
NYCU

Information Theory

Lecture Notes

Stefan M. Moser

6th Edition — 2018

© Copyright Stefan M. Moser

Signal and Information Processing Lab
ETH Zurich
Zurich, Switzerland

Institute of Communications Engineering
National Yang Ming Chiao Tung University (NYCU)
Hsinchu, Taiwan

You are welcome to use these lecture notes for yourself, for teaching, or for any
other noncommercial purpose. If you use extracts from these lecture notes,
please make sure to show their origin. The author assumes no liability or
responsibility for any errors or omissions.

6th Edition — 2018.
Version 6.14.
Compiled on 14 September 2023.
For the latest version see https://moser-isi.ethz.ch/scripts.html

This book is typeset in the font family Concrete [Knu89] including both
Concrete math and Euler math fonts.

https://moser-isi.ethz.ch/scripts.html

Short Contents

1 Shannon’s Measure of Information 1
2 Review of Probability Theory 27
3 Entropy, Relative Entropy, and L1 -Distance 37
4 Data Compression: Efficient Coding of a Single Random Message 53
5 Data Compression: Efficient Coding of a Memoryless Random Source 107
6 Stochastic Processes and Entropy Rate 139
7 Data Compression: Efficient Coding of a Random Source with

Memory 155
8 Data Compression: Efficient Coding of an Infinitely Long Fixed

Sequence 171
9 Optimizing Probability Vectors over Concave Functions:

Karush–Kuhn–Tucker Conditions 183
10 Gambling and Horse Betting 195
11 Data Transmission over a Noisy Digital Channel 217
12 Computing Capacity 251
13 Convolutional Codes 267
14 Polar Codes 291
15 Joint Source and Channel Coding 353
16 Continuous Random Variables and Differential Entropy 369
17 Gaussian Channel 383
18 Bandlimited Channels 403
19 Parallel Gaussian Channels 417
20 Asymptotic Equipartition Property and Weak Typicality 431
21 Cryptography 461
A Gaussian Random Variables 477
B Gaussian Vectors 491
C Stochastic Processes 521
Bibliography, Lists of Figures and Tables, and Index 545

iii © Stefan M. Moser — IT, version 6.14

iv Short Contents

2 A B C

9

1 16

21 4 3 10 11

5 6

7 12 13 14

8 15 17

19 18

20

Chapter dependency chart. An arrow has the meaning of “is required for”.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Contents

Chapter dependency chart . iv
Preface . xiii

1 Shannon’s Measure of Information 1
1.1 Motivation . 1
1.2 Uncertainty or Entropy . 6

1.2.1 Definition . 6
1.2.2 Binary Entropy Function . 9
1.2.3 The Information Theory Inequality 9
1.2.4 Bounds on H(U) . 11
1.2.5 Conditional Entropy . 13
1.2.6 Extensions to More RVs . 17
1.2.7 Chain Rule . 18

1.3 Mutual Information . 19
1.3.1 Definition . 19
1.3.2 Properties . 20
1.3.3 Conditional Mutual Information 22
1.3.4 Chain Rule . 22

1.4 Comments on our Notation . 23
1.4.1 General . 23
1.4.2 Entropy and Mutual Information 23

1.A Appendix: Uniqueness of the Definition of Entropy 24

2 Review of Probability Theory 27
2.1 Discrete Probability Theory . 27
2.2 Discrete Random Variables . 28
2.3 Continuous Random Variables . 32
2.4 Jensen Inequality . 34

3 Entropy, Relative Entropy, and L1 -Distance 37
3.1 Relative Entropy . 37
3.2 L1 -Distance . 39
3.3 Relations between Entropy and L1 -Distance 40

3.3.1 Estimating PMFs . 40

v © Stefan M. Moser — IT, version 6.14

vi Contents

3.3.2 Extremal Entropy for given L1 -Distance 42
3.3.3 Lower Bound on Entropy in Terms of L1 -Distance . . . 45

3.4 Maximum Entropy Distribution . 49

4 Data Compression: Efficient Coding of a Single Random Message 53
4.1 A Motivating Example . 53
4.2 A Coding Scheme . 55
4.3 Prefix-Free or Instantaneous Codes . 57
4.4 Trees and Codes . 58
4.5 Kraft Inequality . 62
4.6 Trees with Probabilities . 65
4.7 What We Cannot Do: Fundamental Limitations of Source

Coding . 71
4.8 What We Can Do: Analysis of Some Good Codes 72

4.8.1 Shannon-Type Codes . 73
4.8.2 Shannon Code . 75
4.8.3 Fano Code . 79
4.8.4 Coding Theorem for a Single Random Message 84

4.9 Optimal Codes: Huffman Code . 86
4.10 Types of Codes . 101
4.A Appendix: Alternative Proof for the Converse Part of the

Coding Theorem for a Single Random Message 105

5 Data Compression: Efficient Coding of a Memoryless Random Source 107
5.1 Discrete Memoryless Source . 107
5.2 Block–to–Variable-Length Coding of a DMS 108
5.3 Arithmetic Coding . 110

5.3.1 Introduction . 110
5.3.2 Encoding . 111
5.3.3 Decoding . 117

5.4 Variable-Length–to–Block Coding of a DMS 122
5.5 General Converse . 127
5.6 Optimal Message Sets: Tunstall Message Sets 128
5.7 Optimal Variable-Length–to–Block Codes: Tunstall Codes . . . 130
5.8 Efficiency of a Source Coding Scheme 135

6 Stochastic Processes and Entropy Rate 139
6.1 Discrete Stationary Sources . 139
6.2 Markov Processes . 140
6.3 Entropy Rate . 147

7 Data Compression: Efficient Coding of a Random Source with Memory 155
7.1 Block–to–Variable-Length Coding of a DSS 155

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Contents vii

7.2 Elias–Willems Universal Block–To–Variable-Length Coding . . 158
7.2.1 Recency Rank Calculator . 159
7.2.2 Codes for Positive Integers . 161
7.2.3 Elias–Willems Block–to–Variable-Length Coding for a

DSS . 164
7.3 Sliding Window Lempel–Ziv Universal Coding Scheme 167

8 Data Compression: Efficient Coding of an Infinitely Long Fixed Sequence 171
8.1 Information-Lossless Finite State Encoders 172
8.2 Distinct Parsing . 173
8.3 Analysis of Information-Lossless Finite State Encoders 177
8.4 Tree-Structured Lempel–Ziv Universal Coding Scheme 178
8.5 Analysis of Tree-Structured Lempel–Ziv Coding 179

9 Optimizing Probability Vectors over Concave Functions:
Karush–Kuhn–Tucker Conditions 183
9.1 Introduction . 183
9.2 Convex Regions and Concave Functions 184
9.3 Maximizing Concave Functions . 187
9.A Appendix: Slope Paradox . 192

10 Gambling and Horse Betting 195
10.1 Problem Setup . 195
10.2 Optimal Gambling Strategy . 196
10.3 Bookie’s Perspective . 200
10.4 Uniform Fair Odds . 202
10.5 What About Not Gambling? . 203
10.6 Optimal Gambling for Subfair Odds 204
10.7 Gambling with Side-Information . 209
10.8 Dependent Horse Races . 212

11 Data Transmission over a Noisy Digital Channel 217
11.1 Problem Setup . 217
11.2 Discrete Memoryless Channels . 222
11.3 Coding for a DMC . 225
11.4 Bhattacharyya Bound . 230
11.5 Operational Capacity . 232
11.6 Two Important Lemmas . 234
11.7 Converse to the Channel Coding Theorem 236
11.8 Channel Coding Theorem . 239

12 Computing Capacity 251
12.1 Introduction . 251
12.2 Strongly Symmetric DMCs . 251

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

viii Contents

12.3 Weakly Symmetric DMCs . 255
12.4 Mutual Information and Convexity . 260
12.5 Karush–Kuhn–Tucker Conditions . 263

13 Convolutional Codes 267
13.1 Convolutional Encoder of a Trellis Code 267
13.2 Decoder of a Trellis Code . 269
13.3 Quality of a Trellis Code . 275

13.3.1 Detours in a Trellis . 276
13.3.2 Counting Detours: Signalflowgraphs 279
13.3.3 Upper Bound on the Bit Error Probability of a Trellis

Code . 285

14 Polar Codes 291
14.1 Polar Transform . 291
14.2 Polarization . 299

14.2.1 Recursive Application of the Polar Transform 299
14.2.2 Matrix Notation . 305
14.2.3 Are these Channels Realistic? 306
14.2.4 Polarization . 308
14.2.5 Proof of Theorem 14.15 . 312
14.2.6 Attempt on a Polar Coding Scheme for the BEC 316

14.3 Channel Reliability . 316
14.4 Polar Coding . 323

14.4.1 Coset Coding Scheme . 324
14.4.2 Performance of Coset Coding 326
14.4.3 Polar Coding Schemes . 328

14.5 Polar Coding for Symmetric DMCs 330
14.6 Complexity Analysis . 334

14.6.1 Encoder . 334
14.6.2 Decoder . 336
14.6.3 Code Creation . 340

14.7 Discussion . 341
14.A Appendix: Landau Symbols . 343
14.B Appendix: Concavity of Z(W) and Proof of (14.152) in

Theorem 14.20 . 345
14.C Appendix: Proof of Theorem 14.24 . 347

14.C.1 Converse Part . 348
14.C.2 Direct Part . 349

15 Joint Source and Channel Coding 353
15.1 Information Transmission System . 353
15.2 Converse to the Information Transmission Theorem 354

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Contents ix

15.3 Achievability of the Information Transmission Theorem 355
15.3.1 Ergodicity . 356
15.3.2 Achievable Joint Source Channel Coding Scheme 356

15.4 Joint Source and Channel Coding . 358
15.5 Rate of a Joint Source Channel Coding Scheme 361
15.6 Transmission above Capacity and Minimum Bit Error Rate . . 362

16 Continuous Random Variables and Differential Entropy 369
16.1 Entropy of Continuous Random Variables 369
16.2 Properties of Differential Entropy . 373
16.3 Generalizations and Further Definitions 375
16.4 Mixed Continuous and Discrete Random Variables 377
16.5 Multivariate Gaussian . 380

17 Gaussian Channel 383
17.1 Introduction . 383
17.2 Information Capacity . 385
17.3 Channel Coding Theorem . 387

17.3.1 Plausibility . 388
17.3.2 Achievability . 390
17.3.3 Converse . 396

17.4 Joint Source and Channel Coding Theorem 398

18 Bandlimited Channels 403
18.1 Additive White Gaussian Noise Channel 403
18.2 Sampling Theorem . 406
18.3 From Continuous To Discrete Time 410

19 Parallel Gaussian Channels 417
19.1 Channel Model . 417
19.2 Independent Parallel Gaussian Channels 418
19.3 Optimal Power Allocation: Waterfilling 421
19.4 Dependent Parallel Gaussian Channels 423
19.5 Colored Gaussian Noise . 427

20 Asymptotic Equipartition Property and Weak Typicality 431
20.1 Motivation . 431
20.2 Random Convergence . 433
20.3 AEP . 434
20.4 Typical Set . 436
20.5 High-Probability Sets and the Typical Set 438
20.6 Data Compression Revisited . 440
20.7 AEP for General Sources with Memory 443
20.8 General Source Coding Theorem . 444

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

x Contents

20.9 Joint AEP . 446
20.10 Jointly Typical Sequences . 446
20.11 Data Transmission Revisited . 450
20.12 Joint Source and Channel Coding Revisited 452
20.13 Typicality for Continuous Random Variables 454
20.14 Summary . 459

21 Cryptography 461
21.1 Introduction to Cryptography . 461
21.2 Cryptographic System Model . 462
21.3 Kerckhoff Hypothesis . 463
21.4 Perfect Secrecy . 464
21.5 Imperfect Secrecy . 466
21.6 Computational vs. Unconditional Security 469
21.7 Public-Key Cryptography . 470

21.7.1 One-Way Function . 472
21.7.2 Trapdoor One-Way Function 473

A Gaussian Random Variables 477
A.1 Standard Gaussian Random Variables 477
A.2 Gaussian Random Variables . 479
A.3 Q-Function . 482
A.4 Characteristic Function of a Gaussian 487
A.5 Summary . 489

B Gaussian Vectors 491
B.1 Positive Semidefinite Matrices . 491
B.2 Random Vectors and Covariance Matrices 496
B.3 Characteristic Function . 501
B.4 Standard Gaussian Vector . 502
B.5 Gaussian Vectors . 503
B.6 Mean and Covariance Determine the Law of a Gaussian 506
B.7 Canonical Representation of Centered Gaussian Vectors 510
B.8 Characteristic Function of a Gaussian Vector 512
B.9 Density of a Gaussian Vector . 514
B.10 Linear Functions of Gaussian Vectors 517
B.11 Summary . 518

C Stochastic Processes 521
C.1 Stochastic Processes & Stationarity 521
C.2 Autocovariance Function . 524
C.3 Gaussian Processes . 525
C.4 Power Spectral Density . 526

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Contents xi

C.5 Linear Functionals of WSS Stochastic Processes 527
C.6 Filtering Stochastic Processes . 531
C.7 White Gaussian Noise . 533
C.8 Orthonormal and Karhunen–Loeve Expansions 535

Bibliography, Lists of Figures and Tables, and Index 545
Bibliography . 545
List of Figures . 551
List of Tables . 555
Index . 557

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Preface

These lecture notes started out as handwritten guidelines that I used myself
in class for teaching. As I got frequent and persistent requests from students
attending the class to hand out these private notes in spite of their awful
state (I still cannot really believe that any student was actually able to read
them!), my students Lin Gu-Rong and Lin Hsuan-Yin took matters into their
own hands and started to typeset my handwritten notes in LATEX. These
versions of notes then grew together with a couple of loose handouts (that
complemented the textbook by Cover and Thomas [CT06] that I had been
using as class textbook for several years) to a large pile of proper handouts and
were used several times in combination with Cover and Thomas. During this
time, the notes were constantly improved and extended. In this context I have
to acknowledge the continued help of my students, in particular of Lin Hsuan-
Yin and of Chang Hui-Ting, who typed the chapter about cryptography.

In fall 2008 my colleague Chen Po-Ning approached me and suggested to
write a coding and information theory textbook for students with only little
background in engineering or math. Together with three other colleagues we
worked on this project for over two years until it got completed and published
in 2012 [MC12]. This work had quite some impact on the presentation of
some of the material of this class. In late 2010, I finally decided to compile
all separate notes together, to add more detail in some places and rearrange
the material, and to generate a proper lecture script that could be used as
class textbook in future. Its first edition was used in class in fall 2011/2012
during which it underwent further revisions and improvements. In the third
edition, I added one more chapter about the missing topic of error exponents,
and the fourth edition additionally included a new chapter about polar codes.
The fifth edition then saw strongly reorganized Chapter 6: it was split up into
two chapters: one treating the case of compressing sources with memory (now
Chapter 7) and one discussing the compression of infinite fixed sequences (now
Chapter 8). Moreover, I also took out more advanced material from Chapter 1
and collected it in a new Chapter 3. Finally, in this sixth edition I realized
that error exponents are a bit too advanced for an introductory course in
information theory. So, when I started an overhaul of the advanced IT script
[Mos22], I took the chance and moved the chapter on error exponents there.

xiii © Stefan M. Moser — IT, version 6.14

xiv Preface

In its current form, this script introduces the most important basics in
information theory. Depending on the range and depth of the selected class
material, it can be covered in about 20 to 30 lectures of two hours each.
Roughly, the script can be divided into three main parts: Chapters 4–8 cover
lossless data compression of discrete sources; Chapters 11–15 look at data
transmission over discrete channels; and Chapters 16–19 deal with topics re-
lated to the Gaussian channel. Besides these main themes, the notes also
briefly cover a couple of additional topics like convex optimization, gambling
and horse betting, typicality, cryptography, and Gaussian random variables.

More in detail, the script starts with an introduction of the main quantities
of information theory like entropy and mutual information in Chapter 1, fol-
lowed by a very brief review of probability in Chapter 2. Chapter 3 introduces
some more information measures and their connection to entropy. Apart from
Section 3.1, this chapter can safely be omitted in a first reading.

In Chapters 4 and 5, lossless data compression of discrete memoryless
sources is introduced including Huffman and Tunstall coding. Chapters 6,
7, and 8 extend these results to sources with memory and to universal data
compression. Two different universal compression schemes are introduced:
Elias–Willems coding and Lempel–Ziv coding. The tree-structured Lempel–
Ziv coding is examined in Chapter 8 in a setting without a random source but
a deterministic infinite source sequence.

As a preparation for later topics, in Chapter 9, we then discuss convex
optimization and the Karush–Kuhn–Tucker (KKT) conditions. Chapter 10
is an interlude that introduces a quite different aspect of information theory:
gambling and horse betting. It is quite separate from the rest of the script
and only relies on some definitions from Chapter 1 and the KKT conditions
from Chapter 9.

Next, Chapter 11 introduces the fundamental problem of data transmission
and derives the channel coding theorem for discrete memoryless channels. In
Chapter 12, we discuss the problem of computing capacity. Chapters 13 and 14
then describe two concrete examples of practical data transmission algorithms:
Chapter 13 treats convolutional codes based on trellises and Chapter 14 gives
a brief introduction to the capacity-achieving polar codes.

In Chapter 15, we combine source compression and channel transmission
and discuss the basic problem of transmitting a given source over a given
channel. In particular, we discuss the consequences of transmitting a source
with an entropy rate being larger than capacity.

Before we extend the discussion of channel capacity to continuous alpha-
bets (i.e., to the example of the Gaussian channel) in Chapter 17, we prepare
the required background in Chapter 16. Chapters 18 and 19 then give short
glimpses at continuous-time channels and at waterfilling, respectively.

Up to Chapter 19, I have avoided the usage of weak typicality. Chapter 20
corrects this omission. It introduces the asymptotic equipartition property

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Preface xv

and typical sets, and then uses this new tool to re-derive several proofs of
previous chapters (data compression, data transmission and joint source and
channel coding). Note that for the basic understanding of the main concepts
in this script, Chapter 20 is not necessary. Moreover, strong typicality is
not covered here, but deferred to the second course Advanced Topics in
Information Theory [Mos22] where it is treated in great detail.

Lastly, Chapter 21 presents a very brief overview of some of the most
important basic results in cryptography.

I have made the experience that many students are mortally afraid of
Gaussian random variables and Gaussian processes. I believe that this is
mainly because they are never properly explained in undergraduate classes.
Therefore I have decided to include a quite extensive coverage of them in the
appendices, even though I usually do not teach them in class due to lack of
time.

For a better understanding of the dependencies and relationships between
the different chapters and of the prerequisites, on Page iv a dependency chart
can be found.

I cannot and do not claim authorship for much of the material covered in
here. My main contribution is the compilation, arrangement, and some more
or less strong adaptation. There are many sources that I used as inspiration
and from where I took the ideas of how to present information theory. Most
important of all are my two teachers: Prof. James L. Massey during my master
study and Prof. Amos Lapidoth during the time I was working on my Ph.D.
Jim and Amos taught me most of what I know in information theory!

More in detail, I have used the following sources:

• The basic definitions in information theory (Chapters 1, 16, 20) are
based on the textbook of Cover and Thomas [CT06]. Also from there
come the treatment of horse betting (Chapter 10).

• The idea for the proof of the channel coding theorem (Chapters 11 and
17) using the beautifully simple threshold decoder was given to me by
Tobias Koch, who got inspired by the work of Polyanskiy, Poor and
Verdú [PPV10]. In principle, the threshold decoder goes back to a paper
by Feinstein [Fei54].

• Most of the material about lossless data compression (Chapters 4–7)
is very strongly inspired by the wonderful lecture notes of Jim Massey
[Mas96]. In particular, I fully use the beautiful approach of trees to
describe and analyze source codes. Also the chapter about computing
capacity (Chapter 12), the introduction to convolutional codes (Chap-
ter 13), and the overview over cryptography (Chapter 21) closely follow
Jim’s teaching style.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

xvi Preface

• The treatment of the tree-structured Lempel–Ziv universal data com-
pression in Chapter 8 follows closely ideas I have learned from Emre
Telatar.

• The material about the joint source and channel coding in Chapter 15
is inspired by the teaching of Chen Po-Ning [CA05a], [CA05b].

• For convex optimization I highly recommend the summary given by Bob
Gallager in his famous textbook from 1968 [Gal68]. From this book also
stems some inspiration on the presentation of the material about error
exponents (in combination with Jim’s lecture notes [Mas96]).

• Chapter 14 about polar codes is strongly inspired by lecture notes of
Emre Telatar that I used in combination with the seminal paper by
Erdal Arıkan [Arı09] and the paper [AT09] by Erdal and Emre.

• Finally, for a very exact, but still easy-to-understand treatment of sto-
chastic processes (in particular Gaussian processes) I do not know any
better book than A Foundation in Digital Communication by Amos
Lapidoth [Lap17]. From this book stem Appendices A–C (with the ex-
ception of Section C.8 which is based on notes from Bob Gallager). Also
the review of probability theory (Chapter 2) is strongly based on notes
by Amos.

All of these sources are very inspiring and highly recommended for anyone
who would like to learn more.

There are several important topics that are not covered in this script. Most
notably, rate distortion theory is missing. While extremely beautiful and fun-
damental, rate distortion theory turns out to be harder to grasp than channel
coding theory. Moreover, it is of less practical importance, and therefore I
decided to defer it to the course Advanced Topics in Information Theory
[Mos22]. In this subsequent course many more advanced topics are covered. In
particular, it introduces strong typicality including Sanov’s Theorem and the
Conditional Limit Theorem, rate distortion theory, distributed source coding,
and various multiple-user transmission schemes.

I would like to end this preface by saying thank you to the many readers
who keep pointing out errors, typos, bad English, and bad explanations. I will
keep working on these notes and try to improve them continually. So if you
also find typos, errors, or if you have any comments, I would be very happy
to hear them! Write to

Thank you!

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Preface xvii

To conclude I would like to express my deepest gratitude to Yin-Tai and
Matthias, who were very patient with me whenever I sat writing on my com-
puter with my thoughts far away. . .

Stefan M. Moser

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 1

Shannon’s Measure of Information

1.1 Motivation

We start by asking the question: What is information?
Let us consider some examples of sentences that contain some “informa-

tion”:

• The weather will be good tomorrow.

• The weather was bad last Sunday.

• The president of Taiwan will come to you tomorrow and will give you
one million dollars.

The second statement seems not very interesting as you might already know
what the weather has been like last Sunday. The last statement is much
more exciting than the first two and therefore seems to contain much more
information. But on the other hand do you actually believe it? Do you think
it is likely that you will receive tomorrow one million dollars?

Let us make some easier examples:

• You ask: “Is the temperature in Taiwan currently above 30 degrees?”

This question has only two possible answers: “yes” or “no”.

• You ask: “The president of Taiwan has spoken with a certain person
from Hsinchu today. With whom?”

Here, the question has about 400,000 possible answers (since Hsinchu
has about 400,000 inhabitants).

Obviously the second answer provides you with a much bigger amount of
information than the first one. We learn the following:

1 © Stefan M. Moser — IT, version 6.14

2 Shannon’s Measure of Information

The number of possible answers r should be linked to “information”.

Let us have another example.

• You observe a gambler throwing a fair die. There are 6 possible outcomes
f1; 2; 3; 4; 5; 6g. You note the outcome and then tell it to a friend. By
doing so you give your friend a certain amount of information.

• Next you observe the gambler throwing the die three times. Again, you
note the three outcomes and tell them to your friend. Obviously, the
amount of information that you give to your friend this time is three
times as much as the first time.

So we learn:

“Information” should be additive in some sense.

Now we face a new problem: Regarding the example of the gambler above
we see that in the first case we have r = 6 possible answers, while in the second
case we have r = 63 = 216 possible answers. Hence in the second experiment
there are 36 times more possible outcomes than in the first experiment. But
we would like to have only a 3 times larger amount of information. So how
do we resolve this?

A quite obvious idea is to use a logarithm. If we take the logarithm of
the number of possible answers, then the exponent 3 will become a factor 3,
exactly as we wish: logb 63 = 3 � logb 6.

Precisely these observations were made by Ralph Hartley in 1928 in Bell
Labs [Har28]. He gave the following definition.

Definition 1.1. We define the following measure of information:

~I(U) , logb r; (1.1)

where r is the number of all possible outcomes of a random message U .

Using this definition we can confirm that it has the wanted property of
additivity: If U1; : : : ; Un are n random messages each taking value in an r-ary
alphabet, then

~I(U1; U2; : : : ; Un) = logb r
n = n � logb r = n~I(U1): (1.2)

Hartley also correctly noted that the basis b of the logarithm is not really
important for this measure. It only decides about the unit of information.
So similarly to the fact that 1 km is the same distance as 1000 m, using

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

1.1. Motivation 3

different b only causes a change of units without actually changing the amount
of information described.

For two important and one unimportant special cases of b it has been
agreed to use the following names for these units:

b = 2 (log2): bit,

b = e (ln): nat (because of “natural logarithm”),

b = 10 (log10): Hartley.

Note that the unit Hartley has been chosen in honor of the first researcher
who has made a first (partially correct) attempt of defining information. Un-
fortunately, as nobody in the world ever uses the basis b = 10, this honor is a
bit questionable. . .

The measure ~I(U) is the right answer to many technical problems.

Example 1.2. A village has 8 telephones. How long must the phone number
be? Or asked differently: How many bits of information do we need to send
to the central office so that we are connected to a particular phone?

8 phones =) log2 8 = 3 bits: (1.3)

We choose the following phone numbers:

f000; 001; 010; 011; 100; 101; 110; 111g: (1.4)

�

In spite of its usefulness, Hartley’s definition had no effect whatsoever in
the world. That’s life. . . On the other hand, it must be admitted that Hartley’s
definition has a fundamental flaw. To realize that something must be wrong,
note that according to (1.1) the smallest nonzero amount of information is
log2 2 = 1 bit. This might sound like only a small amount of information,
but actually 1 bit can be a lot of information! As an example consider the
1-bit (yes or no) answer if a man asks a woman whether she wants to marry
him. . . If you still don’t believe that 1 bit is a huge amount of information,
consider the following example.

Example 1.3. Currently there are about 7’621’000’000 persons living on our
planet [Pop18]. How long must a binary telephone number U be if we want
to be able to connect to every person?

According to Hartley we need

~I(U) = log2(7
062100000000) � 32:8 bits: (1.5)

So with only 33 bits we can address every single person on this planet! Or, in
other words, we only need 33 times 1 bit in order to distinguish every living
human being. �

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4 Shannon’s Measure of Information

A: B:

black and white balls

Figure 1.1: Two hats with four balls each.

We see that 1 bit is a lot of information and it cannot be that this is the
smallest amount of (nonzero) information.

To understand more deeply what is wrong with Hartley’s information mea-
sure, consider the two hats shown in Figure 1.1. Each hat contains four balls
where the balls can be either white or black. Let us draw one ball at random
and let U be the color of the ball. In hat A we have r = 2 colors: black and
white, i.e., ~I(UA) = log2 2 = 1 bit. In hat B we also have r = 2 colors and
hence also ~I(UB) = 1 bit. But obviously, we get less information if in hat B
black shows up, since we somehow expect black to show up in the first place.
Black is much more likely !

We realize the following:

A proper measure of information needs to take into account the proba-
bilities of the various possible events.

This has been observed for the first time by Claude Elwood Shannon in 1948
in his landmark paper: “A Mathematical Theory of Communication” [Sha48].
This paper has been like an explosion in the research community!1

Before 1948, the engineering community was mainly interested in the be-
havior of a sinusoidal waveform that is passed through a communication sys-
tem. Shannon, however, asked why we want to transmit a deterministic sinu-
soidal signal. The receiver already knows in advance that it will be a sinus,
so it is much simpler to generate one at the receiver directly rather than to
transmit it over a channel. In other words, Shannon had the fundamental
insight that we need to consider random messages rather than deterministic
messages whenever we deal with information.

1Besides the amazing accomplishment of inventing information theory, at the age of 21
Shannon also “invented” the computer in his Master thesis. He proved that electrical circuits
can be used to perform logical and mathematical operations, which was the foundation of
digital computing and digital circuit theory. It is probably the most important Master thesis
of the 20th century! Incredible, isn’t it?

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

1.1. Motivation 5

Let us go back to the example of the hats in Figure 1.1 and have a closer
look at hat B:

• There is one chance out of four possibilities that we draw a white ball.

Since we would like to use Hartley’s measure here, we recall that the
quantity r inside the logarithm in (1.1) is “the number of all possible
outcomes of a random message”. Hence, from Hartley’s point of view,
we will see one realization out of r possible realizations. Translated to
the case of the white ball, we see that we have one realization out of four
possible realizations, i.e.,

log2 4 = 2 bits (1.6)

of information.

• On the other hand, there are three chances out of four that we draw a
black ball.

Here we cannot use Hartley’s measure directly. But it is possible to
translate the problem into a form that makes it somehow accessible to
Hartley. We need to “normalize” the statement into a form that gives
us one realization out of r. This can be done if we divide everything
by 3, the number of black balls: We have 1 chance out of 4

3 possibilities
(whatever this means...) that we draw a black ball. Stated differently,
we have one realization out of 4

3 possible “realizations”, i.e.,

log2
4

3
= 0:415 bits (1.7)

of information.

So now we have two different values depending on what color we get. How
shall we combine them to one value that represents the information? The
most obvious choice is to average it, i.e., we weigh the different information
values according to their probabilities of occurrence:

1

4
� 2 bits +

3

4
� 0:415 bits = 0:811 bits (1.8)

or

1

4
� log2 4 +

3

4
� log2

4

3
= 0:811 bits: (1.9)

We see the following:

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

6 Shannon’s Measure of Information

Shannon’s measure of information is an “average Hartley information”:

rX
i=1

pi log2
1

pi
= �

rX
i=1

pi log2 pi; (1.10)

where pi denotes the probability of the ith possible outcome.

We end this introductory section by pointing out that the given three
motivating ideas, i.e.,

1. the number of possible answers r should be linked to “information”;

2. “information” should be additive in some sense; and

3. a proper measure of information needs to take into account the proba-
bilities of the various possible events,

are not sufficient to exclusively specify (1.10). In Appendix 1.A we will give
some more information on why Shannon’s measure should be defined like
(1.10) and not differently. However, the true justification is — as always in
engineering or physics — that Shannon’s definition turns out to be useful.

1.2 Uncertainty or Entropy

1.2.1 Definition

We now formally define the Shannon measure of “self-information of a source”.
Due to its relationship with a corresponding concept in different areas of
physics, Shannon called his measure entropy. We will stick to this name as it
is standard in the whole literature. However note that uncertainty would be
a far more precise description.

Definition 1.4. The uncertainty or entropy of a discrete random variable (RV)
U that takes value in the set U (also called alphabet U) is defined as

H(U) , �
X

u2supp(PU)
PU (u) logb PU (u); (1.11)

where PU (�) denotes the probability mass function (PMF)2 of the RV U ,
and where the support of PU is defined as

supp(PU) , fu 2 U : PU (u) > 0g: (1.12)

2Note that sometimes (but only if it is clear from the argument!) we will drop the
subscript of the PMF: P (u) = PU (u).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

1.2. Uncertainty or Entropy 7

Another, more mathematical, but often very convenient form to write the
entropy is by means of expectation:

H(U) = EU [�logb PU (U)]: (1.13)

Be careful about the two capital U : one denotes the name of the PMF, the
other is the RV that is averaged over.

Remark 1.5. We have on purpose excluded the cases for which PU (u) = 0 so
that we do not get into trouble with logb 0 = �1. On the other hand, we also
note that PU (u) = 0 means that the symbol u never shows up. It therefore
should not contribute to the uncertainty in any case. Luckily this is the case:

lim
t#0

t logb t = 0; (1.14)

i.e., we do not need to worry about this case. M

So we note the following:

We will usually neglect to mention “support” when we sum over PU (u) �
logb PU (u), i.e., we implicitly assume that we exclude all u with zero
probability PU (u) = 0.

As in the case of the Hartley measure of information, b denotes the unit
of uncertainty:

b = 2 : bit,

b = e : nat,

b = 10 : Hartley.

(1.15)

If the base of the logarithm is not specified, then we can choose it freely
ourselves. However, note that the units are very important! A statement
“H(U) = 0:43” is completely meaningless. Since

logb � =
ln �

ln b
; (1.16)

(with ln(�) denoting the natural logarithm) 0:43 could mean anything as, e.g.,

if b = 2 : H(U) = 0:43 bits; (1.17)

if b = e : H(U) = 0:43 nats � 0:620 bits; (1.18)

if b = 256 = 28 : H(U) = 0:43 “bytes” = 3:44 bits: (1.19)

This is the same idea as 100 m not being the same distance as 100 km.
So remember:

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

8 Shannon’s Measure of Information

If we do not specify the base of the logarithm, then the reader can choose
the unit freely. However, never forget to add the units, once you write
some concrete numbers!

Note that the term bits is used in two ways: Its first meaning is the unit of
entropy when the base of the logarithm is chosen to be 2. Its second meaning
is binary digits, i.e., in particular the number of digits of a binary codeword.

Remark 1.6. We like to remark here that while we often leave the choice of a
unit (i.e., the base to the logarithm) up to the reader, we always assume that
b > 1. If we chose a base smaller than one, weird things happen like negative
monotonicity (having a decreasing value for H is equivalent with having an
increasing uncertainty) or the logarithm being convex instead of concave. M

Remark 1.7. It is worth mentioning that if all r events are equally likely, Shan-
non’s definition of entropy reduces to Hartley’s measure:

pi =
1

r
; 8 i : H(U) = �

rX
i=1

1

r
logb

1

r
=

1

r
logb r

rX
i=1

1

| {z }
= r

= logb r: (1.20)

M

Remark 1.8. Be careful not to confuse uncertainty with information ! For
motivation purposes, in Section 1.1 we have talked a lot about “information”.
However, what we actually meant there is “self-information” or more nicely
put “uncertainty”. You will learn soon that gaining information is equivalent
to reducing uncertainty. M

Another important observation is that the entropy of U does not depend on
the different possible values that U can take on, but only on the probabilities
of these values. Hence,

U 2 � 1|{z}
with

prob. 1
2

; 2|{z}
with

prob. 1
3

; 3|{z}
with

prob. 1
6

	
(1.21)

and

V 2 � 34|{z}
with

prob. 1
2

; 512|{z}
with

prob. 1
3

; 981|{z}
with

prob. 1
6

	
(1.22)

have both the same entropy, which is

H(U) = H(V) = �1
2
log2

1

2
� 1

3
log2

1

3
� 1

6
log2

1

6
� 1:46 bits: (1.23)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

1.2. Uncertainty or Entropy 9

This actually also holds true if we consider a random vector:

W 2
(0@1

1

1
A

| {z }
with

prob. 1
2

;

0
@0
5

1
A

| {z }
with

prob. 1
3

;

0
@13

1

1
A

| {z }
with

prob. 1
6

)
; (1.24)

i.e., H(W) = H(U) = H(V). Hence we can easily extend our definition to
random vectors.

Definition 1.9. The uncertainty or entropy of a discrete random vector3 W =

(X;Y)T is defined as

H(W) = H(X;Y) , EX;Y [�logb PX;Y (X;Y)] (1.25)

= �
X

(x;y)2supp(PX;Y)

PX;Y (x; y) logb PX;Y (x; y): (1.26)

Here PX;Y (�; �) denotes the joint probability mass function of (X;Y) (see
Section 2.2 for a review of discrete RVs).

1.2.2 Binary Entropy Function

One special case of entropy is so important that we introduce a specific name.

Definition 1.10. If U is binary with two possible values u1 and u2, U = fu1; u2g,
such that Pr[U = u1] = p and Pr[U = u2] = 1� p, then

H(U) = Hb(p) (1.27)

where Hb(�) is called the binary entropy function and is defined as

Hb(p) , �p log2 p� (1� p) log2(1� p); p 2 [0; 1]: (1.28)

The function Hb(�) is shown in Figure 1.2.

Exercise 1.11. Show that the maximal value of Hb(p) is 1 bit and is taken
on for p = 1

2 . �

1.2.3 The Information Theory Inequality

The following inequality does not really have a name, but since it is so im-
portant in information theory, we will follow Prof. James L. Massey, former
professor at ETH in Zurich, and call it the Information Theory Inequality
or the IT Inequality.

3Note that (�)T denotes the transpose of a vector.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

10 Shannon’s Measure of Information

0:1

0:1

0:2

0:2

0:3

0:3

0:4

0:4

0:5

0:5

0:6

0:6

0:7

0:7

0:8

0:8

0:9

0:9

1

1

0
0

p

H
b
(p
)

[b
it

s]

Figure 1.2: Binary entropy function Hb(p) as a function of the probability p.

Proposition 1.12 (IT Inequality). For any base b > 1 and any � > 0,�
1� 1

�

�
logb e � logb � � (� � 1) logb e (1.29)

with equalities on both sides if, and only if, � = 1.

Proof: Actually, Figure 1.3 can be regarded as a proof. For those readers
who would like a formal proof, we provide next a mathematical derivation.
We start with the upper bound. First note that

logb �
��
�=1

= 0 = (� � 1) logb e
��
�=1

: (1.30)

Then have a look at the derivatives:
d

d�
(� � 1) logb e = logb e (1.31)

and

d

d�
logb � =

1

�
logb e

8<
:> logb e if 0 < � < 1;

< logb e if � > 1:
(1.32)

Hence, the two functions coincide at � = 1, and the linear function is above
the logarithm for all other values.

To prove the lower bound again note that�
1� 1

�

�
logb e

����
�=1

= 0 = logb �
��
�=1

(1.33)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

1.2. Uncertainty or Entropy 11

1 1:5

1

�1

2 2:5

2

�2

3 3:5

3

�3

4 4:5

4

�4

50 0:5
�5

0

�

(� � 1) ln e

ln �

(1� 1=�) ln e

Figure 1.3: Illustration of the IT Inequality.

and

d

d�

�
1� 1

�

�
logb e =

1

�2
logb e

8<
:>

d
d� logb � =

1
� logb e if 0 < � < 1;

< d
d� logb � =

1
� logb e if � > 1;

(1.34)

similarly to above.

1.2.4 Bounds on H(U)

Theorem 1.13. If U has r possible values, then

0 � H(U) � log r; (1.35)

where

H(U) = 0 if, and only if, PU (u) = 1 for some u; (1.36)

H(U) = log r if, and only if, PU (u) =
1

r
8u: (1.37)

Proof: Since 0 � PU (u) � 1, we have

�PU (u) log2 PU (u)
8<
:= 0 if PU (u) = 1;

> 0 if 0 < PU (u) < 1:
(1.38)

Hence, H(U) � 0. Equality can only be achieved if �PU (u) log2 PU (u) = 0 for
all u 2 supp(PU), i.e., PU (u) = 1 for all u 2 supp(PU).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

12 Shannon’s Measure of Information

To derive the upper bound we use a trick that is quite common in in-
formation theory: We take the difference and try to show that it must be
nonpositive:

H(U)� log r = �
X

u2supp(PU)
PU (u) logPU (u)� log r (1.39)

= �
X

u2supp(PU)
PU (u) logPU (u)�

X
u2supp(PU)

PU (u) log r (1.40)

= �
X

u2supp(PU)
PU (u) log

�
PU (u) � r

�
(1.41)

=
X

u2supp(PU)
PU (u) log

�
1

r � PU (u)| {z }
, �

�
(1.42)

�
X

u2supp(PU)
PU (u)

�
1

r � PU (u) � 1

�
� log e (1.43)

=

 X
u2supp(PU)

1

r
�

X
u2supp(PU)

PU (u)

| {z }
=1

!
� log e (1.44)

=

1

r

X
u2supp(PU)

1� 1

!
log e (1.45)

�

1

r

X
u2U

1� 1

!
log e (1.46)

=

1

r
� r � 1

!
log e (1.47)

= (1� 1) log e = 0: (1.48)

Here, (1.43) follows from the IT Inequality (Proposition 1.12); and in (1.46)
we change the summation from u 2 supp(PU) to go over the whole alphabet
u 2 U , i.e., we include additional (nonnegative) terms in the sum. Hence,
H(U) � log r.

Equality can only be achieved if

1. in (1.43), in the IT Inequality � = 1, i.e., if
1

r � PU (u) = 1 =) PU (u) =
1

r
; (1.49)

for all u; and if

2. in (1.46), the support of U contains all elements of the alphabet U , i.e.,4

j supp(PU)j = jUj = r: (1.50)

Note that if Condition 1 is satisfied, Condition 2 is also satisfied.
4By jUj we denote the number of elements in the set U .

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

1.2. Uncertainty or Entropy 13

1.2.5 Conditional Entropy

Similar to probability of random vectors, there is nothing really new about
conditional probabilities given that a particular event Y = y has occurred.

Definition 1.14. The conditional entropy or conditional uncertainty of the
RV X given the event Y = y is defined as

H(XjY = y) , �
X

x2supp(PXjY (�jy))
PXjY (xjy) logPXjY (xjy) (1.51)

= E
h
�logPXjY (XjY)

���Y = y
i
: (1.52)

Note that the definition is identical to before apart from that everything
is conditioned on the event Y = y.

From Theorem 1.13 we immediately get the following.

Corollary 1.15. If X has r possible values, then

0 � H(XjY = y) � log r; (1.53)

H(XjY = y) = 0 if, and only if, P (xjy) = 1 for some x; (1.54)

H(XjY = y) = log r if, and only if, P (xjy) = 1

r
8x: (1.55)

Note that the conditional entropy given the event Y = y is a function of
y. Since Y is also a RV, we can now average over all possible events Y = y

according to the probabilities of each event. This will lead to the averaged
conditional entropy.

Definition 1.16. The conditional entropy or conditional uncertainty of the
RV X given the random variable Y is defined as

H(XjY) ,
X

y2supp(PY)

PY (y) �H(XjY = y) (1.56)

= EY [H(XjY = y)] (1.57)

= �
X

(x;y)2supp(PX;Y)

PX;Y (x; y) logPXjY (xjy) (1.58)

= E
h
�logPXjY (XjY)

i
: (1.59)

The following observations should be straightforward:

• PY (y)PXjY (xjy) = PX;Y (x; y);

• 0 � H(XjY) � log r, where r is the number of values that the RV X can
take on;

• H(XjY) = 0 if, and only if, PXjY (xjy) = 1 for some x and 8 y;
• H(XjY) = log r if, and only if, PXjY (xjy) = 1

r , 8x and 8 y;

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14 Shannon’s Measure of Information

• H(XjY) 6= H(Y jX) (however, we will see later that H(X)�H(XjY) =
H(Y)�H(Y jX)).

Next we get the following very important theorem.

Theorem 1.17 (Conditioning Reduces Entropy).
For any two discrete RVs X and Y ,

H(XjY) � H(X) (1.60)

with equality if, and only if, X and Y are statistically independent X ??
Y .

Proof: Again we use the same trick as above and prove the inequality by
showing that the difference is nonpositive. We start by noting that

H(X) = �
X

x2supp(PX)

PX(x) logPX(x) � 1 (1.61)

= �
X

x2supp(PX)

PX(x) logPX(x)
X

y2supp(PY jX(�jx))
PY jX(yjx)

| {z }
=1

(1.62)

= �
X

x2supp(PX)

X
y2supp(PY jX(�jx))

PX(x)PY jX(yjx) logPX(x) (1.63)

= �
X

(x;y)2supp(PX;Y)

PX;Y (x; y) logPX(x) (1.64)

such that

H(XjY)�H(X) = �
X

(x;y)2supp(PX;Y)

PX;Y (x; y) logPXjY (xjy)

+
X

(x;y)2supp(PX;Y)

PX;Y (x; y) logPX(x) (1.65)

=
X

(x;y)2supp(PX;Y)

PX;Y (x; y) log
PX(x)

PXjY (xjy)
(1.66)

= E

"
log

PX(X)

PXjY (XjY)

#
: (1.67)

Note that it is always possible to enlarge the summation of an expectation to
include more random variables, i.e.,

EX [f(X)] = EX;Y [f(X)] = E[f(X)]: (1.68)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

1.2. Uncertainty or Entropy 15

Hence, the expression (1.67) could be much easier derived using the expecta-
tion notation:

H(XjY)�H(X) = E
h
�logPXjY (XjY)

i
� E[�logPX(X)] (1.69)

= E

"
log

PX(X)

PXjY (XjY)

#
: (1.70)

So, we have the following derivation:

H(XjY)�H(X)

= E

"
log

PX(X)

PXjY (XjY)

#
(1.71)

= E

"
log

PX(X) � PY (Y)
PXjY (XjY) � PY (Y)

#
(1.72)

= E

"
log

PX(X)PY (Y)

PX;Y (X;Y)

#
(1.73)

=
X

(x;y)2supp(PX;Y)

PX;Y (x; y) log
PX(x)PY (y)

PX;Y (x; y)
(1.74)

�
X

(x;y)2supp(PX;Y)

PX;Y (x; y)

PX(x)PY (y)

PX;Y (x; y)
� 1

!
� log e (1.75)

=
X

(x;y)2supp(PX;Y)

�
PX(x)PY (y)� PX;Y (x; y)

� � log e (1.76)

=

0
@ X

(x;y)2supp(PX;Y)

PX(x)PY (y)� 1

1
A � log e (1.77)

�
0
@ X
x2X ;y2Y

PX(x)PY (y)� 1

1
A � log e (1.78)

=

0
@X
x2X

PX(x)
X
y2Y

PY (y)� 1

1
A � log e (1.79)

= (1� 1) log e = 0: (1.80)

Here, (1.75) again follows from the IT Inequality (Proposition 1.12) and (1.78)
holds because we add additional terms to the sum. Hence, H(XjY) � H(X).

Equality can be achieved if, and only if,

1. in (1.75), in the IT Inequality � = 1, i.e., if

P (x)P (y)

P (x; y)
= 1 =) P (x)P (y) = P (x; y) (1.81)

for all x, y (which means that X ?? Y);

2. in (1.78), P (x) � P (y) = 0 for P (x; y) = 0.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

16 Shannon’s Measure of Information

Note that if Condition 1 is satisfied, Condition 2 is also satisfied.

Remark 1.18. Attention: The conditioning reduces entropy-rule only applies
to random variables, not to events! In particular,

H(XjY = y) Q H(X): (1.82)

To understand why this is the case, consider the following example. M

Example 1.19. Let us consider three different species of foxes: The red fox is the
most common fox and can be found all over Europe, Asia and North America;
the white5 fox is common in the northern and Arctic areas of Europe, Asia and
America; and the gray fox is exclusively found in North and Central America.
It seems difficult to find exact numbers, but for the sake of argument, let us
assume that the worldwide fox population consists of about 70% red, 20%
white, and 10% gray foxes.

So, let X be the type of fox I randomly observe. The uncertainty about
X is thus

H(X) = �0:7 log 0:7� 0:2 log 0:2� 0:1 log 0:1 � 1:16 bits: (1.83)

Now let Y be the country in which I have observed the fox. If I tell you Y ,
your uncertainty about X changes. Examples:

• Y = Switzerland: Since in Switzerland there only live red foxes, the
uncertainty of X given this event equals zero:

H(XjY = Switzerland) = �1 log 1 = 0 bits; (1.84)

which is obviously less than H(X). So, the side-information “Switzer-
land” completely removes any uncertainty about X.

• Y = Canada: Canada is home to all three types of foxes. Again, it is
difficult to find exact numbers, but let us assume we have 40% red foxes,
40% white foxes, and 20% gray foxes in Canada. Thus,

H(XjY = Canada) = �0:4 log 0:4� 0:4 log 0:4� 0:2 log 0:2 � 1:52 bits;

(1.85)

which is considerably larger than H(X) � 1:16 bits. So, the side-
information “Canada” made it actually harder to guess which fox was
observed. The worst case would be a country with an equal distribution
of the three types of foxes, in which case the conditional entropy would
be log 3 � 1:58 bits.

5The name is slightly misleading as the white fox has white fur only in winter. In
summer it changes color and turns a dark brown.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

1.2. Uncertainty or Entropy 17

So we see that depending on the value of Y , the uncertainty about X might
be reduced or increased. However, we do encounter more cases similar to
Switzerland than to Canada (e.g., Y = Iceland will also reduce the uncertainty
to zero because in Iceland only the white fox can be found), and thus it is
more likely to have an uncertainty reduction than an uncertainty increase:
From Theorem 1.17 we know that on average the knowledge of Y will reduce
our uncertainty about X: H(XjY) � H(X). �

1.2.6 Extensions to More RVs

We can now easily extend entropy and conditional entropy to more RVs. We
only show some examples involving three RVs. You should have no troubles
to extend it to an arbitrary number of RVs and events.

Definition 1.20. The conditional entropy of a RV X conditional on the RV Y

and the event Z = z is defined as

H(XjY; Z = z)

, E
h
�logPXjY;Z(XjY; z)

���Z = z
i

(1.86)

= �
X

(x;y)2supp(PX;Y jZ(�;�jz))
PX;Y jZ(x; yjz) logPXjY;Z(xjy; z) (1.87)

= EY [H(XjY = y; Z = z) jZ = z] (1.88)

=
X

y2supp(PY jZ(�jz))
PY jZ(yjz)H(XjY = y; Z = z) (1.89)

=
X

y2supp(PY jZ(�jz))
PY jZ(yjz)

�

X
x2supp(PXjY;Z(�jy;z))

PXjY;Z(xjy; z)�

� logPXjY;Z(xjy; z)
!

(1.90)

= �
X X

y2supp(PY jZ(�jz))
x2supp(PXjY;Z(�jy;z))

PY jZ(yjz)PXjY;Z(xjy; z)| {z }
=PX;Y jZ(x;yjz)

logPXjY;Z(xjy; z) (1.91)

= �
X

(x;y)2supp(PX;Y jZ(�;�jz))
PX;Y jZ(x; yjz) logPXjY;Z(xjy; z): (1.92)

The conditional entropy of X conditional on the RVs Y and Z is defined as

H(XjY; Z) , EZ [H(XjY; Z = z)] (1.93)

= E
h
�logPXjY;Z(XjY; Z)

i
(1.94)

= �
X

(x;y;z)2supp(PX;Y;Z)

PX;Y;Z(x; y; z) logPXjY;Z(xjy; z): (1.95)

The properties generalize analogously:

• H(XjY; Z) � H(XjZ);

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

18 Shannon’s Measure of Information

• H(XjY; Z = z) � H(XjZ = z);

• but not (necessarily) H(XjY; Z = z) � H(XjY).
Note that the easiest way of remembering the definition of a complex en-

tropy expression is to use the notation with the expected value. For example,
H(X;Y; ZjU; V;W = w) is given as

H(X;Y; ZjU; V;W = w) , E
h
�logPX;Y;ZjU;V;W (X;Y; ZjU; V;w)

���W = w
i

(1.96)

where the expectation is over the joint PMF of (X;Y; Z; U; V) conditional on
the event W = w.

1.2.7 Chain Rule

Theorem 1.21 (Chain Rule).
Let X1; : : : ; Xn be n discrete RVs with a joint PMF PX1;:::;Xn . Then

H(X1; X2; : : : ; Xn)

= H(X1) +H(X2jX1) + � � �+H(XnjX1; X2; : : : ; Xn�1) (1.97)

=
nX

k=1

H(XkjX1; X2; : : : ; Xk�1): (1.98)

Proof: This follows directly from the chain rule for PMFs:

PX1;:::;Xn = PX1 � PX2jX1
� PX3jX1;X2

� � �PXnjX1;:::;Xn�1
: (1.99)

Example 1.22. Let (X1; X2) take on the values (0; 0), (1; 1), (1; 0) equally likely
with probability 1

3 . Then

H(X1; X2) = log 3 � 1:58 bits: (1.100)

We also immediately see that PX1(0) =
1
3 and PX1(1) =

2
3 . Hence,

H(X1) = �1
3
log

1

3
� 2

3
log

2

3
= Hb

�
1

3

�
� 0:91 bits: (1.101)

Moreover, PX2jX1
(0j0) = 1, PX2jX1

(1j0) = 0, such that

H(X2jX1 = 0) = 0 bits; (1.102)

and PX2jX1
(0j1) = 1

2 and PX2jX1
(1j1) = 1

2 such that

H(X2jX1 = 1) = log 2 = 1 bit: (1.103)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

1.3. Mutual Information 19

Using the definition of conditional entropy we then compute

H(X2jX1) = PX1(0)H(X2jX1 = 0) + PX1(1)H(X2jX1 = 1) (1.104)

=
1

3
� 0 + 2

3
� 1 bits (1.105)

=
2

3
bits: (1.106)

We finally use the chain rule to confirm the result we have computed above
already directly:

H(X1; X2) = H(X1) +H(X2jX1) (1.107)

= Hb

�
1

3

�
+

2

3
bits (1.108)

= �1
3
log2

1

3
� 2

3
log2

2

3
+

2

3
bits (1.109)

=
1

3
log2 3�

2

3
log2 2 +

2

3
log2 3 +

2

3
log2 2 (1.110)

= log 3: (1.111)

�

1.3 Mutual Information

1.3.1 Definition

Finally, we come to the definition of information. The following definition is
very intuitive: Suppose you have a RV X with a certain uncertainty H(X).
The amount that another related RV Y can tell you about X is the infor-
mation that Y gives you about X. How to measure it? Well, compare the
uncertainty of X before and after you know Y . The difference is what you
have learned!

Definition 1.23. The mutual information between the discrete RVs X and Y

is given by

I(X;Y) , H(X)�H(XjY): (1.112)

Note that H(XjY) is the uncertainty about X when knowing Y .

Remark 1.24. Note that it is a mutual information, not an “information about
X provided by Y ”. The reason for this name can be quickly understood if we
consider the following. Using twice the chain rule for entropies (Theorem 1.21)
we have:

H(X;Y) = H(X) +H(Y jX) = H(Y) +H(XjY) (1.113)

=) H(X)�H(XjY) = H(Y)�H(Y jX) (1.114)

=) I(X;Y) = I(Y ;X) (1.115)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

20 Shannon’s Measure of Information

Hence, X will tell exactly the same about Y as Y tells about X. For example,
assume X being the weather in Hsinchu and Y being the weather in Taichung.
Knowing X will reduce your uncertainty about Y in the same way as knowing
Y will reduce your uncertainty about X. M

The mutual information can be expressed in many equivalent forms. A
particularly nice one can be derived as follows:6

I(X;Y) = H(X)�H(XjY) (1.116)

= E[�logPX(X)]� E
h
�logPXjY (XjY)

i
(1.117)

= E

"
log

PXjY (XjY)
PX(X)

#
(1.118)

= E

"
log

PXjY (XjY) � PY (Y)
PX(X) � PY (Y)

#
(1.119)

= E
�
log

PX;Y (X;Y)

PX(X)PY (Y)

�
(1.120)

=
X

(x;y)2supp(PX;Y)

PX;Y (x; y) log
PX;Y (x; y)

PX(x)PY (y)
: (1.121)

From the chain rule it follows that

H(XjY) = H(X;Y)�H(Y); (1.122)

and thus we obtain from (1.116) one more form:

I(X;Y) = H(X) +H(Y)�H(X;Y): (1.123)

This form can also be used for a Venn-diagram, as shown in Figure 1.4, and
is particularly nice because it shows the mutual information’s symmetry.

1.3.2 Properties

Since mutual information is closely related to entropy, we can easily derive
some of its properties. The most important property is that mutual informa-
tion cannot be negative.

Theorem 1.25. Let X and Y be two discrete RVs with mutual information
I(X;Y). Then

0 � I(X;Y) � minfH(X);H(Y)g: (1.124)

On the left-hand side, we achieve equality if, and only if, PX;Y = PX �PY , i.e.,
if and only if X ?? Y . On the right-hand side, we have equality if, and only
if, either X determines Y or vice versa.

6Recall the way we can handle expectations shown in (1.68).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

1.3. Mutual Information 21

H(X) H(Y)I(X;Y)

Union = H(X;Y)

H(XjY) H(Y jX)

Figure 1.4: Diagram depicting mutual information and entropy in a set-theory
way of thinking.

Proof: Because conditioning reduces entropy (Theorem 1.17), we have

I(X;Y) = H(Y)�H(Y jX)| {z }
�H(Y)

� H(Y)�H(Y) = 0; (1.125)

proving the lower bound. Note that we achieve equality if, and only if, X is
independent of Y such that H(Y jX) = H(Y).

To prove the upper bound, we recall the nonnegativity of entropy (Theo-
rem 1.13) to obtain

I(X;Y) = H(X)�H(XjY)| {z }
� 0

� H(X); (1.126)

I(X;Y) = H(Y)�H(Y jX)| {z }
� 0

� H(Y): (1.127)

We achieve equality if, and only if, H(XjY) = 0 or H(Y jX) = 0, which
according to Corollary 1.15 can only occur if P (xjy) = 1 for some x and for
all y or if P (yjx) = 1 for some y and for all x, i.e., if Y determines X or vice
versa.

Note that the mutual information of a RV X about itself is simply its
entropy:

I(X;X) = H(X)�H(XjX)| {z }
=0

= H(X): (1.128)

Therefore H(X) sometimes is also referred to as self-information.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

22 Shannon’s Measure of Information

1.3.3 Conditional Mutual Information

Similarly to the entropy we can extend the mutual information to conditional
versions. Since these definitions are basically only repetitions of the corre-
sponding definitions of conditional entropies, we only state a few:

I(X;Y jZ = z) , H(XjZ = z)�H(XjY; Z = z); (1.129)

I(X;Y jZ) , EZ [I(X;Y jZ = z)] (1.130)

=
X
z

PZ(z)
�
H(XjZ = z)�H(XjY; Z = z)

�
(1.131)

= H(XjZ)�H(XjY; Z): (1.132)

1.3.4 Chain Rule

Finally, also the chain rule of entropy directly extends to mutual information.

Theorem 1.26 (Chain Rule).

I(X;Y1; Y2; : : : ; Yn)

= I(X;Y1) + I(X;Y2jY1) + � � �+ I(X;YnjY1; Y2; : : : ; Yn�1) (1.133)

=
nX

k=1

I(X;YkjY1; Y2; : : : ; Yk�1): (1.134)

Proof: From the chain rule of entropy we have

I(X;Y1; : : : ; Yn)

= H(Y1; : : : ; Yn)�H(Y1; : : : ; YnjX) (1.135)

= H(Y1) +H(Y2jY1) + � � �+H(YnjYn�1; : : : ; Y1)

� �H(Y1jX) +H(Y2jY1; X) + � � �+H(YnjYn�1; : : : ; Y1; X)
�

(1.136)

=
�
H(Y1)�H(Y1jX)

�
+
�
H(Y2jY1)�H(Y2jY1; X)

�
+ � � �

+
�
H(YnjYn�1; : : : ; Y1)�H(YnjYn�1; : : : ; Y1; X)

�
(1.137)

= I(X;Y1) + I(X;Y2jY1) + � � �+ I(X;YnjYn�1; : : : ; Y1) (1.138)

=
nX

k=1

I(X;YkjYk�1; : : : ; Y1): (1.139)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

1.4. Comments on our Notation 23

1.4 Comments on our Notation

1.4.1 General

We try to clearly distinguish between constant and random quantities. The
basic rule here is

capital letter X : random variable,

small letter x : deterministic value.

For vectors or sequences bold face is used:

capital bold letter X : random vector,

small bold letter x : deterministic vector.

There are a few exceptions to this rule. Certain deterministic quantities are
very standard in capital letters, so, to distinguish them from random variables,
we use a different font. For example, the capacity is denoted by C (in contrast
to a random variable C) or the codewords in Chapter 4 are D-ary (and not
D-ary).

Moreover, matrices are also commonly depicted in capitals, but for them
we use yet another font, e.g., C. Then, sets are denoted using a calligraphic
font: C. An example of a set is the alphabet X of a random variable X.

Finally, also the PMF is denoted by a capital letter P : The discrete random
variable X has PMF PX(�), where we normally will use the subscript X to
indicate to which random variable the PMF belongs to. Sometimes, however,
we also use P (�) or Q(�) without subscript to denote a generic PMF (see, e.g.,
Section 3.3 or Chapter 12). To avoid confusion, we shall never use RVs P or
Q.

1.4.2 Entropy and Mutual Information

As introduced in Sections 1.2 and 1.3, respectively, entropy and mutual in-
formation are always shown in connection with RVs: H(X) and I(X;Y). But
strictly speaking, they are functions of PMFs and not RVs: H(X) is a function
of PX(�) (see, e.g., (1.21)–(1.23)) and I(X;Y) is a function of PX;Y (�; �) (see,
e.g., (1.121)). So in certain situations, it is more convenient to write H and I

as functions of PMFs:

H
�
Q(�)� or H(Q) and I(PX ; PY jX): (1.140)

To emphasize the difference in notation, in this case we drop the use of the
semicolon for the mutual information. However, for the entropy no such dis-
tinction is made. We hope that no confusion will arise as we never define RVs
P or Q in the first place.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

24 Shannon’s Measure of Information

Finally, sometimes we write a PMF P (�) in a vector-like notation listing
all possible probability values:

PX(�) = (p1; p2; : : : ; pr) (1.141)

denotes the PMF of an r-ary RV X with probabilities p1; : : : ; pr. The entropy
of X can then be written in the following three equivalent forms

H(X) = H(PX) = H(p1; : : : ; pr) (1.142)

and is, of course, equal to

H(p1; : : : ; pr) =
rX

i=1

pi log
1

pi
: (1.143)

1.A Appendix: Uniqueness of the Definition of Entropy

In Section 1.1 we have tried to motivate the definition of the entropy. Even
though we succeeded partially, we were not able to give full justification of Def-
inition 1.4. While Shannon did provide a mathematical justification [Sha48,
Section 6], he did not consider it very important. We omit Shannon’s argu-
ment, but instead we will now quickly summarize a slightly different result
that was presented in 1956 by Aleksandr Khinchin. Khinchin specified four
properties that entropy is supposed to have and then proved that, given these
four properties, (1.11) is the only possible definition. We will now quickly
summarize his result.

We define Hr(p1; : : : ; pr) to be a function of r probabilities p1; : : : ; pr that
sum up to 1:

rX
i=1

pi = 1: (1.144)

We further ask this function to satisfy the following four properties:

1. For any r, Hr(p1; : : : ; pr) is continuous (i.e., a slight change to the values
of pi will only cause a slight change to Hr) and symmetric in p1; : : : ; pr
(i.e., changing the order of the probabilities does not affect the value of
Hr).

2. Any event of probability 0 does not contribute to Hr:

Hr+1(p1; : : : ; pr; 0) = Hr(p1; : : : ; pr): (1.145)

3. Hr is maximized by the uniform distribution:

Hr(p1; : : : ; pr) � Hr

�
1

r
; : : : ;

1

r

�
: (1.146)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

1.A. Appendix: Uniqueness of the Definition of Entropy 25

4. If we partition the m � r possible outcomes of a random experiment
into m groups, each group containing r elements, then we can do the
experiment in two steps:

(a) determine the group to which the actual outcome belongs,

(b) find the outcome in this group.

Let pj;i, 1 � j � m, 1 � i � r, be the probabilities of the outcomes in
this random experiment. Then the total probability of all outcomes in
group j is

qj =
rX

i=1

pj;i; (1.147)

and the conditional probability of outcome i from group j is then given
by

pj;i
qj
: (1.148)

Now Hm�r can be written as follows:

Hm�r(p1;1; p1;2; : : : ; pm;r)

= Hm(q1; : : : ; qm) +
mX
j=1

qj Hr

pj;1
qj
; : : : ;

pj;r
qj

!
; (1.149)

i.e., the uncertainty can be split into the uncertainty of choosing a group
and the uncertainty of choosing one particular outcome of the chosen
group, averaged over all groups.

Theorem 1.27. The only functions Hr that satisfy the above four conditions are
of the form

Hr(p1; : : : ; pr) = �c
rX

i=1

pi ln pi (1.150)

where the constant c > 0 decides about the units of Hr.

Proof: This theorem was proven by Khinchin in 1956, i.e., after Shannon
had defined entropy. The article was firstly published in Russian [Khi56], and
then in 1957 it was translated into English [Khi57]. We omit the details.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 2

Review of Probability Theory

Information theory basically is applied probability theory. So it is quite im-
portant to feel comfortable with the main definitions and properties of prob-
ability. In this chapter we will very briefly review some of them and also
quickly review a very important inequality with regard to expectations.

2.1 Discrete Probability Theory

Probability theory is based on three specific objects:

• the sample space
,

• the set of all events F , and

• the probability measure Pr(�).

The sample space
 is the set of all possible outcomes of a random ex-
periment. In discrete probability theory, the sample space is finite (i.e.,

 = f!1; !2; : : : ; !ng) or at most countably infinite (which we will indicate by
n =1).

An event is any subset of
, including the impossible event ; (the empty
subset of
) and the certain event
. An event occurs when the outcome of
the random experiment is member of that event. All events are collected in
the set of events F , i.e., F is a set whose elements are sets themselves.

The probability measure Pr(�) is a mapping that assigns to each event a
real number (called the probability of that event) between 0 and 1 in such a
way that

Pr(
) = 1 (2.1)

and

Pr(A [B) = Pr(A) + Pr(B) if A \ B = ;; (2.2)

27 © Stefan M. Moser — IT, version 6.14

28 Review of Probability Theory

where A;B 2 F denote any two events. Notice that (2.2) implies

Pr(;) = 0 (2.3)

as we see by choosing A = ; and B =
.
The atomic events are the events that contain only a single sample point,

e.g., f!ig. It follows from (2.2) that the numbers

pi = Pr(f!ig); i = 1; 2; : : : ; n (2.4)

(i.e., the probabilities that the probability measure assigns to the atomic
events) completely determine the probabilities of all events.

2.2 Discrete Random Variables

A discrete random variable is a mapping from the sample space into the real
numbers. For instance, on the sample space
 = f!1; !2; !3g we might define
the random variables X, Y and Z as

! X(!) ! Y (!) ! Z(!)

!1 �5 !1 1 !1 13:4

!2 0 !2 1 !2 �102:44
!3 +5 !3 0 !3 �

(2.5)

Note that the range (i.e., the set of possible values of the random variable) of
these random variables are

X(
) = f�5; 0;+5g; (2.6)

Y (
) = f0; 1g; (2.7)

Z(
) = f�102:44; �; 13:4g: (2.8)

The probability distribution (or “frequency distribution”) of a random
variable X, denoted PX(�), is closely related to the probability measure of the
underlying random experiment: It is the mapping from X(
) into the interval
[0; 1] such that

PX(x) , Pr(f! : X(!) = xg); (2.9)

i.e., it is the mapping that, for every x 2 X(
), gives the probability that the
random variable X takes on this value x. Usually, PX is called the probability
mass function (PMF) of X.

It is quite common to use a bit more sloppy notation and to neglect the
mapping-nature of a random variable. I.e., we usually write X and not X(!),

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

2.2. Discrete Random Variables 29

and for the event f! : X(!) = xg we simply write [X = x]. So, the PMF is
then expressed as

PX(x) = Pr[X = x]: (2.10)

Note that we use square brackets instead of the round brackets in (2.9) to
emphasize that behind X there still is a random experiment that causes the
randomness of the function X. The range of the random variable is commonly
denoted by

X , X(
) (2.11)

and is called alphabet of X.
Note that it follows immediately from (2.9) that the PMF satisfies

PX(x) � 0; all x 2 X (2.12)

and X
x

PX(x) = 1; (2.13)

where the summation in (2.13) is understood to be over all x in X . Equations
(2.12) and (2.13) are the only mathematical requirements on a probability
distribution, i.e., any function which satisfies (2.12) and (2.13) is the PMF of
some suitably defined random variable with some suitable alphabet.

In discrete probability theory, there is no fundamental distinction between
a random variable X and a random vector X: While the random variable
takes value in R, a random n-vector takes value in Rn. So basically, the only
difference is the alphabet of X and X. However, if X1; X2; : : : ; Xn are random
variables with alphabets X1; : : : ;Xn, it is often convenient to consider their
joint probability distribution or joint PMF defined as the mapping from
X1 �X2 � � � � � Xn into the interval [0; 1] such that

PX1;X2;:::;Xn(x1; x2; : : : ; xn) = Pr[X1 = x1; X2 = x2; : : : ; Xn = xn]: (2.14)

(Note that strictly speaking we assume here that these RVs share a common
sample space
 such that the joint PMF actually describes the probability of
the event f! : X1(!) = x1g \ f! : X2(!) = x2g \ � � � \ f! : Xn(!) = xng.)

