x %x 
%x %x %x".

> %x %x %x %x %x %x %x %x %x %x
b1b6701d b19467b0 fbad2088 b1b6701e 0 25207825 20782520 78252078 25207825

As we see, it actually gave us four numbers that share a certain informal similarity, a 0 and two more 
numbers. Our hypothesis is that the last two numbers are taken from the stack already.

Getting into gdb and exploring the memory near the stack top right after printf call we are going to get 
results that prove our point. Listing 14-27 shows the output.

Listing 14-27.  gdb_printf

(gdb) x/10 $rsp
0x7fffffffdfe0: 0x25207825   0x78252078   0x20782520   0x25207825
0x7fffffffdff0: 0x78252078   0x20782520   0x25207825   0x00000078
0x7fffffffe000: 0x00000000   0x00000000

•	 The "%s" format specifier is used to print strings. As a string is defined by the address 
of its start, this means addressing memory by a pointer. So, if no valid pointer is given, 
the invalid pointer will be dereferenced.

■■ Question 266  What will be the result of launching the code shown in Listing 14-26 on input "%s %s %s %s %s"?

•	 The "%n" format specifier is a bit exotic but still harmful. It allows one to write an integer 
into memory. The printf function accepts a pointer to an integer which will be rewritten 
with an amount of symbols written so far (before "%n" occurs). Listing 14-28 shows an 
example of its usage.

Listing 14-28.  printf_n.c

#include <stdio.h>

int main(void) {
    int count;
    printf( "hello%n world\n", &count);
    printf( "%d\n", count );
    return 0;
}
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This will output 5, because there were five symbols output before "%n". This is not a trivial string length 
because there can be other format specifiers before, which will result in an output of variable length (e.g., 
printing an integer can emit seven or ten symbols). Listing 14-29 shows an example.

Listing 14-29.  printf_n_ex.c

int x;
printf("%d %n", 10, &x);  /* x = 3 */
printf("%d %n", 200, &x); /* x = 4 */

To avoid that, do not use the string accepted from the user as a format string. You can always write 
printf("%s", buffer), which is safe as long as the buffer is not NULL and is a valid null-terminated string. 
Do not forget about such functions as puts of fputs, which are not only faster but also safer.

14.8 � Protection Mechanisms
Rewriting a return address can lead to one of the following two consequences:

•	 The program abnormally terminates.

•	 Attacker executes arbitrary code.

In the first case, we can fall victim to a DoS (Denial of Service) attack, when the program, providing a 
specific service, becomes unavailable. However, the second option is much worse.

14.8.1 � Security Cookie
The security cookie (stack guard, canary) is supposed to protect us from arbitrary code execution by forcing 
abnormal program termination once the return address is changed.

The security cookie is a random value residing in the stack frame near the saved rbp and return address.
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Overrunning the buffer will rewrite the security cookie. Before the ret instruction, the compiler emits a 
special check that verifies the integrity of the security cookie, and if it is changed, it crashes the program. The 
ret instruction does not get to be executed.

Both MSVC and GCC have this mechanism turned on by default.

14.8.2 � Address Space Layout Randomization
Loading each program section to a random place in an address space makes it nearly impossible to guess a 
correct return address to perform an intelligent jump. Most commonly used operating systems support it; 
however, that feature should be enabled during the compilation. In this case, the information about ASLR 
support will be stored in the executable file itself, which will force the loader to perform a correct relocation.

14.8.3 � DEP
We have already discussed Data Execution Prevention in Chapter 4 This technology protects some pages 
from executing instructions stored on these pages. To enable it, programs should be also compiled with 
support turned on.

The sad fact is that it does not work well with programs that use just-in-time compilation, which forms 
executable code during the program execution itself. This is not as rare as it might seem; for example, 
virtually all browsers are using JavaScript engines which support just-in-time compilation.

14.9 � Summary
In this chapter we have revisited the calling convention used in *nix on Intel 64. We have seen the example 
usages of the more advanced C features, namely, volatile and restrict type qualifiers and non-local 
jumps. Finally, we have given a brief overview of several classical vulnerabilities that are possible because 
of the way stack frames are organized, and the compiler features that were designed to automatically cope 
with them. The next chapter will explain more low-level details related to the creation and usage of dynamic 
libraries to strengthen our understanding of them.

■■ Question 267  What are xmm registers? How many are they?

■■ Question 268  What are SIMD instructions?

■■ Question 269  Why do some SSE instructions require the memory operands to be aligned?

■■ Question 270  What registers are used to pass arguments to functions?

■■ Question 271  When passing arguments to the function, why is rax sometimes used?

■■ Question 272 H ow is rbp register used?

■■ Question 273  What is a stack frame?

■■ Question 274  Why aren’t we addressing the local variables relative to rsp?

■■ Question 275  What are prologue and epilogue?

■■ Question 276  What is the purpose of enter and leave instructions?

http://dx.doi.org/10.1007/978-1-4842-2403-8_4
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■■ Question 277  Describe in details, how is the stack frame changing during the function execution.

■■ Question 278  What is the red zone?

■■ Question 279 H ow do we declare and use a function with a variable number of arguments?

■■ Question 280  Which kind of context is va_list holding?

■■ Question 281  Why are functions such as vfprintf used?

■■ Question 282  What is the purpose of volatile variables?

■■ Question 283  Why do only volatile stack variables persist after longjmp?

■■ Question 284 A re all local variables allocated on stack?

■■ Question 285  What is setjmp used for?

■■ Question 286  What is the return value of setjmp?

■■ Question 287  What is the use of restrict?

■■ Question 288  Can restrict be ignored by the compiler?

■■ Question 289 H ow can we achieve the same result without using the restrict keyword?

■■ Question 290 E xplain the mechanism of exploiting stack buffer overrun.

■■ Question 291  When is the printf usage unsafe?

■■ Question 292  What is a security cookie? Does it solve program crashes on buffer overflow?
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CHAPTER 15

Shared Objects and Code Models

Chapter 5 already provided a short overview of dynamic libraries (also known as shared objects). This 
chapter will revisit dynamic libraries and expand our knowledge by introducing the concepts of the 
Program Linkage Table and the Global Offset Table. As a result, we will be able to build a shared library 
in pure assembly and C, compare the results, and study its structure. We will also study a concept of code 
models, which is rarely discussed but gives a consistent view of several important details of assembly code 
generation.

15.1 � Dynamic Loading
As you might remember, an ELF (Executable and Linkable Format) file contains three headers:

•	 The main header, located at an offset zero. It defines the general information about the 
file, including the entry point and offsets to two tables elaborated below.

You can view it using the readelf -h command.

•	 Section headers table, which contains information about different ELF sections.

You can view it using the readelf -S command.

•	 Program headers table, which contains information about the file segments. Each 
segment is a runtime structure, which contains one or more sections, defined in the 
section headers table.

You can view it using the readelf -l command.

The initial stage of loading an executable is to create an address space and perform memory mappings 
according to the program headers table with appropriate permissions. This is performed by the operating 
system kernel. Once the virtual address space is set, the other program has to interfere (i.e., dynamic loader). 
The latter should be an executable program, and fully relocatable (so it should be able to be loaded at 
whatever address we want).

The purpose of the dynamic linker is to

•	 Determine all dependencies and load them.

•	 Perform relocation of the applications and dependencies.

•	 Initialize the application and its dependencies and pass the control to the application. 
Now, the program execution will start.

http://dx.doi.org/10.1007/978-1-4842-2403-8_5
http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Par107
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Determining dependencies and loading them is relatively easy: it boils down to searching dependencies 
recursively and checking whether the object has been already loaded or not. Initializing is also not very 
mystified. The relocation, however, is of interest to us.

There are two kinds of relocations:

•	 Links to locations in the same object. The static linker is performing all such 
relocations since they are known at the link time.

•	 Symbol dependencies, which are usually in the different object.

The second kind of relocation is more costly and is performed by the dynamic linker.
Before doing relocations, we need to do a lookup first to find the symbols we want to link. There is a 

notion of lookup scope of an object file, which is an ordered list containing some other loaded objects. The 
lookup scope of an object file is used to resolve symbols necessary for it. The way it is computed is described 
in [24] and is rather complex, so we refer you to the relevant document in case of need.

The lookup scope consists of three parts, which are listed in reverse order of search—that is, the symbol 
gets searched in the third part of the scope first.

	 1.	 Global lookup scope, which consists of the executable file and all its dependencies, 
including dependencies of the dependencies, etc. They are enumerated in a 
breadth-first search fashion, that is:

•   The executable itself.

•   Its dependencies.

•   The dependencies of its first dependency, then of the second, etc. Each object is 
loaded only once.

	 2.	 The part constructed if DF_SYMBOLIC flag is set in the ELF executable file metadata. 
It is considered legacy; its usage is discouraged, so we are not studying it here.

	 3.	 Objects loaded dynamically with all their dependencies by means of dlopen 
function call. They are not searched for normal lookups.

Each object file contains a hash table which is used for lookup.1 This table stores the symbol 
information and is used to quickly find the symbol by its name. The first object in the lookup scope, which 
contains the needed symbol, is linked, which allows for symbol overloading—for example, using LD_PRELOAD 
mechanism—which will be explored in section 15.5.

The hash table size and the number of exported symbols are affecting the lookup time. When the 
-O flag for linker is provided,2 it tries to optimize these parameters for better lookup speed. Remember, 
that in languages such as C++, not only are the symbol names computed based on, for example, function 
name, but they have all their namespaces (and classname) encoded, which may easily result in names of 
several hundred characters. In the case of collisions in hash tables (which are usually frequent), the string 
comparison should be performed between the symbol name we are looking for and all symbols in the 
bucket we have chosen by computing its hash.

The modern GNU-style hash tables provide an additional heuristic of using a Bloom filter3 in order to 
quickly answer a question: “is this symbol even defined in this object file?” That makes unnecessary lookups 
much less frequent, which positively impacts performance.

1We will not provide the details on what the hash tables are or how are they implemented, but if you do not know about 
them, we highly advise you to read about them! This is an absolutely classic data structure used everywhere. A good 
explanation can be found in [10]
2Do not confuse with -O flag for the compiler!
3A probabilistic data structure that is widely used. It allows us to quickly check whether an element is contained in a 
certain set, but the answer “yes” is subject to an additional check, while “no” is always certain.

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par25
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par11
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15.2 � Relocations and PIC
Now, what kind of relocations are performed? We have seen the process of relocations during static linking 
in Chapter 5. Can we do the same, relocating all code and data elements? The answer is yes, we can, and 
until common architectures added special features to ease the position-independent code writing, it was 
extensively used. However, this approach has the following drawbacks:

•	 Relocations are slow to perform, especially when dependencies are numerous. That 
can delay the startup of the application.

•	 The .text section cannot be shared, because it has to be patched. While static linking 
implies patching object file contents when building the final object file, dynamic 
linking implies patching object files in memory. Not only does it waste memory, it 
also poses a security risk, because, for example, shellcode can rewrite the program in 
memory directly to alter its behavior.

Nowadays, PIC is the recommended way, and it allows to keep .text read-only (while .data cannot be 
shared anyway).

The number of relocations will be smaller, because no code relocations will be performed. PIC implies 
using two utility tables:Global Offset Table (GOT) and Program Linkage Table (PLT).

15.3 � Example: Dynamic Library in C
Before we start studying GOT and PLT, let us create a minimal working example of a dynamic library in C.  
It is actually quite easy.

Our program will consist of two files: mainlib.c (shown in Listing 15-1) and dynlib.c (shown in  
Listing 15-2).

Listing 15-1.  mainlib.c

extern void libfun( int value );

int global = 100;

int main( void ) {
    libfun( 42 );
    return 0;
}

Listing 15-2.  dynlib.c

#include <stdio.h>

extern int global;
void libfun(int value) {
    printf( "param: %d\n", value );
    printf( "global: %d\n", global );
}

As we see, there is a global variable in the main file, which we will want to share with the library; the 
library explicitly states that it is extern. The main file has the declaration of the library function (which is 
usually placed in the header file, shipped with the compiled library).

http://dx.doi.org/10.1007/978-1-4842-2403-8_5
http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Par117
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To compile these files, the following commands should be issued:

> # creating object file for the main part
> gcc -c  -o mainlib.o mainlib.c
> # creating object file for the library
> gcc -c -fPIC -o dynlib.o  dynlib.c
> gcc -o dynlib.so -shared dynlib.o # creating dynamic library itself
> # creating an executable and linking it with the dynamic library
> gcc -o main  mainlib.o dynlib.so

First, we create object files as usual. Then we build the dynamic library using -shared flag. When we 
build an executable, we provide all dynamic libraries from which it depends, because this information 
should be included in ELF metadata. Notice the usage of -fPIC flag, which forces to generate position-
independent code. We will see the effects of this flag on assembly later.

Let’s check the file dependencies using ldd.

> ldd main
        linux-vdso.so.1 => (0x00007fffcd428000)
        lib.so => not found
        libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007ff988d60000)
        /lib64/ld-linux-x86-64.so.2 (0x00007ff989200000)

Our fresh library is present in the list of dependencies, but ldd cannot find it. An attempt to launch the 
executable fails with the expected message:

./main: error while loading shared libraries:
    lib.so: cannot open shared object file: No such file or directory

The libraries are searched in the default locations (such as /lib/). Ours is not there, so we have another 
option: an environment variable LD_LIBRARY_PATH is parsed to get a list of additional directories where the 
libraries might be located. As soon as we set it to the current directory, ldd finds the library. Note, that the 
search starts with the directories defined in LD_LIBRARY_PATH and proceeds to the standard directories.

> export LD_LIBRARY_PATH=.
> ldd main
        linux-vdso.so.1 =>  (0x00007ffff1315000)
        lib.so => ./lib.so (0x00007f3a7bc70000)
        libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f3a7b890000)
        /lib64/ld-linux-x86-64.so.2 (0x00007f3a7c000000)

The launch produces expected results.

> ./main
   param: 42
   global: 100

15.4 � GOT and PLT
15.4.1 � Accessing External Variables
To keep .text read-only and never patch it due to relocations, we add a level of indirection when addressing 
any symbol that is not guaranteed to be defined in the same object—in other words, for every symbol 
defined in executable or shared object file after the static linking. This indirection is performed through a 
special Global Offset Table.

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Par117
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Two facts are important to make PIC code work.

•	 Intel 64 makes it possible to address instruction operands relative to rip register. It is 
possible to get the current rip value using a pair of call and pop instructions, but the 
hardware support surely helps performance-wise.

•	 The offset between the .text section and .data section is known at link time, that is, 
when the dynamic library is being created. It also means that the distance between 
rip and the beginning of the .data section is also known. So, we place the Global 
Offset Table in the .data section or near it. It will hold the absolute addresses of global 
variables.

We address the GOT cell relatively to rip and get an absolute address of the global variable from there—
see Figure 15-1.

Figure 15-1.  Accessing global variable through GOT

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Par117
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Let’s see, how the variable global, created in the main executable file, is addressed in the dynamic library. 
To do it, we are going to study a fragment of objdump -D -Mintel-mnemonic output, shown in Listing 15-3.

Listing 15-3.  libfun

00000000000006d0 <libfun>:

# Function prologue
 6d0: 55                      push   rbp
 6d1: 48 89 e5                mov    rbp,rsp
 6d4: 48 83 ec 10             sub    rsp,0x10

# Second argument for printf( "param: %d\n", value );
 6d8: 89 7d fc                mov    DWORD PTR [rbp-0x4],edi
 6db: 8b 45 fc                mov    eax,DWORD PTR [rbp-0x4]
 6de: 89 c6                   mov    esi,eax

# First argument for printf( "param: %d\n", value );
 6e0: 48 8d 3d 32 00 00 00    lea    rdi,[rip+0x32]

# Printf call; no XMM registers used
 6e7: b8 00 00 00 00          mov    eax,0x0
 6ec: e8 bf fe ff ff          call   5b0 <printf@plt>

# Second argument for printf( "global: %d\n", global );
 6f1: 48 8b 05 e0 08 20 00    mov    rax,QWORD PTR [rip+0x2008e0]
 6f8: 8b 00                   mov    eax,DWORD PTR [rax]
 6fa: 89 c6                   mov    esi,eax

# First argument for printf( "global: %d\n", global );
 6fc: 48 8d 3d 21 00 00 00    lea    rdi,[rip+0x21]

# Printf call; no XMM registers used
 703: b8 00 00 00 00          mov    eax,0x0
 708: e8 a3 fe ff ff          call   5b0 <printf@plt>

# Function epilogue
 70d: 90                      nop
 70e: c9                      leave
 70f: c3                      ret

Remember that the source code is shown in Listing 15-2. We are interested in seeing how the global 
variables are accessed.

First, note that the first argument of printf (which is the address of the format string, residing in  
.rodata) is accessed not in a typical way.

In such cases, we used to have an absolute address value (which would have been filled by linker 
during the relocation, as explained in section 5.3.2). However, here an address relative to rip is used. As we 
understand, rdi as the first argument should hold the address of the format string. So, this address is stored 
in memory by the address [rip + 0x32]. This place is a part of GOT.

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Par117
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Now, let’s see, how global is accessed from the dynamic library code. In fact, the mechanism is 
absolutely the same, though there is a need in one more memory read. First we read the GOT contents in

mov rax,QWORD PTR [rip+0x2008e0]

to get the address of global, then we read its value by accessing the memory again in

mov eax,DWORD PTR [rax].

Quite simple for global variables. For functions, however, the implementation is a bit more complicated.

15.4.2 � Calling External Functions
While the exact same approach could have worked for functions, an additional feature is implemented to 
perform the lazy, on-demand function lookup. Let us first discuss the reasons for it.

Looking up symbol definitions is not trivial, as we have seen in this chapter. There are usually many 
more functions than the global variables exported, and only a small fraction of them are actually called 
during program execution (e.g., error handling functions). In general, when programmers get a dynamic 
library to use with their program, they often acquire a third-party library which has much more functions 
than they actually need to call.

We add another level of indirection through the special Program Linkage Table (PLT). It resides in the 
.text section. Each function called by the shared library has an entry in PLT. Each entry is a small chunk 
of executable code, which is linked statically and thus can be called directly. Instead of calling a function, 
whose address would have been stored in GOT, we call the stub entry for it.

To illustrate it, we sketch a PLT in Listing 15-4.

Listing 15-4.  plt_sketch.asm

; somewhere in the program
call func@plt

; PLT
PLT_0:           ; the common part
call resolver

...

PLT_n:     func@plt:
jmp [GOT_n]
PLT_n_first:
; here the arguments for resolver are prepared
jmp PLT_0

GOT:
...
GOT_n:
dq PLT_n_first

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Par117
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Now, what is happening there?

•	 The function call refers to PLT entry bypassing GOT.

•	 The zero-th PLT entry defines the “common code” of all entries. They all end up 
jumping to this entry.

•	 An n-th entry starts with the jump to an address, stored in the n-th GOT entry. The 
default value of this entry is the address of the next instruction after this jump! In our 
example, it is denoted by the label PLT_n_first. So, the first time the function is called 
we jump to the next instruction, effectively performing a NOP operation.

•	 This code prepares arguments for the dynamic loader and jumps to the common code 
in PLT_0.

•	 In PLT_0 the loader is called. It performs lookup and resolves the function address, 
filling GOT_n with the actual function address.

The next function call will involve no dynamic loader: the PLT_n stub will be called, which will 
immediately jump to the resolved function, whose address now resides in GOT.

Refer to Figures 15-2 and 15-3 for a schematic of changes in PLT due to symbol resolution process.

Figure 15-2.  PLT before linking function in runtime
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■■ Question 293 R ead in man ld.so about environment variables (such as LD_BIND_NOT), which can alter the 
loader behavior.

15.4.3 � PLT Example
To be completely fair, we will study the code generated for the example shown in section 15.3.

The main function calls libfun, which is performed through PLT as we expected.

Disassembly of section .text:

00000000004006a6 <main>:
  push   rbp
  mov    rbp,rsp
  mov    edi,0x2a
  call   400580 <libfun@plt>
  mov    eax,0x0
  pop    rbp
  ret

Figure 15-3.  PLT after linking function in runtime
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Next, let’s see how PLT looks like. The PLT entry for libfun is called libfun@plt. Find it in Listing 15-5.

Listing 15-5.  plt_rw.asm

Disassembly of section .init:

0000000000400550 <_init>:
sub    rsp,0x8
mov    rax,QWORD PTR [rip+0x200a9d]        # 600ff8 <_DYNAMIC+0x1e0>
test   rax,rax
je     400565 <_init+0x15>
call   4005a0 <__libc_start_main@plt+0x10>
add    rsp,0x8
ret
Disassembly of section .plt:

0000000000400570 <libfun@plt-0x10>:
push   QWORD PTR [rip+0x200a92]       # 601008 <_GLOBAL_OFFSET_TABLE_+0x8>
jmp    QWORD PTR [rip+0x200a94]       # 601010 <_GLOBAL_OFFSET_TABLE_+0x10>
nop    DWORD PTR [rax+0x0]

0000000000400580 <libfun@plt>:
imp    QWORD PTR [rip+0x200a92]       # 601018 <_GLOBAL_OFFSET_TABLE_+0x18>
push   0x0
jmp    400570 <_init+0x20>

0000000000400590 <__libc_start_main@plt>:
jmp    QWORD PTR [rip+0x200a8a]        # 601020 <_GLOBAL_OFFSET_TABLE_+0x20>
push   0x1
jmp    400570 <_init+0x20>

Disassembly of section .got:
0000000000600ff8 <.got>:

...
Disassembly of section .got.plt:

0000000000601000 <_GLOBAL_OFFSET_TABLE_>:
...

The first instruction is a jump into GOT to its third element (because each entry is 8 bytes long and the 
offset is 0x18). Then the push instruction is issued, whose operand is the function number in PLT. For libfun 
it is 0x0, for libc_start_main it is 0x1.

The next instruction in libfun@plt is a jump to _init+0x20, which is strange, but if we check the actual 
_init address, we will see, that

•	 _init is at 0x400550.

•	 _init+0x20 is at 0x400570.

•	 libfun@plt-0x10 is at 0x400570 as well, so they are the same.
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•	 This address is also the start of .plt section and, according to the explanation 
previously, should correspond to the “common” code shared by all PLT entries. It 
pushes one more GOT value into the stack and takes an address of the dynamic loader 
from GOT to jump to it.

The comments issued by objdump show that the last two values refer to addresses 0x601008 and 
0x601010. As we see, they should be stored somewhere in .got.plt section, which is the part of GOT related 
to PLT entries. Listing 16 shows the contents of this section.

Listing 15-6.  got_plt_dump_ex.c

Contents of section .got.plt:
0x601000   180e6000 00000000 00000000 00000000
0x601010   00000000 00000000 86054000 00000000
0x601020   96054000 00000000

By looking carefully we see that starting at the address 0x601018 the following bytes are located:

86 05 40 00 00 00 00 00

Remembering the fact that Intel 64 uses little endian, we conclude that the actual quad word stored 
here is 0x400586, which is really the address of libfun@plt + 6, in other words, the address of the push 
0x0 instruction. That illustrates the fact that the initial values for functions in GOT point at the second 
instructions of their respective PLT entries.

15.5 � Preloading
Setting up the LD_PRELOAD variable allows you to preload shared objects before any other library (including 
the C standard library). The functions from this library will have a priority lookup-wise, so they can override 
the functions defined in the normally loaded shared objects.

The dynamic loader ignores the LD_PRELOAD value if the effective user ID and the real user ID do not 
match. This is done for security reasons.

We are going to write and compile a simple program, shown in Listing 15-7.

Listing 15-7.  preload_launcher.c

#include <stdio.h>

int main(void) {
    puts("Hello, world!");
    return 0;
}

It does nothing spectacular, but it is important that it uses the puts function, defined in the C standard 
library. We are going to overwrite it with our version of puts, which ignores its input and simply outputs a 
fixed string.

When this program is launched, the standard puts function is being executed.
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Now let us make a simple dynamic library with the contents shown in Listing 15-8. It proxies the puts 
function with its alternative, which ignores its argument and always outputs a fixed string.

Listing 15-8.  prelib.c

#include <stdio.h>
int puts( const char* str ) {
    return printf("We took control over your C library! \n");
}

We compile it using the following commands:

> gcc -o preload_launcher preload_launcher.c
> gcc -c -fPIC prelib.c
> gcc -o prelib.so -shared prelib.o

Note that the executable was not linked against the dynamic library. Listing 15-9 shows the effect of 
setting the LD_PRELOAD variable.

Listing 15-9.  ld_preload_effect

> export LD_PRELOAD=
> ./a.out
Hello, world!
> export LD_PRELOAD=$PWD/prelib.so
> ./a.out
We took control over your C library!

As we see, if the LD_PRELOAD contains a path to a shared object that defines some functions, they will 
override other functions that are present in the process address space.

■■ Question 294 R efer to the assignment. Use this technique to test your malloc implementation against 
some standard utilities from coreutils.

■■ Question 295 R ead about dlopen, dlsym, dlclose functions.

15.6 � Symbol Addressing Summary
Before we start with assembly and C examples, let us summarize the possible cases considering symbol 
addressing. The main executable file is usually not relocatable or position independent and loaded by a fixed 
absolute address, say, 0x40000.4 The dynamic library is nowadays built using position-independent code 
and thus its .text can be placed anywhere; in other sections the relocations might be needed.

The symbol can be:

	 1.	 Defined in executable and used locally there.

This is trivial, because the symbols will be bound to absolute addresses. The data 
addressing will be absolute, the code jumps and calls will usually be generated 
with offsets relative to rip.

4This is not always the case, for example, OS X recommends that all executables are made position independent.

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Par117
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	 2.	 Defined in dynamic library and used only there locally (unavailable to external 
objects).

In the presence of PIC, it is done by using rip-relative addressing (for data) or 
relative offsets (for function calls). The more general case will be discussed later in 
section 15.10.

NASM uses the rel keyword to achieve rip-relative addressing. This does not 
involve GOT or PLT.

	 3.	 Defined in executable and used globally.

This requires the GOT usage (and also PLT for functions) if the user is external. For 
internal usage the rules are the same: we do not need GOT or PLT for addressing 
inside the same object file.

	 4.	 Defined in dynamic library and used globally.

Should be a part of linked list item rather than a paragraph on its own.

15.7 � Examples
It is very possible to write a dynamic library in assembly language, which will be position independent and 
will use GOT and PLT tables.

■■ Linking with gcc T he recommended way of linking libraries is by using GCC. However, for this chapter 
we will sometimes use more primitive ld to show what is really done in greater detail. When the C runtime is 
involved, never use ld.

We will also limit ourselves with Intel 64 as always. The PIC code was a bit harder to write before rip-
relative addressing was introduced.

15.7.1 � Calling a Function
In the first example, the following features will be shown:

•	 Addressing dynamic library data inside the same library.

•	 Calling a function of dynamic library from the main executable file.

This example consists of main.asm (Listing 15-10) and lib.asm (Listing 15-11). The Makefile is 
provided in Listing 15-12 to show the building process. Notice that providing the dynamic linker explicitly is 
mandatory unless you are using the GCC to link files (which will take care of the appropriate dynamic linker 
path). See section 15.7.2 for more explanations.



Chapter 15 ■ Shared Objects and Code Models

304

Listing 15-10.  ex1-main.asm

extern _GLOBAL_OFFSET_TABLE_
global _start

extern sofun

section .text
_start:
call sofun wrt ..plt

; `exit` system call
mov rdi, 0
mov rax, 60
syscall

The first thing that we notice is that extern _GLOBAL_OFFSET_TABLE_ is usually imported in every file 
that is dynamically linked.5

The main file imports the symbol called sofun. Then, the call contains not only the function name but 
also the wrt ..plt qualifier.

Referring to a symbol using wrt ..plt forces the linker to create a PLT entry. The corresponding 
expression will be evaluated to an offset to PLT entry relative to the current position in code. Before static 
linkage, this offset is unknown, but it will be filled by the static linker. The type of this kind of relocation 
should be a rip-relative relocation (like the one used in call or jmp-like instructions). ELF structure does 
not provide means to address the PLT entries by their absolute addresses.