It follows again immediately that

PX1;X2;:::;Xn(x1; x2; : : : ; xn) � 0 (2.15)

and that X
x1

X
x2

� � �
X
xn

PX1;X2;:::;Xn(x1; x2; : : : ; xn) = 1: (2.16)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

30 Review of Probability Theory

More interestingly, it follows from (2.14) thatX
xi

PX1;X2;:::;Xn(x1; x2; : : : ; xn)

= PX1;:::;Xi�1;Xi+1;:::;Xn(x1; : : : ; xi�1; xi+1; : : : ; xn): (2.17)

The latter is called marginal distribution of the PMF of X.
The random variables X1; X2; : : : ; Xn are said to be statistically indepen-

dent when

PX1;X2;:::;Xn(x1; x2; : : : ; xn) = PX1(x1) � PX2(x2) � � �PXn(xn) (2.18)

for all x1 2 X1; x2 2 X2; : : : ; xn 2 Xn.
If X and Y are independent, then we also write X ?? Y .
Suppose that g is a real-valued function whose domain includes X . Then,

the expectation of g(X), denoted E[g(X)], is the real number

E[g(X)] ,
X
x

PX(x) g(x): (2.19)

The term average is synonymous with expectation. Similarly, when g is a
real-valued function whose domain includes X1 �X2 � � � � � Xn, one defines

E[g(X1; X2; : : : ; Xn)]

,
X
x1

X
x2

� � �
X
xn

PX1;X2;:::;Xn(x1; x2; : : : ; xn) g(x1; x2; : : : ; xn): (2.20)

It is often convenient to consider conditional probability distributions. If
PX(x) > 0, then one defines

PY jX(yjx) , PX;Y (x; y)

PX(x)
: (2.21)

It follows from (2.21) and (2.17) that

PY jX(yjx) � 0; for all y 2 Y (2.22)

and X
y

PY jX(yjx) = 1: (2.23)

Thus, mathematically, there is no fundamental difference between a condi-
tional probability distribution for Y (given, say, X = x) and the (uncondi-
tioned) probability distribution for Y . When PX(x) = 0, we cannot of course
use (2.21) to define PY jX(yjx). It is often said that PY jX(yjx) is “undefined”
in this case, but it is better to say that PY jX(yjx) can be arbitrarily specified,
provided that (2.22) and (2.23) are satisfied by the specification. This latter

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

2.2. Discrete Random Variables 31

practice is often done in information theory to avoid having to treat as spe-
cial cases those uninteresting situations where the conditioning event has zero
probability.

Note that the concept of conditioning allows a more intuitive explanation
of the definition of independence as given in (2.18). If two random variables
X and Y are independent, i.e.,

PX;Y (x; y) = PX(x)PY (y); (2.24)

then

PY jX(yjx) = PX;Y (x; y)

PX(x)
=
PX(x)PY (y)

PX(x)
= PY (y): (2.25)

Hence, we see that the probability distribution of Y remains unchanged irre-
spective of what value X takes on, i.e., they are independent!

If g is a real-valued function whose domain includes X , then the condi-
tional expectation of g(X) given the occurrence of the event A is defined
as

E[g(X) jA] ,
X
x

g(x) Pr[X = x jA]: (2.26)

Choosing A , fY = y0g for some random variable Y and some value y0 2 Y,
we see that (2.26) implies

E[g(X) jY = y0] =
X
x

g(x)PXjY (xjy0): (2.27)

More generally, when g is a real-valued function whose domain includes
X � Y, the definition (2.26) implies

E[g(X;Y) jA] =
X
x

X
y

g(x; y) Pr
�fX = xg \ fY = yg ��A�: (2.28)

Again, nothing prevents us from choosing A , fY = y0g, in which case (2.28)
reduces to

E[g(X;Y) jY = y0] =
X
x

g(x; y0)PXjY (xjy0); (2.29)

as follows from the fact that Pr
�fX = xg \ fY = yg �� fY = y0g

�
vanishes

for all y except y = y0, in which case it has the value Pr[X = x jY = y0] =

PXjY (xjy0). Multiplying both sides of (2.29) by PY (y0) and summing over y0
gives the relation

E[g(X;Y)] =
X
y

E[g(X;Y) jY = y]PY (y); (2.30)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

32 Review of Probability Theory

where we have used (2.20) and where we have changed the dummy variable
of summation from y0 to y for clarity. Similarly, conditioning on an event A,
we would obtain

E[g(X;Y) jA] =
X
y

E
�
g(X;Y)

�� fY = yg \ A� � Pr[Y = y jA]; (2.31)

which in fact reduces to (2.30) when one chooses A to be the certain event
.
Both (2.30) and (2.31) are referred to as statements of the theorem on total
expectation, and are exceedingly useful in the calculation of expectations.

A sequence Y1; Y2; Y3; : : : of random variables is said to converge in prob-
ability to the random variable Y , denoted

Y = plim
n!1

Yn; (2.32)

if for every positive � it is true that

lim
n!1Pr[jY � Ynj < �] = 1: (2.33)

Roughly speaking, the random variables Y1; Y2; Y3; : : : converge in probability
to the random variable Y if, for every large n, it is virtually certain that the
random variable Yn will take on a value very close to that of Y . Suppose
that X1; X2; X3; : : : is a sequence of statistically independent and identically-
distributed (i.i.d.) random variables, let m denote their common expectation

m = E[Xi]; (2.34)

and let

Yn ,
X1 +X2 + � � �+Xn

n
: (2.35)

Then the weak law of large numbers asserts that

plim
n!1

Yn = m; (2.36)

i.e., that this sequence Y1; Y2; Y3; : : : of random variables converges in proba-
bility to (the constant random variable whose value is always) m. Roughly
speaking, the law of large numbers states that, for every large n, it is virtually
certain that X1+X2+���+Xn

n will take on a value close to m.

2.3 Continuous Random Variables

In contrast to a discrete random variable with a finite or countably infinite
alphabet, a continuous random variable can take on uncountably many values.
Unfortunately, once the sample space contains uncountably many elements,
some subtle mathematical problems can pop up. So for example, the set of

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

2.3. Continuous Random Variables 33

all events F can not be defined anymore as set of all subsets, but needs to
satisfy certain constraints, or the alphabet needs to be “decent” enough. In
this very brief review we will omit these mathematical details. Moreover, we
concentrate on a special family of random variables of uncountably infinite
alphabet that satisfy some nice properties: continuous random variables.

A random variable X is called continuous if there exists a nonnegative
function fX , called probability density function (PDF), such that for every
subset of the alphabet B � X , we have

Pr[X 2 B] =
Z
B
fX(x) dx: (2.37)

This function is called density because it describes the probability per length,
similarly to a volume mass density giving the mass per volume, or the surface
charge density giving the electrical charge per surface area. So for example,

Pr[a � X � b] =
Z b

a
fX(x) dx: (2.38)

By definition we have

fX(x) � 0; x 2 X ; (2.39)

and from (2.37) it follows thatZ 1

�1
fX(x) dx = Pr[X 2 R] = 1: (2.40)

These two properties fully correspond to (2.12) and (2.13), respectively. How-
ever, note that fX(x) > 1 is possible, it is even possible that fX is unbounded.
As an example, consider the following PDF:

fX(x) =

8<
:

1
4
p
x

0 < x � 4;

0 otherwise:
(2.41)

Obviously, (2.39) is satisfied. We quickly check that also (2.40) holds:Z 1

�1
fX(x) dx =

Z 4

0

1

4
p
x
dx =

p
x

2

�����
4

x=0

=

p
4

2
�
p
0

2
= 1: (2.42)

The generalization to continuous random vectors is straightforward. We
define the joint PDF of X1; : : : ; Xn such that for any subset B � X1�� � ��Xn

Pr[X 2 B] =
ZZ
� � �
Z
B
fX1;:::;Xn(x1; : : : ; xn) dx1 dx2 � � �dxn: (2.43)

The definition of expectation for continuous random variables corresponds
to (2.19):

E[g(X)] ,
Z 1

�1
fX(x)g(x) dx: (2.44)

Similarly, also the definition of independence, conditional PDFs, and the Total
Expectation Theorem can be taken over from the discrete probability theory.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

34 Review of Probability Theory

2.4 Jensen Inequality

An important basic property of probability theory and convex or concave
function is called Jensen Inequality. Note that in Chapter 9 we will study
convexity and its properties more in detail.

Theorem 2.1 (Jensen Inequality). If f(�) is a concave function over an interval I
and X 2 X is a RV, where X � I, then

E[f(X)] � f(E[X]): (2.45)

Moreover, if f(�) is strictly concave (i.e., if f(�) is double-differentiable it
satisfies d2f(x)

dx2 < 0), then

E[f(X)] = f(E[X]) () X = constant: (2.46)

If in the above “concave” is replaced by “convex”, all inequalities have to be
swapped, too.

Proof: A graphical explanation of why the Jensen Inequality holds is
shown in Figure 2.1. For the special case when f(�) is double-differentiable,
we can prove it as follows. Since f(�) is double-differentiable and concave, we
know that f 00(�) � 0 for all � 2 I. So, using a Taylor expansion around a
point x0 2 I and the correction term, we see that for any x 2 I and some �
that lies between x and x0,

f(x) = f
�
x0 + (x� x0)

�
(2.47)

= f(x0) + f 0(x0)(x� x0) + f 00(�)| {z }
� 0

(x� x0)2| {z }
� 0

(2.48)

� f(x0) + f 0(x0)(x� x0): (2.49)

Taking the expectation over both sides and choosing x0 , E[X], we finally
obtain

E[f(X)] � f(x0) + f 0(x0)(E[X]� x0) (2.50)

= f(E[X]) + f 0(E[X])(E[X]� E[X]) (2.51)

= f(E[X]); (2.52)

proving the claim.

Remark 2.2. An easy way to remember the difference between “concave” and
“convex” is to recall that a concave function looks like “the entrance to a
cave”. M

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

2.4. Jensen Inequality 35

concave

convex

f(x)

xx1 �x x2

f(x1)

f(x)

f(x)

f(x2)

Figure 2.1: Graphical proof of the Jensen Inequality: Fix some x1 and x2 and
let x , px1 + (1 � p)x2 for some p 2 [0; 1]. Then f(x) is always
above f(x) , pf(x1) + (1� p)f(x2).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 3

Entropy, Relative Entropy, and
L1 -Distance

In this chapter we will introduce some more information measures and show
their relation to each other and to entropy. Moreover, we return to the ques-
tion under which situation entropy is maximized.

Most material in this chapter is advanced and can therefore safely be omit-
ted in a first reading, with the exception of the first section: relative entropy
will show up from time to time throughout the script.

3.1 Relative Entropy

Beside the Shannon entropy as defined in Definition 1.4 that describes the un-
certainty of a random experiment with given PMF, there also exist quantities
that compare two random experiments (or rather the PMFs describing these
experiments). In this class, we will touch on such quantities only very briefly.

Definition 3.1. Let P (�) andQ(�) be two PMFs over the same finite (or countably
infinite) alphabet X . The relative entropy or Kullback–Leibler divergence
between P (�) and Q(�) is defined as

D(P kQ) ,
X

x2supp(P)

P (x) log
P (x)

Q(x)
= EP

�
log

P (X)

Q(X)

�
: (3.1)

Remark 3.2. Note that D(P kQ) = 1 if there exists an x 2 supp(P) (i.e.,
P (x) > 0) such that Q(x) = 0:

P (x) log
P (x)

0
=1: (3.2)

So, strictly speaking, we should define relative entropy as follows:

D(P kQ) ,
8<
:
P

x2supp(P) P (x) log
P (x)
Q(x) if supp(P) � supp(Q);

1 otherwise;
(3.3)

37 © Stefan M. Moser — IT, version 6.14

38 Entropy, Relative Entropy, and L1 -Distance

but again, we are lazy in notation and will usually simply write

D(P kQ) =
X
x

P (x) log
P (x)

Q(x)
: (3.4)

M

For us the most important property of D(�k �) is its nonnegativity.

Theorem 3.3.

D(P kQ) � 0 (3.5)

with equality if, and only if, P (�) = Q(�).

Proof: In the case when supp(P) 6� supp(Q), we have D(P kQ) =1 > 0

trivially. So, we assume that supp(P) � supp(Q). Then,

�D(P kQ) =
X

x2supp(P)

P (x) log
Q(x)

P (x)| {z }
, �

(3.6)

�
X

x2supp(P)

P (x)

�
Q(x)

P (x)
� 1

�
� log e (3.7)

=
X

x2supp(P)

�
Q(x)� P (x)� log e (3.8)

=

 X
x2supp(P)

Q(x)

| {z }
� 1

�
X

x2supp(P)

P (x)

| {z }
=1

!
log e (3.9)

� (1� 1) � log e (3.10)

= 0: (3.11)

Here, (3.7) follows from the IT Inequality (Proposition 1.12) and (3.10) by
adding additional terms to the sum. Hence, D(P kQ) � 0.

Equality can be achieved if, and only if,

1. in (3.7), in the IT Inequality � = 1, i.e., if Q(x)
P (x) = 1 for all x 2 supp(P),

i.e., if P (x) = Q(x), for all x; and if

2. in (3.10), supp(P) = supp(Q).

Note that if Condition 1 is satisfied, Condition 2 is also satisfied.
It is quite tempting to think of D(P kQ) as a “distance” between P (�) and

Q(�), in particular because D(P kQ) is nonnegative and is equal to zero only if
P (�) is equal to Q(�). However, this is not correct because the relative entropy
is not symmetric,

D(P kQ) 6= D(QkP); (3.12)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

3.2. L1 -Distance 39

and because it does not satisfy the Triangle Inequality

D(P1kP3) 6� D(P1kP2) + D(P2kP3): (3.13)

This is also the reason why it should not be called “Kullback–Leibler distance”.
Indeed, relative entropy behaves like a squared distance, so one should think
of it as an “energy” rather than distance. (It actually describes the inefficiency
of assuming that the PMF is Q(�) when the true distribution is P (�).)

We have actually encountered the relative entropy already, even then we
did not point this out. From (1.121) it can be seen that mutual information
actually is the relative entropy between the joint PMF PX;Y and the product
of its marginals:

I(X;Y) = D(PX;Y kPX � PY): (3.14)

Hence, I(X;Y) is the divergence between the joint distribution of X and Y

(i.e., PX;Y) and the joint distribution of X and Y if X and Y were independent
(i.e., PX � PY). We thus see another explanation of mutual information: It
describes how different the joint distribution of X and Y is from the situation
then X and Y were independent of each (but with the same marginals).

3.2 L1 -Distance

Another quantity that compares two PMFs is the L1 -distance. In contrast to
relative entropy, this is a true distance.

Definition 3.4. Let P (�) andQ(�) be two PMFs over the same finite (or countably
infinite) alphabet X . The L1 -distance between P (�) and Q(�) is defined as

V (P;Q) ,
X
x2X

��P (x)�Q(x)��: (3.15)

Here it is obvious from the definition that V (P;Q) � 0 with equality if,
and only if, P (�) = Q(�). It is slightly less obvious that V (P;Q) � 2.

Since V (�; �) satisfies all required conditions of a norm, it is correct to
think of the L1 -distance as a distance between P (�) and Q(�). It describes
how similar (or different) two random experiments are.

Remark 3.5. The L1 -distance is strongly related to the total variation dis-
tance :

Vtot(Q1; Q2) =
1

2
V (Q1; Q2): (3.16)

For more details, we refer to [Mos22, Section 2.7]. M

There exists a bound that links entropy, relative entropy and L1 -distance:

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

40 Entropy, Relative Entropy, and L1 -Distance

Theorem 3.6. For any two PMFs P (�) and Q(�) over the same finite alphabet
X , it holds

D(P kQ) � H(Q)�H(P) + V (P;Q) log
1

Qmin
; (3.17)

where

Qmin , min
x2X

Q(x): (3.18)

(See Section 1.4.2 for an explanation of the notation H(Q) and H(P).)

Proof:

D(P kQ)
=
X
x2X

P (x) log
P (x)

Q(x)
(3.19)

=
X
x2X

P (x) logP (x) +
X
x2X

P (x) log
1

Q(x)
(3.20)

= �H(P) +
X
x2X

�
P (x)�Q(x) +Q(x)

�
log

1

Q(x)
(3.21)

= �H(P) +
X
x2X

�
P (x)�Q(x)� log 1

Q(x)
+
X
x2X

Q(x) log
1

Q(x)
(3.22)

= �H(P) +
X
x2X

�
P (x)�Q(x)� log 1

Q(x)
+H(Q) (3.23)

� H(Q)�H(P) +
X
x2X

��P (x)�Q(x)�� log 1

Q(x)
(3.24)

� H(Q)�H(P) +
X
x2X

��P (x)�Q(x)�� log 1

Qmin
(3.25)

= H(Q)�H(P) + V (P;Q) log
1

Qmin
: (3.26)

Another inequality that links relative entropy and L1 -distance is the Pinsker
Inequality (see [Mos22, Section 2.8]). Moreover, some more properties of
V (�; �) and its relation to entropy are discussed next.

3.3 Relations between Entropy and L1 -Distance

3.3.1 Estimating PMFs

Suppose we have a RV X 2 X with an unknown PMF P (�) that we would like
to estimate, and suppose that by some estimation process we come up with
an estimate P̂ (�) for the unknown P (�). If we now use P̂ (�) to compute the
entropy H(X̂), then how good an approximation is this for the entropy H(X)?

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

3.3. Relations between Entropy and L1 -Distance 41

As we will show next, unfortunately, H(X̂) can be arbitrarily far from
H(X) even if P (�) and P̂ (�) are very similar!

Theorem 3.7 ([HY10, Theorem 1]). Suppose � > 0 and � > 0 are given. Then
for any PMF P̂ (�) with a support of size r̂, there exists another PMF P (�) of
support size r � r̂ large enough such that

V (P; P̂) < � (3.27)

but

H(P)�H(P̂) > �: (3.28)

We see that if we do not know the support size r of P (�), then even if
our estimate P̂ (�) is arbitrarily close to the correct P (�) (with respect to the
L1 -distance), the difference between H(P) and H(P̂) remains unbounded.

Proof: For some r̂, let

P̂ (�) = (p1; p2; : : : ; pr̂); (3.29)

where we have used the vector-like notation for the PMF introduced in Sec-
tion 1.4.2. Moreover, let

P (�) =
�
p1 � p1p

log t
; p2 +

p1
t
p
log t

; : : : ; pr̂ +
p1

t
p
log t

;
p1

t
p
log t

; : : : ;
p1

t
p
log t

�
(3.30)

be a PMF with r = t+1 � r̂ probability masses, t 2 N. Note that P (�) indeed
is a PMF:

rX
i=1

P (i) =
r̂X

i=1

pi � p1p
log t

+ t � p1
t
p
log t

= 1� p1p
log t

+
p1p
log t

= 1: (3.31)

For this choice of P (�) and ^P (�) we have1

V (P; P̂) =
p1p
log t

+ t � p1
t
p
log t

=
2p1p
log t

; (3.32)

H(P̂) = �
�
p1 � p1p

log t

�
log

�
p1 � p1p

log t

�

�
r̂X

i=2

�
pi +

p1
t
p
log t

�
log

�
pi +

p1
t
p
log t

�

� �t+ 1� r̂� p1
t
p
log t

log
p1

t
p
log t

(3.33)

� H(P) +
p1p
log t

log
t
p
log t

p1
(3.34)

1For the definition of V it is assumed that P (�) and P̂ (�) take value in the same alphabet.
We can easily fix by adding the right number zeros to the probability vector of P (�).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

42 Entropy, Relative Entropy, and L1 -Distance

= H(P) +
p1p
log t

log t+
p1p
log t

log

p
log t

p1
(3.35)

= H(P) + p1
p
log t+

p1p
log t

log

p
log t

p1
(3.36)

� H(P) + p1
p
log t; (3.37)

where the approximations become more accurate for larger values of t. If we let
t become very large, then V (P; P̂) becomes arbitrarily small, while p1

p
log t

is unbounded.
Note that if we fix the support size r, then Theorem 3.7 does not hold

anymore, and we will show next that then the difference between H(X) and
H(X̂) is bounded.

3.3.2 Extremal Entropy for given L1 -Distance

We will next investigate how one needs to adapt a given PMF P (�) in order
to maximize or minimize the entropy, when the allowed changes on the PMF
are limited:

max
Q : V (P;Q)��

H
�
Q(�)� or min

Q : V (P;Q)��
H
�
Q(�)�: (3.38)

Recall that without any limitations on the PMF, we know from Theorem 1.13
that to maximize entropy we need a uniform distribution, while to minimize
we make it extremely peaky with one value being 1 and the rest 0. Both such
changes, however, will usually cause a large L1 -distance. So the question is
how to adapt a PMF without causing too much L1 -distance, but to maximize
(or minimize) the entropy.

In the remainder of this section, we assume that the given PMF P (�) =
(p1; : : : ; pjX j) is ordered such that

p1 � p2 � � � � � pr > 0 = pr+1 = � � � = pjX j: (3.39)

We again use r as the support size of P (�).
We will omit most proofs in this section and refer to [HY10] instead.

Theorem 3.8 ([HY10, Theorem 2]). Let 0 � � � 2 and P (�) satisfying (3.39) be
given. Here we must restrict jX j to be finite. Let �; � 2 R be such that

jX jX
i=1

(pi � �)+ =
�

2
(3.40)

and

jX jX
i=1

(� � pi)+ =
�

2
; (3.41)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

3.3. Relations between Entropy and L1 -Distance 43

where

(�)+ , maxf�; 0g: (3.42)

If � � �, define Qmax(�) to be the uniform distribution on X ,

Qmax(i) ,
1

jX j ; i = 1; : : : ; jX j; (3.43)

and if � < �, define Qmax(�) as

Qmax(i) ,

8>><
>>:
� if pi > �;

pi if � � pi � �;
� if pi < �;

i = 1; : : : ; jX j: (3.44)

Then

max
Q : V (P;Q)��

H
�
Q(�)� = H

�
Qmax(�)

�
: (3.45)

Note the structure of the maximizing distribution: we cut the largest values
of P (�) to a constant level � and add this probability to the smallest values to
make them all constant equal to �. The middle range of the probabilities are
not touched. So, under the constraint that we cannot twiddle P (�) too much,
we should try to approach a uniform distribution by equalizing the extremes.
See Figure 3.1 for an illustration of this.

It is quite obvious that H
�
Qmax

�
depends on the given �. Therefore for a

given P (�) and for 0 � � � 2, we define

 P (�) , H
�
Qmax(�)

�
(3.46)

with Qmax(�) given in (3.43) and (3.44). One can show that P (�) is a concave
(and therefore continuous) and strictly increasing function in �.

Theorem 3.9 ([HY10, Theorem 3]). Let 0 � � � 2 and P (�) satisfying (3.39) be
given (jX j can be infinite). If 1� p1 � �

2 , define

Qmin(�) , (1; 0): (3.47)

Otherwise, let k be the largest integer such that
rX

i=k

pi � �

2
(3.48)

and define Qmin(�) as

Qmin(i) ,

8>>>>><
>>>>>:

p1 +
�
2 if i = 1;

pi if i = 2; : : : ; k � 1;Pr
j=k pj � �

2 if i = k;

0 if i = k + 1; : : : ; jX j;

i = 1; : : : ; jX j: (3.49)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

44 Entropy, Relative Entropy, and L1 -Distance

�

�

1

p1

2

p2

3

p3

4

p4

5

p5

6

p6

7

p7

� � � jX j

Figure 3.1: Example demonstrating how a PMF with seven nonzero prob-
abilities is changed to maximize entropy under a L1 -distance
constraint (jX j = 9, r = 7). The maximizing distribution is
Qmax(�) = (�; �; �; p4; p5; p6; �; �; �).

Then

min
Q : V (P;Q)��

H
�
Q(�)� = H

�
Qmin(�)

�
: (3.50)

Note that to minimize entropy, we need to change the PMF to make it
more concentrated. To this end, the few smallest probability values are set
to zero and the corresponding amount is added to the single largest proba-
bility. The middle range of the probabilities are not touched. So, under the
constraint that we cannot twiddle P (�) too much, we should try to approach
the (1; 0; : : : ; 0)-distribution by removing the tail and enlarge the largest peak.
See Figure 3.2 for an illustration of this.

Also here, H
�
Qmin(�)

�
depends on the given �. For a given P (�) and for

0 � � � 2, we define

'P (�) , H
�
Qmin(�)

�
(3.51)

with Qmin(�) defined in (3.47)–(3.49). One can show that 'P (�) is a continuous
and strictly decreasing function in �.

We may, of course, also ask the question the other way around: For a given
PMF P (�) and a given entropy H(X), what is the choice of a PMF Q(�) such
that H(Q) = H(X) is achieved and such that Q(�) is most similar to P (�) (with
respect to L1 -distance)?

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

3.3. Relations between Entropy and L1 -Distance 45

1

p1

2

p2

3

p3

4

p4

5

p5

6

p6

7

p7

� � � jX j

Figure 3.2: Example demonstrating how a PMF with seven nonzero prob-
abilities is changed to minimize entropy under a L1 -distance
constraint (r = 7). The minimizing distribution is Qmin(�) =

(p1 + �=2; p2; p3; p4; p5 + p6 + p7 � �=2; 0; 0; 0; 0).

Theorem 3.10 ([HY10, Theorem 4]). Let 0 � t � log jX j and P (�) satisfying (3.39)
be given. Then

min
Q : H(Q(�))=t

V (P;Q) =

8>>>>><
>>>>>:

2(1� p1) if t = 0;

'�1
P (t) if 0 < t � H

�
P (�)�;

 �1
P (t) if H

�
P (�)� < t < log jX j;Pr

i=1

���pi � 1
jX j
���+ jX j�r

jX j if t = log jX j
(3.52)

with �1
P (�) and '�1

P (�) being the inverse of the functions defined in (3.46) and
(3.51), respectively.

Note that this result actually is a direct consequence of Theorem 3.8 and
3.9 and the fact that P (�) and 'P (�) both are continuous and monotonic
functions that have a unique inverse.

3.3.3 Lower Bound on Entropy in Terms of L1 -Distance

In Section 1.2.4 we have found the most general lower bound on entropy:
H(X) � 0. Using the results from the previous section, we can now improve

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

46 Entropy, Relative Entropy, and L1 -Distance

on this lower bound by taking into account the PMF of X.

Theorem 3.11. For a given r 2 N n f1g, consider a RV X that takes value
in an r-ary alphabet X with a PMF PX(�) = (p1; p2; : : : ; pr). Then the
entropy of X can be lower-bounded as follows:

H(X) = H(p1; : : : ; pr) � log r � r log r

2(r � 1)

rX
i=1

����pi � 1

r

����: (3.53)

This lower bound has a beautiful interpretation: Let X 2 X be an arbi-
trary RV and let U be uniformly distributed on the same alphabet X . Then
(3.53) can be rewritten as follows:

H(U)�H(X) � V (PU ; PX) � jX j log jX j
2(jX j � 1)

: (3.54)

Now recall that the entropy of a uniformly distributed RV is equal to the
logarithm of the alphabet size, and if the distribution is not uniform, then the
entropy is smaller. So, Theorem 3.11 gives an upper bound on this reduction
in terms of the L1 -distance between the PMF and the uniform PMF.

Proof: Suppose we can prove that

'PU

�
2(r � 1)

r
(1� �)

�
� � log r; 8 � 2 [0; 1]; r 2 N n f1g: (3.55)

Since 'PU (�) is monotonically decreasing, this means that

2(r � 1)

r
(1� �) � '�1

PU
(� log r); (3.56)

and since 0 � H(PX) � log r, it then follows from Theorem 3.10 that
rX

`=1

����p` � 1

r

���� log r = V (PU ; PX) � log r (3.57)

� min
Q : H(Q)=H(PX)

V (PU ; Q) � log r (3.58)

= '�1
PU

�
H(PX)

� � log r (by Theorem 3.10) (3.59)

= '�1
PU

�
H(PX)

log r
log r

�
� log r (3.60)

= '�1
PU

(� log r)
���
�=

H(PX)

log r

� log r (3.61)

� 2(r � 1)

r
(1� �)��

�=
H(PX)

log r

� log r (by (3.56)) (3.62)

=
2(r � 1)

r

�
1� H(PX)

log r

�
log r (3.63)

=
2(r � 1)

r

�
log r �H(PX)

�
; (3.64)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

3.3. Relations between Entropy and L1 -Distance 47

from which follows (3.53).
Hence, it only remains to prove (3.55). To this end, recall the definition

of 'PU (�) in (3.51) with the Qmin(�) given in (3.47)–(3.49) and where

� =
2(r � 1)

r
(1� �) (3.65)

for � 2 [0; 1]. Hence,

�

2
=
r � 1

r
(1� �) � r � 1

r
= 1� 1

r
= 1� PU (1) (3.66)

and Qmin is defined by (3.49) exclusively:

'PU (�) = �
�
1

r
+
�

2

�
log

�
1

r
+
�

2

�
+
k � 2

r
log r

�
�
1� k � 1

r
� �

2

�
log

�
1� k � 1

r
� �

2

�
(3.67)

with k being the largest integer satisfying (see (3.48))

rX
i=k

1

r
= 1� k � 1

r
� �

2
; (3.68)

i.e.,

k =

�
r

�
1� �

2

��
+ 1: (3.69)

Proving (3.55) is thus equivalent to proving the nonnegativity of

fr(�) ,
1

log r
'PU

�
2(r � 1)

r
(1� �)

�
� � (3.70)

for all � 2 [0; 1] and for all r 2 N n f1g. Using (3.67) and (3.69),

fr(�) = � 1

log r

�
1� � + �

r

�
log

�
1� � + �

r

�
+

1

r

�
1 + r� � ��� 1

r

� 1

log r

�
1

r
+ � � �

r
� 1

r

�
1 + r� � ���

� log
�
1

r
+ � � �

r
� 1

r

�
1 + r� � ���� � (3.71)

= 1� � � 1

r log r

�
r � r� + �

�
log
�
r � r� + �

�
� 1

r log r

�
1 + r� � � � �1 + r� � ��� log�1 + r� � � � �1 + r� � ���:

(3.72)

Note that fr(�) is continuous in � for all � 2 [0; 1], but that its derivative is
not continuous due to the floor-function.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

48 Entropy, Relative Entropy, and L1 -Distance

Choose some ��l and ��r such that for all � 2 [��l ; �
�
r),�

1 + r� � �� = constant , � 2 f1; : : : ; rg: (3.73)

For such �, we have

fr(�) = 1� � � 1

r log r

�
r � r� + �

�
log
�
r � r� + �

�
� 1

r log r
(1 + r� � � � �) log(1 + r� � � � �) (3.74)

with
@2

@�2
fr(�) =

�(r � 1)2(r + 1� �)
r ln r (r � r� + �)(1 + r� � �| {z }

��

� �) < 0; � 2 [��l ; �
�
r): (3.75)

Hence fr(�) is concave over the interval [��l ; �
�
r), and therefore, in this interval,

fr(�) is lower-bounded by one of the boundary points fr(��l) or fr(��r).
So we investigate these boundary points for all possible intervals [��l ; �

�
r).

Let �� 2 [0; 1] be such that

1 + r�� � �� 2 N; (3.76)

i.e., for some ` 2 f1; : : : ; rg, we have

�� =
`� 1

r � 1
: (3.77)

Also note that

lim
�#��

�
1 + r� � � � �1 + r� � ��� log�1 + r� � � � �1 + r� � ���

= lim
t#0

t log t = 0: (3.78)

Therefore, and by the continuity of fr(�), we have

fr(�
�) = 1� �� � 1

r log r
(r � r�� + ��) log(r � r�� � ��) (3.79)

= 1� `� 1

r � 1
� 1

r log r
(r � `+ 1) log(r � `+ 1) (3.80)

, ~f(`): (3.81)

We extend the definition of ~f(`) to ` 2 [1; r] and prove concavity:

@2

@`2
~f(`) =

�1
r ln r (r � `+ 1)

< 0: (3.82)

Thus, ~f(`) is lower-bounded by one of the boundary points ~f(1) or ~f(r). Since

~f(1) = ~f(r) = 0; (3.83)

we have finally shown that fr(�) � 0. This completes the proof.
An immediate consequence of this lower bound on the entropy is an upper

bound on the relative entropy between a general P and the uniform distribu-
tion.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

3.4. Maximum Entropy Distribution 49

Corollary 3.12. For a given r 2 f2; 3; : : :g, consider a RV X that takes value in
an r-ary alphabet X with a PMF PX(�) = (p1; p2; : : : ; pr). Then the relative
entropy between PX(�) and the uniform distribution over X can be upper-
bounded as follows:

D(PX kPU) = D

�
p1; : : : ; pr

 1r ; : : : ; 1r
�
� r log r

2(r � 1)

rX
i=1

����pi � 1

r

����: (3.84)

Proof: Note that the entropy of X can be understood as the entropy of a
uniform RV minus the relative entropy between the actual distribution of X
and the uniform distribution:

H(X) = H(p1; : : : ; pr) (3.85)

=
rX

i=1

pi log
1

pi
(3.86)

=
rX

i=1

pi log

�
1=r

pi
� 1

1=r

�
(3.87)

= �D

�
p1; : : : ; pr

 1r ; : : : ; 1r
�
+

rX
i=1

pi log r (3.88)

= log r �D

�
p1; : : : ; pr

 1r ; : : : ; 1r
�
: (3.89)

The result now follows from (3.53).

3.4 Maximum Entropy Distribution

Another interesting question to ask is the following: Given an alphabet and
some constraints on some expectations of the RV, what PMF maximizes en-
tropy? We already know that without any moment constraints, the uniform
PMF maximizes entropy for a given finite alphabet (see Theorem 1.13). In
the following we will generalize this result.

Theorem 3.13 (Maximum Entropy Distribution).
Let the RV X with PMF p(�) take value in the finite alphabet X and
satisfy the following J constraints:

E[rj(X)] =
X
x2X

p(x)rj(x) = �j ; for j = 1; : : : ; J; (3.90)

for some given functions r1(�); : : : ; rJ(�) and for some given values �1; : : : ;

�J. Then H(X) is maximized if, and only if,

p(x) = p�(x) , e�0+
PJ

j=1
�jrj(x) (3.91)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

50 Entropy, Relative Entropy, and L1 -Distance

assuming that �0; : : : ; �J can be chosen such that (3.90) is satisfied and
such that X

x2X
p�(x) = 1: (3.92)

Proof: Let q(�) be an arbitrary PMF for X satisfying (3.90), and assume
that p�(�) in (3.91) exists, i.e., it satisfies (3.90) and (3.92). Then

Hq(X) = �
X
x2X

q(x) ln q(x) (3.93)

= �
X
x2X

q(x) ln

�
q(x)

p�(x)
p�(x)

�
(3.94)

= �D(qkp�)| {z }
� 0

�
X
x2X

q(x) ln p�(x) (3.95)

� �
X
x2X

q(x) ln e
�0+
PJ

j=1
�jrj(x) (3.96)

= �
X
x2X

q(x)

0
@�0 + JX

j=1

�jrj(x)

1
A (3.97)

= ��0 �
JX

j=1

�j Eq[rj(X)] (3.98)

= ��0 �
JX

j=1

�j�j (q(�) satisfies (3.90)) (3.99)

= ��0
X
x2X

p�(x)�
JX

j=1

�j Ep� [rj(X)] (p�(�) satisfies (3.90)) (3.100)

= �
X
x2X

p�(x)

0
@�0 + JX

j=1

�jrj(x)

1
A (3.101)

= �
X
x2X

p�(x) ln p�(x) (3.102)

= Hp�(X): (3.103)

Hence for any q(�) we have

Hq(X) � Hp�(X); (3.104)

i.e., p�(�) maximizes entropy!
As an example of how Theorem 3.13 could be used consider the example

of a nonnegative integer-valued RV with some given mean �.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

3.4. Maximum Entropy Distribution 51

Corollary 3.14. LetX be a nonnegative integer-valued RV with mean �: X 2 N0,
E[X] = �. Then

H(X) � (�+ 1) log(�+ 1)� � log�: (3.105)

Proof: Given X 2 N0 and E[X] = �, we know from Theorem 3.13 that
p�(x) = e�0+�1x = c e�x maximizes the entropy. We need to compute the
constants c and �. From

1X
x=0

c e�x
!
= 1 (3.106)

we get

c =
1P1

x=0 e
�x

=
1
1

1�e�
= 1� e�: (3.107)

From

E[X] =
1X
x=0

�
1� e�� e�xx (3.108)

=
1X
x=0

�
1� e�� @

@�
e�x (3.109)

=
�
1� e�� @

@�

1X
x=0

e�x (3.110)

=
�
1� e�� @

@�

1

1� e� (3.111)

=
�
1� e�� e�

(1� e�)2 (3.112)

=
e�

1� e�
!
= � (3.113)

we get

� = ln

�
�

�+ 1

�
: (3.114)

Hence,

p�(x) =
1

�+ 1

�
�

�+ 1

�x
(3.115)

and therefore

Hp�(X) = E

"
�log

1

�+ 1

�
�

�+ 1

�X!#
(3.116)

= log(�+ 1)� E[X] log

�
�

�+ 1

�
(3.117)

= log(�+ 1)� � log

�
�

�+ 1

�
(3.118)

= (�+ 1) log(�+ 1)� � log�: (3.119)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 4

Data Compression: Efficient Coding
of a Single Random Message

After having introduced the basic definitions of information theory, we now
start with the first important practical problem: how to represent information
in an efficient manner. We start with the most simple situation of a single
random message, and then extend the setup to more practical cases of an
information source without and finally with memory. We will see that some
of the basic definitions of Chapter 1 are closely related to this fundamental
problem of data compression.

4.1 A Motivating Example

You would like to set up your own phone system that connects you to your
three best friends. The question is how to design efficient binary phone num-
bers. In Table 4.1 you find six different ways how you could choose them.

Note that in this example the phone number is a codeword for the person

Table 4.1: Binary phone numbers for a telephone system with three friends.

Friend Alice Bob Carol

Probability 1
4

1
2

1
4

Phone numbers (i) 0011 0011 1100

(ii) 001101 001110 110000

(iii) 0 1 10

(iv) 00 11 10

(v) 0 11 10

(vi) 10 0 11

53 © Stefan M. Moser — IT, version 6.14

54 Efficient Coding of a Single Random Message

you want to talk to. The set of all phone numbers is called code. We also
assume that you have different probabilities when calling your friends: Bob is
your best friend whom you will call in 50% of the times. Alice and Carol are
contacted with a frequency of 25% each.

So let us discuss the different designs in Table 4.1:

(i) In this design Alice and Bob have the same phone number. The system
obviously will not be able to connect properly. We say that this code is
singular.

(ii) This is much better, i.e., the code will actually work. However, the phone
numbers are quite long and therefore the design is rather inefficient.

(iii) This code is much shorter and at the same time does not use the same
codeword twice. Still, a closer look reveals that the system will not
work: If you dial 10 this could mean “Carol” or also “Bob, Alice”. Or
in other words: The telephone system will never connect you to Carol,
because once you dial 1, it will immediately connect you to Bob. So,
even though the code is nonsingular, it is not uniquely decodable (see
below for an exact definition).

(iv) This is the first quite efficient code that is functional. But we note
something: When calling Alice, why do we have to dial two zeros? After
the first zero it is already clear to whom we would like to be connected!
We fix this in design (v).

(v) This is still uniquely decodable and obviously more efficient than (iv).
Is it the most efficient code? No! Since Bob is called most often, he
should be assigned the shortest codeword.

(vi) This is the optimal code. Note one interesting property: Even though
the numbers do not all have the same length, once you finish dialing
any of the three numbers, the system immediately knows that you have
finished dialing. This is because no codeword is the prefix 1 of any other
codeword, i.e., it never happens that the first few digits of one codeword
are identical to another codeword. Such a code is called prefix-free (see
Section 4.3 below). Note that (iii) was not prefix-free: 1 is a prefix of
10.

From this example we learn the following requirements that we impose on
our code design:

• A code needs to be nonsingular and uniquely decodable, where we
define the latter as follows.

1According to the Oxford English Dictionary, a prefix is a word, letter, or number placed
before another.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.2. A Coding Scheme 55

Definition 4.1. A code is called uniquely decodable if a string of any
finite number of arbitrarily concatenated codewords can be split up into
constituent codewords in only one unique way.

We will come back to this issue of decodability in Section 4.10.

• A code should be short, i.e., we want to minimize the average codeword
length E[L], which is defined as follows:

E[L] ,
rX

i=1

pili: (4.1)

Here pi denotes the probability that the source emits the ith symbol,
i.e., the probability that the ith codeword ci is selected; li is the length
of the ith codeword; and r is the number of codewords.

• We additionally require the code to be prefix-free. Note that this re-
quirement is not necessary, but only convenient. However, we will later
see that we lose nothing by asking for it.

4.2 A Coding Scheme

As we have seen in the motivating example, this chapter is concerned with
efficient ways of representing data. To say it in an engineering way: we want
to “compress data without losing any information”.

D-ary
message
encoder

C = (C1; C2; : : : ; CL)
r-ary

random
message

U 2 fu1; u2; : : : ; urg

Figure 4.2: Basic data compression system for a single random message U .

To simplify the problem we will consider a rather abstract setup as shown
in Figure 4.2. There, we have the following building blocks:

U : random message (random variable), taking value in an r-ary alphabet
fu1; u2; : : : ; urg, with probability mass function (PMF) PU (�):

PU (ui) = pi; i = 1; : : : ; r: (4.2)

C`: codeword letter, taking value in the D-ary alphabet f0; 1; : : : ;D� 1g.

C: codeword, taking a different value depending on the value of the message
U . Actually, the codeword is a deterministic function of U , i.e., it is only
random because U is random.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

56 Efficient Coding of a Single Random Message

L: codeword length (length of C). It is random because U is random and
because the different codewords do not necessarily all have the same
length.

Remark 4.2. We note the following:

• For every message ui we have a codeword ci of length li. Hence, ci is a
representation of ui in the sense that we want to be able to recover ui
from ci.

• The complete set of codewords is called a code for U .

• For a concrete system to work, not only the code needs to be known,
but also the assignment rule that maps the message to a codeword. We
call the complete system coding scheme.

• The quality of a coding scheme is its average length E[L]: the shorter,
the better! (Remember, we are trying to compress the data!)

• Since the code letters are D-ary, the code is called a D-ary code. M

To summarize:

The codeword C is a one-to-one representation of the random message
U . We try to minimize the expected length of C, i.e., we “compress” the
data U .

Remark 4.3. In principle it is no problem if some message ui has a zero proba-
bility. Obviously it should be assigned a long codeword as ui will (with prob-
ability 1) not occur. However, when assigning a codeword for zero-probability
messages, we will mess up a fair comparison between different codes. For
example, if we use a provably optimal code, but then increase the codeword
length of the codeword for the message that never occurs by a factor 100.
The expected codeword length still is the same, so this new code performs
equally well. So it is also optimal, even though it contains one codeword that
is tremendously longer than in the original code. So, shall we really consider
these two codes to be the same?

To avoid such issues, in the following we will always assume that all mes-
sages have nonzero probability (or, equivalently, we will remove from the mes-
sage alphabet those symbols that have zero probability). M

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.3. Prefix-Free or Instantaneous Codes 57

4.3 Prefix-Free or Instantaneous Codes

Consider the following code with four codewords:

c1 = 0

c2 = 10

c3 = 110

c4 = 111

(4.3)

Note that the zero serves as a kind of “comma”: Whenever we receive a zero
(or the code has reached length 3), we know that the codeword has finished.
However, this comma still contains useful information about the message as
there is still one codeword without it! This is another example of a prefix-free
code. We recall the following definition.

Definition 4.4. A code is called prefix-free (or sometimes also instantaneous)
if no codeword is the prefix of another codeword.

The name instantaneous is motivated by the fact that for a prefix-free
code we can decode instantaneously once we have received a codeword and do
not need to wait for later until the decoding becomes unique. Unfortunately,
in literature one also finds people calling a prefix-free code a prefix code. This
name is quite confusing because rather than having prefixes it is the point of
the code to have no prefix! We shall stick to the name prefix-free codes.

Consider next the following example:

c1 = 0

c2 = 01

c3 = 011

c4 = 111

(4.4)

This code is not prefix-free (0 is a prefix of 01 and 011; 01 is a prefix of 011),
but it is still uniquely decodable.

Exercise 4.5. Given the code in (4.4), decode the sequence 0011011110. �

Note the drawback of the code design in (4.4): The receiver needs to wait
and see how the sequence continues before it can make a unique decision about
the decoding. The code is not instantaneously decodable.

Apart from the fact that they can be decoded instantaneously, another
nice property of prefix-free codes is that they can very easily be represented
by leaves of decision trees. To understand this we will next make a small
detour and talk about trees and their relation to codes.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

58 Efficient Coding of a Single Random Message

4.4 Trees and Codes

The following definition is quite straightforward.

Definition 4.6. A D-ary tree consists of a root with some branches, nodes, and
leaves in such a way that the root and every node have exactly D children.

As example, in Figure 4.3 a binary tree is shown, with two branches stem-
ming forward from every node.

root

parent node with two children

leaves

nodes

branch

forward

Figure 4.3: A binary tree with four nodes (including the root—the node that
is grounded), and five leaves. Note that we always clearly dis-
tinguish between nodes and leaves : A node always has children,
while a leaf always is an “end-point” in the tree.

The clue to this section is to note that any D-ary code can be represented
as a D-ary tree. The D branches stemming from each node stand for the D

different possible symbols in the code’s alphabet, so that when we walk along
the tree starting from the root, each symbol in a codeword is regarded as
a decision which of the D branches to take. Hence, every codeword can be
represented by a particular path traversing through the tree.

As an example, Figure 4.4 shows the binary (i.e., D = 2) tree of a binary
code with five codewords, and Figure 4.5 shows a ternary (D = 3) tree with
six codewords. Note that we need to keep branches that are not used in order
to make sure that the tree is D-ary.

In Figure 4.6, we show the tree describing the prefix-free code given in
(4.3). Note that here every codeword is a leaf. This is no accident.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.4. Trees and Codes 59

0

1

110

0010

001101

001110

110000

Figure 4.4: An example of a binary tree with five codewords: 110, 0010,
001101, 001110, and 110000. At every node, going upwards cor-
responds to a 0, and going downwards corresponds to a 1. The
node with the ground symbol is the root of the tree indicating the
starting point.

0

1

2

1

2

01

22

201

202

Figure 4.5: An example of a ternary tree with six codewords: 1, 2, 01, 22,
201, and 202. At every node, going upwards corresponds to a 0,
taking the middle branch corresponds to a 1, and going downwards
corresponds to a 2.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

60 Efficient Coding of a Single Random Message

0

1 0

10

110

111

Figure 4.6: Decision tree corresponding to the prefix-free code given in (4.3).

Lemma 4.7. A D-ary code fc1; : : : ; crg is prefix-free if, and only if, in its D-ary
tree every codeword is a leaf. (But not every leaf necessarily is a codeword.)

Exercise 4.8. Prove Lemma 4.7.
Hint: Carefully think about the definition of prefix-free codes (Defini-

tion 4.4). �

As mentioned, the D-ary tree of a prefix-free code might contain leaves that
are not codewords. Such leaves are called unused leaves. Some more examples
of trees of prefix-free and non-prefix-free codes are shown in Figure 4.7.

(iii)

0

1

10

not prefix-free

(iv)
00

10

11

prefix-free

(v)–(vi)

0

10

11

prefix-free

Figure 4.7: Examples of codes and its trees. The examples are taken from
Table 4.1.

An important concept of trees is the depths of their leaves.

Definition 4.9. The depth of a leaf in a D-ary tree is the number of steps it
takes when walking from the root forward to the leaf.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.4. Trees and Codes 61

As an example consider again Figure 4.7. Tree (iv) has four leaves, all of
them at depth 2. Both tree (iii) and tree (v)-(vi) have three leaves, one at
depth 1 and two at depth 2.

We will now derive some interesting properties of trees. Since codes can
be represented by trees, we will then be able to apply these properties directly
to codes.

Lemma 4.10 (Leaf Counting and Leaf Depth Lemma). The number of leaves n and
their depths l1; l2; : : : ; ln in a D-ary tree satisfy:

n = 1 +N(D� 1); (4.5)
nX
i=1

D�li = 1; (4.6)

where N is the number of nodes (including the root).

Proof: By extending a leaf we mean changing a leaf into a node by adding
D branches that stem forward. In that process

• we reduce the number of leaves by 1,

• we increase the number of nodes by 1, and

• we increase the number of leaves by D,

i.e., in total we gain 1 node and D� 1 leaves. This process is depicted graph-
ically in Figure 4.8 for the case of D = 3.

�1 leaf

=)

+1 node

+3 leaves

Figure 4.8: Extending a leaf in a ternary tree (D = 3): The total number
of nodes is increased by one and the total number of leaves is
increased by D� 1 = 2.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

62 Efficient Coding of a Single Random Message

To prove the first statement (4.5), we start with the extended root, i.e., at
the beginning, we have the root and n = D leaves. In this case, we have N = 1

and (4.5) is satisfied. Now we can grow any tree by continuously extending
some leaf, every time increasing the number of leaves by D�1 and the number
of nodes by 1. We see that (4.5) remains valid. By induction this proves the
first statement.

We will prove the second statement (4.6) also by induction. We again start
with the extended root.

1. An extended root has D leaves, all at depth 1: li = 1. Hence,

nX
i=1

D�li =
DX
i=1

D�1 = D �D�1 = 1; (4.7)

i.e., for the extended root (4.6) is satisfied.

2. Suppose
Pn

i=1D
�li = 1 holds for an arbitrary D-ary tree with n leaves.

Now we extend one leaf, say the nth leaf.2 We get a new tree with
n0 = n� 1 +D leaves where the D new leaves all have depths ln + 1:

n0X
i=1

D�l0i =
n�1X
i=1

D�li

| {z }
unchanged

leaves

+D �D�(ln+1)| {z }
new leaves
at depth
ln + 1

(4.8)

=
n�1X
i=1

D�li +D�ln (4.9)

=
nX
i=1

D�li = 1: (4.10)

Here the last equality follows from our assumption that
Pn

i=1D
�li = 1.

Hence by extending one leaf the second statement continues to hold.

3. Since any tree can be grown by continuously extending some leaf, the
proof follows by induction.

We are now ready to apply our first insights about trees to codes.

4.5 Kraft Inequality

The following theorem is very useful because it gives us a way to find out
whether a prefix-free code exists or not.

2Since the tree is arbitrary, it does not matter how we number the leaves.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.5. Kraft Inequality 63

Theorem 4.11 (Kraft Inequality).
There exists a D-ary prefix-free code with r codewords of lengths l1; l2;
: : : ; lr 2 N if, and only if,

rX
i=1

D�li � 1: (4.11)

If (4.11) is satisfied with equality, then there are no unused leaves in the
tree.

Example 4.12. Let l1 = 3, l2 = 4, l3 = 4, l4 = 4, l5 = 4, and consider a binary
code D = 2. Then

2�3 + 4 � 2�4 =
1

8
+

4

16
=

3

8
� 1; (4.12)

i.e., there exists a binary prefix-free code with the above codeword lengths.
On the other hand, we cannot find any binary prefix-free code with five

codewords of lengths l1 = 1, l2 = 2, l3 = 3, l4 = 3, and l5 = 4 because

2�1 + 2�2 + 2 � 2�3 + 2�4 =
17

16
> 1: (4.13)

But, if we instead look for a ternary prefix-free code (D = 3) with five code-
words of these lengths, we will be successful because

3�1 + 3�2 + 2 � 3�3 + 3�4 =
43

81
� 1: (4.14)

These examples are shown graphically in Figure 4.9. �

Proof of the Kraft Inequality: We prove the two directions separately:

=): Suppose that there exists a D-ary prefix-free code with the given code-
word lengths. From Lemma 4.7 we know that all r codewords of a D-ary
prefix-free code are leaves in a D-ary tree. The total number n of (used
and unused) leaves in this tree can therefore not be smaller than r,

r � n: (4.15)

Hence,

rX
i=1

D�li �
nX
i=1

D�li = 1; (4.16)

where the last equality holds because of the Leaf Depth Lemma (Lem-
ma 4.10).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

64 Efficient Coding of a Single Random Message

3

4

4

4

4

1

2

3

3

4?

1

2

3

3

4

Figure 4.9: Illustration of the Kraft Inequality according to Example 4.12.

(=: Suppose that
Pr

i=1D
�li � 1. We now can construct a D-ary prefix-free

code as follows:

Step 1: Start with the extended root, i.e., a tree with D leaves, set i = 1,
and assume without loss of generality that l1 � l2 � � � � � lr.

Step 2: If there is an unused leaf at depth li, put the ith codeword there.
Note that there could be none because li can be strictly larger
than the current depth of the tree. In this case, extend any
unused leaf to depth li, and put the ith codeword to one of the
new leaves.

Step 3: If i = r, stop. Otherwise i! i+ 1 and go to Step 2.

We only need to check that Step 2 is always possible, i.e., that there is
always some unused leaf available. To this end, note that if we get to

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.6. Trees with Probabilities 65

Step 2, we have already put i � 1 codewords into the tree. From the
Leaf Depth Lemma (Lemma 4.10) we know that

1 =
nX
j=1

D�~lj =
i�1X
j=1

D�lj

| {z }
used leaves

+
nX
j=i

D�~lj

| {z }
unused leaves

; (4.17)

where ~lj are the depths of the leaves in the tree at that moment, i.e.,
(~l1; : : : ; ~li�1) = (l1; : : : ; li�1) and ~li; : : : ; ~ln are the depths of the (so far)
unused leaves. Now note that by assumption i � r, i.e.,

i�1X
j=1

D�lj <
rX

j=1

D�lj � 1; (4.18)

where the last inequality follows by assumption. Hence, in (4.17), the
term “used leaves” is strictly less than 1, and thus the term “unused
leaves” must be strictly larger than 0, i.e., there still must be some
unused leaves available!

Remark 4.13. The beauty of the above proof is that it is constructive, giving
us an algorithm how to build a corresponding code tree for given codeword
lengths. Another, nonconstructive proof of the Kraft Inequality is as follows:
Let lmax be the length of the longest codeword and consider the full D-ary
tree to depth lmax. This tree contains Dlmax leaves. Any codeword at depth li
blocks Dlmax�li of these leaves because in a prefix-free code no codeword can
have other codewords further down in the tree. Thus,

rX
i=1

Dlmax�li � Dlmax : (4.19)

The Kraft Inequality now follows directly by dividing both sides by Dlmax . M

4.6 Trees with Probabilities

We have seen already in Section 4.1 that for codes it is important to consider
the probabilities of the codewords. We therefore now introduce probabilities
in our trees.

Definition 4.14. A tree with probabilities is a finite tree with probabilities
assigned to each node and leaf such that

• the probability of a node is the sum of the probabilities of its children,
and

• the root has probability 1.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

66 Efficient Coding of a Single Random Message

node 1

1

leaf 1

0:2

node 2

0:8

node 3

0:3

leaf 2

0:5

leaf 3

0:2

leaf 4

0:1

Figure 4.10: An example of a binary tree with probabilities.

An example of a binary tree with probabilities is given in Figure 4.10. Note
that the node probabilities can be seen as the overall probability of passing
through this node when making a random walk from the root to a leaf. For
the example of Figure 4.10, we have an 80% chance that our path will go
through node 2, and with a chance of 30% we will pass through node 3. By
definition, the probability of ending up in a certain leaf is given by the leaf
probability, e.g., in Figure 4.10, we have a 10% chance to end up in leaf 4.
Obviously, since we always start our random walk at the root, the probability
that our path goes through the root is always 1.

To clarify our notation we will use the following conventions:

• n denotes the total number of leaves;

• pi, i = 1; : : : ; n, denote the probabilities of the leaves;

• N denotes the number of nodes (including the root, but excluding the
leaves); and

• P`, ` = 1; : : : ;N, denote the probabilities of the nodes, where by defini-
tion P1 = 1 is the root probability.

Moreover, we will use q`;j to denote the probability of the jth node/leaf that is
one step forward from node ` (the jth child of node `), where j = 0; 1; : : : ;D�
1. I.e., we have

D�1X
j=0

q`;j = P`: (4.20)

Since in a prefix-free code all codewords are leaves and we are particularly
interested in the average codeword length, we are very much interested in the

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.6. Trees with Probabilities 67

average depth of the leaves in a tree (where for the averaging operation we
use the probabilities in the tree). Luckily, there is an elegant way to compute
this average depth as shown in the following lemma.

Lemma 4.15 (Path Length Lemma). In a rooted tree with probabilities, the
average depth E[L] of the leaves is equal to the sum of the probabilities
of all nodes (including the root):

E[L] =
NX
`=1

P`: (4.21)

Example 4.16. Consider the tree of Figure 4.10. We have four leaves: one
at depth l1 = 1 with a probability p1 = 0:2, one at depth l2 = 2 with a
probability p2 = 0:5, and two at depth l3 = l4 = 3 with probabilities p3 = 0:2

and p4 = 0:1, respectively. Hence, the average depth of the leaves is

E[L] =
4X

i=1

pili = 0:2 � 1 + 0:5 � 2 + 0:2 � 3 + 0:1 � 3 = 2:1: (4.22)

According to Lemma 4.15 this must be equal to the sum of the node proba-
bilities:

E[L] = P1 + P2 + P3 = 1 + 0:8 + 0:3 = 2:1: (4.23)

�

Proof of Lemma 4.15: The lemma is easiest understood when looking
at a particular example. Let us again consider the tree of Figure 4.10. When
computing the average depth of the leaves, we sum all probabilities of the
leaves weighted with the corresponding depth. So, e.g., the probability p1 =

0:2 of leaf 1 — being at depth 1 — has weight 1, i.e., it needs to be counted
once only. If we now look at the sum of the node probabilities, then we note
that p1 indeed is only counted once as it only is part of the probability of the
root P1 = 1.

Leaf 2, on the other hand, is at depth 2 and therefore its probability
p2 = 0:5 has weight 2, or in other words, p2 needs to be counted twice. Again,
in the sum of the node probabilities, this is indeed the case because p2 is
contained both in the root probability P1 = 1 and also in the probability of
the second node P2 = 0:8.

Finally, the probabilities of leaf 3 and leaf 4, p3 = 0:2 and p4 = 0:1, are
counted three times as they are part of P1, P2, and P3:

E[L] = 2:1 (4.24)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

68 Efficient Coding of a Single Random Message

= 1 � 0:2 + 2 � 0:5 + 3 � 0:2 + 3 � 0:1 (4.25)

= 1 � (0:2 + 0:5 + 0:2 + 0:1) + 1 � (0:5 + 0:2 + 0:1) + 1 � (0:2 + 0:1) (4.26)

= 1 � P1 + 1 � P2 + 1 � P3 (4.27)

= P1 + P2 + P3: (4.28)

Since we have started talking about probabilities and since this is an in-
formation theory course, it should not come as a big surprise that we next
introduce the concept of entropy in our trees.

Definition 4.17. The leaf entropy is defined as

Hleaf , �
nX
i=1

pi log pi: (4.29)

Definition 4.18. The branching entropy H` of node ` is defined as

H` , �
D�1X
j=0

q`;j
P`

log
q`;j
P`
: (4.30)

Note that q`;j
P`

is the conditional probability of going along the jth branch
given that we are at node ` (normalization!). Further note that, as usual, we
implicitly exclude zero probability values. In particular, we do not consider
the situation where a node has zero probability, but assume that in this case
this node with all its children (and their children, etc.) is removed from the
tree and replaced by an unused leaf.

So far we do not see yet what the use of these definitions will be, but we
compute an example anyway.

Example 4.19. Consider the tree in Figure 4.11. We have

Hleaf = �0:4 log 0:4� 0:1 log 0:1� 0:5 log 0:5 � 1:361 bits; (4.31)

H1 = �0:4
1

log
0:4

1
� 0:6

1
log

0:6

1
� 0:971 bits; (4.32)

H2 = �0:1
0:6

log
0:1

0:6
� 0:5

0:6
log

0:5

0:6
� 0:650 bits; (4.33)

H3 = �0:1
0:1

log
0:1

0:1
= 0 bits: (4.34)

�

We will next prove a very interesting relationship between the leaf en-
tropy and the branching entropy that will turn out to be fundamental for the
understanding of codes.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.6. Trees with Probabilities 69

H1

1

0:4

H2

0:6

H3

0:1

0:5

0:1

0

Figure 4.11: A binary tree with probabilities.

Theorem 4.20 (Leaf Entropy Theorem).
In any tree with probabilities it holds that

Hleaf =
NX
`=1

P`H`: (4.35)

Proof: First, we recall that by definition of trees and trees with probabil-
ities we have for every node `:

P` =
D�1X
j=0

q`;j (4.36)

(see (4.20)). Using the definition of branching entropy, we get

P`H` = P` �
0
@�D�1X

j=0

q`;j
P`

log
q`;j
P`

1
A (4.37)

= �
D�1X
j=0

q`;j log
q`;j
P`

(4.38)

= �
D�1X
j=0

q`;j log q`;j +
D�1X
j=0

q`;j log P`| {z }
indep.
of j

(4.39)

= �
D�1X
j=0

q`;j log q`;j + log P` �
D�1X
j=0

q`;j

| {z }
=P`

(4.40)

= �
D�1X
j=0

q`;j log q`;j + P` log P`; (4.41)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

70 Efficient Coding of a Single Random Message

1

0:4

0:6

+1 log2 1 = 0

�0:4 log2 0:4

�0:6 log2 0:6

0:1

0:5

+0:6 log2 0:6

�0:1 log2 0:1

�0:5 log2 0:5

0:05

0:05

+0:1 log2 0:1

�0:05 log2 0:05

�0:05 log2 0:05

contribution of P1H1

contribution of P2H2

contribution of P3H3

terms that cancel each other

HHg contributions to leaf entropy

Figure 4.12: Graphical proof of the Leaf Entropy Theorem. In this example
there are three nodes. We see that all contributions cancel apart
from the root node (whose contribution is 0) and the leaves.

where the last equality follows from (4.36).
Hence, for every node ~̀, we see that it will contribute to

PN
`=1 P`H` twice:

• Firstly it will add P~̀ log P~̀ when the node counter ` passes through ~̀;
and

• secondly it will subtract q`;j log q`;j = P~̀ log P~̀ when the node counter `
points to the parent node of ~̀.

Hence, the contributions of all nodes will be canceled out — apart from the
root that does not have a parent. The root only contributes P1 log P1 for ` = 1.
However, since P1 = 1, we have P1 log P1 = 1 log 1 = 0. So the root does not
contribute either.

It only remains to consider the leaves. Note that the node counter ` will
not pass through leaves by definition. Hence, a leaf only contributes when the
node counter points to its parent node and its contribution is �q`;j log q`;j =
�pi log pi. Since the sum of all �pi log pi equals the leaf entropy by definition,
this proves the claim.

In Figure 4.12 we have tried to depict the argumentation of this proof
graphically.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.7. What We Cannot Do: Fundamental Limitations of Source Coding 71

Example 4.21. We continue with Example 4.19:

P1H1 + P2H2 + P3H3 = 1 � 0:971 + 0:6 � 0:650 + 0:1 � 0 bits (4.42)

= 1:361 bits = Hleaf (4.43)

as we have expected. �

4.7 What We Cannot Do: Fundamental Limitations of Source
Coding

The main strength of information theory is that it can provide some funda-
mental statements about what is possible to achieve and what is not possible.
So a typical information theoretic result will consist of an upper bound and a
lower bound or — as it is common to call these two parts — an achievability
part and a converse part. The achievability part of a theorem tells us what
we can do, and the converse part tells us what we cannot do.

Sometimes, the theorem also will tell us how to do it, but usually the result
is theoretic in the sense that it only proves what is possible without actually
saying how it could be done. To put it pointedly: Information theory tells us
what is possible, coding theory tells us how to do it.

In this section we will now derive our first converse part, i.e., we will prove
some fundamental limitation about the efficiency of source coding. Let us
quickly summarize what we know about codes and their corresponding trees:

• We would like to use prefix-free codes.

• Every prefix-free code can be represented by a tree where every codeword
corresponds to a leaf in the tree.

• Every codeword has a certain probability corresponding to the proba-
bility of the source symbol it represents.

• Unused leaves can be regarded as symbols that never occur, i.e., we
assign probability zero to them.

From these observations we realize that the entropy H(U) of a random message
U with probabilities p1; : : : ; pr and the leaf entropy of the corresponding tree
are the same:

Hleaf = H(U): (4.44)

Note that the unused leaves do not contribute to Hleaf since they have zero
probability.

Moreover, the average codeword length E[L] is equivalent to the average
depth of the leaves. (Again we can ignore the unused leaves because they have
probability zero and therefore do not contribute to the average.)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

72 Efficient Coding of a Single Random Message

Now note that since we consider D-ary trees where each node branches
into D different children, we know from the properties of entropy that the
branching entropy can never be larger than logD (see Theorem 1.13):

H` � logD: (4.45)

Hence, using this together with the Leaf Entropy Theorem (Theorem 4.20)
and the Path Length Lemma (Lemma 4.15) we get:

H(U) = Hleaf =
NX
`=1

P`H` �
NX
`=1

P` � logD = logD �
NX
`=1

P` = logD � E[L] (4.46)

and hence

E[L] � H(U)

logD
: (4.47)

Note that the logarithm to compute the entropy and the logarithm to compute
logD must use the same basis, however, it does not matter which basis is
chosen.

This is the converse part of the coding theorem for a single random
message. It says that whatever code you try to design, the average codeword
length of any D-ary prefix-free code for an r-ary random message U cannot
be smaller than the entropy of U (using the correct units)!

Note that to prove this statement we have not designed any code, but
instead we have been able to prove something that holds for every code that
exists.

When do we have equality? From the derivation just above we see that we
have equality if the branching entropy always is H` = logD, i.e., the branching
probabilities are all uniform. This is only possible if pi is a negative integer
power of D for all i:

pi = D��i (4.48)

with �i 2 N a natural number (and, of course, if we design an optimal code).
In Appendix 4.A we show an alternative proof of (4.47) that uses the fact

that relative entropy is nonnegative.

4.8 What We Can Do: Analysis of Some Good Codes

In practice it is not only important to know where the limitations are, but
perhaps even more so to know how close we can get to these limitations. So,
as a next step, we would like to finally start thinking about how to design
codes and then try to analyze their performance.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.8. What We Can Do: Analysis of Some Good Codes 73

4.8.1 Shannon-Type Codes

We have already understood that a good code should assign a short codeword
to a message with high probability, and use the long codewords for unlikely
messages only. So we try to design a simple code following this main design
principle.

Assume that PU (ui) = pi > 0 for all i since we do not care about messages
with zero probability. Then, for every message ui define

li ,
&
log 1

pi

logD

'
; (4.49)

(where d�e denotes the smallest integer not smaller than �) and choose an
arbitrary unique prefix-free codeword of length li. Any code generated like
that is called Shannon-type code.

We need to show that such a code always exists. Note that by definition
in (4.49)

li �
log 1

pi

logD
= logD

1

pi
: (4.50)

Hence, we have
rX

i=1

D�li �
rX

i=1

D
�logD

1
pi =

rX
i=1

DlogD pi =
rX

i=1

pi = 1 (4.51)

and the Kraft Inequality (Theorem 4.11) is always satisfied. So we know that
we can always find a Shannon-type code.

Example 4.22. As an example, consider a random message U with four symbols
having probabilities

p1 = 0:4; p2 = 0:3; p3 = 0:2; p4 = 0:1; (4.52)

i.e., H(U) � 1:846 bits. We design a binary Shannon-type code:

l1 =

�
log2

1

0:4

�
= 2; (4.53)

l2 =

�
log2

1

0:3

�
= 2; (4.54)

l3 =

�
log2

1

0:2

�
= 3; (4.55)

l4 =

�
log2

1

0:1

�
= 4: (4.56)

Note that

2�2 + 2�2 + 2�3 + 2�4 =
11

16
< 1; (4.57)

i.e., such a code does exist, as expected. A possible choice for such a code is
shown in Figure 4.13. �

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

74 Efficient Coding of a Single Random Message

1

0:7

0:3

00

0:4

01

0:3

0:3

0

100

0:2

0:1

1010

0:1

0

l1 = 2

l2 = 2

l3 = 3

l4 = 4

0

1

Figure 4.13: A Shannon-type code for the message U of Example 4.22.

Next, we would like to investigate how efficient such a code is. It turns
out that it is very easy to find a good upper bound on the expected codeword
length: By definition of li in (4.49),

li <
log 1

pi

logD
+ 1 (4.58)

and therefore

E[L] =
rX

i=1

pili (4.59)

<
rX

i=1

pi

log 1

pi

logD
+ 1

!
(4.60)

=
1

logD

rX
i=1

pi log
1

pi| {z }
=H(U)

+
rX

i=1

pi| {z }
=1

(4.61)

=
H(U)

logD
+ 1; (4.62)

where we have used the definition of entropy. We see that a Shannon-type
code (even though it is not an optimal code!) approaches the ultimate lower
bound (4.47) by less than 1. An optimal code will be even better than that!