Listing 15-11.  ex1-lib.asm

extern _GLOBAL_OFFSET_TABLE_
global sofun:function

section .rodata
msg: db "SO function called", 10
.end:

section .text
sofun:
mov rax, 1
mov rdi, 1
lea rsi, [rel msg]
mov rdx, msg.end - msg
syscall
ret

Notice that the global symbol sofun is marked as :func (there should be no space before the colon). 
It is very important to mark exported functions like this in case they should be accessed by other objects 
dynamically.

The .end label allows us to calculate the string length statically to feed it to the write system call. The 
important change is the rel keyword usage.

5This name is specific to ELF and should be changed for other systems. See section 9.2.1 of [27].

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par28
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The code is position independent, so the absolute address of msg can be arbitrary. Its offset relative to 
this point in code (lea rsi, [rel msg] instruction) is fixed. So, we can use lea to calculate its address as an 
offset from rip. This line will be compiled to lea rsi, [rip + offset], where offset is a constant that will 
be filled in by the static linker.

The latter form ([rip + offset]) is syntactically incorrect in NASM.
Listing 15-12 shows the Makefile used to build this example. Before launching, make sure that the 

environment variable LD_LIBRARY_PATH includes the current directory, otherwise you can simply type

export LD_LIBRARY_PATH=.

for test purposes and then launch the executable.

Listing 15-12.  ex1-makefile

main: main.o lib.so
      ld --dynamic-linker=/lib64/ld-linux-x86-64.so.2 main.o lib.so -o main

lib.so: lib.o
    ld -shared lib.o -o lib.so

lib.o:
   nasm -felf64 lib.asm -o lib.o

main.o: main.asm
     nasm -felf64 main.asm -o main.o

■■ Question 296 P erform an experiment. Omit the wrt ..plt construction for the call and recompile 
everything. Then use objdump -D -Mintel-mnemonic on the resulting main executable to check whether the 
PLT is still in the game or not. Try to launch it.

15.7.2 � On Various Dynamic Linkers
The dynamic linker is not set in stone. It is encoded as part of metadata in the ELF file and can be viewed by 
means of ldd.

During linkage, you can control, which dynamic linker will be chosen, for example,

ld --dynamic-linker=/lib64/ld-linux-x86-64.so.2

If you do not specify it, ld will choose the default path, which might lead to a nonexistent file in your case.
If the dynamic linker does not exist, the attempt to load the library will result in a cryptic message which 

does not make any sense. Suppose that you have built an executable main and it uses a library so_lib, and 
the LD_LIBRARY_PATH is set correctly.

./main
bash: no such file or directory: ./main
> ldd ./main
linux-vdso.so.1 => (0x00007ffcf7f9f000)
so_lib.so => ./so_lib.so (0x00007f0e1cc0a000)
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The problem is that the linkage was done without an appropriate dynamic linker provided and the 
ELF metadata does not hold a correct path to it. Relinking the object files with an appropriate dynamic 
linker path should solve this problem. For example, in the Debian Linux distribution installed on the virtual 
machine, shipped with this book, the dynamic linker is /lib64/ld-linux-x86-64.so.2.

15.7.3 � Accessing an External Variable
For the next example, we will make the message string reside in the main executable file; except for that, the 
code will stay the same. It will allow us to show how to access the external variable.

The main file is shown in Listing 15-13, while the library source is shown in Listing 15-14.

Listing 15-13.  ex2-main.asm

extern _GLOBAL_OFFSET_TABLE_
global _start

extern sofun
global msg:data (msg.end - msg)

section .rodata
msg: db "SO function called -- message is stored in 'main'", 10
.end:

section .text
_start:
call sofun  wrt ..plt

mov rdi, 0
mov rax, 60
syscall

Listing 15-14.  ex2-lib.asm

extern _GLOBAL_OFFSET_TABLE_
global sofun:func

extern msg

section  .text
sofun:
mov rax, 1
mov rdi, 1
mov rsi, [rel msg wrt ..got]
mov rdx, 50
syscall
ret

It is very important to mark the dynamically shared data declaration with its size. The size is given as 
an expression, which may include labels and operations on them, such as subtraction. Without the size, the 
symbol will be treated as global by the static linker (visible to other modules during static linking phase) but 
will not be exported by the dynamic library.
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When the variable is declared as global with its size and type (:data), it will live in the .data section of 
the executable file rather than the library! Because of this, you will always have to access it through GOT, even 
in the same file.

The GOT, as we know, stores the addresses of the variables global to the process. So, if we want to 
know the address of msg, we have to read an entry from GOT. However, as the dynamic library is position 
independent, we have to address its GOT relatively to rip as well. If we want to read its value, we need an 
additional memory read after fetching its address from GOT.

If the variable is declared in the dynamic library and accessed in the main executable file, it should be 
done with exactly the same construction: its address can be read from [rel varname wrt ..got]. If you 
need to store an address of the GOT variable, use the following qualifier:

othervar: dq global_var wrt ..sym

For additional information, refer to section 7.9.3 of [27].

15.7.4 � Complete Assembly Example
Listing 15-15 and Listing 15-16 show a complete example with all common features needed from dynamic 
library.

Listing 15-15.  ex3-main.asm

extern _GLOBAL_OFFSET_TABLE_

extern fun1

global commonmsg:data commonmsg.end - commonmsg
global mainfun:function
global _start

section .rodata
commonmsg: db "fun2", 10, 0
.end:

mainfunmsg: db "mainfun", 10, 0

section .text
_start:
    call fun1 wrt ..plt
    mov rax, 60
    mov rdi, 0
    syscall

mainfun:
    mov rax, 1
    mov rdi, 1
    mov rsi, mainfunmsg
    mov rdx, 8
    syscall
    ret

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Par117
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Listing 15-16.  ex3-lib.asm

extern _GLOBAL_OFFSET_TABLE_

extern commonmsg
extern mainfun

global fun1:function

section .rodata
msg: db "fun1", 10

section .text
fun1:
    mov rax, 1
    mov rdi, 1
    lea rsi, [rel msg]
    mov rdx, 6
    syscall
    call fun2
    call mainfun wrt ..plt
    ret

fun2:
    mov rax, 1
    mov rdi, 1
    mov rsi, [rel commonmsg wrt ..got]
    mov rdx, 5
    syscall
    ret

15.7.5 � Mixing C and Assembly
Disclaimer: we are going to provide an example which is compiler and architecture specific, so in your case 
the process may vary. However, the core ideas will stay more or less the same.

What can complicate mixing C and assembly code is that you have to take into account the C standard 
library and link everything correctly.

The easiest way is to build the object files separately with GCC and NASM, respectively, and then link 
them using GCC as well. Other than that, there is not much to fear. Listing 15-17 and Listing 15-8 show an 
example of calling the assembly library from C.

Listing 15-17.  ex4-main.c

#include <stdio.h>

extern int sofun( void );
extern const char sostr[];

int main( void ) {
    printf( "%d\n", sofun() );
    puts( sostr );
    return 0;
}
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In the main file, an external function sofun is called from the dynamic library. Its result is printed to 
stdout by printf. Then the string, taken from the dynamic library, is output by puts. Note that the global 
string is the global character buffer, not a pointer!

Listing 15-18.  ex4-lib.asm

extern _GLOBAL_OFFSET_TABLE_

extern puts

global sostr:data (sostr.end - sostr)
global sofun:function

section .rodata
sostr: db "sostring", 10, 0
.end:

localstr: db "localstr", 10, 0

section .text
sofun:
    lea rdi, [rel localstr]
    call puts wrt ..plt
    mov rax, 42
    ret

In the library, the sofun is defined as well as the sostr global string. sofun calls puts, the standard 
C library function with the localstr address as an argument. As the library is written in a position-
independent way, the address should be calculated as an offset from rip; hence the lea command is used. 
This function always returns 42.

Listing 15-19 shows the relevant Makefile.

Listing 15-19.  ex4-Makefile

all: main

main: main.o lib.so
   gcc -o main main.o lib.so

lib.so: lib.o
   gcc -shared lib.o -o lib.so

lib.o: lib.asm
   nasm -felf64 lib.asm -o lib.o

main.o: main.asm
   gcc -ansi -c main.c -o main.o

clean:
   rm -rf *.o *.so main
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15.8 � Which Objects Are Linked?
The C standard library is usually implemented as one or many static libraries (which, for example, define 
_start) and a dynamic library, containing the function we are used to call. The library structure is strictly 
architecture dependent, but we are going to perform several experiments to investigate it.

The relevant documentation for our specific case can be found in [3].
How do we find which libraries GCC links the executable to? We can make an experiment using GCC 

with the –v argument.
Following is the list of the additional arguments GCC will implicitly accept during the final linkage 

according to the Makefile, shown in Listing 15-19:

/usr/lib/gcc/x86_64-linux-gnu/4.9/collect2
-plugin
/usr/lib/gcc/x86_64-linux-gnu/4.9/liblto_plugin.so
-plugin-opt=/usr/lib/gcc/x86_64-linux-gnu/4.9/lto-wrapper
-plugin-opt=-fresolution=/tmp/ccqEOGnU.res
-plugin-opt=-pass-through=-lgcc
-plugin-opt=-pass-through=-lgcc_s
-plugin-opt=-pass-through=-lc
-plugin-opt=-pass-through=-lgcc
-plugin-opt=-pass-through=-lgcc_s
--sysroot=/
--build-id
--eh-frame-hdr
-m elf_x86_64
--hash-style=gnu
-dynamic-linker /lib64/ld-linux-x86-64.so.2
-o main
/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crt1.o
/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crti.o
/usr/lib/gcc/x86_64-linux-gnu/4.9/crtbegin.o
-L/usr/lib/gcc/x86_64-linux-gnu/4.9
-L/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu
-L/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../../lib
-L/lib/x86_64-linux-gnu
-L/lib/../lib
-L/usr/lib/x86_64-linux-gnu
-L/usr/lib/../lib
-L/usr/lib/gcc/x86_64-linux-gnu/4.9/../../..
main.o
lib.so
-lgcc
--as-needed  -lgcc_s
--no-as-needed -lc
-lgcc
--as-needed  -lgcc_s
--no-as-needed /usr/lib/gcc/x86_64-linux-gnu/4.9/crtend.o
/usr/lib/gcc/x86_64-linux-gnu/4.9/../../../x86_64-linux-gnu/crtn.o

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par4
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The lto abbreviation corresponds to “link-time optimizations”, which is of no interest to us. The 
interesting part consists of additional libraries linked. These are:

•	 crti.o

•	 crtbegin.o

•	 crtend.o

•	 crtn.o

•	 crt1.o

ELF files support multiple sections, as we know. A separate section .init is used to store code that will be 
executed before main, another section .fini is used to store code that is called when the program terminates. 
These sections’ contents are split into multiple files. crti and crto contain the prologue and epilogue 
of__init function (and likewise for__fini function). These two functions are called before and after the 
program execution, respectively. crtbegin and crtend contain other utility code included in .init and .fini 
sections. They are not always present. We want to repeat that their order is important. crt1.o contains the 
_start function.

To prove our statements, we are going to disassemble crti.o, crtn.o, and crt1.o files using good old

objdump  -D  -Mintel-mnemonic.

Listings 15-20, 15-22, and 15-21 show the refined disassembly.

Listing 15-20.  da_crti

/usr/lib/x86_64-linux-gnu/crti.o:      file format elf64-x86-64

Disassembly of section .init:

0000000000000000 <_init>:
0:   sub    rsp, 0x8
4:   mov    rax, QWORD PTR [rip+0x0]         # b <_init+0xb>
b:   test   rax, rax
e:   je     15 <_init+0x15>
10: call   15 <_init+0x15>

Disassembly of section .fini:

0000000000000000 <_fini>:
0:   sub    rsp, 0x8

Listing 15-21.  da_crtn

/usr/lib/x86_64-linux-gnu/crtn.o:      file format elf64-x86-64

Disassembly of section .init:

0000000000000000 <.init>:
0: add    rsp,0x8
4: ret

Disassembly of section .fini:
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0000000000000000 <.fini>:
0: add    rsp,0x8
4: ret

Listing 15-22.  da_crt1

/usr/lib/x86_64-linux-gnu/crt1.o:      file format elf64-x86-64

Disassembly of section .text:
0000000000000000 <_start>:
0:       xor    ebp,ebp
2:       mov    r9,rdx
5:       pop    rsi
6:       mov    rdx,rsp
9:       and    rsp,0xfffffffffffffff0
d:       push   rax
e:       push   rsp
f:       mov    r8,0x0
16:      mov    rcx,0x0
1d:      mov    rdi,0x0
24:      call   29 <_start+0x29>
29:      hlt

As we see, these form functions end up in the executable. To see the complete linked and relocated 
code, we are going to take a part of objdump -D -Mintel-mnemonic output for the resulting file, as shown in 
Listing 15-23.

Listing 15-23.  dasm_init_fini

Disassembly of section .init:

00000000004005d8 <_init>:
4005d8:  sub    rsp,0x8
4005dc:  mov    rax,QWORD PTR [rip+0x200a15]          # 600ff8 <_DYNAMIC+0x1e0>
4005e3:  test   rax,rax
4005e6:  je     4005ed <_init+0x15>
4005e8:  call   400650 <__libc_start_main@plt+0x10>
4005ed:  add    rsp,0x8
4005f1:  ret

Disassembly of section .text:

0000000000400660 <_start>:
400660:  xor    ebp,ebp
400662:  mov    r9,rdx
400665:  pop    rsi
400666:  mov    rdx,rsp
400669:  and    rsp,0xfffffffffffffff0
40066d:  push   rax
40066e:  push   rsp
40066f:  mov    r8,0x400800
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400676:  mov    rcx,0x400790
40067d:  mov    rdi,0x400756
400684:  call   400640 <__libc_start_main@plt>
400689:  hlt

Disassembly of section .fini:

0000000000400804 <_fini>:
400804:  sub    rsp,0x8
400808:  add    rsp,0x8
40080c:  ret

15.9 � Optimizations
What impacts the performance when working with a dynamic library?

First of all, never forget the -fPIC compiler option.6 Without it, even the .text section will be relocated, 
making dynamic libraries way less attractive to use. It is also crucial to disable some optimizations that might 
prevent dynamic libraries from working correctly.

As we have seen, when the function is declared static in the dynamic library and thus is not exported, 
it can be called directly without the PLT overhead. Always use static to limit visibility to a single file.

It is also possible to control visibility of the symbols in a compiler-dependent way. For example, GCC 
recognizes four types of visibility (default, hidden, internal, protected), of which only the first two are of 
interest to us. The visibility of all symbols altogether can be controlled using the -fvisibility compiler 
switch, as follows:

> gcc -fvisibility=hidden ... # will hide all symbols from shared object

The “default” visibility level implies that all non-static symbols are visible from outside the shared 
object. By using __attribute__ directive, we can finely control visibility on a per-symbol basis. Listing 15-24 
shows an example.

Listing 15-24.  visibility_symbol.c

int
__attribute__ (( visibility( "default" ) ))
func(int x) { return 42; }

The good thing that you can do is to hide all symbols of the shared object and explicitly mark the 
symbols with default visibility. This way you will fully describe the interface. It is especially good because no 
other symbols will be exposed and you will be free to change the library internals without breaking binary 
compatibility of any kind.

The data relocations can slow things down a bit. Every time a variable in .data is storing an address of 
another variable, it should be initialized by dynamic linker once the absolute address of the latter becomes 
known. Avoid such situations when possible.

Since the access to local symbols bypasses PLT, you might want to reference only “hidden” functions 
inside your code and make publicly available wrappers for the functions you want to export. Only the calls to 
the wrappers will use PLT. Listing 15-25 shows an example.

6The -fpic option implies a limit on GOT size for some architectures, which is often faster.
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Listing 15-25.  so_adapter.c

static int _function( int x ) { return x + 1; }

void otherfunction( ) {
    printf(" %d \n", _function( 41 ) );
}

int function( int x ) { return _function( x ); }

To eliminate possible overhead of the wrapper functions, a technique exists of writing symbol aliases 
(which is also compiler specific). GCC handles it by using alias attribute. Listing 15-26 shows an example.

Listing 15-26.  gcc_alias.c

#include <stdio.h>

int global = 42;

extern int global_alias
__attribute__ ((alias ("global"), visibility ("hidden" ) ));

void fun( void ) {
    puts("1337\n");
}
extern void fun_alias( void )
__attribute__ ((alias ("fun"), visibility ("hidden" ) ));

int tester(void) {
    printf( "%d\n", global );
    printf( "%d\n", global_alias );

    fun();
    fun_alias();
    return 0;
}

When we compile it using gcc -shared -O3 -fPIC and disassemble it, we see the code shown in  
Listing 15-27 (disassembly for tester function).

Listing 15-27.  gcc_aliased_gain.asm

;  global -> rsi
787:   mov    rax,QWORD  PTR  [rip+0x20084a]      # 200fd8 <_DYNAMIC+0x1c8>
78e:   mov    eax,DWORD PTR [rax]
790:   mov    esi,eax

792:   lea    rdi,[rip+0x46]          # 7df <_fini+0xf>
799:   mov    eax,0x0
79e:   call   650 <printf@plt>
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;  global_alias -> rsi
7a3:   mov    eax,DWORD PTR [rip+0x20088f]          # 201038 <global>
7a9:   mov    esi,eax

7ab:   lea    rdi,[rip+0x2d]        # 7df <_fini+0xf>
7b2:   mov    eax,0x0
7b7:   call   650 <printf@plt>

;  calling global `fun`
7bc:   call   640 <fun@plt>

;  calling aliased `fun` directly
7c1:   call   770 <fun>

The global and global_aliased are handled differently; the latter requires one less memory read. The 
function call of fun is also handled more efficiently, bypassing PLT and thus sparing an extra jump.

Finally, remember, that the zero-initialized globals are always faster to initialize. However, we strongly 
advocate against global variables usage.

More information about shared object optimizations can be found in [13].

■■ Note   The common way of linking against libraries is by using -l key, for example, gcc -lhello. The only 
two differences with specifying the full file path are: 

•	 -lhello will search for a library named libhello.a (so, prefixed with lib and with an 
extension .a).

•	 The library is searched in the standard list of directories. It is also searched in custom 
directories, which can be supplied using -L option. For example, to include the  
directory /usr/libcustom and the current directory, you can type:

> gcc -lhello -L. -L/usr/libcustom main.c

Remember, the order in which you supply libraries matters.

15.10 � Code Models
The code models are a rarely discussed topic. [24] can be viewed as a reference for this matter, and we are 
going to discuss code models in this section.

The starting point for the discussion is the fact, that rip-relative addressing is limited. [15] elaborates 
that the offset should be an immediate value of 32 bits maximum. This leaves us with ± 2 GB offsets. Making 
it possible to use 64-bit offsets directly is wasteful since most code would never use the extra bits; however, 
such offsets are directly encoded into the instructions themselves, making the code take up more space, 
which is not good for instruction cache. The address space size is far greater than 32 bits, so what do we do 
when 32 bits are not enough?

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par14
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par25
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
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A code model is a convention to which the programmer and the compiler both adhere; it describes the 
constraints on the program that will use the object file that is currently being compiled. The code generation 
depends on it. In short, when the program is relatively small, there is no harm in using 32-bit offsets. However, 
when it can be large enough, the slower 64-bit offsets, which are handled by multiple instructions, should be used.

The 32-bit offsets correspond to the small code model; the 64-bit offsets correspond to the large code 
model. There is also a sort of compromise called the medium code model. All these models are treated 
differently in context of position-dependent and position-independent code, so we are going to review all six 
possible combinations.

There can be other code models, such as the kernel code model, but we will leave them out of this 
volume. If you make your own operating system you can invent one for your own pleasure.

The relevant GCC option is -mcmodel, for example, -mcmodel=large. The default model is the small model.7

The GCC manual says the following about the -mcmodel option8:

-mcmodel=small
      Generate code for the small code model: the program and its symbols must be linked in 
the lower 2 GB of the address space. Pointers are 64 bits. Programs can be statically or 
dynamically linked. This is the default code model.

-mcmodel=kernel
      Generate code for the kernel code model. The kernel runs in the negative 2 GB of the 
address space. This model has to be used for Linux kernel code.

-mcmodel=medium
      Generate code for the medium model: the program is linked in the lower 2 GB of the 
address space. Small symbols are also placed there. Symbols with sizes larger than -mlarge-
data-threshold are put into large data or BSS sections and can be located above 2GB. 
Programs can be statically or dynamically linked.

-mcmodel=large
      Generate code for the large model. This model makes no assumptions about addresses and 
sizes of sections.

To illustrate the differences in compiled code when using different code models, we are going to use a 
simple example shown in Listing 15-28.

Listing 15-28.  cm-example.c

char glob_small[100] = {1};
char glob_big[10000000] = {1};
static char loc_small[100] = {1};
static char loc_big[10000000] = {1};

int global_f(void) { return 42; }
static int local_f(void) { return 42; }

int main(void) {
    glob_small[0] = 42;
    glob_big[0] = 42;
    loc_small[0] = 42;

7Not all compilers and GCC versions support the large model.
8Note that there are different descriptions for different architectures.
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    loc_big[0] = 42;
    global_f();
    local_f();
    return 0;
}

We will use the following line to compile it:

gcc -O0 -g cm-example.c

The -g flag adds debug information such as .line section, which describes the correspondence between 
assembly instructions and the source code lines.

In this example, there are bigger and smaller arrays. It matters only for medium code model, hence we 
will omit the big array accesses from other disassembly listings.

15.10.1 � Small Code Model (No PIC)
In the small code model the program is limited in size. All objects should be within 4GB of each other to be 
linked. The linking can be done either statically or dynamically. As this is the default code model, we are not 
going to see anything interesting here.

By feeding the -S key to objdump we will intersperse the assembly code with the source C lines (if the 
corresponding file was compiled with -g flag). The full command sequence will look as follows:

gcc -O0 -g cm-example.c -o example
objdump -D -Mintel-mnemonic -S example

Listing 15-29 shows the compiled assembly.

Listing 15-29.  mc-small

;     glob_small[0] = 42;
4004f0:  c6 05 49 0b 20 00 2a     mov     BYTE PTR [rip+0x200b49],0x2a

;     loc_small[0] = 42;
4004fe:   c6 05 3b a2 b8 00 2a    mov     BYTE PTR [rip+0xb8a23b],0x2a

;     global_f();
40050c:   e8 c5 ff ff ff          call    4004d6 <global_f>

;     local_f();
400511:   e8 cb ff ff ff          call    4004e1 <local_f>

The second column shows us the hex codes of the bytes that correspond to each instruction. The array 
accesses are performed explicitly relative to rip, and the calls accept the offsets (which are also implicitly 
relative to rip). We can see that the size of data accessing instructions is 7 bytes of which 1 byte is the value 
(0x2a) and 4 bytes encode the offset relative to rip. It illustrates the core idea of the small code model:  
rip-relative addressing.

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Par117
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15.10.2 � Large Code Model (No PIC)
Now let us compile the same code using the large code model (-mcmodel=large).

;     glob_small[0] = 42;
   4004f0:   48 b8 40 10 60 00 00    mov     rax,0x601040
   4004f7:   00 00 00
   4004fa:   c6 00 2a                mov     BYTE PTR [rax],0x2a

;     loc_small[0] = 42;
   40050a:   48 b8 40 a7 f8 00 00    mov     rax,0xf8a740
   400511:   00 00 00
   400514:   c6 00 2a                mov     BYTE PTR [rax],0x2a

;     global_f();
   400524:   48 b8 d6 04 40 00 00    mov     rax,0x4004d6
   40052b:   00 00 00
   40052e:   ff d0                   call    rax

;     local_f();
   400530:   48 b8 e1 04 40 00 00    mov     rax,0x4004e1
   400537:   00 00 00
   40053a:   ff d0                   call    rax

Both data accesses and calls are performed uniformly. We always start by moving an immediate value 
into one of the general purpose registers and then reference memory using the address stored in this 
register.9

For a cost of a more spacious assembly code (and probably a bit slower one) we take the safest road 
possible allowing to reference anything in any part of the 64-bit virtual address space.

15.10.3 � Medium Code Model (No PIC)
In the medium code model, the arrays of size greater than specified by the -mlarge-data-threshold 
compiler parameter are placed into a special .ldata and .lbss section. These sections can be placed above 
the 2GB mark. Basically, it is a small code model except for big chunks of data, which are placed separately. 
Performance-wise it is better than accessing everything via 64-bit pointers, because of locality.

The disassembly for the sources compiled with -mcmodel=medium is as follows:.

  glob_small[0] = 42;
400530:   c6 05 09 0b 20 00 2a     mov      BYTE PTR [rip+0x200b09],0x2a

  glob_big[0] = 42;
400537:   48 b8 40 11 a0 00 00     movabs   rax,0xa01140
40053e:   00 00 00
400541:   c6 00 2a                 mov      BYTE PTR [rax],0x2a

  loc_small[0]  =  42;
400544:   c6 05 75 0b 20 00 2a     mov      BYTE PTR [rip+0x200b75],0x2a

9If you encounter the movabs instruction, consider it equivalent to the mov instruction.
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  loc_big[0] = 42;
40054b:   48 b8 c0 a7 38 01 00     movabs   rax,0x138a7c0
400552:   00 00 00
400555:   c6 00 2a                 mov      BYTE PTR [rax],0x2a

  global_f();
400558:   e8 b9 ff ff ff           call     400516 <global_f>

  local_f();
40055d:   e8 bf ff ff ff           call     400521 <local_f>

As we see, the generated code is using the large model to access big arrays and the small one for the 
rest of accesses. It is quite clever and might save you if you only need to work with a big chunk of statically 
allocated data.

15.10.4 � Small PIC Code Model
Now we are going to investigate the position-independent counterparts of these three code models. As 
before, the small model will not surprise us, because up to now we have only worked with a small code 
model. For convenience, we provide the example code compiled with gcc -g -O0 -mcmodel=small -fpic.

  glob_small[0] = 42;
4004f0:   48 8d 05 49 0b 20 00      lea      rax,[rip+0x200b49]
  # 601040 <glob_small>

4004f7:   c6 00 2a                  mov      BYTE PTR [rax],0x2a

  glob_big[0] = 42;
4004fa:   48 8d 05 bf 0b 20 00      lea      rax,[rip+0x200bbf]
  # 6010c0 <glob_big>

400501:   c6 00 2a                  mov      BYTE PTR [rax],0x2a

  loc_small[0] = 42;
400504:   c6 05 35 a2 b8 00 2a      mov      BYTE PTR [rip+0xb8a235],0x2a
  # f8a740 <loc_small>

  loc_big[0] = 42;
40050b:   c6 05 ae a2 b8 00 2a      mov      BYTE PTR [rip+0xb8a2ae],0x2a
  # f8a7c0 <loc_big>

  global_f();
400512:   e8 bf ff ff ff            call     4004d6 <global_f>
  local_f();
400517:   e8 c5 ff ff ff            call     4004e1 <local_f>

The static arrays are accessed easily relative to rip as expected. The globally visible arrays are 
accessed through GOT, which implies an additional read from the table itself to get its address.



Chapter 15 ■ Shared Objects and Code Models

320

15.10.5 � Large PIC Code Model
Interesting things start to emerge when using a large code model with position-independent code. Now we 
cannot use rip-relative addressing to get to the GOT, because it can be further than 2GB in address space! 
Because of this, we need to allocate a register to store its address (rbx in our case).

# Standard prologue
400594:   55                            push    rbp
400595:   48 89 e5                      mov     rbp,rsp

# What is that?
400598:   41 57                         push    r15
40059a:   53                            push    rbx
40059b:   48 8d 1d f9 ff ff ff          lea     rbx,[rip+0xfffffffffffffff9]
# 40059b <main+0x7>
4005a2:   49 bb 65 0a 20 00 00          movabs  r11,0x200a65
4005a9:   00 00 00
4005ac:   4c 01 db                      add     rbx,r11

# Accessing global symbols
  glob_small[0] = 42;
4005af:   48 b8 e8 ff ff ff ff          movabs  rax,0xffffffffffffffe8
4005b6:   ff ff ff
4005b9:   48 8b 04 03                   mov     rax,QWORD PTR [rbx+rax*1]
4005bd:   c6 00 2a                      mov     BYTE PTR [rax],0x2a

# Accessing local symbols
  loc_small[0] = 42;
4005d1:   48 b8 40 97 98 00 00          movabs  rax,0x989740
4005d8:   00 00 00
4005db:   c6 04 03 2a                   mov     BYTE  PTR  [rbx+rax*1],0x2a

# Calling global function
  global_f();
4005ed:   49 89 df                      mov     r15,rbx
4005f0:   48 b8 56 f5 df ff ff          movabs  rax,0xffffffffffdff556
4005f7:   ff ff ff
4005fa:   48 01 d8                      add     rax,rbx
4005fd:   ff d0                         call    rax

# Calling local function
  local_f();
4005ff:   48 b8 75 f5 df ff ff          movabs  rax,0xffffffffffdff575
400606:   ff ff ff
400609:   48 8d 04 03                   lea     rax,[rbx+rax*1]
40060d:   ff d0                         call    rax

    return 0;
  40060f:   b8 00 00 00 00               mov      eax,0x0
}
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400614:   5b                            pop     rbx
400615:   41 5f                         pop     r15
400617:   5d                            pop     rbp
400618:   c3                            ret

This example needs to be studied carefully. First we want to break down the unusual code in the 
function prologue.

400598:     41 57                    push    r15
40059a:     53                       push    rbx
40059b:     48 8d 1d f9 ff ff ff     lea     rbx,[rip+0xfffffffffffffff9]
# 40059b <main+0x7>
4005a2:   49 bb 65 0a 20 00 00       movabs  r11,0x200a65
4005a9:   00 00 00
4005ac:   4c 01 db                   add     rbx,r11

We use rbx and r15 because they are callee-saved. They are used here to build up the GOT address out 
of the following two components:

•	 The address of the current instruction, calculated in lea 
rbx,[rip+0xfffffffffffffff9]. The operand is equal to -6, while the instruction 
itself is 6 bytes long. When it is being executed, the rip value points to the next address 
after the instruction.

•	 Then the number 0x200a65 is being added to rbx. It is done through another register, 
because adding an immediate operand of 64 bits wide is not supported by the add 
instruction (check the instruction description in [15]!).

•	 This number is a displacement of GOT relative to the address of lea 
rbx,[rip+0xfffffffffffffff9], which, as we know, is always known at link time in 
position-independent code.10

The ABI considers that r15 should hold GOT address at all times. rbx is also used by GCC for its 
convenience.

The GOT absolute address is unknown at link time since the code is written to be position independent.
Now to the data accesses: the global symbol is accessed through GOT the same way as in non-PIC code; 

however, as the GOT address is stored in rbx, we have to compute the entry address using more instructions.

# Accessing global symbols
  glob_small[0] = 42;
4005af:   48 b8 e8 ff ff ff ff     movabs   rax,0xffffffffffffffe8
4005b6:   ff  ff  ff
4005b9:   48 8b 04 03              mov      rax,QWORD PTR [rbx+rax*1]
4005bd:   c6 00 2a                 mov      BYTE PTR [rax],0x2a

The entry is located with a negative offset of -24 relatively to the rbx (r15) value. This displacement 
can be of arbitrary length, so we need to store it in a register to consider cases where it cannot be contained 
in 32 bits. Then we load the GOT entry to rax and use this address for our purposes (in this case we store a 
value in the array start).

10Obviously, here r15 and rbx hold not the beginning of GOT but its end, but it does not matter.

http://dx.doi.org/10.1007/978-1-4842-2403-8_2#Par119
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The variables not visible as other objects are accessed using GOT as well. However, we are not reading 
their addresses from GOT. Rather than that, we use the rbx value as the base (as it points somewhere in the 
data segment). Every global variable has a fixed offset from this base, so we can just pick this offset and use 
the base indexed addressing mode.

# Accessing local symbols
  loc_small[0] = 42;
4005d1:   48 b8 40 97 98 00 00     movabs     rax,0x989740
4005d8:   00 00 00
4005db:   c6 04 03 2a              mov        BYTE PTR [rbx+rax*1],0x2a

This is obviously faster, so whenever you can, you should prefer limiting symbol visibility as explained 
in section 15.9

The local functions are called in the same manner. Their address is calculated relative to GOT and 
stored in a register. We cannot simply use the call command, because its immediate operand is limited to 
32 bits (in its description given in [15], there are only operand types rel16 and rel32, but no rel64).

# Calling local  function
  local_f();
4005ff:   48 b8 75 f5 df ff ff     movabs     rax,0xffffffffffdff575
400606:   ff ff ff
400609:   48 8d 04 03              lea        rax,[rbx+rax*1]
40060d:   ff d0                    call       rax

Calling global functions is done in a more traditional way. Its PLT entry is used, whose address is also 
calculated as a fixed offset to a known GOT position.

# Calling global function
  global_f();
4005ed:   49 89 df                 mov     r15,rbx
4005f0:   48 b8 56 f5 df ff ff     movabs  rax,0xffffffffffdff556
4005f7:   ff ff ff
4005fa:   48 01 d8                 add     rax,rbx
4005fd:   ff d0                    call    rax

15.10.6 � Medium PIC Code Model
The medium code model, as in non-PIC code, is a mixture of large and small code models.

We can think of it as a small PIC code model with an addition of big arrays, residing separately.

int main(void) {
  40057a:   55                      push   rbp
  40057b:   48 89 e5                mov    rbp,rsp

# Different from small model: we save GOT address locally.
  40057e:   48 8d 15 7b 0a 20 00    lea    rdx,[rip+0x200a7b]

    glob_small[0] = 42;
  400585:   48 8d 05 b4 0a 20 00    lea    rax,[rip+0x200ab4]
  40058c:   c6 00 2a                mov    BYTE PTR [rax],0x2a

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
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    glob_big[0] = 42;
  40058f:   48 8b 05 62 0a 20 00    mov    rax,QWORD PTR [rip+0x200a62]
  400596:   c6 00 2a                mov    BYTE PTR [rax],0x2a

    loc_small[0] = 42;
  400599:   c6 05 20 0b 20 00 2a    mov    BYTE PTR [rip+0x200b20],0x2a

    loc_big[0] = 42;
  4005a0:   48 b8 c0 97 d8 00 00    movabs rax,0xd897c0
  4005a7:   00 00 00
  4005aa:   c6 04 02 2a             mov    BYTE PTR [rdx+rax*1],0x2a

    global_f();
  4005ae:   e8 a3 ff ff ff          call   400556 <global_f>

    local_f();
  4005b3:   e8 b0 ff ff ff          call   400568 <local_f>

    return 0;
  4005b8:   b8 00 00 00 00          mov    eax,0x0
}
    4005bd: 5d                      pop    rbp
  4005be:   c3                      ret

The GOT address is also in reach of rip-relative addressing, so its address is loaded with one instruction.

40057e:   48 8d 15 7b 0a 20 00     lea    rdx,[rip+0x200a7b]

It is thus not always needed to dedicate a register for it, since this address will not be used everywhere.
The code references are considered to be in reach of 32-bit rip-relative offsets. So, calling any functions 

is trivial.

    global_f();
  4005ae:   e8 a3 ff ff ff     call     400556 <global_f>

    local_f();
  4005b3:  e8 b0 ff ff ff      call     400568 <local_f>

As for the data accesses, the accesses to global variables are performed uniformly no matter the size. 
The GOT is involved in any case, and it contains 64-bit global variables addresses, so we have the possibility 
of addressing anything for free.

  glob_small[0] = 42;
400585:   48 8d 05 b4 0a 20 00     lea     rax,[rip+0x200ab4]
40058c:   c6 00 2a                 mov     BYTE PTR [rax],0x2a

  glob_big[0] = 42;
40058f:   48 8b 05 62 0a 20 00     mov     rax,QWORD PTR [rip+0x200a62]
400596:   c6 00 2a                 mov     BYTE PTR [rax],0x2a
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The local variables, however, differ. Small arrays can be accessed relative to rip.

  loc_small[0] = 42;
400599:   c6 05 20 0b 20 00 2a     mov     BYTE PTR [rip+0x200b20],0x2a

Local big arrays are found relative to GOT starting addresses, as in the large model.

  loc_big[0] = 42;
4005a0:   48 b8 c0 97 d8 00 00     movabs     rax,0xd897c0
4005a7:   00 00 00
4005aa:   c6 04 02 2a              mov        BYTE PTR [rdx+rax*1],0x2a

15.11 � Summary
In this chapter we have received the knowledge we need to understand the machinery behind dynamic 
library loading and usage. We have written a library in assembly language and in C and successfully linked it 
to an executable.

For further reading we address you above all to a classic article [13] and to the ABI description [24].
In the next chapter we are going to speak about compiler optimizations and their effects on 

performance as well as about specialized instruction set extensions (SSE/AVX), aimed to speed up certain 
types of computations.

■■ Question 297  What is the difference between static and dynamic linkage?

■■ Question 298  What does the dynamic linker do?

■■ �Question 299  Can we resolve all dependencies at the link time? What kind of system should we be 
working with in order for this to be possible?

■■ Question 300  Should we always relocate the .data section?

■■ Question 301  Should we always relocate the .text section?

■■ Question 302  What is PIC?

■■ Question 303  Can we share a .text section between processes when it is being relocated?

■■ Question 304  Can we share a .data section between processes when it is being relocated?

■■ Question 305  Can we share a .data section when it is being relocated?

■■ Question 306  Why are we compiling dynamic libraries with an -fPIC flag?

■■ Question 307  Write a simple dynamic library in C from scratch and demonstrate the calling function from it.

■■ Question 308  What is ldd used for?

■■ Question 309  Where are the libraries searched?

■■ Question 310  What is the environment variable LD_LIBRARY_PATH for?

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par14
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■■ Question 311  What is GOT? Why is it needed?

■■ Question 312  What makes GOT usage effective?

■■ �Question 313 H ow come that position-independent code can address GOT directly but cannot address 
global variables directly?

■■ Question 314  Is GOT unique for each process?

■■ Question 315  What is PLT?

■■ Question 316  Why don’t we use GOT to call functions from different objects (or do we)?

■■ Question 317  What does the initial GOT entry for a function point at?

■■ Question 318 H ow do we preload a library and what can it be used for?

■■ �Question 319  In assembly, how is the symbol addressed if it is defined in the executable and accessed 
from there?

■■ �Question 320  In assembly, how is the symbol addressed if it is defined in the library and accessed from 
there?

■■ �Question 321  In assembly, how is the symbol addressed if it is defined in the executable and accessed 
from everywhere?

■■ �Question 322  In assembly, how is the symbol addressed if it is defined in the library and accessed from 
everywhere?

■■ �Question 323 H ow do we control the visibility of a symbol in a dynamic library? How do we make it private 
for the library but accessible from anywhere in it?

■■ Question 324  Why do people sometimes write wrapper functions for those used in library?

■■ Question 325 H ow do we link against a library that is stored in libdir?

■■ Question 326  What is a code model and why do we care about code models?

■■ Question 327  What limitations impose the small code model?

■■ Question 328  Which overhead does the large code model carry?

■■ Question 329  What is the compromise between large and small code models?

■■ Question 330  When is the medium model most useful?

■■ Question 331 H ow do large code models differ for PIC and non-PIC code?

■■ Question 332 H ow do medium code models differ for PIC and non-PIC code?
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CHAPTER 16

Performance

In this chapter we will study how to write faster code. In order to do that, we will look into SSE (Streaming 
SIMD Extensions) instructions, study compiler optimizations, and hardware cache functioning.

Note that this chapter is a mere introduction to the topic and will not make you an expert in 
optimization.

There is no silver bullet technique to magically make everything fast. Hardware has become so complex 
that even an educated guess about the code that is slowing down program execution might fail. Testing and 
profiling should always be performed, and the performance should be measured in a reproducible way. It 
means that everything about the environment should be described in such detail that anyone would be able 
to replicate the conditions of the experiment and receive similar results.

16.1 � Optimizations
In this section we want to discuss the most important optimizations that happen during the translation 
process. They are crucial to understanding how to write quality code. Why? A common type of decision 
making in programming is balancing between code readability and performance. Knowing optimizations 
is necessary in order to make good decisions. Otherwise, when choosing between two versions of code, we 
might choose a less readable one because it “looks” like it performs fewer actions. In reality, however, both 
versions will be optimized to exactly the same sequences of assembly instructions. In this case, we just made 
a less readable code for no benefit at all.

■■ Note  In the listings presented in this section we will often use an __attribute__ ((noinline)) GCC 
directive. Applying it to a function definition suppresses inlining for the said function. Exemplary functions 
are often small, which encourages compilers to inline them, which we do not want to better show various 
optimization effects.

Alternatively, we could have compiled the examples with -fno-inline option.

16.1.1 � Myth About Fast Languages
There is a common misunderstanding that the language defines the program execution speed. It is not true.

Better and more useful performance tests are usually highly specialized. They measure performance 
in very specific cases. It prevents us from making bold generalizations. So, when giving statements about 
the performance it is wise to give the most possibly detailed description of the scenario and test results. The 
description should be enough to build a similar system and launch similar tests, getting comparable results.
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There are cases in which a program written in C can be outperformed by another program performing 
similar actions but written in, say, Java. It has no connection with the language itself.

For example, a typical malloc implementation has a particular property: it is hard to predict its 
execution time. In general, it is dependent on the current heap state: how many blocks exist, how 
fragmented the heap is, etc. In any case it is most likely greater than allocating memory on a stack. In a 
typical Java Virtual Machine implementation, however, allocating memory is fast. It happens because Java 
has a simpler heap structure. With some simplifications, it is just a memory region and a pointer inside it, 
which delimits an occupied area from the free one. Allocating memory means moving this pointer further 
into the free part, which is fast.

However, it has its cost: to get rid of the memory chunks we do not need anymore, garbage collection is 
performed, which might stop the program for an unknown period of time.

We imagine a situation in which garbage collection never happens, for example, a program allocates 
memory, performs computations, and exits, destroying all address space without invoking the garbage 
collector. In this case it is possible that a Java program performs faster just because of the careful allocation 
overhead imposed by malloc. However, if we use a custom memory allocator, fitting our specific needs for a 
particular task, we might do the same trick in C, changing the outcome drastically.

Additionally, as Java is usually interpreted and compiled in runtime, virtual machine has access to 
runtime optimizations that are based on how exactly the program is executed. For example, methods that 
are often executed one after another can be placed near each other in memory, so that they are placed in a 
cache together. In order to do that, certain information about program execution trace should be collected, 
which is only possible in runtime.

What really distinguishes C from other languages is a very transparent costs model. Whatever you 
are writing, it is easy to imagine which assembly instructions will be emitted. Contrary to that, languages 
destined primarily to work inside a runtime (Java, C#), or providing multiple additional abstractions, such as 
C++ with its virtual inheritance mechanism, are harder to predict. The only two real abstractions C provides 
are structures/unions and functions.

Being translated naively in machine instructions, a C program works very slowly. It is no match to a 
code generated by a good optimizing compiler. Usually, a programmer does not have more knowledge about 
low-level architecture details than the compiler, which is much needed to perform low-level optimizations, 
so he will not be able to compete with the compiler. Otherwise, sometimes, for a particular platform and 
compiler, one might change a program, usually reducing its readability and maintainability, but in a way that 
will speed up the code. Again, performance tests are mandatory for everyone.

16.1.2 � General Advice
When programming we should not usually be concerned with optimizations right away. Premature 
optimization is evil for numerous reasons.

•	 Most programs are written in a way that only a fraction of their code is repeatedly 
executed. This code determines how fast the program will be executing, and it can 
slow down everything else. Speeding up other parts will in these circumstances have 
little to no effect.

	 Finding such parts of the code is best performed using a profiler —a utility program 
that measures how often and how long different parts of code are executed.

•	 Optimizing code by hand virtually always makes it less readable and harder to 
maintain.

•	 Modern compilers are aware of common patterns in high-level language code. Such 
patterns get optimized well because the compiler writers put much work into it, since 
the work is worth it.
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The most important part of optimizations is often choosing the right algorithm. Low-level optimizations 
on the assembly level are rarely so beneficial. For example, accessing elements of a linked list by index 
is slow, because we have to traverse it from the beginning, jumping from node to node. Arrays are more 
beneficial when the program logic demands accessing its elements by index. However, insertion in a linked 
list is easy compared to array, because to insert an element to the i-th position in an array we have to move 
all following elements first (or maybe even reallocate memory for it first and copy everything).

A simple, clean code is often also the most efficient.
Then, if the performance is unsatisfactory, we have to locate the code that gets executed the most using 

profiler and try to optimize it by hand. Check for duplicated computations and try to memorize and reuse 
computation results. Study the assembly listings and check if forcing inlining for some of the functions used 
is doing any good.

General concerns about hardware such as locality and cache usage should be taken into account at this 
time. We will speak about them in section 16.2.

The compiler optimizations should be considered then. We will study the basic ones later in this 
section. Turning specific optimizations on or off for a dedicated file or a code region can have a positive 
impact on performance. By default, they are usually all turned on when compiling with -O3 flag.

Only then come lower-level optimizations: manually throwing in SSE or AVX (Advanced Vector 
Extensions) instructions, inlining assembly code, writing data bypassing hardware cache, prefetching data 
into caches before using it, etc.

The compiler optimizations are boldly controlled by using compiler flags -O0, -O1, -O2, -O3, -Os 
(optimize space usage, to produce the smallest executable file possible). The index near -O, increases as the 
set of enabled optimizations grows.

Specific optimizations can be turned on and off. Each optimization type has two associated compiler 
options for that, for example, -fforward-propagate and -fno-forward-propagate.

16.1.3 � Omit Stack Frame Pointer
Related GCC options: -fomit-frame-pointer

Sometimes we do not really need to store old rbp value and initialize it with the new base value. It 
happens when

•	 There are no local variables.

•	 Local variables fit into the red zone AND the function calls no other function.

However, there is a downside: it means that less information about the program state is kept at runtime. 
We will have trouble unwinding call stack and getting local variable values because we lack information 
about where the frame starts.

It is most troublesome in situations in which a program crashed and a dump of its state should be 
analyzed. Such dumps are often heavily optimized and lack debug information.

Performance-wise the effects of this optimizations are often negligible [26].
The code shown in Listing 16-1 demonstrates how to unwind the stack and display frame pointer 

addresses for all functions launched when unwind gets called. Compile it with -O0 to prevent optimizations.

Listing 16-1.  stack_unwind.c

void unwind();
void f( int count ) {
    if ( count ) f( count-1 ); else unwind();
}
int main(void) {
    f( 10 ); return 0;
}

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par27
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Listing 16-2 shows an example.

Listing 16-2.  stack_unwind.asm

extern printf
global unwind

section .rodata
format : db "%x ", 10, 0

section .code
unwind:
push rbx

; while (rbx != 0) {
    ;     print rbx; rbx = [rbx];
    ; }
    mov rbx, rbp
    .loop:
    test rbx, rbx
    jz .end
    mov rdi, format
    mov rsi, rbx
    call printf
    mov rbx, [rbx]
    jmp .loop

    .end:
    pop rbx
    ret

How do we use it? Try it as a last resort to improve performance on code involving a huge amount of 
non-inlineable function calls.

16.1.4 � Tail recursion
Related GCC options: -fomit-frame-pointer -foptimize-sibling-calls

Let us study a function shown in Listing 16-3.

Listing 16-3.  factorial_tailrec.c

 __attribute__ (( noinline ))
     int factorial( int acc, int arg ) {
         if ( arg == 0 ) return acc;
         return factorial( acc * arg, arg-1 );
     }

int main(int argc, char** argv) { return factorial(1, argc); }

It calls itself recursively, but this call is particular. Once the call is completed, the function immediately 
returns.
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We say that the function is tail recursive if the function either

•	 Returns a value that does not involve a recursive call, for example, return 4;.

•	 Launches itself recursively with other arguments and returns the result immediately, 
without performing further computations with it. For example, return factorial 
( acc * arg, arg-1 );.

A function is not tail recursive when the recursive call result is then used in computations.
Listing 16-4 shows an example of a non-tail-recursive factorial computation. The result of a recursive 

call is multiplied by arg before being returned, hence no tail recursion.

Listing 16-4.  factorial_nontailrec.c

 __attribute__ (( noinline ))
     int factorial( int arg ) {

        if ( arg == 0 ) return acc;
        return arg * factorial( arg-1 );
    }

int main(int argc, char** argv) { return factorial(argc); }

In Chapter 2, we studied Question 20, which proposes a solution in the spirit of tail recursion. When the 
last thing a function does is call other function, which is immediately followed by the return, we can perform 
a jump to the said function start. In other words, the following pattern of instructions can be a subject to 
optimization:

  ; somewhere else:
      call f

  ...
  ...

  f:

     ...
     call g
     ret      ; 1
  g:

     ...
     ret      ; 2

The ret instruction in this listing are marked as the first and the second one.
Executing call g will place the return address into the stack. This is the address of the first ret 

instruction. When g completes its execution, it executes the second ret instruction, which pops the return 
address, leaving us at the first ret. Thus, two ret instructions will be executed in a row before the control 
passes to the function that called f. However, why not return to the caller of f immediately? To do that, 
we replace call g with jmp g. Now g we will never return to function f, nor will we push a useless return 
address into the stack. The second ret will pick up the return address from call f, which should have 
happened somewhere, and return us directly there.

http://dx.doi.org/10.1007/978-1-4842-2403-8_2
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  ; somewhere else:
      call f

  ...
  ...

  f:

     ...
     jmp g
  g:

     ...
     ret      ; 2

When g and f are the same function, it is exactly the case of tail recursion. When not optimized, 
factorial(5, 1) will launch itself five times, polluting the stack with five stack frames. The last call will end 
executing ret five times in a row in order to get rid of all return addresses.

Modern compilers are usually aware of tail recursive calls and know how to optimize tail recursion 
into a cycle. The assembly listing produced by GCC for the tail recursive factorial (Listing 16-3) is shown in 
Listing 16-5.

Listing 16-5.  factorial_tailrec.asm

00000000004004c6 <factorial>:
4004c6:  89 f8                      mov     eax,edi
4004c8:  85 f6                      test    esi,esi
4004ca:  74 07                      je      4004d3 <factorial+0xd>
4004cc:  0f af c6                   imul    eax,esi
4004cf:  ff ce                      dec     esi
4004d1:  eb f5                      jmp     4004c8 <factorial+0x2>
4004d3:  c3                         ret

As we see, a tail recursive call consists of two stages.

•	 Populate registers with new argument values.

•	 Jump to the function start.

Cycles are faster than recursion because the latter needs additional space in the stack (which might lead 
to stack overflow as well). Why not always stick with cycles then?

Recursion often allows us to express some algorithms in a more coherent and elegant way. If we can 
write a function so that it becomes tail recursive as well, that recursion will not impact the performance.

Listing 16-6 shows an exemplary function accessing a linked list element by index.

Listing 16-6.  tail_rec_example_list.c

#include <stdio.h>
#include <malloc.h>

struct llist {
    struct llist* next;
    int value;
};
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struct llist* llist_at(
        struct llist* lst,
        size_t idx ) {
    if ( lst && idx ) return llist_at( lst->next, idx-1 );
    return lst;
}
struct llist* c( int value, struct llist* next) {
    struct llist* lst = malloc( sizeof(struct llist*) );
    lst->next = next;
    lst->value = value;
    return lst;
}

int main( void ) {
    struct llist* lst = c( 1, c( 2, c( 3, NULL )));
    printf("%d\n", llist_at( lst, 2 )->value );
    return 0;
}

Compiling with -Os will produce the non-recursive code, shown in Listing 16-7.

Listing 16-7.  tail_rec_example_list.asm

0000000000400596 <llist_at>:

400596:       48 89 f8                       mov      rax,rdi
400599:       48 85 f6                       test     rsi,rsi
40059c:       74 0d                          je       4005ab <llist_at+0x15>
40059e:       48 85 c0                       test     rax,rax
4005a1:       74 08                          je       4005ab <llist_at+0x15>
4005a3:       48 ff ce                       dec      rsi
4005a6:       48 8b 00                       mov      rax,QWORD PTR [rax]
4005a9:       eb ee                          jmp      400599 <llist_at+0x3>
4005ab:       c3                             ret

How do we use it? Never be afraid to use tail recursion if it makes the code more readable for it brings no 
performance penalty.

16.1.5 � Common Subexpressions Elimination
Related GCC options: -fgcse and others containing cse substring.

Computing two expressions with a common part does not result in computing this part twice. It means 
that it makes no sense performance-wise to compute this part ahead, store its result in a variable, and use it 
in two expressions.

In an example shown in Listing 16-8 a subexpression x2 + 2x is computed once, while the naive 
approach suggests otherwise.
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Listing 16-8.  common_subexpression.c

#include <stdio.h>

__attribute__ ((noinline))
    void test(int x) {
        printf("%d %d",
                x*x + 2*x + 1,
                x*x + 2*x - 1 );
    }

int main(int argc, char** argv) {
    test( argc );
    return 0;
}

As a proof, Listing 16-9 shows the compiled code, which does not compute x2 + 2x twice.

Listing 16-9.  common_subexpression.asm

0000000000400516 <test>:
; rsi = x + 2
400516:       8d 77 02                     lea       esi,[rdi+0x2]
400519:       31 c0                        xor       eax,eax
40051b:       0f af f7                     imul      esi,edi
; rsi = x*(x+2)
40051e:       bf b4 05 40 00               mov       edi,0x4005b4
; rdx = rsi-1 = x*(x+2) - 1
400523:       8d 56 ff                     lea       edx,[rsi-0x1]
; rsi = rsi + 1 = x*(x+2) - 1
400526:       ff c6                        inc       esi
400528:       e9 b3 fe ff ff               jmp       4003e0 <printf@plt>

How do we use it? Do not be afraid to write beautiful formulae with same common subexpressions: they 
will be computed efficiently. Favor code readability.

16.1.6 � Constant Propagation
Related GCC options: -fipa-cp, -fgcse, -fipa-cp-clone, etc.

If compiler can prove that a variable has a specific value in a certain place of the program, it can omit 
reading its value and put it there directly.

Sometimes it even generates specialized function versions, partially applied to some arguments, if it 
knows an exact argument value (option -fipa-cp-clone). For example, Listing 16-10 shows the typical case 
when a specialized function version will be created for sum, which has only one argument instead of two, 
and the other argument’s value is fixed and equal to 42.

Listing 16-10.  constant_propagation.c

__attribute__ ((noinline))
static int sum(int x, int y) { return x + y; }

int main( int argc, char** argv ) {
    return sum( 42, argc );
}



Chapter 16 ■ Performance

335

Listing 16-11 shows the translated assembly code.

Listing 16-11.  constant_propagation.asm

00000000004004c0 <sum.constprop.0>:
4004c0:       8d 47 2a                     lea       eax,[rdi+0x2a]
4004c3:       c3                           ret

It gets better when the compiler computes complex expressions for you (including function calls). 
Listing 16-2 shows an example.

Listing 16-12.  cp_fact.c

#include <stdio.h>

int fact( int n ) {
    if (n == 0) return 1;
    else return n * fact( n-1 );
}

int main(void) {
    printf("%d\n", fact( 4 ) );
    return 0;
}

Obviously, the factorial function will always compute the same result, because this value does not 
depend on user input. GCC is smart enough to precompute this value erasing the call and substituting the 
fact(4) value directly with 24, as shown in Listing 16-13. The instruction mov edx, 0x18 places 24

10
 = 18

16
 

directly into rdx.

Listing 16-13.  cp_fact.asm

0000000000400450 <main>:
400450:  48 83 ec 08                        sub      rsp,0x8
400454:  ba 18 00 00 00                     mov      edx,0x18
400459:  be 44 07 40 00                     mov      esi,0x400744
40045e:  bf 01 00 00 00                     mov      edi,0x1
400463:  31 c0                              xor      eax,eax
400465:  e8 c6 ff ff ff                     call     400430 <__printf_chk@plt>
40046a:  31 c0                              xor      eax,eax
40046c:  48 83 c4 08                        add      rsp,0x8
400470:  c3                                 ret

How do we use it? Named constants are not harmful, nor are constant variables. A compiler can and will 
precompute as much as it is able to, including functions without side effects launched on known arguments.