Example 4.23. We return to Example 4.22 and compute the efficiency of the
Shannon-type code designed before:

E[L] = 1 + 0:7 + 0:3 + 0:3 + 0:1 = 2:4: (4.63)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.8. What We Can Do: Analysis of Some Good Codes 75

As predicted the average codeword length satisfies

1:846 � 2:4 < 1:846 + 1: (4.64)

But obviously the code shown in Figure 4.14 is much better than the Shannon-
type code. Its performance is E[L] = 2 < 2:4. So in this example, the
Shannon-type code is quite far from being optimal. �

1

0:7

0:3

00

0:4

01

0:3

10

0:2

11

0:1

l1 = 2

l2 = 2

l3 = 2

l4 = 2

0

1

Figure 4.14: Another binary prefix-free code for U of Example 4.22.

4.8.2 Shannon Code

Shannon actually did not directly propose the Shannon-type codes, but a
special case of the Shannon-type codes that we call Shannon code [Sha48,
Section 9]. In Shannon’s version the codeword lengths were chosen to satisfy
(4.49), but in addition Shannon also gave a clear rule on how to choose the
codewords. But before we can introduce the details, we need to make a quick
remark about our common decimal representation of real numbers (and the
corresponding D-ary representations).

Remark 4.24 (Decimal and D-ary Representation of Real Numbers). We are all
used to the decimal representation of real numbers: For example, 1

2 can be
written as 0:5 or 3

16 = 0:1875. We are also aware that some fractions need
infinitely many digits like 1

3 = 0:3333333 : : : = 0:3 (we use here an overline
x to represent “infinite repetition of x”), or 103

135 = 0:7629. Finally, irrational
numbers need infinitely many digits without any repetitive patterns.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

76 Efficient Coding of a Single Random Message

The problem is that in contrast to how it might seem, the decimal repre-
sentation of a real number is not necessarily unique! Take the example of 1

3 :
obviously, 3 � 13 = 1, but if we write this in decimal form, we get 3 � 0:3 = 0:9,
i.e., we see that 0:9 = 1. The problem is that infinitely many 9 at the tail
of a decimal representation is equivalent to increasing the digit in front of the
tail by 1 and removing the tail, e.g.,

0:349 = 0:35: (4.65)

To get rid of this nonuniqueness, we will require that no decimal representation
of a real number has a tail of infinitely many 9s.

This same discussion can directly be extended to the D-ary representation
of a real number. There we do not allow any infinite tail of the digit (D� 1).
Consider, for example, the following quaternary (D = 4) representation:

�
0:2013

�
4 = (0:202) 4 = (0:53125) 10 : (4.66)

The problem is most pronounced for the binary representation because there
we only have zeros and ones: We do not allow any representation that “ends”
in a tail of infinitely many 1s. M

Definition 4.25. The Shannon code is a prefix-free code that is constructed as
follows:

Step 1: Arrange the symbols in order of decreasing probability.

Step 2: Compute the following cumulative probability3

Fi ,
i�1X
j=1

pj (4.67)

and express it in its D-ary representation (where we do not allow a
representation with a tail of infinitely many digits (D � 1) in order
to make sure that this representation is unique4). For example, Fi =
0:625 in binary form is 0:101; or Fi =

55
81 in ternary form is 0:2001.

Step 3: Carry out the D-ary representation to exactly li positions after the
comma, where li is defined in (4.49), i.e.,

li ,
�
logD

1

pi

�
: (4.68)

3Note that this definition does not exactly match the definition of the cumulative dis-
tribution function (CDF) of a random variable.

4We would like to point out that here we do not consider the numerical stability of
computers, which always only calculate with a limited precision. It is quite probable that
the Shannon code could be adapted to show a better performance with respect to numerical
precision problems.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.8. What We Can Do: Analysis of Some Good Codes 77

Table 4.15: The binary Shannon code for the random message U of Exam-
ple 4.26.

u1 u2 u3 u4

pi 0:4 0:3 0:2 0:1

Fi 0 0:4 0:7 0:9

binary representation 0:0 0:01100 : : : 0:10110 : : : 0:11100 : : :�
log2

1

pi

�
2 2 3 4

shortened representation 0:00 0:01 0:101 0:1110

ci 00 01 101 1110

Table 4.16: The ternary Shannon code for the random message U of Exam-
ple 4.26.

u1 u2 u3 u4

pi 0:4 0:3 0:2 0:1

Fi 0 0:4 0:7 0:9

ternary representation 0:0 0:10121 : : : 0:20022 : : : 0:22002 : : :�
log3

1

pi

�
1 2 2 3

shortened representation 0:0 0:10 0:20 0:220

ci 0 10 20 220

Then remove the leading “0:” and use the resulting digits as codeword
ci for ui. E.g., the binary Fi = (0:101) 2 with li = 5 will give a
codeword ci = 10100; or the ternary Fi = (0:2001) 3 with li = 3 will
give ci = 200.

Example 4.26. Once again, we consider the random message U of Example 4.22.
The binary Shannon code is shown in Table 4.15, and the ternary Shannon
code in Table 4.16. �

Note that the ordering of the symbols according to decreasing probability is
crucial because this makes sure that the codeword lengths li are monotonically
increasing and this in turn ensures that the code is prefix-free. We prove this
formally in the following lemma.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

78 Efficient Coding of a Single Random Message

Lemma 4.27. The Shannon code as defined in Definition 4.25 is prefix-free.

Proof: Since we do not allow a D-ary representation with an infinite tail
of digits (D � 1), the D-ary representation of Fi is unique, i.e., there exist
unique a(1)i ; a

(2)
i ; : : : 2 f0; : : : ;D� 1g such that

Fi =
1X
j=1

a
(j)
i D�j (4.69)

and such that�
a
(j0)
i ; a

(j0+1)
i ; a

(j0+2)
i ; : : :

� 6= (D� 1;D� 1;D� 1; : : :) (4.70)

for any j0 2 N. Moreover, from (4.50) it follows (solve for pi!) that

pi � 1

Dli
: (4.71)

By contradiction, assume that the codeword ci is the prefix of another
codeword ci0 , i 6= i0. This means that the length li of ci cannot be longer than
the length li0 of ci0 , which could happen in two cases:

• i � i0 and therefore by definition li � li0 , or

• i > i0, but li = li0 .

Since the latter case equals to the first if we exchange the role of i and i0, we
do not need to further pursue it, but can concentrate on the former case only.
Now, since ci is the prefix of ci0 , we must have that

a
(j)
i = a

(j)
i0 ; j = 1; : : : ; li: (4.72)

Hence,

Fi0 � Fi =
1X
j=1

�
a
(j)
i0 � a(j)i

�
D�j (by (4.69)) (4.73)

=
1X

j=li+1

�
a
(j)
i0 � a(j)i

�
| {z }

�D�1

D�j (by (4.72)) (4.74)

<
1X

j=li+1

(D� 1)D�j (4.75)

=
1X

j=li+1

D�j+1 �
1X

j=li+1

D�j (4.76)

=
1X

j0=li

D�j0 �
1X

j=li+1

D�j (4.77)

= D�li +
1X

j0=li+1

D�j0 �
1X

j=li+1

D�j (4.78)

= D�li : (4.79)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.8. What We Can Do: Analysis of Some Good Codes 79

Here, the strict inequality in (4.75) holds because the difference term can only
be equal to D � 1 if a(j)i0 = D � 1 (and a(j)i = 0) for all j � li + 1, which we
have specifically excluded in (4.70) (see also Remark 4.24); and in (4.77), we
renumber the first sum j0 , j � 1.

On the other hand, by definition of Fi and Fi0 ,

Fi0 � Fi = pi + pi+1 + � � �+ pi0�1 (4.80)

� D�li +D�li+1 + � � �+D�li0�1 ; (4.81)

where the inequality follows by repeated application of (4.71).
Combining (4.79) and (4.81) yields the following contradiction:

D�li > D�li +D�li+1 + � � �+D�li0�1 ; (4.82)

and thereby shows that ci cannot be a prefix of ci0 . This concludes the proof.5

Obviously, the Shannon code also is a Shannon-type code (because (4.49)
and (4.68) are identical) and therefore its performance is identical to the codes
described in Section 4.8.1. So we do not actually need to bother about the
exact definition of the codewords specified by Shannon, but could simply
construct any tree as shown for the Shannon-type codes. The importance of
the Shannon code, however, lies in the fact that it was the origin of arithmetic
coding. We will come back to this in Section 5.3.

4.8.3 Fano Code

Around the same time as Shannon proposed the Shannon code, Fano sug-
gested a different code that actually turns out to be very easy to implement
in hardware [Fan49].

Definition 4.28. The Fano code is generated according to the following algo-
rithm:

Step 1: Arrange the symbols in order of decreasing probability.

Step 2: Split the list of ordered symbols into D parts, with the total probabil-
ities q` of each part being as similar as possible, i.e., such that

1

D

DX
`=1

DX
`0=1

��q` � q`0 �� (4.83)

is minimized.

5Many thanks go to Tomas Kroupa for pointing out the nonuniqueness of the D-ary
representation and for suggesting this proof.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

80 Efficient Coding of a Single Random Message

Step 3: Assign the digit 0 to the first part, the digit 1 to the second part, . . . ,
and the digit D�1 to the last part. This means that the codewords for
the symbols in the first part will all start with 0, and the codewords
for the symbols in the second part will all start with 1, etc.

Step 4: Recursively apply Step 2 and Step 3 to each of the D parts, subdividing
each part into further D parts and adding bits to the codewords until
each symbol is the single member of a part.

Note that effectively this algorithm constructs a tree and that therefore the
Fano code is prefix-free.

Example 4.29. Let us generate a binary Fano code for a random message with
five symbols having probabilities

p1 = 0:35; p2 = 0:25; p3 = 0:15;

p4 = 0:15; p5 = 0:1:
(4.84)

Since the symbols are already ordered in decreasing order of probability, Step 1
can be omitted. We hence want to split the list into two parts, both having
as similar total probability as possible. If we split in f1g and f2; 3; 4; 5g, we
have a total probability 0:35 on the left and 0:65 on the right; the split f1; 2g
and f3; 4; 5g yields 0:6 and 0:4; and f1; 2; 3g and f4; 5g gives 0:75 and 0:25.
We see that the second split is best. So we assign 0 as a first digit to f1; 2g
and 1 to f3; 4; 5g.

Now we repeat the procedure with both subgroups. Firstly, we split f1; 2g
into f1g and f2g. This is trivial. Secondly, we split f3; 4; 5g into f3g and
f4; 5g because 0:15 and 0:25 is closer to each other than 0:3 and 0:1 that
we would have gotten by splitting into f3; 4g and f5g. Again we assign the
corresponding codeword digits.

Finally, we split the last group f4; 5g into f4g and f5g. We end up with
the five codewords f00; 01; 10; 110; 111g. This whole procedure is shown in
Figure 4.17.

In Figure 4.18 a ternary Fano code is constructed for the same random
message. �

Exercise 4.30. Construct the binary Fano code for the random message U
of Example 4.22 with four symbols having probabilities

p1 = 0:4; p2 = 0:3; p3 = 0:2; p4 = 0:1; (4.85)

and compute its performance. Compare to the Shannon-type code de-
signed in Example 4.22 and 4.23. �

Remark 4.31. We would like to point out that there are cases where the algo-
rithm given in Definition 4.28 does not lead to a unique design: There might

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.8. What We Can Do: Analysis of Some Good Codes 81

p1 p2 p3 p4 p5

0:35 0:25 0:15 0:15 0:1

0:6 0:4
0 1

0:35 0:25 0:15 0:15 0:1

0:15 0:25
0 1 0 1

0:15 0:1

0 1

00 01 10 110 111

Figure 4.17: Construction of a binary Fano code according to Example 4.29.

p1 p2 p3 p4 p5

0:35 0:25 0:15 0:15 0:1

0:35 0:25 0:4
0 1 2

0:15 0:15 0:1

0 1 2

0 1 20 21 22

Figure 4.18: Construction of a ternary Fano code according to Example 4.29.

be two different ways of dividing the list into D parts such that the total prob-
abilities are as similar as possible. Since the algorithm does not specify what
to do in such a case, you are free to choose any possible way. Unfortunately,
however, these different choices can lead to codes with different performance.
As an example consider a random message U with seven possible symbols
having the following probabilities:

p1 = 0:35; p2 = 0:3; p3 = 0:15; p4 = 0:05;

p5 = 0:05; p6 = 0:05; p7 = 0:05:
(4.86)

Figure 4.19 and 4.20 show two different possible Fano codes for this random
message. The first has an average codeword length of E[L] = 2:45, while the
latter performs better with E[L] = 2:4. M

Exercise 4.32. In total there are six different possible designs of a Fano code
for the random message given in Remark 4.31. Design all of them and
compare their performances! �

Similarly to the Shannon-type codes, we also would like to have some
performance bounds for the Fano code. When playing around with some

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

82 Efficient Coding of a Single Random Message

p1 p2 p3 p4 p5 p6 p7

0:35 0:3 0:15 0:05 0:05 0:05 0:05

0:65 0:35
0 1

0:35 0:3 0:15 0:05 0:05 0:05 0:05

0:2 0:15
0 1 0 1

0:15 0:05 0:05 0:05 0:05

0:1 0:05
0 1 0 1

0:05 0:05

0 1

00 01 100 101 1100 1101 111

Figure 4.19: One possible Fano code for the random message given in (4.86).

p1 p2 p3 p4 p5 p6 p7

0:35 0:3 0:15 0:05 0:05 0:05 0:05

0:35 0:65
0 1

0:3 0:15 0:05 0:05 0:05 0:05

0:3 0:35
0 1

0:15 0:05 0:05 0:05 0:05

0:15 0:2
0 1

0:05 0:05 0:05 0:05

0:1 0:1
0 1

0:05 0:05 0:05 0:05

0 1 0 1

0 10 110 11100 11101 11110 11111

Figure 4.20: A second possible Fano code for the random message given in
(4.86).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.8. What We Can Do: Analysis of Some Good Codes 83

p1 p2 p3 p4 p5 p6 p7

0:35 0:3 0:15 0:05 0:05 0:05 0:05

0:35 0:65
0 1

0:3 0:15 0:05 0:05 0:05 0:05

0:3 0:35
0 1

0:15 0:05 0:05 0:05 0:05

0:2 0:15
0 1

0:15 0:05 0:05 0:05 0:05

0:1 0:05
0 1 0 1

0:05 0:05

0 1

0 10 1100 1101 11100 11101 1111

Figure 4.21: A third possible Fano code for the random message given in
(4.86).

examples, one quickly gets the feeling that the Fano code is in general better
than the Shannon-type codes. This seems reasonable because a Fano code
will in general have fewer unused leaves. Thus, one would expect that also
the Fano code satisfies the inequality (4.58). Unfortunately, this is not true,
as can be seen from the following example.

Example 4.33. We construct a third possible Fano code for the random message
given in (4.86), see Figure 4.21. In this Fano code, l3 = 4, but�

log2
1

p3

�
=

�
log2

1

0:15

�
= 3; (4.87)

i.e., (4.58) is violated:

4 � 3 + 1: (4.88)

�

Exercise 4.34. Construct a binary Fano code for a random message U with
eight symbols of probabilities:

p1 = 0:44; p2 = 0:14; p3 = 0:13; p4 = 0:13;

p5 = 0:13; p6 = 0:01; p7 = 0:01; p8 = 0:01:
(4.89)

Note that l5 violates (4.58). Compute the performance of this code. Is
(4.62) satisfied? �

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

84 Efficient Coding of a Single Random Message

In spite of the fact that (4.58) sometimes is violated, it turns out that we
can prove a bound for the Fano codes that is even better than the bound given
in (4.62).

Theorem 4.35. For D 2 f2; 3g, the average codeword length E[L] of a D-ary
Fano code for an r-ary random message U satisfies

E[L] � H(U)

logD
+ 1� pmin; (4.90)

where pmin , mini pi denotes the smallest positive probability of U .

Proof: While this theorem only has been proven for D 2 f2; 3g, it is
conjectured to hold for all D 2 f2; 3; : : :g. The details are omitted.

Keep in mind that neither Fano nor Shannon-type codes are optimal. The
optimal code will perform at least as good. We will derive the optimal codes
in Section 4.9.

Exercise 4.36. Construct a ternary Fano code for the random message U

of Example 4.22 and compute its performance. �

Exercise 4.37. Construct a ternary Fano code for a random message U with
14 symbols of probabilities:

p1 = 0:3; p2 = 0:12; p3 = 0:11; p4 = 0:11;

p5 = 0:1; p6 = 0:03; p7 = 0:03; p8 = 0:03;

p9 = 0:03; p10 = 0:03; p11 = 0:03; p12 = 0:03;

p13 = 0:03; p14 = 0:02:

(4.91)

Note that l5 violates (4.58). Compute the performance of this code and
compare with (4.62). �

4.8.4 Coding Theorem for a Single Random Message

We summarize the so far most important results.

Theorem 4.38 (Coding Theorem for a Single Random Message).
The average codeword length E[L] of an optimal D-ary prefix-free code
for an r-ary random message U satisfies

H(U)

logD
� E[L] <

H(U)

logD
+ 1 (4.92)

with equality on the left if, and only if, PU (ui) = pi is a negative integer
power of D, 8 i.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.8. What We Can Do: Analysis of Some Good Codes 85

Moreover, this statement also holds true for Shannon-type codes,
Shannon codes, and Fano codes.6

Proof: The lower bound follows from (4.47) that holds for all codes. The
upper bound follows from the upper bound (4.62) on the performance of a
Shannon code (which is not optimal, but whose performance cannot be better
than the performance of an optimal code). Finally, that (4.92) also holds for
Fano codes follows from Theorem 4.35 (which is proven for D 2 f2; 3g, but
only conjectured for D � 4).

This is the first step towards showing that the definition of H(U) is truly
useful!

Remark 4.39 (Confusion of Names). Note that unfortunately the three codes
from Sections 4.8.1, 4.8.2, and 4.8.3, i.e., the Shannon-type codes, the Shannon
code, and the Fano codes are all known by the same name of Shannon–Fano
code.7 The reason for this confusion probably stems from the fact that firstly
all three codes perform very similarly and secondly that in [Sha48, p. 17],
Shannon refers to Fano’s code construction algorithm (even though he then
proposes the Shannon code).

To add to the confusion, sometimes the Shannon code is also known as
Shannon–Fano–Elias code [CT06, Section 5.9], adding the name of Peter
Elias. However, Prof. Elias from MIT definitely was not involved in the devel-
opment of the Shannon code or the Fano code. Instead, he did make funda-
mental contributions to arithmetic coding, whose origins lie in the Shannon
code. Indeed, sometimes Elias is even credited to be the inventor of arith-
metic coding, but actually Elias denied this [Say99, Section 1.2]. The idea of
arithmetic coding probably has come from Shannon himself during a talk that
he gave at MIT. M

At this point, one should also ask the question what happens if we design
a code according to a wrong distribution. So we design a Shannon-type code
for the message U where we mistakenly assume that U has a distribution P ~U

instead of the actual PMF PU , i.e., we choose wrong codeword lengths

li ,
&
log 1

~pi

logD

'
: (4.93)

The performance of such a wrongly designed code can also be analyzed.

6In the case of Fano codes and D � 4, the upper bound is only conjectured to hold.
7The names used in these lecture notes have been newly “invented” and are not used in

the general literature like this.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

86 Efficient Coding of a Single Random Message

Theorem 4.40 (Wrongly Designed Shannon-Type Code).
The performance of a Shannon-type code that is designed for the message
~U , but is used to describe the message U satisfies the following bounds:

H(U)

logD
+

D(PU kP ~U)

logD
� E[L] <

H(U)

logD
+

D(PU kP ~U)

logD
+ 1: (4.94)

Here, D(�k�) denotes relative entropy defined in Definition 3.1.

So we see that the relative entropy tells us how much we lose by designing
according to the wrong distribution.

Proof: From (4.93), we note that

li =

&
log 1

~pi

logD

'
<

log 1
~pi

logD
+ 1 (4.95)

and obtain

E[L] =
rX

i=1

pili (4.96)

<
rX

i=1

pi

log 1

~pi

logD
+ 1

!
(4.97)

=
1

logD

rX
i=1

pi log

�
1

~pi
� pi
pi

�
+

rX
i=1

pi (4.98)

=
1

logD

rX
i=1

pi log
pi
~pi

+
1

logD

rX
i=1

pi log
1

pi
+ 1 (4.99)

=
D(PU kP ~U)

logD
+

H(U)

logD
+ 1: (4.100)

For the lower bound, we bound

li =

&
log 1

~pi

logD

'
�

log 1
~pi

logD
: (4.101)

The rest is then completely analogous to (4.96)–(4.100).

4.9 Optimal Codes: Huffman Code

Shannon actually did not find the optimal code design. He was working to-
gether with Prof. Robert M. Fano on the problem, but neither of them could
solve it. So in 1951 Fano assigned the question to his students in an informa-
tion theory class at MIT as a term paper. David A. Huffman, who had finished
his B.S. and M.S. in electrical engineering and also served in the U.S. Navy

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.9. Optimal Codes: Huffman Code 87

before he became a Ph.D. student at MIT, attended this course. Huffman
tried a long time and was about to give up when he had the sudden inspi-
ration to start building the tree backwards from leaves to root instead from
root to leaves as everybody had been trying so far. Once he had understood
this, he was quickly able to prove that his code was the most efficient one.
Naturally, Huffman’s term paper was later on published [Huf52].

To understand Huffman’s design we firstly recall the average length of a
code:

E[L] =
rX

i=1

pili: (4.102)

Then we make the following general observation.

Lemma 4.41. Without loss in generality, we arrange the probabilities pi in non-
increasing order and consider an arbitrary code. If the lengths li of the code-
words of this code are not in the opposite order, i.e., we do not have both

p1 � p2 � p3 � � � � � pr (4.103)

and

l1 � l2 � l3 � � � � � lr; (4.104)

then the code is not optimal and we can achieve a shorter average length by
reassigning the codewords to different symbols.

Proof: To prove this claim, suppose that for some i and j with i < j we
have both

pi > pj and li > lj : (4.105)

In computing the average length, originally the sum in (4.102) contains, among
others, the two terms

old: pili + pjlj : (4.106)

By interchanging the codewords for the ith and jth symbols, we get the terms

new: pilj + pjli (4.107)

while the remaining terms are unchanged. Subtracting the old from the new
we see that

new� old: (pilj + pjli)� (pili + pjlj) = pi(lj � li) + pj(li � lj) (4.108)

= (pi � pj)(lj � li) (4.109)

< 0; (4.110)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

88 Efficient Coding of a Single Random Message

where the last inequality follows from (4.105). Thus we can decrease the
average codeword length by interchanging the codewords for the ith and jth
symbols. Hence the new code with exchanged codewords for the ith and jth
symbols is better than the original code — which therefore cannot have been
optimal.

To simplify matters, we develop the optimal Huffman code firstly for the
binary case D = 2.

The clue of binary Huffman coding lies in two basic observations. The first
observation is as follows.

Lemma 4.42. The binary tree of an optimal binary prefix-free code has no
unused leaves.

Proof: Suppose that the tree of an optimal code has an unused leaf. Then
we can delete this leaf and put its sibling to their parent node, see Figure 4.22.
By doing so we reduce E[L], which contradicts our assumption that the original
code was optimal.

unused leaf

tree
rest of tree

Figure 4.22: Code performance and unused leaves: By deleting the unused
leaf and moving its sibling to their parent, we can improve on
the code’s performance.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.9. Optimal Codes: Huffman Code 89

Example 4.43. As an example consider the two codes given in Figure 4.23, both
of which have three codewords. Code (i) has an average length8 of E[L] = 2,
and code (ii) has an average length of E[L] = 1:5. Obviously, code (ii) performs
better. �

(i)

0:5 0:3

0:2

(ii)

0:5

0:3

0:2

Figure 4.23: Improving a code by removing an unused leaf.

The second observation basically says that the two most unlikely symbols
must have the longest codewords.

Lemma 4.44. There exists an optimal binary prefix-free code such that the two
least likely codewords only differ in the last digit, i.e., the two most unlikely
codewords are siblings.

Proof: Since we consider an optimal code and because of Lemma 4.41, the
codewords that correspond to the two least likely symbols must be the longest
codewords. Now assume for a moment that these two longest codewords do
not have the same length. In this case, the sibling node of the longest code-
word must be unused, which is a contradiction to Lemma 4.42. Hence, we
understand the two least likely symbols must have the two longest codewords
and are of identical length.

Now, if they have the same parent node, we are done. If they do not have
the same parent node, this means that there exist other codewords of the same
maximum length. In this case we can simply swap two codewords of equal
maximum length in such a way that the two least likely codewords have the
same parent, and we are done.

Because of Lemma 4.42 and the Path Length Lemma (Lemma 4.15), we
see that the construction of an optimal binary prefix-free code for an r-ary
random message U is equivalent to constructing a binary tree with r leaves
such that the sum of the probabilities of the nodes is minimum when the

8Remember Lemma 4.15 to compute the average codeword length: summing the node
probabilities. In code (i) we have P1 = 1 and P2 = P3 = 0:5 (note that the unused leaf has
by definition zero probability) and in code (ii) P1 = 1 and P2 = 0:5.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

90 Efficient Coding of a Single Random Message

leaves are assigned the probabilities PU (ui) for i = 1; 2; : : : ; r:

E[L] =
NX
`=1

P` :| {z }
�!minimize!

(4.111)

But Lemma 4.44 tells us how we may choose one node in an optimal code
tree, namely as parent of the two least likely leaves ur�1 and ur:

PN = PU (ur�1) + PU (ur): (4.112)

So we have fixed one P` in (4.111) already. But, if we now pruned our binary
tree at this node to make it a leaf with probability p = PU (ur�1) +PU (ur), it
would become one of r� 1 leaves in a new tree. Completing the construction
of the optimal code would then be equivalent to constructing a binary tree
with these r � 1 leaves such that the sum of the probabilities of the nodes is
minimum. Again Lemma 4.44 tells us how to choose one node in this new
tree. Etc. We have thus proven the validity of the following algorithm.

Huffman’s Algorithm for Optimal Binary Codes:

Step 1: Create r leaves corresponding to the r possible symbols and assign
their probabilities p1; : : : ; pr. Mark these leaves as active.

Step 2: Create a new node that has the two least likely active leaves or
nodes as children. Activate this new node and deactivate its
children.

Step 3: If there is only one active node left, root it. Otherwise, go to
Step 2.

Example 4.45. In Figure 4.24 we show the procedure of producing a binary
Huffman code for the random message U of Example 4.22 with four possible
symbols with probabilities p1 = 0:4, p2 = 0:3, p3 = 0:2, p4 = 0:1. We see that
the average codeword length of this Huffman code is

E[L] = 0:4 � 1 + 0:3 � 2 + 0:2 � 3 + 0:1 � 3 = 1:9: (4.113)

Using Lemma 4.15 this can be computed much easier as

E[L] = P1 + P2 + P3 = 1 + 0:6 + 0:3 = 1:9: (4.114)

�

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.9. Optimal Codes: Huffman Code 91

0:4

0:3

0:2

0:1

Step 1

0:4

0:3

0:2

0:1

0:3

Step 2, first time

0:4

0:3

0:2

0:1

0:3

0:6

Step 2, second time

0:4

0:3

0:2

0:1

0:3

0:6

1

Step 2, third time

0:4
0

0:3
10

0:2
110

0:1
111

0:3

0:6

1

Step 3

0

1

Figure 4.24: Creation of a binary Huffman code. Active nodes and leaves are
shaded.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

92 Efficient Coding of a Single Random Message

Remark 4.46. Note that similarly to the construction of the Fano code, the
code design process is not unique in several respects. Firstly, the assignment
of the 0 or 1 digits to the codewords at each forking stage is arbitrary, but
this produces only trivial differences. Usually, we will stick to the convention
that going upwards corresponds to 0 and downwards to 1. Secondly, when
there are more than two least likely active nodes/leaves, it does not matter
which we choose to combine. The resulting codes can have codewords of
different lengths, however, in contrast to the case of the Fano code, the average
codeword length will always be identical! The reason for this is clear: We have
proven that the Huffman algorithm results in an optimal code! M

Example 4.47. As an example of different Huffman encodings of the same ran-
dom message, let p1 = 0:4, p2 = 0:2, p3 = 0:2, p4 = 0:1, p5 = 0:1. Figure 4.25
shows three different Huffman codes for this message. All of them have the
same performance E[L] = 2:2. �

Exercise 4.48. Try to generate all three codes of Example 4.47 (see Fig-
ure 4.25) yourself. �

We now turn to the general case with D � 2. What happens, e.g., if D = 3?
In Example 4.45 with four codewords, we note that there does not exist any
ternary code with 4 leaves (see the Leaf Counting Lemma, Lemma 4.10).
Hence, the ternary Huffman code for a random message with four symbols
must have some unused leaves! Obviously, the number of unused leaves should
be minimized as they are basically a waste. Moreover, a leaf should only be
unused if it has the longest length among all leaves in the tree.9

So we realize that, because we are growing the optimal code tree from its
leaves, we need to find out how many unused leaves are needed before we
start! To do this, we recall the Leaf Counting Lemma (Lemma 4.10): For the
example of D = 3 and r = 4, we have

n = 1 +N(D� 1) = 1 + 2N; (4.115)

i.e., n = 3; 5; 7; 9; : : : Hence, the smallest number of leaves that is not less than
r = 4 is n = 5.

We make the following observation.

Lemma 4.49. There are at most D�2 unused leaves in an optimal D-ary prefix-
free code, and there exists an optimal code where all unused leaves have the
same parent node.

9Note that a unused leaf is equivalent to a message of zero probability: It never shows
up! But from Lemma 4.41 we have understood that for messages with low probability we
should assign long codewords.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.9. Optimal Codes: Huffman Code 93

0:4

0

0:2

10

0:2

110

0:1

1110

0:1

1111

0:2

0:4

0:6

1

0

1

0:4

0

0:2

100

0:2

101

0:1

110

0:1

111

0:2

0:4

0:6

1

0:4

00

0:2

01

0:2

10

0:1

110

0:1

111

0:2

0:4

0:6

1

Figure 4.25: Different binary Huffman codes for the same random message.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

94 Efficient Coding of a Single Random Message

3

2

1

0

4

:

:

:

D� 1

tree
D� 1 unused leaves

3

2

1

0

4

:

:

:

D� 1

tree D (or more) unused leaves

Figure 4.26: Illustration of cases when there are more than D�2 unused leaves
in a D-ary tree.

Proof: The arguments are basically the same as in the binary case. If
there are D � 1 or more unused leaves in an optimal tree, then they can
be deleted, which will increase the efficiency of a code. See Figure 4.26 for
an illustration. The argument of the second statement is identical to the
argument of Lemma 4.44.

Next we want to derive a formula that allows us to directly compute
the number of unused leaves. Let R be the number of unused leaves. By
Lemma 4.49 we know that 0 � R < D � 1, and from the Leaf Counting
Lemma (Lemma 4.10) we get:

R = (# of leaves in the D-ary tree)� (# of used leaves) (4.116)

= n� r (4.117)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.9. Optimal Codes: Huffman Code 95

= 1 +N(D� 1)� r (4.118)

= D+ (N� 1)(D� 1)� r (4.119)

=) D� r = �(N� 1)(D� 1) + R (4.120)

where 0 � R < D�1. This looks exactly like Euclid’s Division Theorem when
dividing D� r by D� 1! Hence, using Rx(y) to denote the remainder when
y is divided by x, we finally get

R = RD�1(D� r) (4.121)

= RD�1
�
D� r + (r �D)(D� 1)

�
(4.122)

= RD�1
�
(r �D)(D� 2)

�
; (4.123)

where the second equality follows because RD�1
�
`(D� 1)

�
= 0 for all ` 2 N.

Lemma 4.50. The number of unused leaves in the tree of an optimal D-ary
prefix-free code is

R = RD�1
�
(r �D)(D� 2)

�
: (4.124)

The final observation now follows the lines of Lemma 4.44.

Lemma 4.51. There exists an optimal D-ary prefix-free code for a random mes-
sage U with r possible values such that the D�R least likely codewords differ
only in their last digit. Here R is given in (4.124).

The Path Length Lemma (Lemma 4.15) tells us that we need to minimize
the sum of node probabilities, and Lemma 4.51 tells us how to choose one such
optimal node, namely, a node that combines the D� R least likely codewords
and the R unused leaves. If we prune the tree at this new node, Lemma 4.49
tells us that there will be no unused leaves in the remaining D-ary tree. So
we continue to create nodes by combining the D least likely leaves in the
remaining tree and then prune the tree at this node.

We have justified the following algorithm of designing an optimal code.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

96 Efficient Coding of a Single Random Message

Huffman’s Algorithm for Optimal D-ary Codes:

Step 1: Create r leaves corresponding to the r possible symbols and assign
their probabilities p1; : : : ; pr. Compute

R , RD�1
�
(r �D)(D� 2)

�
; (4.125)

create R leaves, and assign the probability 0 to them. Mark all
leaves as active.

Step 2: Create a new node that has the D least likely active leaves or nodes
as children. Activate this new node and deactivate its children.

Step 3: If there is only one active node left, root it. Otherwise go to
Step 2.

Example 4.52. We return to Example 4.22 and design an optimal ternary (D =

3) code. Note that r = 4, i.e.,

R = R2
�
(4� 3) � (3� 2)

�
= 1: (4.126)

In Figure 4.27 we show the procedure of designing this Huffman code. We get
E[L] = 1:3. Note that

H(U)

log2 3
= 1:16 � E[L] <

H(U)

log2 3
+ 1 = 2:16 (4.127)

as expected.
As a warning to the reader we show in Figure 4.28 how Huffman’s algorithm

does not work: It is quite common to forget about the computation of the
number of unused leaves in advance, and this will lead to a very inefficient
code with the most efficient codeword not being used! �

Example 4.53. We consider a random message U with seven symbols having
probabilities

p1 = 0:4; p2 = 0:1; p3 = 0:1; p4 = 0:1;

p5 = 0:1; p6 = 0:1; p7 = 0:1;
(4.128)

i.e., H(U) � 2:52 bits. We firstly design a binary Fano code, see Figure 4.29.
The corresponding tree is shown in Figure 4.30. Note that the construction
algorithm is not unique in this case: In the second round we could split the
second group either to f3; 4g and f5; 6; 7g or f3; 4; 5g and f6; 7g. Both ways
will result in a code of identical performance. The same situation also occurs
in the third round.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.9. Optimal Codes: Huffman Code 97

0:4

0:3

0:2

0:1

0

Step 1

0:4

0:3

0:2

0:1

0

0:3

Step 2, first time

0:4

0:3

0:2

0:1

0

0:3

1

Step 2, second time

0:4
0

0:3
1

0:2
20

0:1
21

0

0:3

1

Step 3

0

1

2

Figure 4.27: Creation of a ternary Huffman code. Active nodes and leaves are
shaded.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

98 Efficient Coding of a Single Random Message

0:4

0

0:3

10

0:2

11

0:1

12

0

0:61

0

1

2

Figure 4.28: An example of a wrong application of Huffman’s algorithm. Here
it was forgotten to compute the number of unused leaves. We
get E[L] = 1:6. Note that one of the shortest (most valuable)
codeword 2 is not used!

p1 p2 p3 p4 p5 p6 p7

0:4 0:1 0:1 0:1 0:1 0:1 0:1

0:5 0:5
0 1

0:4 0:1 0:1 0:1 0:1 0:1 0:1

0:2 0:3
0 1 0 1

0:1 0:1 0:1 0:1 0:1

0:2 0:1
0 1 0 1

0:1 0:1

0 1

00 01 100 101 1100 1101 111

Figure 4.29: Construction of a binary Fano code for Example 4.53.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.9. Optimal Codes: Huffman Code 99

0:4

00

0:1

01

0:1

100

0:1

101

0:1

1100

0:1

1101

0:1

111

0:2

0:2

0:5

0:3

0:5

1

0

1

Figure 4.30: A Fano code for the message U of Example 4.53.

The efficiency of this Fano code is

E[L] = 1 + 0:5 + 0:5 + 0:2 + 0:3 + 0:2 = 2:7; (4.129)

which satisfies as predicted

2:52 � 2:7 < 3:52: (4.130)

Next, we design a binary Shannon code for the same random message. The
details are given in Table 4.31. Its performance is less good

E[L] = 0:4 � 2 + 0:6 � 4 = 3:2; (4.131)

but must, of course, still satisfy

2:52 � 3:2 < 3:52: (4.132)

Finally, a corresponding binary Huffman code for U is shown in Fig-
ure 4.32. Its performance is E[L] = 2:6, i.e., it is better than both the Fano
and the Shannon code, but it still holds that

2:52 � 2:6 < 3:52: (4.133)

�

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

100 Efficient Coding of a Single Random Message

Table 4.31: The binary Shannon code for the random message U of Exam-
ple 4.53.

u1 u2 u3 u4 u5 u6 u7

pi 0:4 0:1 0:1 0:1 0:1 0:1 0:1

Fi 0 0:4 0:5 0:6 0:7 0:8 0:9

binary
represen-

tation 0:0 0:01100 0:1 0:10011 0:10110 0:11001 0:11100�
log2

1

pi

�
2 4 4 4 4 4 4

shortened
represen-

tation 0:00 0:0110 0:1000 0:1001 0:1011 0:1100 0:1110

ci 00 0110 1000 1001 1011 1100 1110

0:4

0

0:1

100

0:1

101

0:1

1100

0:1

1101

0:1

1110

0:1

1111

0:2

0:2

0:2

0:4

0:6

1

0

1

Figure 4.32: A binary Huffman code for the message U of Example 4.53.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.10. Types of Codes 101

Exercise 4.54. Design binary and ternary Huffman, Shannon, and Fano
codes for the random message U with probabilities

p1 = 0:25; p2 = 0:2; p3 = 0:2; p4 = 0:1;

p5 = 0:1; p6 = 0:1; p7 = 0:05;
(4.134)

and compare their performances. �

4.10 Types of Codes

Note that in Section 4.1 we have restricted ourselves to prefix-free codes. So,
up to now we have only proven that Huffman codes are the optimal codes
under the assumption that we restrict ourselves to prefix-free codes. We
would now like to show that Huffman codes are actually optimal among all
useful codes.

Table 4.33: Various codes for a random message with four possible values.

U Code (i) Code (ii) Code (iii) Code (iv)

a 0 0 10 0

b 0 010 00 10

c 1 01 11 110

d 1 10 110 111

To this end, we need to come back to a more precise definition of “useful
codes”, i.e., we continue the discussion that we have started in Section 4.1. Let
us consider an example with a random message U with four different symbols
and let us design various codes for this message as shown in Table 4.33.

We discuss these different codes:

Code (i) is useless because some codewords are used for more than one symbol.
Such a code is called singular.

Code (ii) is nonsingular. But we have another problem. If we receive 010 we
have three different possibilities how to decode it: It could be (010)

giving us b, or it could be (0)(10) leading to ad, or it could be (01)(0)

corresponding to ca. Even though nonsingular, this code is not uniquely
decodable and therefore in practice similarly useless as code (i).10

Code (iii) is uniquely decodable, even though it is not prefix-free! To see this,
note that in order to distinguish between c and d we only need to wait

10Note that adding a comma between the codewords is not allowed because in this case
we change the code to be ternary, i.e., the codewords contain three different letters ‘0’, ‘1’,
and ‘;’ instead of only two ‘0’ and ‘1’.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

102 Efficient Coding of a Single Random Message

prefix-free
codes

uniquely decod-
able codes

nonsingular codes

all codes

Figure 4.34: Set of all codes.

for the next 1 to show up: If the number of zeros in between is even, we
decode 11, otherwise we decode 110. Example:

11000010 = (11)(00)(00)(10) =) cbba; (4.135)

110000010 = (110)(00)(00)(10) =) dbba: (4.136)

So in a uniquely decodable, but not prefix-free code we may have to
delay the decoding until later.

Code (iv) is prefix-free and therefore trivially uniquely decodable.

We see that the set of all possible codes can be grouped as shown in Figure 4.34.
We are only interested in the uniquely decodable codes. But so far we have
restricted ourselves to prefix-free codes. So the following question arises: Is
there a uniquely decodable code that is not prefix-free, but that has a better
performance than the best prefix-free code (i.e., the corresponding Huffman
code)?

Luckily the answer to this question is no, i.e., the Huffman codes are the
best uniquely decodable codes. This can be seen from the following theorem.

Theorem 4.55 (McMillan’s Theorem). The codeword lengths li of any uniquely
decodable code must satisfy the Kraft Inequality

rX
i=1

D�li � 1: (4.137)

Why does this help answering our question about the most efficient unique-
ly decodable code? Well, note that we know from Theorem 4.11 that every
prefix-free code also satisfies (4.137). So, for any uniquely decodable, but non-
prefix-free code with given codeword lengths, one can find another code with

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.10. Types of Codes 103

the same codeword lengths that is prefix-free! But if the codeword lengths
are the same, also the performance is identical! Hence, there is no gain in
designing a non-prefix-free code.

Proof of Theorem 4.55: Suppose we are given a random message U that
takes on r possible values u 2 U (here the set U denotes the message alphabet).
Suppose further that we have a uniquely decodable code that assigns to every
possible symbol u 2 U a certain codeword of length l(u).

Now choose an arbitrary positive integer � and design a new code for
a vector of � symbols u = (u1; u2; : : : ; u�) 2 U� = U � � � � � U by simply
concatenating the original codewords.

Example 4.56. Consider a binary message with the possible values u = a or
u = b (U = fa; bg). We design a code for this message with the two codewords
f01; 1011g. Choose � = 3, i.e., now we have eight possible symbols

faaa; aab; aba; abb; baa; bab; bba; bbbg (4.138)

and the corresponding codewords are

f010101; 01011011; 01101101; 0110111011; 10110101;
1011011011; 1011101101; 101110111011g: (4.139)

�

The clue observation now is that because the original code was uniquely
decodable, it immediately follows that this new concatenated code also must
be uniquely decodable.

Exercise 4.57. Why? Explain this clue observation! �

The lengths of the new codewords are

~l(u) =
�X

j=1

l(uj): (4.140)

Let lmax be the maximal codeword length of the original code. Then the new
code has a maximal codeword length ~lmax satisfying

~lmax = �lmax: (4.141)

We now compute: X
u2U

D�l(u)
!�

=

 X
u12U

D�l(u1)
! X

u22U
D�l(u2)

!
� � �
 X
u�2U

D�l(u�)
!

(4.142)

=
X
u12U

X
u22U

� � �
X
u�2U

D�l(u1)D�l(u2) � � �D�l(u�) (4.143)

=
X
u2U�

D�l(u1)�l(u2)�����l(u�) (4.144)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

104 Efficient Coding of a Single Random Message

=
X
u2U�

D
�
P�

j=1
l(uj) (4.145)

=
X
u2U�

D�~l(u) (4.146)

=

~lmaxX
m=1

w(m)D�m (4.147)

=
�lmaxX
m=1

w(m)D�m: (4.148)

Here (4.143) follows by writing the exponentiated sum as a product of � sums;
in (4.144) we combine the � sums over u1; : : : ; u� into one huge sum over the
�-vector u; (4.146) follows from (4.140); in (4.147) we rearrange the order of
the terms by collecting all terms with the same exponent together where w(m)

counts the number of such terms with equal exponent, i.e., w(m) denotes the
number of codewords of length m in the new code; and in the final equality
(4.148) we use (4.141).

Now note that since the new concatenated code is uniquely decodable,
every codeword of length m is used at most once. In total there are only Dm

different sequences of length m, i.e., we know that

w(m) � Dm: (4.149)

Thus,0
@X
u2U

D�l(u)
1
A�

=
�lmaxX
m=1

w(m)D�m �
�lmaxX
m=1

DmD�m = �lmax (4.150)

or X
u2U

D�l(u) � (�lmax)
1
� : (4.151)

At this stage we are back at an expression that depends only on the original
uniquely decodable code. So forget about the trick with the new concatenated
code, but simply note that we have shown that for any uniquely decodable
code and any positive integer �, expression (4.151) must hold! Note that we
can choose � freely here!

Note further that for any finite value of lmax we have

lim
�!1(�lmax)

1
� = lim

�!1 e
1
�
log(�lmax) = e0 = 1: (4.152)

Hence, by choosing � extremely large (i.e., we let � tend to infinity) we haveX
u2U

D�l(u) � 1 (4.153)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

4.A. Appendix: Alternative Proof for the Converse Part 105

as we wanted to prove.
Since we have now proven that there cannot exist any uniquely decodable

code with a better performance than some prefix-free code, it now also follows
that the converse of the coding theorem for a single random message (Theo-
rem 4.38), i.e., the lower bound in (4.92), holds for any uniquely decodable
code.

4.A Appendix: Alternative Proof for the Converse Part of the
Coding Theorem for a Single Random Message

Consider the D-ary tree of any D-ary prefix-free code for an r-ary random
message U . Let w1; : : : ; wn be the leaves of this tree, ordered in such a way that
wi is the leaf corresponding to the message ui, i = 1; : : : ; r, and wr+1; : : : ; wn

are the unused leaves.
Now define two new probability distributions:

PW (wi) =

8<
:PU (ui) = pi i = 1; : : : ; r;

0 i = r + 1; : : : ; n
(4.154)

and

P ~W (wi) = D�li ; i = 1; : : : ; n; (4.155)

where li denotes the depth of leaf wi. Note that by the Leaf Depth Lemma
(Lemma 4.10)

nX
i=1

P ~W (wi) =
nX
i=1

D�li = 1: (4.156)

Now compute the relative entropy between these two distributions and use
the fact that the relative entropy is always nonnegative (Theorem 3.3):

0 � D(PW kP ~W) =
rX

i=1

PW (wi) log
PW (wi)

P ~W (wi)
(4.157)

=
rX

i=1

PW (wi) logPW (wi)�
rX

i=1

PW (wi) logD
�li (4.158)

=
rX

i=1

pi log pi + logD
rX

i=1

pili (4.159)

= �H(U) + logD � E[L]: (4.160)

Hence,

E[L] � H(U)

logD
: (4.161)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 5

Data Compression: Efficient Coding
of a Memoryless Random Source

So far we have only considered a single random message, but in reality we are
much more likely to encounter a situation where we have a stream of messages
that should be encoded continuously. Luckily we have prepared ourselves
for this situation already by considering prefix-free codes only, which make
sure that a sequence of codewords can be separated easily into the individual
codewords.

5.1 Discrete Memoryless Source

We start with the simpler case where the random source is memoryless, i.e.,
each symbol that is emitted by the source is independent of all past symbols.
A formal definition is given as follows.

Definition 5.1. An r-ary discrete memoryless source (DMS) is a device whose
output is a sequence of random messages U1; U2; U3; : : : ; where

• each Uk can take on r different values with probability1 p1; : : : ; pr, and

• the different messages Uk are independent of each other.

Hence, a DMS produces a sequence of independent and identically dis-
tributed (IID) r-ary random variables.

Note that the DMS is memoryless in the sense that Uk does not depend
on the past and also that the distribution of Uk does not change with time.

The obvious way of designing a compression system for such a source is
to design a Huffman code for U , continuously use it for each message Uk,
and concatenate the codewords together. The receiver can easily separate

1We again assume that these probabilities are positive. See Remark 4.3.

107 © Stefan M. Moser — IT, version 6.14

108 Efficient Coding of a Memoryless Random Source

message
encoder

Ck0

codewords
of length L

source
parser

Vk0

messages of
length M

r-ary
DMS

Uk

source
symbols

Figure 5.1: A coding scheme for an information source: The source parser
groups the source output sequence fUkg into messages fVk0g. The
message encoder then assigns a codeword Ck0 to each possible
message Vk0 .

the codewords (because the Huffman code is prefix-free) and decode them to
recover the sequence of messages fUkg.

However, the question is whether this is the most efficient approach. Note
that it is also possible to combine two or more messages into a new vector
message

(Uk; Uk+1; : : : ; Uk+m�1)

and then design a Huffman code for these combined vector messages. We will
show below that this approach is actually more efficient.

So we consider an extended compression system as shown in Figure 5.1,
where before the message encoder we have added a source parser. A source
parser is a device that groups several incoming source letters Uk together to
a new message Vk0 . This grouping must be an invertible function in order to
make sure that the message can be split back into its components, however,
it is possible that the length M of the message Vk0 (i.e., the number of letters
that are combined to the message Vk0) is random: We can easily make it
depend on the value of the (random) source output.

Before we consider such variable-length parsers, in the next section we
start with the simplest parser that produces messages of constant length: the
M-block parser that simply always groups exactly M source letters together.
As an example assume M = 3:

U1; U2; U3| {z }
V1

; U4; U5; U6| {z }
V2

; U7; U8; U9| {z }
V3

; : : : (5.1)

Note that since fUkg is IID, also fVk0g is IID. So we can drop the time index
and only consider one such block message. Note that if we choose M = 1, we
are back at the situation without source parser.

5.2 Block–to–Variable-Length Coding of a DMS

Consider an M-block parser V = (U1; U2; : : : ; UM) with M fixed. Then the
random message V takes on rM different values and has the following entropy:

H(V) = H(U1; U2; : : : ; UM) (5.2)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

5.2. Block–to–Variable-Length Coding of a DMS 109

= H(U1) +H(U2jU1) + � � �+H(UMjU1; U2; : : : ; UM�1) (5.3)

= H(U1) +H(U2) + � � �+H(UM) (5.4)

= M �H(U); (5.5)

where (5.3) follows from the chain rule; (5.4) from the first I in IID; and (5.5)
from the second I and the D in IID.

Now we decide to use an optimal code (i.e., the Huffman code2) or at least
a good code (e.g., the Shannon or the Fano code) for the message V. From
the coding theorem for a single random message (Theorem 4.38) we know that
such a code satisfies the following inequality:

H(V)

logD
� E[L] <

H(V)

logD
+ 1: (5.6)

Next we note that it is not really fair to compare E[L] for different values of M
because for larger M, E[L] also will be larger. So, to be correct we should com-
pute the average codeword length necessary to describe one source symbol.
Since V contains M source symbols Uk, the correct measure of performance
is E[L]

M .
Hence, we divide the whole expression (5.6) by M:

H(V)

M logD
� E[L]

M
<

H(V)

M logD
+

1

M
(5.7)

and make use of (5.5):

MH(U)

M logD
� E[L]

M
<

MH(U)

M logD
+

1

M
(5.8)

i.e.,

H(U)

logD
� E[L]

M
<

H(U)

logD
+

1

M
: (5.9)

We have proven the following important result, also known as Shannon’s
source coding theorem.

Theorem 5.2 (Block–to–Variable-Length Coding Theorem for a DMS).
There exists a D-ary prefix-free code of an M-block message from a DMS
such that the average number of D-ary code digits per source letter sat-
isfies:

E[L]
M

<
H(U)

logD
+

1

M
(5.10)

where H(U) is the entropy of a single source letter.
Conversely, for every uniquely decodable D-ary code of an M-block

2Note that since we now design the Huffman code for the M-block message V, in Huff-
man’s algorithm we have to replace r by rM; see, e.g., (4.125).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

110 Efficient Coding of a Memoryless Random Source

message it must be true that

E[L]
M
� H(U)

logD
: (5.11)

We would like to briefly discuss this result. The main point to note here
is that by choosing M large enough, we can approach the lower bound H(U)

logD

arbitrarily closely when using a Huffman, a Shannon-type or a Fano code.
Hence, the entropy H(U) is the ultimate limit of compression and precisely
describes the amount of information that is packed in the output of the discrete
memoryless source fUkg! In other words we can compress any DMS to H(U)

bits (entropy measured in bits) or H(U)
logD D-ary code letters on average, but

not less. This is the first real justification of the usefulness of the definition
of entropy.

We also see that in the end it does not make a big difference whether we use
a Huffman code or any of the suboptimal good codes (Shannon-type, Shannon,
or Fano codes) as all approach the ultimate limit for M large enough.

On the other hand, note the price we have to pay: By making M large we
not only increase the number of possible messages and thereby make the code
complicated, but we also introduce delay in the system, because the encoder
can only encode the message after it has received the complete block of M

source symbols ! Basically the more closely we want to approach the ultimate
limit of entropy, the larger is our potential delay in the system.

5.3 Arithmetic Coding

5.3.1 Introduction

In Section 5.2 we have described a general coding scheme for a DMS that is
based on an M-block parser and a Huffman code (or similar) for the corre-
sponding block messages. We have shown that this system works very effi-
ciently and achieves a compression rate that is less than 1

M of a code digit per
source letter away from the theoretical minimum.

Unfortunately, the complexity of such a system very quickly becomes com-
pletely infeasible: Imagine for a moment a ternary (r = 3) DMS fUkg taking
value in fa; b; cg whose output is parsed into blocks of length M = 1000.
This will result in 31000 � 10477 different possible source sequences! These se-
quences firstly need to be sorted according to their probabilities, and then for
every one of them the corresponding Huffman codeword needs to be designed
and stored. No whatever large and fast computer is capable of doing this.

Moreover, even if we could set up the system, we would not be happy with
it because the system always needs to wait until the complete source sequence

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

5.3. Arithmetic Coding 111

of length M = 1000 has arrived at the encoder before the corresponding
codeword can be found. So, we have long delays in the system.

Therefore the question arises if there exists a practical system that does
not suffer from these complexity and delay issues, but still performs similarly
efficient as shown in Theorem 5.2. And indeed, such systems do exist. One
very beautiful and elegant such coding scheme is the so-called arithmetic
coding. In its basic principle it is a generalization of the Shannon code to a
DMS, however, it introduces some tweaks that allow to avoid complexity and
delay.

5.3.2 Encoding

Recall that a Shannon code firstly orders all possible messages according to
probability and then uses the D-ary representation of the cumulative proba-
bility Fj ,

Pj�1
j0=1 pj0 to generate the corresponding codeword.

Thus, for the ordering of the messages, we first need to compute the proba-
bility of every possible message, which is infeasible. Arithmetic coding avoids
this pitfall by ordering the sequences according to alphabet and not prob-
ability (lexicographic ordering). For example, for the ternary source fUkg
mentioned above, we have the following order:

u1 = aa : : : aaa

u2 = aa : : : aab

u3 = aa : : : aac

u4 = aa : : : aba

u5 = aa : : : abb
:::

u3M�2 = cc : : : cca

u3M�1 = cc : : : ccb

u3M = cc : : : ccc

Thus the cumulative probability Fuj will now be computed according to this
alphabetical order:

Fuj ,
j�1X
j0=1

puj0 ; j = 1; : : : ; rM; (5.12)

where puj is the probability of the output sequence uj :

puj ,
MY
k=1

PU (uj;k); j = 1; : : : ; rM: (5.13)

So far this does not seem to help much because it still looks as if we need
to compute puj0 for all uj0 that lie alphabetically before uj . However, this

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

112 Efficient Coding of a Memoryless Random Source

is not the case: It turns out that because of the alphabetical ordering, for a
any given output sequence u one can compute Fu directly without having to
consider any other sequences at all!

The trick lies in an iterative procedure using the components of u. To
understand this, we return to our ternary example from above, look at u =

bbac and assume that we have computed Fbba already. It is now easy to see
that we can derive Fbbac directly from Fbba and pbba:

Fbbac = Pr(faaaa; : : : ; bbabg) (5.14)

= Pr(all length-4 seq. alphabetically before bba_)

+Pr(fbbaa; bbabg) (5.15)

= (paaaa + � � �+ paaac) + (paaba + � � �+ paabc) + � � �
+ (pbaca + � � �+ pbacc) + Pr(fbbaa; bbabg) (5.16)

= paaa � (pa + � � �+ pc)| {z }
=1

+ paab � (pa + � � �+ pc)| {z }
=1

+ � � �

+ pbac � (pa + � � �+ pc)| {z }
=1

+ Pr(fbbaa; bbabg) (5.17)

= paaa + paab + � � �+ pbac| {z }
=Fbba

+ Pr(fbbaa; bbabg) (5.18)

= Fbba + pbba � (pa + pb)| {z }
=Fc

(5.19)

= Fbba + pbba � Fc: (5.20)

Hence, we see that we can compute the cumulative probability directly by
iteratively updating the values of F and p with the current output of the
DMS: For every output uk (k = 1; : : : ;M) of the DMS we compute

pu1;:::;uk = pu1;:::;uk�1 � puk ; (5.21)

Fu1;:::;uk = Fu1;:::;uk�1 + pu1;:::;uk�1 � Fuk : (5.22)

Note that this not only enables us to compute Fu directly, but we can do the
computation immediately whenever a new source symbol becomes available,
i.e., we do not suffer from any delays.

Unfortunately, if we now use the D-ary representation of Fu and truncate it
to lu =

l
logD

1
pu

m
to get the codeword for u, then the code will not be prefix-

free anymore. (This happens because we do no longer have the property that
luj is increasing with j, since the corresponding puj are not sorted.)

To solve this problem, the second main idea of arithmetic coding is the
insight that we only need to make the codewords slightly longer,

~lu ,
�
logD

1

pu

�
+ 1; (5.23)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

5.3. Arithmetic Coding 113

and that instead of using the ~lu-truncated D-ary representation of Fu, we need
to use the ~lu-truncated D-ary representation of

~Fu , Fu +D�~lu : (5.24)

(Note that this basically means that instead of rounding down (truncating)
Fu, we are rounding it up; see the discussion in the proof of Lemma 5.3 below.)

To shed some more light on this, it is best to investigate why this code
indeed is prefix-free.

Lemma 5.3 (The Arithmetic Code is Prefix-Free). The set of codewords defined as
~lu-truncated D-ary representations of ~Fu (where ~lu is defined in (5.23) and
where ~Fu is defined in (5.12) and (5.24)) is prefix-free.

Proof: To start we note that the operation of truncating a fraction f at
the l-th position can be written mathematically as follows:

bf � 10lc � 10�l: (5.25)

In general, when instead of a decimal fraction we consider the D-ary repre-
sentation of f , the base 10 must be changed to base D:

bf �Dlc �D�l: (5.26)

Thus, the codewords of arithmetic coding are defined as

0:cu ,
�
~Fu �D~lu

� �D�~lu : (5.27)

Now we associate to every M-block message u an interval:�
Fu; Fu + pu

�
: (5.28)

Note that these intervals are disjoint and their union is (0; 1].
We also associate an interval to each codeword cu of length ~lu:h

0:cu; 0:cu +D�~lu
�
: (5.29)

(Note that here we write the numbers in D-ary format.) This interval contains
all sequences 0:c that have the first ~lu digits identical to 0:cu. Hence, to show
that arithmetic codes are prefix-free, it is sufficient to show that no two such
codeword intervals overlap. This is indeed the case because each codeword
interval is actually contained in the corresponding (disjoint!) source message
interval (5.28), as can be seen as follows:

0:cu =
�
~Fu �D~lu

� �D�~lu (by (5.27)) (5.30)

=
j�
Fu +D�~lu� �D~lu

k
�D�~lu (by (5.24)) (5.31)

=
�
Fu �D~lu + 1

� �D�~lu (5.32)

>
�
Fu �D~lu

� �D�~lu (because bx+ 1c > x) (5.33)

= Fu (5.34)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

114 Efficient Coding of a Memoryless Random Source

and

0:cu +D�~lu =
�
~Fu �D~lu

� �D�~lu +D�~lu (by (5.27)) (5.35)

� ~Fu �D~lu �D�~lu +D�~lu (5.36)

= ~Fu +D�~lu (5.37)

= Fu +D�~lu +D�~lu (by (5.24)) (5.38)

= Fu + 2D�~lu (5.39)

� Fu +D �D�~lu (because D � 2) (5.40)

= Fu +D1�~lu (5.41)

= Fu +D
�
�
logD

1
pu

�
(by (5.23)) (5.42)

� Fu +D
� logD

1
pu (5.43)

= Fu + pu: (5.44)

Thus,

�
0:cu; 0:cu +D�~lu� � �Fu; Fu + pu

�
(5.45)

as claimed. Therefore, no codeword can be a prefix of another codeword.3

So we see that by the sacrifice of one additional codeword digit we can
get a very efficient encoding algorithm that can compress the outcome of a
memoryless source on the fly.

Before we summarize this algorithm and analyze its efficiency, let us go
through a small example.

Example 5.4. We again assume a ternary DMS fUkg that emits an independent
and identically distributed (IID) sequence of ternary random messages Uk with
the following probabilities:

PU (a) = 0:5; PU (b) = 0:3; PU (c) = 0:2: (5.46)

Now we compute the binary (D = 2) codeword of the length-10 (M = 10)
output sequence u = baabcabbba: For the original Shannon code we would
have to compute the probabilities of each of the 310 = 59049 different possible
output sequences and then order them according to their probabilities. This
needs a large amount of time and storage place.

For arithmetic coding, we do not order the sequences and do not need
to bother with the probability of any other sequence, but we can directly
compute the probability pbaabcabbba and the cumulative probability Fbaabcabbba

3One could again require that no D-ary representations with an infinite tail of symbols
(D � 1) are allowed. Strictly speaking, however, this is not necessary because we take care
of the ambiguity of the D-ary representation by adding the term D

�~luj in (5.24).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

5.3. Arithmetic Coding 115

of the given sequence recursively as follows:

pb = PU (b) = 0:3; (5.47a)

pba = pb � PU (a) = 0:3 � 0:5 = 0:15; (5.47b)

pbaa = pba � PU (a) = 0:15 � 0:5 = 0:075; (5.47c)

pbaab = pbaa � PU (b) = 0:075 � 0:3 = 0:0225; (5.47d)

pbaabc = pbaab � PU (c) = 0:0225 � 0:2 = 0:0045; (5.47e)

pbaabca = pbaabc � PU (a) = 0:0045 � 0:5 = 0:00225; (5.47f)

pbaabcab = pbaabca � PU (b) = 0:00225 � 0:3 = 0:000675; (5.47g)

pbaabcabb = pbaabcab � PU (b) = 0:000675 � 0:3 = 0:0002025; (5.47h)

pbaabcabbb = pbaabcabb � PU (b) = 0:0002025 � 0:3 = 0:00006075; (5.47i)

pbaabcabbba = pbaabcabb � PU (a) = 0:00006075 � 0:5 = 0:000030375; (5.47j)

and

Fb = fb = 0:5; (5.48a)

Fba = Fb + pb � fa = 0:5 + 0:3 � 0
= 0:5; (5.48b)

Fbaa = Fba + pba � fa = 0:5 + 0:15 � 0
= 0:5; (5.48c)

Fbaab = Fbaa + pbaa � fb = 0:5 + 0:075 � 0:5
= 0:5375; (5.48d)

Fbaabc = Fbaab + pbaab � fc = 0:5375 + 0:0225 � 0:8
= 0:5555; (5.48e)

Fbaabca = Fbaabc + pbaabc � fa = 0:5555 + 0:0045 � 0
= 0:5555; (5.48f)

Fbaabcab = Fbaabca + pbaabca � fb = 0:5555 + 0:00225 � 0:5
= 0:556625; (5.48g)

Fbaabcabb = Fbaabcab + pbaabcab � fb = 0:556625 + 0:000675 � 0:5
= 0:5569625; (5.48h)

Fbaabcabbb = Fbaabcabb + pbaabcabb � fb = 0:5569625 + 0:0002025 � 0:5
= 0:55706375; (5.48i)

Fbaabcabbba = Fbaabcabbb + pbaabcabbb � fa = 0:55706375 + 0:00006075 � 0
= 0:55706375: (5.48j)

Here instead of Fa, Fb, and Fc we have introduced fa , 0, fb , pa = 0:5, and
fc , pa + pb = 0:8 to distinguish them better from the Fu that is computed
recursively.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

116 Efficient Coding of a Memoryless Random Source

Now we only need to compute the required length

~lbaabcabbba =

�
logD

1

pbaabcabbba

�
+ 1 =

�
log2

1

0:000030375

�
+ 1 = 17; (5.49)

find the binary representation of the shifted cumulative probability

~Fbaabcabbba = 0:55706375 + 2�17 = 0:557071379394531192 (5.50)

and shorten it to length 17. Note that it is actually easier to change the order:
Firstly find the binary representation of Fbaabcabbba = 0:55706375, shorten it
to 17, and then add 2�17:

(0:55706375)10 = (0:10001110100110111 : : :)2 (5.51a)

(0:10001110100110111)2 + 2�17 = (0:10001110100111000)2: (5.51b)

This results in the codeword 10001110100111000. �

We summarize the encoding procedure of arithmetic coding in the follow-
ing algorithmic form.

D-ary Arithmetic Encoding of a DMS:

Step 1: Fix a blocklength M and decide on an alphabetical order on the
source alphabet U = f�1; �2; : : : ; �rg. Then define

f�i ,
i�1X
i0=1

PU (�i0); i = 1; : : : ; r; (5.52)

and set k , 1, p0 , 1, F0 , 0.

Step 2: Observe the kth source output letter uk of the DMS and compute

pk , pk�1 � PU (uk); (5.53)

Fk , Fk�1 + pk�1 � fuk : (5.54)

Step 3: If k <M, k! k + 1 and go to Step 2. Otherwise, compute

~l ,
�
logD

1

pM

�
+ 1; (5.55)

compute the D-ary representation of FM, shorten it to length ~l,
and add D�~l to it. Then put out the (length-~l) D-ary sequence
after the comma as codeword.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

5.3. Arithmetic Coding 117

It remains to derive the performance. This is straightforward: Using (5.23)
we get

~lu =

�
logD

1

pu

�
+ 1 <

log 1
pu

logD
+ 2 (5.56)

and therefore

E[L] <
E
h
log 1

pU

i
logD

+ 2 =
H(U)

logD
+ 2 =

MH(U)

logD
+ 2; (5.57)

i.e.,

E[L]
M

<
H(U)

logD
+

2

M
: (5.58)

Theorem 5.5 (Coding Theorem for Arithmetic Coding).
The average number of D-ary code digits per source letter of an arithmetic
code satisfies

H(U)

logD
� E[L]

M
<

H(U)

logD
+

2

M
: (5.59)

This is almost as good as in Theorem 5.2 that is based on Shannon, Fano,
or Huffman coding, and it is asymptotically optimal! Note that both Shannon
and Huffman coding are completely infeasible for large message lengths, and
also Fano coding will quickly get to its limitations.

5.3.3 Decoding

Finally, we need to think about the decoding. Recall that one of the main
points of arithmetic coding is that we do not want (and also not need) to keep
a complete list of all codewords. So, without knowing how the codewords
look like, how do we decode? Moreover, even though we know that the code
is prefix-free, we do not even know where a codeword ends and the next starts.
So we face quite a challenge here! Luckily, both problems can be solved in a
kind of reverse process of the encoding.

In the following we assume that the (in alphabetical order) jth sequence
uj was encoded and that the first source symbol was �i, i.e., u1 = �i, and the
second was u2 = �0i.

Let us pretend for the moment the decoder knew the exact value of Fuj
(instead of the truncated version of ~Fuj). From (5.54) we know that

Fuj = fu1 + PU (u1)fu2 + PU (u1)PU (u2)fu3 + � � �+ PU (u1) � � �PU (uM�1)fuM :

(5.60)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

118 Efficient Coding of a Memoryless Random Source

We see that Fuj � fu1 = f�i . On the other hand, we must have Fuj <

f�i + PU (�i) = f�i+1 because otherwise there would exist another source
sequence starting with �i+1 instead of �i that would result in the same Fuj ,
contradicting the fact that our code is prefix-free.

So we see that we can gain fu1 back from Fuj : We simply need to search
for the largest f�i that is smaller or equal to Fuj . Once we have fu1 and thus
u1, we can get rid of the influence of u1:

Fu0 =
Fuj � fu1
PU (u1)

= fu2 + PU (u2)fu3 + � � �+ PU (u2) � � �PU (uM�1)fuM ; (5.61)

where we write u0 = (u2; : : : ; uM). This looks exactly as if we had only
encoded the sequence u0! Thus, using the same argumentation again, we
know that

f�0i � Fu0 < f�0i + PU (�
0
i) = f�0i+1 (5.62)

and that we can decode u2 the same way. Hence, we can continue this way
and recursively gain back the complete sequence uj .

Now unfortunately, the decoder does not know Fuj , but only 0:cuj , which
is a truncated version of ~Fuj :

0:cuj = Fuj +D
�~luj � �uj ; (5.63)

where �uj � 0 denotes the fraction that is lost by the truncation. Luckily, this
is not a problem because we know from (5.45) that

Fuj < 0:cuj < Fuj+1 (5.64)

and therefore

f�i � Fuj < 0:cuj < Fuj+1 � f�i+1 : (5.65)

(Here the last inequality follows again because we have proven that the code
is prefix-free: were Fuj+1 > f�i+1 , then the codeword intervals belonging to
some sequence starting with �i and to some sequence starting with �i+1 would
overlap, leading to prefixes.)