Multiple function copies for each distinct argument value can be bad for locality and will make the 
executable size grow. Take that into account if you face performance issues.
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16.1.7 � (Named) Return Value Optimization
Copy elision and return value optimization allow us to eliminate unnecessary copy operations.

Recall that naively speaking, local variables are created inside the function stack frame. So, if a function 
returns an instance of a structural type, it should first create it in its own stack frame and then copy it to the 
outside world (unless it fits into two general purpose registers rax and rdx).

Listing 16-14 shows an example.

Listing 16-14.  nrvo.c

struct p  {
    long x;
    long y;
    long z;
};

__attribute__ ((noinline))
    struct p f(void) {
        struct p copy;
        copy.x = 1;
        copy.y = 2;
        copy.z = 3;
        return copy;
    }

int main(int argc, char** argv) {
    volatile struct p inst = f();
    return 0;
}

An instance of struct p called copy is created in the stack frame of f. Its fields are populated with 
values 1, 2, and 3, and then it is copied to the outside world, presumably by the pointer accepted by f as a 
hidden argument.

Listing 16-15 shows the resulting assembly code.

Listing 16-15.  nrvo_off.asm

00000000004004b6 <f>:
; prologue
4004b6:  55                             push   rbp
4004b7:  48 89 e5                       mov    rbp,rsp
; A hidden argument is the address of a structure which will hold the  result.
; It is saved into stack.
4004ba:  48 89 7d d8                    mov    QWORD PTR [rbp-0x28],rdi
; Filling the fields of `copy` local variable
4004be:  48 c7 45 e0 01 00 00           mov    QWORD PTR [rbp-0x20],0x1
4004c5:  00
4004c6:  48 c7 45 e8 02 00 00           mov    QWORD PTR [rbp-0x18],0x2
4004cd:  00
4004ce:  48 c7 45 f0 03 00 00           mov    QWORD PTR [rbp-0x10],0x3
4004d5:  00
; rax = address of the destination struct
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4004d6:  48 8b 45 d8                    mov    rax,QWORD PTR [rbp-0x28]
; [rax] = 1 (taken from `copy.x`)
4004da:  48 8b 55 e0                    mov    rdx,QWORD PTR [rbp-0x20]
4004de:  48 89 10                       mov    QWORD PTR [rax],rdx
; [rax + 8] = 2 (taken from `copy.y`)
4004da:  48 8b 55 e0                    mov    rdx,QWORD PTR [rbp-0x20]
4004e1:  48 8b 55 e8                    mov    rdx,QWORD PTR [rbp-0x18]
4004e5:  48 89 50 08                    mov    QWORD PTR [rax+0x8],rdx
; [rax + 10] = 3 (taken from `copy.z`)
4004e9:  48 8b 55 f0                    mov    rdx,QWORD PTR [rbp-0x10]
4004ed:  48 89 50 10                    mov    QWORD PTR [rax+0x10],rdx
; rax =  address where we have put the structure contents
; (it was the hidden argument)
4004f1:  48 8b 45 d8                    mov    rax,QWORD PTR [rbp-0x28]
4004f5:  5d                             pop    rbp
4004f6:  c3                             ret

00000000004004f7 <main>:
4004f7:  55                             push   rbp
4004f8:  48 89 e5                       mov    rbp,rsp
4004fb:  48 83 ec 30                    sub    rsp,0x30
4004ff:  89 7d dc                       mov    DWORD PTR [rbp-0x24],edi
400502:  48 89 75 d0                    mov    QWORD PTR [rbp-0x30],rsi
400506:  48 8d 45 e0                    lea    rax,[rbp-0x20]
40050a:  48 89 c7                       mov    rdi,rax
40050d:  e8 a4 ff ff ff                 call   4004b6 <f>
400512:  b8 00 00 00 00                 mov    eax,0x0
400517:  c9                             leave
400518:  c3                             ret
400519:  0f 1f 80 00 00 00 00           nop    DWORD PTR [rax+0x0]

The compiler can produce a more efficient code as shown in Listing 16-16.

Listing 16-16.  nrvo_on.asm

00000000004004b6 <f>:
4004b6:  48 89 f8                      mov     rax,rdi
4004b9:  48 c7 07 01 00 00 00          mov     QWORD PTR [rdi],0x1
4004c0:  48 c7 47 08 02 00 00          mov      QWORD PTR [rdi+0x8],0x2
4004c7:  00
4004c8:  48 c7 47 10 03 00 00          mov QWORD PTR [rdi+0x10],0x3
4004cf:  00
4004d0:  c3                            ret

00000000004004d1 <main>:
4004d1:  48 83 ec 20                   sub     rsp,0x20
4004d5:  48 89 e7                      mov     rdi,rsp
4004d8:  e8 d9 ff ff ff                call    4004b6 <f>
4004dd:  b8 00 00 00 00                mov     eax,0x0
4004e2:  48 83 c4 20                   add     rsp,0x20
4004e6:  c3                            ret
4004e7:  66 0f 1f 84 00 00 00          nop     WORD PTR [rax+rax*1+0x0]
4004ee:  00 00
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We do not allocate a place in the stack frame for copy at all! Instead, we are operating directly on the 
structure passed to us through a hidden argument.

How do we use it? If you want to write a function that fills a certain structure, it is usually not beneficial 
to pass it a pointer to a preallocated memory area directly (or allocate it via malloc usage, which is also 
slower).

16.1.8 � Influence of Branch Prediction
On the microcode level the actions performed by the CPU (central processing unit) are even more primitive 
than the machine instructions; they are also reordered to better use all CPU resources.

Branch prediction is a hardware mechanism that is aimed at improving program execution speed. 
When the CPU sees a conditional branch instruction (such as jg), it can

•	 Start executing both branches simultaneously; or

•	 Guess which branch will be executed and start executing it.

It happens when the computation result (e.g., the GF flag value in jg [rax]) on which this jump 
destination depends is not yet ready, so we start executing code speculatively to avoid wasting time.

The branch prediction unit can fail by issuing a misprediction. In this case, once the computation 
is completed, the CPU will do an additional work of reverting the changes made by instructions from the 
wrong branch. It is slow and has a real impact on program performance, but mispredictions are relatively 
rare.

The exact branch prediction logic depends on the CPU model. In general, two types of prediction exist 
[6]: static and dynamic.

•	 If the CPU has no information about a jump (when it is executed for the first time), a 
static algorithm is used. A possible simple algorithm is as follows:

–– If this is a forward jump, we assume that it happens.

–– If it is a backward jump, we assume that it does not happen.

	 It makes sense because the jumps used to implement loops are more likely to happen 
than not.

•	 If a jump has already happened in the past, the CPU can use more complex 
algorithms. For example, we can use a ring buffer, which stores information about 
whether the jump occurred or not. In other words, it stores the history of jumps. When 
this approach is used, small loops of length dividing the buffer length are good for 
prediction.

The best source of relevant information with regard to the exact CPU model can be found in [16]. 
Unfortunately, most information about the CPU innards is not disclosed to public.

How do we use it? When using if-then-else or switch start with the most likely cases. You can also use 
special hints such as __builtin_expect GCC directives, which are implemented as special instruction 
prefixes for jump instructions (see [6]).

16.1.9 � Influence of Execution Units
A CPU consists of many parts. Each instruction is executed in multiple stages, and at each stage different 
parts of the CPU are handling it. For example, the first stage is usually called instruction fetch and consists of 
loading instruction from memory1 without thinking about its semantics at all.

1We omit the talk about instruction cache for brevity.

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par7
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par17
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par7
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A part of the CPU that performs the operations and calculations is called the execution unit. It is 
implementing different kinds of operations that the CPU wants to handle: instruction fetching, arithmetic, 
address translation, instruction decoding, etc. In fact, CPUs can use it in a more or less independent 
way. Different instructions are executed in a different number of stages, and each of these stages can be 
performed by a different execution unit. It allows for interesting circuitry usages such as the following:

•	 Fetching one instruction immediately after the other was fetched (but has not 
completed its execution).

•	 Performing multiple arithmetic actions simultaneously despite their being described 
sequentially in assembly code.

CPUs of the Pentium IV family were already capable of executing four arithmetic instructions 
simultaneously in the right circumstances.

How do we use the knowledge about execution unit’s existence? Let us look at the example shown in 
Listing 16-17.

Listing 16-17.  cycle_nonpar_arith.asm

looper:
    mov      rax,[rsi]

    ; The next instruction depends on the previous one.
    ; It means that we can not swap them because
    ; the program behavior will change.
    xor     rax, 0x1

    ; One more dependency here
    add     [rdi],rax
    add     rsi,8
    add     rdi,8
    dec     rcx
    jnz     looper

Can we make it faster? We see the dependencies between instructions, which hinder the CPU 
microcode optimizer. What we are going to do is to unroll the loop so that two iterations of the old loop 
become one iteration of the new one. Listing 16-18 shows the result.

Listing 16-18.  cycle_par_arith.asm

looper:
mov      rax,  [rsi]
mov      rdx,  [rsi + 8]
xor      rax,  0x1
xor      rdx,  0x1
add      [rdi], rax
add      [rdi+8], rdx
add      rsi, 16

add      rdi, 16
sub      rcx, 2
jnz      looper
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Now the dependencies are gone, the instructions of two iterations are now mixed. They will be executed 
faster in this order because it enhances the simultaneous usage of different CPU execution units. Dependent 
instructions should be placed away from each other to allow other instructions to perform in between.

■■ Question 333  What is the instruction pipeline and superscalar architecture?

We cannot tell you which execution units are in your CPU, because this is highly model dependent. We 
have to read the optimization manuals for a specific CPU, such as [16]. Additional sources are often helpful; 
for example, the Haswell processors are well explained in [17].

16.1.10 � Grouping Reads and Writes in Code
Hardware operates better with sequences of reads and writes which are not interleaved. For this reason, 
the code shown in Listing 16-19 is usually slower than its counterpart shown in Listing 16-20. The latter has 
sequences of sequential reads and writes grouped rather than interleaved.

Listing 16-19.  rwgroup_bad.asm

mov rax,[rsi]
mov [rdi],rax
mov rax,[rsi+8]
mov [edi+4],eax
mov rax,[rsi+16]
mov [rdi+16],rax
mov rax,[esi+24]
mov [rdi+24],eax

Listing 16-20.  rwgroup_good.asm

mov rax, [rsi]
mov rbx, [rsi+8]
mov rcx, [rsi+16]
mov rdx, [rsi+24]
mov [rdi], rax
mov [rdi+8], rbx
mov [rdi+16], rcx
mov [rdi+24], rdx

16.2 � Caching
16.2.1 � How Do We use Cache Effectively?
Caching is one of the most important mechanisms of performance boosting. We spoke about the general 
concepts of caching in Chapter 4. This section will further investigate how to use these concepts effectively.

We want to start by elaborating that contrary to the spirit of von Neumann architecture, the common 
CPUs have been using separate caches for instructions and data for at least 25 years. Instructions and code 
inhabit virtually always different memory regions, which explains why separate caches are more effective. 
We are interested in data cache.

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par17
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par18
http://dx.doi.org/10.1007/978-1-4842-2403-8_4
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By default, all memory operations involve cache, excluding the pages marked with cache-write-through 
and cache-disable bits (see Chapter 4).

Cache contains small chunks of memory of 64 bytes called cache-lines, aligned on a 64-byte boundary.
Cache memory is different from the main memory on a circuit level. Each cache-line is identified by a 

tag—an address of the respective memory chunk. Using special circuitry it is possible to retrieve the cache 
line by its address very fast (but only for small caches, like 4MB per processor, otherwise it is too expensive).

When trying to read a value from memory, the CPU will try to read it from the cache first. If it is missing, 
the relevant memory chunk will be loaded into cache. This situation is called cache-miss and often makes a 
huge impact on program performance.

There are usually several levels of cache; each of them is bigger and slower.
The LL-cache is the last level of cache closest to main memory.
For programs with good locality, caching works well. However, when the locality is broken for a piece 

of code, bypassing cache makes sense. For example, writing values into a large chunk of memory which will 
not be accessed any time soon is better performed without using cache.

The CPU tries to predict what memory addresses will be accessed in the near future and preloads the 
relevant memory parts into cache. It favors sequential memory accesses.

This gives us two important empirical rules needed to use caches efficiently.

•	 Try to ensure locality.

•	 Favor sequential memory access (and design data structures with this point in mind).

16.2.2 � Prefetching
It is possible to issue a special hint to the CPU to indicate that a certain memory area will be accessed soon. 
In Intel 64 it is done using a prefetch instruction. It accepts an address in memory; the CPU will do its best 
to preload it into cache in the near future. This is used to prevent cache misses.

Using prefetch can be effective enough, but it should be coupled with testing. It should be 
executed before the data accesses themselves, but not too close. The cache preloading is being executed 
asynchronously, which means that it is a running at the same time when the following instructions are being 
executed. If prefetch is too close to data accesses, the CPU will not have enough time to preload data in 
cache and cache-miss will occur anyway.

Moreover, it is very important to understand that “close” and “far” from the data access mean the 
instruction position in the execution trace. We should not necessarily place prefetch close with regard to 
the program structure (in the same function), but we have to choose a place that precedes data access. It can 
be located in an entirely different module, for example, in the logging module, which just happens to usually 
be executed before the data access. This is of course very bad for code readability, introduces non-obvious 
dependencies between modules, and is a “last resort” kind of technique.

To use prefetch in C, we can use one of GCC built-ins:

Void __builtin_prefetch (const void *addr, ...)

It will be replaced with an architecture-specific prefetching instruction.
Besides address, it also accepts two parameters, which should be integer constants.

	 1.	 Will we read from that address (0, default) or write (1)?

	 2.	 How strong is locality? Three for maximal locality to zero for minimal. Zero 
indicates that the value can be cleared from cache after usage, 3 means that all 
levels of caches should continue to hold it.

Prefetching is performed by the CPU itself if it can predict where the next memory access is likely to be. 
While it works well for continuous memory accesses, such as traversing arrays, it starts being ineffective as 
soon as the memory access pattern starts seeming random for the predictor.

http://dx.doi.org/10.1007/978-1-4842-2403-8_4
http://dx.doi.org/10.1007/978-1-4842-2403-8_12#Sec18
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16.2.3 � Example: Binary Search with Prefetching
Let us study an example shown in Listing 16-21.

Listing 16-21.  prefetch_binsearch.c

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

#define SIZE 1024*512*16

int binarySearch(int *array, size_t number_of_elements, int key) {
    size_t low = 0, high = number_of_elements-1, mid;
    while(low <= high) {
        mid = (low + high)/2;
#ifdef DO_PREFETCH
        // low path
        __builtin_prefetch (&array[(mid + 1 + high)/2], 0, 1);
        // high path
        __builtin_prefetch (&array[(low + mid - 1)/2], 0, 1);
#endif

        if(array[mid] < key)
            low = mid + 1;
        else if(array[mid] == key)
            return mid;
        else if(array[mid] > key)
            high = mid-1;
    }
    return -1;
}

int main() {
    size_t i = 0;
    int NUM_LOOKUPS = SIZE;
    int *array;
    int *lookups;

    srand(time(NULL));
    array =  malloc(SIZE*sizeof(int));

    lookups = malloc(NUM_LOOKUPS * sizeof(int));

    for (i=0;i<SIZE;i++) array[i] = i;
    for (i=0;i<NUM_LOOKUPS;i++) lookups[i] = rand() % SIZE;

    for (i=0;i<NUM_LOOKUPS;i++)
        binarySearch(array, SIZE, lookups[i]);
    free(array);
    free(lookups);
}
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The memory access pattern of the binary search is hard to predict. It is highly nonsequential, jumping 
from the start to the end, then to the middle, then to the fourth, etc. Let us see the difference in execution times.

Listing 16-22 shows the results of execution with prefetch off.

Listing 16-22.  binsearch_prefetch_off

> gcc -O3 prefetch.c -o prefetch_off && /usr/bin/time -v ./prefetch_off

   Command being timed: "./prefetch_off"
   User time (seconds): 7.56
   System time (seconds): 0.02
   Percent of CPU  this job got: 100%
   Elapsed (wall clock) time (h:mm:ss or m:ss): 0:07.58
   Average shared text size (kbytes): 0
   Average unshared data size (kbytes): 0
   Average stack size (kbytes): 0
   Average total size (kbytes): 0
   Maximum resident set size (kbytes): 66432
   Average resident set size (kbytes): 0
   Major (requiring I/O) page faults: 0
   Minor (reclaiming a frame) page faults: 16444
   Voluntary context switches: 1
   Involuntary context switches: 51
   Swaps: 0
   File system inputs: 0
   File system outputs: 0
   Socket messages sent: 0
   Socket messages received: 0
   Signals delivered: 0
   Page size (bytes): 4096
   Exit status: 0

Listing 16-23 shows the results of execution with prefetch on.

Listing 16-23.  binsearch_prefetch_on

> gcc -O3 prefetch.c -o prefetch_off && /usr/bin/time -v ./prefetch_off

   Command being timed: "./prefetch_on"
   User time  (seconds):  6.56
   System time (seconds): 0.01
   Percent of CPU  this job got: 100%
   Elapsed (wall clock) time (h:mm:ss or m:ss): 0:06.57
   Average shared text size (kbytes): 0
   Average unshared data size (kbytes): 0
   Average stack size (kbytes): 0
   Average total size (kbytes): 0
   Maximum resident set size (kbytes): 66512
   Average resident set size (kbytes): 0
   Major (requiring I/O) page faults: 0
   Minor (reclaiming a frame) page faults: 16443
   Voluntary context switches: 1
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   Involuntary context switches: 42
   Swaps: 0
   File system inputs: 0
   File system outputs: 0
   Socket messages sent: 0
   Socket messages received: 0
   Signals  delivered: 0
   Page size (bytes): 4096
   Exit status: 0

Using valgrind utility with cachegrind module we can check the amount of cache misses. Listing 16-24 
shows the results for no prefetch, while Listing 16-25 shows the results with prefetching.

I corresponds to instruction cache, D to the data cache, LL – Last Level Cache). There are almost 100% 
data cache misses, which is very bad.

Listing 16-24.  binsearch_prefetch_off_cachegrind

==25479== Cachegrind, a cache and branch-prediction profiler
==25479== Copyright (C) 2002-2015, and GNU GPL'd, by Nicholas Nethercote et al.
==25479== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==25479== Command: ./prefetch_off
==25479==
--25479-- warning: L3 cache found, using its data for the LL simulation.
==25479==
==25479== I   refs:      2,529,064,580
==25479== I1  misses:              778
==25479== LLi misses:              774
==25479== I1  miss rate:          0.00%
==25479== Lli miss rate:          0.00%
==25479==
==25479== D   refs:         404,809,999   (335,588,367 rd   + 69,221,632 wr)
==25479== D1  misses:       160,885,105   (159,835,971 rd   +  1,049,134 wr)
==25479== LLd misses:       133,467,980   (132,418,879 rd   +  1,049,101 wr)
==25479== D1  miss rate:           39.7%  (       47.6%     +        1.5%  )
==25479== LLd miss rate:           33.0%  (       39.5%     +        1.5%  )
==25479==
==25479== LL refs:          160,885,883   (159,836,749 rd   +  1,049,134 wr)
==25479== LL misses:        133,468,754   (132,419,653 rd   +  1,049,101 wr)
==25479== LL miss rate:             4.5%  (        4.6%     +        1.5%  )

Listing 16-25.  binsearch_prefetch_on_cachegrind

==26238== Cachegrind, a cache and branch-prediction profiler
==26238== Copyright (C) 2002-2015, and GNU GPL'd, by Nicholas Nethercote et al.
==26238== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==26238== Command: ./prefetch_on
==26238==
--26238-- warning: L3 cache found, using its data for the LL simulation.
==26238==
==26238== I   refs:     3,686,688,760
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==26238== I1  misses:             777
==26238== LLi misses:             773
==26238== I1  miss rate:         0.00%
==26238== LLi miss rate:         0.00%
==26238==
==26238== D   refs:       404,810,009   (335,588,374  rd   + 69,221,635 wr)
==26238== D1  misses:     160,887,823   (159,838,690  rd   +  1,049,133 wr)
==26238== LLd misses:     133,488,742   (132,439,642  rd   +  1,049,100 wr)
==26238== D1  miss  rate:        39.7%  (       47.6%      +        1.5%  )
==26238== LLd miss rate:         33.0%  (       39.5%      +        1.5%  )
==26238==
==26238== LL refs:        160,888,600   (159,839,467  rd   +  1,049,133 wr)
==26238== LL misses:      133,489,515   (132,440,415  rd   +  1,049,100 wr)
==26238== LL miss rate:           3.3%  (        3.3%      +        1.5%  )

As we see, the amount of cache misses has drastically decreased.

16.2.4 � Bypassing Cache
There exists a way to write into memory bypassing cache, which works even in user mode, so in order to 
use it we should not have access to the page table entries, holding CWT bit. In Intel 64 an instruction movntps 
allows us to do it. The operating system itself usually sets the bit CWT (cache-write-through) in page tables 
when memory-mapped IO is happening (when virtual memory acts as an interface for external devices). 
In this case, any memory read or write would lead to cache invalidation, which only hinders performance 
without giving any benefits.

GCC has intrinsic functions that are translated into machine-specific instructions that perform memory 
operations without involving cache. Listing 16-26 shows them.

Listing 16-26.  cache_bypass_intrinsics.c

#include <emmintrin.h>
void _mm_stream_si32(int *p, int a);
void _mm_stream_si128(int *p, __m128i a);
void _mm_stream_pd(double *p, __m128d a);

#include <xmmintrin.h>
void _mm_stream_pi(__m64 *p, __m64 a);
void _mm_stream_ps(float *p, __m128 a);

#include <ammintrin.h>
void _mm_stream_sd(double *p, __m128d a);
void _mm_stream_ss(float *p, __m128 a);

Bypassing cache is useful if we are sure that we will not touch the related memory area for quite a long 
time. For further information refer to [12].

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par13
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16.2.5 � Example: Matrix Initialization
To illustrate a good memory access pattern, we are going to use a huge matrix with values 42. The matrix is 
stored row after row.

One program, shown in Listing 16-27, initializes each row; the other, shown in Listing 16-28, initializes 
each column. Which one will be faster?

Listing 16-27.  matrix_init_linear.c

#include <stdio.h>
#include <malloc.h>
#define DIM (16*1024)

int main( int argc, char** argv ) {
    size_t i, j;
    int* mat = (int*)malloc( DIM * DIM * sizeof( int ) );
    for( i = 0; i < DIM; ++i )
        for( j = 0; j < DIM; ++j )
            mat[i*DIM+j] = 42;
    puts("TEST DONE");
    return 0;
}

Listing 16-28.  matrix_init_ra.c

#include <stdio.h>
#include <malloc.h>
#define DIM (16*1024)

int main( int argc, char** argv ) {
    size_t i, j;
    int* mat = (int*)malloc( DIM * DIM * sizeof( int ) );
    for( i = 0; i < DIM; ++i )
        for( j = 0; j < DIM; ++j )
            mat[j*DIM+i] = 42;
    puts("TEST DONE");
    return 0;
}

We will use the time utility (not shell built-in) again to test the execution time.

> /usr/bin/time -v ./matrix_init_ra
   Command being timed: "./matrix_init_ra"
   User time (seconds): 2.40
   System time (seconds): 1.01
   Percent of CPU this job got: 86%
   Elapsed (wall clock) time (h:mm:ss or m:ss): 0:03.94
   Average shared text size (kbytes): 0
   Average unshared data size (kbytes): 0
   Average stack size (kbytes): 0
   Average total size (kbytes): 0
   Maximum resident set size (kbytes): 889808
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   Average resident set size (kbytes): 0
   Major (requiring I/O) page faults: 2655
   Minor (reclaiming a frame) page faults: 275963
   Voluntary context switches: 2694
   Involuntary context switches: 548
   Swaps: 0
   File system inputs: 132368
   File system outputs: 0
   Socket messages sent: 0
   Socket messages received: 0
   Signals delivered: 0
   Page size (bytes): 4096
   Exit status: 0

> /usr/bin/time -v ./matrix_init_linear

   Command being timed: "./matrix_init_linear"
   User time (seconds): 0.12
   System time (seconds): 0.83
   Percent of CPU this job got: 92%
   Elapsed (wall clock) time (h:mm:ss or m:ss): 0:01.04
   Average shared text size (kbytes): 0
   Average unshared data size (kbytes): 0
   Average stack size (kbytes): 0
   Average total size (kbytes): 0
   Maximum resident set size (kbytes): 900280
   Average resident set size (kbytes): 0
   Major (requiring I/O) page faults: 4
    Minor (reclaiming a frame) page faults: 262222
   Voluntary context switches: 29
   Involuntary context switches: 449
   Swaps: 0
   File system inputs: 176
   File system outputs: 0
   Socket messages sent: 0
   Socket messages received: 0
   Signals  delivered: 0
   Page size (bytes): 4096
   Exit status: 0

The execution is so much slower because of cache misses, which can be checked using valgrind utility 
with cachegrind module as shown in in Listing 16-29.

Listing 16-29.  cachegrind_matrix_bad

> valgrind --tool=cachegrind ./matrix_init_ra

==17022== Command: ./matrix_init_ra
==17022==
--17022-- warning: L3 cache found, using its data for the LL simulation.
==17022==
==17022== I   refs:     268,623,230
==17022== I1  misses:           809
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==17022== LLi misses:           804
==17022== I1  miss rate:       0.00%
==17022== Lli miss rate:       0.00%
==17022==
==17022== D   refs:      67,163,682   (40,974 rd  + 67,122,708 wr)
==17022== D1  misses:    67,111,793   ( 2,384 rd  + 67,109,409 wr)
==17022== LLd misses:    67,111,408   ( 2,034 rd  + 67,109,374 wr)
==17022== D1  miss rate:       99.9%  (   5.8%    +      100.0%  )
==17022== LLd miss rate:      99.9%   (   5.0%    +      100.0%  )
==17022==
==17022== LL refs:       67,112,602   ( 3,193 rd  + 67,109,409 wr)
==17022== LL misses:     67,112,212   ( 2,838 rd  + 67,109,374 wr)
==17022== LL miss rate:        20.0%  (   0.0%    +      100.0%  )

As we see, accessing memory sequentially decreases cache misses radically:

==17023== Command: ./matrix_init_linear
==17023==
--17023-- warning: L3 cache found, using its data for the LL simulation.
==17023==
==17023== I   refs:      336,117,093
==17023== I1  misses:            813
==17023== LLi misses:            808
==17023== I1  miss rate:        0.00%
==17023== LLi miss rate:        0.00%
==17023==
==17023== D   refs:       67,163,675   (40,970 rd  + 67,122,705 wr)
==17023== D1  misses:     16,780,146   ( 2,384 rd  + 16,777,762 wr)
==17023== LLd misses:     16,779,760   ( 2,033 rd  + 16,777,727 wr)
==17023== D1  miss rate:        25.0%  (   5.8%    +       25.0%  )
==17023== LLd  miss rate:       25.0%  (   5.0%    +       25.0%  )
==17023==
==17023== LL refs:        16,780,959   ( 3,197 rd   + 16,777,762 wr)
==17023== LL misses:      16,780,568   ( 2,841 rd   + 16,777,727 wr)
==17023== LL miss rate:          4.2%  (   0.0%     +      25.0%   )

■■ Question 334 T ake a look at the GCC man pages, section “Optimizations.”

16.3 � SIMD Instruction Class
The von Neumann computational model is sequential by its nature. It does not presume that some 
operations can be executed in parallel. However, in time it became apparent that executing actions in 
parallel is necessary to achieve better performance. It is possible when the computations are independent 
from one another. For example, in order to sum 1 million integers we can calculate the sum of the chunks of 
100,000 numbers on ten processors and then sum up the results. It is a typical kind of task that is solved well 
by the map-reduce technique [5].

We can implement parallel execution in two ways.

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par6
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•	 Parallel execution of several sequences of instructions. That is achievable by 
introducing additional processor cores. We will discuss the multithreaded 
programming that makes use of multiple cores in Chapter 17.

•	 Parallel execution of actions that are needed to complete a single instruction. In this 
case we can have instructions which invoke multiple independent computations 
spanning the different parts of processor circuits, which are exploitable in parallel. 
To implement such instructions, the CPU has to include several ALUs to have actual 
performance gains, but it does not need to be able to execute multiple instructions 
truly simultaneously. These instructions are called SIMD (Single Instruction, Multiple 
Data) instructions.

In this section we are going to overview the CPU extensions called SSE (Streaming SIMD Extensions) 
and its newer analogue AVX (Advanced Vector Extensions).

Contrary to SIMD instructions, most instructions we have studied yet are of the type SISD (Single 
Instruction, Single Data).

16.4 � SSE and AVX Extensions
The SIMD instructions are the basis for the instruction set extensions SSE and AVX. Most of them are used to 
perform operations on multiple data pairs; for example, mulps can multiply four pairs of 32-bit floats at once. 
However, their single operand pair counterparts (such as mulss) are now a recommended way to perform all 
floating point arithmetic.

By default, GCC will generate SSE instructions to operate floating point numbers. They accept operands 
either in xmm registers or in memory.

■■ Consistency  We omit the description of the legacy floating point dedicated stack for brevity. However, we 
want to point out that all program parts should be translated using the same method of floating point arithmetic: 
either floating point stack or SSE instructions.

We will start with an example shown in Listing 16-30.

Listing 16-30.  simd_main.c

#include <stdlib.h>
#include <stdio.h>

void sse( float[static 4], float[static 4] );

int main() {
    float x[4] = {1.0f, 2.0f, 3.0f, 4.0f };
    float y[4] = {5.0f, 6.0f, 7.0f, 8.0f };

    sse( x, y );

    printf( "%f %f %f %f\n", x[0], x[1], x[2], x[3] );
    return 0;
}

http://dx.doi.org/10.1007/978-1-4842-2403-8_17
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In this example there is a function sse defined somewhere else, which accepts two arrays of floats. 
Each of them should be at least four elements wide. This function performs computations and modifies the 
first array.

We call the values packed if they fill an xmm register of consecutive memory cells of the same size. In 
Listing 16-30, float x[4] is four packed single precision float values.

We will define the function sse in the assembly file shown in Listing 16-31.

Listing 16-31.  simd_asm.asm

section .text
global sse

; rdi = x, rsi = y

sse:
    movdqa xmm0, [rdi]
    mulps  xmm0, [rsi]
    addps  xmm0, [rsi]
    movdqa [rdi], xmm0
    ret

This file defines the function sse. It performs four SSE instructions:

•	 movdqa (MOVe Double Qword Aligned) copies 16 bytes from memory pointed by rdi 
into register xmm0. We have seen this instruction in section 14.1.1.

•	 mulps (MULtiply Packed Single precision floating point values) multiplies the contents 
of xmm0 by four consecutive float values stored in memory at the address taken from rsi.

•	 addps (ADD Packed Singled precision floating point) adds the contents of four 
consecutive float values stored in memory at the address taken from rsi again.

•	 movdqa copies xmm0 into the memory pointed by rdi.

In other words, four pair of floats are getting multiplied and then the second float of each pair is added 
to the first one.

The naming pattern is common: the action semantics (mov, add, mul…) with suffixes. The first suffix 
is either P (packed) or S (scalar, for single values). The second one is either D for double precision values 
(double in C) or S for single precision values (float in C).

We want to emphasize again that most SSE instructions accept only aligned memory operands.
In order to complete the assignment, you will need to study the documentation for the following 

instructions using the Intel Software Developer Manual [15]:

•	 movsd–Move Scalar Double-Precision Floating- Point Value.

•	 movdqa–Move Aligned Double Quad word.

•	 movdqu–Move Unaligned Double Quad word.

•	 mulps–Multiply Packed Single-Precision Floating Point Values.

•	 mulpd–Multiply Packed Double-Precision Floating Point Values.

•	 addps–Add Packed Single-Precision Floating Point Values.

•	 haddps–Packed Single-FP Horizontal Add.

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
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•	 shufps–Shuffle Packed Single-Precision Floating Point Values.

•	 unpcklps–Unpack and Interleave High Packed Double-Precision Floating  
Point Values.

•	 packswb–Pack with Signed Saturation.

•	 cvtdq2pd–Convert Packed Dword Integers to Packed Double-Precision FP Values.

These instructions are part of the SSE extensions. Intel introduced a new extension called AVX, which 
has new registers ymm0, ymm1, ... , ymm15. They are 256 bits wide, their least significant 128 bits (lesser half) 
can be accessed as old xmm registers.

New instructions are mostly prefixed with v, for example vbroadcastss.
It is important to understand that if your CPU supports AVX instructions it does not mean that they are 

faster than SSE! Different processors of the same family do not differ by the instruction set but by the amount 
of circuitry. Cheaper processors are likely to have fewer ALUs.

Let us take mulps with ymm registers as an example. It is used to multiply 8 pairs of floats.
Better CPUs will have enough ALUs (arithmetic logic units) to multiply all eight pairs simultaneously. 

Cheaper CPUs will only have, say, four ALUs, and so will have to iterate on the microcode level twice, 
multiplying first four pairs, then last. The programmer will not notice that when using instruction, the 
semantic is the same, but performance-wise it will be noticeable. A single AVX version of mulps with ymm 
registers and eight pairs of floats can even be slower than two SSE versions of mupls with xmm registers with 
four pairs each!

16.4.1 � Assignment: Sepia Filter
In this assignment, we will create a program to perform a sepia filter on an image. A sepia filter makes an 
image with vivid colors look like an old, aged photograph. Most graphical editors include a sepia filter.

The filter itself is not hard to code. It recalculates the red, green, and blue components of each pixel 
based on the old values of red, green, and blue. Mathematically, if we think about a pixel as a three-
dimensional vector, the transformation is nothing but a multiplication of a vector by matrix.

Let the new pixel value be (B G R)T (where T superscript stands for transposition). B, G, and R stand for 
blue, green, and red levels. In vector form the transformation can be described as follows:
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In scalar form, we can rewrite it as

B = bc
11

 + gc
12

 + rc
13

G = bc
21

 + gc
22

 + rc
23

R = bc
31

 + gc
32

 + rc
33

In the assignment given in section 13.10 we coded a program to rotate the image. If you thought out its 
architecture well, it will be easy to reuse most of its code.

We will have to use saturation arithmetic. It means, that all operations such as addition and 
multiplication are limited to a fixed range between a minimum and maximum value. Our typical machine 
arithmetic is modular: if the result is greater than the maximal value, we will come from the different side of 
the range. For example, for unsigned char: 200 + 100 = 300 mod 256 = 44. Saturation arithmetic implies that 
for the same range between 0 and 255 included 200 + 100 = 255 since it is the maximal value in range.
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C does not implement such arithmetic, so we will have to check for overflows manually. SSE contains 
instructions that convert floating point values to single byte integers with saturation.

Performing the transformation in C is easy. It demands direct encoding of the matrix to vector 
multiplication and taking saturation into account. Listing 16-32 shows the code.

Listing 16-32.  image_sepia_c_example.c

#include <inttypes.h>
struct pixel { uint8_t b, g, r; };

struct image {
    uint32_t width, height;
    struct pixel* array;
};

static unsigned char sat( uint64_t x) {
    if (x < 256) return x; return 255;
}
static void sepia_one( struct pixel* const pixel ) {
    static const float c[3][3] =  {
    { .393f, .769f, .189f },
    { .349f, .686f, .168f },
    { .272f, .543f, .131f } };
struct pixel const old = *pixel;

pixel->r = sat(
        old.r * c[0][0] + old.g * c[0][1] + old.b * c[0][2]
        );
pixel->g = sat(
        old.r * c[1][0] + old.g * c[1][1] + old.b  * c[1][2]
        );
pixel->b = sat(
        old.r * c[2][0] + old.g * c[2][1] + old.b * c[2][2]
        );
}

void sepia_c_inplace( struct image* img ) {
    uint32_t x,y;
    for( y = 0; y < img->height; y++ )
        for( x = 0; x < img->width; x++ )
            sepia_one( pixel_of( *img, x, y ) );
}

Note that using uint8_t or unsigned char is very important.
In this assignment you have to

•	 Implement in a separate file a routine to apply a filter to a big part of image (except for 
the last pixels maybe). It will operate on chunks of multiple pixels at a time using SSE 
instructions.
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The last few pixels that did not fill the last chunk can be processed one by one using the C code provided 
in Listing 16-32.

•	 Make sure that both C and assembly versions produce similar results.

•	 Compile two programs; the first should use a naive C approach and the second one 
should use SSE instructions.

•	 Compare the time of execution of C and SSE using a huge image as an input 
(preferably hundreds of megabytes).

•	 Repeat the comparison multiple times and calculate the average values for SSE  
and C.

To make a noticeable difference, we have to have as many operations in parallel as we can. Each pixel 
consists of 3 bytes; after converting its components into floats it will occupy 12 bytes. Each xmm register is 16 
bytes wide. If we want to be effective we will have use the last 4 bytes as well. To achieve that we use a frame 
of 48 bytes, which corresponds to three xmm registers, to 12-pixel components, and to 4 pixels.

Let the subscript denote the index of a pixel. The image then looks as follows:
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We would like to compute the first four components. Three of them correspond to the first pixel, the 
fourth one corresponds to the second one.

To perform necessary transformations it is useful to first put the following values into the registers:
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We will store the matrix coefficients in either xmm registers or memory, but it is important to store the 
columns, not the rows.

To demonstrate the algorithm, we will use the following start values:
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We use mulps to multiply these packed values with xmm0…xmm2.
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The next step is to add them using addps instructions.
The similar actions should be performed with two other two 16-byte-wide parts of the frame, containing
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This technique using transposed coefficients matrix allows us to cope without horizontal addition 
instructions such as haddps. It is described in detail in [19].

To measure time, use getrusage(RUSAGE_SELF, &r) (read man getrusage pages first). It fills a struct r 
of type struct rusage whose field r.ru_utime contains a field of type struct timeval. It contains, in turn, 
a pair of values for seconds spent and millise conds spent. By comparing these values before transformation 
and after it we can deduce the time spent on transformation.

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par20
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Listing 16-33 shows an example of single time measurement.

Listing 16-33.  execution_time.c

#include <sys/time.h>
#include <sys/resource.h>
#include <stdio.h>
#include <unistd.h>
#include <stdint.h>

int main(void) {
    struct rusage r;
    struct timeval start;
    struct timeval end;

    getrusage(RUSAGE_SELF, &r );
    start = r.ru_utime;

    for( uint64_t i = 0; i < 100000000; i++ );

    getrusage(RUSAGE_SELF, &r );
    end = r.ru_utime;

    long res = ((end.tv_sec - start.tv_sec) * 1000000L) +
        end.tv_usec - start.tv_usec;

    printf( "Time elapsed in microseconds: %ld\n", res );
    return 0;
}

Use a table to perform a fast conversion from unsigned char into float.

float const byte_to_float[] = {
    0.0f, 1.0f, 2.0f, ..., 255.0f };

■■ Question 335 R ead about methods of calculating the confidence interval and calculate the 95% 
confidence interval for a reasonably high number of measurements.

16.5 � Summary
In this chapter we have talked about the compiler optimizations and why they are needed. We have seen 
how far the translated optimized code can go from its initial version. Then we have studied how to get the 
most benefit from caching and how to parallelize floating point computations on the instruction level using 
SSE instructions. In the next chapter we will see how to parallelize instruction sequences execution, create 
multiple threads, and change our vision of memory in the presence of multithreading.
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■■ Question 336  What GCC options control the optimization options globally?

■■ Question 337  What kinds of optimizations can potentially bring the most benefits?

■■ Question 338  What kinds of benefits and disadvantages can omitting a frame pointer bring?

■■ Question 339 H ow is a tail recursive function different from an ordinary recursive function?

■■ Question 340  Can any recursive function be rewritten as a tail recursive without using additional data 
structures?

■■ Question 341  What is a common subexpression elimination? How does it affect our code writing?

■■ Question 342  What is constant propagation?

■■ Question 343  Why should we mark functions static whenever we can to help the compiler optimizations?

■■ Question 344  What benefits does named return value optimization bring?

■■ Question 345  What is a branch prediction?

■■ Question 346  What are Dynamic Branch Prediction, Global and Local History Tables?

■■ Question 347  Check the notes on branch prediction for your CPU in [16].

■■ Question 348  What is an execution unit and why do we care about them?

■■ Question 349 H ow are AVX instruction speed and the amount of execution units related?

■■ Question 350  What kinds of memory accessing patterns are good?

■■ Question 351  Why do we have many cache levels?

■■ Question 352  In which cases might prefetch bring performance gains and why?

■■ Question 353  What are SSE instructions used for?

■■ Question 354  Why do most SSE instructions require aligned operands?

■■ Question 355 H ow do we copy data from general purpose registers to xmm registers?

■■ Question 356  In which cases using SIMD instructions is worth it?

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par17
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CHAPTER 17

Multithreading

In this chapter we will explore the multithreading capabilities provided by the C language. Multithreading is 
a topic for a book on its own, so we will concentrate on the language features and relevant properties of the 
abstract machine rather than good practices and program architecture-related topics.

Until C11, the support of the multithreading was external to the language itself, via libraries and nonstandard 
tricks. A part of it (atomics) is now implemented in many compilers and provides a standard-compliant way of 
writing multithreaded applications. Unfortunately, to this day, the support of threading itself is not implemented 
in most toolchains, so we are going to use the library pthreads to write down code examples. We will still use the 
standard-compliant atomics.

This chapter is by no means an exhaustive guide to multithreaded programming, which is a beast worth 
writing a dedicated book about, but it will introduce the most important concepts and relevant language 
features. If you want to become proficient in it, we recommend lots of practice, specialized articles, books 
such as [34], and code reviews from your more experienced colleagues.

17.1 � Processes and Threads
It is important to understand the difference between two key concepts involved in most talks about 
multithreading: threads and processes.

A process is a resource container that collects all kinds of runtime information and resources a program 
needs to be executed. A process contains the following:

•	 An address space, partially filled with executable code, data, shared libraries, other 
mapped files, etc. Parts of it can be shared with other processes.

•	 All other kinds of associated state such as open file descriptors, registers, etc.

•	 Information such as process ID, process group ID, user ID, group ID . . .

•	 Other resources used for interprocess communication: pipes, semaphores, message 
queues . . .

thread is a stream of instructions that can be scheduled for execution by the operating system.
The operating system does not schedule processes but threads. Each thread lives as a part of a process 

and has a piece of process state, which is its own.

•	 Registers.

•	 Stack (technically, it is defined by the stack pointer register; however, as all processor’s 
threads share the same address space, one of them can access the stacks of other 
threads, although this is rarely a good idea).

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par35
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•	 Properties of importance to the scheduler such as priority.

•	 Pending and blocked signals.

•	 Signal mask.

When the process is closed, all associated resources are freed, including all its threads, open file 
descriptors, etc.

17.2 � What Makes Multithreading Hard?
Multithreading allows you to make use of several processor cores (or several processors) to execute threads 
at the same time. For example, if one thread is reading file from a disk (which is a very slow operation), the 
other might use the pause to perform CPU-heavy computations, distributing CPU (central processing unit) 
load more uniformly in time. So, it can be faster, if your program can benefit from it.

Threads should often work on the same data. As long as the data is not modified by any of them, there 
are no problems working with it, because reading data has zero effect on other threads execution. However, 
if the shared data is being modified by one (or multiple) threads, we face several problems, such as the 
following:

•	 When does thread A see the changes performed by B?

•	 In which order do threads change the data? (As we have seen in the Chapter 16, the 
instructions can be reordered for optimization purposes.)

•	 How can we perform operations on the complex pieces of data without other threads 
interfering?

When these problems are not addressed properly, a very problematic sort of bug appears, which is hard 
to catch (because it only appears casually, when the instruction of the different threads are executed in a 
specific, unlucky order). We will try to establish an understanding and study these problems and how they 
can be solved.

17.3 � Execution Order
When we started to study the C abstract machine, we got used to thinking that the sequence of C statements 
corresponds to the actions performed by the compiled machine instructions—naturally, in the same order. 
Now it is time to dive into the more pragmatic details of why it is not really the case.

We tend to describe algorithms in a way that is easier to understand, and this is almost always a good 
thing. However, the order given by the programmer is not always optimal performance-wise.

For example, the compiler might want to improve locality without changing the code semantics. Listing 17-1 
shows an example.

Listing 17-1.  ex_locality_src.c

char x[1000000], y[1000000];
...
x[4] = y[4];
x[10004] = y[10004];

x[5] = y[5];
x[10005] = y[10005];

http://dx.doi.org/10.1007/978-1-4842-2403-8_16
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Listing 17-2 shows a possible translation result.

Listing 17-2.  ex_locality_asm1.asm

mov al,[rsi + 4]
mov [rdi+4],al

mov al,[rsi + 10004]
mov [rdi+10004],al

mov al,[rsi + 5]
mov [rdi+5],al

mov al,[rsi + 10005]
mov [rdi+10005],al

However, it is evident, that this code could be rewritten to ensure better locality; that is, first assign x[4] 
and x[5], then assign x[10004] and x[10005], as shown in Listing 17-3.

Listing 17-3.  ex_locality_asm2.asm

mov al,[rsi + 4]
mov [rdi+4],al
mov al,[rsi + 5]
mov [rdi+5],al

mov al,[rsi + 10004]
mov [rdi+10004],al

mov al,[rsi + 10005]
mov [rdi+10005],al

The effects of these two instruction sequences are similar if the abstract machine only considers one 
CPU: given any initial machine state, the resulting state after their executions will be the same. The second 
translation result often performs faster, so the compiler might prefer it. This is the simple case of memory 
reordering, a situation in which the memory accesses are reordered comparing to the source code.

For single thread applications, which are executed “really sequentially,” we can often expect the order of 
operations to be irrelevant as long as the observable behavior will be unchanged. This freedom ends as soon 
as we start communicating between threads.

Most inexperienced programmers do not think much about it because they limit themselves with 
single-threaded programming. In these days, we can no longer afford not to think about parallelism because 
of how pervasive it is and how it is often the only thing that can really boost the program performance. So, in 
this chapter, we are going to talk about memory reorderings and how to set them up correctly.

17.4 � Strong and Weak Memory Models
Memory reorderings can be performed by the compiler (as shown above), or by the processor itself, in the 
microcode. Usually, both of them are being performed and we will be interested in both of them.  
A uniform classification can be created for them all.

A memory model tells us which kinds of reorderings of load and store instructions can be expected. 
We are not interested in the exact instructions used to access memory most of the time (mov, movq, etc.), only 
the fact of reading or writing to memory is of importance to us.
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There are two extreme poles: weak and strong memory models. Just like with the strong and weak 
typing, most existing conventions fall somewhere between, closer to one or another. We have found a 
classification made by Jeff Preshing [31] to be useful and will stick to it in this book.

According to it, the memory models can be divided into four categories, enumerated from the more 
relaxed ones to the stronger ones.

	 1.	 Really weak.

In these models, any kind of memory reordering can happen (as long as the 
observable behavior of a single-threaded program is unchanged, of course).

	 2.	 Weak with data dependency ordering (such as hardware memory model of  
ARM v7).

Here we speak about one particular kind of data dependency: the one between 
loads. It occurs when we need to fetch an address from memory and then use it to 
perform another fetch, for example,

Mov rdx, [rbx]
mov rax, [rdx]

In C this is the situation when we use the ➤ operator to get to a field of a certain 
structure through the pointer to that structure.

Really weak memory models do not guarantee data dependency ordering.

	 3.	 Usually strong (such as hardware memory model of Intel 64).

It means that there is a guarantee that all stores are performed in the same order 
as provided. Some loads, however, can be moved around.

Intel 64 is usually falling into this category.

	 4.	 Sequentially consistent.

This can be described as what you see when you debug a non-optimized program step by step on a 
single processor core. No memory reordering ever happens.

17.5 � Reordering Example
Listing 17-4 shows an exemplary situation when memory reordering can give us a bad day. Here two threads 
are executing the statements contained in functions thread1 and thread2, respectively.

Listing 17-4.  mem_reorder_sample.c

int x = 0;
int y = 0;

void thread1(void) {
    x = 1;
    print(y);
}

void thread2(void) {
    y = 1;
    print(x);
}

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par32
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Both threads share variables x and y. One of them performs a store into x and then loads the value of y, 
while the other one does the same, but with y and x instead.

We are interested in two types of memory accesses: load and store. In our examples, we will often omit 
all other actions for simplicity.

As these instructions are completely independent (they operate on different data), they can be 
reordered inside each thread without changing observable behavior, giving us four options: store + load or 
load + store for each of two threads. This is what a compiler can do for its own reasons. For each option six 
possible execution orders exist. They depict how both threads advance in time relative to one another.

We show them as sequences of 1 and 2; if the first thread made a step, we write 1; otherwise the second 
one made a step.

	 1.	 1-1-2-2

	 2.	 1-2-1-2

	 3.	 2-1-1-2

	 4.	 2-1-2-1

	 5.	 2-2-1-1

	 6.	 1-2-2-1

For example, 1-1-2-2 means that the first process has executed two steps, and then the second process 
did the same. Each sequence corresponds to four different scenarios. For example, the sequence 1-2-1-2 
encodes one of the traces, shown in Table 17-1:

Table 17-1.  Possible Instruction Execution Sequences If Processes Take Turns as 1-2-1-2

THREAD ID TRACE 1 TRACE 2 TRACE 3 TRACE 4

1 store x store x load y load y

2 store y load x store y load x

1 load y load y store x store x

2 load x store y load x store y

If we observe these possible traces for each execution order, we will come up with 24 scenarios (some of 
which will be equivalent). As you see, even for the small examples these numbers can be large enough.

We do not need all these possible traces anyway; we are interested in the position of load relatively to store 
for each variable. Even in Table 17-1 many possible combinations are present: both x and y can be stored, then 
loaded, or loaded, then stored. Obviously, the result of load is dependent on whether there was a store before.

Were reorderings not in the game, we would be limited: any of the two specified loads should have been 
preceded by a store because so it is in the source code; scheduling instructions in a different manner cannot 
change that. However, as the reorderings are present, we can sometimes achieve an interesting outcome: if 
both of these threads have their instructions reordered, we come to a situation shown in Listing 17-5.

Listing 17-5.  mem_reorder_sample_happened.c

int x = 0;
int y = 0;

void thread1(void) {
    print(y);
    x = 1;
}
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void thread2(void) {
    print(x);
    y = 1;
}

If the strategy 1-2-*-* (where * denotes any of the threads) is chosen, we execute load x and load y first, 
which will make them appear to equal to 0 for everyone who uses these loads’ results

It is indeed possible in case compiler reordered these operations. But even if they are controlled well or 
disabled, the memory reorderings, performed by CPU, still can produce such an effect.

This example demonstrates that the outcome of such a program is highly unpredictable. Later we 
are going to study how to limit reorderings by the compiler and by CPU; we will also provide a code to 
demonstrate this reordering in the hardware.

17.6 � What Is Volatile and What Is Not
The C memory model, which we are using, is quite weak. Consider the following code:

int x,y; x = 1;
y = 2;
x = 3;

As we have already seen, the instructions can be reordered by the compiler. Even more, the compiler 
can deduce that the first assignment is the dead code, because it is followed in another assignment to the 
same variable x. As it is useless, the compiler can even remove this statement.

The volatile keyword addresses this issue. It forces the compiler to never optimize the writes and 
reads to the said variable and also suppresses any possible instruction reorderings. However, it only enforces 
these restrictions to one single variable and gives no guarantee about the order in which writes to different 
volatile variables are emitted. For example, in the previous code, even changing both x and y type to 
volatile int will impose an order on assignments of each of them but will still allow us to interleave the 
writes freely as follows:

volatile int x, y;
x = 1;
x = 3;
y = 2;

Or like this:

volatile int x, y;
y = 2;
x = 1;
x = 3;

Obviously, these guarantees are not sufficient for multithreaded applications. You cannot use volatile 
variables to organize an access to the shared data, because these accesses can be moved around freely enough.
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To safely access shared data, we need two guarantees.

•	 The read or write actually takes place. The compiler could have just cached the value 
in the register and never write it back to memory.

This is the guarantee volatile provides. It is enough to perform memory-mapped 
I/O (input/output), but not for multithreaded applications.

•	 No memory reordering should take place. Let us imagine we use volatile variable as 
a flag, which indicates that some data is ready to be read. The code prepares data and 
then sets the flag; however, reordering can place this assignment before the data is 
prepared.

Both hardware and compiler reorderings matter here. This guarantee is not 
provided by volatile variables.

In this chapter, we study two mechanisms that provide both of the following guarantees:

•	 Memory barriers.

•	 Atomic variables, introduced in C11.

Volatile variables are used extremely rarely. They suppress optimization, which is usually not something 
we want to do.

17.7 � Memory Barriers
Memory barrier is a special instruction or statement that imposes constraints on how the reorderings 
can be done. As we have seen in the Chapter 16, compilers or hardware can use many tricks to improve 
performance in the average case, including reordering, deferred memory operations, speculative loads 
or branch prediction, caching variables in registers, etc. Controlling them is vital to ensure that certain 
operations are already performed, because the other thread’s logic depends on it.

In this section, we want to introduce the different kinds of memory barriers and give us a general idea 
about their possible implementations on Intel 64.

An example of the memory barrier preventing reorderings by compiler is the following GCC directive:

asm volatile("" ::: "memory")

The asm directive is used to include inline assembly code directly into C programs. The volatile 
keyword together with the "memory" clobber argument describes that this (empty) piece of inline assembly 
cannot be optimized away or moved around and that it performs memory reads and/or writes. Because of 
that, the compiler is forced to emit the code to commit all operations to memory (e.g., store the values of 
the local variables, cached in registers). It does not prevent the processor from performing speculative reads 
past this statement, so it is not a memory barrier for the processor itself.

Obviously, both compiler and CPU memory barriers are costly because they prevent optimizations. That 
is why we do not want to use them after each instruction.

There are several kinds of memory barriers. We will speak about those that are defined in the Linux 
kernel documentation, but this classification is applicable in most situations.

	 1.	 Write memory barrier.

It guarantees that all store operations specified in code before the barrier will 
appear to happen before all store operations specified after the barrier.

GCC uses asm volatile(""::: "memory") as a general memory barrier. Intel 64 
uses the instruction sfence.

http://dx.doi.org/10.1007/978-1-4842-2403-8_16
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	 2.	 Read memory barrier.

Similarly, it guarantees that all load operations specified in code before the barrier 
will appear to happen before all load operations specified after the barrier. It is a 
stronger form of data dependency barrier.

GCC uses asm volatile(""::: "memory") as a general memory barrier. Intel 64 
uses the instruction lfence.

	 3.	 Data dependency barriers.

Data dependency barrier considers the dependent reads, described in section 
17.4. It can be thus considered a weaker form of read memory barrier. No 
guarantees about independent loads or any kinds of stores are provided.

	 4.	 General memory barriers

This is the ultimate barrier, which forces every memory change specified in code 
before it is committed. It also prevents all following operations to be reordered in a 
way they appear to be executed before the barrier.

GCC uses asm volatile(""::: "memory") as a general memory barrier. Intel 64 
uses the instruction mfence.

	 5.	 Acquire operations.

This is a class of operations, united by a property called Acquire semantics. If 
an operation performs reads from shared memory and is guaranteed to not be 
reordered with the following reads and writes in the source code, it is said to have 
this property.

In other words, it is similar to a general memory barrier, but the code that follows 
will not be reordered in a way to be executed before this barrier.

	 6.	 Release operations.

Release semantics is a property of such operations. If an operation performs 
writes to shared memory and is guaranteed to not be reordered with the previous 
reads and writes in the source code, it is said to have this property.

In other words, it is similar to a general memory barrier but still allows the more 
recent operations to be reordered in a position before the release operation.

Acquire and release operations, thus, are one-way barriers for reorderings in a way.
Following is an example of a single assembly command mfence, inlined by GCC:

asm ("mfence" )

By combining it with the compiler barrier, we get a line that both prevents compiler reordering and also 
acts as a full memory barrier.

asm volatile("mfence" ::: "memory")

Any function call whose definition is not available in the current translation unit and that is not an 
intrinsic (a cross-platform substitute of a specific assembly instruction) is a compiler memory barrier.
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17.8 � Introduction to pthreads
POSIX threads (pthreads) is a standard describing a certain model of program execution. It provides means 
to execute code in parallel and to control the execution. It is implemented as a library pthreads, which we 
are going to use throughout this chapter.