So we see that the truncated version of ~Fuj still lies within the same bound-
aries as Fuj and we can find fu1 as the largest f�i that is smaller or equal to
0:cuj , thereby gaining back u1 = �i. Then we would like to remove the
influence of u1 and define

0:cu0 ,
0:cuj � fu1
PU (u1)

: (5.66)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

5.3. Arithmetic Coding 119

Note that

0:cuj � fu1
PU (u1)

=
Fuj +D

�~luj � �uj � fu1
PU (u1)

(5.67)

= Fu0 +
D
�
�
logD

1
puj

�
�1

PU (u1)
� �uj
PU (u1)

(5.68)

� Fu0 +
D

logD puj�1

PU (u1)
(5.69)

� Fu0 +
puj

PU (u1)
(5.70)

= Fu0 +
PU (u1) � � �PU (uM)

PU (u1)
(5.71)

= Fu0 + PU (u2) � � �PU (uM) (5.72)

= Fu0 + pu0 ; (5.73)

where (5.67) follows from (5.63); (5.68) holds because of (5.61) and (5.23); and
the Inequality (5.69) follows from dropping the ceiling operation and because
�uj � 0.

On the other hand, from (5.65) and (5.61) it can be seen that

0:cuj � fu1
PU (u1)

>
Fuj � fu1
PU (u1)

= Fu0 : (5.74)

Thus, we see that

Fu0 < 0:cu0 � Fu0 + pu0 (5.75)

and therefore (5.64) still holds. So, we can keep decoding recursively to gain
back the complete sequence uj .

Finally, there is the problem of the end of one codeword and the start of
the next. If instead of the correct codeword 0:cu, we use a too long sequence
0:c consisting of more than one codeword, then we again increase the value,
0:cu � 0:c. But since 0:cu is truncated to ~lu, this increase is strictly less than
D�~lu , i.e., we have

0:cu � 0:c < 0:cu +D�~lu (5.76)

and we see again from (5.45) that we still are in the correct boundaries:

f�i � Fuj < 0:cuj � 0:c < 0:cu +D�~lu < Fuj+1 � f�i+1 : (5.77)

Also (5.67)–(5.73) can be adapted accordingly:

0:c� fu1
PU (u1)

� Fuj + 2D�~luj � �uj � fu1
PU (u1)

(5.78)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

120 Efficient Coding of a Memoryless Random Source

� Fu0 +
DD

logD puj�1

PU (u1)
(5.79)

= Fu0 +
PU (u1) � � �PU (uM)

PU (u1)
(5.80)

= Fu0 + pu0 ; (5.81)

where the inequality follows by bounding 2 � D, dropping the ceiling, and
bounding �uj � 0.

Thus, our recursive scheme still works.
So, the decoder will firstly compute the length of the longest possible code-

word, then it will pick this many digits from the received sequence and start
the decoding procedure leading to (5.61). Once it has decoded a codeword
and regained M source letters, it will compute the correct length of the de-
coded codeword and remove it from the sequence. Then it can restart the
same procedure again.

The algorithm is summarized as follows.

Decoding of an D-ary Arithmetic Code:

Step 1: Given is the blocklength M, the DMS U with an alphabetical or-
der on the source alphabet U = f�1; �2; : : : ; �rg, and a sequence
fcg of D-ary bits representing one or several concatenated code-
words. We compute

~lmax =

&
M logD

1

mini2f1;:::;rg PU (�i)

'
+ 1; (5.82)

and take the ~lmax first digits c from fcg. (If the sequence is shorter
than ~lmax digits, simply take the complete sequence.) We define

f�i ,
i�1X
i0=1

PU (�i0); i = 1; : : : ; r; (5.83)

set k , 1, p0 = 1, and compute the decimal representation of
~F1 , (0:c)10.

Step 2: Find the largest f�i such that f�i � ~Fk. Put out �i and compute

~Fk+1 ,
~Fk � f�i
PU (�i)

; (5.84)

pk , pk�1 � PU (�i): (5.85)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

5.3. Arithmetic Coding 121

Step 3: If k <M, k! k + 1 and go to Step 2. Otherwise, compute

~l ,
�
logD

1

pM

�
+ 1 (5.86)

and remove the first ~l digits from fcg. If there are still digits
remaining, repeat the algorithm for the next codeword.

Note that also here we have almost no delay: Apart from a short wait at
the very beginning, the algorithm can basically run continuously with every
incoming codeword digit.

Example 5.6. We again consider the DMS from Example 5.4. We are given a
stream of encoded source symbols based on an arithmetic code of blocklength
M = 3. The first couple of digits of the received sequence are as follows:
10001110100 : : :

We firstly compute

~lmax =

�
3 log2

1

0:2

�
+ 1 = 8 (5.87)

and pick the first 8 digits from the given sequence. We compute:

~F1 , (0:10001110)2 = (0:5546875)10: (5.88)

Using fa , 0, fb , pa = 0:5, and fc , pa + pb = 0:8, we see that the largest
f�i such that f�i � ~F1 is fb. Hence, we put out b and update the value of ~F1:

put out b p1 = 1 � 0:3 = 0:3 ~F2 = (0:5546875� 0:5)=0:3

= 0:182291�6 (5.89)

put out a p2 = 0:3 � 0:5 = 0:15 ~F3 = (0:182291�6� 0)=0:5

= 0:36458�3 (5.90)

put out a p3 = 0:15 � 0:5 = 0:075: (5.91)

Hence, the decoded source sequence is baa. The codeword length is

~l =

�
log2

1

0:075

�
+ 1 = 5; (5.92)

i.e., the first 5 digits from the received sequence 10001 should be removed.
The remaining sequence then is 110100 : : : We could now continue to decode
those digits. �

We would like to conclude the discussion of arithmetic coding by pointing
out that there exist different variations of arithmetic coding schemes. For
example, instead of adding D�~lu to Fu as in (5.24), one could also add 1

2pu
to Fu. Another possibility is to use Fu directly without shift, but then not to

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

122 Efficient Coding of a Memoryless Random Source

truncate it, but to round it up. These changes have no fundamental impact
on the performance. However, we would like to mention that we have not wor-
ried about numerical precision: There are other versions of the encoding and
decoding algorithm that are numerically more stable than those introduced
here.

For an easy-to-read introduction to arithmetic coding including its his-
tory, the introductory chapter of the Ph.D. thesis of Jossy Sayir is highly
recommended [Say99].

5.4 Variable-Length–to–Block Coding of a DMS

The variable length codewords that we have considered to this point are some-
times inconvenient in practice. For instance, if the codewords are stored in a
computer memory, one would usually prefer to use codewords whose length
coincides with the computer word-length. Or if the digits in the codeword are
to be transmitted synchronously (say, at the rate of 2400 bits/s), one would
usually not wish to buffer variable-length codewords to assure a steady supply
of digits to be transmitted.

But it was precisely the variability of the codeword lengths that permitted
us to encode a single random variable efficiently, such as the message V from
an M-block parser for a DMS. How can we get similar coding efficiency for a
DMS when all codewords are forced to have the same length? The answer is
that we must assign codewords not to blocks of source letters but rather to
variable-length sequences of source letters, i.e., we must do variable-length
parsing.

block
encoder

C =

(C1; : : : ; CL)

source
parser

V =

(U1; : : : ; UM)

r-ary
DMS

Uk

Figure 5.2: Variable-length–to–block coding of a discrete memoryless source:
The source output sequence fUkg is parsed into messages V of
variable length M , that are then assigned a codeword C of fixed
length L.

So, we consider the coding of a variable number of source letters into an L-
block codeword as indicated in Figure 5.2. Note that while an M-block parser
in the situation of block–to–variable-length coding produces messages of equal
length M, now the situation is more complicated with different messages of
different length. We define the message set V to be the set of all possible
(variable-length) output sequences of the source parser.

Note that since the DMS is memoryless, we may still concentrate on just
one message V = [U1; U2; : : : ; UM] and do not need to worry about the future

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

5.4. Variable-Length–to–Block Coding of a DMS 123

(the future is independent of the past!). Again we want to minimize the
average number of code digits per source letter. In the case of a block–to–
variable-length code this was

E[L]
M

: (5.93)

However, in our new situation of variable-length–to–block codes L is constant
and M is variable. Hence, we now have to consider

L

E[M]
; (5.94)

as is proven in the following lemma.

Lemma 5.7. The quality criterion of a general coding scheme for a DMS ac-
cording to Figure 5.1, where the r-ary source sequence fUkg is parsed into
messages of variable length M , which are then mapped into D-ary codewords
of variable length L, is the average number of code digits per source letter

E[L]
E[M]

: (5.95)

Proof: Since M source symbols are mapped into a codeword of length L,
it is clear that we need L

M code digits per source letter. However, L and M

are random, i.e., we somehow need to compute an averaged version of this
quality criterion. So why do we consider E[L]

E[M] and not E
� L
M

�
?

First of all, note that E[L]
E[M] and E

� L
M

�
are not the same! If you are unsure

about that, go back to the definition of expectation (see (2.19) and (2.44)) and
think about linearity. You might also want to go back to the Jensen Inequality
(Theorem 2.1) and think about it.

So, since they are not the same, which one should we use in our situation?
To answer this, note that what we really want to do is to use our compression
scheme many times and thereby minimize the total number of used code digits
divided by the total number of encoded source letters:

L1 + L2 + � � �+ Ln
M1 +M2 + � � �+Mn

: (5.96)

Here Mk0 denotes the length of the message during the k0th time we use the
system, and Lk0 is the length of the corresponding codeword. If we now use
the system for a long time, i.e., if we let n become large, then we know from
the weak law of large numbers that

L1 + L2 + � � �+ Ln
M1 +M2 + � � �+Mn

=
L1+L2+���+Ln

n
M1+M2+���+Mn

n

n!1�! E[L]
E[M]

in prob: (5.97)

Hence, the quantity of interest is E[L]
E[M] .

So, we return to the case where the codewords all have constant length
E[L] = L and consider a simple example of a ternary DMS.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

124 Efficient Coding of a Memoryless Random Source

Example 5.8. Consider a ternary DMS r = 3 with source alphabet fa; b; cg. We
decide to use the following message set:

V , faaa; aab; aac; b; ca; cb; ccg; (5.98)

and assign them the following corresponding binary (D = 2) codewords of
fixed length L = 3:

C , f001; 010; 011; 100; 101; 110; 111g: (5.99)

So, for example, the source output sequence aabcccabca : : : is split as follows

aabjccjcajbjcaj : : : (5.100)

and is mapped into

010111101100101 : : : (5.101)

Will this system perform well? This of course depends on the probability
distribution of the source! However, if the long messages are very likely, i.e.,
if a is much more likely than b, then it should not be too bad. Concretely, if
E[M] is large, then L

E[M] is small, as it is wished for a good compression. �

Example 5.9. We make another example to point out some possible prob-
lems. Consider again r = 3 with source alphabet fa; b; cg, but now choose
V , faa; b; cba; ccg as message set. Then the sequence of source letters
aabcccabca : : : cannot be split into different messages:

aajbjccj cabca| {z }
?

: : : (5.102)

So this sequence cannot be parsed! What is wrong? �

We realize that, similarly to codes, also message sets must satisfy some
properties. In particular we have the following condition on any “legal” mes-
sage set:

Every possible sequence of source symbols U1; U2; : : : must contain a mes-
sage V as prefix so that we can parse every possible source sequence.

Since we have successfully been using the tool of rooted trees in order to
describe the mapping from messages to codewords, we will now try to do the
same thing also for the mapping of source sequences to messages. Obviously,
since we have an r-ary DMS, we need to consider r-ary trees!

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

5.4. Variable-Length–to–Block Coding of a DMS 125

Example 5.10. We once more examine the ternary (r = 3) source with source
alphabet fa; b; cg. In Figure 5.3 you see two examples of message sets that are
represented by ternary trees. The first set is not allowed because not every
possible sequence from the source can be parsed into messages: Any sequence
containing two c in sequence fails to be parsed. The second one, however, is
a legal message set once we define a clear rule how to deal with cases where
the parsing is not unique. �

a

b

c

b

a

cb

ca

“illegal”

b

a

c

cb

ca

“legal”, but not proper

Figure 5.3: Two examples of message sets. The message set on the left cannot
be used for a source parser because there is no valid parsing of the
source sequence (U1; U2; : : :) = (c; c; : : :). The message set on the
right, however, can be used, perhaps with the rule always choose
the longest message if more than one parsing is possible. Ex-
ample: cjcajbj : : : instead of cjcjajbj : : :

Similarly to our codes, we also would like to have a “prefix-free” property:
We prefer a message set where the encoder can use the message immediately
and does not need to wait longer. The message set on the right of Figure 5.3
is an example of a set that does not have this desired “prefix-free” property. In
particular, if the parser sees a c at its input it cannot yet decide whether this
will be a message, but first has to wait and see the following source symbol.
We give the following definition.

Definition 5.11. An r-ary source message set is called proper if, and only if, it
forms a complete set of leaves in an r-ary tree (i.e., all leaves are messages,
no nodes are messages).

Example 5.12. An example of a proper message set for a quaternary (r = 4)
source U is given in Figure 5.4. Note that in this tree we have already assigned
the corresponding probabilities to each message, assuming that the PMF of
the source U is PU (a) = 0:5, PU (b) = PU (c) = 0:2 and PU (d) = 0:1. �

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

126 Efficient Coding of a Memoryless Random Source

0:1 = 0:2 � 0:5 = PU (b) � PU (a)

0:04 = 0:2 � 0:2 = PU (b) � PU (b)

0:04 = 0:2 � 0:2 = PU (b) � PU (c)

0:02 = 0:2 � 0:1 = PU (b) � PU (d)

0:05 = 0:1 � 0:5 = PU (d) � PU (a)

0:02 = 0:1 � 0:2 = PU (d) � PU (b)

0:02 = 0:1 � 0:2 = PU (d) � PU (c)

0:01 = 0:1 � 0:1 = PU (d) � PU (d)

0:1

0:2

0:2 = PU (c)

0:5 = PU (a)

1

a

b

c

d

Figure 5.4: A proper message set for a quaternary source with PMF PU (a) =

0:5, PU (b) = 0:2, PU (c) = 0:2, and PU (d) = 0:1. The message V

will take value in fa; ba; bb; bc; bd; c; da; db; dc; ddg.

Using our knowledge about trees, in particular, using the Leaf Entropy
Theorem (Theorem 4.20) and the Path Length Lemma (Lemma 4.15), we can
easily compute the entropy of the messages of a proper message set:

H(V) = Hleaf (5.103)

=
NX
`=1

P` �H` (5.104)

=
NX
`=1

P` �H(U) (5.105)

= H(U) �
NX
`=1

P` (5.106)

= H(U) � E[M]: (5.107)

Here, (5.103) follows from the fact that all possible values of V are leaves;
(5.104) follows from the Leaf Entropy Theorem (Theorem 4.20); in (5.105) we

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

5.5. General Converse 127

use the fact that the branching entropy is always the source entropy because
the PMF of the source decides about the branching; and (5.107) follows from
the Path Length Lemma (Lemma 4.15).

Hence we get the following theorem.

Theorem 5.13. The entropy of a proper message set H(V) for an r-ary
DMS U is

H(V) = H(U) � E[M] (5.108)

where E[M] is the average message length.

Example 5.14. Consider the following ternary DMS: PU (a) = 0:1, PU (b) = 0:3,
PU (c) = 0:6. We would like to design a binary (D = 2) block code for this
source. Note that

H(U) = �0:1 log 0:1� 0:3 log 0:3� 0:6 log 0:6 � 1:295 bits: (5.109)

Using the proper message set V = fa; b; ca; cb; ccg shown in Figure 5.5, we see
that

E[M] = 1 + 0:6 = 1:6; (5.110)

H(V) = �0:1 log 0:1� 0:3 log 0:3� 0:06 log 0:06

� 0:18 log 0:18� 0:36 log 0:36 (5.111)

� 2:073 bits; (5.112)

H(U) � E[M] � 1:295 bits � 1:6 = 2:073 bits: (5.113)

Note that since we have 5 different messages, we need to assign 5 codewords
of equal length. The smallest possible choice for the codeword length will
therefore be L = 3. �

5.5 General Converse

Next note that from Theorem 5.13 we know

H(V) = H(U)E[M] (5.114)

and from the converse part of the coding theorem for a single random message
(Theorem 4.38) we have

E[L] � H(V)

logD
: (5.115)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

128 Efficient Coding of a Memoryless Random Source

1

a

b

c

0:3 001

0:1 000

0:6

0:18 011

0:06 010

0:36 100

Figure 5.5: A proper message set for the DMS U of Example 5.14 and a pos-
sible binary block code.

Hence, we can derive a general converse:

E[L] � H(U)E[M]

logD
: (5.116)

Theorem 5.15 (Converse to the General Coding Theorem for a DMS).
For any uniquely decodable D-ary code of any proper message set for an
r-ary DMS U , we have

E[L]
E[M]

� H(U)

logD
; (5.117)

where H(U) is the entropy of a single source symbol, E[L] is the average
codeword length, and E[M] is the average message length.

5.6 Optimal Message Sets: Tunstall Message Sets

We now would like to find an optimum way of designing proper message sets.
From Lemma 5.7 we know that in order to minimize the average number of
codewords digits per source letter, we have to maximize E[M].

Definition 5.16. A proper message set for an r-ary DMS with n = 1+N(r� 1)

messages is a Tunstall message set if the corresponding r-ary tree can be
formed, beginning with the extended root, by N � 1 applications of the rule
“extend the most likely leaf”.

As before, n denotes the number of leaves and N is the number of nodes
(including the root).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

5.6. Optimal Message Sets: Tunstall Message Sets 129

Example 5.17. Consider a binary memoryless source (BMS), i.e., r = 2, with
the following PMF:

PU (u) =

8<
:0:4 u = 1;

0:6 u = 0:
(5.118)

Moreover, we would like to have a message set with n = 5 messages, i.e.,

n = 5 = 1 +N(r � 1) = 1 +N; (5.119)

i.e., we need to apply the rule “extend the most likely leaf” N� 1 = 3 times.
The corresponding Tunstall message set is shown in Figure 5.6. �

1

0:6

0:4

0:36

0:24

01

0:24

10

0:16

11

0:216

000

0:144

0010

1

first

second

third

Figure 5.6: Example of a Tunstall message set for a BMS. The dashed arrows
indicate the order in which the tree has been grown.

The following lemma follows directly from the definition of a Tunstall
message set.

Lemma 5.18 (Tunstall Lemma). A proper message set for an r-ary DMS is a
Tunstall message set if, and only if, in its r-ary tree every node is at least as
likely as every leaf.

Proof: Consider growing a Tunstall message set by beginning from the
extended root and repeatedly extending the most likely leaf. The extended

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

130 Efficient Coding of a Memoryless Random Source

root trivially has the property that no leaf is more likely than its only node (the
root itself). Suppose this property continues to hold for the first ` extensions.
On the next extension, none of the r new leaves can be more likely than the
node just extended and thus none is more likely than any of the old nodes
since these were all at least as likely as the old leaf just extended. But none
of the remaining old leaves is more likely than any old node nor more likely
than the new node since this latter node was previously the most likely of the
old leaves. Thus, the desired property holds also after ` + 1 extensions. By
induction, this property holds for every Tunstall message set.

Conversely, consider any proper message set with the property that, in its
r-ary tree, no leaf is more likely than any intermediate node. This property
still holds if we “prune” the tree by cutting off the r branches stemming from
the least likely node. After enough such prunings, we will be left only with
the extended root. But if we then re-grow the same tree by extending leaves
in the reverse order to our pruning of nodes, we will at each step be extending
the most likely leaf. Hence this proper message set was indeed a Tunstall
message set, and the lemma is proved.

Based on this lemma we can now prove the following theorem.

Theorem 5.19. A proper message set with n messages for an r-ary DMS
maximizes E[M] over all such proper message sets if, and only if, it is a
Tunstall message set.

Proof: The theorem follows from the Path Length Lemma (Lemma 4.15)
and the Tunstall Lemma (Lemma 5.18). Consider the r-ary semi-infinite tree
of the DMS. Note that all vertices of an r-ary message set are nodes in this
semi-infinite tree. Since E[M] =

P
` P`, if we want to maximize E[M], we

need to pick the N most likely nodes in this tree. This means that the n =

1 +N(r � 1) leaves will all be less likely than these nodes. Hence, according
to the Tunstall Lemma we have created a Tunstall message set.

5.7 Optimal Variable-Length–to–Block Codes: Tunstall Codes

To find the optimal variable-length–to–block codes we already have almost
all ingredients. In the last section we have proven that the optimal proper
message sets are Tunstall message sets. There is only one question remaining:
How large should the message set be, i.e., how shall we choose n?

Note that

• we want E[M] to be large, i.e., we want to choose n large;

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

5.7. Optimal Variable-Length–to–Block Codes: Tunstall Codes 131

• we can increase n in steps of size (r � 1) (see Leaf Counting Lemma,
Lemma 4.10);

• but since the codeword length L and the size of the coding alphabet D

are fixed, we have at most DL possible codewords available.

So we realize that we should choose n such that it satisfies

DL � (r � 1) < n � DL: (5.120)

We play around with this expression to get

�DL + (r � 1) > �n � �DL; (5.121)

=) (r � 1) > DL � n � 0: (5.122)

Using the Leaf Counting Lemma (Lemma 4.10), i.e., n = 1+N(r� 1), we get

DL � n = DL � 1�N(r � 1) (5.123)

or

N(r � 1) +DL � n| {z }
,R

= DL � 1; (5.124)

where by (5.122) 0 � R < r � 1. So by Euclid’s Division Theorem, we have
that N is the quotient when DL�1 is divided by r�1. (Note that additionally
DL � r is required because the smallest proper message set has r messages.)

Hence, we get the following algorithm.

Tunstall’s Algorithm for Optimum D-ary L-Block Encoding of a Proper Message
Set for an r-ary DMS:

Step 1: Check whether DL � r. If not, stop because such coding is not
possible. Otherwise compute the quotient N when DL � 1 is
divided by r � 1:

N ,
�
DL � 1

r � 1

�
: (5.125)

Step 2: Start with the extended root and construct the Tunstall message
set of size n = 1 +N(r � 1) by N � 1 times extending the most
likely leaf.

Step 3: Assign a distinct D-ary codeword of length L to each message.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

132 Efficient Coding of a Memoryless Random Source

Example 5.20. We again consider the BMS (r = 2) with PU (0) = 0:6 and
PU (1) = 0:4, and construct a binary block code of length 3, i.e., D = 2 and
L = 3. Then

DL = 23 = 8 � r = 2 =) OK (5.126)

and

N ,
�
DL � 1

r � 1

�
=

$
23 � 1

2� 1

%
= 7; (5.127)

i.e., starting with the extended root, we need to extend the most likely leaf
six times. The corresponding Tunstall message set is shown in Figure 5.7.

1

0:6

0:4

0:36

0:24

0:24

0:16

0:216

0:144

0:144

0:096

0:144

0:096

0:1296

0:0864

0

1

first

second

third

fourth

fifth

sixth

Figure 5.7: Tunstall message set for the BMS of Example 5.20. The dashed
arrows indicate the order in which the tree has been grown.

We get

E[M] = 3:056; (5.128)

E[L] = L = 3; (5.129)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

5.7. Optimal Variable-Length–to–Block Codes: Tunstall Codes 133

H(U)

logD
� 0:971; (5.130)

=) L

E[M]
� 0:982 � 0:971 � H(U)

logD
: (5.131)

And finally, our choice of the Tunstall code is shown in Table 5.8.

Table 5.8: Tunstall code of Example 5.20.

Message Codewords

0000 000

0001 001

001 010

010 011

011 100

100 101

101 110

11 111

Notice that if we had used “no coding at all” (which is possible here
since the source alphabet and coding alphabet coincide), then we would have
achieved trivially 1 code digit per source digit. It would be an economic ques-
tion whether the 2% reduction in code digits offered by the Tunstall scheme
in the above example was worth the cost of its implementation. In fact, we
see that no coding scheme could “compress” this binary source by more than
3% so that our Tunstall code has not done too badly. �

There also exists a coding theorem for Tunstall codes, but it is less beau-
tiful than the version for the Huffman codes.

Theorem 5.21 (The Variable-Length–to–Block Coding Theorem for a DMS).
The ratio E[M]=L of average message length to blocklength for an opti-
mum D-ary block-L encoding of a proper message set for an r-ary DMS
satisfies

logD

H(U)
�

log 2
pmin

LH(U)
<

E[M]

L
� logD

H(U)
; (5.132)

where H(U) is the entropy of a single source letter and where pmin =

minu PU (u) is the probability of the least likely source letter. (We actually
have assumed here that PU (u) > 0 for all u. If this is not the case, simply
remove all letters with PU (u) = 0 from the source alphabet.)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

134 Efficient Coding of a Memoryless Random Source

Proof: The right inequality follows directly from the general converse
(Theorem 5.15). It remains to prove the left inequality.

The least likely message in the message set has probability P� � pmin where
P� is the probability of the node from which it stems; but since there are n
messages, this least likely message has probability at most 1

n , so we must have

P� � pmin � 1

n
: (5.133)

By the Tunstall Lemma (Lemma 5.18) no message (i.e., no leaf) has probability
more than P� so that (5.133) implies

PV(v) � P� � 1

npmin
; 8v; (5.134)

which in turn implies

�logPV(v) � logn� log
1

pmin
; 8v: (5.135)

Next, we recall that the number n = 1+N(r� 1) of messages was chosen
with N as large as possible for DL codewords so that surely (see (5.120))

n+ (r � 1) > DL: (5.136)

But n � r so that (5.136) further implies

2n � n+ r > DL + 1 > DL; (5.137)

which, upon substitution in (5.135), gives

H(V) = E[�logPV(v)] � log
2n

2
� log

1

pmin
> L logD� log

2

pmin
: (5.138)

Making use of Theorem 5.13, we see that (5.138) is equivalent to

E[M]H(U) > L logD� log
2

pmin
: (5.139)

Dividing now by LH(U) gives the left inequality in (5.132).
We see that by making L large we can again approach the upper bound

in (5.132) arbitrarily closely. So, it is possible to approach the fundamental
limit both with Huffman codes and Tunstall codes. Usually a Huffman code
is slightly more efficient than the corresponding Tunstall code with the same
number of codewords. The most efficient way is, of course, to combine a
Tunstall message set with a Huffman code. This will then lead to an optimal
variable-length–to–variable-length code (see exercises).4

In spite of its fundamental importance, Tunstall’s work was never pub-
lished in the open literature. Tunstall’s doctoral thesis [Tun67], which con-
tains this work, lay unnoticed for many years before it became familiar to
information theorists.

4What happens if we do block–to–block coding? In general this will result in lossy
compression!

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

5.8. Efficiency of a Source Coding Scheme 135

Remark 5.22. Tunstall’s work shows how to do optimal variable-length–to–
block coding of a DMS, but only when one has decided to use a proper message
set. A legal, but not proper message set — denoted quasi-proper message
set (such as the message set on the right of Figure 5.3) — in which there is
at least one message on each path from the root to a leaf in its r-ary tree, but
sometimes more than one message, can also be used. Quite surprisingly (as
Exercises 5.25 below will show), one can sometimes do better variable-length–
to–block coding of a DMS with a quasi-proper message set than one can do
with a proper message set having the same number of messages. Perhaps even
more surprisingly, nobody today knows how to do optimal variable-length–to–
block coding of a DMS with a given number of messages when quasi-proper
message sets are allowed.

Note, however, that one cannot use less than (logD)=H(U) source letters
per D-ary code digit on the average, i.e., the converse (Theorem 5.15) still
holds true also for quasi-proper message sets. The proof of this most general
converse will be deferred to the advanced information theory course. It is
based on the concept of rate distortion theory (also see the discussion on
p. 367). M

5.8 Efficiency of a Source Coding Scheme

It is common to define an efficiency of a coding scheme.

Definition 5.23. The efficiency � of a source coding scheme is defined by the
ratio of the lower bound H(U)= logD in the general coding theorem (Theo-
rem 5.15) to the achieved average number of codeword digits per source letter
E[L]=E[M]:

� , H(U) � E[M]

logD � E[L] : (5.140)

Note that 0 � � � 1, where 1 denotes full efficiency because in this case
the code achieves the best possible theoretical lower bound exactly.

Remark 5.24. We end this chapter with a final remark. All the systems we
have discussed here contain one common drawback: We have always assumed
that the probability statistics of the source is known in advance and can be
used in the design of the system. In a practical situation this is often not
the case. For example, what is the probability distribution of digitized speech
in a telephone system? Or of English ASCII text in comparison to French
ASCII text? Or of different types of music? A really practical system should
work independently of the source, i.e., it should estimate the probabilities of
the source symbols on the fly and adapt to it automatically. Such a system
is called a universal compression scheme. Such systems do exist, and we

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

136 Efficient Coding of a Memoryless Random Source

will discuss some examples in Chapter 7 in the even more general context of
sources with memory. Beforehand, we need to discuss memory, and how to
compute the entropy of sources with memory. M

Exercise 5.25 (Quasi-Proper Message Sets). Consider a BMS with PU (0) = 0:9

and PU (1) = 0:1.

1. Find the binary (L = 2)-block Tunstall code for this source and
confirm that its efficiency is � = 0:635.

Consider the binary message set shown in Figure 5.9. Although this mes-

v1

v2

v3

v4

0

1

Figure 5.9: Quasi-proper message set.

sage set is not proper, it could in fact be used in practice if we adopted the
convention that, when more than one choice is possible, we always choose
the longest message. Thus, if the source output sequence was 0001001 : : :,
the resulting sequence of messages would be v4;v1;v1;v2; : : : Notice that
we must sometimes examine digits beyond the end of a message before
we choose that message. We call such a message quasi-proper: A quasi-
proper messages set is a message set that is not prefix-free but that has the
property that every path from the root to a leaf in its r-ary tree contains
at least one message node.

Note that in general it is not easy to compute the probabilities of
the messages in a quasi-proper message set (try it!), and thus there is
no simple direct way to analyze the performance of such a variable-
length–to–block coding system. However, in the given example here, we
can use a trick to convert the given quasi-proper message set into a proper
one.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

5.8. Efficiency of a Source Coding Scheme 137

2. Show that the given quasi-proper message set is equivalent to a
proper message set with n = 5 messages in which each message in
the latter message set is a sequence of one or more messages from
the former message set. Draw the binary tree for this equivalent
proper message set and find its average message length E[M].

Note that the source sequence 01 will always be identified as the
message sequence v1;v2; that the source sequence 001 will always
be identified as the message sequence v1;v1;v2, etc. Moreover, also
note that, because we are using blocklength L = 2 coding of the quasi-
proper message set, the message [v1;v2] in the equivalent proper
message set will have a codeword length 2L = 4.

3. Find the average codeword length E[L] for the five codewords that
are assigned to the messages in the equivalent proper message set.

4. Finally, confirm that the efficiency of the blocklength L = 2 binary
coding of the given quasi-proper message set is � = 0:644.

This shows that the efficiency of the (L = 2)-block coding based on the
quasi-proper message set is higher than the efficiency of the best (L = 2)-
block coding with a proper message set. �

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 6

Stochastic Processes and Entropy
Rate

Most real information sources exhibit substantial memory so that the DMS
is not an appropriate model for them. We now introduce two models for
sources with memory that are sufficiently general to satisfactorily model most
real information sources, but that are still simple enough to be analytically
tractable: discrete stationary sources and Markov sources.

6.1 Discrete Stationary Sources

We begin with the following very general definition.

Definition 6.1. A discrete stochastic process or discrete random process fXkg
is a sequence of RVs

: : : ; X�3; X�2; X�1; X0; X1; X2; : : : (6.1)

with a certain joint probability distribution.

Note that the word stochastic is just fancy for random. Moreover, we
would like to point out that in our notation k denotes the discrete time, fXkg
is a discrete-time stochastic process, and Xk denotes the RV of this process at
time k.

It is quite obvious that it is difficult to handle the vast amount of all
possible discrete stochastic processes. Simply a proper definition that contains
the complete joint distribution of the infinite process is a very difficult task
indeed! We need to introduce additional restrictions in order to make them
more accessible for analysis.

One such restriction is to make sure that the probability laws reigning the
process do not change over time. The process is then called stationary.

139 © Stefan M. Moser — IT, version 6.14

140 Stochastic Processes and Entropy Rate

Definition 6.2. A stochastic process fXkg is called stationary or strict-sense
stationary (SSS) if the joint distribution of any subset of the sequence does
not change with time: 8 � 2 Z, 8n 2 N, 8 k1; : : : ; kn where kj 2 Z (j =

1; : : : ; n):

Pr[Xk1 = �1; : : : ; Xkn = �n] = Pr[Xk1+� = �1; : : : ; Xkn+� = �n];

8 (�1; : : : ; �n): (6.2)

In particular, note that this definition means that for any stationary sto-
chastic process we have

Pr[Xk = �] = Pr[X1 = �]; 8 k; �: (6.3)

Sometimes, strict-sense stationarity is a too strong restriction. Then, weak
stationarity might be a solution.

Definition 6.3. A stochastic process fXkg is called weakly stationary or wide-
sense stationary (WSS) if the first and second moments of the process do
not depend on time, i.e.,

E[Xk] = constant, not depending on k; (6.4)

KXX(k; j) , E
��
Xk � E[Xk]

��
Xj � E[Xj]

��
= KXX(k � j): (6.5)

Note that by definition any stationary process is also weakly stationary,
but not vice versa.

The following definition is a straightforward application of the definition
of stochastic processes and stationarity.

Definition 6.4. An r-ary discrete stationary source (DSS) is a device that
emits a sequence of r-ary RVs such that this sequence forms a stationary
stochastic process.

6.2 Markov Processes

In engineering we often have the situation that a RV is processed by a series
of (random or deterministic) processors, as shown in Figure 6.1. In this case

processing
Z

processing
Y

processing
X W

Figure 6.1: A series of processing black boxes with a random input.

Z depends on W , but only via its intermediate products X and Y . In other

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

6.2. Markov Processes 141

words, once we know Y , it does not help us to also know X or W to improve
our prediction about Z.

Another way of looking at the same thing is that the system has limited
memory: Once we know W we do not need to know anymore what happened
before ! The process “forgets” about its past.

This basic idea can be generalized to a so-called Markov process.

Definition 6.5. A discrete stochastic process fXkg is called Markov process of
memory � if

PXkjXk�1;Xk�2;:::;Xk��;:::(xkjxk�1; xk�2; : : : ; xk��; : : :)

= PXkjXk�1;:::;Xk��
(xkjxk�1; : : : ; xk��); (6.6)

for all k and for all (xk; xk�1; : : :).

Hence we only need to keep track of the last � time steps and can forget
about anything older than � time-steps before now!

Remark 6.6. Every Markov process of memory � can be reduced to a Markov
process of memory 1 by enlarging its alphabet. To show this, we give an
instructive example. M

Example 6.7. Consider r = 2 with the alphabet fa; bg, and let � = 2, i.e., it
is sufficient to know the last two time steps, e.g., PX3jX2;X1

(x3jx2; x1). Now
define Vk , (X2k; X2k�1) and note that fVkg takes value in the larger alpha-
bet faa; ab; ba; bbg (i.e., r0 = 4). To check how big the memory of this new
process fVkg is, we compute (for simplicity of notation, we drop the PMF’s
arguments):

PV2jV1;V0;V�1;:::

= PX4;X3jX2;X1;X0;::: (6.7)

= PX3jX2;X1;X0;::: � PX4jX3;X2;X1;X0;::: (by chain rule) (6.8)

= PX3jX2;X1
� PX4jX3;X2;X1

(by Markovity of fXkg) (6.9)

= PX4;X3jX2;X1
(by chain rule) (6.10)

= PV2jV1 : (6.11)

Hence, fVkg is again Markov, but of memory �0 = 1! �

We usually will only consider Markov processes of memory 1 and simply
call them Markov processes.

Definition 6.8. A Markov process is called time-invariant (or homogeneous)
if the conditional probability distribution does not depend1 on time k:

PXkjXk�1
(�j�) = PX2jX1

(�j�); 8 k; �; �: (6.12)
1In the case of a Markov process of memory � > 1, this definition is accordingly adapted

to PXkjXk�1;:::;Xk��
(�j���) = PX�+1jX�;:::;X1

(�j���) for all k, �, ���.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

142 Stochastic Processes and Entropy Rate

We will always assume that a Markov process is time-invariant.

Remark 6.9. We make the following observations:

• For a time-invariant Markov process the transition probabilities from a
certain state ` to a certain another state ~̀always remains the same: p`;~̀.

• These transition probabilities p`;~̀ are usually stored in the transition
probability matrix

P ,

0
BBBBBB@

p1;1 p1;2 � � � p1;m

p2;1 p2;2 � � � p2;m
:::

:::
: : :

:::

pm;1 pm;2 � � � pm;m

1
CCCCCCA: (6.13)

• A time-invariant Markov process can easily be depicted by a state dia-
gram, see the following Example 6.10. M

Example 6.10. Consider a binary source (r = 2) with alphabet fa; bg. Assume
that

PX2jX1
(aja) = 1

2
; PX2jX1

(ajb) = 3

4
; (6.14)

PX2jX1
(bja) = 1

2
; PX2jX1

(bjb) = 1

4
: (6.15)

Then

P =

0
@1

2
1
2

3
4

1
4

1
A (6.16)

and the corresponding state transition diagram is shown in Figure 6.2. �

a b
1

2

1

2

1

4

3

4

Figure 6.2: State transition diagram of a binary (r = 2) Markov source with
transition probability matrix given in (6.16).

So we see that in order to uniquely define a Markov process, we certainly
need to specify the set of all states S and the transition probabilities P, or

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

6.2. Markov Processes 143

equivalently, the state transition diagram. But is this sufficient? Is a Markov
process completely specified by states and transition probabilities?

We remember that a stochastic process is specified by the joint distribution
of any subset of RVs (see Definition 6.1). So let us check the joint distribution
of a Markov process fXkg and see if P fully specifies it. As an example, we
pick three RVs:

PX1;X2;X3(�; �;) = PX1(�) � PX2jX1
(�j�) � PX3jX2;X1

(j�; �) (6.17)

= PX1(�) � PX2jX1
(�j�) � PX3jX2

(j�) (6.18)

= PX1(�)| {z }
not specified yet!

�PX2jX1
(�j�)| {z }

P

�PX2jX1
(j�)| {z }

P

: (6.19)

We see that the joint probability distribution is not completely specified: We
are missing the starting distribution PX1 !

Lemma 6.11 (Specification of a Markov Process). A time-invariant Markov process
is completely specified by the following three items:

1. set of all states S;

2. transition probabilities P;

3. starting distribution PX1(�).

Remark 6.12. Note that if we consider a Markov source of memory � > 1, then
the transition probabilities are given by all possible values of

PX�+1jX�;:::;X1
(�j�; : : : ; �); (6.20)

and the starting distribution corresponds to the distribution of the first �
time-steps:

PX1;:::;X�(�; : : : ; �): (6.21)

But, as mentioned, most of the time we will consider Markov processes of
memory 1. M

A very interesting choice for the starting distribution is the so-called
steady-state distribution :

Definition 6.13. A distribution �(�) that has the property that a transition will
keep it unchanged,

X
�

�(�)PXkjXk�1
(�j�) = �(�); 8� (6.22)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

144 Stochastic Processes and Entropy Rate

is called steady-state distribution. Usually, (6.22) is written in vector nota-
tion:2

���T � P = ���T: (6.23)

Example 6.14. Let us look at the example of Figure 6.2. What is the steady-
state distribution? We write down (6.23) explicitly:

PX2(a) = PX1(a) � PX2jX1
(aja) + PX1(b) � PX2jX1

(ajb) (6.24)

= �a � 1
2
+ �b � 3

4
!
= �a; (6.25)

PX2(b) = PX1(a) � PX2jX1
(bja) + PX1(b) � PX2jX1

(bjb) (6.26)

= �a � 1
2
+ �b � 1

4
!
= �b: (6.27)

Together with the normalization �a + �b = 1, this equation system can be
solved:

�a =
3

5
; (6.28)

�b =
2

5
: (6.29)

�

We have learned the following.

Lemma 6.15. The steady-state distribution ��� can be computed by the balance
equations:

���T = ���T � P (6.30)

and the normalization equation:

mX
j=1

�j = 1: (6.31)

We will now state the most important result concerning Markov processes
that explains why they are so popular in engineering. We will only state the
results and omit the proofs. They can be found in many textbooks about
probability, e.g., in [BT02].

We first need two more definitions.

Definition 6.16. A Markov process is called irreducible if it is possible (i.e.,
with positive probability) to go from any state to any other state in a finite
number of steps.

2Note again that in the case of Markov processes with memory � > 1 the steady-state
distribution is a joint distribution of � variables �(�; : : : ; �) = PXk;:::;Xk��+1(�; : : : ; �). In this
case we will not use the vector notation.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

6.2. Markov Processes 145

Definition 6.17. An irreducible Markov process is called periodic if the states
can be grouped into disjoint subsets so that all transitions from one subset
lead to the next subset.

Figure 6.3 shows some examples of irreducible, reducible, periodic and
aperiodic Markov processes, respectively.

irreducible

1

1

3

1

3

1

3

1

1

1

reducible

periodic aperiodic

Figure 6.3: Examples of irreducible, reducible, periodic and aperiodic Markov
processes, respectively.

And now we are ready for the most important theorem concerning Markov
processes.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

146 Stochastic Processes and Entropy Rate

Theorem 6.18 (Markovity & Stationarity).
Let us consider a time-invariant Markov process that is irreducible and
aperiodic. Then

1. the steady-state distribution �(�) is unique;

2. independently of the starting distribution PX1(�), the distribution
PXk(�) will converge to the steady-state distribution �(�) for k!1;

3. the Markov process is stationary if, and only if, the starting distri-
bution PX1(�) is chosen to be the steady-state distribution �(�):

PX1(�) = �(�); 8�: (6.32)

Table 6.4: The state probability distribution of a Markov source converges to
its steady-state distribution.

PXk(�) k = 1 k = 2 k = 3 k = 4

Pr[Xk = a] 1
1

2
= 0:5

5

8
= 0:625

19

32
= 0:59375

Pr[Xk = b] 0
1

2
= 0:5

3

8
= 0:375

13

32
= 0:40625

PXk(�) k = 5 : : : k =1

Pr[Xk = a]
77

128
= 0:6015625 : : :

3

5
= 0:6

Pr[Xk = b]
51

128
= 0:3984375 : : :

2

5
= 0:4

Example 6.19. Returning to the example of Figure 6.2, we already know that
��� =

�3
5 ;

2
5

�T. By Theorem 6.18 we know that if we start in state a, after a
while we will have a probability of about 3

5 to be in state a and a probability
of about 2

5 to be in state b. This is shown in Table 6.4. �

Remark 6.20. Note that time-invariance and stationarity are not the same
thing! For stationarity it is necessary that a Markov is time-invariant, however,
a time-invariant Markov process is not necessarily stationary! M

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

6.3. Entropy Rate 147

6.3 Entropy Rate

So now that we have defined general sources with memory, the question arises
what the “uncertainty” of such a source is, i.e., what is the “entropy” H(fXkg)
of a stochastic process fXkg?

Example 6.21. If fXkg is IID, then defining H(fXkg) = H(X1) would make
sense as this corresponds to the situation we have considered so far. On the
other hand, if the source has memory, this choice will lead to a rather strange
result. To see this take as an example PX1(0) = PX1(1) =

1
2 , i.e., H(X1) = 1

bit. Assume further that

PX2jX1
(0j0) = 0; PX2jX1

(1j0) = 1;

PX2jX1
(0j1) = 0; PX2jX1

(1j1) = 1;
(6.33)

(see Figure 6.5). From this we can now compute PX2(1) = 1, which means

0 1

1

1

Figure 6.5: Transition diagram of a source with memory.

that H(X2) = 0, H(X2jX1) = 0, and H(X1; : : : ; Xn) = 1 bit. So it is clear
that it is definitely not correct to define the “entropy” to be 1 bit, as only the
first step contains any uncertainty and then we know for sure that the source
remains in state 1 forever. �

Latest by now it should be obvious that the amount of uncertainty coming
from a source with memory strongly depends on the memory.

We give the following definition.

Definition 6.22. The entropy rate (i.e., the entropy per source symbol) of any
stochastic process fXkg is defined as

H(fXkg) , lim
n!1

H(X1; X2; : : : ; Xn)

n
(6.34)

if the limit exists.

Remark 6.23. Unfortunately, this limit does not always exist, as can be seen
from the following example. Let fXkg be independent, but for each k the

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

148 Stochastic Processes and Entropy Rate

distribution is different:

Pr[Xk = 1] =

8>><
>>:

1
2 if k = 1;
1
2 if dlog2 log2 ke is even (k � 2);

0 if dlog2 log2 ke is odd (k � 2);

(6.35)

Pr[Xk = 0] = 1� Pr[Xk = 1]: (6.36)

Then we see that

H(Xk) = 1 bit for k = 1, 2 (= 22
0
), 5–16 (= 22

2
),

257–65536 (= 22
4
), (22

5
+ 1)–22

6
, . . . (6.37)

H(Xk) = 0 bits for k = 3, 4 (= 22
1
), 17–256 (= 22

3
),

65537–22
5
, (22

6
+ 1)–22

7
, . . . (6.38)

The changing points are at 22
0
; 22

1
; 22

2
; 22

3
; 22

4
; 22

5
; 22

6
; 22

7
; : : : If we now look

at

f(n) , 1

n
H(X1; : : : ; Xn) =

1

n

nX
k=1

H(Xk); (6.39)

we note that f(1) = f(2) = 1 bit, then it will decrease f(3) = 2
3 bits,

f(4) = 2
4 = 1

2 bits, then it will increase again f(5) = 3
5 bits, f(6) = 4

6 bits,
. . . , until the next changing point f(16) = 14

16 bits, where it turns again and
decreases, etc. So, f(n) is continuously alternating between increasing and
slowly tending towards 1 bit and decreasing and slowly tending towards 0.
Now note that the intervals between the changing points are growing double-
exponentially, so that the time between each change is getting larger and
larger. Therefore, f(n) has enough “time” to actually approach the corre-
sponding limit 0 or 1 closer and closer each time, before turning away again.
Hence, we see that f(�) oscillates between 0 and 1 forever and does not con-
verge. M

Question: Why not define the entropy rate as

~H(fXkg) , lim
n!1H(XnjXn�1; Xn�2; : : : ; X1)? (6.40)

The (partial) answer lies in the following theorem.

Theorem 6.24 (Entropy Rate of a DSS).
For a stationary stochastic process (or DSS) the entropy rate H(fXkg)
always exists and its value is identical to ~H(fXkg):

H(fXkg) = lim
n!1

H(X1; : : : ; Xn)

n
= lim

n!1H(XnjXn�1; : : : ; X1): (6.41)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

6.3. Entropy Rate 149

Furthermore,

1. H(XnjXn�1; : : : ; X1) is nonincreasing in n;

2. 1
n H(X1; : : : ; Xn) is nonincreasing in n;

3. H(XnjXn�1; : : : ; X1) � 1
n H(X1; : : : ; Xn); 8n � 1.

Before we can prove this important result, we need another small lemma.

Lemma 6.25 (Cesáro Mean). If

lim
n!1 an = a (6.42)

then

bn ,
1

n

nX
k=1

ak ! a (6.43)

as n!1.

Proof: By assumption, an ! a. This — in mathematical language —
means: 8 � > 0, 9 N� such that jan � aj � �, for n > N�. We now want to
show that for any �1 > 0 and for n large enough we have

jbn � aj � �1: (6.44)

To this end, note that for n > N�

jbn � aj =
����� 1n

nX
k=1

ak � a
����� (6.45)

=

����� 1n
nX

k=1

ak � 1

n

nX
k=1

a

����� (6.46)

=

����� 1n
nX

k=1

(ak � a)
����� (6.47)

� 1

n

nX
k=1

jak � aj (6.48)

=
1

n

N�X
k=1

jak � aj+ 1

n

nX
k=N�+1

jak � aj| {z }
� �

(6.49)

� 1

n

N�X
k=1

jak � aj| {z }
constant

+
n�N�

n| {z }
� 1

�� (6.50)

� �+ � = 2� , �1; for n large enough; (6.51)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

150 Stochastic Processes and Entropy Rate

where the inequality (6.48) follows from the Triangle Inequality. Since � > 0

is arbitrary, also �1 is arbitrary and therefore the claim is proven.
Proof of Theorem 6.24: We start with the second part of the Theorem

and there with a proof of Part 1:

H(XnjXn�1; : : : ; X1) = H(Xn+1jXn; : : : ; X2) (6.52)

� H(Xn+1jXn; : : : ; X2; X1) (6.53)

where (6.52) follows from stationarity and (6.53) follows from conditioning
that reduces entropy.

To prove Part 3 we rely on the chain rule and on Part 1:

1

n
H(X1; : : : ; Xn) =

1

n

nX
k=1

H(XkjXk�1; : : : ; X1) (chain rule) (6.54)

� 1

n

nX
k=1

H(XnjXn�1; : : : ; X1) (Part 1) (6.55)

= H(XnjXn�1; : : : ; X1): (6.56)

To prove Part 2 we rely on the chain rule (equality in (6.57)), on Part 1
(inequality in (6.58)), and on Part 3 (inequality in (6.59)):

H(X1; : : : ; Xn; Xn+1) = H(X1; : : : ; Xn) +H(Xn+1jXn; : : : ; X1) (6.57)

� H(X1; : : : ; Xn) +H(XnjXn�1; : : : ; X1) (6.58)

� H(X1; : : : ; Xn) +
1

n
H(X1; : : : ; Xn) (6.59)

=
n+ 1

n
H(X1; : : : ; Xn); (6.60)

i.e.,
1

n+ 1
H(X1; : : : ; Xn+1) � 1

n
H(X1; : : : ; Xn): (6.61)

Finally, to prove (6.41) note that by Parts 1 and 2, both H(XnjXn�1; : : : ;

X1) and 1
n H(X1; : : : ; Xn) are nonincreasing, but bounded below by zero (be-

cause entropies are always nonnegative). Hence, they must converge. This
shows that the limit exists. Now it only remains to show that they converge
to the same limit. To this end, we rely on the Cesáro mean (Lemma 6.25):

H(fXkg) = lim
n!1

1

n
H(X1; : : : ; Xn) (6.62)

= lim
n!1

, bnz }| {
1

n

nX
k=1

H(XkjXk�1; : : : ; X1)| {z }
, ak

(6.63)

= lim
n!1H(XnjXn�1; : : : ; X1) (Lemma 6.25) (6.64)

= ~H(fXkg): (6.65)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

6.3. Entropy Rate 151

Note the following direct consequence of Theorem 6.24.

Corollary 6.26. For a stationary stochastic process fXkg it holds that for any
n 2 N,

H(XnjXn�1; : : : ; X1) � 1

n
H(X1; : : : ; Xn) � H(X1): (6.66)

Proof: The first inequality simply is repeated from Theorem 6.24 (Part 3),
and the second inequality holds because 1

n H(X1; : : : ; Xn) is nonincreasing and
thus maximized for n = 1.

Beside stationary processes we can also prove for a Markov process that the
entropy rate always is defined (even if the Markov process is not stationary).

Theorem 6.27 (Entropy Rate of a Markov Source).
For a time-invariant, irreducible, and aperiodic Markov process fXkg of
memory � the entropy rate H(fXkg) always exists and its value is identical
to ~H(fXkg). In particular, the entropy rate can be computed as

H(fXkg) = H(X�+1jX�; : : : ; X1)
���
PX�;:::;X1 (�;:::;�)=�(�;:::;�)

(6.67)

where, when computing the conditional entropy H(X�+1jX�; : : : ; X1),
we need to choose PX�;:::;X1(�; : : : ; �) to be the steady-state distribution
�(�; : : : ; �).

In the case where the memory has length � = 1, this simplifies to

H(fXkg) = H(X2jX1)
��
PX1 (�)=�(�)

(6.68)

with �(�) = ��� denoting the steady-state distribution.

Thus we see that the entropy rate of a Markov process does not depend
on the starting distribution, but only on the transition probabilities (and the
steady-state distribution that is computed from the transition probabilities).

Remark 6.28. Before we prove Theorem 6.27, we would like to give a warning:
The reader should be aware that even though we assume a time-invariant
Markov process, i.e., we assume that

PXnjXn�1;:::;Xn��
(�j���) = PX�+1jX�;:::;X1

(�j���) (6.69)

for all � 2 X and ��� 2 X �, we have

H(XnjXn�1; : : : ; Xn��) 6= H(X�+1jX�; : : : ; X1) (6.70)

in general! The reason lies in the fact that for the computation of the con-
ditional entropy H(XnjXn�1; : : : ; Xn��) it is not sufficient to know merely

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

152 Stochastic Processes and Entropy Rate

the conditional PMF PXnjXn�1;:::;Xn��
, but we actually need the joint PMF

PXn��;:::;Xn . This joint PMF, however, depends on n. The inequality in
(6.70) can only be replaced by equality if the starting distribution equals to
the steady-state distribution, i.e., only if the Markov process happens to be
stationary. M

Proof of Theorem 6.27: The basic idea behind this result is the fact
that by Theorem 6.18, a time-invariant, irreducible, and aperiodic Markov
process will always converge to the steady-state distribution. A Markov pro-
cess based on the steady-state distribution, however, looks stationary and
therefore should have an entropy rate that is well-defined.

We start with ~H(fXkg):

~H(fXkg) = lim
n!1H(XnjXn�1; : : : ; X1) (6.71)

= lim
n!1H(XnjXn�1; : : : ; Xn��) (6.72)

= lim
n!1H(XnjXn��; : : : ; Xn�1) (6.73)

= lim
n!1

X
���

PXn��;:::;Xn�1(���)H
�
Xn

��(Xn��; : : : ; Xn�1) = ���)
�

(6.74)

= lim
n!1

X
���

PXn��;:::;Xn�1(���)H
�
X�+1

��(X1; : : : ; X�) = ���)
�

(6.75)

=
X
���

�
lim
n!1PXn��;:::;Xn�1(���)

�
| {z }

=�(���)

H
�
X�+1

��(X1; : : : ; X�) = ���)
�

(6.76)

=
X
���

�(���)H
�
X�+1

��(X1; : : : ; X�) = ���)
�

(6.77)

= H(X�+1jX1; : : : ; X�)
���
PX1;:::;X� (�;:::;�)=�(�;:::;�)

: (6.78)

Here, (6.72) follows from Markovity; in (6.73) we rearrange the order of
Xn��; : : : ; Xn�1 for notational reasons; (6.74) is due to definition of con-
ditional entropy; (6.75) follows from time-invariance; in (6.76) we take the
limit into the sum since only PXn�1;:::;Xn�� depends on n; (6.77) is the crucial
step: Here we use the fact that for a time-invariant, irreducible, and aperi-
odic Markov process of memory �, the distribution PXn�1;:::;Xn�� converges to
the steady-state distribution ���; and in (6.78) we again use the definition of
conditional entropy. This proves the first part.

Next we prove that the entropy rate is identical to the above:

H(fXkg)
= lim

n!1
1

n
H(X1; : : : ; Xn) (6.79)

= lim
n!1

1

n

�
H(X�+1; : : : ; XnjX1; : : : ; X�) +H(X1; : : : ; X�)

�
(6.80)

= lim
n!1

n� �
n� � �

1

n
H(X�+1; : : : ; XnjX1; : : : ; X�)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

6.3. Entropy Rate 153

+ lim
n!1

1

n
H(X1; : : : ; X�)| {z }

=0

(6.81)

= lim
n!1

n� �
n| {z }
! 1

� 1

n� � H(X�+1; : : : ; XnjX1; : : : ; X�) (6.82)

= lim
n!1

1

n� �
nX

k=�+1

H(XkjX1; : : : ; Xk�1) (6.83)

= lim
n!1

1

n� �
nX

k=�+1

H(XkjXk��; : : : ; Xk�1) (6.84)

= lim
n!1

1

n� �
nX

k=�+1

X
���

PXk��;:::;Xk�1(���) H
�
Xk

��(Xk��; : : : ; Xk�1) = ���
�
(6.85)

= lim
n!1

X
���

1

n� �
nX

k=�+1

PXk��;:::;Xk�1(���)H
�
X�+1

��(X1; : : : ; X�) = ���
�

(6.86)

=
X
���

0
@ lim
n!1

1

n� �
nX

k=�+1

PXk��;:::;Xk�1(���)

1
A

| {z }
=�(���)

H
�
X�+1

��(X1; : : : ; X�) = ���
�

(6.87)

=
X
���

�(���)H
�
X�+1

��(X1; : : : ; X�) = ���)
�

(6.88)

= H(X�+1jX1; : : : ; X�)
���
PX1;:::;X� (�;:::;�)=�(�;:::;�)

: (6.89)

Here, (6.80) follows from the chain rule; in (6.82) we use that H(X1; : : : ; X�)

is independent of n and finite; (6.83) again follows from the chain rule; (6.84)
from Markovity; in (6.86) we swap the order of finite summations and use
the time-invariance of the Markov process; in (6.87) we use the fact that
H(X�+1j(X1; : : : ; X�) = ���) does not depend on k or n; and (6.88) again fol-
lows because for a time-invariant, irreducible, and aperiodic Markov process
of memory � the distribution PXk��;:::;Xk�1 converges to the steady-state dis-
tribution ��� and because of the Cesáro mean (Lemma 6.25).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 7

Data Compression: Efficient Coding
of a Random Source with Memory

In Chapter 6 we have introduced some types of sources with memory. Now,
we will start thinking about ways of how to compress them.

7.1 Block–to–Variable-Length Coding of a DSS

We start with a reminder.

Remark 7.1. An r-ary discrete stationary source (DSS) fUkg is a device that
emits a sequence U1; U2; : : : of r-ary RVs such that this sequence is a stationary
stochastic process. Hence, every DSS has an entropy rate

H(fUkg) = lim
n!1

1

n
H(U1; : : : ; Un) = lim

n!1H(UnjUn�1; : : : ; U1): (7.1)

M

For simplicity, at the moment we will only consider block parsing of the
output of the DSS, but variable-length parsers are also often used in practice.
So, we consider now the system shown in Figure 7.1.

encoder
with

memory

Ck;Ck+1; : : : M-block
parser

Vk;Vk+1; : : : r-ary
DSS

U1; U2; : : :

Figure 7.1: A general compression scheme for a source with memory: The D-
ary code is, as usual, assumed to be prefix-free, but the encoder is
allowed to have memory. For the moment, we assume an M-block
parser.

We note that since the source has memory, the messages have memory,
too, i.e., the different Vk depend on each other. Hence, to make the encoder

155 © Stefan M. Moser — IT, version 6.14

156 Efficient Coding of a Random Source with Memory

efficient, it should use this additional information provided by the memory!
This means that we allow the encoder to take previous messages into account
when encoding the message Vk. In principle, the encoder could use a different
prefix-free code for each possible sequence of values for the previous messages
V1;V2; : : : ;Vk�1. Note that at the time when the decoder should decode the
codeword Ck, it already has decoded C1; : : : ;Ck�1 to V1; : : : ;Vk�1. Hence,
the decoder also knows the previous messages and therefore the code used for
Vk. It therefore can decode Ck.

Claim 7.2 (Optimal Block–to–Variable-Length Coding of a DSS). We consider an
M-block parser that generates the block messages

Vk = (UkM�M+1; : : : ; UkM�1; UkM| {z }
length M

); 8 k: (7.2)

For every k, we take the conditional distribution of the current message Vk

conditional on the past (Vk�1; : : : ;V1) = (vk�1; : : : ;v1)

PVkjVk�1;:::;V1
(�jvk�1; : : : ;v1) (7.3)

to design an optimal D-ary Huffman code for Vk and then encode Vk with
this code. Note that this Huffman code will be different for each k.

The receiver also knows the past (vk�1; : : : ;v1) because it has decoded that
beforehand, and therefore also knows which code has been used to encode Vk,
and hence can decode it.

Such a system is called adaptive Huffman coding.

We immediately realize that adaptive Huffman coding is not a practical
system because the effort involved is rather big: We have to redesign our code
for every message!

Nevertheless we will quickly analyze the performance of such an adaptive
Huffman coding system. The analysis is quite straightforward as we can base
it on our knowledge of the performance of a Huffman code. From the coding
theorem for a single random message (Theorem 4.38) it follows that the length
Lk of the codeword Ck for the message Vk must satisfy

H
�
Vk

��(V1; : : : ;Vk�1) = (v1; : : : ;vk�1)
�

logD
� E[Lk j(V1; : : : ;Vk�1) = (v1; : : : ;vk�1)] (7.4)

<
H
�
Vk

��(V1; : : : ;Vk�1) = (v1; : : : ;vk�1)
�

logD
+ 1: (7.5)

We first investigate the lower bound (7.4). Taking the expectation over
V1; : : : ;Vk�1 (i.e., multiplying the expression by PV1;:::;Vk�1(v1; : : : ;vk�1)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

7.1. Block–to–Variable-Length Coding of a DSS 157

and summing over all values v1, : : : ;vk�1) gives

E[Lk] = EV1;:::;Vk�1 [E[Lk jV1; : : : ;Vk�1]] (7.6)

=
X

v1;:::;vk�1

PV1;:::;Vk�1(v1; : : : ;vk�1)

�E[Lk j(V1; : : : ;Vk�1) = (v1; : : : ;vk�1)] (7.7)

�
X

v1;:::;vk�1

PV1;:::;Vk�1(v1; : : : ;vk�1)

� H
�
Vk

��(V1; : : : ;Vk�1) = (v1; : : : ;vk�1)
�

logD
(7.8)

=
EV1;:::;Vk�1

�
H
�
Vk

��(V1; : : : ;Vk�1) = (v1; : : : ;vk�1)
��

logD
(7.9)

=
H(VkjV1; : : : ;Vk�1)

logD
(7.10)

=
H
�
U(k�1)M+1; : : : ; UkM

��U1; : : : ; UM; : : : ; U(k�2)M+1; : : : ; U(k�1)M

�
logD

(7.11)

=
H
�
U(k�1)M+1

��U1; : : : ; U(k�1)M

�
+ � � �+H

�
UkM

��U1; : : : ; UkM�1
�

logD
(7.12)

� M �H�UkM��U1; : : : ; UkM�1
�

logD
(7.13)

� MH(fUkg)
logD

: (7.14)

Here, (7.6) follows from the law of total expectation; (7.8) follows from (7.4);
in (7.11) we use the definition of the messages (7.2); the subsequent equality
(7.12) follows from the chain rule; and in the subsequent inequalities (7.13)
and (7.14) we use that H(Uj jUj�1; : : : ; U1) is monotonically nonincreasing and
converges to the entropy rate H(fUkg) (Theorem 6.24). Hence, we have

E[Lk]
M

� H(fUkg)
logD

: (7.15)

Similarly, again using the monotonicity of H(Uj jUj�1; : : : ; U1), we obtain
from (7.5)

E[Lk] <
H
�
U(k�1)M+1

��U1; : : : ; U(k�1)M

�
+ � � �+H

�
UkM

��U1; : : : ; UkM�1
�

logD
+ 1

(7.16)

� MH
�
U(k�1)M+1

��U1; : : : ; U(k�1)M

�
logD

+ 1; (7.17)

i.e.,

E[Lk]
M

<
H
�
U(k�1)M+1

��U1; : : : ; U(k�1)M

�
logD

+
1

M
: (7.18)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

158 Efficient Coding of a Random Source with Memory

Since H
�
U(k�1)M+1

��U1; : : : ; U(k�1)M

�
converges monotonically to H(fUkg), for

every � > 0 there must exist some M0 large enough such that for all M �M0,
we have

E[Lk]
M

<
H(fUkg)
logD

+ �: (7.19)

We summarize this in the following theorem.

Theorem 7.3 (Block–to–Variable-Length Coding Theorem for a DSS).
For every � > 0, one can choose an M 2 N large enough such that there
exists a D-ary prefix-free code for the kth M-block message of a DSS
fUkg with an average codeword length per source letter satisfying

E[Lk]
M

<
H(fUkg)
logD

+ �: (7.20)

Conversely, every uniquely decodable D-ary code of the kth M-block
message of a DSS fUkg has an average codeword length per source symbol
that satisfies

E[Lk]
M

� H(fUkg)
logD

: (7.21)

This holds even if we allow the code to depend on previous messages.

The alert reader might object that strictly speaking we have not proven
that adaptive Huffman coding indeed is an optimal approach. However, we
hope that our argument of choosing the optimal code at every step based on
the complete knowledge at that time is convincing. Readers who would like
to get more insight are referred to Section 20.8.

In spite of the success of having derived Theorem 7.3, we still feel uneasy
because an adaptive Huffman coding scheme is completely infeasible in prac-
tice. Moreover, we also have to address the problem that we assume a known
source distribution. Both issues can be resolved by so-called universal coding
schemes.

7.2 Elias–Willems Universal Block–To–Variable-Length Coding

We have already mentioned that adaptive Huffman coding is very expensive
and often even not feasible. However, there is one more very fundamental
problem with Huffman codes: We need to know the exact probability dis-
tribution of the DSS. In practice we usually have no clue of the statistical
distribution of the source we would like to compress.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

7.2. Elias–Willems Universal Block–To–Variable-Length Coding 159

We would like to find a compression scheme that does compress as ef-
ficiently as adaptive Huffman coding, but without the need of knowing
the distribution of the source (and, if possible, in a more feasible and
practical way).

The clue idea here is to try to find the distribution “on the fly”.

Example 7.4. Consider a binary DSS Uk 2 fa; bg and assume that it produces
the following sequence:

aaabaabaaaababbaaaaba (7.22)

We note that a seems to have a higher probability than b! So how can we
make use of such observations? �

7.2.1 Recency Rank Calculator

The basic idea is shown in Figure 7.2. We use a new device called recency
rank calculator. To understand how it works, firstly note that there are
rM different possible messages that can be at the input of the recency rank
calculator. We assume that the system has been running for a long time,
so that all possible messages have occurred at least once. Then at time k,
the message that has been seen most recently has recency rank 1, the next
different message before the most recent one has recency rank 2, etc.

recency
rank

calculator

Nk

codewords
M-block
parser

Vk

messages
r-ary
DSS

U1; U2; : : :

Figure 7.2: A first idea for a universal compression system that relies on a
new device called recency rank calculator.

Example 7.5. Assume a binary source (r = 2) and a parser producing block mes-
sages of length M = 2. Then we have 22 = 4 possible messages f00; 01; 10; 11g
at the input of the recency rank calculator. Suppose that the sequence of past
messages before time k is

: : :
��Vk�4

��Vk�3

��Vk�2

��Vk�1

��now
= : : :

��11��00��11��10��01��11��01��01��now
(7.23)

Then we have the recency rank list shown in Table 7.3. We note that the
recency rank calculator simply orders all possible messages in the order of
their last occurrence. �

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

160 Efficient Coding of a Random Source with Memory

Table 7.3: Example of a recency rank list according to the situation shown in
(7.23).

Message Recency Rank at Time k

00 4

01 1

10 3

11 2

Let us make this definition formal.

Definition 7.6. A recency rank calculator is a device that assigns the actual
recency rank Nk to the message Vk, and afterwards updates the recency rank
list.

Example 7.7. To continue with our example, assume that Vk = 10. Hence,
from the current recency rank list in Table 7.3 we see that Nk = 3. So, the
recency rank calculator puts out Nk = 3 and then updates the recency rank
list as shown in Table 7.4. �

Table 7.4: Updated recency rank list.

Message Recency Rank at Time k + 1

00 4

01 2

10 1

11 3

According to Figure 7.2, the codeword for Vk is now simply the number
Nk. Since the decoder has decoded V1;V2; : : : ;Vk�1 before it needs to decode
Nk, it can easily keep track of the recency rank list in the same way as the
encoder and therefore can correctly decode Vk.

Note that at the start of the system, we do not yet have a recency rank
list. But this is not really a problem as we simply will define a default starting
value of the recency rank list. An example is shown in Table 7.5.

What is the intuition behind this system? Note that messages that occur
often have small recency rank. Hence we use a shorter codeword (small num-
ber) for them. Messages that show up only rarely will have large Nk, i.e., we
assign them a long codeword (large number). So it looks like that we are suc-
cessfully compressing the source without knowing its distribution! Moreover,

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

7.2. Elias–Willems Universal Block–To–Variable-Length Coding 161

Table 7.5: Example of a default starting recency rank list.

Message Recency Rank at Time 1

(by definition)

00 1

01 2

10 3

11 4

if the source actually were not stationary, but kept changing its distribution
over time, the system would also be able to adapt to these changes because
the recency rank list will reflect the change as well.1

However, we do have one serious problem : The numbers Nk are not
prefix-free! As a matter of fact, they are not even uniquely decodable!

Example 7.8. In our example we have four recency ranks: 1; 2; 3; 4. Their binary
representation is then 1; 10; 11; 100, respectively. So how shall we decode a
received sequence 111? It could be 1; 11 or 11; 1 or 1; 1; 1! �

We realize:

We need a prefix-free code for the positive integers!

7.2.2 Codes for Positive Integers

Standard Code

We start with the usual binary representation of the positive integers and call
this code the standard code B0(n). It is shown in Table 7.6.