The library contains C types, constants, and procedures (which are prefixed with pthread_). Their 
declarations are available in the pthread.h header. The functions provided by it fall into one of the following 
groups:

•	 Basic thread management (creating, destroying).

•	 Mutex management.

•	 Condition variables.

•	 Synchronization using locks and barriers.

In this section we are going to study several examples to become familiar with pthreads.
To perform multithreaded computations you have the following two options:

•	 Spawn multiple threads in the same process.

The threads share the same address space, so the data exchange is relatively easy 
and fast. When the process terminates, so do all of its threads.

•	 Spawn multiple processes; each of them has its own default thread. These threads 
communicate via mechanisms provided by the operating system (such as pipes).

This is not that fast; also spawning a process is slower than spawning just a thread, 
because it creates more operating system structures (and a separate address 
space). The communication between processes often implies one or more 
(sometimes implicit) copy operations.

However, separating program logic into separate processes can have a positive 
impact on security and robustness, because each thread only sees the exposed 
part of the processes others than its own.

Pthreads allows you to spawn multiple threads in a single process, and that is what you usually want to do.

17.8.1 � When to Use Multithreading
Sometimes multithreading is convenient for the program logic. For example, you usually should not accept 
a network packet and draw the graphical interface in the same thread. The graphical interface should react 
to user actions (clicks on the buttons) and be redrawn constantly (e.g., when the corresponding window 
gets covered by another window and then uncovered). The network action, however, will block the working 
thread until it is done. It is thus convenient to split these actions into different threads to perform them 
seemingly simultaneously.

Multithreading can naturally improve performance, but not in all cases. There are CPU bound tasks and 
IO bound tasks.

•	 CPU bound code can be sped up if given more CPU time. It spends most of the CPU 
time doing computations, not reading data from disk or communicating with devices.

•	 IO bound code cannot be sped up with more CPU time because it is slowed by its 
excessive usage of memory or external devices.
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Using multithreading to speed CPU bound programs might be beneficial. A common pattern is to use 
a queue with the requests that are dispatched to the worker threads from a thread pool–a set of created 
threads that are either working or waiting for work but are not re-created each time there is a need of them. 
Refer to Chapter 7 of [23] for more details.

As for how many threads we need, there is no universal recipe. Creating threads, switching between 
them, and scheduling them produces an overhead. It might make the whole program slower if there is not 
much work for threads to do. In computation-heavy tasks some people advise to spawn n − 1 threads, where 
n is the total number of processor cores. In tasks that are sequential by their own nature (where every step 
depends directly on the previous one) spawning multiple threads will not help. What we do recommend is to 
always experiment with the number of threads under different workloads to find out which number suits the 
most for the given task.

17.8.2 � Creating Threads
Creating threads is easy. Listing 17-6 shows an example.

Listing 17-6.  pthread_create_mwe.c

#include <pthread.h>
#include <stdio.h>
#include <unistd.h>

void* threadimpl( void* arg ) {
    for(int i = 0; i < 10; i++ ) {
        puts( arg );
        sleep(1);
    }
    return NULL;
}

int main( void ) { pthread_t t1, t2;
    pthread_create( &t1, NULL, threadimpl, "fizz" );
    pthread_create( &t2, NULL, threadimpl, "buzzzz" );
    pthread_exit( NULL );
    puts("bye");
    return 0;
}

Note that the code that uses pthread library must be compiled with -pthread flag, for example,

> gcc -O3 -pthread main.c

That specifying -lpthread will not give us an esteemed result. Linking with the sole libpthread.a is 
not enough: there are several preprocessor options that are enabled by -pthread (e.g., _REENTRANT). So, 
whenever the -pthread option is available,1 use it.

1This option is documented as platform specific, so it might be unavailable on some platforms.

http://dx.doi.org/10.1007/978-1-4842-2403-8_7
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par24
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Initially, there is only one thread which starts executing the main function. A pthread_t type stores all 
information about some other thread, so that we can control it using this instance as a handle. Then, the 
threads are initialized with pthread_create function with the following signature:

int pthread_create(
    pthread_t *thread,
    const pthread_attr_t *attr,
    void *(*start_routine) (void *),
    void *arg);

The first argument is a pointer to the pthread_t instance to be initialized. The second one is a collection 
of attributes, which we will touch later–for now, it is safe to pass NULL instead.

The thread starting function should accept a pointer and return a pointer. It accepts a void* pointer to 
its argument. Only one argument is allowed; however, you can easily create a structure or an array, which 
encapsulates multiple arguments, and pass a pointer to it. The return value of the start_routine is also a 
pointer and can be used to return the work result of the thread.2 The last argument is the actual pointer to 
the argument, which will be passed to the start_routine function.

In our example, each thread is implemented the same way: it accepts a pointer (to a string) and 
then repeatedly outputs it with an interval of approximately one second. The sleep function, declared in 
unistd.h, suspends the current thread for a given number of seconds.

After ten iterations, the thread returns. It is equivalent to calling the function pthread_exit with an 
argument. The return value is usually the result of the computations performed by the thread; return NULL if 
you do not need it. We will see later how it is possible to get this value from the parent thread.

■■ Casting to void  Constructions such as (void)argc have only one purpose: suppress warnings about 
unused variable or argument argc. You can sometimes find them in the source code.

However, the naive return from the main function will lead to process termination. What if other 
threads still exist? The main thread should wait for their termination first! This is what pthread_exit does 
when it is called in the main thread: it waits for all other threads to terminate and then terminates the 
program. All the code that follows will not be executed, so you will not see the bye message in stdout.

This program will output a pair of buzz and fizz lines in random order ten times and then exit. It is 
impossible to predict whether the first or the second thread will be scheduled first, so each time the order 
can differ. Listing 17-7 shows an exemplary output.

Listing 17-7.  pthread_create_mwe_out

> ./main
fizz
buzzzz
buzzzz
fizz
fizz
buzzzz
fizz
buzzzz
fizz

2Remember to not return the address of a local variable!
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buzzzz
buzzzz
fizz
buzzzz
fizz
buzzzz
fizz
buzzzz
fizz
buzzzz
fizz

As you see, the string bye is not printed, because the corresponding puts call is below the pthread_exit call.

■■ Where are the arguments located? I t is important to note that the pointer to an argument, passed to a 
thread, should point to the data that stays alive until the said thread is shut down. Passing a pointer to stack 
allocated variable might be risky, since after the stack frame for the function is destroyed, accessing these 
deallocated variables yields undefined behavior.

Unless the arguments are guaranteed to be constant (or you intend to use them for synchronization purposes), 
do not pass them to different threads.

In the example shown in Listing 17-6, the strings that are accepted by threadimpl are allocated in the global 
read-only memory (.rodata). Thus passing a pointer to it is safe.

The maximum number of threads spawned depends on implementation. In Linux, for example, you can 
use ulimit -a to get relevant information.

The threads can create other threads; there is no limitation on that.
It is indeed guaranteed by the pthreads implementation that a call for pthread_create acts as a full 

compiler memory barrier as well as a full hardware memory barrier.
pthread_attr_init is used to initialize an instance of an opaque type pthread_attr_t (implemented 

as an incomplete type). Attributes provide additional parameters for threads such as stack size or address.
The following functions are used to set attributes:

•	 pthread_attr_setaffinity_np–the thread will prefer to be executed on a specific 
CPU core.

•	 pthread_attr_setdetachstate–will we be able to call pthread_join on this thread, 
or will it be detached (as opposed to joinable). The purpose of pthread_join will be 
explained in the next section.

•	 pthread_attr_setguardsize–sets up the space before the stack limit as a region of 
forbidden addresses of a given size to catch stack overflows.

•	 pthread_attr_setinheritsched–are the following two parameters inherited from 
the parent thread (the one where the creation happened), or taken from the attributes 
themselves?

•	 pthread_attr_setschedparam–right now is all about scheduling priority, but the 
additional parameters can be added in the future.

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec15
http://dx.doi.org/10.1007/978-1-4842-2403-8_10#Sec4
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•	 pthread_attr_setschedpolicy–how will the scheduling be performed. Scheduling 
policies with their respective descriptions can be seen in man sched.

•	 pthread_attr_setscope–refers to the contention scope system, which defines a set of 
threads against which this thread will compete for CPU (or other resources).

•	 pthread_attr_setstackaddr–where will the stack be located?

•	 pthread_attr_setstacksize–what will be the thread stack size?

•	 pthread_attr_setstack–sets both stack address and stack size.

All of them have their “get” counterparts (e.g., pthread_attr_getscope).

■■ Question 357 R ead man pages for the functions listed earlier.

■■ Question 358  What will sysconf(_SC_NPROCESSORS_ONLN) return?

17.8.3 � Managing Threads
What we have learned is already enough to perform work in parallel. However, we have no means of 
synchronization yet, so once we have distributed the work for the threads, we cannot really use the 
computation results of one thread in other threads.

The simplest form of synchronization is thread joining. The idea is simple: by calling thread_join on  
an instance of pthread_t we put the current thread into the waiting state until the other thread is 
terminated. Listing 17-8 shows an example.

Listing 17-8.  thread_join_mwe.c

#include <pthread.h>
#include <unistd.h>
#include <stdio.h>

void* worker( void* param ) {
    for( int i = 0; i < 3; i++ ) {
        puts( (const char*) param );
        sleep(1);
    }
    return (void*)"done";
}

int main( void ) {

    pthread_t t;
    void* result;

    pthread_create( &t, NULL, worker, (void*) "I am a worker!" );
    pthread_join( t, &result );
    puts( (const char*) result );
    return 0;
}
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The thread_join accepts two arguments: the thread itself and the address of a void* variable, which 
will be initialized with the thread execution result.

Thread joining acts as a full barrier because we should not place before the joining any reads or writes 
that are planned to happen after.

By default, the threads are created joinable, but one might create a detached thread. It might bring a 
certain benefit: the resources of the detached thread can be released immediately upon its termination. 
The joinable thread, however, will be waiting to be joined before its resources can be released. To create a 
detached thread

•	 Create an attribute instance pthread_attr_t attr;

•	 Initialize it with pthread_attr_init( &attr );

•	 Call pthread_attr_setdetachstate( &attr, PTHREAD_CREATE_DETACHED ); and

•	 Create the thread by using pthread_create with a &attr as the attribute argument.

The current thread can be explicitly changed from joinable to detached by calling pthread_detach().  
It is impossible to do it the other way around.

17.8.4 � Example: Distributed Factorization
We have picked a simple CPU bound program of counting the factors of a number. First, we are going to 
solve it using the most trivial brute-force method on a single core. Listing 17-9 shows the code.

Listing 17-9.  dist_fact_sp.c

#include <pthread.h>
#include <unistd.h>
#include <inttypes.h>
#include <stdio.h>
#include <malloc.h>

uint64_t factors( uint64_t num ) {
    uint64_t result = 0;
    for (uint64_t i = 1; i <= num; i++ )
        if ( num % i == 0 ) result++;
    return result;
}

int main( void ) {
    /* volatile to prevent constant propagation */
    volatile uint64_t input = 2000000000;

    printf( "Factors of %"PRIu64": %"PRIu64"\n", input, factors(input) );
    return 0;
}

The code is quite simple: we naively iterate over all numbers from 1 to the input and check whether 
they are factors or not. Note that the input value is marked volatile to prevent the whole result from being 
computed during the compilation. Compile the code with the following command:

> gcc -O3 -std=c99 -o fact_sp dist_fact_sp.c
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We will start parallelization with a dumbed-down version of multithreaded code, which will always 
perform computations in two threads and will not be architecturally beautiful. Listing 17-10 shows it.

Listing 17-10.  dist_fact_mp_simple.c

#include <pthread.h>
#include <inttypes.h>
#include <stdio.h>

int input = 0;

int result1 = 0;
void* fact_worker1( void* arg ) {
    result1 = 0;
    for( uint64_t i = 1; i < input/2; i++ )
        if ( input % i == 0 ) result1++;
    return NULL;
}

int result2 = 0;
void* fact_worker2( void* arg ) {
    result2 = 0;
    for( uint64_t i = input/2; i <= input; i++ )
        if ( input % i == 0 ) result2++;
    return NULL;
}

uint64_t factors_mp( uint64_t num ) {
    input = num;
    pthread_t thread1, thread2;

    pthread_create( &thread1, NULL, fact_worker1, NULL );
    pthread_create( &thread2, NULL, fact_worker2, NULL );

    pthread_join( thread1, NULL );
    pthread_join( thread2, NULL );

    return result1 + result2;
}
int main( void ) {
    uint64_t input = 2000000000;
    printf( "Factors of %"PRIu64": %"PRIu64"\n",
            input, factors_mp(input ));
    return 0;
}

Upon launching it produces the same result, which is a good sign.

Factors of 2000000000: 110
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What is this program doing? Well, we split the range (0, n] into two halves. Two worker threads are 
computing the number of factors in their respective halves. Then when both of them have been joined, we are 
guaranteed that they have already had performed all computations. The results just need to be summed up.

Then, in Listing 17-11 we show the multithreaded program that uses an arbitrary number of threads to 
compute the same result. It has a better-thought-out architecture.

Listing 17-11.  dist_fact_mp.c

#include <pthread.h>
#include <unistd.h>
#include <inttypes.h>
#include <stdio.h>
#include <malloc.h>

#define THREADS 4

struct fact_task {
    uint64_t num;
    uint64_t from, to;
    uint64_t result;
};

void* fact_worker( void* arg ) {
    struct fact_task* const task =  arg;
    task-> result = 0;
    for( uint64_t i = task-> from; i < task-> to; i++ )
        if ( task->num %  i ==  0 ) task-> result ++;
    return NULL;
}

/* assuming threads_count < num */
uint64_t factors_mp( uint64_t num, size_t threads_count ) {

    struct fact_task* tasks = malloc( threads_count * sizeof( *tasks ) );
    pthread_t* threads = malloc( threads_count * sizeof( *threads ) );

    uint64_t start = 1;
    size_t step = num / threads_count;

    for( size_t i = 0; i < threads_count; i++ ) {
        tasks[i].num = num;
        tasks[i].from = start;
        tasks[i].to = start + step;
        start += step;
    }
    tasks[threads_count-1].to = num+1;

    for ( size_t i = 0; i < threads_count; i++ )
        pthread_create( threads + i, NULL, fact_worker, tasks + i );
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    uint64_t result = 0;
    for ( size_t i = 0; i < threads_count; i++ ) {
        pthread_join( threads[i], NULL );
        result  +=  tasks[i].result;
    }

    free( tasks );
    free( threads );
    return result;
}
int main( void ) {
    uint64_t input = 2000000000;
    printf( "Factors of %"PRIu64": %"PRIu64"\n",
            input, factors_mp(input, THREADS ) );
    return 0;
}

Suppose we are using t threads. To count the number of factors of n, we split the range from 1 to n on t 
equal parts. We compute the number of factors in each of those intervals and then sum up the results.

We create a type to hold the information about single task called struct fact_task. It includes the 
number itself, the range bounds to and to, and the slot for the result, which will be the number of factors of 
num between from and to.

All workers who calculate the number of factors are implemented alike, as a routine fact_worker, 
which accepts a pointer to a struct fact_task, computes the number of factors, and fills the result field.

The code performing thread launch and results collection is contained in the factors_mp function, 
which, for a given number of threads, is

•	 Allocating the task descriptions and the thread instances;

•	 Initializing the task descriptions;

•	 Starting all threads;

•	 Waiting for each thread to end its execution by using join and adding up its result to 
the common accumulator result; and

•	 Freeing all allocated memory.

So, we put the thread creation into a black box, which allows us to benefit from the multithreading.
This code can be compiled with the following command:

> gcc -O3 -std=c99 -pthread -o fact_mp dist_fact_mp.c

The multiple threads are decreasing the overall execution time on a multicore system for this CPU 
bound task.

To test the execution time, we will stick with the time utility again (a program, not a shell builtin 
command). To ensure, that the program is being used instead of a shell builtin, we prepend it with a 
backslash.

> gcc -O3 -o sp -std=c99 dist_fact_sp.c && \time ./sp
Factors of 2000000000: 110
21.78user 0.03system 0:21.83elapsed 99%CPU (0avgtext+0avgdata 524maxresident)k
0inputs+0outputs (0major+207minor)pagefaults 0swaps



Chapter 17 ■ Multithreading

374

> gcc -O3 -pthread -o mp -std=c99 dist_fact_mp.c && \time ./mp
Factors of 2000000000: 110
25.48user 0.01system 0:06.58elapsed 387%CPU (0avgtext+0avgdata 656maxresident)k
0inputs+0outputs (0major+250minor)pagefaults 0swaps

The multithreaded program took 6.5 seconds to be executed, while the single-threaded version took 
almost 22 seconds. That is a big improvement.

In order to speak about performance we are going to introduce the notion of speedup. Speedup is 
the improvement in speed of execution of a program executed on two similar architectures with different 
resources. By introducing more threads we make more resources available, hence the possible improvement 
might take place.

Obviously, for the first example we have chosen a task that is easy and more efficient to solve in parallel. 
The speedup will not always be that substantial, if any; however, as we see, the overall code is compact 
enough (could be even less would we not take extensibility into account—for example, fix a number of 
threads, instead of using it as a parameter).

■■ Question 359 E xperiment with the number of threads and find the optimal one in your own environment.

■■ Question 360 R ead about functions: pthread_self and pthread_equal. Why can’t we compare threads 
with a simple equality operator ==?

17.8.5 � Mutexes
While thread joining is an accessible technique, it does not provide means to control the thread execution 
“on the run.” Sometimes we want to ensure that the actions performed in one thread are not being 
performed before some other action in the other threads are performed. Otherwise, we will get a situation 
where the system is not always working in a stable manner: its output will become dependent on the actual 
order in which the instructions from the different threads will be executed. It occurs when working with the 
mutable data shared between threads. Such situations are called data races, because the threads compete 
for the resources, and any thread can win and get to them first.

To prevent such situations, there is a number of tools, and we will start with mutexes.
Mutex (a shorthand for “mutual exclusion”) is an object that can be in two states: locked and unlocked. 

We work with them using two queries.

•	 Lock. Changes the state from unlocked to locked. If the mutex is locked, then the 
attempting thread waits until the mutex is unlocked by other threads.

•	 Unlock. If the mutex is locked, it becomes unlocked.

Mutexes are often used to provide an exclusive access to a shared resource (like a shared piece of data). 
The thread that wants to work with the resource locks the mutex, which is exclusively used to control an 
access to a resource. After the work with the resource is finished, the thread unlocks the mutex.

Mutex locking and unlocking acts as both a compiler and full hardware memory barriers, so no reads or 
writes can be reordered before locking or after unlocking.

Listing 17-12 shows an example program which needs a mutex.
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Listing 17-12.  mutex_ex_counter_bad.c

#include <pthread.h>
#include <inttypes.h>
#include <stdio.h>
#include <unistd.h>

pthread_t t1, t2;

uint64_t value = 0;

void* impl1( void* _ ) {
    for (int n = 0; n < 10000000; n++) {
        value +=  1;
    }
    return NULL;
}

int main(void) {
    pthread_create(  &t1, NULL, impl1, NULL );
    pthread_create(  &t2, NULL, impl1, NULL );

    pthread_join( t1, NULL );
    pthread_join( t2, NULL );
    printf( "%"PRIu64"\n", value );
    return 0;
}

This program has two threads, implemented by the function impl1. Both threads are constantly 
incrementing the shared variable value 10000000 times.

This program should be compiled with the optimizations disabled to prevent this incrementing loop 
from being transformed into a single value += 10000000 statement (or we can make value volatile).

gcc -O0 -pthread mutex_ex_counter_bad.c

The resulting output is, however, not 20000000, as we might have thought, and is different each time we 
launch the executable:

> ./a.out
11297520
> ./a.out
10649679
> ./a.out
13765500

The problem is that incrementing a variable is not an atomic operation from the C point of view. The 
generated assembly code conforms to this description by using multiple instructions to read a value, add 
one, and then put it back. It allows the scheduler to give the CPU to another thread “in the middle” of a 
running increment operation. The optimized code might or might not have the same behavior.
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To prevent this mess we are going to use a mutex to grant a thread a privilege to be the sole one working 
with value. This way we enforce a correct behavior. Listing 17-13 shows the modified program.

Listing 17-13.  mutex_ex_counter_good.c

#include <pthread.h>
#include <inttypes.h>
#include <stdio.h>
#include <unistd.h>

pthread_mutex_t m; //

pthread_t t1, t2;

uint64_t value = 0;

void* impl1( void* _ ) {
    for (int n = 0; n < 10000000; n++) {
        pthread_mutex_lock( &m );//

        value += 1;

        pthread_mutex_unlock( &m );//
    }
    return NULL;
}

int main(void) {
    pthread_mutex_init( &m, NULL );     //

    pthread_create(  &t1, NULL, impl1, NULL );
    pthread_create(  &t2, NULL, impl1, NULL );

    pthread_join( t1, NULL );
    pthread_join( t2, NULL );
    printf( "%"PRIu64"\n", value );

    pthread_mutex_destroy( &m ); //
    return 0;
}

Its output is consistent (although takes more time to compute):

> ./a.out
20000000

The mutex m is associated by the programmer with a shared variable value. No modifications of value 
should be performed outside the code section between the m lock and unlock. If this constraint is satisfied, 
there is no way value can be changed by another thread once the lock is taken. The lock acts as a memory 
barrier as well. Because of that, value will be reread after the lock is taken and can be cached in a register 
safely. There is no need to make the variable value volatile, since it will only suppress optimizations and the 
program is correct anyway.
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Before a mutex can be used, it should be initialized with pthread_mutex_init, as seen in the main 
function. It accepts attributes, just like the pthread_create function, which can be used to create a recursive 
mutex, create a deadlock detecting mutex, control the robustness (what happens if the mutex owner thread 
dies?), and more.

To dispose of a mutex, the call to pthread_mutex_unlock is used.

■■ Question 361  What is a recursive mutex? How is it different from an ordinary one?

17.8.6 � Deadlocks
A sole mutex is rarely a cause of problems. However, when you lock multiple mutexes at a time, several kinds 
of strange situations can happen. Take a look at the example shown in Listing 17-14.

Listing 17-14.  deadlock_ex

mutex A, B;

thread1 () {
    lock(A);
    lock(B);
    unlock(B);
    unlock(A);
}

thread2() {
    lock(B);
    lock(A);
    unlock(A);
    unlock(B);
}

This pseudo code demonstrates a situation where both threads can hang forever. Imagine that the 
following sequence of actions happened due to unlucky scheduling:

•	 Thread 1 locked A; control transferred to thread 2.

•	 Thread 2 locked B; control transferred to thread 1.

After that, the threads will try to do the following:

•	 Thread 1 will attempt to lock B, but B is already locked by thread 2.

•	 Thread 2 will attempt to lock A, but A is already locked by thread 1.

Both threads will be stuck in this state forever. When threads are stuck in a locked state waiting for each 
other to perform unlock, the situation is called deadlock.

The cause of the deadlock is the different order in which the locks are being taken by different threads. It 
leads us to a simple rule that will save us most of the times when we need to lock several mutexes at a time.
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■■ Preventing deadlocks  Order all mutexes in your program in an imaginary sequence. Only lock mutexes in 
the same order they appear in this sequence.

For example, suppose we have mutexes A, B, C, and D. We impose a natural order on them: A < B < C < D. If 
you need to lock both D and B, you should always lock them in the same order, thus B first, D second.

If this invariant is kept, no two threads will lock a pair of mutexes in a different order.

■■ Question 362  What are Coffman’s conditions? How can they be used to diagnose deadlocks?

■■ Question 363 H ow do we use Helgrind to detect deadlocks?

17.8.7 � Livelocks
Livelock is a situation in which two threads are stuck but not in a waiting-for-mutex-unlock state. Their 
states are changing, but they are not really progressing. For example, pthreads does not allow you to check 
whether the mutex is locked or not. It would be useless to provide information about the mutex state, 
because once you obtain information about it, the latter can already be changed by the other thread.

if ( mutex is not locked ) {
    /* We still do not know if the mutex is locked or not.
       Other thread might have locked or unlocked it
       several times already.  */
}

However, pthread_mutex_trylock is allowed, which either locks a mutex or returns an error if it has 
already been locked by someone. Unlike pthread_mutex_lock, it does not block the current thread waiting 
for the unlock. Using pthread_mutex_trylock can lead to livelock situations. Listing 17-15 shows a simple 
example in pseudo code.

Listing 17-15.  livelock_ex

mutex m1, m2;

thread1() {
    lock( m1 );
    while ( mutex_trylock m2 indicates LOCKED ) {
        unlock( m1 );
        wait for some time;
        lock( m1 );
    }
    // now we are good because both locks are taken
}
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thread2() {
    lock( m2 );
    while ( mutex_trylock m1 indicates LOCKED ) {
        unlock( m2 );
        wait for some time;
        lock( m2 );
    }
    // now we are good because both locks are taken
}

Each thread tries to defy the principle “locks should always be performed in the same order.” Both of 
them want to lock two mutexes m1 and m2.

The first thread performs as follows:

•	 Locks the mutex m1.

•	 Tries to lock mutex m2. On failure, unlocks m1, waits, and locks m1 again.

This pause is meant to provide the other thread time to lock m1 and m2 and perform whatever it wants to 
do. However, we might be stuck in a loop when

	 1.	 Thread 1 locks m1, thread 2 locks m2.

	 2.	 Thread 1 sees that m2 is locked and unlocks m1 for a time.

	 3.	 Thread 2 sees that m1 is locked and unlocks m2 for a time.

	 4.	 Go back to step one.

This loop can take forever to complete or can produce significant delays; it is entirely up to the 
operating system scheduler. So, the problem with this code is that execution traces exist that will forever 
prevent threads from progress.

17.8.8 � Condition Variables
Condition variables are used together with mutexes. They are like wires transmitting an impulse to wake up 
a sleeping thread, waiting for some condition to be satisfied.

Mutexes implement synchronization by controlling thread access to a resource; condition variables, on 
the other hand, allow threads to synchronize based upon additional rules. For example, in case of shared 
data, the actual value of data might be a part of such rule.

The core of condition variables usage consists of three new entities:

•	 The condition variable itself of type pthread_cond_t.

•	 A function to send a wake-up signal through a condition variable  
pthread_cond_signal.

•	 A function to wait until a wake-up signal comes through a condition variable pthread_
cond_wait.

These two functions should only be used between a lock and unlock of the same mutex.
It is an error to call pthread_cond_signal before pthread_cond_wait, otherwise the program might 

be stuck.
Let us study a minimal working example shown in Listing 17-16.
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Listing 17-16.  condvar_mwe.c

#include <pthread.h>
#include <stdio.h>
#include <stdbool.h>
#include <unistd.h>

pthread_cond_t condvar = PTHREAD_COND_INITIALIZER;
pthread_mutex_t m;

bool sent = false;
void* t1_impl( void* _ ) {
    pthread_mutex_lock( &m );
    puts( "Thread2 before wait" );

    while (!sent)
        pthread_cond_wait( &condvar, &m );

    puts( "Thread2 after wait" );
    pthread_mutex_unlock( &m );
    return  NULL;
}

void* t2_impl( void* _ ) {
    pthread_mutex_lock( &m );
    puts( "Thread1 before signal" );

    sent = true;
    pthread_cond_signal( &condvar );

    puts( "Thread1 after signal" );
    pthread_mutex_unlock( &m );
    return NULL;
}

int main( void ) {
    pthread_t t1, t2;

    pthread_mutex_init( &m, NULL );
    pthread_create( &t1, NULL, t1_impl, NULL );
    sleep( 2 );
    pthread_create( &t2, NULL, t2_impl, NULL );

    pthread_join( t1, NULL );
    pthread_join( t2, NULL );

    pthread_mutex_destroy( &m );
    return 0;
}
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Running this code will produce the following output:

./a.out
Thread2 before wait
Thread1 before signal
Thread1 after signal
Thread2 after wait

Initializing a condition variable can be performed either through an assignment of a special 
preprocessor constant PTHREAD_COND_INITIALIZER or by calling pthread_cond_init. The latter can accept a 
pointer to attributes of type pthread_condattr_t akin to pthread_create or pthread_mutex_init.

In this example, two threads are created: t1, performing instructions from t1_impl, and t2, performing 
ones from t2_impl.

The first thread locks the mutex m. It then waits for a signal that can be transmitted through the condition 
variable condvar. Note that pthread_cond_wait also accepts the pointer to the currently locked mutex.

Now t1 is sleeping, waiting for the signal to come. The mutex m becomes immediately unlocked! When 
the thread gets the signal, it will relock the mutex automatically and continue its execution from the next 
statement after pthread_cond_wait call.

The other thread is locking the same mutex m and issuing a signal through condvar. pthread_cond_
signal sends the signal through condvar, unblocking at least one of the threads, blocked on the condition 
variable condvar.

The pthread_cond_broadcast function would unblock all threads waiting for this condition variable, 
making them contend for the respective mutex as if they all issued pthread_mutex_lock. It is up to the 
scheduler to decide in which order will they get access to the CPU.

As we see, condition variables let us block until a signal is received. An alternative would be a “busy 
waiting” when a variable’s value is constantly checked (which kills performance and increases unnecessary 
power consumption) as follows:

while (somecondition == false);

We can of course put the thread to sleep for a time, but this way we will still wake up either too rarely to 
react to the event in time or too often:

while (somecondition == false)
    sleep(1); /* or something else that lets us sleep for less time */

Condition variables let us wait just enough time and continue the thread execution in the locked state.
An important moment should be explained. Why did we introduce a shared variable sent? Why are we 

using it together with the condition variable? Why are we waiting inside the while (!sent) cycle?
The most important reason is that the implementation is permitted to issue spurious wake-ups to a 

waiting thread. It means that the thread can wake up from waiting on a signal not only after receiving it but 
at any time. In this case, as the sent variable is only set before sending the signal, spurious wake-up will 
check its value and if it is still equal to false will issue the pthread_cond_wait again.

17.8.9 � Spinlocks
A mutex is a sure way of doing synchronization. Trying to lock a mutex which is already taken by another 
thread puts the current thread into a sleeping state. Putting the thread to sleep and waking it up has its costs, 
notably for the context switch, but if the waiting is long, these costs justify themselves. We spend a little time 
going to sleep and waking up, but in a prolonged sleep state the thread does not use the CPU.
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What would be an alternative? The active idle, which is described by the following simple pseudo code:

while ( locked == true ) {
    /* do nothing */
}
locked = true;

The variable locked is a flag showing whether some thread took the lock or not. If another thread took 
the lock, the current thread will constantly poll its value until it is changed back. Otherwise it proceeds to 
take the lock on its own. This wastes CPU time (and increases power consumption), which is bad. However, 
it can increase performance in case the waiting time is expected to be very short. This mechanism is called 
spinlock.

Spinlocks only make sense on multicore and multiprocessor systems. Using spinlock in a single core is 
useless. Imagine a thread enters the cycle inside the spinlock. It keeps waiting for other thread to change 
the locked value, but no other thread is executing at this very time, because there is only one core switching 
from thread to thread. Eventually the scheduler will put the current thread to sleep and allow other threads 
to perform, but it just means that we have wasted CPU cycles executing an empty loop for no reason at all! In 
this case, going to sleep right away is always better, and hence there is no use for a spinlock.

This scenario can of course occur on a multicore system as well, but there is also a (usually) good 
chance, that the other thread will unlock the spinlock before the time quantum given to the current thread 
expires.

Overall, using spinlocks can be beneficial or not; it depends on the system configuration, program logic, 
and workload. When in doubt, test and prefer using mutexes (which are often implemented by first taking a 
spinlock for a number of iterations and then falling into the sleep state if no unlock occurred).

Implementing a fast and correct spinlock in practice is not that trivial. There are questions to be 
answered, such as the following:

•	 Do we need a memory barrier on lock and/or unlock? If so, which one? Intel 64, for 
example, has lfence, sfence, and mfence.

•	 How do we ensure that the flag modification is atomic? In Intel 64, for example, an 
instruction xchg suffices (with lock prefix in case of multiple processors).

pthreads provide us with a carefully designed and portable mechanism of spinlocks. For more 
information, refer to the man pages for the following functions:

•	 pthread_spin_lock

•	 pthread_spin_destroy

•	 pthread_spin_unlock

17.9 � Semaphores
Semaphore is a shared integer variable on which three actions can be performed.

•	 Initialization with an argument N. Sets its value to N.

•	 Wait (enter). If the value is not zero, it decrements it. Otherwise waits until someone 
else increments it, and then proceeds with the decrement.

•	 Post (leave). Increments its value.

Obviously the value of this variable, not directly accessible, cannot fall below 0.
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Semaphores are not part of pthreads specification; we are working with semaphores whose interface 
is described in the POSIX standard. However, the code that uses the semaphores should be compiled with a 
-pthread flag.

Most UNIX-like operating systems implement both standard pthreads features and semaphores. Using 
semaphores is fairly common to perform synchronization between threads.

Listing 17-17 shows an example of semaphore usage.

Listing 17-17.  semaphore_mwe.c

#include <semaphore.h>
#include <inttypes.h>
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>

sem_t sem;

uint64_t counter1 = 0;
uint64_t counter2 = 0;

pthread_t t1, t2, t3;

void* t1_impl( void* _ ) {
    while( counter1 < 10000000 ) counter1++;
    sem_post( &sem );
    return NULL;
}

void* t2_impl( void* _ ) {
    while( counter2 < 20000000 ) counter2++;
    sem_post( &sem );
    return NULL;
}

void* t3_impl( void* _ ) {
    sem_wait( &sem );
    sem_wait( &sem );
    printf("End: counter1 = %" PRIu64 " counter2 = %" PRIu64 "\n",
            counter1, counter2 );
    return NULL;
}

int main(void) {
    sem_init( &sem, 0, 0 );

    pthread_create( &t3, NULL, t3_impl, NULL );

    sleep( 1 );
    pthread_create( &t1, NULL, t1_impl, NULL );
    pthread_create( &t2, NULL, t2_impl, NULL );
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    sem_destroy( &sem );
    pthread_exit( NULL );
    return 0;
}

The sem_init function initializes the semaphore. Its second argument is a flag: 0 corresponds to a 
process-local semaphore (which can be used by different threads), non-zero value sets up a semaphore 
visible to multiple processes.3 The third argument sets up the initial semaphore value. A semaphore is 
deleted using the sem_destroy function. In the example, two counters and three threads are created. 
Threads t1 and t2 increment the respective counters to 1000000 and 20000000 and then increment the 
semaphore value sem by calling sem_post. t3 locks itself decrementing the semaphore value twice. Then, 
when semaphore was incremented twice by other threads, t3 prints the counters into stdout.

The pthread_exit call ensures that the main thread will not terminate prematurely, until all other 
threads finish their work.

Semaphores come up handy in such tasks as

•	 Forbidding more than n processes to simultaneously execute a code section.

•	 Making one thread wait for another to complete a specific action, thus imposing an 
order on their actions.

•	 Keeping no more than a fixed number of worker threads performing a certain task in 
parallel. More threads than needed might decrease performance.

It is not true that a semaphore with two states is fully analogous to a mutex. Unlike mutex, which can 
only be unlocked by the same thread that locked it, semaphores can be changed freely by any thread.

We will see another example of the semaphore usage in Listing 17-18 to make two threads start each 
loop iteration simultaneously (and when the loop body is executed, they wait for other loops to finish an 
iteration).

Manipulations with semaphores obviously act like both compiler and hardware memory barriers.
For more information on semaphores, refer to the man pages for the following functions:

•	 em_close

•	 sem_destroy

•	 sem_getvalue

•	 sem_init

•	 sem_open

•	 sem_post

•	 sem_unlink

•	 sem_wait

■■ Question 364  What is a named semaphore? Why should it be mandatorily unlinked even if the process is 
terminated?

3In this case, the semaphore itself will be placed in the shared page, which will not be physically duplicated after 
performing the fork() system call
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17.10 � How Strong Is Intel 64?
Abstract machines with relaxed memory model can be tough to follow. Out of order writes, return values 
from the future, and speculative reads are confusing. Intel 64 is considered to be usually strong. In most 
cases, it guarantees quite a few constraints to be satisfied, including, but not limited to, the following:

•	 Stores are not reordered with older stores.

•	 Stores are not reordered with older loads.

•	 Loads are not reordered with other loads.

•	 In a multiprocessor system, stores to the same location have a total order.

There are also exceptions, such as the following:

•	 Writing to memory bypassing cache with such instructions as movntdq can be 
reordered with other stores.

•	 String instructions like rep movs can be reordered with other stores.

A full list of guarantees can be found in volume 3, section 8.2.2 of [15].
However, according to [15], “reads may be reordered with older writes to different locations but not with 

older writes to the same location.” So, do not be fooled: memory reorderings do occur. A simple program 
shown in Listing 17-18 demonstrates the memory reordering done by hardware. It implements an example 
already shown in Listing 17-4, where there are two threads and two shared variables x and y. The first thread 
performs store x and load y, the second ones performs store y and load x. The compiler barrier ensures 
that these two statements are translated into assembly in the same order. As section 17.10 suggests, the 
stores and loads into independent locations can be reordered. So, we cannot exclude the hardware memory 
reordering here, as x and y are independent!

Listing 17-18.  reordering_cpu_mwe.c

#include <pthread.h>
#include <semaphore.h>
#include <stdio.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdlib.h>
#include <time.h>

sem_t sem_begin0, sem_begin1, sem_end;

int x, y, read0, read1;

void *thread0_impl( void *param )
{
    for (;;) {

        sem_wait( &sem_begin0 );

        x = 1;
        // This only disables compiler reorderings:
        asm volatile("" ::: "memory");

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
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        // The following line disables also hardware reorderings:
        // asm volatile("mfence" ::: "memory");
        read0 = y;

        sem_post( &sem_end );
}

    return NULL;
};

void *thread1_impl( void *param )
{
    for (;;) {

        sem_wait( &sem_begin1 );

        y = 1;
        // This only disables compiler reorderings:
        asm volatile("" ::: "memory");
        // The following line disables also hardware reorderings
        // asm volatile("mfence" ::: "memory");
        read1 = x;

        sem_post( &sem_end );
    }
    return NULL;
};

int main( void ) {

    sem_init( &sem_begin0, 0, 0);
    sem_init( &sem_begin1, 0, 0);
    sem_init( &sem_end, 0, 0);

    pthread_t thread0, thread1;
    pthread_create(  &thread0, NULL, thread0_impl, NULL);
    pthread_create(  &thread1, NULL, thread1_impl, NULL);

    for (uint64_t i = 0; i < 100000; i++)
    {
        x = 0;
        y = 0;
        sem_post( &sem_begin0 );
        sem_post( &sem_begin1 );

        sem_wait( &sem_end );
        sem_wait( &sem_end );

        if (read0 == 0 && read1 == 0 ) {
            printf( "reordering happened on iteration %" PRIu64 "\n", i );
            exit(0);
        }
}
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        puts("No reordering detected during 100000 iterations");
        return 0;
}

To check it we perform multiple experiments. The main function acts as follows:

	 1.	 Initialize threads and two starting semaphores as well as an ending one.

	 2.	 x = 0, y = 0

	 3.	 Notify the threads that they should start performing a transaction.

	 4.	 Wait for both threads to complete the transaction.

	 5.	 Check whether the memory reordering took place. It is seen when both load x 
and load y returned zeros (because they were reordered to be placed before 
store s).

	 6.	 If the memory reordering has been detected, we are notified about it and the 
process exits. Otherwise it tries again from step (2) up to the maximum of 100000 
attempts.

Each thread waits for a signal to start from main, performs the transaction, and notifies main about it. 
Then it starts all over again.

After launching you will see that 100000 iterations are enough to observe a memory reordering.

> gcc -pthread -o ordering -O2 ordering.c
> ./ordering
reordering happened on iteration 128
> ./ordering
reordering happened on iteration 12
> ./ordering
reordering happened on iteration 171
> ./ordering
reordering happened on iteration 80
> ./ordering
reordering happened on iteration 848
> ./ordering
reordering happened on iteration 366
> ./ordering
reordering happened on iteration 273
> ./ordering
reordering happened on iteration 105
> ./ordering
reordering happened on iteration 14
> ./ordering
reordering  happened  on  iteration 5
> ./ordering
reordering happened on iteration 414

It might seem magical, but it is the level lower than the assembly language even that is seen here and 
that introduces rarely observed (but still persistent) bugs in the software. Such bugs in multithreaded 
software are very hard to catch. Imagine a bug appearing only after four months of uninterrupted execution, 
which corrupts the heap and crashes the program 42 allocations after it triggers! So, writing high-
performance multithreaded software in a lock-free manner requires tremendous expertise.
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So, what we need to do is to add mfence instruction. Replacing the compiler barrier with a full memory 
barrier asm volatile( "mfence":::"memory"); solves the problem and the reorderings disappear 
completely. If we do it, there will be no reorderings detected no matter how many iterations we try.

17.11 � What Is Lock-Free Programming?
We have seen how we can ensure the consistency of the operations when working in a multithreaded 
environment. Every time we need to perform a complex operation on shared data or resources without other 
threads intervening we lock a mutex that we have associated to this resource or memory chunk.

We say that the code is lock-free if the following two constraints are satisfied:

•	 No mutexes are used.

•	 The system cannot be locked up indefinitely. That includes livelocks.

In other words, it is a family of techniques that ensure safe manipulation with the shared data without 
using mutexes.

We almost always expect only a part of the program code to satisfy the lock-free property. For example, 
a data structure, such as a queue, may be considered lock-free if the functions that are used to manipulate 
it are lock-free. So, it does not prevent us from locking up completely, but as far as we are calling functions 
such as enqueue or dequeue, progress will be made.

From the programmer’s perspective, lock-free programming is different from traditional mutex usage 
because it introduces two challenges that are usually covered by mutexes.

	 1.	 Reorderings. While mutex manipulations imply compiler and hardware memory 
barriers, without them you have to be specific about where to place memory 
barriers. You will not want to place them after each statement because it kills 
performance.

	 2.	 Non-atomic operations. The operations between mutex lock and unlock are 
safe and atomic in a sense. No other thread can modify the data associated with 
the mutex (unless there are unsafe data manipulations outside the lock-unlock 
section). Without that mechanism we are stuck with very few atomic operations, 
which we will study later in this chapter.

On most modern processors reads and writes of naturally aligned native types are atomic. Natural 
alignment means aligning the variable to a boundary that corresponds to its size.

On Intel 64 there is no guarantee that reads and writes larger than 8 bytes are atomic. Other memory 
interactions are usually non-atomic. It includes, but is not limited to,

•	 16-byte reads and writes performed by SSE (Streaming SIMD Extensions) instructions.

•	 String operations (movsb instruction and the like).

•	 Many operations are atomic on a single-processor system but not in a multiprocessor 
system (e.g., inc instruction).

Making them atomic requires a special lock prefix to be used, which prevents other processors from 
doing their own read-modify-write sequence between the stages of the said instructions. An inc <addr> 
instruction, for instance, has to read bytes from memory and write back their incremented value. Without 
lock prefix, they can intervene in between, which can lead to a loss of value.
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Here are some examples of non-atomic operations:

char buf[1024];
uint64_t* data = (uint64_t*)(buf + 1);

/* not atomic: unnatural alignment */
*data = 0;

/* not atomic: increment can need a read and a write */
++global_aligned_var;

/* atomic write */

global_aligned_var = 0;

void f(void) {
/* atomic read */
int64_t local_variable = global_aligned_var;
}

These cases are architecture-specific. We also want to perform more complex operations atomically 
(e.g., incrementing the counter). To perform them safely without using mutexes the engineers invented 
interesting basic operations, such as compare-and-swap (CAS). Once this operation is implemented as a 
machine instruction on a specific architecture, it can be used in combination with more trivial non-atomic 
reads and writes to implement many lock-free algorithms and data structures.

CAS instruction acts as an atomic sequence of operations, described by the following equivalent C 
function:

bool cas(int* p , int old, int new) {
    if (*p != old) return false;
    *p = new;
    return true;
}

A shared counter, which you are reading and writing back a modified value, is a typical case when we 
need a CAS instruction to perform an atomical increment or decrement. Listing 17-19 shows a function to 
perform it.

Listing 17-19.  cas_counter.c

int add(int* p, int add ) {
    bool done = false;
    int value;
    while (!done) {
        value = *p;
            done = cas(p, value, value + add );
    }
    return value + add;
}
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This example shows a typical pattern, seen in many CAS-based algorithms. They read a certain memory 
location, compute its modified value, and repeatedly try to swap the new value back if the current memory 
value is equal to the old one. It fails in case this memory location was modified by another thread; then the 
whole read-modify-write cycle is repeated.

Intel 64 implements CAS instructions cmpxchg, cmpxchg8b, and cmpxchg16b. In case of multiple 
processors, they also require a lock prefix to be used.

The instruction cmpxchg is of a particular interest. It accepts two operands: register or memory and a 
register. It compares rax4 with the first operand. If they are equal, zf flag is set, the second operand’s value is 
loaded into the first. Otherwise, the actual value of the first operand is loaded into rax and zf is cleared.

These instructions can be used as a part of implementation of mutexes and semaphores.
As we will see in section 17.12.2, there is now a standard-compliant way of using compare-and-set 

operations (as well as manipulating with atomic variables). We recommend sticking to it to prevent non-
portable code and use atomics whenever you can. When you need complex operations to be performed 
atomically, use mutexes or stick with the lock-free data structure implementations done by experts: writing 
lock-free data structures has proven to be a challenge.

■■ Question 365  What is the ABA problem?

■■ Question 366 R ead the description of cmpxchg in Intel docs [15].

17.12 � C11 Memory Model
17.12.1 � Overview
Most of the time we want to write code that is correct on every architecture. To achieve that, we base it on 
the memory model described in the C11 standard. The compiler might implement some operations in a 
straightforward manner or emit special instructions to enforce certain guarantees, when the actual hardware 
architecture is weaker.

Contrary to Intel 64, the C11 memory model is rather weak. It guarantees data dependency ordering, 
but nothing more, so in the classification mentioned in section 17.4 it corresponds to the second one: weak 
with dependency ordering. There are other hardware architectures that provide similar weak guarantees, for 
example ARM.

Because of C weakness, to write portable code we cannot assume that it will be executed on an usually 
strong architecture, such as Intel 64, for two reasons.

•	 When recompiled for other, weaker architecture, the observed program behavior will 
change because of how the hardware reorderings work.

•	 When recompiled for the same architecture, compiler reorderings that do not break 
the weak ordering rules imposed by the standard might occur. That can change the 
observed program behavior, at least for some execution traces.

17.12.2 � Atomics
The important C11 feature that can be used to write fast multithreaded programs is atomics (see section 7.17 
of [7]). These are special variable types, which can be modified atomically. To use them, include the header 
stdatomic.h.

4Or eax, ax, al–depending on operand size

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par16
http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par8
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Apparently, an architecture support is needed to implement them efficiently. In the worst-case 
scenario, when the architecture does not support any such operation, every such variable will be paired with 
a mutex, which will be locked to perform any modification of the variable or even to read it.

Atomics allow us to perform thread-safe operations on common data in some cases. It is often possible 
to do without heavy machinery involving mutexes. However, writing data structures such as queue in a lock-
free way is no easy task. For that we highly advise using such existing implementations as “black boxes.”

C11 defines a new _Atomic() type specifier. You can declare an atomic integer as follows:

_Atomic(int) counter;

_Atomic transforms the name of a type into the name of an atomic type. Alternatively, you can use the 
atomic types directly as follows:

atomic_int counter;

A full correspondence between _Atomic(T) and atomic_T direct type forms can be found in section 
7.17.6 of [7].

Atomic local variables should not be initialized directly; instead, the macro ATOMIC_VAR_INIT should be 
used. It is understandable, because on some architectures with fewer hardware capabilities each such variable 
should be associated with a mutex, which has to be created and initialized as well. Global atomic variables are 
guaranteed to be in a correct initial state. ATOMIC_VAR_INIT should be used during the variable declaration 
coupled with initialization; however, if you want to initialize the variable later, use atomic_init macro.

void f(void) {
    /* Initialization during declaration */
    atomic_int x = ATOMIC_VAR_INIT( 42 );
    atomic_int y;

    /* initialization later */
    atomic_init( &y, 42 );
}

It is your responsibility to guarantee that the atomic variable initialization ends before anything else is 
done with it. In other words, concurrent access to the variable being initialized is a data race.

Atomic variables should only be manipulated through an interface, defined in the language standard. It 
consists of several operations, such as load, store, exchange, etc. Each of them exists in two versions.

•	 An explicit version, which accepts an extra argument, describing the memory 
ordering. Its name ends with _explicit. For example, the load operation is

T atomic_load_explicit( _Atomic(T) *object, memory_order order );

•	 An implicit version, which implies the strongest memory ordering (sequentially 
consistent). There is no _explicit suffix. For example,

T atomic_load( _Atomic(T) *object );

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par8
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17.12.3 � Memory Orderings in C11
The memory ordering is described by one of enumeration constants (in order of increasing strictness).

•	 memory_order_relaxed implies the weakest model: any memory reordering is possible 
as long as the single thread program’s observable behavior is left untouched.

•	 memory_order_consume is a weaker version of memory_order_acquire.

•	 memory_order_acquire means that the load operation has an acquire semantics.

•	 memory_order_release means that the store operation has a release semantics.

•	 memory_order_acq_rel combines acquire and release semantics.

•	 memory_order_seq_cst implies that no memory reordering is performed for 
all operations that are marked with it, no matter which atomic variable is being 
referenced.

By providing an explicit memory ordering constant, we can control how we want to allow the operations 
to be observably reordered. It includes both compiler reorderings and hardware reorderings, so when 
the compiler sees that compiler reorderings do not provide all the guarantees we need, it will also issue 
platform-specific instructions, such as sfence.

The memory_order_consume option is rarely used. It relies on the notion of “consume operation.” This 
operation is an event that occurs when a value is read from memory and then used afterward in several 
operations, creating a data dependency.

In weaker architectures such as PowerPC or ARM its usage can bring a better performance due to 
exploitation of the data dependencies to impose a certain ordering on memory accesses. This way, the costly 
hardware memory barrier instruction is spared, because these architectures guarantee the data dependency 
ordering without explicit barriers. However, due to the fact that this ordering is so hard to implement 
efficiently and correctly in compilers, it is usually mapped directly to memory_order_acquire, which is a 
slightly stronger version. We do not recommend using it. Refer to [30] for additional information.

The acquire and release semantics of these memory ordering options correspond directly to the 
notions we studied in section 17.7.

The memory_order_seq_cst corresponds to the notion of sequential consistency, which we elaborated 
in section 17.4. As all non-explicit operations with atomics accept it as a default memory ordering value, 
C11 atomics are sequentially consistent by default. It is the safest route and also usually faster than mutexes. 
Weaker orderings are harder to get right, but they allow for a better performance as well.

The atomic_thread_fence(memory_order order) allows us to insert a memory barrier (compiler 
and hardware ones) with a strength corresponding to the specified memory ordering. For example, this 
operation has no effect for memory_order_relaxed, but for a sequentially consistent ordering in Intel 64 the 
mfence instruction will be emitted (together with compiler barrier).

17.12.4 � Operations
The following operations can be performed on atomic variables (T denotes the non-atomic type, U refers to 
the type of the other argument for arithmetic operations; for all types except pointers, it is the same as T, for 
pointers it is ptrdiff_t).

void atomic_store(volatile _Atomic(T)* object, T  value);
T atomic_load(volatile _Atomic(T)* object);

T atomic_exchange(volatile _Atomic(T)* object, desired);

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par31
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T atomic_fetch_add(volatile _Atomic(T)* object, U operand);
T atomic_fetch_sub(volatile _Atomic(T)* object, U operand);
T atomic_fetch_or (volatile _Atomic(T)* object, U operand);
T atomic_fetch_xor(volatile _Atomic(T)* object, U operand);
T atomic_fetch_and(volatile _Atomic(T)* object, U operand);

bool atomic_compare_exchange_strong(
    volatile _Atomic(T)* object, T * expected, T desired);
bool atomic_compare_exchange_weak(
    volatile _Atomic(T)* object, T * expected, T desired);

All these operations can be used with an _explicit suffix to provide a memory ordering as an 
additional argument.

Load and store functions do not need a further explanation; we will discuss the other ones briefly.
atomic_exchange is a combination of load and store: it replaces the value of an atomic variable with 

desired and returns its old value.
fetch_op family of operations is used to atomically change the atomic variable value. Imagine you need 

to increment an atomic counter. Without fetch_add it is impossible to do since in order to increment it you 
need to add one to its old value, which you have to read first. This operation is performed in three steps: 
reading, addition, writing. Other threads may interfere between these stages, which destroys atomicity.

atomic_compare_exchange_strong is preferred to its weak counterpart, since the weak version can fail 
spuriously. The latter has a better performance on some platforms.

The atomic_compare_exchange_strong function is roughly equivalent to the following pseudo code:

if ( *object == *expected )

    *object = desired;
else
    *expected = *object;

As we see, this is a typical CAS instruction that was discussed in section 17.11.
atomic_is_lock_free macro is used to check whether a specific atomic variable uses locks or not.
Remember that without providing explicit memory ordering, all these operations are assumed to be 

sequentially consistent, which in Intel 64 means mfence instructions all over the code. This can be a huge 
performance killer.

The Boolean shared flag has a special type named atomic_flag. It has two states: set and clear. It is 
guaranteed that operations on it are atomic without using locks.

The flag should be initialized with the ATOMIC_FLAG_INIT macro as follows:

atomic_flag is_working = ATOMIC_FLAG_INIT;

The relevant functions are atomic_flag_test_and_set and atomic_flag_clear, both of which have 
_explicit counterparts, accepting memory ordering descriptions.

■■ Question 367 R ead man pages for atomic_flag_test_and_set and atomic_flag_clear.
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17.13 � Summary
In this chapter we have studied the basics of multithreaded programming. We have seen the different 
memory models and the problems that emerge from the fact compiler and hardware optimizations mess 
with the instruction execution order. We have learned how to control them, placing different memory 
barriers, we have seen why volatile is not a solution to problems that emerge from multithreading. Then 
we introduced pthreads, the most common standard of writing multithreaded applications of Unix-like 
systems. We have seen thread management, used mutexes and condition variables, and learned why 
spinlocks only have meaning on multicore and multiprocessor systems. We have seen how memory 
reorderings should be taken into account even when working on an usually strong architecture such as Intel 
64 and have seen the limits of its strictness. Finally, we have studied the atomic variables—a very useful 
feature of C11 that allows us to get rid of explicit mutex usage and in many cases boost performance while 
maintaining correctness. Mutexes are still important when we want to perform complex manipulations on 
non-trivial data structures.

■■ Question 368  Which problems emerge from multithreading usage?

■■ Question 369  What makes multiple threads worth it?

■■ �Question 370  Should we use multithreading even if the program does not perform many computations? If 
yes, give a use case.

■■ Question 371  What is compiler reordering? Why is it performed?

■■ �Question 372  Why does the single-threaded program have no means to observe compiler memory 
reorderings?

■■ Question 373  What are some kinds of memory models?

■■ �Question 374 H ow do we write the code that is sequentially consistent with regard to manipulation of two 
shared variables?

■■ Question 375 A re volatile variables sequentially consistent?

■■ Question 376  Show an example when memory reorderings can lead to very unexpected program behavior.

■■ Question 377  What are the arguments against usage of volatile variables?

■■ Question 378  What is a memory barrier?

■■ Question 379  What kinds of memory barriers do you know?

■■ Question 380  What is acquire semantics?

■■ Question 381  What is release semantics?

■■ �Question 382  What is a data dependency? Can you write code where data dependency does not force an 
order on operations?

■■ Question 383  What is the difference between mfence, sfence, and lfence?

■■ Question 384  Why do we need instructions other than mfence?
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■■ Question 385  Which function calls act as compiler barriers?

■■ Question 386 A re inline function calls compiler barriers?

■■ Question 387  What is a thread?

■■ Question 388  What is the difference between threads and processes?