Table 7.6: Standard code : usual binary representation of positive integers.

n 1 2 3 4 5 6 7 8 9 10 � � �
B0(n) 1 10 11 100 101 110 111 1000 1001 1010 � � �

As mentioned above, this code is not prefix-free (not even uniquely decod-
able).

1Here we need to assume that the change will not be too fast, as the recency rank list
needs some time to adapt to a new distribution.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

162 Efficient Coding of a Random Source with Memory

We observe that every codeword has a 1 as its first digit. Moreover, we
note that the length LB0(n) of the codeword B0(n) is given by

LB0(n) = blog2 nc+ 1: (7.24)

Be careful: blog2 nc+1 is not the same as dlog2 ne. To see this, compare, e.g.,
the values for n = 4.

First Elias Code

Elias had the idea [Eli75] to make the standard code prefix-free by simply
adding a prefix in front of every codeword consisting of LB0(n)� 1 zeros. We
call this code the first Elias code B1(n). The first couple of codewords are
listed in Table 7.7.

Table 7.7: First Elias code : Add a prefix of LB0(n)� 1 zeros to B0(n).

n 1 2 3 4 5 6

B0(n) 1 10 11 100 101 110

LB0(n)� 1 0 1 1 2 2 2

B1(n) 1 010 011 00100 00101 00110

n 7 8 9 10 11 � � �
B0(n) 111 1000 1001 1010 1011 � � �
LB0(n)� 1 2 3 3 3 3 � � �
B1(n) 00111 0001000 0001001 0001010 0001011 � � �

Obviously, the code B1(n) is prefix-free because the number of leading zeros
in a codeword tells us exactly how many digits will come after the inevitable
leading 1 of the standard code.

Example 7.9. The sequence of codewords

0010101100110001110 : : : (7.25)

is unambiguously recognizable as

00101j011j00110j00111j0 : : : = 5j3j6j7j : : : (7.26)

�

Unfortunately, the codewords B1(n) are almost twice as long as the code-
words B0(n):

LB1(n) = LB0(n)� 1 + LB0(n) = 2LB0(n)� 1 = 2blog2 nc+ 1: (7.27)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

7.2. Elias–Willems Universal Block–To–Variable-Length Coding 163

Second Elias Code

To solve the problem of the inefficient length, Elias came up with another idea
[Eli75]: Instead of using zeros as prefix to tell the length of the codeword, we
use B1(LB0(n)) to tell how many digits are coming. Moreover, since B1(�) is
prefix-free, we do not need to use the leading 1 of B0(n). This code is called
the second Elias code and is given in Table 7.8.

Table 7.8: Second Elias code : The length is encoded by the first Elias code,
the number by the standard code:

B2(n) = B1(LB0(n)) [[B0(n) without leading 1].

n 1 2 3 4 5 6

B0(n) 1 10 11 100 101 110

LB0(n) 1 2 2 3 3 3

B1(LB0(n)) 1 010 010 011 011 011

B2(n) 1 0100 0101 01100 01101 01110

n 7 8 9 10 11 � � �
B0(n) 111 1000 1001 1010 1011 � � �
LB0(n) 3 4 4 4 4 � � �
B1(LB0(n)) 011 00100 00100 00100 00100 � � �
B2(n) 01111 00100000 00100001 00100010 00100011 � � �

Example 7.10. The codeword for n = 7 in the standard representation is B0(7) =

111 with codeword length LB0(7) = 3. Now we use the first Elias code to write
3 as B1(3) = 011, remove the leading 1 from 111, and get as a new codeword
for n = 7:

B2(7) = 011 11: (7.28)

�

Note that because the code B1(n) is prefix-free, we can recognize the first
part B1(LB0(n)) of the codeword B2(n) as soon as we see the last digit of
B1(LB0(n)). We decode this part and then immediately know the number
LB0(n) of digits in the remainder of the codeword. Thus B2(n) is indeed
prefix-free.

How efficient is B2(n)? We get

LB2(n) = LB1

�
LB0(n)

�
+ LB0(n)� 1 (7.29)

= LB1(blog2 nc+ 1) + blog2 nc+ 1� 1 (7.30)

= 2blog2(blog2 nc+ 1)c+ 1 + blog2 nc (7.31)

� log2 n; for large n. (7.32)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

164 Efficient Coding of a Random Source with Memory

So, because log2 log2 n is extremely slowly growing, the second Elias code is,
at least for large n, far better than the first. As a matter of fact we have

LB2(n) > LB1(n); only for n = 2; 3; : : : ; 15; (7.33)

LB2(n) = LB1(n); for n = 16; 17; : : : ; 31; (7.34)

LB2(n) < LB1(n); for n � 32: (7.35)

Asymptotically, the second Elias code has the same efficiency as the standard
code in spite of the overhead that we added to make it prefix-free.

We will now use the second Elias code to build a block–to–variable-length
coding scheme.

7.2.3 Elias–Willems Block–to–Variable-Length Coding for a DSS

It is now straightforward to combine the idea of a recency rank calculator with
the prefix-free code of Elias. See Figure 7.9 for the corresponding system.

B2(�)
Ck; : : :

codewords

of length Lk

rec.-rank
calculator

Nk; : : : M-block
parser

Vk; : : :

messages

of length M

r-ary
DSS

U1; : : :

Figure 7.9: An Elias–Willems compression scheme.

Let us compute the efficiency of this system. We suppose that encoding
has been in progress for a time sufficiently long for all message values to have
appeared at least once in the past so that all recency ranks are genuine.

Define �k to be the time to the most recent occurrence of Vk: If Vk = v,
Vk�� = v, Vj 6= v for all j = k � 1; : : : ; k � � + 1, then �k = �.

Example 7.11. If

: : :
��Vk�4

��Vk�3

��Vk�2

��Vk�1

��Vk = : : :
��11��00��11�� 10��01��11��01��01��10| {z }

�k

(7.36)

then �k = 5. �

Note that

Nk � �k; (7.37)

because only the values of Vk�1; : : : ;Vk��k+1 (which might not all be differ-
ent!) could have smaller recency ranks than Vk.

We assume that the DSS is ergodic, i.e., time statistics are equal to the
probabilistic statistics. Then we know that for a very long sequence, the
number of occurrences of v divided by the whole length of the sequence is

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

7.2. Elias–Willems Universal Block–To–Variable-Length Coding 165

approximately PV(v). Hence the average spacing between these occurrences
is 1

PV(v) :

E[�k jVk = v] =
1

PV(v)
: (7.38)

The binary codeword Ck for the message Vk is B2(Nk). Therefore its
length Lk satisfies

Lk = LB2(Nk) (7.39)

� LB2(�k) (7.40)

= blog2�kc+ 2
�
log2

�blog2�kc+ 1
��

+ 1 (7.41)

� log2�k + 2 log2
�
log2�k + 1

�
+ 1; (7.42)

where the first inequality follows from (7.37) and the second from dropping the
flooring-operations. Taking the conditional expectation, given that Vk = v,
results in

E[Lk jVk = v]

� E[log2�k jVk = v] + 2E
�
log2

�
log2�k + 1

���Vk = v
�
+ 1 (7.43)

� log2(E[�k jVk = v]) + 2 log2
�
log2(E[�k jVk = v]) + 1

�
+ 1 (7.44)

= �log2 PV(v) + 2 log2
��log2 PV(v) + 1

�
+ 1: (7.45)

Here (7.44) follows from the Jensen Inequality (Theorem 2.1) and the concav-
ity of the logarithm; and (7.45) follows from (7.38).

Taking the expectation over Vk and invoking the Total Expectation The-
orem finally yields:

E[Lk] = EV[E[Lk jVk = v]] (7.46)

� E[�log2 PV(V)] + 2E
�
log2

��log2 PV(V) + 1
��
+ 1 (7.47)

� E[�log2 PV(V)]| {z }
=H(V)

+ 2 log2
�
E[�log2 PV(V)]| {z }

=H(V)

+ 1
�
+ 1 (7.48)

= H(V) + 2 log2
�
H(V) + 1

�
+ 1 (7.49)

= M � 1
M

H(U1; : : : ; UM) + 2 log2

�
M � 1

M
H(U1; : : : ; UM) + 1

�
+ 1

(7.50)

�M � H(U1; : : : ; UM)

M
+ 2 log2

�
M �H(U1) + 1

�
+ 1; (7.51)

where (7.47) follows from (7.45), where in (7.48) we have used the Jensen
Inequality once more, and where the last inequality (7.51) follows from Corol-
lary 6.26 (because the source is stationary). Hence we have

E[Lk]
M

� H(U1; : : : ; UM)

M
+

2

M
log2

�
M �H(U1) + 1

�
+

1

M
: (7.52)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

166 Efficient Coding of a Random Source with Memory

Recall that the entropy rate of a stationary source always exists and is given
by

H(fUkg) = lim
M!1

H(U1; : : : ; UM)

M
: (7.53)

Thus for M!1 we have

lim
M!1

E[Lk]
M

� lim
M!1

�
H(U1; : : : ; UM)

M| {z }
!H(fUkg)

+
2

M

grows more slowly than Mz }| {
log2

�
M �H(U1) + 1

�
+

1

M| {z }
! 0

�

(7.54)

= H(fUkg): (7.55)

When we compare this with the converse of the coding theorem for block–to–
variable-length coding for a DSS (Theorem 7.3), we see that this system is
asymptotically (i.e., for large M) optimal.

Theorem 7.12 (Elias–Willems Block–to–Variable-Length Coding Theorem for a
DSS).
For the Elias–Willems binary coding scheme of M-block messages from an
r-ary ergodic DSS, the codeword length Lk (for all k sufficiently large)
satisfies:

H(fUkg) � E[Lk]
M

� H(U1; : : : ; UM)

M

+
2

M
log2

�
M � H(U1; : : : ; UM)

M
+ 1

�
+

1

M
(7.56)

where all entropies are given in bits. By choosing M sufficiently large,
E[Lk]
M can be made arbitrarily close to H(fUkg).

We would like to add that this theorem also holds if the DSS is nonergodic,
but the proof is more complicated. Moreover, as already mentioned, it usually
will even work if the source is not stationary. However, in such a case it will
be very hard to prove anything.

Since this coding scheme works without knowing the source statistics, it
is called a universal coding scheme. The Elias–Willems coding scheme is
an example of a universal block–to–variable-length coding scheme. It is very
elegant in description and also analysis. However, in practice it is not widely
used. Some of the most commonly used schemes are universal variable-length–
to–block coding schemes called Lempel–Ziv coding schemes. They are also
asymptotically optimal. We will describe them next.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

7.3. Sliding Window Lempel–Ziv Universal Coding Scheme 167

7.3 Sliding Window Lempel–Ziv Universal Coding Scheme

In real life, the most often used compression algorithms are based on the
Lempel–Ziv universal coding schemes. There are many variations, but in
general one can distinguish two main types: the sliding window Lempel–Ziv
coding scheme (published it in 1977) and the tree-structured Lempel–Ziv
coding scheme (published in 1978).

The latter coding scheme will be discussed and analyzed in Chapter 8. In
this section we will briefly describe the former, but will refrain from making
a detailed performance analysis because it is inherently related to the Elias-
Willems coding scheme and therefore has a similar performance. We will
explain the main idea using the example of a binary source Uk 2 fA;Bg.

Description

• Fix a window size w (in the following we will use the example of w =

5) and a maximum match length lmax, and start parsing the source
sequence.

• Consider the length-w window before the current position

now
#

: : : AAB AABBAABABABAA : : : (7.57)
"

window

and try to find the largest match of any sequence starting in the window
that is identical to the sequence starting on the current position:

current position:
matchz }| {
AABABAB : : : (7.58)

4 positions before: AAB| {z }
match

BAABABAB : : : (7.59)

Note that a match may overlap with the current position! For example,

now
#

: : : B B AABBABBABAA : : : (7.60)
"

window

has a match of length 5 at position 3:

current position:
matchz }| {

ABBABAA : : : (7.61)

3 positions before: ABBAB| {z }
match

BABAA : : : (7.62)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

168 Efficient Coding of a Random Source with Memory

• If there exists such a match, the encoder gives out the starting position of
this match in the window (in the example of above: 3 before the current
position) and the length of the match (in the example from above: 5),
and then moves the current position the number of the match length
positions ahead. Note that after lmax matching source letters the match
is stopped even if there were further matching letters available.

• If there is no such match, the encoder puts out the uncompressed source
letter at the current position, and then moves the current position one
letter ahead.

• To distinguish between these two cases (i.e., either putting out a match
position and a match length or putting out an uncompressed source
letter), we need a flag bit: A flag 0 tells that the codeword describes an
uncompressed source letter and a flag 1 tells that the codeword describes
a match within the window.

• Note that in the case of a match, the match position and the match
length will be encoded into two D-ary phrases of length dlogD(w)e and
dlogD(lmax)e, respectively, where a 1 is mapped to 00 � � � 0 and w (or
lmax, respectively) is mapped to DD � � �D.

• Also note that in the case of an uncompressed source letter, the source
letter needs to be mapped into a D-ary phrase of length dlogD(jUj)e,
where jUj denotes the alphabet size of the source. This mapping has to
be specified in advance.

Example 7.13. We still keep the example of a binary source Uk 2 fA;Bg and
again choose the window size w = 4. Moreover, we fix lmax = 8 and choose
binary codewords D = 2. Assume that the source produces the following
sequence:

ABBABBABBBAABABA: (7.63)

The window of the Lempel–Ziv algorithm now slides through the given se-
quence as follows:

jA B B A B B A B B B A A B A B A

jAj
jAjBj
jAjBjBj
jAjBjBjA B B A B Bj
jAjBjBjA B B A B BjB Aj
jAjBjBjA B B A B BjB AjAj
jAjBjBjA B B A B BjB AjAjB Aj
jAjBjBjA B B A B BjB AjAjB AjB Aj (7.64)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

7.3. Sliding Window Lempel–Ziv Universal Coding Scheme 169

This leads to the following description:

(0; A) (0; B) (1; 1; 1) (1; 3; 6)

(1; 4; 2) (1; 1; 1) (1; 3; 2) (1; 2; 2): (7.65)

We map A to 0, and B to 1. Moreover, we need dlog2(4)e = 2 digits for
the match position (where 1 7! 00, 2 7! 01, 3 7! 10, and 4 7! 11) and
dlog2(8)e = 3 digits for the match length (where 1 7! 000; : : : ; 8 7! 111).
Hence, the description (7.65) is translated into

(0; 0) (0; 1) (1; 00; 000) (1; 10; 101)

(1; 11; 001) (1; 00; 000) (1; 10; 001) (1; 01; 001); (7.66)

i.e., the codeword put out by the encoder is

0001100000110101111001100000110001101001: (7.67)

Note that in this small toy example, the window size, the maximum match
length, and the length of the encoded sequence are too short to be able to
provide a significant compression. Indeed, the encoded sequence is longer
than the original sequence.

Also note that it may be better to send short matches uncompressed and
only compress longer matches (i.e., we use flag 0 more often). For example,
in (7.66) the third part (1; 00; 000) would actually be more efficiently encoded
as (0; 1). �

Similarly to the Elias–Willems coding scheme, the sliding window Lempel–
Ziv algorithm relies on the repeated occurrence of strings. So its analysis
is related to the analysis shown in Section 7.2.3 and we therefore omit it.
Practical implementations of it can be found, e.g., in gzip and pkzip.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 8

Data Compression: Efficient Coding
of an Infinitely Long Fixed Sequence

So far (i.e., in Chapters 4–7) we have assumed that we are given a certain
source with a known statistical behavior. We then tried to design a good
compression scheme using the statistical description of the source. Only in
Section 7.2 we have seen a first design of a compression scheme that did not
rely on the specific distribution of the source (although we still required the
source to be stationary), thereby finding a universal coding scheme.

In this chapter, we will completely depart from this approach and instead
try to design a system which represents some sequence without considering
how the sequence was produced. In this context, it thus makes more sense
to completely abandon the statistical model and instead to assume that there
is only one, infinitely long, fixed r-ary sequence u that shall be represented
efficiently.

Of course, without a statistical model, we also seem to lose the ability to
evaluate the efficiency of our system (there is no entropy rate to compare with
and no probability measure allowing us to compute an expected performance,
etc.). To compensate for that we introduce a trick: we start by analyzing
the best possible system among all systems based on finite state machines
with a given number S of states. The motivation behind the restriction on
the number of states is quite a practical one: no real computing device can
have infinite memory and precision. (On the other hand, we neither will be
able to compress an infinite sequence, but we will always only compress a
finite part of it.) The restriction on the memory is not very stringent though,
because while we ask S to be finite, we do allow it to be exceedingly large.
Moreover, we even allow this best system to be designed specifically for the
given infinite sequence u, i.e., we are allowed to custom-design it for the
specific given sequence!

Then, in a second step, we propose a concrete algorithm — the tree-
structured Lempel–Ziv algorithm — that is designed without knowledge of

171 © Stefan M. Moser — IT, version 6.14

172 Efficient Coding of an Infinitely Long Fixed Sequence

u, but that is not a finite state machine, i.e., for an infinite input sequence
it might use infinite memory.1 We will then analyze this algorithm and show
that it performs as well as the best encoder based on finite state machines.

8.1 Information-Lossless Finite State Encoders

Finite state machines are widely used in many different situations. We will
consider them only in our case of a device that compresses a given input
string u. We therefore use the slightly less common notation c for its output
sequence (’c’ stands for ’compressed output sequence’ and is in agreement
with our notation from earlier chapters where c stood for ’codeword’).

Definition 8.1. A finite state encoder (FSE) with S states is defined as a device
with an r-ary input uk, a D-ary output string ck, and an S-ary internal state
sk such that given an input uk and a current state sk, the output is computed
as

ck = fFSE,out(sk; uk); k 2 N; (8.1)

and the next state is computed as

sk+1 = fFSE,state(sk; uk); k 2 N; (8.2)

for some given functions fFSE,out and fFSE,state. The output ck is a finite string
that potentially can also be the null string.

We will be sloppy and denote by fFSE,out(s1; u
n
1) the output sequence cn1

generated by the finite state machine for a starting state s1 and for an input
sequence un1 = (u1; : : : ; un); similarly, fFSE,out(s1; u

n
1) denotes the state sn+1.

Note that the length of cn1 can be larger or smaller than n because for each k,
ck is a finite string of length larger or equal to zero.

In order to be able to undo the compression, we need a unique decodability
condition on the FSE: Basically, we want to be able to reconstruct u from
the output sequence c (and the knowledge of the starting state s1). In the
following we will even allow some FSE for which this is not necessarily true.

Definition 8.2. A FSE is called information lossless if for any two distinct
input sequences un1 and ~u~n

1 and any starting state s1 either

fFSE,out(s1; u
n
1) 6= fFSE,out

�
s1; ~u

~n
1

�
(8.3)

or

fFSE,state(s1; u
n
1) 6= fFSE,state

�
s1; ~u

~n
1

�
: (8.4)

1As in reality we will never encode an infinite sequence anyway, we do not need to worry
about that.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

8.2. Distinct Parsing 173

Quite obviously, if a FSE is not information lossless, then we have no hope
to recover the input from the output. However, even if a FSE is information
lossless, it might happen that two different input sequences (and the same
starting state) result in the same output sequence, but only a different final
state. Since we do not observe the states, we will in this case not be able to
recover the input. We nevertheless allow such encoders and thereby set the
performance goal for the tree-structured Lempel–Ziv algorithm even higher.

We next define the compressibility of an infinite string u with respect to
information-lossless FSEs.

Definition 8.3. The minimum compression ratio of a sequence un1 with respect
to all information-lossless FSEs with S or less states is defined as

�S(u
n
1) , min

fFSE,out; fFSE,state; s1

1

n
lFSE(u

n
1); (8.5)

where lFSE(u
n
1) denotes the length of the D-ary output sequence cn1 that is

generated by the FSE with input un1 , and where the minimum is over the set
of all information-lossless FSEs with S or less states and all starting states.

Note that since it is always possible to design an FSE such that each r-ary
input symbol is simply represented as a D-ary sequence, it follows that

�S(u
n
1) �

1

n
� ndlogD(r)e = dlogD(r)e: (8.6)

Definition 8.4. The compressibility of u with respect to information-lossless
FSEs with S or less states is then defined as

�S(u) , lim
n!1 �S(u

n
1) (8.7)

and the compressibility of u with respect to all information-lossless encoders
is defined as2

�(u) , lim
S!1

�S(u): (8.8)

We see that in the definition of the compressibility of u we basically drop
all constraints on the system apart from that it must be (almost) uniquely
decodable and that its memory is arbitrary but finite.

8.2 Distinct Parsing

Definition 8.5. A parsing of a sequence is a division of the sequence into strings
separated by commas. A distinct parsing is a parsing such that no two strings
are the same.

2Note that since �S(u) is nonincreasing in S and bounded from below by zero, the limit
exists.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

174 Efficient Coding of an Infinitely Long Fixed Sequence

Example 8.6. 0; 11; 11 is a parsing and 0; 1; 111 is a distinct parsing of 01111. �

Definition 8.7. Let b(un1) denote the maximum number of distinct strings
that the sequence un1 can be parsed into, including the null string.

We will see that this number is fundamental to the compressibility of u.

Lemma 8.8 (Maximum Number of Distinct Strings vs. Sequence Length). The max-
imum number of distinct strings b(un1) of an r-ary sequence un1 of length n

satisfies the following bound:

n > b(un1) logr

�
b(un1)

r3

�
: (8.9)

Proof: We start by quickly listing all possible r-ary strings of length less
than some integer m:

empty string; (8.10a)

0; 1; : : : ; r � 1; (8.10b)

00; 01; : : : ; 0(r � 1); : : : ; (r � 1)0; : : : ; (r � 1)(r � 1); (8.10c)
:::

00 : : : 0| {z }
m�1 digits

; : : : ; (r � 1)(r � 1) : : : (r � 1)| {z }
m�1 digits

: (8.10d)

The total number of all these strings is

m�1X
j=0

rj =
rm � 1

r � 1
(8.11)

and the total length of all these strings put together is

m�1X
j=0

jrj = m
rm

r � 1
� r

r � 1

rm � 1

r � 1
: (8.12)

Now, suppose un1 is parsed into b � 1 distinct strings. We would like to
find an upper bound on this number b. Obviously, b is largest if the strings in
the parsing are as short as possible. But since we consider a distinct parsing,
every string can occur at most once. So the maximum number occurs if all
strings of length less than some numberm show up and the rest of the sequence
is parsed into strings of length m. In other words, we write the integer b as

b =
m�1X
j=0

rj + R (8.13)

where m � 0 is chosen as large as possible and where 0 � R < rm.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

8.2. Distinct Parsing 175

To illustrate this, let’s make a brief example: Suppose we have a ternary
sequence (r = 3) and b = 31. From (8.11) we see that the number of ternary
strings of length less than 3 is 13 and the number of ternary strings of length
less than 4 is 40. Hence, the largest m is m = 3 resulting in R = 18, i.e.,

31 = 30 + 31 + 32 + 18: (8.14)

If we increase b, R would increase until b reaches 40, when m is increased to
m = 4 and R is set to 0.

So far we have been looking for the largest number b of distinct strings for
a given length n of the sequence. But equivalently, we can turn the problem
around and look for the smallest length n for a given number b of distinct
strings. In that case it is again obvious that n is smallest if it so happens
that all distinct strings are the smallest, i.e., we are back to (8.13). Thus, in
general,

n �
m�1X
j=0

jrj +mR: (8.15)

Using (8.11), (8.12), and (8.13) we can further bound this as follows:

n �
m�1X
j=0

jrj +mR (8.16)

= m
rm

r � 1
� r

r � 1

rm � 1

r � 1
+mR (8.17)

> m
rm � 1

r � 1
� r

r � 1

rm � 1

r � 1
+mR (8.18)

= m
m�1X
j=0

rj � r

r � 1

m�1X
j=0

rj +mR (8.19)

= m(b� R)� r

r � 1
(b� R) +mR (8.20)

= mb� r

r � 1| {z }
� 2

b+
r

r � 1
R| {z }

� 0

(8.21)

� mb� 2b (8.22)

= (m� 2)b: (8.23)

On the other hand, from (8.13) and from the fact that R < rm it follows that

b <
mX
j=0

rj =
rm+1 � 1

r � 1
(8.24)

and thus

rm+1 > (r � 1)b+ 1 > b; (8.25)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

176 Efficient Coding of an Infinitely Long Fixed Sequence

i.e.,

m+ 1 > logr(b): (8.26)

Plugging this into (8.23) then finally yields

n >
�
logr(b)� 3

�
b = b logr

�
b

r3

�
: (8.27)

Be replacing b by its largest possible value b(un1) we obtain the claimed result.

Corollary 8.9. For n large enough, it holds that

b(un1) <
2n

logr(n)� 3
; n large enough; (8.28)

i.e., b(un1) 2 O
� n
logr(n)

�
(see Appendix 14.A for the definition of the big-O

notation).

Proof: We set n0 , n
r3 and b0 , b(un1)

r3 . Then (8.9) reads

n0 > b0 logr(b
0): (8.29)

Now let’s choose n large enough to guarantee that n0 is large enough such that

p
n0 � 2n0

logr(n
0)
: (8.30)

Then either b0 <
p
n0 or b0 � pn0. In the former case,

b0 <
p
n0 � 2n0

logr(n
0)

(8.31)

by assumption. In the latter case, it follows from (8.29) and from the said
assumption b0 � pn0 that

b0 <
n0

logr(b
0)
� n0

logr
�p
n0
� = 2n0

logr(n
0)
: (8.32)

Hence, in either case, we have

b0 <
2n0

logr(n
0)

(8.33)

i.e.,

b <
2n

logr

�
n
r3

� : (8.34)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

8.3. Analysis of Information-Lossless Finite State Encoders 177

8.3 Analysis of Information-Lossless Finite State Encoders

We consider now an information-lossless FSE with S states that is fed un1 .
To analyze its performance, we split un1 into its maximum number b = b(un1)

of distinct strings v1; : : : ;vb and consider the output of the FSE for each
string separately. Since the output of the FSE depends not only on its input,
but also on the starting state, we introduce bs;~s to be the number of strings
vk that find the FSE in state s and leave the FSE in state ~s. Because the
FSE is information lossless and because these input strings are distinct, the
corresponding output sequences are all distinct. Let ls;~s be the total length
of these output sequences. Since they are distinct, we may apply Lemma 8.8
(with ls;~s substituting n, bs;~s substituting b(un1), and because the output is
D-ary, D substituting r):

ls;~s > bs;~s logD

�
bs;~s
D3

�
: (8.35)

The length of the complete output sequence cn1 is then the sum of the ls;~s, i.e.,

lFSE(u
n
1) =

SX
s=1

SX
~s=1

ls;~s (8.36)

>
SX
s=1

SX
~s=1

bs;~s logD

�
bs;~s
D3

�
(8.37)

= b
SX
s=1

SX
~s=1

bs;~s
b

logD

�
bs;~s
b

b

D3

�
(8.38)

= b
SX
s=1

SX
~s=1

bs;~s
b

logD

�
bs;~s
b

�
+ b

SX
s=1

SX
~s=1

bs;~s
b

logD

�
b

D3

�
(8.39)

= b
SX
s=1

SX
~s=1

bs;~s
b

logD

�
bs;~s
b

�
+

SX
s=1

SX
~s=1

bs;~s

!
logD

�
b

D3

�
(8.40)

= �bHD

��
bs;~s
b

��
+ b logD

�
b

D3

�
(8.41)

� �b logD(S2) + b logD

�
b

D3

�
(8.42)

= b logD

�
b

S2D3

�
(8.43)

= b(un1) logD

�
b(un1)

S2D3

�
: (8.44)

Note that
SX
s=1

SX
~s=1

bs;~s = b (8.45)

and thus bs;~s
b behaves like a probability distribution. The “entropy” introduced

in (8.41) has no real meaning here, but is used as a way to find the lower

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

178 Efficient Coding of an Infinitely Long Fixed Sequence

bound in (8.42): entropy is upper-bounded by the logarithm of its alphabet
size (which here is S2).

Recalling Definition 8.3 and 8.4 we hence obtain

�S(u) = lim
n!1 min

fFSE,out; fFSE,state; s1

1

n
lFSE(u

n
1) (8.46)

� lim
n!1

1

n
b(un1) logD

�
b(un1)

S2D3

�
(8.47)

= lim
n!1

1

n
b(un1) logD

�
b(un1)

�� lim
n!1

1

n
b(un1) logD

�
S2D3�

| {z }
=0 by Corollary 8.9

(8.48)

= lim
n!1

1

n
b(un1) logD

�
b(un1)

�
: (8.49)

Since the right-hand side does not depend on S, we finally have found the
following lower-bound on the compressibility of u.

Theorem 8.10. The compressibility of the infinite r-ary sequence u with respect
to information-lossless FSEs is lower-bounded as follows:

�(u) � lim
n!1

1

n
b(un1) logD

�
b(un1)

�
: (8.50)

8.4 Tree-Structured Lempel–Ziv Universal Coding Scheme

The main idea of the tree-structured Lempel–Ziv coding scheme is to generate
a dictionary for the source and constantly updating it. The output sequence
then depends on the current version of the stored dictionary. The algorithm
starts with a dictionary just consisting of all r-ary words of length 1. To each
word in the dictionary it assigns a D-ary codeword of length dlogD(r)e in lex-
icographic order. Then it operates as follows: It parses the input. As soon as
it recognizes a word in its dictionary, it puts out the corresponding codeword
and afterwards updates the dictionary by replacing the just recognized word
with all its single-letter extensions. Then it also updates the codeword assign-
ments: it newly assigns D-ary codewords of length dlogD(dictionary size)e in
lexicographic order. Then it continues scanning the input.

Note that the dictionary can be represented as an r-ary tree, whose leaves
are the current dictionary entries. An example of this is shown in Figures 8.1
and 8.2. There the example of a ternary sequence aaaccacc is parsed into
a; aa; c; ca; cc. Note that in each stage, to each leaf (word in the dictionary) a
fixed-length D-ary sequence is assigned in lexicographical order. If we consider
binary codewords (D = 2), we have

• in stage (a): fa 7! 00; b 7! 01; c 7! 10g;

• in stage (b): faa 7! 000; ab 7! 001; ac 7! 010; b 7! 011; c 7! 100g;

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

8.5. Analysis of Tree-Structured Lempel–Ziv Coding 179

• in stage (c): faaa 7! 000; aab 7! 001; aac 7! 010; ab 7! 011; ac 7! 100;

b 7! 101; c 7! 110g;

• in stage (d): faaa 7! 0000; aab 7! 0001; aac 7! 0010; ab 7! 0011;

ac 7! 0100; b 7! 0101; ca 7! 0110; cb 7! 0111; cc 7! 1000g;

• in stage (e): faaa 7! 0000; aab 7! 0001; aac 7! 0010; ab 7! 0011;

ac 7! 0100; b 7! 0101; caa 7! 0110; cab 7! 0111;

cac 7! 1000; cb 7! 1001; cc 7! 1010g.

Hence, the output of the tree-structured Lempel–Ziv encoder is

00 000 110 0110 1010 (8.51)

where we have added spaces purely for the sake of better readability.
Note that because the dictionary is only updated after the recognized

word is encoded, the decoder can easily keep track of the encoder’s operation.
It will simply use the current dictionary to decode the codeword and then
use the decoded word to update the dictionary in the same fashion: When
decoding the sequence (8.51)

0000011001101010 (8.52)

it first takes the dictionary (a), prunes 00 from the sequence and decodes it
to a. Then it updates the dictionary in the same way as the encoder to (b).
Now it can prune 000 from the sequence and decode it to aa. Etc.

The tree-structured Lempel–Ziv coding scheme is used, e.g., in compress,
in the GIF-format of images, and in certain modems.

8.5 Analysis of Tree-Structured Lempel–Ziv Coding

Suppose the tree-structured Lempel–Ziv coding scheme parses the sequence
un1 into bLZ words v1; : : : ;vbLZ . Then we can write

un1 = �v1v2 : : :vbLZ ; (8.53)

where � denotes the null string. By construction, the first bLZ � 1 strings
are distinct, however, the last may not be distinct from the others. If we
concatenate the last two strings and instead also count the null string at
the beginning, we obtain a distinct parsing of un1 into bLZ distinct words.
Therefore, by Definition 8.7, it must hold that

bLZ � b(un1): (8.54)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

180 Efficient Coding of an Infinitely Long Fixed Sequence

a

b

c

b

c

a

(a)

b

c

ab

ac

aa

(b)

b

c

ab

ac

aab

aac

aaa

(c)

b

cb

cc

ca

ab

ac

aab

aac

aaa

(d)

Figure 8.1: Parsing of the ternary sequence aaaccacc with the tree-structured
Lempel–Ziv algorithm: the sequence is parsed into the strings
a; aa; c; ca; cc. The figure shows how the dictionary evolves. In
(a), the initial dictionary is shown. In (b), the dictionary is shown
after reading a; (c) shows the dictionary after reading aaa; (d)
shows the dictionary after reading aaac. In Figure 8.2 (e), the
dictionary is shown after reading aaacca; and Figure 8.2 (f) shows
the dictionary after reading aaaccacc.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

8.5. Analysis of Tree-Structured Lempel–Ziv Coding 181

a

b

c

b

cb

cc

cab

cac

caa

ab

ac

aab

aac

aaa

(e)

b

cb

ccb

ccc

cca

cab

cac

caa

ab

ac

aab

aac

aaa

(f)

Figure 8.2: Second part of parsing of the ternary sequence aaaccacc with the
tree-structured Lempel–Ziv algorithm. See Figure 8.1 for an ex-
planation.

Since each parse extends the dictionary by r � 1 entries, the size of the dic-
tionary used to encode the last string is

dictionary end size = r + (bLZ � 1)(r � 1) (8.55)

= rbLZ � bLZ + 1 (8.56)

� rbLZ (8.57)

� rb(un1); (8.58)

where the last inequality follows from (8.54). Let lLZ(u
n
1) be the length of

the output sequence generated by the tree-structured Lempel–Ziv encoding
scheme when seeing the input un1 . Since the codewords grow in length as the
dictionary grows, we can bound lLZ(c

n
1) as follows:

lLZ(u
n
1) � bLZ � dlogD(end dictionary size)e (8.59)

� bLZ �
�
logD

�
rb(un1)

��
(8.60)

� b(un1) �
�
logD

�
rb(un1)

�
+ 1

�
(8.61)

= b(un1) �
�
logD

�
rb(un1)

�
+ logD(D)

�
(8.62)

= b(un1) logD
�
Drb(un1)

�
: (8.63)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

182 Efficient Coding of an Infinitely Long Fixed Sequence

Dividing by n, letting n tend to infinity, and using Corollary 8.9, we obtain

lim
n!1

1

n
lLZ(u

n
1) � lim

n!1
1

n
b(un1) logD

�
Drb(un1)

�
(8.64)

= lim
n!1

1

n
b(un1) logD

�
b(un1)

�
+ lim

n!1
1

n
b(un1) logD(Dr) (8.65)

= lim
n!1

1

n
b(un1) logD

�
b(un1)

�
: (8.66)

Comparing with Theorem 8.10, we see that as n tends to infinity, the tree-
structured Lempel–Ziv encoding scheme achieves the performance of the best
finite state encoding (FSE) scheme!

In particular, if the sequence u is the output of a random information
source that is stationary and ergodic, one could design a FSE that imple-
ments the adaptive Huffman coding scheme (see Theorem 7.3) designed for
this source and for a large enough block parser M that will guarantee that
a compression is achieved that with high probability is arbitrarily close to
the source’s entropy rate. Theorem 8.10 and (8.66) now show that the tree-
structured Lempel–Ziv encoding scheme will compress such a sequence to the
entropy rate, too.

Theorem 8.11 (Performace of Tree-Structured Lempel–Ziv Encoding).
Asymptotically, as n tends to infinity, the achieved compression of the
tree-structured Lempel–Ziv coding scheme is as good the compression of
the best finite state encoding scheme with an arbitrary, but fixed number
of states.

When the tree-structured Lempel–Ziv coding scheme is applied to the
output of a stationary and ergodic source, then

lim
n!1

1

n
lLZ(u

n
1) = H(fUkg) in probability: (8.67)

Note that the tree-structured Lempel–Ziv encoder is not a FSE because
the algorithm uses up infinite memory since it keeps track of an ever growing
tree. So basically, we have the following trade-off: If we want to compress
some infinite sequence u, we could either take the “off the shelf” Lempel–Ziv
algorithm or we could custom design a finite state encoder with a finite (but
arbitrarily large) number of states. In the long run, both will achieve the same
performance. So, picking the Lempel–Ziv coding scheme will be much more
preferable because then we do not need to custom design anything, and we
do not need to know the particular sequence u it will be used on. Again, we
have found a universal encoding scheme.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 9

Optimizing Probability Vectors over
Concave Functions:
Karush–Kuhn–Tucker Conditions

9.1 Introduction

In information theory (and also in many situations elsewhere), we often en-
counter the problem that we need to optimize a function of a probability mass
function (PMF). A famous example of such a problem is the computation of
channel capacity (see Chapter 12), which involves maximizing mutual infor-
mation over the probability distribution of the channel input.

In general, such problems are rather difficult as we are not only looking
for the optimal value that maximizes a given merit function, but we need to
find the optimal distribution, i.e., an optimal vector where the components of
the vector need to satisfy some constraints, namely, they must be nonnegative
and need to sum to one. In the lucky situation when the merit function is
concave (or convex), however, the problem actually simplifies considerably.
In the following we will show how to solve this special case.

So, the problem under consideration is as follows. Let f : RL ! R be
a concave function of a probability vector1 ��� 2 RL. We want to find the
maximum value of f(�) over all possible (“legal”) values of ���:

max
���

s.t. �`� 0; `=1;:::;L

and
LP̀
=1

�`=1

f(���): (9.1)

1By probability vector we mean a vector whose components are nonnegative and sum
to 1, see Definition 9.3. Also RL is defined below, see Definition 9.5.

183 © Stefan M. Moser — IT, version 6.14

184 Optimizing Probability Vectors over Concave Functions

9.2 Convex Regions and Concave Functions

We start by a quick review of convex regions and concave functions.

Definition 9.1. A region R � RL is said to be convex if for each pair of points
in R, the straight line between those points stays in R:

8���; ��� 2 R : ����+ (1� �)��� 2 R; for 0 � � � 1: (9.2)

Example 9.2. Some examples of convex or nonconvex regions are shown in
Figure 9.1. �

nonconvex convex convex

nonconvex convex nonconvex

Figure 9.1: Examples of convex and nonconvex regions in R2.

We are especially interested in one particular convex region: the region of
probability vectors.

Definition 9.3. A vector is called probability vector if all its components are
nonnegative and they sum up to 1.

A probability vector is an elegant way to write a probability distribution
over a finite alphabet.

Example 9.4. If a RV X takes value in f1; 2; 3; 4; 5g with probabilities

PX(x) =

8>>>>>>>><
>>>>>>>>:

1
2 if x = 1;
1
4 if x = 2;
1
8 if x = 3;
1
16 if x = 4;
1
16 if x = 5;

(9.3)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

9.2. Convex Regions and Concave Functions 185

then its distribution can be written as probability vector

p =

�
1

2
;
1

4
;
1

8
;
1

16
;
1

16

�T

: (9.4)

�

Definition 9.5. For any L 2 N, we define the region of probability vectors
RL � RL as

RL ,
(
p 2 RL : p` � 0; ` 2 f1; : : : ;Lg; and

LX
`=1

p` = 1

)
: (9.5)

Lemma 9.6. The region of probability vectors RL is convex.

Proof: Let ���, ��� 2 RL be probability vectors. Define , ����+(1��)��� for
any � 2 [0; 1]. We need to show that is also a probability vector. Obviously,
` � 0 for all ` 2 f1; : : : ;Lg. Moreover,

LX
`=1

` =
LX
`=1

�
��` + (1� �)�`

�
(9.6)

= �
LX
`=1

�`| {z }
=1

+ (1� �)
LX
`=1

�`| {z }
=1

(9.7)

= � + (1� �) = 1: (9.8)

Hence, all components of are nonnegative and they sum up to 1, i.e., 2 RL.

Definition 9.7. Let R � RL be a convex region. A real-valued function f : R !
R is said to be concave over a convex region R if 8���; ��� 2 R and 0 < � < 1:

�f(���) + (1� �)f(���) � f�����+ (1� �)����: (9.9)

It is called strictly concave if the above inequality is strict.

Note that a function can only be defined to be concave over a convex
region because otherwise the right-hand side of (9.9) might not be defined for
some values of 0 < � < 1.

Also note that the definition of convex functions is identical apart from
a reversed sign. This means that if f(�) is concave, then �f(�) is convex and
vice-versa. So, all results can easily be adapted for convex functions and we
only need to treat concave functions here.

Example 9.8. See Figure 9.2 for an example of a concave function. �

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

186 Optimizing Probability Vectors over Concave Functions

0 � 1

f(���)

�f(���) + (1� �)f(���)

f(���)

f
�
����+ (1� �)���

�

Figure 9.2: Example of a concave function.

Lemma 9.9. Concave functions have the following properties:

1. If f1(�); : : : ; fn(�) are concave and c1; : : : ; cn are positive numbers, then

nX
k=1

ckfk(�) (9.10)

is concave with strict concavity if at least one fk(�) is strictly concave.

2. If f(�) is monotonically increasing and concave over a convex region R1,
and g(�) is concave over R2 and has an image I � R1, then f(g(�)) is
concave.

3. For a one-dimensional vector �, if

@2f(�)

@�2
� 0 (9.11)

everywhere in an interval, then f(�) is concave in this interval.

4. Jensen Inequality: for any concave function f(�) and any random vector
X 2 RL taking on M values,2 we have

E[f(X)] � f(E[X]): (9.12)

Proof: We only have a short look at the last property. Let (�1; : : : ; �M)

be the probabilities of the M values of X, i.e., �m � 0 and
PM

m=1 �m = 1.

2Actually, the Jensen Inequality also holds for random vectors with an alphabet of infinite
size or even with a continuous alphabet. Recall the discussion in Section 2.4.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

9.3. Maximizing Concave Functions 187

Let ���1; : : : ; ���M be a set of vectors in a convex region R � RL where f(�) is
concave. Then

MX
m=1

�mf(���m) � f

MX
m=1

�m���m

!
(9.13)

by definition of concavity (to be precise, for M = 2 it is by definition, for
M > 2 we use the definition recursively). Let X be a random vector that
takes on the values ���m with probability �m, m = 1; : : : ;M. The result now
follows from (9.13).

9.3 Maximizing Concave Functions

Why are concave functions interesting? We will see that they are relatively
easy to maximize over a given region.

We firstly consider the simpler situation where we do not worry about the
normalization of a probability vector’s components (i.e., we ignore that the
components need to sum to 1). Instead, let R � RL be a convex region, let
��� 2 R be an L-dimensional real vector, and let f(���) be a concave function
over R. We would now like to find the maximum of f over the convex region
R.

In a first straightforward attempt to solve the problem we remember from
calculus that an optimum is reached if the derivative is zero. So we ask the
optimum vector ���� to satisfy the following conditions:

@f(����)
@��`

!
= 0; ` 2 f1; : : : ;Lg: (9.14)

But there is a problem with these conditions: The set of equations (9.14)
might not have any solution, or, if it has a solution in R, this solution might
not be in R!

Luckily, we have at least the following lemma.

Lemma 9.10. If there exists a solution ���� 2 RL that simultaneously satisfies
(9.14) and the constraint ���� 2 R, then this solution ���� maximizes f(�).

Proof: By contradiction assume that there exists a ��� 2 R, ��� 6= ����, with
f(���) > f(����). Then the line from f(����) to f(���) is increasing. But because
f(�) is concave, the slope of f(�) at ���� must be larger than the slope of the
line. This is a contradiction to (9.14).

So what about the situation when we cannot find a correct solution to
(9.14)? Since we have assumed that f(�) is concave we note that such a
situation can only happen if either f(�) has no “peak” where the derivative is
zero, or this peak occurs outside of the given convex region R. See Figure 9.3
for an illustration. In that case, f(�) is maximized by an ���� on the boundary

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

188 Optimizing Probability Vectors over Concave Functions

of the convex region R (where we can think of infinity to be a “boundary”,
too).

R

maximum

Figure 9.3: Maximum is achieved on the boundary of the region.

Note that in such a case ���� can only maximize f(�) over R if f(�) is
decreasing when going from the boundary point ���� into the region! This
gives us an idea on how to fix (9.14): Instead of (9.14), an optimal vector ����

should satisfy

@f(����)
@��`

!
= 0; 8 ` such that ��` is inside the region R; (9.15a)

@f(����)
@��`

!� 0; 8 ` such that ��` is on the boundary of R: (9.15b)

We will prove (9.15) later. By the way, why do we have “�” in (9.15b) and
not “�”? Note that the maximum might also occur on the right boundary,
in which case we want the derivative be positive! The answer here lies in the
way how we compute the derivative. See Appendix 9.A for more details.

Now note that we are actually interested in the situation of probability
vectors, where we have seen that the region of probability vectors is convex.
Since �` � 0, its boundary is �` = 0, ` 2 f1; : : : ;Lg. However, beside this
nonnegativity condition, probability vectors also have to satisfy

LX
`=1

�` = 1: (9.16)

Unfortunately, this condition is not a boundary because the conditions on the
different components are highly dependent.

So how shall we include this condition into our maximization problem?

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

9.3. Maximizing Concave Functions 189

We use an old trick deep in the mathematicians’ box of tricks: Since we
want (9.16) to hold, we also have that

LX
`=1

�` � 1 = 0 (9.17)

or, for any constant � 2 R,

�

LX
`=1

�` � 1

!
= 0: (9.18)

Hence, any ��� that maximizes f(�) must also maximize the function

F(���) , f(���)� �

LX
`=1

�` � 1

!
: (9.19)

And this has to be true for every choice of �! Now the trick is to try to find an
����(�) that maximizes F(�) instead of f(�) and to ignore the constraint (9.16)
for the moment. Note that such an optimal ����(�) will depend on � and it will
in general not satisfy (9.16). But since we can choose � freely, we can tweak
it in such a way that the solution also satisfies (9.16). So, then we have found
one solution ���� that maximizes F(�) and satisfies (9.16). However, in exactly
this case, ���� also maximizes f(�). We are done!

So, the problem hence reduces to finding the maximum of (9.19). We
therefore apply (9.15) to F(�) instead of f(�). Noting that

@F(���)

@�`
=
@f(���)

@�`
� �; (9.20)

we obtain from (9.15):

@f(���)

@�`

!
= � 8 ` such that �` > 0; (9.21a)

@f(���)

@�`

!� � 8 ` such that �` = 0; (9.21b)

where � is chosen such that (9.16) is satisfied. The mathematicians call the
constant � the Lagrange multiplier. Let us now summarize and formally
prove our insights in the following theorem.

Theorem 9.11 (Karush–Kuhn–Tucker (KKT) Conditions).
Let f : RL ! R be concave over the convex region RL of L-dimensional
probability vectors. Let ��� = (�1; : : : ; �L)

T 2 RL be a probability vector.
Assume that @f(���)

@�`
are defined and continuous over RL with the possible

exception that

lim
�`#0

@f(���)

@�`
= +1 (9.22)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

190 Optimizing Probability Vectors over Concave Functions

is allowed. Then

@f(���)

@�`

!
= � 8 ` such that �` > 0; (9.23a)

@f(���)

@�`

!� � 8 ` such that �` = 0; (9.23b)

are necessary and sufficient conditions on ��� to maximize f(�) overRL. Note
that the Lagrange multiplier � needs to be chosen such that

LX
`=1

�` = 1: (9.24)

Proof: Sufficiency: Assume (9.23a) and (9.23b) hold for some � and ���.
Then we want to show that, for any ���, f(���) � f(���). We know from concavity
that for any � 2 [0; 1]

�f(���) + (1� �)f(���) � f����� + (1� �)����: (9.25)

Hence,

f(���)� f(���) � f
�
���� + (1� �)����� f(���)

�
(9.26)

=
f
�
���+ �(��� � ���)�� f(���)

�
(9.27)

!
LX
`=1

@f(���)

@�`
(�` � �`) for � # 0 (9.28)

�
LX
`=1

�(�` � �`) (9.29)

= �

LX
`=1

�` �
LX
`=1

�`

!
(9.30)

= �(1� 1) = 0: (9.31)

Here in (9.28) we choose � to tend to 0. This will cause the expression to tend
to the sum of the derivatives. If this expression looks confusing to you, you
might remember the one-dimensional case, which should look familiar:

lim
�#0

f
�
�� + (1� �)��� f(�)

�
= lim

�#0
f
�
�+ �(� � �)�� f(�)

�(� � �) (� � �) (9.32)

=
@f(�)

@�
(� � �): (9.33)

The subsequent inequality (9.29) follows by assumption from (9.23a) and
(9.23b), and the last equality follows because both ��� and ��� are probability
vectors, which sum to 1.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

9.3. Maximizing Concave Functions 191

Necessity: Let ��� maximize f and assume for the moment that the deriva-
tives of f are continuous at ���. Since ��� maximizes f , we have for any :

f()� f(���) � 0: (9.34)

Now choose , ���� + (1 � �)��� for some ��� and let � # 0. Then similarly to
above we get

f
�
���� + (1� �)����� f(���) � 0 (9.35)

=) f
�
���� + (1� �)����� f(���)

�
� 0 (9.36)

=)
LX
`=1

@f(���)

@�`
(�` � �`) � 0; as � # 0: (9.37)

Since ��� is a probability vector, its components must sum to 1. Hence, there
must be at least one component that is strictly larger than zero. For conve-
nience, let us assume that this component is �1. We define i(k) to be a unit
vector with a 1 in position k and zeros everywhere else. Then we fix some
k 2 f1; : : : ;Lg and choose

��� , ���+ �i(k) � �i(1): (9.38)

This is a probability vector as long as � is chosen correctly, as can be seen as
follows:

LX
`=1

�` =
LX
`=1

�`| {z }
=1

+ �
LX
`=1

�
i
(k)
` � i(1)`

�
= 1 + �(1� 1) = 1; (9.39)

i.e., ��� always sums to 1. So we only have to make sure that the components
are nonnegative. But the components of ��� are for sure nonnegative. So for a
nonnegative choice of � we are only in danger at the first component where we
subtract �. But we have assumed that �1 is strictly larger than 0. Hence, as
long as we choose � smaller than �1, we are OK: we fix � such that 0 < � � �1.
Finally, we choose � , @f(���)

@�1
.

With these choices we can evaluate (9.37):

LX
`=1

@f(���)

@�`
(�` � �`) = �

@f(���)

@�k
� �@f(���)

@�1
= �

@f(���)

@�k
� �� !� 0: (9.40)

So, when we divide by � (which is positive!), we get

@f(���)

@�k

!� � (9.41)

which corresponds to (9.23b).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

192 Optimizing Probability Vectors over Concave Functions

Now note that if �k > 0 then � can also be chosen to be negative with
��� still having all components nonnegative. In this case we can choose � such
that ��k � � < 0. If we then divide (9.40) by �, we get3

@f(���)

@�k

!� �: (9.42)

Equations (9.41) and (9.42) can only be satisfied simultaneously if

@f(���)

@�k

!
= �; (9.43)

which corresponds to (9.23a).
It only remains to consider the case where the derivative is unbounded if

one component tends to zero. Hence, assume that for a given k, @f(���)
@�k

= +1
for �k # 0. Again, we assume �1 > 0 and therefore @f(���)

@�1
must be continuous

and well-behaved by assumption, i.e., k 6= 1.4 We now show that ��� with
�k = 0 cannot achieve the maximum:

f
�
���+ �i(k) � �i(1)�� f(���)

�

=
f
�
���+ �i(k) � �i(1)�� f����+ �i(k)

�
�

+
f
�
���+ �i(k)

�� f(���)
�

(9.44)

= �f
�
���+ �i(k) + (��)i(1)�� f����+ �i(k)

�
(��) +

f
�
���+ �i(k)

�� f(���)
�

(9.45)

�#0! �@f(���)
@�1| {z }

>�1
by assumption
because �1> 0

+
@f(���)

@�k| {z }
=1

by assumption

=1 > 0: (9.46)

Hence,

f
�
���+ �i(k) � �i(1)� > f(���) (9.47)

and ��� cannot achieve the maximum.

9.A Appendix: Slope Paradox

The aware reader might want to adapt the example of Figure 9.3 slightly to
get a situation shown in Figure 9.4.

Now obviously the slope at the boundary point where the maximum is
achieved is positive and not negative as claimed in (9.15b). So it seems that
(9.15b) is wrong for this case. How can we save ourselves?

3Note that since we divide by a negative value, we have to change the inequality sign!
4Note that we only allow the derivative to become infinite for �` tending to zero. Since

we have here that �1 > 0 this derivative must be well-behaved!

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

9.A. Appendix: Slope Paradox 193

R

maximum

Figure 9.4: Slope paradox: The maximum is achieved on the boundary of the
region, but now the slope seems to be positive instead of negative
as we have claimed in (9.15b).

The clue lies in the way we compute derivatives. The actual idea behind
(9.15a) and (9.15b) was as follows:

slope is zero for all components that lie in-
side the region,

(9.48)

slope is decreasing when walk-
ing from the boundary into the
region

for all components that are on
the boundary.

(9.49)

Now, strictly speaking, our function f is only defined in the region R. Hence
we need to compute the slope accordingly. In the situation of Figure 9.3 the
slope is computed as follows:

lim
�#0

f
�
���+ �i(`)

�� f(���)
�

=
@f(���)

@�`
; (9.50)

which then leads to (9.15).
In the case of Figure 9.4, however, this approach is not possible because

���+ �i(`) =2 R. Instead, there we need to compute the slope as follows:

lim
�#0

f
�
���� �i(`)�� f(���)

�
= � lim

�#0
f
�
���� �i(`)�� f(���)

�� = �@f(���)
@�`

; (9.51)

i.e., condition (9.15b) then actually becomes

@f(���)

@�`
� 0: (9.52)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

194 Optimizing Probability Vectors over Concave Functions

So, our paradox is solved if we understand that by @f(���)
@�`

we mean the derivative
that must be computed from the boundary towards inside the convex region.
We learn that we always need to check the concrete case and choose the sign
of the inequality accordingly!

Note that in the case of the region of probability vectors RL, we did it
correctly because the situation corresponds to Figure 9.3: The region is only
bounded below by zero, i.e., the way we state equation (9.15b) is correct (as
it must have been, since we have proven it in Theorem 9.11).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 10

Gambling and Horse Betting

In this chapter we make an excursion into an area that at first sight seems to
have little to do with information theory: gambling. However, this impression
is wrong! It turns out that we can describe optimal betting strategies very
elegantly using some of our information-theoretic quantities.

The setup of the gambling in this chapter is very simple. As basic example
we assume a horse gambling game, where one can bet money on a horse in a
horse race and will receive money if the horse wins. However, in concept the
ideas that are presented here can also be applied in a much wider context,
e.g., to the stock-markets or to large scale investment portfolios.

10.1 Problem Setup

Consider a set X of m horses. Let the random variable X 2 X be the winning
horse with PMF

PX(x) = p(x) =

8<
:pi if x = i;

0 otherwise;
(10.1)

where pi denotes the probability that horse i wins. Moreover, let oi denote
the return per dollar (odds) if horse i wins.

Example 10.1. Assume we bet 5 dollars on horse 1 with odds o1 = 2. Then, if
horse 1 wins, we will receive 10 dollars; if horse 1 does not win, our 5 dollars
are lost and we receive nothing. �

We use b to denote the betting strategy, i.e., bi is the proportion of the
gambler’s total wealth that he bets on horse i. This means that b is a percent-
age, i.e., the gambler needs to decide first how much money he wants to risk
in gambling and then decide how to bet with this money. Or in mathematical
terms:

mX
i=1

bi = 1: (10.2)

195 © Stefan M. Moser — IT, version 6.14

196 Gambling and Horse Betting

Remark 10.2. For convenience we use two equivalent forms of notation: a vector
notation and a functional notation. For example, in the case of the betting
strategy we have

bi = b(i) the proportion of the money that is bet on horse i,

b = b(�) the complete betting strategy.

Similarly we write pi = p(i), p = p(�), oi = o(i), and o = o(�). M

10.2 Optimal Gambling Strategy

How shall we now invest our money? Shall we bet on the horse that has
highest chance of winning? Or shall we rather favor the horse with the best
odds?

Example 10.3. Consider a race with m = 3 horses, with the following winning
probabilities:

p1 = 0:7; p2 = 0:2; p3 = 0:1; (10.3)

and with the following odds:

o1 = 1:2; o2 = 4:5; o3 = 8:5: (10.4)

On which horse would you put your money? On horse 1 that has the highest
winning probability? Or on horse 3 that has the highest odds?

Actually, if you are a slightly more capable gambler, you will bet your
money on the horse with the highest expected return, i.e., the one with the
largest product pioi:

p1o1 = 0:84; p2o2 = 0:9; p3o3 = 0:85; (10.5)

i.e., on the second horse. But note that also this strategy is risky because
you might lose all your money in one blow! Hence, we realize that the really
careful gambler should look at the long-term expected return. �

So, we realize that we need to keep participating in many races. For the
moment we will assume that all races are IID, so we therefore also assume
that we stick with the same betting strategy during all races. Let Sn be the
growth factor of our wealth after participating in n races, and let Xk denote
the winning horse in race k.

Example 10.4. Returning to the horse race of Example 10.3, assume that you
bet 50% of your money on horse 1 and 50% on horse 2. Hence,

b1 = 0:5; b2 = 0:5; b3 = 0: (10.6)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

10.2. Optimal Gambling Strategy 197

Assume further that you decide to gamble with a total of 0 = 800 dollars.
It so happens that in the first race horse 2 wins, X1 = 2. Hence, the

b1 � 0 = 0:5 � 800 = 400 dollars that you have bet on horse 1 are lost. But the
other 400 dollars that you have bet on horse 2 are multiplied by a factor of
4:5, i.e., you get 4:5 � 400 = 1800 dollars back. Therefore your current wealth
now is

1 = 0 � b(2) � o(2)| {z }
= s1

= 800 � 0:5 � 4:5 = 1800: (10.7)

Note that the growth factor turned out to be s1 = 2:25.
Let’s say that in the second race horse 1 wins, X2 = 1. This time the

b2 �1 = 0:5 �1800 = 900 dollars that you have bet on horse 2 are lost, but you
gain o1 � (b1 �1) = 1:2 � (0:5 � 1800) dollars from horse 1. So now your wealth is

2 = 1 � b(1) � o(1) = 1800 � 0:5 � 1:2 = 1080: (10.8)

Note that using (10.7) we can write this also as follows:

2 = 0 � s1| {z }
= 1

� b(1) � o(1) = 0 � s1 � b(1) � o(1)| {z }
= s2

; (10.9)

where s2 denotes the growth factor of your wealth during the first two races:
s2 = 2:25 � 0:6 = 1:35.

Suppose that in the third race, horse 1 wins again, X3 = 1. Your wealth
therefore develops as follows:

3 = 2 � b(1) � o(1) = 0 � s2 � b(1) � o(1)| {z }
= s3

: (10.10)

And so on. �

From Example 10.4 we now understand that

S1 = b(X1) o(X1); (10.11)

S2 = S1 � b(X2) o(X2); (10.12)

S3 = S2 � b(X3) o(X3); (10.13)
:::

=) Sn =
nY

k=1

b(Xk) o(Xk) (10.14)

and that the wealth after n races is

n = 0 � Sn: (10.15)

You note that n only depends on the starting wealth 0 and the growth factor
Sn. We therefore usually directly look at Sn without worrying about the exact
amount of money we use for betting.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

198 Gambling and Horse Betting

Example 10.5. We briefly return to Example 10.4 and point out that once
horse 3 wins (which is unlikely but possible!), you are finished: Since b(3) = 0,
your wealth is reduced to zero and you cannot continue to bet. So it is quite
obvious that the chosen betting strategy is not good in the long run. �

We go back to our question of deciding about a good betting strategy.
From the discussion above we conclude that we would like to find a betting
strategy that maximizes Sn, or rather, since Sn is random, that maximizes
the expected value of Sn for large n. Unfortunately, the expression (10.14) is
rather complicated. In order to simplify it, we introduce a logarithm:

1

n
log2 Sn =

1

n
log2

nY

k=1

b(Xk) o(Xk)

!
(10.16)

=
1

n

nX
k=1

log2
�
b(Xk) o(Xk)

�
(10.17)

n!1! E
�
log2

�
b(X) o(X)

��
in probability (10.18)

by the weak law of large numbers. So we define the following new quantity.

Definition 10.6. We define the doubling rate W(b;p;o) as

W(b;p;o) , E
�
log2

�
b(X) o(X)

��
(10.19)

=
X
x

p(x) log2
�
b(x) o(x)

�
: (10.20)

From (10.18) we see that, for n large, we have with high probability

Sn � 2nW(b;p;o): (10.21)

This also explains the name of W: If W = 1, then we expect to double our
wealth after each race; if W = 0:1, we expect to double our wealth after every
10 races; and if W is negative, we will be broke sooner or later. . .

So our new aim is to maximize the doubling rate by choosing the best
possible betting strategy b:

W�(p;o) , max
b

W(b;p;o) (10.22)

= max
b

X
x

p(x) log2
�
b(x) o(x)

�
(10.23)

= max
b

(X
x

p(x) log2 b(x) +
X
x

p(x) log2 o(x)

)
(10.24)

= max
b

X
x

p(x) log2 b(x) +
X
x

p(x) log2 o(x)| {z }
independent of b

=) we ignore the odds!

(10.25)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

10.2. Optimal Gambling Strategy 199

= max
b

X
x

p(x) log2

�
b(x)

p(x)
p(x)

�
+ E[log2 o(X)] (10.26)

= max
b

��D(pkb)�H(X)
	
+ E[log2 o(X)] (10.27)

= �min
b

D(pkb)| {z }
=0 for
b�=p

�H(X) + E[log2 o(X)] (10.28)

= �H(X) + E[log2 o(X)]: (10.29)

Here we used relative entropy defined in Definition 3.1.
Hence, we get the following theorem.

Theorem 10.7 (Proportional Gambling is Log-Optimal).
Consider an IID horse race X � p with odds o. The optimum doubling
rate is given by

W�(p;o) = E[log2 o(X)]�H(X) (10.30)

(where the entropy must be specified in bits) and is achieved by propor-
tional betting:

b� = p: (10.31)

Note the really interesting fact that optimal gambling ignores the odds!

Example 10.8. Consider a race with 2 horses. Horse 1 wins with probability
p, 1

2 � p < 1; and horse 2 wins with probability 1 � p. Assume even odds
o1 = o2 = 2. If you like risk, you put all your money on horse 1 as this gives
highest expected return. But then

W
�
[1; 0]; [p; 1� p]; [2; 2]� = E

�
log2

�
b(X) o(X)

��
(10.32)

= p log2(1 � 2) + (1� p) log2(0 � 2) (10.33)

= �1; (10.34)

i.e., on the long run your wealth will be

Sn � 2nW = 2�1 = 0: (10.35)

Actually, this will happen very soon, a couple of races in general is enough. . .
If you are very much afraid of risk, put half on horse 1 and half on horse 2:

Sn =
nY

k=1

b(Xk) o(Xk) =
nY

k=1

1

2
� 2 = 1; (10.36)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

200 Gambling and Horse Betting

i.e., you will not lose nor gain anything, but for sure keep your money the way
it is. The doubling rate in this case is

W

��
1

2
;
1

2

�
; [p; 1� p]; [2; 2]

�
= p log2

�
1

2
� 2
�
+ (1� p) log2

�
1

2
� 2
�
= 0:

(10.37)

The optimal thing to do is proportional betting:

b1 = p; b2 = 1� p; (10.38)

which yields a doubling rate

W��[p; 1� p]; [2; 2]� = E[log2 o(X)]�H(X) = 1�Hb(p): (10.39)

Then your wealth will grow exponentially fast to infinity:

Sn � 2n(1�Hb(p)): (10.40)

�

10.3 Bookie’s Perspective

So far we have concentrated on the gambler’s side of the game and simply
assumed that the odds were given. However, in an actual horse race, there
must be a bookie that offers the game, i.e., the odds.

How shall the bookie decide on the odds oi that he offers? He, of course,
wants to maximize his earning, i.e., minimize the gambler’s winning. However,
he has no control over the gambler’s betting strategy and needs to announce
his odds before he learns the gambler’s bets!

Instead of working with the odds oi directly, it will turn out to be easier
to work with a normalized reciprocal version of it. We define

ri ,
1

oi
� 1Pm

j=1
1
oj

(10.41)

such that

oi =
c

ri
(10.42)

with

c , 1Pm
j=1

1
oj

: (10.43)

Hence, (r; c) is equivalent to o, i.e., by specifying r and c the bookie also
specifies the odds o.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

10.3. Bookie’s Perspective 201

It is important to note that

mX
i=1

ri =
mX
i=1

1

oi
� 1Pm

j=1
1
oj

=
1Pm

j=1
1
oj

mX
i=1

1

oi
= 1 (10.44)

like a proper probability distribution.
We use (10.42) to write

W(b;p;o) =
mX
i=1

pi log2(bioi) (10.45)

=
mX
i=1

pi log2

�
bi
c

ri

�
(10.46)

=
mX
i=1

pi log2 c+
mX
i=1

pi log2

�
bi
pi
� pi
ri

�
(10.47)

= log2 c�D(pkb) + D(pkr): (10.48)

Note that the bookie has no control over b, but he can minimize the doubling
rate W(b;p;o) by choosing r = p! We have proven the following result.

Theorem 10.9. The optimal strategy of the bookie is to offer odds that are
inverse proportional to the winning probabilities.

Moreover, the bookie can influence the doubling rate by the constant c.

• If c = 1, i.e.,
Pm

i=1
1
oi

= 1, we have fair odds. In this case there exists a
betting strategy that contains no risk (but also gives no return): simply
bet

bi =
1

oi
: (10.49)

Note that we can do this because we have assumed that c = 1, i.e.,

mX
i=1

1

oi
= 1: (10.50)

Then for all n

Sn =
nY

k=1

b(Xk) o(Xk) =
nY

k=1

1

o(Xk)
o(Xk) =

nY
k=1

1 = 1; (10.51)

i.e., the doubling rate for this risk-free betting strategy is 0.

In general the doubling rate in the case of fair odds is

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

202 Gambling and Horse Betting

W(b;p;o) = D(pkr)�D(pkb) (10.52)

and has a beautiful interpretation: In reality neither the gambler nor the
bookie know the real winning distribution p. But for both it is optimal
to choose b = p or r = p, respectively. Hence b and r represent the
gambler’s and the bookie’s estimate of the true winning distribution,
respectively. The doubling rate is the difference between the “distance”
of the bookie’s estimate from the true distribution and the “distance” of
the gambler’s estimate from the true distribution.

A gambler can only make money if his estimate of the true winning
distribution is better than the bookie’s estimate.

This is a fair competition between the gambler and the bookie, and
therefore the name “fair odds”.

• If c > 1, i.e.,
Pm

i=1
1
oi
< 1, we have superfair odds. In this — not very

realistic — scenario, the gambler can win money without risk by making
a Dutch book :

bi =
c

oi
: (10.53)

He then gets for all n

Sn =
nY

k=1

b(Xk) o(Xk) =
nY

k=1

c

o(Xk)
o(Xk) =

nY
k=1

c = cn: (10.54)

However, note that a Dutch book is not log-optimal. To maximize W,
the gambler still needs to do proportional betting (in which case he
ignores the odds).

• If c < 1, i.e.,
Pm

i=1
1
oi
> 1, we have subfair odds. That is often the

case in reality: The bookie takes a cut from all bets. This case is more
difficult to analyze. We will see in Section 10.6 that in this case it might
be clever not to bet at all!

10.4 Uniform Fair Odds

Before we start to investigate the realistic situation of subfair odds, we would
like to quickly point out some nice properties of the special case of uniform
fair odds:

oi = m (10.55)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

10.5. What About Not Gambling? 203

where m denotes the number of horses. (Note that

mX
i=1

1

oi
=

mX
i=1

1

m
= 1; (10.56)

i.e., these really are fair odds.) Then

W�(p;o) =
mX
i=1

pi log2m�H(X) (10.57)

= log2m�H(X) (10.58)

and we have the following result.

Theorem 10.10 (Conservation Theorem). For uniform fair odds (10.55), we have

W�(p;o) +H(X) = log2m = constant; (10.59)

i.e., the sum of doubling rate and entropy rate is constant.

Hence, we see that we can make most money from races with low entropy
rate. (On the other hand, if the entropy rate is low, then the bookie won’t be
so stupid to offer uniform odds. . .)

10.5 What About Not Gambling?

So far we have always assumed that we use all our money in every race.
However, in the situation of subfair odds, where the bookie takes some fixed
amount of the gambler’s bet for himself for sure, we should allow the gambler
to retain some part of his money. Let b(0) = b0 be that part that is not put
into the game.