■■ Question 389  What constitutes the state of a process?

■■ Question 390  What constitutes the state of a thread?

■■ Question 391  Why should the -pthread flag be used when compiling with pthreads?

■■ Question 392 I s pthreads a static or dynamic library?

■■ Question 393 H ow do we know in which order the scheduler will execute the threads?

■■ Question 394  Can one thread get access to the stack of the other thread?

■■ Question 395  What does pthread_join do and how do we use it?

■■ Question 396  What is a mutex? Why do we need it?

■■ Question 397  Should every shared constant variable be associated with a mutex?

■■ Question 398  Should every shared mutable variable which is never changed be associated with a mutex?

■■ Question 399  Should every shared mutable variable which is changed be associated with a mutex?

■■ Question 400  Can we work with a shared variable without ever using a mutex?

■■ Question 401  What is a deadlock?

■■ Question 402 H ow do we prevent deadlock?

■■ Question 403  What is a livelock? How is it different from a deadlock?

■■ Question 404  What is a spinlock? How is it different from a livelock and a deadlock?

■■ Question 405  Should spinlocks be used on a single core system? Why?

■■ Question 406  What is a condition variable?

■■ Question 407  Why do we need condition variables if we have mutexes?

■■ Question 408  Which guarantees does Intel 64 provide for memory reorderings?

■■ Question 409  Which important guarantees does Intel 64 not provide for memory reorderings?

■■ Question 410  Correct the program shown in Listing 17-18 so that no memory reordering occurs.

■■ �Question 411  Correct the program shown in Listing 17-18 so that no memory reordering occurs by using 
atomic variables.
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■■ �Question 412  What is lock-free programming? Why is it harder than traditional multithreaded 
programming with locks?

■■ Question 413  What is a CAS operation? How can it be implemented in Intel 64?

■■ Question 414 H ow strong is the C memory model?

■■ Question 415  Can the strength of the C memory model be controlled?

■■ Question 416  What is an atomic variable?

■■ Question 417  Can any data type be atomic?

■■ Question 418  Which atomic variables should be initialized explicitly?

■■ Question 419  Which memory orderings does C11 recognize?

■■ �Question 420 H ow are the atomic variables manipulation functions with _explicit suffix different from 
their ordinary counterparts?

■■ Question 421 H ow do we perform an atomic increment on an atomic variable?

■■ Question 422 H ow do we perform an atomic XOR on an atomic variable?

■■ Question 423  What is the difference between weak and strong versions of compare_exchange?
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CHAPTER 18

Appendix A. Using gdb

The debugger is a very powerful instrument at your disposal. It allows executing programs step by step 
and monitoring their state, including register values and memory contents. In this book we are using the 
debugger called gdb. This appendix is an introduction aimed to ease your first steps with it.

Debugging is a process of finding bugs and studying program behavior. In order to do that, we usually 
perform single steps observing a part of the program’s state that is of interest to us. We can also run the 
program until a certain condition is met or a position in code is reached. Such position in the code is called 
breakpoint.

Let us study a sample program shown in Listing 18-1. We have already seen it in Chapter 2. This code 
prints the rax register contents into stdout.

Listing 18-1.  print_rax_2.asm

section .data
codes:
db      '0123456789ABCDEF'

section .text
global _start
_start:
mov rax, 0x1122334455667788

mov rdi, 1
mov rdx, 1
mov rcx, 64
.loop:
push rax
sub rcx, 4
sar rax, cl
and rax, 0xf

lea rsi, [codes + rax]
mov rax, 1

push rcx
syscall
pop rcx

http://dx.doi.org/10.1007/978-1-4842-2403-8_2
http://dx.doi.org/10.1007/978-1-4842-2403-8_2#Sec4
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pop rax
test rcx, rcx
jnz .loop

mov     rax, 60          ; invoke 'close' system call

xor rdi, rdi
syscall

We are going to compile an executable file print_rax from it and launch gdb.

> nasm -o print_rax.o -f elf64  print_rax.asm
> ld -o print_rax print_rax.o
> gdb print_rax
...
(gdb)

gdb has its own command system and the interaction with it happens through these commands. So 
whenever gdb is launched and you see its command prompt (gdb), you can type commands and it will 
interact accordingly.

You can load an executable file by issuing file command and then typing the filename, or by passing it 
as an argument.

(gdb) file print_rax
Reading symbols from print_rax...(no debugging symbols found)...done.

The <tab> key functions in the gdb command prompt perform autocompletion hints. Many commands 
also have shorthands.

The two most important commands are

•	 quit to quit gdb.

•	 help cmd to show help for the command cmd.

The ˜/.gdbinit file stores commands that will be automatically executed when gdb starts. Such a file 
can be created in the current directory as well, but for security reasons this feature is disabled by default.

■■ Note T o enable loading the .gdbinit file from any directory, add the following line to the ˜/.gdbinit file in 
your home directory:

set auto-load safe-path /

By default, gdb uses AT&T assembly syntax. In our book we stick to Intel syntax; to change gdb’s default 
preferences regarding assembly syntax, add the following line to ˜/.gdbinit file:

set disassembly-flavor intel
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Other useful commands include the following:

•	 run starts program execution.

•	 break x creates a breakpoint near the label x. When performing run or continue we 
will stop at the first breakpoint hit, allowing us to examine the program state.

•	 break *address to place a breakpoint at a specified address.

•	 continue to continue running program

•	 stepi or si to step by one instruction;

•	 ni or nexti will execute one instruction as well, but will not enter functions if the 
instruction was call. Instead it will let the called function terminate and break at the 
next instruction.

Let us do the following actions:

(gdb) break _start
Breakpoint 1 at 0x4000b0
(gdb) start
Function "main" not defined.
Make breakpoint pending on future shared library load? (y or [n]) n
Starting program: /home/stud/test/print_rax

Breakpoint 1, 0x00000000004000b0 in _start ()

We stopped at the breakpoint that we have placed at the _start label. Let us switch into pseudo 
graphical mode using commands:

layout asm
layout regs

The result is shown in Figure 18-1. The layout is composed of three windows:

•	 The top part shows registers and their current values.

•	 The middle part shows the disassembly code.

•	 The bottom part is an interactive prompt.

•	 One of these windows is focused at the time. Ctrl-X and Ctrl-O let you switch 
between them.

•	 Arrow keys can be used to scroll up and down the current window.

•	 print /FMT <val> allows to look up register contents or memory values. Register 
names are prefixed with dollar signs, for example: $rax.

•	 x /FMT <address> is another very useful command to check memory contents. 
Unlike print, it expects an indirection level, so, it accepts a pointer.
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FMT (used by print and x commands) is an encoded format description. It allows us to explicitly choose 
the data type to interpret the memory contents correctly.

FMT consists of a format letter and a size letter. The most useful format letters are

•	 x (hexadecimal)

•	 a (address)

•	 i (instruction, tries to perform disassembly)

•	 c (char)

•	 s (null-terminated string)

The most useful size letters are b (byte) and g (giant, 8 bytes).
To take an address of a variable, use the & symbol. The examples will show when it is handy.
Following are some examples based on the program shown in Listing 18-1:

•	 Displaying rax contents:

(gdb) print $rax
$1 = 1234605616436508552

•	 Displaying codes’s first character:

(gdb) print /c codes
$2 = '0'

Figure 18-1.  gdb user interface: asm + regs layout
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•	 Disassembling an instruction at address _start:

(gdb) x /i &_start
   0x4000b0 <_start>:    movabs rax,0x1122334455667788

•	 Disassembling current instruction:

(gdb) x /i $rip
=> 0x4000e9 <_start.loop+32>:   jne    0x4000c9 <_start.loop>

•	 Checking the contents of codes. The /FMT part of x command can start with the 
elements count. In our case, /12cb stands for “12 characters one byte each.”

(gdb) x /12cb &codes
0x6000f8 <codes>:     48 '0' 49 '1' 50 '2' 51 '3' 52 '4' 53 '5' 54 '6'
55 '7'
0x600100:       56 '8' 57 '9' 65 'A' 66 'B'

•	 Examine the top 8 bytes of the stack:

(gdb) x /x $rsp
0x7fffffffdf90: 0x01

•	 Examine the second qword stored in the stack:

(gdb) x/x $rsp+8
0x7fffffffdf98: 0xc1

■■ Question 424 S tudy the output of help x command.

To use gdb with C programs productively, remember to always use the -ggdb compiler option. It 
generates additional information that gdb can use, such as .line section or symbols for local variables.

An appropriate layout to work with C code is src; type layout src to switch to it. Figure 18-2 depicts 
this layout.

http://dx.doi.org/10.1007/978-1-4842-2403-8_5#Sec15
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Another useful option consists of studying and navigating a call stack. Each time any function is called, 
it uses a part of a stack to store its local variables. To demonstrate navigation we are going to use a simple 
program shown in Listing 18-2.

Listing 18-2.  call_stack.c

#include <stdio.h>

void g(int garg) {
    int glocal = 99;
    puts("Inside  g");
}

void f(int farg) {
    int flocal = 44;
    g( flocal );
}

int main( void ) {
    f( 42 );
    return 0;
}

Figure 18-2.  gdb user interface: src layout
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We are going to compile the program and launch gdb on it as follows:

> gcc -ggdb call_stack.c -o call_stack
> gdb call_stack

Then we place a breakpoint at the function g and run the program as follows:

(gdb) break g
Breakpoint 1 at 0x400531: file call_stack.c, line 5.
(gdb) run
Starting program: .../call_stack

Breakpoint 1, g (garg=0) at call_stack.c:5
5      puts("Inside g");

We are free to issue layout src if we wish.
The program will run and stop at line 4 where the function g starts. We can explore local variables or 

arguments using the print command. gdb will deduce the correct types for us most of the time.

 (gdb) print garg
$1  = 44

We want to see which functions are currently launched. The backtrace command is the way to do it.

 (gdb) backtrace
#0   g (garg=44) at call_stack.c:4
#1   0x0000000000400561 in f (farg=42) at call_stack.c:10
#2   0x0000000000400572 in main () at call_stack.c:14

There are three stack frames that gdb is aware of, and we can switch between them using the frame 
<idx> command.

Our state right now is depicted in Figure 18-3. We are sure that the function f has launched function g 
as the backtrace says, so that instance of f should have a local variable flocal. We want to know its value. 
If we try to print it right away, gdb complains that such variable does not exist. However, if we select the 
appropriate stack frame using the frame 1 command first, we will gain access to all its local variables. 
Figure 18-4 depicts this change.

 (gdb) print farg
No  symbol "farg" in current context.
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(gdb) frame 1
#1  0x0000000000400561 in f (farg=42) at call_stack.c:10
(gdb) print farg
$3  =  42

■■ Question 425  What does info locals do?

Other than that, gdb supports evaluating expressions with common arithmetic operations, launching 
functions, writing automation scripts in Python and much more.

For further reading, consult [1].

Figure 18-3.  Inside function g

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par2
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Figure 18-4.  Inside function f
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CHAPTER 19

Appendix B. Using Make

This appendix will introduce you to the most basic notions of writing Makefiles. For more information refer 
to [2].

To build a program you might need to perform multiple actions: launch compiler with the right flags, 
probably for each source file, and use linker. Sometimes you have to launch scripts written to generate 
source code files as well. At times the program consists of several parts written in different programming 
languages!

Moreover, if you changed only a part of the program, you might not want to rebuild everything but 
only those parts that depend on the source file changed. Huge programs can take hours of CPU (central 
processing unit) time to build!

In this book we are going to use GNU Make. It is a common tool used to control the generation of 
artifacts such as executable files, dynamic libraries, resource files, etc.

19.1 � Simple Makefile
When you write a program, you should write a special Makefile for it, so that it is possible to use Make to 
build it. This text file describes the source files and the dependencies between them in a declarative manner. 
Then make will choose the right order in which the files should be worked so that when each file is being 
processed, its dependencies are already processed.

To start the building process, execute make in the directory where Makefile is created. It is usually a root 
directory of your project.

You can explicitly select another Makefile by providing -f flag, for example: make -f Makefile_other.
The basic Makefile is composed of the following blocks, each of them is called rule:

<target> : <prerequisites>
[tab] <recipe>

A rule describes how to generate a specific file, which is the rule’s <target>. <prerequisites> 
describe which other targets should be generated first.

A recipe consists of one or many actions to be carried out by make. Every recipe line should be 
preceded by [tab] character!

Let us say, we have a simple program consisting of two assembly files: main.asm and lib.asm. We want 
to produce the object file for each of them and then link these into an executable program.

Listing 19-1 shows an example of a simple Makefile.

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par3
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Listing 19-1.  Makefile_simple

program: main.o lib.o
    ld -o program main.o lib.o

lib.o: lib.asm
    nasm -f elf64 -o lib.o lib.asm

main.o: main.asm
    nasm -f elf64 -o main.o main.asm

clean:
    rm main.o lib.o program

When the Makefile with these contents is created, executing make in the same directory will launch 
the recipe for the first target described. If a target named all is present, its recipe will be executed instead. 
Otherwise, typing make targetname will execute the recipe for the target targetname.

The target program should produce the file program. To do it we should build files main.o and lib.o 
first. If we change the file main.o and launch make again, only main.o will be rebuilt before refreshing 
program, but not lib.o. The same mechanism forces rebuilding lib.o when lib.asm is changed.

So, the recipe is launched when there is no file corresponding to the target name or this file should be 
changed (because one of its dependencies has been updated).

Traditionally, every Makefile has a target named clean to get rid of all produced files, leaving only the 
sources. The targets such as clean are called Phony Targets, because they do not correspond to a certain 
file. It is best to enumerate them in a separate recipe corresponding to a special .PHONY target as follows:

clean:
    rm -f *.o

help:
    echo 'This is the help'

.PHONY: clean help

19.2 � Throwing in Variables
It is not very appropriate to duplicate a lot of text in Makefiles. As soon as there are many source files that 
are compiled alike, we grow tired of repeatedly copying the same compile options. The variables solve this 
problem.

The variables are declared as follows:

variable = value

They are not the same thing as environmental variables such as PWD. Their values are substituted using a 
dollar sign and a pair of parentheses as follows:

$(variable)
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Now, we are going to use the variables in at least the following cases:

•	 To abstract the compiler (we will be able to easily switch between Clang, GCC, MSVC, 
or whatever else compiler as long as they support the same set of flags).

•	 To abstract the compilation flags.

Traditionally, in case of C, these variables are named

•	 CC for “C compiler.”

•	 CFLAGS for “C compiler flags.”

•	 LD for “link editor” (linker).

•	 AS as “assembly language compiler.”

•	 ASFLAGS as “assembly language compiler flags.”

An additional benefit is that whenever we want to choose compilation flags we only need to do it in one 
place. Listing 19-2 shows the modified Makefile.

Listing 19-2.  Makefile_vars

AS = nasm
LD = ld
ASFLAGS = -f elf64

program: main.o lib.o
    $(LD) -o program main.o lib.o

lib.o: lib.asm
    $(AS) $(ASFLAGS) -o lib.o lib.asm

main.o: main.asm
    $(AS) $(ASFLAGS) -o main.o main.asm

clean:
    rm main.o lib.o program

.PHONY: clean

A variable can be left empty, and it will be expanded to an empty string:

EMPTYVAR  =

A variable can include other variables’ values:

INCLUDEDIR   = include
CFLAGS       = -c -std=c99 -I$(INCLUDEDIR) -ggdb -Wno-attributes
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Target names support the wildcard symbol %. There should be only one such wildcard in a target name. 
The substring that % matches is called the stem. The occurences of % in prerequisites are replaced with 
exactly the stem. For example, this rule

%.o : %.c
    echo "Building an object file"

specifies how to build any object file from a .c file with the matching name. However, right now we do not 
know how to use these rules, because once we try to write a command to compile the file we face a problem: 
we do not know the exact names of the files involved, and the stem is inaccessible inside the recipe. The 
automatic variables solve this problem.

19.3 � Automatic Variables
Automatic variables are a special feature of make. They are computed afresh for each rule that is executed, 
and their values depend on the target and its prerequisites. They can only be used within the recipe itself, 
not inside prerequisites or inside the target itself.

Imagine you want to compile each .c file into an .o file with the same flags. Should we really duplicate 
all the rules? No, we can use the wildcards in conjunction with automatic variables.

There are many automatic variables, but the most commonly used are

•	 $* The stem.

•	 $@ The file name of the target of the rule.

•	 $< The name of the first prerequisite.

•	 $ˆ The names of all the prerequisites separated by spaces.

•	 $? The names of all the prerequisites that are newer than the target.

Listing 19-3 shows an exemplary Makefile which uses all knowledge from this tutorial.

Listing 19-3.  makefile_autovars

CC = gcc
CFLAGS = -std=c11 -Wall
LD = gcc

all: main

main: main.o lib.o
   $(LD) $ˆ -o $@

%.o: %.c %.h
   $(CC) $(CFLAGS) -c $< -o $@

clean:
   rm -f *.o main

.PHONY: clean
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It assumes the following project tree:

.
 lib.c
 lib.h
 main.c
 main.h
 Makefile
0 directories, 8 files

A clean make will execute the following commands:

> make
gcc -std=c11 -Wall -c main.c -o main.o
gcc -std=c11 -Wall -c lib.c -o lib.o
gcc  main.o lib.o -o main

Refer to the well-written GNU Make Manual [2] for further instructions.

http://dx.doi.org/10.1007/978-1-4842-2403-8_22#Par3
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CHAPTER 20

Appendix C. System Calls

Throughout this book we have used several system calls. We gather the information about them in this appendix.

■■ Note   It is always a good idea to read the man pages first, for example, man -s 2 write.

The exact flag and parameter values vary from system to system and should never be used in the 
immediate form. If you write in C, use the relevant headers (shown in man pages for the system call of 
interest). If you write in assembly, you will have to use LXR or another online system with annotated kernel 
code or look through these C headers yourself and create your own, corresponding %define’s.

The values provided are valid for the following system:

> uname -a
Linux 3.16-2-amd64 #1 SMP Debian 3.16.3-2 (2014-09-20) x86_64 GNU/Linux

Issuing a system call in assembly is simple: just initialize the relevant registers into correct parameter 
values (in any order) and execute syscall instruction. If you need flags, you should define them on your 
own first; we provided you with their exact values.

Remember, that NASM can also compute constant expressions, such as O_TRUNC|O_RDWR.
Issuing a system call in C is usually done like calling a function, whose declaration is provided in some 

include files.

■■ Note   In C, never use the flags values directly, like, substituting O_APPEND with 0x1000. Use the defines 
provided in the header files, because they are both more readable and portable. Since we will have no 
corresponding assembly headers, we have to define them by hand in the assembly files.

20.1 � read
ssize_t read(int fd, void *buf, size_t count);

Description Read from a file descriptor.

rax rdi rsi rdx r10 r8 r9

0 int fd void* buf size_t count



Chapter 20 ■ Appendix C. System Calls

416

20.1.1 � Arguments
	 1.	 fd� �File descriptor by which we read. 0 for stdin; use open system call to open a 

file by name.

	 2.	 buf �The address of the first byte in a sequence of bytes. The received bytes will 
be placed there.

	 3.	 count We will attempt to read that many bytes.

Returns rax = number of bytes successfully read, -1 on error.
Includes to use in C:

#include <unistd.h>

20.2 � write
ssize_t write(int fd, const void *buf, size_t count);

Description Write to a file descriptor.

rax rdi rsi rdx r10 r8 r9

1 int fd const void* buf size_t count

20.2.1 � Arguments
	 1.	 fd �File descriptor by which we write. 1 for stdout, 2 for stderr; use open system 

call to open a file by name.

	 2.	 buf The address of the first byte in a sequence of bytes to be written.

	 3.	 count We will attempt to write that many bytes.

Returns rax = number of bytes successfully written, -1 on error.
Includes to use in C:

#include <unistd.h>

20.3 � open
int open(const char *pathname, int flags, mode_t mode);

Description Opens the file with a given name (null-terminated string)

rax rdi rsi rdx r10 r8 r9

2 const char* filename int flags int mode

http://dx.doi.org/10.1007/978-1-4842-2403-8_2#Sec4
http://dx.doi.org/10.1007/978-1-4842-2403-8_2#Sec4
http://dx.doi.org/10.1007/978-1-4842-2403-8_2#Sec4
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20.3.1 � Arguments
	 1.	 filename Name of the file to be opened (null-terminated string).

	 2.	 flags �Are described below. They can be combined using |, for example, 
O_CREAT| O_WRONLY|O_TRUNC.

	 3.	 mode �Is an integer number encoding user, group, and all others’ permissions. 
They are similar to ones used by chmod command.

Returns rax = new file descriptor for the given file, -1 on error.
Includes to use in C:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

20.3.2 � Flags
•	 O_APPEND = 0x1000

Append to a file on each write.

•	 O_CREAT = 0x40

Create a new file.

•	 O_TRUNC = 0x200

If the file already exists and is a regular file and the access mode allows writing it 
will be truncated to length 0.

•	 O_RDWR = 2

Read and write.

•	 O_WRONLY = 1

Write only.

•	 O_RDONLY = 0

Read only.

20.4 � close
int close(int fd);

Description Close the file with a given name (null-terminated string)

rax rdi rsi rdx r10 r8 r9

2 const char* filename int flags int mode
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20.4.1 � Arguments
	 1.	 fd a valid file descriptor that should be closed.

Returns rax = zero un success, -1 on error. Global variable errno holds the error code.
Includes to use in C:

#include <unistd.h>

20.5 � mmap
void *mmap(
   void *addr, size_t length,
   int prot, int flags,
   int fd, off_t offset);

Description Map pages in virtual address space to something. It can be anything that lies behind a 
“file” (devices, files on disk, etc.) or just physical memory. In the latter case, the pages are anonymous, they 
bear no correspondence to anything present in file system. Such pages hold the heap and stacks of a process.

rax rdi rsi rdx r10 r8 r9

9 void* addr size_t len int prot int flags int fd off_t off

20.5.1 � Arguments
	 1.	 addr �A hint for the starting virtual address of the freshly mapped region. We try 

to map at this address, and if we can’t, we let the operating system (OS) 
choose it. If 0, will always be chosen by OS.

	 2.	 len Length of a mapped region in bytes.

	 3.	 prot Protection flags (see below). They can be combined using |.

	 4.	 flags Behavior flags (see later). They can be combined using |.

	 5.	 fd �A valid file descriptor for the file to be mapped, ignored if MAP_ANONYMOUS 
behavior flag is used.

	 6.	 off �Starting offset in the file fd. We skip all bytes prior to this offset and map the 
file starting with it. Ignored if MAP_ANONYMOUS behavior flag is used.

Returns rax = pointer to the mapped area, -1 on error.
Includes to use in C:

#include <sys/mman.h>
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20.5.2 � Protection Flags
•	 PROT_EXEC = 0x4 Pages may be executed.

•	 PROT_READ = 0x1 Pages may be read.

•	 PROT_WRITE = 0x2 Pages may be written.

•	 PROT_NONE = 0x0 Pages may not be accessed.

20.5.3 � Behavior Flags
•	 MAP_SHARED = 0x1 Pages can be shared between processes.

•	 MAP_PRIVATE = 0x2 Pages are not shared with other processes.

•	 MAP_ANONYMOUS = 0x20 Pages do not correspond to any file in the filesystem.

•	 MAP_FIXED = 0x10  �Do not interpret addr as a hint but as an order. If we cannot 
map pages starting at this address, fail.

■■ Note   To be able to use MAP_ANONYMOUS flag you might need to define _DEFAULT_SOURCE flag immediately 
before including the relevant header file, as follows:

#define _DEFAULT_SOURCE

#include <sys/mman.h>

20.6 � munmap
int munmap(void *addr, size_t length);

Description Unmaps a region of memory of a given length. You can map a huge region using mmap and 
then unmap a fraction of it using munmap.

rax rdi rsi rdx r10 r8 r9

11 void* addr size_t len

20.6.1 � Arguments
	 1.	 addr Start of the region to unmap.

	 2.	 length Length of the region to unmap.

Returns rax = zero un success, -1 on error. Global variable errno holds the error code.
Includes to use in C:

#include <sys/mman.h>
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20.7 � exit
void _exit(int status);

Description Exit process.

rax rdi rsi rdx r10 r8 r9

60 int status

20.7.1 � Arguments
	 1.	 status Exit code. It is stored into $? environmental variable.

Returns Nothing.

Includes to use in C:

#include <unistd.h>
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CHAPTER 21

Appendix D. Performance Tests 
Information

All performance tests were conducted on the following system:

> uname -a

Linux perseus 3.16-2-amd64 #1 SMP Debian 3.16.3-2 (2014-09-20) x86_64 GNU/Linux

> cat /proc/cpuinfo

processor       : 0
vendor_id       : GenuineIntel
cpu family      : 6
model           : 69
model name      : Intel(R) Core(TM) i5-4210U CPU @ 1.70GHz
stepping        : 1
microcode       : 0x1d
cpu MHz         : 2394.458
cache size      : 3072 KB
physical id     : 0
siblings        : 1
core id         : 0
cpu cores       : 1
apicid          : 0
initial apicid  : 0
fpu             : yes
fpu_exception   : yes
cpuid level     : 13
wp              : yes
flags           : fpu vme de pse tsc msr pae mce cx8 apic
sep mtrr pge mca cmov pat pse36 clflush dts mmx fxsr sse
sse2 ss syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon
pebs bts nopl xtopology tsc_reliable nonstop_tsc aperfmperf
pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe
popcnt aes xsave avx f16c rdrand hypervisor lahf_lm ida arat
epb pln pts dtherm fsgsbase smep
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bogomips        : 4788.91
clflush size    : 64
cache_alignment : 64
address sizes   : 40 bits physical, 48 bits virtual
power management:

processor       : 1
vendor_id       : GenuineIntel
cpu family      : 6
model           : 69
model name      : Intel(R) Core(TM) i5-4210U CPU @ 1.70GHz
stepping        : 1
microcode       : 0x1d
cpu MHz         : 2394.458
cache size      : 3072 KB
physical id     : 2
siblings        : 1
core id         : 0
cpu cores       : 1
apicid          : 2
initial apicid  : 2
fpu             : yes
fpu_exception   : yes
cpuid level     : 13
wp              : yes
flags           : fpu vme de pse tsc msr pae mce cx8 apic
sep mtrr pge mca cmov pat pse36 clflush dts mmx fxsr sse
sse2 ss syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon
pebs bts nopl xtopology tsc_reliable nonstop_tsc aperfmperf
pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe
popcnt aes xsave avx f16c rdrand hypervisor lahf_lm ida arat
epb pln pts dtherm fsgsbase smep
bogomips        : 4788.91
clflush size    : 64
cache_alignment : 64
address sizes   : 40 bits physical, 48 bits virtual
power management:

> cat /proc/meminfo

MemTotal:        1017348 kB
MemFree:          516672 kB
MemAvailable:     565600 kB
Buffers:           32756 kB
Cached:           114944 kB
SwapCached:        10044 kB
Active:           376288 kB
Inactive:          49624 kB
Active(anon):     266428 kB
Inactive(anon):    12440 kB
Active(file):     109860 kB
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Inactive(file):    37184 kB
Unevictable:           0 kB
Mlocked:               0 kB
SwapTotal:        901116 kB
SwapFree:         868356 kB
Dirty:                44 kB
Writeback:             0 kB
AnonPages:        270964 kB
Mapped:            43852 kB
Shmem:               648 kB
Slab:              45980 kB
SReclaimable:      29016 kB
SUnreclaim:        16964 kB
KernelStack:        4192 kB
PageTables:         6100 kB
NFS_Unstable:          0 kB
Bounce:                0 kB
WritebackTmp:          0 kB
CommitLimit:     1409788 kB
Committed_AS:    1212356 kB
VmallocTotal:   34359738367 kB
VmallocUsed:      145144 kB
VmallocChunk:   34359590172 kB
HardwareCorrupted:     0 kB
AnonHugePages:         0 kB
HugePages_Total:       0
HugePages_Free:        0
HugePages_Rsvd:        0
HugePages_Surp:        0
Hugepagesize:       2048 kB
DirectMap4k:       49024 kB
DirectMap2M:      999424 kB
DirectMap1G:           0 kB
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longjmp, 276
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