In this situation, the growth factor given in (10.14) will become

Sn =
nY

k=1

�
b(0) + b(Xk) o(Xk)

�
(10.60)

and the Definition 10.6 of the doubling rate is changed to

W(b;p;o) , E
�
log2

�
b(0) + b(X) o(X)

��
=

mX
i=1

pi log2(b0 + bioi): (10.61)

Let us see how our results adapt to these new definitions:

• Fair odds: We have already seen that the bet bi = 1
oi

is risk-free (but also
gives no gain). Hence, instead of taking the portion b0 of our money
out of the game, we might also simply distribute b0 proportionally to 1

oi
among all horses. This yields the same effect!

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

204 Gambling and Horse Betting

So we see that every betting strategy with b0 > 0 can be replaced by
another betting strategy with b0 = 0 and with identical risk and identical
performance. Because obviously any betting strategy with b0 = 0 is
obviously identical to a betting strategy without b0 in the first place,
the optimal solution that we have derived in Section 10.2 still is optimal,
i.e., proportional betting bi = pi (and b0 = 0) is log-optimal (but not
risk-free).

• Superfair odds: Here we would be silly to retain some money as we can
increase our money risk-free! So the optimal solution is to have b0 = 0

and always use all money. Hence, using the same argument as above for
fair odds, proportional betting is log-optimal (but not risk-free).

• Subfair odds: This case is much more complicated. In general it is optimal
to retain a certain portion of the money. How much depends on the
expected returns pioi. Basically, we need to maximize

W(b;p;o) =
mX
i=1

pi log2(b0 + bioi) (10.62)

under the constraints

b0 � 0; (10.63)

bi � 0; i = 1; : : : ;m; (10.64)

b0 +
mX
i=1

bi = 1: (10.65)

As shown in the following section, this problem can be solved using
the Karush–Kuhn–Tucker (KKT) conditions (Theorem 9.11 in Chap-
ter 9).

10.6 Optimal Gambling for Subfair Odds

We apply the KKT conditions to the optimization problem (10.62)–(10.65)
and get the following:

@W

@b0
=

mX
i=1

pi
b0 + bioi

log2 e

8<
:= � if b0 > 0;

� � if b0 = 0;
(10.66)

@W

@b`
=

p`o`
b0 + b`o`

log2 e

8<
:= � if b` > 0;

� � if b` = 0;
` = 1; : : : ;m; (10.67)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

10.6. Optimal Gambling for Subfair Odds 205

where � must be chosen such that (10.65) is satisfied. We define � , log2 e
�

and rewrite (10.66) and (10.67) as follows:

mX
i=1

�pi
b0 + bioi

8<
:= 1 if b0 > 0;

� 1 if b0 = 0;
(10.68)

�pioi
b0 + bioi

8<
:= 1 if bi > 0;

� 1 if bi = 0;
i = 1; : : : ;m: (10.69)

We now try to solve these expressions for b.

• From (10.69) we learn that, if bi > 0,

bi =
1

oi

�
�pioi � b0

�
; (10.70)

and if bi = 0,

bi � 1

oi

�
�pioi � b0

�
: (10.71)

In other words, if �pioi � b0 we get the case bi > 0; and if �pioi < b0,
we have bi = 0. Hence,

bi =
1

oi

�
�pioi � b0

�+ (10.72)

where

(�)+ , maxf�; 0g: (10.73)

• Next we will prove that (under the assumption of subfair odds) we always
have b0 > 0. To this end, assume b0 = 0. Then from (10.72) we see that

bi =
1

oi

�
�pioi � 0

�+
= �pi: (10.74)

Using this and our assumption b0 = 0 in (10.68) we get

1 �
mX
i=1

�pi
b0 + bioi

=
mX
i=1

�pi
0 + �pioi

=
mX
i=1

1

oi

sub-
fair
> 1; (10.75)

where the last inequality follows from the fact that we have assumed
subfair odds. Since 1 > 1 is not possible, we have a contradiction, and
therefore we must have b0 > 0.

Hence, we have proven the following fact.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

206 Gambling and Horse Betting

In a horse race with subfair odds, it is never optimal to invest all
money.

• So, b0 > 0. Let

B , �i 2 f1; : : : ;mg : bi > 0
	

(10.76)

be the set of all horses that we bet money on. We now rewrite (10.68)
as follows:

1 =
mX
i=1

�pi
b0 + bioi

(10.77)

=
X
i2B

�pi
b0 + bioi

+
X
i2Bc

�pi
b0 + bioi

(10.78)

=
X
i2B

�pi
b0 + �pioi � b0 +

X
i2Bc

�pi
b0 + 0

(10.79)

=
X
i2B

1

oi
+
�

b0

X
i2Bc

pi;

| {z }
=1�

P
i2B

pi

(10.80)

where in first sum of (10.79) we have used (10.72). Hence,

b0 = � � 1�
P

i2B pi
1�Pi2B

1
oi

: (10.81)

Using (10.72) and (10.81) in (10.65) then yields

1 = b0 +
mX
i=1

bi (10.82)

= b0 +
X
i2B

1

oi
(�pioi � b0) (10.83)

= b0

0
@1�X

i2B

1

oi

1
A+ �

X
i2B

pi (10.84)

= � � 1�
P

i2B pi
1�Pi2B

1
oi

�
0
@1�X

i2B

1

oi

1
A+ �

X
i2B

pi (10.85)

= �

0
@1�X

i2B
pi

1
A+ �

X
i2B

pi = �; (10.86)

i.e., � = 1.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

10.6. Optimal Gambling for Subfair Odds 207

So we finally have arrived at the following solution:

b0 =
1�Pi2B pi
1�Pi2B

1
oi

(10.87)

and

bi =
1

oi

�
pioi � b0

�+ (10.88)

for i 2 f1; : : : ;mg.

We see that we have a recursive definition here: The values of bi depend
on b0, but b0 in turn depends (via B) on bi. So the remaining question is how
to find the optimal set B of horses we do bet on. We cannot compute this
optimal set directly, but we can find a recursive procedure to figure it out.

Firstly, note that from (10.88) we see that the horses with bi > 0 must
have an expected return pioi larger than b0. Hence, we will only (if at all)
bet on horses with large expected return! Secondly, note that b0 is a common
threshold to all horses, i.e., if we bet on horse i and horse j has an expected
return larger than horse i, pjoj � pioi, then we will also bet on horse j.

So, we start by ordering the horses according to expected return pioi. Then
we try recursively:

Step 1: Set B = fg and compute b0 from (10.87).

Step 2: Check whether the best horse (i.e., the one with the largest expected
return) has an expected return pioi larger than b0. If yes, add this
horse to B, recompute b0 and repeat Step 2 with the remaining horses.
If no, stop.

This leads to the following algorithm that finds the optimal betting strategy
for horse racing with subfair odds.

Theorem 10.11 (Optimal Gambling for Subfair Odds).
Consider an IID horse race X � p with odds o. If the gambler is allowed
to withhold the fraction b0 of his wealth, then an optimal betting strategy
that maximizes the doubling rate can be found as follows:

• Order the horses according to the expected return pioi:

p1o1 � p2o2 � � � � � pmom: (10.89)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

208 Gambling and Horse Betting

• Define

�t ,
1�

t�1P
j=1

pj

1�
t�1P
j=1

1
oj

for t = 1; : : : ;m: (10.90)

Note that �1 = 1.

• Find the smallest t such that �t � ptot. If �t < ptot for all t =
1; : : : ;m (which can only happen if the odds are fair or superfair!),
then set t = m+ 1 and �t = 0.

• Assign

b0 = �t; (10.91a)

bi = pi � �t
oi

for i = 1; : : : ; t� 1, (10.91b)

bi = 0 for i = t; : : : ;m. (10.91c)

Remark 10.12. Note that it is very well possible that the solution is b0 = 1

and bi = 0 (i = 1; : : : ;m), i.e., that the optimal betting strategy is not to
gamble at all! This is the case if the expected return of all horses is less than
(or equal to) 1: pioi � 1, 8 i. If the expected return of at least one horse is
strictly larger than 1, then b0 < 1 and we will gamble.

Also note that if we apply the algorithm to a game that is fair or superfair,
we will in general regain our previously found solution b0 = 0 and bi = pi,
8 i. The only exceptions are some cases of fair odds where the algorithm
will result in b0 > 0 and bi = 0 for some horses. This will happen if the
algorithm at a certain stage finds �t = pioi (with equality!). However, in such
a case the resulting doubling rate is identical to the doubling rate achieved by
proportional betting. M

Example 10.13. We go back to Example 10.3 with m = 3 horses with

p1 = 0:7; p2 = 0:2; p3 = 0:1; (10.92)

and

o1 = 1:2; o2 = 4:5; o3 = 8:5: (10.93)

Firstly we order the horses according to expected return

p1o1 = 0:84; p2o2 = 0:9; p3o3 = 0:85; (10.94)

i.e., we have the new order (2; 3; 1). But then we note that the largest expected
return is less than 1, i.e., in the above algorithm the smallest t such that
�t � ptot is t = 1 and we realize that the optimal solution is not to bet at all.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

10.7. Gambling with Side-Information 209

We change the example slightly by offering better odds:

o1 = 1:2; o2 = 6; o3 = 10: (10.95)

the game still is subfair because

3X
i=1

1

oi
= 1:1 > 1; (10.96)

but now the expected returns are

p2o2 = 1:2; p3o3 = 1; p1o1 = 0:84: (10.97)

The computation of the algorithm is shown in Table 10.1. It turns out that
the smallest t such that �t � ptot is t = 3 and we have (again using the original
names of the horses):

b0 = �3 = 0:955; (10.98)

b2 = p2 � �3
o2

= 0:2� 0:955

6
= 0:041; (10.99)

b3 = p3 � �3
o3

= 0:1� 0:955

10
= 0:00455; (10.100)

b1 = 0: (10.101)

Hence, we see that we only bet on the two unlikely horses with much higher
odds. However, we also see that we gamble with only about 5% of our money.

The doubling rate is now given as

W�(p;o) =
mX
i=1

pi log2(b0 + bioi) (10.102)

= 0:7 log2(0:955) + 0:2 log2(0:955 + 0:041 � 6)
+ 0:1 log2(0:955 + 0:00455 � 10) (10.103)

= 0:00563: (10.104)

This is very small, but it is positive. I.e., if we play long enough (it might be
very long!), we will make money. �

10.7 Gambling with Side-Information

Let us return to the situation where we have to bet with all money. So far we
have assumed that all horse races are independent of each other and have the
same distribution. This is of course not very realistic. In order to loosen this
stringent assumption, as a first step, we introduce side-information about the
horse race. Later on, we will be able to use this to deal with memory in the

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

210 Gambling and Horse Betting

Table 10.1: Derivation of optimal gambling for a subfair game.

original name 2 3 1

new name t 1 2 3

pi 0.2 0.1 0.7

oi 6 10 1.2

pioi 1.2 1.0 0.84

_ _ ^
�t 1 0.96 0.955

system: We simply take the past racing results as the side-information. Note
that at the moment we still keep the assumption of independent races.

Assume now that we have available some side-information Y about which
horse is going to win: Given is some joint probability distribution PX;Y . De-
pending on the current value of the side-information Y = y, we can adapt our
betting strategy, i.e., our betting strategy is a function of y: b(�jy). To find the
optimal strategy, we need to redo all derivations from above. This basically
happens in an identical manner, with the only difference that everything is
now conditioned on Y = y. Hence, we basically get the same results.

Since we assume that the races are still IID, i.e., (Xk; Yk) are jointly IID,
we have

Sn =
nY

k=1

b(XkjYk) o(Xk) (10.105)

and

1

n
log2 Sn =

1

n
log2

nY

k=1

b(XkjYk) o(Xk)

!
(10.106)

=
1

n

nX
k=1

log2
�
b(XkjYk) o(Xk)

�
(10.107)

n!1! EX;Y
�
log2

�
b(XjY) o(X)

��
in probability: (10.108)

We define the conditional doubling rate

W
�
b(�j�); PX;Y ;o

�
, EX;Y

�
log2

�
b(XjY) o(X)

��
(10.109)

and obtain

W
�
b(�j�); PX;Y ;o

�
=
X
x;y

PX;Y (x; y) log2
�
b(xjy) o(x)� (10.110)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

10.7. Gambling with Side-Information 211

=
X
x;y

PX;Y (x; y) log2 b(xjy) +
X
x;y

PX;Y (x; y) log2 o(x) (10.111)

=
X
y

PY (y)
X
x

PXjY (xjy) log2

b(xjy) � PXjY (xjy)

PXjY (xjy)

!

+
X
x

PX(x) log2 o(x) (10.112)

=
X
y

PY (y)
X
x

PXjY (xjy) log2 PXjY (xjy)

�
X
y

PY (y)
X
x

PXjY (xjy) log2

PXjY (xjy)
b(xjy)

!
+ E[log2 o(X)] (10.113)

= �H(XjY)� EY
h
D
�
PXjY (�jY)

b(�jY)�i| {z }
� 0

+ E[log2 o(X)] (10.114)

� �H(XjY) + E[log2 o(X)]; (10.115)

where the inequality can be achieved with equality if, and only if, we choose
b(�j�) = PXjY (�j�).

In summary, we have the following result.

Theorem 10.14 (Betting with Side-Information).
Consider an IID horse race X with odds o with access to some side-
information Y about X, where (X;Y) � PX;Y . The optimal doubling
rate

W�(XjY) , max
b(�j�)

W
�
b(�j�); PX;Y ;o

�
(10.116)

is given by

W�(XjY) = E[log2 o(X)]�H(XjY) (10.117)

(where the entropy must be specified in bits) and is achievable by pro-
portional betting:

b�(xjy) = PXjY (xjy); 8x; y: (10.118)

Here we have introduced a new notation:

W�(X) ,W�(PX ;o); (10.119)

W�(XjY) ,W�(PX;Y ;o): (10.120)

So, how much does side-information help? To see this, we compute

�W� ,W�(XjY)�W�(X) (10.121)

= E[log2 o(X)]�H(XjY)� �E[log2 o(X)]�H(X)
�

(10.122)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

212 Gambling and Horse Betting

= H(X)�H(XjY) (10.123)

= I(X;Y): (10.124)

Hence, we have shown the following beautiful theorem.

Theorem 10.15. The increase �W� in the optimal doubling rate due to the
side-information Y for an IID horse race X is

�W� = I(X;Y): (10.125)

10.8 Dependent Horse Races

The most common type of side-information is the past performance of the
horses. Hence, we will now drop the IID assumption, but instead assume
that fXkg is a stationary stochastic process. Then from Theorem 10.14 we
immediately get

W�(XkjXk�1; : : : ; X1) = E[log2 o(Xk)]�H(XkjXk�1; : : : ; X1) (10.126)

which is achieved by proportional betting

b�(xkjxk�1; : : : ; x1) = P (xkjxk�1; : : : ; x1): (10.127)

The question is how to define a corresponding doubling rate in this new con-
text. To answer this, we again need to consider the growth factor of our
wealth. Note that the growth factor is now more complicated because our
betting strategy changes in each step:

S�n =
nY

k=1

b�(XkjXk�1; : : : ; X1) o(Xk) (10.128)

=
nY

k=1

P (XkjXk�1; : : : ; X1) o(Xk): (10.129)

Of course, as before, S�n is a random number. However, while in the case of an
IID process we could use the weak law of large numbers to show that for large
n, S�n will converge to a constant, we cannot do this anymore here, because
the weak law of large number does not hold for a general stationary process
fXkg.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

10.8. Dependent Horse Races 213

Instead we compute the expected value of 1
n log2 S

�
n:

E
�
1

n
log2 S

�
n

�

= E

"
1

n

nX
k=1

log2
�
P (XkjXk�1; : : : ; X1) o(Xk)

�#
(10.130)

=
1

n

nX
k=1

E[log2 P (XkjXk�1; : : : ; X1)] +
1

n

nX
k=1

E[log2 o(Xk)] (10.131)

= � 1

n

nX
k=1

H(XkjXk�1; : : : ; X1) +
1

n

nX
k=1

E[log2 o(X1)] (10.132)

= � 1

n
H(X1; : : : ; Xn) + E[log2 o(X1)] (10.133)

n!1! �H(fXkg) + E[log2 o(X1)]: (10.134)

Here, (10.132) follows from the definition of entropy and from stationarity;
(10.133) follows from the chain rule; and the last equality (10.134) is due to
the definition of entropy rate.

Hence, we have shown that for n� 1 we have

E
�
1

n
log2 S

�
n

�
� E[log2 o(X1)]�H(fXkg): (10.135)

If we are unhappy about this much weaker statement, we can fix the situation
by assuming that fXkg is also ergodic. Then, the weak law of large numbers
can be applied again and we get

1

n
log2 S

�
n =

1

n

nX
k=1

log2 P (XkjXk�1; : : : ; X1) +
1

n

nX
k=1

log2 o(Xk) (10.136)

n!1! lim
n!1E[log2 P (XnjXn�1; : : : ; X1)]

+ lim
n!1E[log2 o(Xn)] in probability (10.137)

= � lim
n!1H(XnjXn�1; : : : ; X1) + E[log2 o(X1)] (10.138)

= �H(fXkg) + E[log2 o(X1)]: (10.139)

Here, (10.137) follows from ergodicity; in (10.138) we rely on the definition of
entropy and use stationarity; and the last equality (10.139) follows from the
second equivalent definition of entropy rate for stationary processes.

So we get the following result.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

214 Gambling and Horse Betting

Theorem 10.16. Consider a stationary and ergodic horse race fXkg with
odds o. Then we have for large n

Sn � 2nW
�(fXkg) in probability; (10.140)

where

W�(fXkg) , E[log2 o(X1)]�H(fXkg) (10.141)

(where the entropy rate must be specified in bits).

Remark 10.17. As a matter of fact, both IID processes and stationary and
ergodic processes satisfy the strong law of large numbers. So in the whole
chapter we can replace “in probability” with “almost surely” (or, equivalently,
“with probability 1”) everywhere. M

Example 10.18. Instead of horses we consider cards. Assume that we have 52
cards, 26 black and 26 red. The cards are well shuffled, and then opened one
by one. We bet on the color, with fair odds

o(red) = o(black) = 2: (10.142)

We offer two different strategies:

1. We bet sequentially: We know that it is optimal to bet proportionally,
taking the known past into account as side-information. Hence, at the
beginning we bet

b(X1 = red) = b(X1 = black) =
26

52
=

1

2
: (10.143)

Then for the second card we bet either, if X1 = red,

b(X2 = red) =
25

51
; b(X2 = black) =

26

51
; (10.144)

or, if X1 = black,

b(X2 = red) =
26

51
; b(X2 = black) =

25

51
: (10.145)

etc.

2. We bet on the entire sequence of 52 cards at once. There are
�52
26

�
different

possible sequences of 25 red and 26 black cards, all equally likely. Hence
we bet

b(x1; : : : ; x52) =
1�52
26

� (10.146)

on each of these sequences.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

10.8. Dependent Horse Races 215

Both strategies are equivalent! To see this note, e.g., that half of the
�52
26

�
sequences will start with red, i.e., in the second strategy we actually bet half
on “red in the first card”, which is identical to the first strategy.

How much are we going to win? Well, at the end one sequence must show
up, so we get for this sequence 252 (52 times the odds 2) times our money we
have bet on this sequence, which is 1=

�52
26

�
, and for the rest we get nothing.

Hence

S�52 = 252 � 1�52
26

� � 9:08: (10.147)

Note that in this special problem we actually again have a risk-free situation!
We will multiply our money by a factor of 9 for sure. But this is not that
surprising when you realize that once all 26 cards of one color are opened, we
know the outcome of the rest for sure. This will happen latest with the second
last card, but usually even earlier. �

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 11

Data Transmission over a Noisy
Digital Channel

11.1 Problem Setup

We have already mentioned that information theory can be roughly split into
three main areas:

• Source coding asks the question of how to compress data efficiently.

• Channel coding ask the question of how to transmit data reliably over
a channel.

• Cryptography asks the question of how to transmit data in a secure
way such that nobody unwanted can read it.

So far we have had a quite close first look onto the first topic. Now we go to
the second one. We consider the general system shown in Figure 11.1.

We will simplify this general system model in several ways: Firstly, we
assume that all values of the random message M that is to be transmitted
over the channel have the same equal probability. This might sound like a
strong restriction, but actually it is not. The reason is that the output of
any good data compression scheme is (almost) memoryless and uniformly
distributed !

Remark 11.1 (Compressed data is IID and uniform). Note that the output of
an IID uniform source cannot be compressed. The reason is that every block
message of length M is equally likely which means that the Huffman code
cannot apply shorter messages to more likely messages. This can also be seen
directly from the converse of the coding theorem (e.g., Theorem 5.15 or 7.3).
A similar argument can be used in the case of a Tunstall code.

Any other source can be compressed. So assume for the moment that the
output of a perfect (ideal) compressor has memory and/or is not uniformly

217 © Stefan M. Moser — IT, version 6.14

218 Data Transmission over a Noisy Digital Channel

source
source
encoder

U channel
encoder

M modu-
lator

X

noisy
channel

waveform

demodu-
lator

noisy

waveform
channel
decoder

Ysource
decoder

^Mdesti-
nation

^U

noise

discrete-time channeluniform memoryless source

dest. of compressed data

Figure 11.1: Most general system model in information theory.

distributed. In this case we could design another compressor specifically for
this output and compress the data even further. But this is a contradiction
to the assumption that the first compressor already is perfect! M

Note that in general the random messageM emitted by the source might be
a sequence of digits (in practice usually a sequence of binary digits). However,
we do not really care about the form of the message, but simply assume that
there is only a finite number of possible messages and that therefore we can
number them from 1 to M.

Definition 11.2. The source emits a random message M that is uniformly dis-
tributed over the (finite) message setM = f1; 2; : : : ;Mg. This means we have
jMj = M possible messages that are all equally likely.

Secondly, we simplify our system model by ignoring modulation and de-
modulation. This means that we think of the modulator and the demodulator
to be part of the channel and only consider a discrete-time channel, i.e., the
channel input and output are sequences of RVs fXkg and fYkg, respectively,
where k denotes the discrete time.

Even more abstractly and generally, we give the following “engineering
definition” of a channel.

Definition 11.3. A channel is that part of a communication system that the
engineer either is unwilling or unable to change.

Example 11.4. To explain this notion, we give two (quite practical) examples:

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

11.1. Problem Setup 219

• In the design of some communication system, we usually must restrict
ourselves to a certain frequency band that is specified by the regulatory
administration of the country. Hence, the constraint that we have to
use this band becomes part of the channel. Note that there might be
other frequency bands that would be better suited to the task, but we
are not allowed to use them: We are unable to change that part of our
communication system.

• Suppose we want to set up a simple communication system between
two locations. Suppose further that we have a certain cheap transmitter
available and do not want to buy a new one. Hence, the fact that we
use exactly this transmitter becomes part of the channel. There might
be much better transmitters available, but we are unwilling to change
to those. �

So we see that once the channel is given, the remaining freedom can then
be used to transmit information.

The only question that remains now is how we can translate this engi-
neering definition into something that is easier for a mathematical analysis.
The trick here is to abstract the channel further to its three most important
features:

• What can we put into the channel?

• What can come out of the channel?

• What is the (probabilistic) relation between the input and the output?

To simplify our life we will make a further assumption: We assume that the
channel is memoryless, i.e., the output of the channel only depends on the
current input and not on the past inputs. We give the following definition.

Definition 11.5. A discrete memoryless channel (DMC) is a channel specified
by

• an input alphabet X , which is a set of symbols that the channel accepts
as input;

• an output alphabet Y, which is a set of symbols that the channel can
produce at its output; and

• a conditional probability distribution PY jX(�jx) for all x 2 X such that

PYkjX1;X2;:::;Xk;Y1;Y2;:::;Yk�1
(ykjx1; x2; : : : ; xk; y1; y2; : : : ; yk�1)

= PY jX(ykjxk); 8 k: (11.1)

This conditional distribution PY jX(�j�) is sometimes also called channel
law. It describes the probabilistic connection between input and output.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

220 Data Transmission over a Noisy Digital Channel

So mathematically a DMC is simply a conditional probability distribution
that tells us the distribution of the output for every possible different input
letter.

We would like to point out the following important observations from the
definition of a DMC:

• The current output Yk depends only on the current input xk (the channel
is memoryless).

• For a particular input xk, the distribution of the output Yk does not
change over time (the channel is time-invariant). This can be seen
from our notation: We wrote PY jX(ykjxk) and not PYkjXk

(ykjxk)!

• For a given input x, we do not know the output for sure (due to the
random noise), but we are only given a certain probability distribution.
Hopefully, this distribution is not the same for different inputs, as oth-
erwise we will never be able to recover the input from the distorted
output!

Example 11.6. A very typical example of a DMC is the binary symmetric
channel (BSC) shown in Figure 11.2. It is a binary channel, i.e., both input

1� �
0 0

1� �
1 1

�

�

X Y

Figure 11.2: Binary symmetric channel (BSC).

and output can only take on two different values, i.e., X = Y = f0; 1g. We
see that if x = 0 the probability of the output Y being unchanged is 1 � �.
The probability of a flip is �. The channel is called symmetric because the
probability of a flip is the same for x = 0 to Y = 1 and x = 1 to Y = 0. We
see that

PY jX(0j0) = 1� �; PY jX(1j0) = �; (11.2)

PY jX(0j1) = �; PY jX(1j1) = 1� �: (11.3)

Another often used channel is the binary erasure channel (BEC) shown
in Figure 11.3. This channel has the same binary input as the BSC, but the
output alphabet is ternary: If we receive “?”, then we know that something

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

11.1. Problem Setup 221

1� �

0

0

1� �

1

1

�

?

�

X Y

Figure 11.3: Binary erasure channel (BEC).

went wrong and the input symbol was lost. The probability for such a lost
symbol is �.

Note that this seems to be a better behavior than for the BSC, where we
never can be sure if a 1 really is a 1. In the BEC we never are going to confuse
Y = 0 with Y = 1. �

uniform
source

encoder
M

channel
X1; : : : ; Xn

codeword
decoder

Y1; : : : ; Yn

received
sequence

desti-
nation

^M

noise

Figure 11.4: Simplified discrete-time system model.

Adding these two simplifications to our system model in Figure 11.1, we
now get the simplified, abstract system model shown in Figure 11.4. The only
two devices in this model that we have not yet described are the encoder and
the decoder.

Definition 11.7. The channel encoder is a device that accepts a message m
as input and generates from it a sequence of channel input symbols at the
output. Usually, of course, we will have a different output sequence for every
different message m.

We will assume that all output sequences have the same length n. These
output sequences are denoted codewords of blocklength n.

Mathematically, the encoder is a deterministic mapping

� :M! Xn (11.4)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

222 Data Transmission over a Noisy Digital Channel

that assigns for every message m a codeword x = (x1; : : : ; xn) 2 Xn. The set
of all codewords C is called codebook or simply code.

Definition 11.8. The channel decoder is a device that receives a length-n chan-
nel output sequence (i.e., a distorted codeword) and then needs to make a
decision on what message has been sent.

Of course we should design this device in a clever way so as to optimize
some cost function. Usually, the decoder is designed such that the probability
of a message error is minimized. For more details see Section 11.3.

Note that this optimization is in general very difficult, but it can be done
during the design phase of the system. Once we have figured out the optimal
way of decoding, we do not change the decoder anymore. I.e., mathematically,
the decoder is a deterministic mapping

 : Yn ! M̂: (11.5)

Here usually M̂ =M, but sometimes we might have M̂ =M[f0g where 0

corresponds to a declaration of an error.
In short: A decoder takes any possible channel output sequence y =

(y1; : : : ; yn) and assigns to it a guess m̂ which message has been transmit-
ted.

11.2 Discrete Memoryless Channels

Next, we are going to investigate the DMC more in detail and make one more
important assumption.

Definition 11.9. We say that a DMC is used without feedback if

P (xkjx1; : : : ; xk�1; y1; : : : ; yk�1) = P (xkjx1; : : : ; xk�1); 8 k; (11.6)

i.e., Xk depends only on past inputs (by choice of the encoder), but not on
past outputs. In other words, there is no feedback link from the receiver back
to the transmitter that would inform the transmitter about the past outputs.

Remark 11.10. It is important to realize that even though we assume the channel
to be memoryless, we do not restrict the encoder to be memoryless! Actually,
memory in the encoder will be crucial for our transmission system! As a very
simple example consider a codebook with only two codewords of length n = 3:

C = f000; 111g: (11.7)

(This code is called three-times repetition code.) In this case if x1 = 1, we
know for sure that x2 = x3 = 1, i.e., we have very strong memory between
the different inputs xn1 ! M

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

11.2. Discrete Memoryless Channels 223

In this class we will most of the time (i.e., always, unless we explicitly
state it) assume that we do not have any feedback links.

We now prove the following theorem.

Theorem 11.11. If a DMC is used without feedback, then

P (y1; : : : ; ynjx1; : : : ; xn) =
nY

k=1

PY jX(ykjxk); 8n � 1: (11.8)

Proof: The proof only needs the definition of a DMC (11.1) and the
assumption that we do not have any feedback (11.6):

P (x1; : : : ; xn; y1; : : : ; yn)

= P (x1) � P (y1jx1) � P (x2jx1; y1) � P (y2jx1; x2; y1) � � �
� P (xnjx1; : : : ; xn�1; y1; : : : ; yn�1) � P (ynjx1; : : : ; xn; y1; : : : ; yn�1) (11.9)

= P (x1) � P (y1jx1) � P (x2jx1) � P (y2jx1; x2; y1) � � �
� P (xnjx1; : : : ; xn�1) � P (ynjx1; : : : ; xn; y1; : : : ; yn�1) (11.10)

= P (x1) � PY jX(y1jx1) � P (x2jx1) � PY jX(y2jx2) � � �
� P (xnjx1; : : : ; xn�1) � PY jX(ynjxn) (11.11)

= P (x1) � P (x2jx1) � � �P (xnjx1; : : : ; xn�1) �
nY

k=1

PY jX(ykjxk) (11.12)

= P (x1; : : : ; xn) �
nY

k=1

PY jX(ykjxk); (11.13)

where the first equality (11.9) follows from the chain rule, the second (11.10)
because we do not have feedback, and the third (11.11) from the definition of
a DMC.

Hence

P (x1; : : : ; xn; y1; : : : ; yn)

P (x1; : : : ; xn)
= P (y1; : : : ; ynjx1; : : : ; xn) =

nY
k=1

PY jX(ykjxk):

(11.14)

While in source coding we have seen that the entropy rate H(fUkg) was the
crucial definition, it probably will not come as a big surprise that in channel
coding this role is taken over by the mutual information I(X;Y), i.e., the
amount of information that Y reveals about X (or vice versa). So next we
will investigate the mutual information between the channel input and output
of a DMC.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

224 Data Transmission over a Noisy Digital Channel

Lemma 11.12. The mutual information I(X;Y) between the input X and out-
put Y of a DMC that is used without feedback is a function of the channel
law PY jX(�j�) and the PMF of the input PX(�):

I(X;Y) = f
�
PX ; PY jX

�
: (11.15)

To be precise we have

I(X;Y) = EX
h
D
�
PY jX(�jX)

 (PXPY jX)(�)�i; (11.16)

where we have defined

(PXPY jX)(y) ,
X
x0

PX(x
0)PY jX(yjx0); 8 y; (11.17)

and were we make use of relative entropy (Definition 3.1).

Proof: We remember that mutual information can be written using the
relative entropy D(�k �) (see the discussion around (3.14)):

I(X;Y) = D(PX;Y kPX � PY) (11.18)

=
X
(x;y)

PX;Y (x; y) log
PX;Y (x; y)

PX(x)PY (y)
(11.19)

=
X
x

PX(x)
X
y

PY jX(yjx) log
PY jX(yjx)
PY (y)

(11.20)

=
X
x

PX(x)
X
y

PY jX(yjx) log
PY jX(yjx)P

x0 PX(x
0)PY jX(yjx0)

(11.21)

= EX
h
D
�
PY jX(�jX)

 (PXPY jX)(�)�i: (11.22)

Hence, we learn that the mutual information is a function of the channel
law PY jX(�j�), which is given to us via the channel, and of the distribution on
the input, which can be chosen freely by us via the design of the encoder.

Based on the fact that we can design the encoder, but have to accept the
channel that we get, the following definition is now quite natural.

Definition 11.13. We define the information capacity of a given DMC as

Cinf , max
PX(�)

I(X;Y): (11.23)

Note that this is a purely mathematical definition without any engineering
meaning so far!

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

11.3. Coding for a DMC 225

11.3 Coding for a DMC

So we have introduced our system model (see Figure 11.4) and have under-
stood some issues about the channel. We are now ready to think about the
design of an encoder and decoder for a given DMC. Recalling our mathe-
matical definitions of the encoder and decoder in Definitions 11.7 and 11.8,
we see that such a design basically is equivalent to specifying a codebook C ,
an encoding function �(�) and a decoding function (�). Hence, we give the
following definition.

Definition 11.14. An (M; n) coding scheme for a DMC (X ;Y; PY jX) consists
of

• the message set M = f1; : : : ;Mg,
• the codebook (or code) C of all length-n codewords,

• an encoding function �(�), and

• a decoding function (�).
Remark 11.15. We make a short comment about our choice of name. It is an
unfortunate habit of many information theorists (including [CT06]) to call
the (M; n) coding scheme an “(M; n) code”. The problem is that the term
code is used already by all coding theorists to denote the codebook, i.e., the
unsorted list of codewords. We only mention the Hamming code and the
Reed-Solomon code as examples. To avoid confusion between the two groups
of people, we will always try to use codebook for the list of codewords and
coding scheme for the complete system consisting of the codebook and the
mappings. M

As one sees from its name “(M; n) coding scheme”, the two crucial param-
eters of interest of a coding scheme are the number of possible messages M

and the codeword length (blocklength) n. Usually we would like to make M

large, because this way we can transmit more information over the channel,
and the blocklength n should be short so that it does not take too long (we
do not need too many discrete time-steps) to transmit the codeword. In other
words,

• we have M equally likely messages, i.e., the entropy of the message is
H(M) = log2M bits;

• we need n transmissions of a channel input symbol Xk over the channel
in order to transmit the complete message.

Hence, we transmit on average H(M)
n = log2M

n bits per each transmission of a
channel symbol.

This insight is crucial and leads to the following fundamental definition.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

226 Data Transmission over a Noisy Digital Channel

Definition 11.16. The rate1 R of an (M; n) coding scheme is defined as

R , log2M

n
bits/transmission: (11.24)

The rate is one of the most important parameter of any coding scheme. It
tells us how much information is transmitted every time the channel is used
given the particular coding scheme. The unit “bits/transmission” sometimes
is also called “bits/channel use” or “bits/symbol”.

So far we have only worried about the encoder. However, at least as im-
portant is the decoder. If the decoder is not able to gain back the transmitted
message, the coding scheme is not very useful! Or to say it in other words:
The definition of the transmission rate R only makes sense if the message re-
ally arrives at the destination, i.e., if the receiver does not make too many
decoding errors.

So the second crucial parameter of a coding scheme is its performance
measured in its probability of making an error. To explain more about this,
we give the following definitions.

Definition 11.17. Given that message M = m has been sent, we define �m to
be the error probability (or block error probability):

�m , Pr
�
 (Y) 6= m

��x = �(m)
�

(11.25)

=
X
y2Yn

P (yjx(m))1f (y) 6= mg; (11.26)

where 1f�g is the indicator function

1fstatementg ,
8<
:1 if statement is true;

0 if statement is wrong:
(11.27)

The maximum error probability �(n) for an (M; n) coding scheme is defined
as

�(n) , max
m2M

�m: (11.28)

The average error probability P (n)
e for an (M; n) coding scheme is defined as

P
(n)
e , 1

M

MX
m=1

�m: (11.29)

Now we know all main definitions to formulate our main objective.

1We define the rate here using a logarithm of base 2. However, we can use any logarithm
as long as we adapt the units accordingly.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

11.3. Coding for a DMC 227

The main objective of channel coding is to try to find an (M; n) cod-
ing scheme such that the maximum error probability �(n) is as small as
possible and the rate R is as large as possible.

Note that in order to achieve our main objective, we cannot only vary the
design of the codewords in the codebook C , but also the blocklength n, the
number of codewords M, and (coupled with these two quantities) also the rate
R = logM

n .
Now it is quite obvious that if we fix M and let n grow that the error

probability can be made arbitrarily small. Take the example of a binary
repetition code of length n (compare with Remark 11.10) and only two possible
messages M = 2: the larger n is, the more certain the receiver becomes about
the transmitted message. However, such a system is very inefficient because
we end up transmitting only 1 single bit, but use n transmissions. The rate
of this scheme tends to zero!

Much more interesting is a system that actually transmits at a constant
rate R. This then means that for growing n, also M must grow. Usually, we
formulate this in a way that we choose a blocklength n and a fixed rate R.
The number of needed codewords is then

M = 2nR: (11.30)

Here we have assumed that the rate R is given in bits/channel use, i.e., the
logarithm is to the base 2. If this is not the case, we will have to change the
form to, e.g., enR for the case of a rate measured in nats.2

Next we ask the question how the decoder needs to be designed such
that the error probability is minimized. Given that the random message
M = m has been fed to the encoder, the decoder receives the sequence
Y = (Y1; : : : ; Yn), which has a conditional distribution

P (YjX(m)) =
nY

k=1

PY jX
�
Yk
��Xk(m)

�
: (11.31)

The receiver needs to guess which message has been sent, and we want to do
this in a way that minimizes the probability of decoding error or, equivalently,
maximizes the probability of a correct decoding:

Pr(correct decoding) =
X
y

PY(y) Pr(correct decoding jY = y) (11.32)

=
X
y

PY(y) Pr[M = (y) jY = y]: (11.33)

2Note that we actually also need to include a ceiling-operation in (11.30) to make sure
that M is an integer.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

228 Data Transmission over a Noisy Digital Channel

This is maximized if for each y we choose (y) such as to maximize3 the
conditional probability Pr[M = (y) jY = y]:

 (y) , argmax
m2M

PM jY(mjy): (11.34)

Such a decoder is called maximum a posteriori (MAP) decoder. It is the
best decoder. Its form can be further changed as follows:

 (y) , argmax
m2M

PM jY(mjy) (11.35)

= argmax
m2M

PM;Y(m;y)

PY(y)
(11.36)

= argmax
m2M

PM (m)PYjM (yjm)

PY(y)
(11.37)

= argmax
m2M

�
PM (m)PYjM (yjm)

	
(11.38)

= argmax
m2M

�
PM (m)PYjX

�
y
��x(m)

�	
; (11.39)

where (11.38) follows because PY(y) is not a function of m. If we now assume
(as we usually do) that M is uniform, i.e., PM (m) = 1=2nR, we get

 (y) = argmax
m2M

�
1

2nR
PYjX

�
y
��x(m)

��
(11.40)

= argmax
m2M

PYjX
�
y
��x(m)

�
; (11.41)

where (11.41) follows because 1=2nR is not a function of m. A decoder that
implements the rule given in (11.41) is called maximum likelihood (ML)
decoder.

An ML decoder is equivalent to the optimum MAP decoder if (and only
if!) the messages are uniformly distributed. However, even if this were not the
case, people often prefer the suboptimal ML decoder over the optimal MAP
decoder, because for the MAP decoder it is necessary to know the source
distribution PM (�), which usually is not the case. Moreover, if the source
changes, the decoder needs to be adapted as well, which is very inconvenient
for a practical system design: We definitely do not want to change our radio
receiver simply because the type of transmitted music is different on Sundays
than during the week. . . !

An ML decoder, on the other hand, does not depend on the source, and
since a uniform source is kind of the “most difficult” case anyway, the ML
decoder is like a worst-case design: The decoder is optimized for the most
difficult source.

3Note that strictly speaking argmaxm is not defined if the maximum-achieving value
m is not unique. However, in that case, the performance of the decoder does not change
irrespective of which m among all maximum-achieving values is chosen. It is usual to define
that argmaxm will pick a value m among all optimal values uniformly at random.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

11.3. Coding for a DMC 229

Irrespective of the type of decoder used, it is often convenient to describe
it using decoding regions.

Definition 11.18. The mth decoding region is defined as

Dm , fy : (y) = mg; (11.42)

i.e., it is the set of all those channel output sequences that will be decoded to
the message m.

Even though it is not necessarily correct, it sometimes is helpful for the
understanding to think of the channel as a device that adds noise to the
transmitted codeword. The decoding regions can then be thought of as clouds
around the codewords. If the noise is not too strong, then Y will be relatively
“close” to the transmitted codeword x(m), so a good decoder should look for
the “closest” codeword to a received Y. See Figure 11.5 for an illustration of
this idea.

x(1)
Y

x(2)

x(3)

x(4)

x(5)

D1

D2

D3

D4

D5

Figure 11.5: Decoding regions of a code with five codewords.

With the help of the decoding region, we can now rewrite the error prob-
ability �m as follows:

�m =
X

y=2Dm

PYjX(yjx(m)): (11.43)

Unfortunately, in spite of its simplicity, the evaluation of this expression for
an ML decoder is rather difficult in general. So it can be useful to have a
bound, particularly an upper bound, at hand.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

230 Data Transmission over a Noisy Digital Channel

11.4 Bhattacharyya Bound

For the situation of a code with only two codewords, there exists a very elegant
bound on the error probability �m under an ML decoder. According to its
discoverer, this bound has the difficult name Bhattacharyya Bound.

In order to derive it, we assume that we have a code with only two code-
words: x(1) and x(2). There are only two decoding regions that must satisfy
Dc

1 = D2. So, (11.43) simplifies significantly:

�2 =
X
y2D1

PYjX(yjx(2)) (11.44)

and similar for �1.
Now recall that the ML rule looks for the codeword that maximize the

conditional probability:

y 2 D1 =) PYjX(yjx(1)) � PYjX(yjx(2)) (11.45)

=)
q
PYjX(yjx(1)) �

q
PYjX(yjx(2)) (11.46)

=)
q
PYjX(yjx(1))PYjX(yjx(2)) � PYjX(yjx(2)): (11.47)

(Note that the inverse direction might not hold because we have not specified
what happens in a case of a tie when PYjX(yjx(1)) = PYjX(yjx(2)).) Using
(11.47) in (11.44) then yields

�2 =
X
y2D1

PYjX(yjx(2)) �
X
y2D1

q
PYjX(yjx(1))PYjX(yjx(2)): (11.48)

A similar derivation will lead to

�1 =
X
y2D2

PYjX(yjx(1)) �
X
y2D2

q
PYjX(yjx(1))PYjX(yjx(2)); (11.49)

and adding (11.48) and (11.49) we obtain

�1 + �2 �
X
y

q
PYjX(yjx(1))PYjX(yjx(2)): (11.50)

If we now assume that the code is used on a DMC without feedback, we can
further simplify this as follows:

�m � �1 + �2 (11.51)

�
X

y1;:::;yn

vuut nY
k=1

PY jX
�
yk
��xk(1)�PY jX�yk��xk(2)� (11.52)

=
nY

k=1

X
y

q
PY jX

�
y
��xk(1)�PY jX�y��xk(2)�: (11.53)

Here in the last step we did the following type of algebraic transformation:

a1b1 + a1b2 + a2b1 + a2b2 = (a1 + a2)(b1 + b2): (11.54)

We have shown the following bound.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

11.4. Bhattacharyya Bound 231

Theorem 11.19 (Bhattacharyya Bound).
The worst case block error probability of a code with two codewords
that is used over a DMC without feedback and that is decoded with ML
decoding is upper-bounded as follows:

�(n) �
nY

k=1

X
y

q
PY jX

�
y
��xk(1)�PY jX�y��xk(2)�: (11.55)

In practice, one often encounters channels with a binary input alphabet.
For such channels, Theorem 11.19 can be expressed even more simply.

Definition 11.20. For a DMC with a binary input alphabet X = f0; 1g, we define
the Bhattacharyya distance DB as

DB , �log2
 X

y

q
PY jX(yj0)PY jX(yj1)

!
: (11.56)

For a code used on a binary-input DMC, we then have for xk(1) 6= xk(2),X
y

q
PY jX

�
y
��xk(1)�PY jX�y��xk(2)� =X

y

q
PY jX(yj0) PY jX(yj1) (11.57)

= 2�DB ; (11.58)

and for xk(1) = xk(2),X
y

q
PY jX

�
y
��xk(1)�PY jX�y��xk(2)� =X

y

PY jX
�
y
��xk(1)� = 1: (11.59)

Hence, we see that for binary-input DMCs, Theorem 11.19 can be rewritten
as follows.

Corollary 11.21. For a binary-input DMC and the code fx(1);x(2)g the
worst case block error probability (using an ML decoder) satisfies

�(n) � �2�DB
�dH(x(1);x(2))

: (11.60)

Example 11.22. Consider the BEC shown in Figure 11.6. We have

DB = �log2
�q

(1� �) � 0 +
p
� � � +

q
0 � (1� �)

�
= �log2 � (11.61)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

232 Data Transmission over a Noisy Digital Channel

1� �

0

0

1� �

1

1

�

?

�

X Y

Figure 11.6: Binary erasure channel (BEC).

and therefore

�(n) � 2dH(x(1);x(2)) log2 � = �dH(x(1);x(2)): (11.62)

�

11.5 Operational Capacity

We have seen in Section 11.3 that it is our goal to make the maximum prob-
ability of error as small as possible. It should be quite obvious though that
unless we have a very special (and very unrealistic) channel it will never be
possible to make the error probability equal to zero. It also turns out that the
analysis of the optimal system is horribly difficult and even not tractable by
simulation or numerical search.

Shannon’s perhaps most important contribution was a way around this
problem. He realized that in general a system should perform better if we
make n larger. This is quite obvious if we keep the number of codewords
M constant. In this case we can make the distance between the different
codewords larger and larger, and thereby the probability that the decoder will
mix them up due to the noise will become smaller and smaller. However, if we
keep M constant while making n larger, we implicitly let the rate R tend to
zero (see (11.24) or (11.30)). Hence, ultimately, for very large n we transmit
almost no information anymore.

At the time of Shannon every engineer was convinced that the only way
of improving the error probability was to reduce the rate. Shannon, on the
other hand, had the following incredible insight:

It is possible to reduce the error probability without reducing the rate !

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

11.5. Operational Capacity 233

If you think this is trivially obvious, you probably have not understood
the implications of this statement. . .

Using this insight, Shannon then found a way around the obstacle that it
is basically impossible to analyze or even find an optimal coding scheme for
a given DMC. His trick was not to try to analyze a system for a fixed rate
and blocklength, but to make the blocklength n arbitrarily large and at the
same time ask the error probability to become arbitrarily small. He gave the
following two crucial definitions.

Definition 11.23. A rate R is said to be achievable on a given DMC if there
exists a sequence of

�d2nRe; n� coding schemes such that the maximum
error probability �(n) tends to 0 as n!1.

Definition 11.24. The operational capacity Cop of a DMC is defined to be
the supremum of all achievable rates.

Hence we see that the capacity is the highest amount of information (in
bits) that can be transmitted over the channel per transmission reliably in
the sense that the error probability can be made arbitrarily small if we make
n sufficiently large.

Note that Shannon on purpose ignored two issues that actually are im-
portant in practice. Firstly, he completely ignores delay in the system. If we
make n very large, this means that at a first step, the encoder needs to wait
until he gets the complete random message M which usually is encoded as a
binary string, i.e., if the number of messages M is very large (which will be
the case if n is large!) we have to wait for a long binary sequence. Next the
codeword needs to be transmitted which takes n transmissions. The receiver
can only decode once it has received the full message (Y1; : : : ; Yn). So we see
that large n causes large delays in the system.4

Secondly, Shannon does not worry about the practicability of a scheme,
i.e., he does not bother about the computational complexity of the system.5

Before we start proving Shannon’s main results, we would like to recapit-
ulate some of the important insights we have seen so far:

• If we fix n, but increase the number of messages M (i.e., we increase the
rate R), we need to choose more codewords in the same n-dimensional
vector space. Thereby we increase the chance that the decoder will mix
them up. Hence we enlarge the error probability.

4The delays you usually experience when making an international telephone call that is
routed via satellites are not mainly caused by the distance, but by the used channel coding
with large blocklength!

5To see the problem, just imagine how an ML decoder will look like for codewords of
blocklength n = 1000000. . .

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

234 Data Transmission over a Noisy Digital Channel

• However, if we increase both the number of messages M and n (such
that the rate R remains constant), then it might be possible that we
increase the space between the different codewords in the n-dimensional
vector space (even though the number of codewords is increasing!). If
this is the case, then we actually reduce the chance of a mix up and
thereby the error probability.

• Whatever we do, there is no way of having a system with exactly zero
error probability.

11.6 Two Important Lemmas

Before we can figure out how to compute the operational capacity, we need
two important lemmas. The first one relates error probability with entropy.

Lemma 11.25 (Fano Inequality). Let U and Û be L-ary (L � 2) RVs taking
value in the same alphabet.6 Let the error probability be defined as

Pe , Pr[U 6= Û]: (11.63)

Then

Hb(Pe) + Pe log(L� 1) � H(U jÛ): (11.64)

Proof: Define the indicator RV (it indicates an error!)

Z ,

8<
:1 if Û 6= U;

0 if Û = U:
(11.65)

Then

PZ(1) = Pe; (11.66)

PZ(0) = 1� Pe; (11.67)

H(Z) = Hb(Pe): (11.68)

Now we use the chain rule to derive the following:

H(U;ZjÛ) = H(U jÛ) +H(ZjU; Û)| {z }
=0

= H(U jÛ) (11.69)

6You may think of Û to be a decision or guess about U .

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

11.6. Two Important Lemmas 235

and

H(U;ZjÛ) = H(ZjÛ) +H(U jÛ; Z) (11.70)

� H(Z) +H(U jÛ; Z) (11.71)

= Hb(Pe) + PZ(0)H(U jÛ; Z = 0)| {z }
=0

because U=Û

+ PZ(1)H(U jÛ; Z = 1)| {z }
� log(L�1)

because U 6=Û

(11.72)

� Hb(Pe) + Pe log(L� 1); (11.73)

where the first inequality follows from conditioning that cannot increase en-
tropy.

Example 11.26. Let H(U jÛ) = 1
2 bits for binary random variables U and Û .

Then the Fano Inequality tells us that

Hb(Pe) � 1

2
bits; (11.74)

i.e.,

0:11 � Pe � 0:89: (11.75)

�

Often, we use the Fano Inequality in a looser form.

Corollary 11.27. Let U and Û be L-ary (L � 2) RVs taking value in the same
alphabet and let the error probability be defined as in (11.63). Then

log 2 + Pe log L � H(U jÛ) (11.76)

or

Pe � H(U jÛ)� log 2

log L
: (11.77)

Proof: This follows directly from (11.64) by bounding Hb(Pe) � log 2 and
log(L� 1) < log L.

The second lemma is related to our discussion of Markov processes. We
give the following important definition.

Definition 11.28. We say that the three RVs X, Y , and Z form a Markov chain
and write X (�� Y (�� Z if

P (zjy; x) = P (zjy) (11.78)

or, equivalently,

H(ZjY;X) = H(ZjY): (11.79)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

236 Data Transmission over a Noisy Digital Channel

A Markov chain has a strong engineering meaning as it is implicitly given
by a chain of processing boxes as shown in Figure 11.7.

Processor 1
X

Processor 2
Y Z

Figure 11.7: A Markov chain. Note that the processors can be deterministic
or random.

Remark 11.29. An equivalent definition of a Markov chain is to say that con-
ditionally on Y , the RVs X and Z are independent. We leave it to the reader
to prove that this is equivalent to (11.78) and (11.79). M

Lemma 11.30 (Data Processing Inequality (DPI)).
If X (�� Y (�� Z, then

I(X;Z) � I(X;Y) (11.80a)

I(X;Z) � I(Y ;Z) (11.80b)

Hence, processing “destroys” (or more precise: cannot “create”) informa-
tion.

Proof: Using Markovity and the fact that conditioning cannot increase
entropy, we have

I(Y ;Z) = H(Z)� H(ZjY)| {z }
=H(ZjY;X)

(11.81)

= H(Z)�H(ZjY;X)| {z }
�H(ZjX)

(11.82)

� H(Z)�H(ZjX) (11.83)

= I(X;Z): (11.84)

11.7 Converse to the Channel Coding Theorem

Similarly to the chapters about source coding where we have proven a source
coding theorem, we will now derive a channel coding theorem. And simi-
larly to the source coding theorem, the channel coding theorem consists of a
converse part that tells what we cannot do and an achievability part that tells
what is possible. We start with the converse part.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

11.7. Converse to the Channel Coding Theorem 237

Suppose someone gives you an achievable (d2nRe; n) coding scheme, i.e., a
coding scheme (or rather a sequence of coding schemes) for which P

(n)
e ! 0

as n ! 1. Taking this scheme and remembering the definition of the code
rate (Definition 11.16), we have

R =
log 2nR

n
(11.85)

� logd2nRe
n

(11.86)

=
logM

n
(11.87)

=
1

n
H(M) (11.88)

=
1

n
H(M)� 1

n
H(M jM̂) +

1

n
H(M jM̂) (11.89)

=
1

n
H(M jM̂) +

1

n
I(M ; M̂) (11.90)

� 1

n
H(M jM̂) +

1

n
I(Xn

1 ;Y
n
1) (11.91)

� log 2

n
+

logM

n| {z }
� (R+ 1

n) log 2

� P (n)
e +

1

n
I(Xn

1 ;Y
n
1) (11.92)

� log 2

n
+

�
R+

1

n

�
P

(n)
e log 2 +

1

n
H(Y n

1)� 1

n
H(Y n

1 jXn
1) (11.93)

=
log 2

n
+

�
R+

1

n

�
P

(n)
e log 2 +

1

n

nX
k=1

H
�
Yk
��Y k�1

1

�� 1

n

nX
k=1

H
�
Yk
��Y k�1

1 ; Xn
1

�
(11.94)

=
log 2

n
+

�
R+

1

n

�
P

(n)
e log 2 +

1

n

nX
k=1

H
�
Yk
��Y k�1

1

�| {z }
�H(Yk)

� 1

n

nX
k=1

H(YkjXk)

(11.95)

� log 2

n
+

�
R+

1

n

�
P

(n)
e log 2 +

1

n

nX
k=1

H(Yk)� 1

n

nX
k=1

H(YkjXk) (11.96)

=
log 2

n
+

�
R+

1

n

�
P

(n)
e log 2 +

1

n

nX
k=1

I(Xk;Yk)| {z }
�max

PX

I(X;Y)

(11.97)

� log 2

n
+

�
R+

1

n

�
P

(n)
e log 2 +

1

n

nX
k=1

Cinf (11.98)

=
log 2

n
+

�
R+

1

n

�
P

(n)
e log 2 + Cinf: (11.99)

Here, (11.88) follows because we assume that the messages are uniformly dis-
tributed; (11.91) follows by twice applying the Data Processing Inequality
(Lemma 11.30, see Figure 11.4); the subsequent inequality (11.92) follows from

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

238 Data Transmission over a Noisy Digital Channel

the Fano Inequality (Corollary 11.27) with P (n)
e = Pr[M 6= M̂]; for (11.93) we

bound

1

n
logM =

1

n
logd2nRe � 1

n
log(2nR + 1) � 1

n
log(2nR � 2) = nR+ 1

n
log 2;

(11.100)

in (11.94) we use the chain rule; the equality in (11.95) is based on our as-
sumption that we have a DMC without feedback; and (11.98) follows from the
definition of the information capacity (Definition 11.13). Note that (11.92)–
(11.99) show that

1

n
I(Xn

1 ;Y
n
1) � Cinf: (11.101)

We also point out that (11.95) does not hold if we drop the condition that
the DMC is used without feedback! While it is true for any DMC that

H
�
Yk
��Y k�1

1 ; Xk
1

�
= H(YkjXk) (11.102)

due to (11.1), we have here

H
�
Yk
��Y k�1

1 ; Xn
1

�
= H

�
Yk
��Y k�1

1 ; Xk
1

�� I
�
Xn
k+1;Yk

��Y k�1
1 ; Xk

1

�
(11.103)

= H(YkjXk)�H
�
Xn
k+1

��Y k�1
1 ; Xk

1

�
+H

�
Xn
k+1

��Y k
1 ; X

k
1

�
: (11.104)

However, note that

H
�
Xn
k+1

��Y k�1
1 ; Xk

1

�
= H

�
Xn
k+1

��Y k
1 ; X

k
1

�
(11.105)

if, and only if, (11.6) is satisfied, too.
Now recall that we have assumed an achievable coding scheme, i.e., the

coding scheme under investigation is by assumption such that P (n)
e # 0 as

n!1. Thus, for n!1, the first two terms in (11.99) tend to zero and we
have shown that

R � Cinf: (11.106)

We have proven the following theorem.

Theorem 11.31 (Converse Part of the Channel Coding Theorem for a DMC).
Any coding scheme that has an average error probability P

(n)
e going to

zero as the blocklength n tends to infinity must have a rate that is not
larger than the information capacity:

R � Cinf: (11.107)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

11.8. Channel Coding Theorem 239

Remark 11.32. Note that this is a weak converse. It is possible to prove a
stronger version that shows that for rates above capacity, the error probability
goes to 1 exponentially fast in n! M

Remark 11.33. Note that we have stated the converse using the average error
probability P (n)

e . However, Theorem 11.31 also holds if we replace P (n)
e by the

maximum error probability �(n). Indeed, since the average error probability
certainly will tend to zero if the maximum error probability tends to zero,
it follows that any coding scheme with vanishing maximum error probability
also must satisfy the converse, i.e., also must have a rate R � Cinf. M

Next we turn to the achievability part.

11.8 Channel Coding Theorem

We will now derive a lower bound to the achievable rates. To this end, we will
need to design a coding scheme (codebook, encoder, and decoder) and then
analyze its performance. The better this performance, the better the lower
bound.

Our main ideas are as follows:

• The aim of our design is not to create a coding scheme (i.e., codebook,
encoder and decoder) that can be used in practice, but that is easy to
analyze.

• Since we have no clue how to design the codebook, we choose one at
random from the huge set of all possible codebooks. Then we will
analyze the performance of such a random codebook on average, and if
it is good, then we know that there must exist at least some codebooks
that are good!

So, think of a storehouse that contains all possible codebooks. We go
there and randomly pick one and analyze its performance, i.e., compute
its average error probability. Then we pick another codebook and an-
alyze its performance, etc. Finally, we average the performance over
all such codebooks, i.e., we compute the average of the average error
probability.

This trick was Shannon’s idea! It is one of the most crucial ideas in
information theory and is called random coding.

• The encoder will be a simple mapping based on a lookup table. As
mentioned above, such a design is highly inefficient in practice, but
easy to analyze. Note that by itself the encoder is not random, but a
deterministic mapping that maps any given message into a codeword.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

240 Data Transmission over a Noisy Digital Channel

However, since both the message and the codewords are random, the
encoder output looks random, too.

• The decoder should be an ML decoder as discussed in Section 11.3.
Unfortunately, an ML decoder turns out to be quite difficult to analyze.
Therefore we will use a suboptimal decoder. If this decoder will perform
well, then an optimal ML decoder will perform even better!

Note that the decoder by itself is not random, but a deterministic map-
ping that maps a received sequence into a decision. But again, since
message, codewords and channel output all are random, the output of
the decoder looks random.

So, let us look at the details. We go through the following steps:

1: Codebook Design: We randomly generate a codebook. To this end, we fix a
rate R, a codeword length n, and a distribution PX(�). Then we “design”
a (d2nRe; n) coding scheme by independently generating d2nRe length-n
codewords according to the distribution

PX(x) =
nY

k=1

PX(xk): (11.108)

Note that this codebook can be described by a matrix of d2nRe rows of
length n:

C =

0
BBBBBB@

X1(1) X2(1) � � � Xn(1)

X1(2) X2(2) � � � Xn(2)
:::

:::
: : :

:::

X1
�d2nRe� X2

�d2nRe� � � � Xn
�d2nRe�

1
CCCCCCA; (11.109)

where each row describes a codeword. Each entry of this matrix is gener-
ated IID � PX(�), i.e.,

P (C) , Pr

2
6664C =

0
BBB@

x1(1) � � � xn(1)
:::

:::

x1
�d2nRe� � � � xn

�d2nRe�

1
CCCA
3
7775 (11.110)

=

d2nReY
m=1

nY
k=1

PX
�
xk(m)

�
: (11.111)

Once the codebook has been generated, we reveal it to both transmitter
and receiver. And of course they also know the channel law PY jX(�j�) of
the DMC.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

11.8. Channel Coding Theorem 241

2: Encoder Design: As always we assume that the source randomly picks a
message M 2 �1; : : : ; d2nRe	 according to a uniform distribution

Pr[M = m] =
1

d2nRe : (11.112)

The encoder is now very simple: Given the message m, it takes the mth
codeword X(m) of C (the mth row of (11.109)) and sends it over the
channel.

3: Decoder Design: The decoder receives the sequence Y = y, which has,
conditional on the transmitted codeword X(m), the distribution

PYjX(yjX(m)) =
nY

k=1

PY jX(ykjXk(m)): (11.113)

The decoder needs to guess which message has been sent. The best thing
to do is to minimize the probability of decoding error or, equivalently,
maximizing the probability of a correct decoding as we have described in
Section 11.3, i.e., the best thing would be to design the decoder as an ML
decoder.

Unfortunately, an ML decoder is quite difficult to analyze.7 We there-
fore will use another, suboptimal decoder, that is not very practical, but
allows a very elegant and simple analysis. Moreover, even though it is
suboptimal, its performance is good enough for our proof purposes.

Before we can explain the design of our decoder, we need to introduce a
function of two vectors:

i(x;y) , log
PX;Y(x;y)

PX(x)PY(y)
; (x;y) 2 Xn � Yn: (11.114)

This function is called instantaneous mutual information. Its name
stems from the fact that the mutual information I(X;Y) between the
random vectors X and Y is given as the average of the instantaneous
mutual information between all possible realizations of these vectors:

I(X;Y) = EX;Y[i(X;Y)] = E
�
log

PX;Y(X;Y)

PX(X)PY(Y)

�
: (11.115)

Note that we will use the instantaneous mutual information in the context
where PX;Y denotes the joint PMF of our random codewords and our
DMC without feedback:

PX;Y(x;y) = PX(x) � PYjX(yjx) =
nY

k=1

PX(xk)PY jX(ykjxk); (11.116)

7It is not impossible to do it, though. Shannon in his 1948 paper [Sha48] does analyze
the ML decoder.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

242 Data Transmission over a Noisy Digital Channel

where in the second equality we have made use of the memorylessness of
the DMC without feedback (see Theorem 11.11) and of the IID codebook
generation PX(x) =

Qn
k=1 PX(xk). For the same reason we also have

PY(y) =
nY

k=1

PY (yk); (11.117)

where PY (�) is the marginal distribution of PX;Y (�; �) = PX(�)PY jX(�j�).
Hence, the instantaneous mutual information (11.114) can be rewritten
and simplified as follows:

i(x;y) = log
PYjX(yjx)
PY(y)

(11.118)

= log

Qn
k=1 PY jX(ykjxk)Qn

k=1 PY (yk)
(11.119)

=
nX

k=1

log
PY jX(ykjxk)
PY (yk)

(11.120)

,
nX

k=1

i(xk; yk); (11.121)

where (11.121) should be read as definition of i(xk; yk).

Now we are ready to describe the design of our suboptimal decoder. Our
decoder is a threshold decoder and works as follows. Given a received
Y = y, the decoder computes the instantaneous mutual information be-
tween any codeword X(~m) and the received sequence y: i(X(~m);y) for
all ~m = 1; : : : ; d2nRe. Then it checks if it can find an m̂ such that at the
same time

i
�
X(m̂);y

�
> log � (11.122)

and

i
�
X(~m);y

� � log �; 8 ~m 6= m̂; (11.123)

for some specified threshold log � (we will describe our choice of � below).
If such an m̂ exists, the decoder will put out this m̂. If not, it will put
out m̂ = 0, i.e., it declares an error.

4: Performance Analysis: There is a decoding error if M̂ 6= M . (Note that if
M̂ = 0, then for sure this is the case.) To analyze the error probability
we now use the trick not to try to analyze one particular codebook, but
instead the average over all possible codebooks, i.e., we also average over

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

11.8. Channel Coding Theorem 243

the random codebook generation:

Pr(error) = Pr(error, averaged over all codewords and -books) (11.124)

=
X
C

P (C)| {z }
probability of

choosing codebook C

� P
(n)
e (C)| {z }

average error prob.
for given codebook C

(11.125)

=
X
C

P (C) � 1

d2nRe
d2nReX
m=1

�m(C) (11.126)

=
1

d2nRe
d2nReX
m=1

X
C

P (C)�m(C)

| {z }
independent of m

(11.127)

=
1

d2nRe
d2nReX
m=1

X
C

P (C)�1(C) (11.128)

=
X
C

P (C)�1(C) (11.129)

= Pr(error, averaged over all codebooks jM = 1): (11.130)

Here, in (11.128) we use the fact that all codewords are IID randomly
generated. Hence, since we average over all codebooks, the average error
probability does not depend on which message has been sent. So without
loss of generality we can assume that M = 1.

Let

Fm ,
n
i
�
X(m);Y

�
> log2 �

o
; m = 1; : : : ; d2nRe; (11.131)

be the event that the instantaneous mutual information of the mth code-
word and the received sequence Y is above the threshold. Note that for
simplicity we choose a base 2 for the logarithms.

An error occurs if Fc
1 occurs (i.e., if the instantaneous mutual information

of transmitted codeword and the received sequence is too small) or if
F2 [F3 [� � � [Fd2nRe occurs (i.e., if one or more wrong codewords have
an instantaneous mutual information with the received sequence Y that
is too big). Hence, we can write (11.130) as follows:

Pr(error) = Pr(error jM = 1) (11.132)

= Pr
�
Fc
1 [F2 [F3 [� � � [Fd2nRe

���M = 1
�

(11.133)

� Pr(Fc
1 jM = 1) +

d2nReX
m=2

Pr(Fm jM = 1) (11.134)

where the inequality follows from the Union Bound : for any two events
A and B:

Pr(A [B) = Pr(A) + Pr(B)� Pr(A \ B) � Pr(A) + Pr(B): (11.135)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

244 Data Transmission over a Noisy Digital Channel

generate X(1)

?
send it

through DMC

?

receive Y

independent
� - generate other

codewords X(m) using
the same PX(�),

but independently
�
�
�

�
��3

�
�

�
�

��+

independent

Figure 11.8: The received vector Y is independent of the codewords X(m),
m � 2, that are not transmitted.

Note that Y is completely independent of X(m) for all m � 2 (see Fig-
ure 11.8 for an illustration of this fact). Hence, for m � 2,

Pr(Fm jM = 1) = Pr
�
i
�
X(m);Y

�
> log2 �

��M = 1
�

(11.136)

= Pr

�
log2

PX;Y(X(m);Y)

PX(X(m))PY(Y)
> log2 �

����M = 1

�
(11.137)

= Pr

�
PX;Y(X(m);Y)

PX(X(m))PY(Y)
> �

����M = 1

�
(11.138)

=
X

(x;y) such that
PX;Y(x;y)>�PX(x)PY(y)

PX(x)PY(y) (11.139)

=
X

(x;y) such that
PX(x)PY(y)< 1

�
PX;Y(x;y)

PX(x)PY(y)| {z }
< 1

�
PX;Y(x;y)

(11.140)

<
X

(x;y) such that
PX(x)PY(y)< 1

�
PX;Y(x;y)

1

�
PX;Y(x;y) (11.141)

� 1

�

X
(x;y)

PX;Y(x;y) =
1

�
: (11.142)

Here, the most important step is (11.139): There we make use of the fact
that X(m) ?? Y, i.e., their joint probability distribution is a product
distribution. In the last inequality we upper-bound the sum by including
all possible pairs (x;y) without any restriction, such that the summation
adds up to 1.

In order to bound the term Pr(Fc
1 jM = 1), we make a clever choice for

our threshold �. We fix some � > 0 and choose

� , 2n(I(X;Y)��); (11.143)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

11.8. Channel Coding Theorem 245

where I(X;Y) is the mutual information between a channel input sym-
bol X and its corresponding output symbol Y when the input has the
distribution PX(�) (the same as used for the codebook generation!). Then

Pr(Fc
1 jM = 1)

= Pr
�
i
�
X(1);Y

� � log2 �
��M = 1

�
(11.144)

= Pr
�
i
�
X(1);Y

� � n�I(X;Y)� ����M = 1
�

(11.145)

= Pr

"
nX

k=1

i
�
Xk(1);Yk

� � n�I(X;Y)� ��
�����M = 1

#
(11.146)

= Pr

"
1

n

nX
k=1

i
�
Xk(1);Yk

�� I(X;Y) � ��
�����M = 1

#
(11.147)

� Pr

"����� 1n
nX

k=1

i
�
Xk(1);Yk

�� I(X;Y)

����� � �
�����M = 1

#
; (11.148)

where in (11.146) we have used (11.121).

Now recall the weak law of large numbers, which says that for a sequence
Z1; : : : ; Zn of IID random variables of mean � and finite variance and for
any � > 0,

lim
n!1Pr

�����Z1 + � � �+ Zn
n

� �
���� � �

�
= 0: (11.149)

Applied to our case in (11.148), we have Zk , i
�
Xk(1);Yk

�
and � =

E[Zk] = E
�
i
�
Xk(1);Yk

��
= I(X;Y). Hence, it follows from (11.148) that

Pr(Fc
1 jM = 1)! 0 for n " 1; (11.150)

i.e., for n large enough, we have Pr(Fc
1 jM = 1) � �.

Combining these results with (11.134) and choosing n large enough, we
now get

Pr(error) � Pr(Fc
1 jM = 1)| {z }
� �

+

d2nReX
m=2

Pr(Fm jM = 1)| {z }
< 1

�

(11.151)

< �+

d2nReX
m=2

1

�
(11.152)

= �+
�d2nRe � 1

�| {z }
� 2nR

2�n(I(X;Y)��) (11.153)

� �+ 2nR � 2�n(I(X;Y)��) (11.154)

= �+ 2�n(I(X;Y)�R��) (11.155)

� 2�; (11.156)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

246 Data Transmission over a Noisy Digital Channel

where in the last step again n needs to be sufficiently large and I(X;Y)�
R� � > 0 so that the exponent is negative. Hence we see that as long as

R < I(X;Y)� � (11.157)

for any � > 0 we can choose n large enough such that the average error
probability, averaged over all codewords and all codebooks, is less than
2�:

Pr(error) � 2�: (11.158)

5: Strengthening: Now we strengthen the proof in several ways.

• Firstly, we would like to get rid of the average over the codebooks.
Since our average error probability is small (� 2�), there must exist
at least one codebook C � that has an equally small error probability,
i.e., we can find a codebook C � satisfying

P
(n)
e (C �) � 2�: (11.159)

Note that in our calculation of the average error probability we have
included all possible codebooks, i.e., really stupid ones with, e.g., all
codewords being the same (which means that the error probability
for this codebook will be 1!) were not excluded.

• Secondly, we strengthen the proof to obtain a result with respect
to the maximum error probability �(n) instead of the average error
probability P

(n)
e . To this end, we consider the good codebook C �,

for which we know that (11.159) holds, and order the codewords
according to their error probabilities �m, m = 1; : : : ; d2nRe. Let
~� , �b2nR=2c be the error probability of the worst codeword of the
better half. Then

2� � P (n)
e (C �) (11.160)

=
1

d2nRe
d2nReX
m=1

�m (11.161)

=
1

d2nRe
b2nR=2cX
m=1

(better half)

�m|{z}
� 0

+
1

d2nRe
d2nReX

m=b2nR=2c+1
(worse half)

�m|{z}
� ~�

(11.162)

� 1

d2nRe
d2nReX

m=b2nR=2c+1

~� (11.163)

=
d2nRe � b2nR=2c

d2nRe| {z }
� 1

2

� ~� (11.164)

�
~�

2
: (11.165)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

11.8. Channel Coding Theorem 247

Hence, ~� � 4�. So if we design a new codebook with only half the
amount of codewords by taking the good codebook C � and throwing
away the worse half of the codewords, we get a new codebook ~C �

with a maximum error probability being very small:

~�(n) � 4�: (11.166)

But by throwing away half of the codewords we have also changed
the rate: The rate of ~C � satisfies

~R =
log2

�b2nR2 c�
n

=
log2(b2nR�1c)

n
� nR� 1

n
= R� 1

n
: (11.167)

So we see that for large n, we do not lose much.
The condition (11.157) now becomes

~R � R� 1

n
(11.168)

< I(X;Y)� �� 1

n
(11.169)

� I(X;Y)� 2�; (11.170)

where in (11.170) we choose n � 1
� .

• Thirdly, we note that we have not yet clearly specified how we want
to choose PX(�) in the codebook design process. Now we decide to
choose it to be the information-capacity-achieving input distribution
P �X(�), i.e., the distribution that achieves the maximum in

Cinf , max
PX(�)

I(X;Y): (11.171)

This choice allows us to loosen condition (11.170) to

~R < Cinf � 2�: (11.172)

• Finally, we remember that � is a parameter that we can choose freely.
Hence, we can make it as small as we wish, so that condition (11.172)
can be replaced by

~R < Cinf: (11.173)

Thus, we have shown that it is possible to design a coding scheme
with arbitrarily small maximum error probability if n is chosen large
enough and if the rate is smaller than the information capacity.

We have proven the following very exciting result.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

248 Data Transmission over a Noisy Digital Channel

Theorem 11.34 (The Channel Coding Theorem for a DMC).
Let a DMC (X ;Y; PY jX) be given. Define the capacity of this DMC as

C , max
PX(�)

I(X;Y) (11.174)

where X and Y are the input and output RVs of this DMC. Then all rates
below C are achievable, i.e., for every R < C there exists a sequence of�d2nRe; n� coding schemes with maximum error probability �(n) ! 0 as
the blocklength n gets very large.

Conversely, any sequence of
�d2nRe; n� coding schemes with average

error probability P (n)
e ! 0 must have a rate R � C.

We would like to comment on this, in this class probably most important
result.

• We have proven that Cinf = Cop. Therefore, henceforth we will not make
the distinction between information and operational capacity anymore,
but simply call it channel capacity C.

• Note that the inequality R < C is strict for the achievable rates! If
R = C, the situation is unclear: Depending on the channel, C might be
achievable or not.

• The result is counterintuitive: As long as R < C, we can increase the
amount of codewords without having a higher error probability! Or
equivalently: As long as R < C, we can make the error probability
smaller without reducing the rate!

• To summarize: As long as we transmit not too much information per
channel use, we can do it as reliable as you wish (give me any �, e.g.,
� = 10�100 is possible!), but if you are above C, you are not able to
transmit reliably at all!

• This result was like a bombshell in 1948! Before 1948 the engineers be-
lieved that you need to increase your power or SNR (i.e., make the chan-
nel better!) in order to get better error probability. However, Shannon
proved that you can do it without changing the channel (in particular,
without increasing power).

• Where do we pay? (There is no free lunch!) Note that the result only
holds for n!1. So for a very small choice of �, the necessary n might
be very large. This will cause

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

11.8. Channel Coding Theorem 249

– a very complex system (how shall we decode codewords of length
100000000?);

– very long delays (we need to wait until we have received the com-
plete received sequence before we can decode!).

• The proof only shows that there exists a good code, but unfortunately
does not give any clue on how to find it!

• In practice we have the additional problem that the encoding and de-
coding functions must be efficient. For example, a simple lookup table
at the decoder for all possible received sequences will not work.

Example 11.35. Assume a binary channel and a coding scheme with rate
R = 1

4 and blocklength n = 1024. Then we have M = 2nR = 2256

possible messages, i.e., we need 256 bits to store the decision for each of
the 2n = 21024 different possible received sequences. Hence the decoder
needs a memory of size

21024 � 256 bits = 21032 bits = 101032 log10 2 bits

= 4:60 � 10310 bits = 5:75 � 10297 TB: (11.175)

Note that if we took all existing hard-drives worldwide together, we
would not even reach 1030 TB for many years to come. . . �

• In practice it took about 50 years before the first practical codes were
found that performed close to the limit predicted by Shannon. See the
discussion at the end of Chapter 17.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 12

Computing Capacity

12.1 Introduction

We have now learned the definition and meaning of the channel capacity for
a DMC. Next we need to tackle the problem of how we can actually compute
its value. It turns out that in many cases this is very difficult. But there is
still hope because we have a couple of tricks available that sometimes help.

We start by recalling the definition of capacity: For a given DMC with
conditional probability distribution PY jX the capacity is given as

C = max
PX(�)

I(X;Y): (12.1)

So how can we compute it? This usually is difficult because

C = max
PX(�)

n
H(X)| {z }
nice!

depends on
PX only

� H(XjY)| {z }
very annoying!

looking backwards
through DMC!

o
(12.2)

= max
PX(�)

n
H(Y)| {z }

annoying!
need to compute PY
from PX and PY jX

� H(Y jX)| {z }
nice!
DMC

o
: (12.3)

We will show two different approaches on how to compute capacity. The
first is based on some special symmetry assumption about the DMC under
consideration (strongly and weakly symmetric DMCs). The second approach
relies on the Karush–Kuhn–Tucker conditions and convexity.

12.2 Strongly Symmetric DMCs

Definition 12.1. A DMC is called uniformly dispersive if there exist numbers
p1; p2; : : : ; pjYj such thath

PY jX(y1jx); PY jX(y2jx); : : : ; PY jX
�
yjYj

��x�i

251 © Stefan M. Moser — IT, version 6.14

252 Computing Capacity

is a permutation of [p1; p2; : : : ; pjYj] for all x 2 X .

Example 12.2. A BEC as shown in Figure 12.1 is uniformly dispersive. The
corresponding numbers are [p1; p2; p3] = [1� �; �; 0]. �

1� �

0

0

1� �

1

1

�

?

�

jX j = 2 jYj = 3=

Figure 12.1: The BEC is uniformly dispersive.

Lemma 12.3. A uniformly dispersive DMC satisfies

H(Y jX) = �
jYjX
j=1

pj log pj ; (12.4)

independently of PX(�).

Proof: Using the definition of entropy, we have

H(Y jX = x) = �
X
y

PY jX(yjx) logPY jX(yjx) = �
jYjX
j=1

pj log pj ; (12.5)

where the second equality follows from the assumption that the DMC is uni-
formly dispersive. Note that this expression does not depend on x. Hence,

H(Y jX) = EX [H(Y jX = x)] = �
jYjX
j=1

pj log pj : (12.6)

Definition 12.4. A DMC is called uniformly focusing if there exist numbers
r1; r2; : : : ; rjX j such that

�
PY jX(yjx1); : : : ; PY jX(yjxjX j)

�
is a permutation of [r1; r2; : : : ; rjX j] for all y 2 Y.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

12.2. Strongly Symmetric DMCs 253

1

1

1

1

�1

�1

1

2

0

1

2

jYj = 2jX j = 3 =

Figure 12.2: The uniform inverse BEC is uniformly focusing.

Example 12.5. The uniform inverse BEC as shown in Figure 12.2 is uniformly
focusing. The corresponding numbers are [r1; r2; r3] =

�
1; 12 ; 0

�
. �

Lemma 12.6. A uniformly focusing DMC has the following properties:

1. If PX(�) is uniform, then also PY (�) is uniform.

2. The maximum output entropy is

max
PX(�)

H(Y) = log jYj (12.7)

and is achieved by a uniform PX(�) (but possibly also by other choices
of PX(�)).

Proof: We start with the derivation of PY (�) if PX(�) is uniform:

PY (y) =
X
x

PX(x)PY jX(yjx) (12.8)

=
X
x

1

jX jPY jX(yjx) (12.9)

=
1

jX j
jX jX
`=1

r` (12.10)

= constant =
1

jYj : (12.11)

Note that the r` do not in general sum to one, but to some general nonnegative
number. However, if PY (y) is constant for all values of y, then this constant
must be 1

jYj because PY (�) must sum to 1.
To prove the second statement, we note that by the properties of entropy

we have

H(Y) � log jYj; (12.12)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

254 Computing Capacity

with equality if, and only if, Y is uniform. However, since we have just shown
that if X is uniform, Y is uniform, too, we see that maxPX(�)H(Y) = log jYj.

Definition 12.7. A DMC is called strongly symmetric1 if it is both uniformly
dispersive and uniformly focusing.

Example 12.8. The BSC as shown in Figure 12.3 is strongly symmetric. The
corresponding numbers are [p1; p2] = [1� �; �] and [r1; r2] = [1� �; �]. �

1� �

0 0

1� �

1 1

�

�

jX j = 2 jYj = 2

Figure 12.3: Example of a strongly symmetric DMC.

Theorem 12.9 (Capacity of a Strongly Symmetric DMC).
The capacity of a strongly symmetric DMC with input alphabet X , out-
put alphabet Y, and transition probabilities p1; : : : ; pjYj is given as

C = log jYj+
jYjX
j=1

pj log pj (12.13)

and is achieved by a uniform input distribution

PX(x) =
1

jX j ; x 2 X (12.14)

(but possibly also by other distributions).

Proof: By definition of capacity we have

C = max
PX(�)
fH(Y)�H(Y jX)g (12.15)

= max
PX(�)

H(Y) +

jYjX
j=1

pj log pj (12.16)

1In some books strongly symmetric DMCs are called “symmetric DMCs” only. See, e.g.,
[CT06].

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

12.3. Weakly Symmetric DMCs 255

= log jYj+
jYjX
j=1

pj log pj ; (12.17)

where the second equality (12.16) follows from Lemma 12.3 and the third
equality (12.17) from Lemma 12.6.

Example 12.10. Take again the BSC of Figure 12.3, with jYj = 2, p1 = 1 � �,
p2 = �. Then we have

C = log 2 + (1� �) log(1� �) + � log � = 1�Hb(�) bits: (12.18)

Note that

• if � = 0, then C = 1 bit;

• if � = 1, then C = 1 bit, too.

In the latter case the DMC deterministically swaps zeros and ones which can
be repaired without problem (i.e., without error). �

12.3 Weakly Symmetric DMCs

The assumption of strong symmetry is pretty stringent. Most DMCs are not
strongly symmetric. Luckily, there is a slightly less strong assumption for
which we can compute the capacity, too.

Definition 12.11. A DMC (X ;Y; PY jX) is called weakly symmetric if it can be
split up into several strongly symmetric DMCs (called subchannels) in the
following way:

• The input alphabets Xs of all subchannels are the same and equal to X :

Xs = X ; 8 s: (12.19)

• The output alphabets Ys of the different subchannels are disjoint and
add up to Y:

Ys \ Ys0 = ;; 8 s 6= s0; (12.20)[
s

Ys = Y: (12.21)

• We can find a stochastic process that randomly selects one of the sub-
channels in such a way that the combination of selection process and
subchannel yields the same conditional probability distribution as the
channel law PY jX of the DMC.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

256 Computing Capacity

1� �

0

0

1� �

1

1

�

?

�

1
0 0

1
1 1

10

?

1 1

q1 = 1� �

q2 = �

DMC 1

DMC 2

Figure 12.4: The BEC is split into two strongly symmetric DMCs.

Example 12.12. Take again the BEC of Figure 12.1. We split it up into two
strongly symmetric DMCs as shown in Figure 12.4. The selection process
chooses the first subchannel with probability q1 = 1� � and the second with
probability q2 = �. �

It is fairly easy to test a DMC for weak symmetry. One merely needs to
examine each subset of output letters with the same focusing, and then check
to see whether each input letter has the same dispersion into this subset of
output letters. Note that it is not hard to see that if a channel is weakly
symmetric, it must be uniformly dispersive. We summarize this idea in the
following algorithm.

Algorithm for checking whether a DMC is weakly symmetric:

Step 1: Check whether the channel is uniformly dispersive. If no =)
abort!

Step 2: Partition the output letters into disjoint sets Ys, s = 1; : : : ;S,
in such a way that all output letters with the same focusing are
combined together into the same set Ys.

Step 3: For each Ys, check whether all inputs have the same dispersion.
If no =) abort!

Step 4: The DMC is weakly symmetric! We have S subchannels with
input alphabet X and output alphabet Ys, s = 1; : : : ;S. We

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

12.3. Weakly Symmetric DMCs 257

compute the selection probabilities of each subchannel as follows:

qs ,
X
y2Ys

PY jX(yjx1); s = 1; : : : ;S: (12.22)

Then we normalize the conditional subchannel probabilities by
dividing each original conditional probability by qs:

PY jX;S=s(yjx) =
PY jX(yjx)

qs
; x 2 X ; y 2 Ys; (12.23)

for s = 1; : : : ;S.

Since we know how to compute the capacity of every strongly symmetric
subchannel, it is not surprising that the capacity of a weakly symmetric DMC
can also be derived easily.

Theorem 12.13 (Capacity of a Weakly Symmetric DMC).
The capacity of a weakly symmetric DMC is

C =
SX
s=1

qsCs; (12.24)

where Cs denotes the capacity of the sth strongly symmetric subchannel,
and qs is the selection probability of the sth subchannel.

Proof: We decompose the weakly symmetric DMC into S strongly sym-
metric DMCs, with the selection probabilities q1; : : : ; qS. Define S to be the se-
lection RV, i.e., if S = s, then the sth subchannel is selected. Since the output
alphabets are disjoint, it follows that once we know Y , we also know S. There-
fore, H(SjY) = 0, and therefore also H(SjY;X) = 0. Moreover, since X ?? S

(the input is independent of the channel!), we also have H(SjX) = H(S).
Hence, we get

H(Y) = H(Y) +H(SjY) (12.25)

= H(Y; S) (12.26)

= H(S) +H(Y jS) (12.27)

= H(S) +
SX
s=1

PS(s) �H(Y jS = s) (12.28)

= H(S) +
SX
s=1

qsH(Y jS = s) (12.29)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

258 Computing Capacity

and

H(Y jX) = H(Y jX) +H(SjX;Y) (12.30)

= H(Y; SjX) (12.31)

= H(SjX) +H(Y jS;X) (12.32)

= H(S) +
SX
s=1

qsH(Y jX;S = s): (12.33)

Combined this yields

I(X;Y) = H(Y)�H(Y jX) (12.34)

=
SX
s=1

qs
�
H(Y jS = s)�H(Y jX;S = s)

�
(12.35)

=
SX
s=1

qs I(X;Y jS = s); (12.36)

where I(X;Y jS = s) is the mutual information of the sth subchannel. We
know that

I(X;Y jS = s) � Cs (12.37)

with equality if X is uniform. Since the uniform distribution on X simulta-
neously achieves capacity for all subchannels, we see that

C = max
PX(�)

I(X;Y) =
SX
s=1

qsCs: (12.38)

Remark 12.14. Note that the proof of Theorem 12.13 only works because the
same input distribution achieves capacity for all subchannels. In general, if a
DMC is split into several not necessarily strongly symmetric subchannels with
the same input and disjoint output alphabets,

P
s qsCs is an upper bound to

capacity. M

Remark 12.15. Note that in [CT06, Section 7.2], only strongly symmetric chan-
nels are considered, and there they are called “symmetric”. M

Example 12.16. We return to the BEC of Figure 12.1. The capacities of the
two strongly symmetric subchannels are C1 = 1 bit and C2 = 0. Hence,

CBEC = (1� �)C1 + �C2 = 1� � bits: (12.39)

This is quite intuitive: Since the BEC erases a fraction of � of all transmitted
bits, we cannot have hope to be able to transmit more than a fraction 1 � �
bits on average. �

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

12.3. Weakly Symmetric DMCs 259

0 a
p1

b

p2

d

1� p1 � p2

1

p1

c
p2

1� p1 � p2
2

p2

p1

1� p1 � p2

Figure 12.5: A weakly symmetric DMC.

0 a

p1

p1+p2

b

p2

p1+p2

1

p1

p1+p2

c

p2

p1+p2

2

p2

p1+p2

p1

p1+p2

0

d

1

1

1

2
1

Figure 12.6: Two strongly symmetric subchannels.

Example 12.17. We would like to compute the capacity of the DMC shown in
Figure 12.5.

Note that the DMC is not strongly symmetric because the focusing of
the output letter d is different from the focusing of the other three output
letters. However, since the dispersion is the same for all three input letters,
we check whether we can split the channel into two strongly symmetric DMCs:
According to the focusing we create two subchannels with Y1 = fa; b; cg and
Y2 = fdg.

We double-check and see that both subchannels are uniformly dispersive:

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

260 Computing Capacity

In the first subchannel each input has the probabilities (p1; p2; 0; 0) leaving the
node, and in the second subchannel, each input sees the probability 1�p1�p2
leaving its node. Thus, the DMC of Figure 12.5 indeed is weakly symmetric.

We now compute the selection probabilities:

q1 =
X
y2Y1

PY jX(yj0) = p1 + p2; (12.40)

q2 =
X
y2Y2

PY jX(yj0) = 1� p1 � p2: (12.41)

These selection probabilities are also used to normalize the probabilities, and
we obtain the two subchannels shown in Figure 12.6. The capacity of the
channel thus is

C = q1C1 + q2C2 (12.42)

= (p1 + p2)

�
log 3 +

p1
p1 + p2

log
p1

p1 + p2
+

p2
p1 + p2

log
p2

p1 + p2

�
+ (1� p1 � p2) � 0 (12.43)

= (p1 + p2)

�
log 3�Hb

�
p1

p1 + p2

��
: (12.44)

�

12.4 Mutual Information and Convexity

In this section we will show that mutual information is concave in the input
distribution. This will be used in Section 12.5 when we apply the Karush–
Kuhn–Tucker conditions (Theorem 9.11) to the problem of computing capac-
ity. We introduce a new notation here that we will use in combination with
our notation so far: We will denote the input distribution PX(�) of a DMC
by Q(�), and the conditional channel distribution PY jX(�j�) will be denoted by
W (�j�). Moreover, whenever a DMC has finite alphabets, we will use a vector-
and matrix-notation Q and W, respectively.

Theorem 12.18. Consider a DMC with input alphabet X , output alphabet Y,
and transition probability matrix W with components W (yjx), y 2 Y, x 2 X .
Let Q =

�
Q(1); : : : ; Q(jX j)�T be an arbitrary input probability vector. Then

I(X;Y) = I(Q;W) ,
X
x2X
y2Y

Q(x)W (yjx) log W (yjx)P
x02X Q(x0)W (yjx0) (12.45)

is a concave function in Q (for a fixed W) and a convex function in W (for a fixed
Q).

Proof: We start with the first claim. We fix W and let Q0 and Q1 be two
input distributions. We want to show that

� I(Q0;W) + (1� �) I(Q1;W) � I
�
�Q0 + (1� �)Q1;W

�
: (12.46)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

12.4. Mutual Information and Convexity 261

To this end, we define Z to be a binary RV with PZ(0) = � and PZ(1) = 1� �
and define X such that, conditionally on Z,

X �
8<
:Q0 if Z = 0;

Q1 if Z = 1:
(12.47)

Note that the unconditional PMF of X then is

Q = PZ(0)Q0 + PZ(1)Q1 (12.48)

= �Q0 + (1� �)Q1: (12.49)

We can think of this like two channels in series: a first channel (that is part of
our encoder) with input Z and output X, and a second channel (the DMC)
with input X and output Y (see Figure 12.7). Hence, we have a Markov chain
Z (�� X (�� Y , i.e.,

I(Z;Y jX) = 0: (12.50)

We get

I(X;Y) = I(X;Y) + I(Z;Y jX) (12.51)

= I(X;Z;Y) (12.52)

= I(Z;Y)| {z }
� 0

+ I(X;Y jZ) (12.53)

� I(X;Y jZ); (12.54)

where the inequality follows because mutual information cannot be negative.
Since

I(X;Y) = I(Q;W) = I
�
�Q0 + (1� �)Q1;W

�
(12.55)

and

I(X;Y jZ) = PZ(0) I(X;Y jZ = 0) + PZ(1) I(X;Y jZ = 1) (12.56)

= � I(Q0;W) + (1� �) I(Q1;W); (12.57)

(12.54) proves the concavity of I(Q;W) in Q.
To prove the second statement, fix Q and let W0 and W1 be two conditional

channel distributions. We want to show that

� I(Q;W0) + (1� �) I(Q;W1) � I
�
Q; �W0 + (1� �)W1

�
: (12.58)

To this end, we define a new channel W to be a random combination of W0

and W1 as shown in Figure 12.8. The RV Z is the random switch inside this
new channel, i.e., conditionally on Z,

W ,

8<
:W0 if Z = 0;

W1 if Z = 1:
(12.59)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

262 Computing Capacity

Z
0

1

XQ0(1)

2

Q0(2)

jX j

Q0(jX j)

1
Q1(jX j)

Q1(2)
Q1(1)

W

1
Y

2

jYj

Figure 12.7: Mutual information is concave in the input. The encoder consists
of random switch between two random distributions. Since such
an encoder looks like a DMC with a binary input, the system
looks like having two DMCs in series.

Note that the channel law of this new DMC W is

W = PZ(0)W0 + PZ(1)W1 (12.60)

= �W0 + (1� �)W1: (12.61)

Also note that X (input) and Z (part of the new channel) are independent in
this case. Therefore

I(X;Y jZ) = I(X;Y jZ) + I(X;Z)| {z }
=0

(12.62)

= I(X;Y; Z) (12.63)

= I(X;Y) + I(X;ZjY)| {z }
� 0

(12.64)

� I(X;Y): (12.65)

Since

I(X;Y jZ) = PZ(0) I(X;Y jZ = 0) + PZ(1) I(X;Y jZ = 1) (12.66)

= � I(Q;W0) + (1� �) I(Q;W1) (12.67)

and

I(X;Y) = I(Q;W) = I
�
Q; �W0 + (1� �)W1

�
; (12.68)

(12.65) proves the convexity of I(Q;W) in W.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

12.5. Karush–Kuhn–Tucker Conditions 263

X

1

2

jX j

Z

1

2

jX j

W0

1

2

jYj

1

2

jX j

W1

1

2

jYj

Y

1

2

jYj

W

Figure 12.8: Mutual information is convex in the channel law. We have two
parallel channels with a random switch.

12.5 Karush–Kuhn–Tucker Conditions

Recall that in Section 9.3 we have derived the Karush–Kuhn–Tucker (KKT)
conditions to describe the optimal solution of an optimization problem involv-
ing the maximization of a concave function over a probability vector. We note
that the computation of capacity is exactly such a problem:

C = max
Q

I(Q;W) (12.69)

where Q is a probability vector and where I(Q;W) is concave in Q.
Hence, we can use the KKT conditions to describe the capacity-achieving

input distribution.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

264 Computing Capacity

Theorem 12.19 (KKT Conditions for Capacity).
A set of necessary and sufficient conditions on an input probability vector
Q to achieve the capacity of a DMC (X ;Y;W) is that for some number
C,

X
y

W (yjx) log W (yjx)P
x0 Q(x

0)W (yjx0) = C 8x with Q(x) > 0; (12.70)

X
y

W (yjx) log W (yjx)P
x0 Q(x

0)W (yjx0) � C 8x with Q(x) = 0: (12.71)

Moreover, the number C is the capacity of the channel.
More concisely, the KKT conditions can also be written as

D
�
W (�jx) (QW)(�)�

8<
:= C 8x with Q(x) > 0;

� C 8x with Q(x) = 0:
(12.72)

Proof: From Theorem 12.18 we know that the mutual information I(Q;W)

is concave in the input probability vector Q. We are therefore allowed to
apply the KKT conditions (Theorem 9.11). Hence, we need to compute the
derivatives of I(Q;W). To this end, note that I(Q;W) can be written as
follows:

I(Q;W) =
X
x

X
y

Q(x)W (yjx) log W (yjx)P
x0 Q(x

0)W (yjx0) (12.73)

=
X
x

x 6=~x

X
y

Q(x)W (yjx) log W (yjx)P
x0 Q(x

0)W (yjx0)

+
X
y

Q(~x)W (yj~x) log W (yj~x)P
x0 Q(x

0)W (yjx0) ; (12.74)

where where have split up one summation into x = ~x and x 6= ~x for ~x being
some fixed value. Then

@

@Q(~x)
I(Q;W)

= �
X
x

x 6=~x

X
y

Q(x)W (yjx) �
P

x0 Q(x
0)W (yjx0)

W (yjx) � W (yjx)�P
x0 Q(x

0)W (yjx0)�2
�W (yj~x) log e

+
X
y

W (yj~x) log W (yj~x)P
x0 Q(x

0)W (yjx0)

�
X
y

Q(~x)W (yj~x) �
P

x0 Q(x
0)W (yjx0)

W (yj~x) � W (yj~x)�P
x0 Q(x

0)W (yjx0)�2
�W (yj~x) log e (12.75)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

12.5. Karush–Kuhn–Tucker Conditions 265

= �
X
x

X
y

Q(x)W (yjx) �
P

x0 Q(x
0)W (yjx0)

W (yjx) � W (yjx)�P
x0 Q(x

0)W (yjx0)�2
�W (yj~x) log e

+
X
y

W (yj~x) log W (yj~x)P
x0 Q(x

0)W (yjx0) (12.76)

= �
X
y

X
x

Q(x)W (yjx) � 1P
x0 Q(x

0)W (yjx0) �W (yj~x) log e

+
X
y

W (yj~x) log W (yj~x)P
x0 Q(x

0)W (yjx0) (12.77)

= �
X
y

P
xQ(x)W (yjx)P
x0 Q(x

0)W (yjx0) �W (yj~x) log e

+
X
y

W (yj~x) log W (yj~x)P
x0 Q(x

0)W (yjx0) (12.78)

= �log e+
X
y

W (yj~x) log W (yj~x)P
x0 Q(x

0)W (yjx0)

8<
:= � if Q(~x) > 0;

� � if Q(~x) = 0;
(12.79)

where in (12.79) we have applied the Karush–Kuhn–Tucker conditions with
the Lagrange multiplier �. Taking the constant �log e to the other side and
defining c , �+ log e now finishes the proof of the first part.

It remains to show that c is the capacity C. To this end, take an optimal
Q� and average both sides of (12.79):

X
x

Q�(x)
X
y

W (yjx) log W (yjx)P
x0 Q

�(x0)W (yjx0) =
X
x

Q�(x)c (12.80)

i.e.,

I
�
Q�;W

�
= c: (12.81)

But since I
�
Q�;W

�
= C, we see that c must be the capacity.

Unfortunately, (12.70) and (12.71) are still difficult to solve. They are most
useful in checking whether a given Q is optimal or not: We make a guess of
how the optimal input distribution might look like. Then we check whether
(12.70) and (12.71) are satisfied. If yes, then we are done and we know the
capacity of the channel. If not, then we at least know one example of how the
capacity-achieving input distribution does not look like. . .

Example 12.20. We again consider the binary symmetric channel (BSC). From
symmetry we guess that the capacity-achieving input distribution should be
uniform Q(0) = Q(1) = 1

2 . To check whether we guess correctly, we apply
Theorem 12.19: Since Q(0) = Q(1) > 0 we only need (12.70). For x = 0 we

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

266 Computing Capacity

get

W (0j0) log W (0j0)
1
2W (0j0) + 1

2W (0j1) +W (1j0) log W (1j0)
1
2W (1j0) + 1

2W (1j1)
= (1� �) log 1� �

1
2(1� �) + 1

2�
+ � log

�
1
2(1� �) + 1

2�
(12.82)

= (1� �) log(1� �) + � log �� (1� �+ �) log

�
1

2
(1� �) + 1

2
�

�
(12.83)

= �Hb(�) + log 2 (12.84)

= 1�Hb(�) bits: (12.85)

Similarly, for x = 1:

W (0j1) log W (0j1)
1
2W (0j0) + 1

2W (0j1) +W (1j1) log W (1j1)
1
2W (1j0) + 1

2W (1j1)
= 1�Hb(�) bits: (12.86)

Since both expressions (12.85) and (12.86) are the same, our guess has been
correct and the capacity is C = 1�Hb(�) bits. �

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 13

Convolutional Codes

After having studied rather fundamental properties of channels and channel
coding schemes, in this chapter we finally give a practical example of how one
could try to actually build a channel coding scheme. Note that while we know
that there must exist many schemes that work reliably, in practice we have
the additional problem of the limited computational power available both at
transmitter and receiver. This complicates the design of a channel coding
scheme considerably.

The code that will be introduced in this chapter is called convolutional
code or trellis code. It is a quite powerful scheme that is often used in practice.
We will explain it using a particular example that will hopefully shed light on
the basic ideas behind any such design.

13.1 Convolutional Encoder of a Trellis Code

We assume that we have a message source that generates a sequence of infor-
mation digits fUkg. We will assume that the information digits are binary,
i.e., information bits, even though strictly speaking this is not necessary.
But in practice this is the case anyway. These information bits are fed into
a convolutional encoder. As an example consider the encoder shown in Fig-
ure 13.1. This encoder is a finite state machine that has (a finite) memory: Its
current output depends on the current input and on a certain number of past
inputs. In the example of Figure 13.1 its memory is 2 bits, i.e., it contains
a shift-register that keeps stored the values of the last two information bits.
Moreover, the encoder has several modulo-2 adders.

The output of the encoder are the codeword bits that will be then trans-
mitted over the channel. In our example for every information bit, two code-
word bits are generated. Hence the encoder rate is

Rt =
1

2
bits: (13.1)

267 © Stefan M. Moser — IT, version 6.14

268 Convolutional Codes

Uk
Uk�1 Uk�2

+

+

pa
ra

lle
l!

se
ri

al

X2k�1

X2k

X2k�1; X2k

Figure 13.1: Example of a convolutional encoder.

In general the encoder can take ni information bits to generate nc codeword
bits yielding an encoder rate of Rt =

ni
nc

bits.
To make sure that the outcome of the encoder is a deterministic function of

the sequence of input bits, we ask the memory cells of the encoder to contain
zeros at the beginning of the encoding process. Moreover, once Lt information
bits have been encoded, we stop the information bit sequence and will feed
T dummy zero-bits as inputs instead, where T is chosen to be equal to the
memory size of the encoder. These dummy bits will make sure that the state
of the memory cells are turned back to zero. In the case of the encoder given
in Figure 13.1 we have T = 2.

Example 13.1. For the encoder given in Figure 13.1 let Lt = 3 and T = 2. How
many codeword bits do we generate? Answer: n = 2 � (3 + 2) = 10 codeword
bits. So our codewords have length n = 10. How many different messages
do we encode in this way? Since we use Lt = 3 information bits, we have
2Lt = 23 = 8 possible messages. So in total, we have an actual coding rate of

R =
log2(#messages)

n
=

log2 8

10
=

3

10
bits/channel use: (13.2)

�

In general we get the following actual coding rate:

R =
Lt

Lt + T
� Rt: (13.3)

These eight codewords can be described with the help of a binary tree.
At each node we either turn upwards (corresponding to an input bit 1) or
downwards (corresponding to an input bit 0). Since the output depends on the
current state of the memory, we include the state in the graphical depiction of

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

13.2. Decoder of a Trellis Code 269

the node. The branches will then be labeled according to the corresponding
output bits. See Figure 13.2. Any code that can be described by a tree is
called tree code. Obviously a tree code is a special case of a block code as all
codewords have the same length.

Note that at depth 3 and further in the tree, the different states start to
repeat itself and therefore (since the output bits only depend on the state and
the input) also the output bits repeat. Hence there is no real need to draw all
states many times, but instead we can collapse the tree into a so-called trellis ;
see Figure 13.3.

So, our tree code actually also is a trellis code. Note that every trellis
code by definition is a tree code, but not necessarily vice versa. Moreover,
note that we end up in the all-zero state because of our tail of T = 2 dummy
bits.

13.2 Decoder of a Trellis Code

A code that is supposed to be useful in practice needs to have a decoder with
reasonable performance that can be implemented with reasonable efficiency.
Luckily, for our trellis code, it is possible to implement not only a reasonable
good decoder, but actually the optimal maximum likelihood (ML) decoder
(see Section 11.3)!

Before we explain the decoder, we quickly give the following definitions.

Definition 13.2. The Hamming distance dH(x;y) between two sequences x and
y is defined as the number of positions where x differ from y.

The Hamming weight wH(x) of a sequence x is defined as the number of
nonzero positions of x.

Hence, we see that

dH(x;y) = wH(x� y): (13.4)

To explain how the ML decoder of a trellis code works, we again use a
concrete example: Let us assume that we use the trellis code of Figure 13.3
over a BSC with crossover probability 0 � � < 1

2 as shown in Figure 13.4. For
a given codeword x, the probability of a received vector y is then given as

PYjX(yjx) = (1� �)n�dH(x;y) � �dH(x;y) (13.5)

= (1� �)n
�

�

1� �
�dH(x;y)

; (13.6)

where dH(x;y) denotes the Hamming distance defined above. Since we want
to implement an ML decoder, we need to maximize this a posteriori proba-
bility given in (13.6):

max
x2C

PYjX(yjx) = max
x2C

(1� �)n

�
�

1� �
�dH(x;y)

!
: (13.7)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

270 Convolutional Codes

00

U = 1

U = 0

10

11

00

00

state (Uk�1; Uk�2)

11

10

01

01

10

11

00

00

1101

01

10

1000

00

11

1110

01

01

1011

00

00

output bits (X2k�1; X2k)

01
10

00
11

01
01

00
00

01
10

00
11

01
01

00
00

00
11

00
00

00
11

00
00

00
11

00
00

00
11

00
00

Figure 13.2: Tree depicting all codewords of the convolutional code: The bits
on the branches form the codewords. The labels inside the boxes
correspond to the current state of the encoder, i.e., the contents
of the memory cells. The input bits are not depicted directly, but
are shown indirectly as the choice of the path: Going upwards
corresponds to an input bit 1, going downwards to 0. The last
two input bits are by definition 0, so we only show one path there.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

13.2. Decoder of a Trellis Code 271

00

U = 1

U = 0

00
00

10

11

00
00

0101

10

11

11

10

00
00

11

0101

10

10

11

00

11

10

01

00
00

11

0101

10

00
00

11

Figure 13.3: Trellis depicting all codewords of the convolutional code. A trellis
is like a tree, but with identical states being collapsed into one
state only. The final state is called toor, the inverse of root.

1� �
0 0

1� �
1 1

�

�

X Y

Figure 13.4: Binary symmetric channel (BSC).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

272 Convolutional Codes

Note that because we have assumed � < 1
2 , we see that �

1�� < 1, i.e., we achieve
the maximum if we minimize dH(x;y).

So we can describe the ML decoder of a trellis code as follows:

For a trellis code that is used on a BSC, an optimal decoder needs to find
the path in the trellis (see Figure 13.3) that maximizes the number of
positions where the received vector y and the output bits of the path
agree.

This can be done in the following way: Given a received vector y, we
go through the trellis and write over each state the number of positions that
agree with y. Once we reach depth 4, this number will not be unique anymore
because there are two paths arriving at each state. In this case we will compare
the number we will get along both incoming paths and discard the smaller one
because we know that whatever the optimal solution is, it definitely cannot
be the path with the smaller (intermediate) number! We mark the discarded
path with a cross.

If both incoming path result in an identical value, it doesn’t matter which
path to take and this might result in a nonunique optimal solution.

Once we reach the toor (the final state), we only need to go backwards
through the trellis always following the not-discarded path.

Example 13.3. If we receive y = (0 1 0 1 0 1 0 1 1 1), what is the ML decoding
decision?

In Figure 13.5 we show the trellis including the number of agreeing bits
written above each state and the discarded paths. We see that the optimal
decoding yields

x̂ = (1 1 0 1 0 0 0 1 1 1); (13.8)

which corresponds to an input vector û = (1 0 1). �

The algorithm that we have described just now is called Viterbi Algo-
rithm. It is an efficient implementation of an ML-decoder for a trellis code.

In our example of a BSC we have seen that the Hamming distance was
the right metric to be used in the Viterbi Algorithm. But how do we choose
a metric for a general DMC with binary input? To find out, let us list some
properties such a metric should have:

• The metric should be additive (in k = 1; : : : ; n).

• The largest metric must belong to the path that an ML-decoder would
choose.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

13.2. Decoder of a Trellis Code 273

00

0

U = 1

U = 0

00

1

00

10

1

11

00

2

00

01

3

01

10

2

11

11

1

10

00

4

00
�

11

01

4

01

10
�

10

4

11
�

00

11

3

10

�

01

00

5

00

11

01

6

01

10
�

00

8

00
�

11

not unique

y =

x̂ =

û =

01

11

1

01

01

0

01

00

1

01

01

11

11

Figure 13.5: Decoding of a trellis code.

Note that for every y, an ML-decoder chooses a x that maximizes

PYjX(yjx) =
nY

k=1

PY jX(ykjxk) (13.9)

where the equality follows because we assume a DMC without feedback. Un-
fortunately, this metric is not additive. To fix this, we take the logarithm:

logPYjX(yjx) =
nX

k=1

logPY jX(ykjxk): (13.10)

Hence, we could use

logPY jX(ykjxk) (13.11)

as metric. The only problem is that such a metric will yield very annoying
numbers, making it very inconvenient for humans to compute. So, in order to
simplify our life, we ask for the following requirements in addition to the two
properties given above:

• For computational simplicity, the metric should consist of small nonneg-
ative numbers.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

274 Convolutional Codes

• Moreover, the metric should be 0 as often as possible.

To find a way to change our metric (13.11) to satisfy these two additional
constraints, note that

argmax
x

n
logPYjX(yjx)

o
= argmax

x

(
� logPYjX(yjx) + �

nX
k=1

f(yk)

)
(13.12)

for any � > 0 and any function f(�) (note that f(yk) does not depend on x!).
Hence, instead of (13.11) we could use

d(xk; yk) = � logPY jX(ykjxk) + �f(yk) (13.13)

as metric for an arbitrary choice of � > 0 and f(�).
To make sure that d(xk; yk) is nonnegative and equals to zero as often as

possible, we choose

f(yk) , �log
�
min
x
PY jX(ykjx)

�
: (13.14)

Finally, we choose � such that the different possible values of the metric are
(almost) integers.

Example 13.4. Consider the binary symmetric erasure channel given in Fig-
ure 13.6. For this channel we have

0:91

0 0

0:02

0:07

?

0:07

0:02

0:91

1 1

X Y

Figure 13.6: Binary symmetric erasure channel (BSEC).

min
x
PY jX(yjx) =

8>><
>>:
0:02 for y = 0;

0:07 for y = ?;

0:02 for y = 1:

(13.15)

Hence we get the (so far unscaled) metric shown in Table 13.7. We see that

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

13.3. Quality of a Trellis Code 275

Table 13.7: Viterbi metric for a BSEC, unscaled.

y = 0 y = ? y = 1

x = 0 log 0:91� log 0:02 log 0:07� log 0:07 log 0:02� log 0:02

� 5:50 = 0 = 0

x = 1 log 0:02� log 0:02 log 0:07� log 0:07 log 0:91� log 0:02

= 0 = 0 � 5:50

Table 13.8: Viterbi metric for a BSEC.

y = 0 y = ? y = 1

x = 0 1 0 0

x = 1 0 0 1

most entries are zero. The only two entries that are not zero, happen to have
the same value, so we choose the scaling factor � = 1

5:50 and get our final
metric shown in Table 13.8.

We now use the convolutional code of Example 13.3 on the BSEC of Fig-
ure 13.6 and assume that we receive y = (0 1 ? 1 1 ? 0 1 1 1). Applying the
Viterbi algorithm to the trellis of Figure 13.3 and using the metric of Ta-
ble 13.8, we then obtain the optimal decoding shown in Figure 13.9. We see
that the decoding in this case turns out to be not unique: We find two possible
optimal solutions. �

13.3 Quality of a Trellis Code

Suppose you have come up with a certain design of a convolutional encoder.
Now your boss wants to know how good your coding scheme is (of course
when using the encoder together with a Viterbi decoder). One approach would
be to implement the system and let it run for long time and then compute
the average error probability. However, from a designer’s point of view, it
would be much more practical to have a quick and elegant way of getting the
performance (or at least a bound on the performance) of the system without
having to build it. This is the goal of this section: We will derive an upper
bound on the bit error probability or bit error rate (BER) that can be easily
computed using nothing but the design plan of our convolutional encoder and
the specification of the channel.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

276 Convolutional Codes

00

0

U = 1

U = 0

00

1

00

10

1

11

00

1

00

01

2

01

10

2

11

11

1

10

00

3

00
�

11

01

2

01

10

10

2

11

00

11

3

10

01
�

00

4

00

11

�

01

4

01

10
�

00

6

00
�

11

y = 01 ?1 1? 01 11

x̂ = 11 01 00 01 11

00 00 11 01 11

û = 1 0 1

0 0 1

Figure 13.9: Viterbi decoding of convolutional code over BSEC.

While at the end the computation of this elegant bound is easy, the deriva-
tion of it is quite long as we need to make quite a few excursions to attain
some necessary auxiliary results. We start with the idea of a detour in a
trellis.

13.3.1 Detours in a Trellis

The performance of a trellis code depends on how “close” two different code-
words are: If they are very close, then it is much more likely that the decoder
confuses them due to the distortion caused by the channel. Since every code-
word corresponds to a path in the trellis, we need to consider the “distance”
of different paths.

To this end, assume for the moment that we transmit the all-zero codeword
(which is a possible codeword of any trellis code!). If the decoder makes a
mistake, the Viterbi decoder will make a detour in the trellis, i.e., it leaves
the correct path and follows partially a wrong path.

To understand all possible detours that could occur, assume for the mo-
ment that the trellis goes on forever (i.e., assume Lt = 1). In this case we

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

13.3. Quality of a Trellis Code 277

can describe all possible detours by fixing the starting point of the detour to
node 1.

Definition 13.5. A detour is a path through the trellis starting at node 1 and
ending as soon as we are back to the all-zero state.

An example of a detour is shown in Figure 13.10.

00

detour

00
00

10

11

00
00

11

10

00
00

01

10

00
00

11

00
00

10

11

Figure 13.10: Detour in a trellis: The detour ends as soon as we get back to
the correct path (the all-zero path in this case) for the first time,
even if we will leave the correct path right again.

For a given detour the important questions are firstly how many bits are
different in comparison to the correct path, and secondly how many informa-
tion bit errors do occur along the way. Ideally, a detour has a large Hamming
distance to the correct path.

Definition 13.6 (Counting Detours). For the infinite trellis of a given convolu-
tional encoder, we define the parameter a(d; i) to denote the number of detours
starting at node 1 that have a Hamming distance d from the correct (all-zero)
path and contain i information bit errors.

Example 13.7. Considering the convolutional encoder of Figure 13.1, it is not
hard to see (compare with Figure 13.3) that

a(d; i) = 0; for d < 5 and all i, (13.16a)

a(5; 1) = 1; and (13.16b)

a(6; 2) = 2: (13.16c)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

278 Convolutional Codes

However, it can become rather tiring to try to find all possible detours by
hand. �

In Section 13.3.2 we will find a way of deriving a(d; i) graphically. Before-
hand, however, we should investigate what happens if the correct path is not
the all-zero path. It will turn out that a(d; i) does not change irrespective
which path through the trellis is assumed as the correct path! Concretely, we
have the following lemma.

Lemma 13.8. Consider the Lt = 1 trellis for a given convolutional encoder.
For any correct path and any integer j, the number of wrong paths beginning
at node j that have Hamming distance d from the corresponding segment of
the correct path and contain i information bits errors, is equal to a(d; i). For
every finite Lt, a(d; i) is an upper bound on this number.

Proof: Firstly note that in the infinite trellis, it does not matter where
a detour starts, as from every node, the “remainder” of the trellis looks the
same. So without loss of generality we can assume that the deviation from
the correct path starts at node 1.

For an information sequence u denote by g(u) the corresponding codeword
generated by the convolutional encoder.

If 0 is the information sequence of the correct path, let ~u be the information
sequence corresponding to a wrongly decoded codeword when making a detour
beginning at node 1 (hence, ~u has a 1 at the first position!). Let

i = dH(0; ~u) = wH(~u) (13.17)

be the number of bit errors caused by this wrong decoding and let

d = dH
�
g(0); g(~u)

�
= dH

�
0; g(~u)

�
= wH

�
g(~u)

�
(13.18)

be the Hamming distance between the two codewords.
Now, if we take a general information sequence u with corresponding code-

word g(u) as the correct path, let u0 be the information sequence correspond-
ing to a wrongly decoded codeword when making a deviation from the correct
path beginning at node 1 (hence, u and u0 differ at the first position!). Now,
the number of information bit errors is

i = dH(u;u
0) = wH(u� u0) (13.19)

and the Hamming distance between the two codeword is

d = dH
�
g(u); g(u0)

�
(13.20)

= dH
�
g(u)� g(u); g(u0)� g(u)� (13.21)

= dH
�
0; g(u0)� g(u)� (13.22)

= dH
�
0; g(u0 � u)

�
(13.23)

= wH
�
g(u0 � u)

�
: (13.24)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

13.3. Quality of a Trellis Code 279

Here, in (13.21) we use the fact that adding the same sequence to both code-
words will not change the Hamming distance; and in (13.23) we use that any
convolutional encoder is linear in the sense that

g(u0 � u) = g(u0)� g(u): (13.25)

Comparing (13.19) with (13.17) and (13.24) with (13.18), we see that for every
given i, d, u and u0, we can find an ~u (i.e., ~u = u0�u) such that i and d remain
the same, but u is changed to 0. Hence, we can conclude that the number of
deviations from a correct path u is the same as the number of detours (from
a correct path 0), and therefore that a(d; i) denotes the number of deviations
from the correct path with i information bit errors and Hamming distance d
for an arbitrary path u.

13.3.2 Counting Detours: Signalflowgraphs

As we now have understood the significance of a(d; i), we would next like to try
to find a way on how to compute it. The trick is to look at the convolutional
encoder using a state-transition diagram that depicts all possible states and
shows how the encoder swaps between them. For the example of the encoder
of Figure 13.1 we have the state-transition diagram shown in Figure 13.11.

Now consider again the case when the all-zero codeword is the correct
path. Then any detour starts from the all-zero state and will end in the
all-zero state. Hence, we have the idea to break the all-zero state up into
two states, a starting state and an ending state, and to transform the state-
transition diagram into a signalflowgraph, where every state is transformed
into a node and every transition into a directed edge; see Figure 13.12.

Moreover, each edge has assigned some multiplicative factor, where a term
I denotes that an information bit error occurs when we pass along the corre-
sponding edge, and a term D describes a codeword bit error caused by the
detour that follows along this edge. If we take the product of all weight factors
along a certain detour, then we will get a total factor IiDd, where the expo-
nent i denotes the total number of information bit errors along this detour,
and the exponent d denotes the total Hamming distance between the detour
and the correct path.

Example 13.9. If we take the detour ‘start!a!b!b!c!end’, we get the prod-
uct

ID2 � ID � ID �D �D2 = I3D7; (13.26)

which means that we have made three information bit errors and have a Ham-
ming distance 7 to the correct all-zero path. �

Before we now learn how we can make use of this signalflowgraph, let us
quickly repeat the basic definitions of signalflowgraphs.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

280 Convolutional Codes

00

10

11

01

0=00

1=11

1=10

0=01

1=01

0=10

0=11

1=00

Figure 13.11: State-transition diagram of the encoder given in Figure 13.1.
Each edge u=cc is labeled with the information bit u necessary
in order to change state along this edge and the corresponding
codeword bits cc generated by this transition.

Definition 13.10. A signalflowgraph consists of nodes and directed edges be-
tween nodes, where each edge has a weight factor. We define the following:

• A node i is directly connected with a node j if there exists a directed
edge pointing from i to j.

• A node i is connected with node j if we can find a sequence of nodes `�
such that i is directly connected with `1; `1 is directly connected with
`2; . . . ; `��1 is directly connected with `� ; and `� is directly connected
with j.

• An open path is a connection from a node i to a node j where each node
on the way is only passed through once.

• A loop is an open path that returns to the starting node.

• A path from a node i to a node j is an arbitrary combination of open
paths and loops that connects the starting node with the end node. So
we can also say that node i is connected with node j if there exists a
path from i to j.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

13.3. Quality of a Trellis Code 281

start end

a

b

c

ID2

ID

D

ID

D

D2

I

Figure 13.12: Signalflowgraph of the state-transition diagram that is cut open
at the all-zero node.

• Each path has a path gain G that is the product of all weight factors of
the edges along the path.

• We say that two paths touch each other if they share at least one node.

• The transmission gain T of a signalflowgraph between a starting node
and an ending node is the sum of the path gains of all possible paths
(including arbitrary numbers of loops) between the starting and the
ending node.

Example 13.11. Consider the signalflowgraph shown in Figure 13.13. The path

1

2 3

4

a

b

c

d

Figure 13.13: Example of a signalflowgraph.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

282 Convolutional Codes

‘1 ! 2 ! 3 ! 4’ is an open path, ‘2 ! 3 ! 2’ is a loop, and ‘1 ! 2 ! 3 !
2 ! 3 ! 4’ is a path that is neither open nor a loop. The path gain of this
last path is

G1!2!3!2!3!4 = a � b2 � c � d: (13.27)

To compute the transmission gain of this signalflowgraph (assuming that node
1 is the starting node and node 4 the ending node), we need to list all possible
paths from 1 to 4 with their path gains:

G1!2!3!4 = a � b � d; (13.28)

G1!2!3!2!3!4 = a � b2 � c � d; (13.29)

G1!2!3!2!3!2!3!4 = a � b3 � c2 � d; (13.30)

G1!2!3!2!3!2!3!2!3!4 = a � b4 � c3 � d; (13.31)
:::

Hence, we get

T = G1!2!3!4 +G1!2!3!2!3!4 +G1!2!3!2!3!2!3!4

+G1!2!3!2!3!2!3!2!3!4 + � � � (13.32)

= abd+ ab2cd+ ab3c2d+ ab4c3d+ � � � (13.33)

= abd
1X
i=0

bici (13.34)

= abd � 1

1� bc =
abd

1� bc : (13.35)

Note that we quite easily managed to compute the transmission gain for this
example by listing the paths and cleverly arrange them. However, this was
mainly due to the simplicity of the graph. In general, we need a more powerful
tool. �

We will now state a general rule on how to compute the transmission gain
of an arbitrary signalflowgraph.

Theorem 13.12 (Mason’s Rule).
The transmission gain T of a signalflowgraph is given by

T =

P
all open paths kGk�k

�
: (13.36)

Here the sum is over all possible open paths from starting node to end
node, and Gk corresponds to the path gain of the kth of these open
paths. The factor � is denoted determinant of the signalflowgraph and is

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

13.3. Quality of a Trellis Code 283

computed as follows:

� , 1�
X

all loops `

G` +
X

all loops `1, `2
`1 and `2 do not touch

G`1 �G`2

�
X

all loops `1, `2, `3
`1, `2, `3 do not touch

G`1 �G`2 �G`3 + � � � � � � � (13.37)

Finally, the cofactor �k of the kth open path is the determinant of that
part of the graph that does not touch the kth path.

Example 13.13. We return to the signalflowgraph of Figure 13.13. The deter-
minant of this graph is

� = 1� b � c: (13.38)

Since there is only one open path from 1 to 4 with G = abd and since this
open path has cofactor �1 = 1 (the path touches all parts of the graph!), we
get

T =
abd

1� bc ; (13.39)

exactly as we have seen already in (13.35). �

Example 13.14. We make another, slightly more complicated example. Consider
the signalflowgraph in Figure 13.14.

3

2 4

1 5

a

b

e

c

d

f

g

Figure 13.14: Another example of a signalflowgraph.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

284 Convolutional Codes

For this graph we have two open paths from 1 to 5 and therefore two
corresponding cofactors:

G1!2!4!5 = aeg; �1!2!4!5 = 1� c; (13.40)

G1!2!3!4!5 = abdg; �1!2!3!4!5 = 1: (13.41)

Moreover, the determinant is

� = 1� c� bdf � ef + cef: (13.42)

Note that we have three loops: 3 ! 3, 2 ! 3 ! 4 ! 2, and 2 ! 4 ! 2; two
of which do not touch each other.

Hence, using Mason’s rule (Theorem 13.12) we get

T =
aeg(1� c) + abdg

1� c� bdf � ef + cef
: (13.43)

�

So, let us now return to the signalflowgraph of our convolutional encoder
from Figure 13.12. We recall from Example 13.9 that a path gain describes
the number of information bit errors and the Hamming distance of the corre-
sponding detour with respect to the correct path. Moreover, the transmission
gain by definition is the summation of all possible path gains from starting
node to ending node. But this is exactly what we need for the analysis of our
detours:

T =
X

all paths k from
state 0 to state 0

Gk (13.44)

=
X

all detours `

Ii`Dd` (13.45)

=
1X
i=1

1X
d=1

a(d; i)IiDd: (13.46)

Here the first equality follows from the definition of the transmission gain;
the subsequent equality from the way how we transform the state-transition
diagram into a signalflowgraph with the all-zero state cut open and changed
into the starting and ending node and with each edge labeled by factors I

and D depending on the caused errors; and in the final equality we rearrange
the summation order and collect all terms with identical exponents i and d

together, using a(d; i) as the count of such identical detours.
We see that if we compute the transmission gain, we can read the wanted

values of a(d; i) directly out of the expression.

Example 13.15. We continue with Figure 13.12 and compute the transmission
gain using Mason’s rule (note that the structure of the signalflowgraph is

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

13.3. Quality of a Trellis Code 285

identical to the example in Figure 13.14):

T =
ID5 � (1� ID) + I2D6

1� ID� I2D2 � ID+ I2D2
=

ID5

1� 2ID
: (13.47)

If we write this as a geometrical series, we get

T = ID5
�
1 + 2ID+ 4I2D2 + 8I3D3 + � � �

�
(13.48)

= ID5 + 2I2D6 + 4I3D7 + 8I4D8 + � � � ; (13.49)

from which we see that a(5; 1) = 1, a(6; 2) = 2, a(7; 3) = 4, a(8; 4) = 8,
etc. �

13.3.3 Upper Bound on the Bit Error Probability of a Trellis Code

So now we have a way of deriving the number of “wrong paths”, i.e., detours,
and their impact concerning information bit errors and Hamming distance
to the correct path. Next we will use the Bhattacharyya Bound derived in
Section 11.4 to find a relation between these detours and the error probability.
This will then lead to an upper bound on the bit error probability of a trellis
code.

We make the following assumptions and definitions:

• We consider a convolutional encoder that is clocked Lt times using in-
formation bits as input and T times using dummy zero bits as input.
Hence, every path in the corresponding trellis will pass through Lt + T

nodes before it ends in the final all-zero node. We number these nodes
j = 1; : : : ;Lt + T + 1. (See also Example 13.16 below.)

• We will assume that at every time step, k0 information bits enter the
encoder (so far, we have always assumed k0 = 1, but we want to keep
this analysis general). Hence, we are using in total k0Lt information bits
and k0T dummy bits.

• We denote by Pe;i the probability of a decoding error for the ith infor-
mation bit. Then the average bit error probability or average bit error
rate (BER) is

Pb ,
1

k0Lt

k0LtX
i=1

Pe;i: (13.50)

• We recall that in the infinite trellis, the number of detours starting at
node j is identical to the number of detours starting at node 1. We
number these detours in the infinite trellis in some (arbitrary) way:
` = 1; 2; : : :

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

286 Convolutional Codes

• For each of these detours ` = 1; 2; : : : let

d` , Hamming distance between the `th detour and the

corresponding segment of the correct path,

i` , number of information bit errors that occur along

the `th detour.

• We define the following events: For any node1 j = 1; : : : ;Lt and for any
detour ` = 1; 2; : : :,

Bj;` , fViterbi decoder follows the `th detour starting at node jg;
(13.51)

and for any node j = 1; : : : ;Lt,

Bj;0 , fViterbi decoder does not follow

any detour starting at node jg: (13.52)

Note that Bj;0 can occur for two different reasons: Either the Viterbi
decoder does not make an error at node j or the Viterbi decoder is
already on a detour that started earlier. Note further that for every
node j, exactly one event Bj;` must occur, i.e.,

1X
`=0

Pr(Bj;`) = 1; for all j = 1; : : : ;Lt: (13.53)

Note that, in general, the events Bj;` are highly dependent (e.g., if we
start a detour at node j, we cannot start another one at node j + 1).

• Let Wj be the number of information bit errors that occur when the
Viterbi decoder follows a detour starting at node j. Note that Wj de-
pends on which detour is chosen. Note further thatWj = 0 if the decoder
does not start a detour at node j or it is already on a detour that started
earlier.

We see that

Wj =

8<
:0 if Bj;0 occurs;

i` if Bj;` occurs (` � 1):
(13.54)

• Let Vi be a binary indicator random variable such that

Vi ,

8<
:1 if the ith information bit is in error;

0 otherwise:
(13.55)

1At nodes Lt + 1; Lt + 2; : : : no detours can start because there we will be using dummy
zero bits.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

13.3. Quality of a Trellis Code 287

00

1

detour ` = 3

i3 = 2

d3 = 6

detour ` = 1

i1 = 1

d1 = 5

00

2
00

10

11

00

3
00

11

10

00

4
00

01

10

00

5
00

11

00

6
00

10

11

00

7
00

0101

00

8
00

11

W1 = 2 W2 = 0 W3 = 0 W4 = 0 W5 = 1 W6 = 0 W7 = 0

V1 = 1 V2 = 1 V3 = 0 V4 = 0 V5 = 1 V6 = 0 V7 = 0

Figure 13.15: Example of a path in a trellis that contains two detours: The
first detour (detour ` = 3, although this numbering is arbitrary!)
starts at node 1, the second detour (detour ` = 1) at node 5.

Note that

Pr[Vi = 1] = Pe;i (13.56)

and

E[Vi] = 1 � Pr[Vi = 1] + 0 � Pr[Vi = 0] = Pe;i: (13.57)

Example 13.16. Consider the example shown in Figure 13.15. We see that the
following events take place: B1;3, B2;0, B3;0, B4;0, B5;1, B6;0, B7;0. In total
we make three information bit errors, the first, second, and the fifth bits are
wrong. �

Putting everything together, we now get the following:

Pb =
1

k0Lt

k0LtX
i=1

Pe;i (13.58)

=
1

k0Lt

k0LtX
i=1

E[Vi] (13.59)

= E

2
4 1

k0Lt

k0LtX
i=1

Vi

3
5; (13.60)

where the last step follows because expectation is a linear operation. Note thatPk0Lt
i=1 Vi denotes the total number of information bit errors. This number can

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

288 Convolutional Codes

also be computed in a different way by summing over Wj :

k0LtX
i=1

Vi =
LtX
j=1

Wj : (13.61)

Hence we have

Pb = E

2
4 1

k0Lt

k0LtX
i=1

Vi

3
5 (13.62)

= E

2
4 1

k0Lt

LtX
j=1

Wj

3
5 (13.63)

=
1

k0Lt

LtX
j=1

E[Wj] (13.64)

=
1

k0Lt

LtX
j=1

1X
`=0

Pr(Bj;`)E[Wj jBj;`] (13.65)

=
1

k0Lt

LtX
j=1

Pr(Bj;0) � 0 +

1X
`=1

Pr(Bj;`) i`
!

(13.66)

=
1

k0Lt

LtX
j=1

1X
`=1

Pr(Bj;`) i`: (13.67)

Here, (13.64) follows again from the linearity of expectation; in (13.65) we use
the theorem of total expectation (see Chapter 2), based on (13.53); and in
(13.66) we apply (13.54).

Now, in order to get a grip on Bj;` and Pr(Bj;`), we need to simplify things:

• Firstly, we upper-bound the probability by including all possible (in-
finitely many) detours in the infinite trellis instead of only the (finite
number of) possible detours that can start from node j in our finite
trellis.

• Secondly, we upper-bound the probability further by completely ignor-
ing the dependency of Bj;` on j, i.e., by ignoring the possibility that the
decoder could already be on a detour.

• Thirdly, we upper-bound the probability even more by ignoring all other
detours Bj;`0 , `0 6= `, i.e., we assume that the likelihood of the `th detour
must not necessarily be the largest of all detours, but it is sufficient if it
is larger than the corresponding correct path. In short: We reduce the
problem to a two-codeword problem discussed in Section 11.4.

We can then bound according to Corollary 11.21:

Pr(Bj;`) �
�
2�DB

�d`
: (13.68)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

13.3. Quality of a Trellis Code 289

So we get

Pb � 1

k0Lt

LtX
j=1

1X
`=1

�
2�DB

�d`
i` (13.69)

=
1

k0Lt

1X
`=1

i`
�
2�DB

�d` LtX
j=1

1

| {z }
=Lt

(13.70)

=
1

k0

1X
`=1

i`
�
2�DB

�d`
(13.71)

=
1

k0

1X
i=1

1X
d=1

a(d; i) i
�
2�DB

�d
; (13.72)

where in the last equality we have rearranged the summation order: Instead
of summing over all possible detours, we group all detours with i information
bit errors and Hamming distance d together.

Note that this upper bound holds for any Lt, even for Lt = 1, i.e., the
case when we do not insert the tail of dummy bits. Also note that DB is a
characteristic of the channel, while a(d; i) and k0 are characteristics of the
encoder.

Now we only need to recall from Section 13.3.2 that

T(D; I) =
1X
i=1

1X
d=1

a(d; i)IiDd; (13.73)

take the derivative of this expression with respect to I:

@

@I
T(D; I) =

1X
i=1

1X
d=1

a(d; i) i Ii�1Dd; (13.74)

and compare it with (13.72) to get the following main result.

Theorem 13.17. The average bit error probability (BER) of a convolutional
encoder that is used on a binary-input DMC without feedback is upper-
bounded as follows:

Pb � 1

k0

@T(D; I)

@I

����
I=1;D=2�DB

(13.75)

where T(D; I) is the transmission gain of the signalflowgraph correspond-
ing to the state transition diagram of the convolutional encoder; where
DB is the Bhattacharyya distance of the DMC; and where k0 is the num-
ber of information bits that enter the encoder at each time step.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

290 Convolutional Codes

Example 13.18. We return to the main example of this chapter: the encoder
given in Figure 13.1. From Example 13.15 we know that

T(D; I) =
ID5

1� 2ID
: (13.76)

Hence,

@T(D; I)

@I
=

D5(1� 2ID) + ID52D

(1� 2ID)2
=

D5

(1� 2ID)2
: (13.77)

Moreover, we have k0 = 1.
We now assume that we use this encoder on a BEC with erasure probability

�. Then, from Example 11.22 we know that

2�DB = �: (13.78)

Using these values in (13.75) now gives the following bound:

Pb � �5

(1� 2�)2
: (13.79)

For example, if � = 0:1, then Pb � 1:56 � 10�5. �

Since (13.75) is an upper-bound, any encoder design will be performing
better than what Theorem 13.17 predicts. However, note that the bound
(13.75) is in general quite tight. This means that if we design a system ac-
cording to the upper-bound instead of the exact average bit error probability,
our design will usually not result in unnecessary complexity.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 14

Polar Codes

In contrast to source coding where soon after the fundamental result (Theo-
rem 5.2) was published by Shannon, an optimal scheme was found (Huffman
coding), channel coding proved to be a much harder nut to crack. For years
engineers tried to find a practical system (i.e., one with manageable complex-
ity) that would approach the performance of an optimal coding scheme. The
irony is that a randomly picked system will quite likely work very well (as can
be seen from the random coding proof of Shannon!), but any such system is
impossible in practice as there is no structure in the code that would allow
efficient encoding and decoding. All investigated structured codes like, e.g.,
algebraic codes that use the structure of vector spaces and subspaces, turned
out to be far from optimal.

The first real breakthrough was the discovery of turbo codes [BGT93] in
1993 (see the end of Chapter 17 for a more detailed discussion). Neverthe-
less, turbo codes (and also the even more efficient low-density parity-check
(LDPC) codes [MN96], [DM98]) are not proven to be good (or even optimal),
but are known to perform well simply from experience.

The first provably capacity-achieving coding scheme that at the same time
also has decent complexity is polar coding introduced by Erdal Arıkan in 2007
[Arı09]. In this chapter we are going to study Arıkan’s idea in its original form
that was restricted to binary-input DMCs (with an arbitrary finite output
alphabet).

Note that in this chapter we will again use the notation introduced in
Section 12.4: W denotes the conditional probability distribution of the DMC.

14.1 Polar Transform

The basic idea of polar coding is the insight that there are basically two special
types of DMCs for which communication is trivial:

• In a perfect channel, where the output Y determines the input X, we
do not need to code at all because we will never make any mistakes.

291 © Stefan M. Moser — IT, version 6.14

292 Polar Codes

U2 X2

W
Y2

+

U1 X1

W
Y1

Figure 14.1: The polar transform underlying the construction of polar codes.

• In a useless channel, where the output Y is independent of the input
X, we do not need to code either, because whatever we try, we will never
be able to communicate anyway.

Arıkan now found a way of transforming two given identical DMCs W in such
a way that one of the newly generated DMCs is better than the original chan-
nel, while the other is worse. By repeated application of this transformation
process, we end up with a bunch of channels that are either perfect or use-
less, but nothing in between. This effect is called polarization . Once we
have polarized all channels, we do not need to code anymore, but can directly
transmit information bits over the perfect channels and dummy bits over the
useless ones.

We will show that the fraction of channels that are perfect is equal to the
mutual information of the original channel under a uniform input distribution.
If the uniform input is capacity achieving, then the fraction of perfect channels
equals the capacity of the original channel, and thus the ratio of the number of
information bits transmitted over the perfect channels to the number of total
transmitted bits matches exactly the capacity of the channel, i.e., the coding
scheme is optimal.

We start with Arıkan’s way of transforming the channels. To understand
the following definition and its consequences, recall that in a coding scheme
a given channel W is used n times to transmit a codeword. Instead of using
the same channel n times in series, however, we can equivalently think about
having a bank of n independent identical channels W that are used in parallel
just once. Polar codes are more easily understood when using this second
equivalent picture.

Definition 14.1. The polar transform W (W�;W+) takes a binary-input
DMC W : f0; 1g ! Y and produces the following two binary-input DMCs
(with larger output alphabets!):

W� : f0; 1g ! Y2 : U1 7! (Y1; Y2); (14.1)

W+ : f0; 1g ! Y2 � f0; 1g : U2 7! (Y1; Y2; U1); (14.2)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.1. Polar Transform 293

1� �

0

0

1� �

1

1

�

?

�

X Y

Figure 14.2: Binary erasure channel (BEC).

where Y1 and Y2 are the outputs of two identical copies of W with correspond-
ing inputs X1 = U1 � U2 and X2 = U2, respectively (see Figure 14.1). Note
that we will assume that U1 and U2 are independent uniform binary RVs.

We call the channels W� and W+ the children channels of W.

Note that in Definition 14.1 we describe a way of duplicating a given DMC.
In reality, however, we do not “duplicate” a channel, but actually start with
two identical copies of the same DMC W that are then transformed into W�

and W+.
The following corollary is a direct consequence of Definition 14.1 and our

assumption that U1 and U2 are uniform.

Corollary 14.2. The channel laws of W� and W+ are given as follows:

W�(y1; y2ju1) =
X
u2

PU2(u2)W (y1ju1 � u2)W (y2ju2) (14.3)

=
1

2
W (y1ju1)W (y2j0) + 1

2
W (y1ju1 � 1)W (y2j1); (14.4)

W+(y1; y2; u1ju2) = PU1(u1)W (y1ju1 � u2)W (y2ju2) (14.5)

=
1

2
W (y1ju1 � u2)W (y2ju2): (14.6)

Example 14.3 (BEC). Consider the case of W being a binary erasure channel
(BEC) with erasure probability � as shown in Figure 14.2. What channels are
W� and W+?

Recall that U1 and U2 are assumed to be chosen independently and both
with equal probability of being 0 or 1.

The DMC W� has input U1 and output (Y1; Y2).

• If there is no erasure, we receive (Y1; Y2) = (U1 �U2; U2) from which U1

can be determined correctly.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

294 Polar Codes

• If there is an erasure on the first BEC, we receive (Y1; Y2) = (?; U2) from
which U1 cannot be determined.

• If there is an erasure on the second BEC, we receive (Y1; Y2) = (U1�U2; ?)

from which U1 cannot be determined (because we assume that U2 is
uniform and independent of U1).

• If there are two erasures, we receive (Y1; Y2) = (?; ?) from which U1

cannot be determined.

So if there are no erasures, we get the correct answer, otherwise we have no
clue about the transmitted bit. Moreover, we are fully aware whether we can
decode correctly, or not. Hence, we see that W� is again a BEC, but with a
worse erasure probability 1� (1� �)2 = 2� � �2.

The DMC W+, on the other hand, has input U2 and output (Y1; Y2; U1)

(where U1 is always available and does not suffer from a channel!).

• If there is no erasure, we receive (Y1; Y2; U1) = (U1 � U2; U2; U1) from
which U2 can be determined correctly.

• If there is an erasure on the first BEC, we receive (Y1; Y2; U1) = (?; U2;

U1) from which U2 can be determined correctly.

• If there is an erasure on the second BEC, we receive (Y1; Y2) = (U1 �
U2; ?; U1) from which U2 also can be determined correctly.

• If there are two erasures, we receive (Y1; Y2) = (?; ?; U1) from which U2

cannot be determined.

So only if we have two erasures, we cannot figure out what has been transmit-
ted, in all other cases we get the correct answer. Hence, we see that also W+

is a BEC, but with a better erasure probability �2.
We could have found this also by using Corollary 14.2, but it is more

cumbersome. We only show the situation for W�. From Table 14.3 we see
that we either have equal probabilities W�(y1; y2j0) =W�(y1; y2j1) or one of
them equals zero. This is exactly the structure of a BEC where

• f(0; 0); (1; 1)g is taken as new symbol 0,

• f(0; 1); (1; 0)g is taken as new symbol 1, and

• f(0; ?); (?; 0); (1; ?); (?; 1); (?; ?)g is taken as new symbol ?.

We also note that W+ is better than W (it has a smaller erasure probability)
and W� is worse than W (it has a larger erasure probability). Moreover, W+

is strictly better than W and W� is strictly worse than W unless � = 0 or
� = 1 in the first place, i.e., only if the BEC is already perfect or useless from

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.1. Polar Transform 295

Table 14.3: Probability distribution of BEC�.

y1 y2 W�(y1; y2j0) W�(y1; y2j1)
0 0 (1� �)2=2 0

0 ? �(1� �)=2 �(1� �)=2
0 1 0 (1� �)2=2
? 0 �(1� �)=2 �(1� �)=2
? ? �2 �2

? 1 �(1� �)=2 �(1� �)=2
1 0 0 (1� �)2=2
1 ? �(1� �)=2 �(1� �)=2
1 1 (1� �)2=2 0

the beginning. We will see next that this is no accident, but holds in principle
for any choice of W.

Note that in general the type of channel is changed by the polar transform.
For example, if W is a BSC, then neither W� nor W+ will be a BSC anymore.

�

Example 14.3 demonstrates the main property of the polar transform: we
see an extremalization in the sense that W+ is “better” than W and W� is
“worse”. We will next make this concept more precise.

Definition 14.4. For a binary-input DMC W, we define the channel mutual
information I(W) as the mutual information between input and output of
the DMC under the assumption that the input is uniformly distributed:

I(W) , I(X;Y)
��
X�U(f0;1g) [bits]: (14.7)

Note that I(W) is always measured in the unit of bits (logarithm to the basis
of 2), but that we are lazy and often omit these units. Since the channel input
X is a binary RV, I(W) is a number between 0 and 1 bit.

Theorem 14.5 (Channel Mutual Information and the Polar Transform).
For any DMC W, the channel mutual information of W and its children
channels W+ and W� satisfy the following:

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

296 Polar Codes

1. The average channel mutual information remains unchanged:

1

2
I(W�) +

1

2
I(W+) = I(W): (14.8)

2. We have “guaranteed progress” in the polarization unless the chan-
nel is already extremal:

I(W+) � I(W) � I(W�) (14.9)

with equality if, and only if, W is either perfect (I(W) = 1) or useless
(I(W) = 0).

The first property shows that the polar transform does not change the total
amount of mutual information: The total mutual information of two DMCs
W is the same as the total mutual information of the two children channels
W� and W+. The second property guarantees that W+ is strictly better than
W and W� is strictly worse than W (unless the extreme values 1 bit or 0 bits
have already been reached).

Proof: Note that by definition

I(W�) = I(U1;Y1; Y2); (14.10)

I(W+) = I(U2;Y1; Y2; U1); (14.11)

where U1 ?? U2 and U1; U2 � U(f0; 1g). From the chain rule, it follows that

I(W�) + I(W+) = I(U1;Y1; Y2) + I(U2;Y1; Y2; U1) (14.12)

= I(U1;Y1; Y2) + I(U2;U1) + I(U2;Y1; Y2jU1) (14.13)

= I(U1;Y1; Y2) + I(U2;Y1; Y2jU1) (14.14)

= I(U1; U2;Y1; Y2) (14.15)

= I(X1; X2;Y1; Y2) (14.16)

= I(X1;Y1) + I(X2;Y2) (14.17)

= 2 I(W): (14.18)

Here, (14.14) holds because U1 ?? U2; (14.16) holds because there is a one-to-
one relation between (U1; U2) and (X1; X2); and (14.17) follows from the fact
that we consider DMCs. This proves (14.8).

By dropping some arguments and by noting that X2 = U2, we obtain from
(14.11)

I(W+) = I(U2;Y1; Y2; U1) � I(U2;Y2) = I(X2;Y2) = I(W): (14.19)

This then combines with (14.18) to prove (14.9).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.1. Polar Transform 297

In order to investigate equality in (14.9), we rewrite (14.19) using the chain
rule as follows:

I(U2;Y1; Y2; U1) = I(U2;Y2) + I(U2;U1jY2) + I(U2;Y1jU1; Y2) (14.20)

= I(W) + I(U2; Y2;U1)| {z }
=0

� I(U1;Y2)| {z }
=0

+ I(U2;Y1jU1; Y2) (14.21)

= I(W) + I(U2;Y1jU1; Y2) (14.22)

= I(W) + I(U2 � U1;Y1jU1; Y2) (14.23)

= I(W) + I(X1;Y1jU1; Y2) (14.24)

= I(W) +H(Y1jU1; Y2)�H(Y1jU1; Y2; X1) (14.25)

= I(W) +H(Y1jU1; Y2)�H(Y1jX1) (14.26)

� I(W) +H(Y1jU1; Y2; X1)�H(Y1jX1) (14.27)

= I(W): (14.28)

Here, (14.22) is understood easiest by checking the dependences of U1, U2, and
Y2 in Figure 14.1; in (14.23) we add a known quantity to one of the arguments,
which does not change the mutual information; (14.26) holds because of the
basic properties of a DMC (compare with Theorem 11.11); and (14.27) follows
from conditioning that reduces entropy.

The clue is now to realize that we have equality in (14.27) if, and only
if, Y1 is conditionally independent of X1 given U1 and Y2. This can happen
only in exactly two cases: Either W is useless, i.e., Y1 is independent of X1

and any other quantity related with X1 such that all conditioning disappears
and we have H(Y1)�H(Y1) in (14.25) (this corresponds to the situation when
I(W) = 0). Or W is perfect so that from Y2 we can perfectly recover U2 and
— with the additional help of U1 — also X1 (this corresponds to the situation
when I(W) = 1 bit).

It can be shown that, for any given fixed channel mutual information I(W),
the BEC yields the largest difference between I(W+) and I(W�) and the BSC
yields the smallest difference. Any other DMC will yield a difference that lies
somewhere in between. See Figure 14.4 for the corresponding plot.

Exercise 14.6. In this exercise you are asked to recreate the boundary curves
in Figure 14.4.

1. Start with W being a BEC with erasure probability �. Recall that
I(W) = 1� �, and then show that I(W+)� I(W�) = 2�(1� �).

2. For W being a BSC with crossover probability �, recall that I(W) =

1�Hb(�). Then, defining Z1 and Z2 being independent binary RVs

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

298 Polar Codes

I(W) [bits]

I(
W
+
)
�
I(
W
�

)
[b

it
s]

0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 10
0

0:1

0:2

0:3

0:4

0:5

BSC

BEC

Figure 14.4: Difference of I(W+) and I(W�) as a function of I(W). We see that
unless the channel is extreme already, the difference is strictly
positive. Moreover, the largest difference is achieved for a BEC,
while the BSC yields the smallest difference.

with Pr[Zi = 1] = �, explain the steps in the following derivation:

I(W+)� I(W�)

= I(U2;U1 � U2 � Z1; U2 � Z2; U1)� I(U1;U1 � U2 � Z1; U2 � Z2)

(14.29)

= I(U2;U2 � Z1; U2 � Z2)� I(U1;U1 � U2 � Z1jU2 � Z2) (14.30)

= H(U2 � Z1) +H(U2 � Z2jU2 � Z1)�H(Z1)�H(Z2)

�H(U1 � U2 � Z1jU2 � Z2) +H(U1 � U2 � Z1jU2 � Z2; U1) (14.31)

= 1 +H(U2 � Z2jU2 � Z1)� 2Hb(�)

�H(U1 � Z2 � Z1jU2 � Z2) +H(U2 � Z1jU2 � Z2) (14.32)

= 1 +H(Z1 � Z2jU2 � Z1)� 2Hb(�)

�H(U1 � Z2 � Z1) +H(Z1 � Z2jU2 � Z2) (14.33)

= 1 +H(Z2 � Z1)� 2Hb(�)� 1 +H(Z2 � Z1) (14.34)

= 2Hb
�
2�(1� �)�� 2Hb(�): (14.35)

�

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.2. Polarization 299

14.2 Polarization

14.2.1 Recursive Application of the Polar Transform

Note that the polar transform changes the output alphabet of the newly cre-
ated channels, but that the input alphabet remains binary. Hence, we can
apply the polar transform also to the children channels W� and W+! In order
to do so, we will need to have available two copies each of W� and W+, i.e.,
we firstly apply the polar transform twice to a total of four identical copies of
W, see Figure 14.5.

~~U2 X2

W
Y2

+

~~U1 X1

W
Y1

~~U4 X4

W
Y4

+

~~U3 X3

W
Y3

+

+

U4 = ~U4

U2 = ~U3

U3 = ~U2

U1 = ~U1

Figure 14.5: Second application of the polar transform to W� and W+.

• Apply the polar transform to W: the first copy of W has input X1 and
output Y1, and the second copy has input X2 and output Y2:

W� : ~~U1 7! (Y1; Y2); where X1 =
~~U1 � ~~U2; (14.36)

W+ : ~~U2 7!
�
Y1; Y2;

~~U1
�
; where X2 =

~~U2: (14.37)

• Repeat with first copy of W having input X3 and output Y3, and second
copy having input X4 and output Y4:

W� : ~~U3 7! (Y3; Y4); where X3 =
~~U3 � ~~U4; (14.38)

W+ : ~~U4 7!
�
Y3; Y4;

~~U3
�
; where X4 =

~~U4: (14.39)

• Apply the polar transform to W�: the first copy (14.36) has input ~~U1 and
output (Y1; Y2), and the second copy (14.38) has input ~~U3 and output

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

300 Polar Codes

(Y3; Y4):

W�� : ~U1 7! (Y1; Y2; Y3; Y4); where ~~U1 = ~U1 � ~U3; (14.40)

W�+ : ~U3 7! (Y1; Y2; Y3; Y4; ~U1); where ~~U3 = ~U3: (14.41)

• Apply the polar transform to W+: the first copy (14.37) has input ~~U2

and output
�
Y1; Y2;

~~U1
�
, and the second copy (14.39) has input ~~U4 and

output
�
Y3; Y4;

~~U3
�
:

W+� : ~U2 7!
�
Y1; Y2; Y3; Y4;

~~U1;
~~U3
�
; where ~~U2 = ~U2 � ~U4; (14.42)

W++ : ~U4 7!
�
Y1; Y2; Y3; Y4;

~~U1;
~~U3; ~U2

�
; where ~~U4 = ~U4: (14.43)

Note that since there is a one-to-one relation between
� ~~U1;

~~U3
�

and
(~U1; ~U3), this can be rewritten as

W+� : ~U2 7! (Y1; Y2; Y3; Y4; ~U1; ~U3); where ~~U2 = ~U2 � ~U4; (14.44)

W++ : ~U4 7! (Y1; Y2; Y3; Y4; ~U1; ~U3; ~U2); where ~~U4 = ~U4: (14.45)

By renaming U1 , ~U1, U2 , ~U3, U3 , ~U2, and U4 , ~U4 (where we swap the
indices 2 and 3 on purpose), we get the following four channels:

W�� : U1 7! (Y1; Y2; Y3; Y4); (14.46)

W�+ : U2 7! (Y1; Y2; Y3; Y4; U1); (14.47)

W+� : U3 7! (Y1; Y2; Y3; Y4; U1; U2); (14.48)

W++ : U4 7! (Y1; Y2; Y3; Y4; U1; U2; U3); (14.49)

with the corresponding connections as shown in Figure 14.5.
We continue with the same procedure, taking two independent copies of

these four channels and applying the polar transform to all four channels again.
We obtain the eight channels shown in Figure 14.6.

Note again that we reorder the inputs on purpose in such a way that we
get the channels

Uk 7! (Y 8
1 ; U

k�1
1); k = 1; : : : ; 8: (14.50)

Proposition 14.7 (Naming of Channels and Inputs). Let n = 2`. In order to find
out how the inputs ~Un

1 (where ~Uk corresponds to the new input of the kth
channel, i.e., in the graphical representation as in Figure 14.6, ~Uk “sits” on
the same level as the channel input Xk and the channel output Yk) need to
be renamed and to which channel they belong, we use the following algorithm
that is generally known as bit reversal permutation:

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.2. Polarization 301

X2

W
Y2

+

X1

W
Y1

X4

W
Y4

+

X3

W
Y3

+

+

X6

W
Y6

+

X5

W
Y5

X8

W
Y8

+

X7

W
Y7

+

+

+

+

+

+

U1 =
~U1

U5 =
~U2

U3 =
~U3

U7 =
~U4

U2 =
~U5

U6 =
~U6

U4 =
~U7

U8 =
~U8

Figure 14.6: Third application of the polar transform.

For ~Uk, take the length-` binary representation of k � 1 and read
it backwards. This yields a binary string (s1 � � � s`). Then add one
to this binary string in order to obtain the binary number of the
corresponding input U(s1���s`)+1, or replace 0 by � and 1 by + to obtain
the corresponding channel Ws1���s` .

In general, we have

Ws1���s` : U(s1���s`)+1 7!
�
Y1; : : : ; Y2` ; U1; : : : ; U(s1���s`)

�
;

s1; : : : ; s` 2 f0 or �; 1 or +g; (14.51)

with

I
�
Ws1���s`� = I

�
U(s1���s`)+1;Y1; : : : ; Y2` ; U1; : : : ; U(s1���s`)

�
: (14.52)

Note that sometimes we also use the index number of U(s1���s`)+1 as the
name for the channel, i.e.,

W
((s1���s`)+1)
n = Ws1���s` ; (14.53)

in which case we always add the subscript n to clarify the blocklength.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

302 Polar Codes

Example 14.8. For example in Figure 14.6, ~U4 gets the corresponding length-
3 representation of 4 � 1 = 3: (011). Read backwards this corresponds to
(s1s2s3) = (110), or s1s2s3 = ++�. Hence,

W++� : U(110)+1 = U(111) = U7 7!
�
Y 8
1 ; U

6
1

�
; (14.54)

which is also called W
(7)
8 .

As another example, consider the situation with ` = 5 (i.e., five recursive
applications of the polar transform). There, ~U19 is mapped to U10 and is used
as input to channel W�+��+ = W

(10)
32 because the binary representation of

19�1 = 18 is 10010, which backward is (s1 � � � s5) = (01001). This corresponds
to �+��+, and (01001) + 1 = (01010) = 10:

W�+��+ = W
(10)
32 : U10 7!

�
Y 32
1 ; U9

1

�
: (14.55)

�

Lemma 14.9. For any k 2 f1; : : : ; ng, we have

�
W

(k)
n
��

= W
(2k�1)
2n ; (14.56)�

W
(k)
n
�+

= W
(2k)
2n : (14.57)

Proof: Let (s1 � � � s`) be the binary representation of k� 1, i.e., according
to Proposition 14.7 and again using � for 0 and + for 1,

W
(k)
n = Ws1���s` : (14.58)

Then
�
W

(k)
n
��

= Ws1���s`� = W
(k�)
2n (14.59)

with

k� = (s1 � � � s` 0) + 1 = 2(k � 1) + 1 = 2k � 1: (14.60)

Similarly,

�
W

(k)
n
�+

= Ws1���s`+ = W
(k+)
2n (14.61)

with

k+ = (s1 � � � s` 1) + 1 =
�
2(k � 1) + 1

�
+ 1 = 2k: (14.62)

We need to understand these transformations in more detail! Firstly note
that if we only consider the last step in the recursive application of the polar
transform we realize that the polar transform can also be seen from a vector

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.2. Polarization 303

X2

W
Y2

+

X1

W
Y1

X4

W
Y4

+

X3

W
Y3

+

+

U7�U8

U3�U4

U5�U6

U1�U2

X6

W
Y6

+

X5

W
Y5

X8

W
Y8

+

X7

W
Y7

+

+

U8

U4

U6

U2

+

+

+

+

U1

U5

U3

U7

U2

U6

U4

U8

Wtot;4

Wtot;4

Figure 14.7: Vector channel Wtot;8 that is created by application of the polar
transform to (two copies of) Wtot;4 (compare with Figure 14.6).

channel point of view with an input un1 and an output Y n
1 . For example, have

a look at Wtot;8 shown in Figure 14.7 that is created from an application of the
polar transform to two copies of Wtot;4 (note that Figure 14.7 simply redraws
Figure 14.6!).

In general we have the picture shown in Figure 14.8. In particular, note
how U2n

1 is split into U2n
1;even and U2n

1;odd and how the inputs of the upper copy
of Wtot;n consist of U2k�1�U2k, k = 1; : : : ; n. We are now ready to understand
the following corollary of Lemma 14.9.

Corollary 14.10. For any k 2 f1; : : : ; ng, we have

W
(2k�1)
2n

�
y2n1 ; u2k�2

1

��u2k�1
�

=
1

2
W

(k)
n
�
yn1 ; u

2k�2
1;odd � u2k�2

1;even
��u2k�1

�
W

(k)
n
�
y2nn+1; u

2k�2
1;even

��0�
+

1

2
W

(k)
n
�
yn1 ; u

2k�2
1;odd � u2k�2

1;even
��u2k�1 � 1

�
W

(k)
n
�
y2nn+1; u

2k�2
1;even

��1�; (14.63)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

304 Polar Codes

+

+

+

U1

U3

U2n�1

U2

U4

U2n

Wtot;n

Wtot;n

U1 � U2

U3 � U4

U2n�1 � U2n

Y1

Y2

Yn

U2

U4

U2n

Yn+1

Yn+2

Y2n

Figure 14.8: Vector channel Wtot;2n that is created by application of the polar
transform to (two copies of) Wtot;n.

W
(2k)
2n

�
y2n1 ; u2k�1

1

��u2k�
=

1

2
W

(k)
n
�
yn1 ; u

2k�2
1;odd � u2k�2

1;even
��u2k�1 � u2k

�
W

(k)
n
�
y2nn+1; u

2k�2
1;even

��u2k�: (14.64)

Proof: From Lemma 14.9 we know that W
(2k�1)
2n is the minus-child of

W
(k)
n and that W

(2k)
2n is the plus-child of W(k)

n . Thus, the given channel laws
follow from Corollary 14.2 after the following substitutions: (stands for “is

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.2. Polarization 305

replaced by”)

W W
(k)
n ;

W� W
(2k�1)
2n ; W+ W

(2k)
2n ;

u1 u2k�1; u2 u2k;

y1
�
yn1 ; u

2k�2
1;odd � u2k�2

1;even
�
; y2

�
y2nn+1; u

2k�2
1;even

�
;

(y1; y2)
�
y2n1 ; u2k�2

1

�
:

(14.65)

14.2.2 Matrix Notation

In practice it is often convenient to describe the mapping from U1; : : : ; Un to
X1; : : : ; Xn in a mathematical form instead of only giving a graphical definition
as in Figures 14.5 or 14.6. Since the transformation is linear, the most obvious
choice is to use matrices. Note that the polar transform given in Figure 14.1
can be described by the matrix

T ,

0
@1 0

1 1

1
A (14.66)

such that1

X =
�
X1 X2

�
=
�
U1 U2

�0@1 0

1 1

1
A = UT: (14.67)

For a second application of the polar transform as given in Figure 14.5 we
then use the Kronecker product
 of matrices:

X = ~U
�
T
 T

�
(14.68)

= ~U

0
@T 0

T T

1
A (14.69)

= ~U

0
BBBBB@
1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1

1
CCCCCA: (14.70)

It only remains to apply the bit reversal reordering. This is done by the
permutation matrix

P4 =

0
BBBBB@
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1
CCCCCA; (14.71)

1It is common in the coding community to represent codewords by row vectors instead
of the column vectors used in math in general. We will follow here the coding tradition.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

306 Polar Codes

i.e.,

X =
�
X1 X2 X3 X4

�
(14.72)

= UP4T

2 (14.73)

=
�
U1 U2 U3 U4

�
0
BBBBB@
1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

1
CCCCCA (14.74)

= UT4: (14.75)

In general, for n = 2`, the transformation is given by the transformation
matrix

Tn , Pn T
`: (14.76)

14.2.3 Are these Channels Realistic?

We have now understood how to transform nDMCs W into n children channels
(14.51). However, so far it is not clear if these transformed channels are
actually realistic in the sense that they can be used in a practical way.

The answer is slightly subtle: Since in reality we do not have access to
Uk�1
1 at the receiver, the transformed channels are not practical at all, but

a mere theoretic exercise. However, if we restrict ourselves to a particular
decoding structure, they are actually equivalent to a practical setup.

More specifically, we will focus on successive cancellation decoding.

Definition 14.11. A successive cancellation decoder decodes the bits in suc-
cessive order, i.e., it firstly decodes the first information bit Û1, based on the
complete channel output Y n

1 , then it decodes the second information bit Û2

based on the complete channel output Y n
1 and the already decoded first infor-

mation bit Û1, etc., until at last it decodes the last information bit Ûn based
on (Y n

1 ; Û
n�1
1).

Note that a successive cancellation decoder is in general not optimal, i.e., it
is not a MAP decoder. However, it is a decoding design that is very appealing
to engineers because it splits the problem up: instead of having to decode
everything in one blow, it approaches the problem bit by bit, always making
use of the complete knowledge that is available at each step.

To understand why a successive cancellation decoding scheme solves the
issue with the unknown channel outputs Uk�1

1 , consider the (very theoretic)
idea of a genie-aided successive cancellation decoding scheme.

A genie is a fictional fellow that helps the decoder by providing some
information for free. Again, this is not realistic, but serves as an upper bound
on the performance of a realistic decoder. In our case we assume that a genie

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.2. Polarization 307

provides the decoder with the information of the correct values of Uk, but
only after the decoder has decided on Ûk.

So, our fictional decoder consists of n decoding functions k, k = 1; : : : ; n:

Û1 = 1(Y1; : : : ; Yn); (14.77a)

Û2 = 2(Y1; : : : ; Yn; U1); (14.77b)

Û3 = 3(Y1; : : : ; Yn; U1; U2); (14.77c)
:::

Ûn = n(Y1; : : : ; Yn; U1; : : : ; Un�1); (14.77d)

where the values of Un�1
1 at the receiver are provided by the genie.

On the other hand, while a realistic successive cancellation decoding
scheme has no access to the correct values of Un�1

1 , it still can use the values
that it has decoded already. Hence, using exactly the same decoding functions
as for the genie-aided successive cancellation decoder (14.77), we define the
following realistic successive cancellation decoding scheme:

Û1 = 1(Y1; : : : ; Yn); (14.78a)

Û2 = 2(Y1; : : : ; Yn; Û1); (14.78b)

Û3 = 3(Y1; : : : ; Yn; Û1; Û2); (14.78c)
:::

Ûn = n(Y1; : : : ; Yn; Û1; : : : ; Ûn�1): (14.78d)

In contrast to (14.77), here we have the problem of error propagation: if
some decision Ûk is wrong, it will negatively influence the remaining decoding
decisions. But note that if the genie-aided decoder makes no mistake, then
Ûk = Uk in each round of the successive cancellation decoding and then neither
does the realistic successive cancellation decoder (14.78) make any mistake!

On the other hand, if the genie-aided decoder makes some mistake, then
the realistic successive cancellation decoder will make even more mistakes.
However, we do not care how many mistakes we make, but we only worry
whether we are correct or not, i.e., we only worry about the probability of
making no error. Thus, the performance of the realistic decoder is actually
identical to the genie-aided decoder, and hence our decoding scheme is realis-
tic! We have proven the following lemma.

Lemma 14.12. The average error probability of a coding scheme with a genie-
aided successive cancellation decoder is identical to a coding scheme with the
same successive cancellation decoder without genie.

Note that the bit error rate of the two decoders given in (14.77) and (14.78)
are different (since once a mistake happens, the realistic decoder will make

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

308 Polar Codes

more errors than the genie-aided decoder due to error propagation). But once
again: we are only interested in the average codeword error (or also called
block error), which is identical for both decoders.

14.2.4 Polarization

We have already spoken about this main idea of polarization without actually
properly defining or even proving it. Recall from Theorem 14.5 that applying
the polar transform will result in a “guaranteed progress” in the sense of W+

and W� being strictly “better” and “worse”, respectively, than W. To make
this more precise, we give the following definitions.

Definition 14.13. For a fixed � > 0, we say that a binary-input DMC W is
�-mediocre if2

� < I(W) < 1� � (14.79)

If

I(W) � 1� � (14.80)

W is called �-good, and if

I(W) � � (14.81)

W is called �-bad.

Let’s return to Example 14.3.

Example 14.14 (BEC continued). We start with a mediocre BEC of erasure
probability � = 0:4 and repeatedly apply the polar transform. In Figure 14.9,
we plot the values of the channel mutual information I(W) for all channels after
a specific number ` of recursive application of the polar transform. (Note that
the channels are not numbered according to Proposition 14.7, but are sorted
with respect to their channel mutual information.) We see that for large `,
roughly 40% of the channels have a channel mutual information very close to
0, and roughly 60% have a channel mutual information very close to 1 bit.
There are only very few channels with a value in between. Thus, about 60%
of the channels are good, about 40% of the channels are bad, and there remain
almost no mediocre channels anymore. �

So we see that by repeatedly applying the polar transform we have suc-
ceeded in polarizing the channels, i.e., we end up with (almost) only perfect
or useless channels.

More concretely, we have the following theorem.
2Recall that the mutual information is measured in bits.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.2. Polarization 309

channels W

I(
W
)

[b
it

s]

` = 2

1 2 3 4
0:0

0:1

0:2

0:3

0:4

0:5

0:6

0:7

0:8

0:9

1:0

channels W

I(
W
)

[b
it

s]

` = 4

1 4 8 12 16
0:0

0:1

0:2

0:3

0:4

0:5

0:6

0:7

0:8

0:9

1:0

channels W

I(
W
)

[b
it

s]

` = 6

1 16 32 48 64
0:0
0:1
0:2
0:3
0:4
0:5
0:6
0:7
0:8
0:9
1:0

channels W

I(
W
)

[b
it

s]

` = 8

1 64 128 192 256
0:0

0:1

0:2

0:3

0:4

0:5

0:6

0:7

0:8

0:9

1:0

channels W

I(
W
)

[b
it

s]

` = 10

1 256 512 768 1024
0:0

0:1

0:2

0:3

0:4

0:5

0:6

0:7

0:8

0:9

1:0

channels W

I(
W
)

[b
it

s]

` = 12

1 1024 2048 3072 4096
0:0

0:1

0:2

0:3

0:4

0:5

0:6

0:7

0:8

0:9

1:0

channels W

I(
W
)

[b
it

s]

` = 16

1 32
0
768 65

0
536

0:0

0:1

0:2

0:3

0:4

0:5

0:6

0:7

0:8

0:9

1:0

channels W

I(
W
)

[b
it

s]

` = 20

1 524
0
288 1

0
048

0
576

0:0

0:1

0:2

0:3

0:4

0:5

0:6

0:7

0:8

0:9

1:0

Figure 14.9: Polarization of n = 2` BECs of erasure probability � = 0:4 after `
recursive applications of the polar transform. The y-axis depicts
the channel mutual information I(W) in bits, and the x-axis lists
the channels that are sorted with respect to their channel mutual
information.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

310 Polar Codes

Theorem 14.15 (Polarization Happens). For any binary-input DMC W and any
� > 0, the fraction of �-mediocre channels tends to zero as the number ` of
polar transform applications gets large:

lim
`!1

���s1 � � � s` : I(Ws1���s`) 2 (�; 1� �)	��
2`

= 0: (14.82)

Moreover, the fraction of �-good channels tends to I(W),

lim
`!1

���s1 � � � s` : I(Ws1���s`) 2 [1� �; 1]	��
2`

= I(W); (14.83)

and the fraction of �-bad channels tends to 1� I(W),

lim
`!1

���s1 � � � s` : I(Ws1���s`) 2 [1� �; 1]	��
2`

= 1� I(W): (14.84)

We postpone the proof of this theorem to Section 14.2.5, but first investi-
gate the special case of a BEC that is much easier to handle because for a BEC
there exists a direct connection between I(W) and the probability of error.

Recall that if W is a BEC with erasure probability �, then its children W+

and W� are again BECs with erasure probabilities

�+ = �2; (14.85a)

�� = 2� � �2; (14.85b)

respectively. Moreover, since for a BEC

I(W) = 1� �; (14.86)

a BEC is �-mediocre if, and only if, its erasure probability � satisfies � < � <

1� �.
To help with our investigation of the number of �-mediocre BECs, we next

define the ugliness of a BEC.

Definition 14.16. The ugliness of a BEC W with erasure probability � is defined
as

�(W) ,
q
4�(1� �): (14.87)

Note that the ugliness is normalized such that it is a number between 0
and 1, i.e., a “maximally ugly” BEC has an ugliness of 1. Also note that the
motivation behind this definition is that a BEC with an erasure probability �
close to 0 or close to 1 is not ugly, while an ugly BEC has a � around 1

2 .

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.2. Polarization 311

Now, by straightforward calculation, we see that

�(W+) =
q
4�+(1� �+) (14.88)

=
q
4�2(1� �2) (14.89)

=
q
4��(1 + �)(1� �) (14.90)

=
q
4�(1� �)

q
�(1 + �) (14.91)

= �(W)
q
�(1 + �); (14.92)

�(W�) =
q
4��(1� ��) (14.93)

=
q
4(2� � �2)(1� 2� + �2) (14.94)

=
q
4�(2� �)(1� �)2 (14.95)

= �(W)
q
(2� �)(1� �): (14.96)

Thus, nothing can be said about the individual ugliness of a child channel of
a BEC: a child can be less ugly or more ugly than its parent. On average,
however, the ugliness of the children channels is reduced:

1

2
�(W+) +

1

2
�(W�) = �(W)

1

2

�q
�(1 + �) +

q
(2� �)(1� �)

�
(14.97)

� �(W)

s
3

4
; (14.98)

where the inequality follows from the fact that the function � 7! p
�(1 + �) +p

(2� �)(1� �) is strictly concave and symmetric around 1
2 , i.e., it achieves

its maximum for � = 1
2 .

By recursive application of (14.98) to the children of a BEC, we thus obtain

1

2`

X
(s1���s`)2f+;�g`

�(Ws1���s`) � �(W)

�
3

4

� `
2

: (14.99)

Also note that for an arbitrary child channel of ` applications of the polar
transform to a BEC,

�(Ws1���s`) =
q
4�s1���s`

�
1� �s1���s`� (14.100)

� 1f�s1���s` 2 (�; 1� �)g � min
�s1���s`2(�;1��)

q
4�s1���s`

�
1� �s1���s`�

+1f�s1���s` =2 (�; 1� �)g � min
�s1���s` =2(�;1��)

q
4�s1���s`

�
1� �s1���s`�

(14.101)

= 1f�s1���s` 2 (�; 1� �)g �
q
4�(1� �); (14.102)

where the first minimum is achieved for �s1���s` = � and the second for �s1���s` =
0.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

312 Polar Codes

We now obtain the following chain of (in)equalities:���s1 � � � s` : I(Ws1���s`) 2 (�; 1� �)	��
2`

=
1

2`

X
(s1���s`)2f+;�g`

1fI(Ws1���s`) 2 (�; 1� �)g (14.103)

=
1

2`

X
(s1���s`)2f+;�g`

1f�s1���s` 2 (�; 1� �)g (14.104)

� 1

2`

X
(s1���s`)2f+;�g`

�(Ws1���s`)p
4�(1� �) (14.105)

� �(W)p
4�(1� �)

�
3

4

� `
2

(14.106)

=

p
4�(1� �)p
4�(1� �)

�
3

4

� `
2 `!1! 0: (14.107)

Here, the first inequality follows from (14.102), and the second from (14.99).
This proves (14.82) (for the special case of a BEC).

Since in the limit when ` tends to infinity, no mediocre channels are left,
the remaining channels must all be good or bad. Now note that the polar
transform preserves the average erasure probability (see (14.85) or, related to
this, Theorem 14.5):

1

2
�+ +

1

2
�� = �: (14.108)

Thus, as in the limit we end up with only BECs of erasure probability 0 or 1,
the fraction of useless channels must be �, and the fraction of perfect channels
must be 1� �. This proves (14.83) and (14.84) for the BEC.

14.2.5 Proof of Theorem 14.15

We prove the theorem by formulating it in a probabilistic manner: We claim
that if out of the 2` channels we pick one channel uniformly at random, then
with a probability that tends to 1 as ` gets large the channel mutual informa-
tion is either close to 1 or close to 0.

We start by describing the recursive application process of the polar trans-
form by a tree of channels as shown in Figure 14.10. We now randomly select
a channel Ws1���s` by following a random walk along the tree: at every fork we
flip a fair coin to either go up (+) or down (�).

Concretely, let fS`g`2N be a sequence of RVs that are IID � U(f+;�g)
and let W` (` = 0; 1; 2; : : :) denote the channel after the `th fork:

W0 ,W; (14.109)

W` =W
S`
`�1 (14.110)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.2. Polarization 313

W

W+

W�

W++

W+�

W�+

W��

W+++

W++�

W+�+

W+��

W�++

W�+�

W��+

W���

Figure 14.10: Tree of recursive applications of the polar transform.

=

8<
:W

+
`�1 if S` = +;

W�
`�1 if S` = �;

` = 1; 2; : : : (14.111)

For example, for the bold path depicted in Figure 14.10 we have

fS1; S2; S3; S4; : : :g = f+;�;+;+; : : :g (14.112)

and hence

W0 = W; W1 = W+; W2 = W+�;

W3 = W+�+; W4 = W+�++; : : : (14.113)

Moreover, we define the random process fI`g by setting

I` , I(W`): (14.114)

We now note that, conditionally on a fixed start of a path (W0; : : : ;W`�1) =

(W0; : : : ;W`�1), the expected value of I` only depends on I`�1:

E[I(W`) j(W0; : : : ;W`�1) = (W0; : : : ;W`�1)]

= Pr[S` = +] � I�W+
`�1

�
+ Pr[S` = �] � I

�
W�

`�1

�
(14.115)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

314 Polar Codes

=
1

2
I
�
W+

`�1

�
+

1

2
I
�
W�

`�1

�
(14.116)

= I(W`�1); (14.117)

where the last equality follows from the first property in Theorem 14.5. Hence,

E[I` jI0; : : : ; I`�1] = I`�1 (14.118)

or

E[I` � I`�1 jI0; : : : ; I`�1] = 0: (14.119)

Using (14.119) with ` replaced by k, we now obtain for any j < k:

0 = 0 � (Ij � Ij�1) (14.120)

= E[Ik � Ik�1 jI1; : : : ; Ik�1] � (Ij � Ij�1) (by (14.119)) (14.121)

= E[(Ik � Ik�1) � (Ij � Ij�1) jI0; : : : ; Ik�1]; (because j < k) (14.122)

and by taking the expectation over I0; : : : ; Ik�1 hence also

E[(Ik � Ik�1) � (Ij � Ij�1)] = 0; j 6= k; (14.123)

i.e., the differences I` � I`�1 are uncorrelated.
Now note that since I` 2 [0; 1] (we are lazy and omit the unit of bits), we

have

1 � (I` � I0)2 (14.124)

=

 X̀
j=1

(Ij � Ij�1)

!2

(14.125)

=

 X̀
j=1

(Ij � Ij�1)

! X̀
j0=1

(Ij0 � Ij0�1)

!
(14.126)

=
X̀
j=1

X̀
j0=1

(Ij � Ij�1)(Ij0 � Ij0�1): (14.127)

Here (14.125) follows from a telescoping sum:

I` � I0 = I` � I`�1 + I`�1 � I`�2 + I`�2 � � � � � I1 + I1 � I0: (14.128)

Taking expectation on both sides of (14.127) and using the uncorrelated-
ness (14.123) now yields

1 �
X̀
j=1

X̀
j0=1

E[(Ij � Ij�1)(Ij0 � Ij0�1)] (14.129)

=
X̀
j=1

E
h
(Ij � Ij�1)

2
i

(14.130)

,
X̀
j=1

�2j ; (14.131)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.2. Polarization 315

where the last equality should be read as definition of �2j . This holds for any
`, i.e.,

lim
`!1

X̀
j=1

�2j � 1; (14.132)

which means that

lim
j!1

�2j = 0: (14.133)

Combined with the Markov Inequality (Lemma 20.2) this now allows us to
show that for any � > 0

lim
j!1

Pr
���Ij � Ij�1

�� > �
�
= lim

j!1
Pr
�jIj � Ij�1j2 > �2

�
(14.134)

� lim
j!1

E
�
(Ij � Ij�1)

2
�

�2
(14.135)

= lim
j!1

�2j
�2

(14.136)

= 0: (14.137)

We conclude that the random sequence fIjg must converge.3

Note that in general a converging random sequence converges not to a
constant, but to a random variable.4 Let I1 be this RV. From (14.118) it
follows that

E[I`] = E[I`�1]; ` 2 N; (14.138)

and hence

E[I1] = E[I0] = I(W): (14.139)

Moreover, because of the guaranteed progress property (Theorem 14.5), I1
can only take value in the extremes: I1 2 f0; 1g.

Finally, by explicitly computing the expectation (14.139):

I(W) = E[I1] (14.140)

= Pr[I1 = 1] � 1 + Pr[I1 = 0] � 0 (14.141)

= Pr[I1 = 1] (14.142)

we have derived the exact distribution of I1.
Note that the above proof introduces the important concept of a random

walk in the tree of channels that is created by recursively applying the polar
transform. The channel mutual information parameters fI`g of such a walk
is a sequence of RVs that converges to I1, which is a binary RV taking value
only in f0; 1g.

3Readers who know about martingales might have realized that fIjg forms a martingale
and that therefore the convergence could be directly argued based on the properties of
martingales.

4For a discussion of convergence of random sequences, see Section 20.2.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

316 Polar Codes

14.2.6 Attempt on a Polar Coding Scheme for the BEC

Based on the insight from Theorem 14.15 that the channels polarize into good
and bad channels only, we come up with the following simple coding scheme
for a BEC with erasure probability �:

• Fix a rate R < 1� � and a blocklength n = 2`.

• We start with ` applications of the polar transform to n = 2` copies of
the BEC W and obtain n children channels W�����; : : : ;W+���+.

• We pick the nR best channels and send uncoded data over them. The
inputs of the remaining channels are frozen to 0.

• Since the number of �-good channels is approximately n(1 � �), all the
nR < n(1� �) channels with uncoded data at the input are good.

• At the receiver, we successively decode U1; : : : ; Un (where of course we
are only really interested in those inputs that are not frozen).

• The block error probability of this scheme is upper-bounded by

P
(n)
e =

X
k : uncoded data

�
(k)
n +

X
k : frozen bits

0 (14.143)

�
X

k : uncoded data

� (14.144)

= nR�; (14.145)

where �(k)n denotes the erasure probability of channel W(k)
n and where

the inequality follows from the fact that all channels with uncoded data
at the input are �-good.

And now we are quite a bit disappointed: even if � is small, nR� might be
large! It is not clear whether our scheme works or not. . .

We see that it is not sufficient to know that polarization happens, but we
also need to know how fast this polarization occurs! In order to be able to
investigate the polarization speed, we need to introduce one more fundamental
quantity: the channel reliability.

14.3 Channel Reliability

All our investigations so far focused completely on the channel mutual infor-
mation I(W), which is a very fundamental property of a DMC. Unfortunately,
it is quite costly to track this value for all channels that result from recur-
sive application of the polar transform and, moreover, (except for the special
case of a BEC) it is not directly clear how I(W) is linked to the probability
of error. Thus, we will next introduce a companion to the channel mutual
information I(W): the channel reliability parameter.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.3. Channel Reliability 317

Definition 14.17. For a binary-input DMC W we define the channel reliability
parameter Z(W) as

Z(W) ,
X
y

q
W (yj0)W (yj1): (14.146)

Remark 14.18. Note that the reliability parameter actually is the exponentiated
Bhattacharyya distance defined in Definition 11.20. Hence, we know from
Corollary 11.21 that Z(W) is an upper bound on the error probability if we
use two codewords that differ in only one position. Particularly, since for
uncoded transmission any sequence is a codeword and thus the minimum
distance indeed is 1, we understand that Z(W) is an upper bound on the
error probability for uncoded transmission. We will prove this formally in
Theorem 14.27 in Section 14.4. M

In this section we will now investigate Z(W). In particular, we would like
to understand its connections to I(W) and its reactions to applying the polar
transform.

Lemma 14.19. The channel reliability parameter is a number between 0 and 1,

0 � Z(W) � 1; (14.147)

where 0 stands for fully reliable (corresponding to the perfect channel) and 1

for not reliable at all (corresponding to the useless channel).

Proof: The nonnegativity follows directly from its definition. The upper
bound follows from the Cauchy–Schwarz Inequality [Lap17, Theorem 3.3.1]:

X
y

q
W (yj0)

q
W (yj1) �

sX
y

W (yj0)
sX

y

W (yj1) = 1 � 1 = 1: (14.148)

The fact that Z(W) = 0 corresponds to the perfect channel and Z(W) = 1 to
the useless channel will be proven below in Corollary 14.22.

Theorem 14.20 (Channel Reliability Parameter and the Polar Transform).
For any DMC W, the channel reliability parameter of W and its children
channels W+ and W� satisfy the following:

1. It holds

Z(W+) = Z2(W); (14.149)

Z(W�) � 2Z(W)� Z2(W); (14.150)

and thus by applying the polar transform the total reliability can

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

318 Polar Codes

only improve:

Z(W�) + Z(W+) � 2Z(W): (14.151)

We have equality in (14.150) and (14.151) if, and only if, W is a
BEC.

2. We have “guaranteed progress” in the polarization unless the chan-
nel is already extremal:

Z(W+) � Z(W) � Z(W�) (14.152)

with equality if, and only if, W is either perfect (Z(W) = 0) or
useless (Z(W) = 1).

Proof: The identity (14.149) follows from straightforward calculation:

Z(W+)

=
X
y1

X
y2

X
u1

q
W+(y1; y2; u1j0)W+(y1; y2; u1j1) (14.153)

=
X
y1

X
y2

X
u1

q
PU1(u1)W (y1ju1)W (y2j0) � PU1(u1)W (y1ju1 � 1)W (y2j1)

(14.154)

=
X
y1

X
y2

X
u1

PU1(u1)
q
W (y1ju1)W (y1ju1 � 1)

q
W (y2j0)W (y2j1) (14.155)

=
X
u1

PU1(u1)
X
y1

q
W (y1j0)W (y1j1)

X
y2

q
W (y2j0)W (y2j1) (14.156)

= 1 � Z(W) � Z(W) (14.157)

= Z2(W): (14.158)

For (14.150), we write

Z(W�) =
X
y1

X
y2

q
W�(y1; y2j0)W�(y1; y2j1) (14.159)

=
X
y1

X
y2

s�
1

2
W (y1j0)W (y2j0) + 1

2
W (y1j1)W (y2j1)

�

�
s�

1

2
W (y1j1)W (y2j0) + 1

2
W (y1j0)W (y2j1)

�
(14.160)

=
1

2

X
y1

X
y2

q
(� + ��)(� + ��); (14.161)

where we have introduced the shorthands

� ,W (y1j0); � ,W (y1j1); (14.162)

 ,W (y2j0); � ,W (y2j1): (14.163)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.3. Channel Reliability 319

Now note that��p
� +

p
��
��p

� +
p
��
�� 2

p
���

�2
=
�
� + �� + 2

p
���

��
� + �� + 2

p
���

�
� 4

p
���

�

p
�� + �

p
� + �

p
� + �

p
��
�
+ 4��� (14.164)

= (� + ��)(� + ��) + 8���

+ 2
p
���

�
� + �� + � + �� � 2(+ �)

p
�� � 2(�+ �)

p
�
�

(14.165)

= (� + ��)(� + ��)

+ 2
p
���

�
(�+ �)(+ �)� 2(+ �)

p
�� � 2(�+ �)

p
� + 4

p
���

�
(14.166)

= (� + ��)(� + ��) + 2
p
���

�p
��p��2�p �p��2 (14.167)

� (� + ��)(� + ��); (14.168)

and thus

Z(W�) � 1

2

X
y1

X
y2

��p
� +

p
��
��p

� +
p
��
�� 2

p
���

�
(14.169)

=
1

2

X
y1

X
y2

�

p
�� + �

p
� + �

p
� + �

p
�� � 2

p
���

�
(14.170)

=
1

2

�
Z(W) + Z(W) + Z(W) + Z(W)� 2Z2(W)

�
(14.171)

= 2Z(W)� Z2(W): (14.172)

The left inequality in (14.152) follows directly from (14.149) and the fact
that Z(W) 2 [0; 1]. From this one also immediately sees that equality can only
be achieved if Z(W) = 0 or Z(W) = 1.

The derivation of the right inequality in (14.152) is more involved and
is postponed to Appendix 14.B. Note that if we have equality on the left in
(14.152), then (14.151) shows that Z(W�) � Z(W), which is only possible if we
have equality Z(W�) = Z(W). Hence, we achieve equality in both inequalities
in (14.152) if, and only if, Z(W) equals 0 or 1.

The alert reader has already recognized the similarities between Theo-
rem 14.5 and Theorem 14.20. It seems quite intuitive that Z(W) � 0 if, and
only if, I(W) � 1 bit, and that Z(W) � 1 if, and only if, I(W) � 0. To get a
better understanding of the connection between these two channel parameters,
we are next going to derive some more bounds.

Proposition 14.21 (Connection between I(W) and Z(W)). For any DMC W,

1� Z(W) � I(W) � 1� Z2(W) (14.173)

or

1� I(W) � Z(W) �
q
1� I(W): (14.174)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

320 Polar Codes

(Recall that I(W) is measured in bits.) Note that equality is achieved on the
left if W is a BEC.

I(W) [bits]

Z
(W

)

0:1

0:1

0:2

0:2

0:3

0:3

0:4

0:4

0:5

0:5

0:6

0:6

0:7

0:7

0:8

0:8

0:9

0:9

1

1

0
0

Figure 14.11: Possible values of
�
I(W);Z(W)

�
. We see that the range is quite

close to the diagonal Z(W) = 1� I(W) (which is achieved for a
BEC). In particular, I(W) is extremal if, and only if, Z(W) is
extremal.

Proof: We start by recalling that since we assume a uniform binary input,

PX;Y (x; y) = PX(x) � PY jX(yjx) = 1

2
W (yjx); y 2 Y; x 2 f0; 1g: (14.175)

Thus,

Z(W) =
X
y

q
W (yj0)W (yj1) (14.176)

= 2
X
y

s
1

2
W (yj0) 1

2
W (yj1) (14.177)

= 2
X
y

q
PX;Y (0; y) PX;Y (1; y) (14.178)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.3. Channel Reliability 321

= 2
X
y

q
PY (y) PXjY (0jy) PY (y) PXjY (1jy) (14.179)

=
X
y

PY (y) � 2
q
PXjY (0jy) PXjY (1jy) (14.180)

= E
h
2
q
PXjY (0jY) PXjY (1jY)

i
(14.181)

= E
h
2
q
p(Y)

�
1� p(Y)�i; (14.182)

where we have introduced the shorthand

p(y) , PXjY (0jy); y 2 Y: (14.183)

Similarly,

I(W) = H(X)�H(XjY) (14.184)

= 1� E[H(XjY = y)] bits (14.185)

= 1� E
�
Hb
�
p(Y)

��
bits: (14.186)

We are now ready to prove the right inequality in (14.173), i.e., we need
to show that

1� Z2(W)� I(W) � 0: (14.187)

Note that by (14.182) and (14.186),

1� I(W)� Z2(W)

= 1� 1 + E
�
Hb
�
p(Y)

��� �E
h
2
q
p(Y)

�
1� p(Y)�i�2

(14.188)

� E
�
Hb
�
p(Y)

��� E
��
2
q
p(Y)

�
1� p(Y)��2� (14.189)

= E
h
Hb
�
p(Y)

�� 4p(Y)
�
1� p(Y)�i; (14.190)

where the inequality follows from the Jensen Inequality (Theorem 2.1) and
the fact that z 7! z2 is convex. Thus, (14.187) is certainly satisfied if we can
show that

Hb(p)� 4p(1� p) � 0; 8 p 2 [0; 1]: (14.191)

To this end, we define

f(p) , �p log2 p� (1� p) log2(1� p)� 4p(1� p) (14.192)

and compute
@f

@p
= � log2 p+ log2(1� p)� 4 + 8p; (14.193)

@2f

@p2
= � 1

ln 2

�
1

p
+

1

1� p
�
+ 8; (14.194)

@3f

@p3
=

1

ln 2

�
1

p2
� 1

(1� p)2
�
: (14.195)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

322 Polar Codes

When inspecting the third-order derivative, we see that the first-order deriva-
tive is strictly convex for p < 1

2 , and strictly concave for p > 1
2 . Hence,

@f=@p = 0 can have at most one solution in each interval (0; 1=2) and (1=2; 1).
Since the first-order derivative is zero at p = 1=2 and since the second-
order derivative is positive at p = 1=2, we thus have exactly three extremal
points of f(p) in (0; 1): a maximum in the interval (0; 1=2), a minimum at
p = 1=2, and a maximum in the interval (1=2; 1). Combined with the fact
that f(0) = f(1) = 0 this then proves that f(p) � 0 for all p 2 [0; 1].

We progress to prove the lower bound in (14.173), i.e., we next need to
show that

I(W) + Z(W)� 1 � 0: (14.196)

Again, by (14.182) and (14.186),

Z(W) + I(W)� 1

= E
h
2
q
p(Y)

�
1� p(Y)�i+ 1� E

�
Hb
�
p(Y)

��� 1 (14.197)

= E
h
2
q
p(Y)

�
1� p(Y)��Hb

�
p(Y)

�i
: (14.198)

Thus, (14.196) holds if we can show that

2
q
p(1� p)�Hb(p) � 0; 8 p 2 [0; 1]: (14.199)

To this end, we define

f(p) , 2
q
p(1� p) + p log2 p+ (1� p) log2(1� p) (14.200)

and compute

@f

@p
=

1� 2pp
p(1� p) + log2 p� log2(1� p); (14.201)

@2f

@p2
=

1

p(1� p)

1

ln 2
� 1

2
p
p(1� p)

!
; (14.202)

@3f

@p3
=

1� 2p

4p2(1� p2)

3p

p(1� p) �
4

ln 2

!
: (14.203)

The remaining discussion is analogous to the paragraph after (14.195) and
therefore omitted.

Corollary 14.22. An immediate consequence of Proposition 14.21 is that�
I(W) = 0

�
()

�
Z(W) = 1

�
; (14.204)�

I(W) = 1
�
()

�
Z(W) = 0

�
: (14.205)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.4. Polar Coding 323

Proof: Plug I(W) = 0 or I(W) = 1 into (14.173).
Another immediate consequence of Proposition 14.21 and Corollary 14.22

is that polarization also happens with respect to Z(W).

Corollary 14.23 (Polarization of Z(W)). For any binary-input DMC W and any
� > 0,

lim
`!1

���s1 � � � s` : Z(Ws1���s`) 2 (�; 1� �)	��
2`

= 0: (14.206)

Moreover, the fraction of channels that are close to Z(Ws1���s`) = 0 tends to
I(W) and the fraction of channels that are close to Z(Ws1���s`) = 1 tends to
1� I(W) as `!1.

Proof: From Theorem 14.15 we know that I` = I(W`) converges to a
binary RV I1 taking value in f0; 1g with probability Pr[I1 = 1] = I(W). By
(14.174) it now follows that also

Z` , Z(W`) (14.207)

must converge to a binary RV with Pr[Z1 = 1] = 1� I(W).
However, as discussed already, we need more: We need to understand how

fast this polarization happens. The next theorem shows that the speed is
actually almost exponentially fast.

Theorem 14.24 (Speed of Polarization [AT09]). Let W be any binary DMC, define
fS`g`2N and fW`g`2N0 as in Section 14.2.5, and let Z` be defined in (14.207).
Then for any fixed 0 < � < 1

2 ,

lim
`!1

Pr
h
Z` � 2�2`�

i
= I(W): (14.208)

Conversely, if I(W) < 1, then for any � > 1
2 ,

lim
`!1

Pr
h
Z` � 2�2`�

i
= 0: (14.209)

Proof: The proof of this result is rather involved. We therefore postpone
it to Appendix 14.C.

14.4 Polar Coding

In this section we now finally address polar coding. We start with a family of
coding schemes that contain the polar coding schemes as a special case.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

324 Polar Codes

14.4.1 Coset Coding Scheme

The basic idea of polar coding is to repeatedly apply the polar transform to
our DMC and then select among the polarized channels only those that are
close to perfect. On those we transmit our message bits uncoded, while on
the useless channels we transmit frozen bits. The challenge lies in figuring
out which channels to use and which to freeze. So, at first we define a coding
scheme with an arbitrary choice of frozen bits.

Definition 14.25. For some n = 2`, ` 2 N, we define the (n;K;F ;uF) coset
coding scheme CTn as follows: The length-n codeword x is given as

x = uTn; (14.210)

where Tn describes the `-fold transformation matrix (14.76) and where u is
an n-vector consisting of K = n� jFj information bits and of jFj frozen bits.
The indices of the latter are given by the frozen bits set F � f1; : : : ; ng, and
their value is specified by the jFj-vector uF . The encoding function thus is
fully specified by Tn, F , and uF , and the code rate is given by R = K

n bits.
The decoding function is based on successive cancellation and is defined

by the sequential decisions

Ûk ,

8<
:uk if k 2 F ;
 k
�
Y n
1 ; Û

k�1
1

�
if k =2 F ;

(14.211)

where

 k
�
yn1 ; û

k�1
1

�
=

8><
>:
0 if W

(k)
n (yn1 ;û

k�1
1 j0)

W
(k)
n (yn1 ;û

k�1
1 j1) � 1;

1 otherwise:
(14.212)

Note that even though this looks like a bitwise ML decision it is not exactly
so, because the future frozen bits uF\fj : j>kg are treated as random variables
rather than as known bits.5

We remark that we will use Fc to denote all indices of the information
bits, i.e.,

Fc , f1; : : : ; ng n F : (14.213)

5This suboptimality will allow us to derive efficient recursive formulas for the computa-
tion of these decisions. Luckily, the loss in performance will turn out to be small and we
will still be able to achieve a rate I(W) with this coding scheme.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.4. Polar Coding 325

Example 14.26. Let n = 8 with

T8 =

0
BBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0

1 0 1 0 1 0 1 0

1 1 0 0 0 0 0 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1

1
CCCCCCCCCCCCCCCCCA

; (14.214)

and suppose that F = f1; 2; 4g and uF = (0 1 0). Then the length-8 codeword
is given as

x = uT8 (14.215)

= (u3 u5 u6 u7 u8)

0
BBBBBBBB@

1 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1

1
CCCCCCCCA

+ (0 1 0)

0
BB@
1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0

1 0 1 0 1 0 1 0

1
CCA (14.216)

= (u3 u5 u6 u7 u8)

0
BBBBBBBB@

1 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1

1
CCCCCCCCA
+ (1 0 0 0 1 0 0 0):

(14.217)

Note that here 5 information bits are mapped into a codeword of length 8.
Hence the rate of this coding scheme is R = 5

8 bits.

Also note that the naming coset code can now be understood: in math, a
coset is defined as the set of elements that is generated by adding a constant
value h to each element of a group G. Here, the coset code CTn is basically a K-
dimensional subspace of f0; 1gn, where each element of the subspace is shifted
by a constant value (which depends on the values of the frozen bits). �

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

326 Polar Codes

14.4.2 Performance of Coset Coding

We use P (n)
e (R;F ;uF) to denote the average probability of (block) error for

the (n;K = nR;F ;uF) coset code, where we make the usual assumption that
all information bits uFc are IID uniform. By P (n)

e (R;F) we denote the error
probability that is uniformly averaged over all possible choices of uF .

The key result for the analysis of coset coding schemes is as follows.

Theorem 14.27 (Performance of Coset Coding). For any binary DMC W and any
choice of n = 2` and F ,

P
(n)
e (R;F) �

X
k2Fc

Z
�
W

(k)
n
�
: (14.218)

Hence, there must exist some choice of uF such that

P
(n)
e (R;F ;uF) �

X
k2Fc

Z
�
W

(k)
n
�
: (14.219)

We will show later that if the DMC W is weakly symmetric, then (14.219)
holds for any choice of uF .

Proof: The information bits are IID uniform, and we also choose the frozen
bits uniformly at random:

Pr[UF = uF] =
1

2n�K
; 8uF 2 f0; 1gn�K;

independent of the information bits. We now split the block error event up
into the events that the first decision error occurs exactly at stage k, and then
apply the union bound:

P
(n)
e (R;F)

= Pr

0
@ [
k2Fc

n
Uk�1
1 = Ûk�1

1 ; Uk 6= Ûk
o1A (14.220)

�
X
k2Fc

Pr
h
Uk�1
1 = Ûk�1

1 ; Uk 6= Ûk
i

(14.221)

=
X
k2Fc

Pr
h
Uk�1
1 = Ûk�1

1 ; Uk 6= k
�
Y n
1 ; Û

k�1
1

�i
(14.222)

=
X
k2Fc

Pr
h
Uk�1
1 = Ûk�1

1 ; Uk 6= k
�
Y n
1 ; U

k�1
1

�i
(14.223)

�
X
k2Fc

Pr
h
Uk 6= k

�
Y n
1 ; U

k�1
1

�i
(14.224)

�
X
k2Fc

Pr
h
W

(k)
n
�
Y n
1 ; U

k�1
1

��Uk� �W (k)
n
�
Y n
1 ; U

k�1
1

��Uk � 1
�i

(14.225)

=
X
k2Fc

X
yn1 ;u

k
1

Pr
h
Y n
1 = yn1 ; U

k
1 = uk1

i

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.4. Polar Coding 327

�1
n
W

(k)
n
�
yn1 ; u

k�1
1

��uk� �W (k)
n
�
yn1 ; u

k�1
1

��uk � 1
�o

(14.226)

=
X
k2Fc

E
h
1
n
W

(k)
n
�
Y n
1 ; U

k�1
1

��Uk� �W (k)
n
�
Y n
1 ; U

k�1
1

��Uk � 1
�oi

(14.227)

=
X
k2Fc

E
�
1

�q
W

(k)
n
�
Y n
1 ; U

k�1
1

��Uk� � qW (k)
n
�
Y n
1 ; U

k�1
1

��Uk � 1
���

(14.228)

=
X
k2Fc

E

2
641
8><
>:1 �

vuuutW
(k)
n
�
Y n
1 ; U

k�1
1

��Uk � 1
�

W
(k)
n
�
Y n
1 ; U

k�1
1

��Uk�
9>=
>;
3
75 (14.229)

�
X
k2Fc

E

2
64
vuuutW

(k)
n
�
Y n
1 ; U

k�1
1

��Uk � 1
�

W
(k)
n
�
Y n
1 ; U

k�1
1

��Uk�
3
75 (14.230)

=
X
k2Fc

X
yn1 ;u

k
1

Pr[Uk = uk] Pr
�
Y n
1 = yn1 ; U

k�1
1 = uk�1

1

��Uk = uk
�

�

vuuutW
(k)
n
�
yn1 ; u

k�1
1

��uk � 1
�

W
(k)
n
�
yn1 ; u

k�1
1

��uk� (14.231)

=
X
k2Fc

X
yn1 ;u

k
1

1

2
W

(k)
n
�
yn1 ; u

k�1
1

��uk�
vuuutW

(k)
n
�
yn1 ; u

k�1
1

��uk � 1
�

W
(k)
n
�
yn1 ; u

k�1
1

��uk� (14.232)

=
X
k2Fc

1

2

X
uk

X
yn1 ;u

k�1
1

q
W

(k)
n
�
yn1 ; u

k�1
1

��uk�W (k)
n
�
yn1 ; u

k�1
1

��uk � 1
�

(14.233)

=
X
k2Fc

1

2

X
uk

X
yn1 ;u

k�1
1

q
W

(k)
n
�
yn1 ; u

k�1
1

��0�W (k)
n
�
yn1 ; u

k�1
1

��1� (14.234)

=
X
k2Fc

1

2

X
uk

Z
�
W

(k)
n
�

(14.235)

=
X
k2Fc

Z
�
W

(k)
n
�
: (14.236)

Here, (14.221) follows from the Union Bound (11.135); the subsequent equality
(14.222) follows from the definition of the decoder (14.211) and the fact that
k 2 Fc; (14.223) holds because before up to stage k the decoder has made
no errors Uk�1

1 = Ûk�1
1 ; in (14.224) we upper-bound some probabilities by 1;

(14.225) follows from decoding law (14.212), where we do not have equality
because of the case when both conditional probabilities are equal; in (14.226)
and (14.227) we write the probability as an expectation over the indicator
function:

Pr[X 2 B] =
X
x2B

Pr[X = x] =
X
x2X

Pr[X = x]1fx 2 Bg = E[1fX 2 Bg];

(14.237)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

328 Polar Codes

the inequality (14.230) follows because for any nonnegative RV X,

1f1 � Xg =
8<
:0 if 0 � X < 1;

1 if 1 � X
(14.238)

� X; (14.239)

(14.235) follows from the definition of the channel reliability parameter for the
binary-input DMC W

(k)
n (Definition 14.17); and the final equality uses that

1

2

1X
uk=0

1 = 1: (14.240)

Note that this results is useful in two ways: Firstly it gives an upper bound
on the probability of error of coset coding schemes and thereby a lower bound
on their performance. Secondly, it also gives a clue of how to design good
coset coding schemes: we need to freeze those bits uk that correspond to a
large value of Z

�
W

(k)
n
�
! This now directly leads us to the definition of polar

coding schemes.

14.4.3 Polar Coding Schemes

Definition 14.28. Given a binary DMC W, an (n;K;F ;uF) coset coding scheme
CTn is called polar coding scheme C

(n)
polar(R;uF) for W if F is chosen such

that

Z
�
W

(k)
n
� � Z

�
W

(k0)
n
�
; 8 k 2 F ; k0 2 Fc; (14.241)

and where uF = uF and R = K=n.
The block error probability of a polar coding scheme C

(n)
polar(R;uF) is de-

noted by P (n)
e (R;uF). When averaged over all possible choices for the frozen

bits vector uF, the average block error probability is denoted by P (n)
e (R).

We are now finally ready for the main result of this chapter.

Theorem 14.29 (Coding Theorem for Polar Coding).
Let W be any binary DMC with I(W) > 0. Fix some rate R < I(W) and
some 0 < � < 1

2 . Then the polar coding schemes of rate R = K
n satisfy

lim
n!1

P
(n)
e (R)

2�n�
= 0; (14.242)

i.e., the average error probability tends to zero subexponentially fast with
an exponent that grows (almost) with

p
n. Using the little-o notation (see

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.4. Polar Coding 329

Appendix 14.A) we have

P
(n)
e (R) 2 O

�
2�n

�
�
: (14.243)

Hence, there must exist some (sequence of) frozen bits vectors uF such
that

P
(n)
e (R;uF) 2 O

�
2�n

�
�
: (14.244)

Note that in case the capacity of W is achieved by a uniform input dis-
tribution, I(W) = C(W) and the polar coding scheme is capacity achieving!
Particularly this is the case for weakly symmetric binary DMCs (see also Sec-
tion 14.5).

In general the performance of polar codes depends on the frozen bits vector
uF, i.e., we need to find a good choice for it. We will see in Section 14.5 that
for symmetric DMCs the dependence on the frozen bits vector uF disappears,
i.e., the result above holds for any arbitrary choice of uF.

In [Mos22] we will discuss error exponents that describe how fast the
probability of error tends to zero as the blocklength grows to infinity. In gen-
eral it can be proven that for any DMC there exist block coding schemes with
an exponential decay of the error probability. Hence, the polar coding schemes
fall short of these schemes (the error exponent of polar codes is zero!). Never-
theless a subexponential decay is already pretty fast and, e.g., far outperforms
any polynomial decay.

Proof: The proof relies heavily on Theorem 14.24.
Let 0 < � < 1

2 and choose some �0 such that

� < �0 <
1

2
: (14.245)

(Since � is strictly smaller than 1
2 , such a choice of �0 is always possible.) Note

that the random channel selection introduced in (14.109)–(14.111) results in
a uniform distribution among the channels in

W , �W�����; : : : ;W+���+	: (14.246)

Therefore the statement from Theorem 14.24 (applied to 0 < �0 < 1
2) saying

that

lim
`!1

Pr

�
Z` � 2�2`�

0
�
= I(W) (14.247)

is equivalent to saying that (in the limit) a fraction of I(W) of all channels in
W have a channel reliability parameter satisfying

Z
�
W

(k)
2`

�
� 2�2`�

0

: (14.248)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

330 Polar Codes

Since polar coding by definition always picks the channels from W with the
smallest Z-values, Theorem 14.27 now guarantees that as long as R < I(W)

we have

lim
`!1

1

2�2`�
P

(2`)
e (R) � lim

`!1
1

2�2`�

X
k2Fc

opt

Z
�
W

(k)
2`

�
(14.249)

� lim
`!1

1

2�2`�

X
k2Fc

opt

2�2`�
0

(14.250)

= lim
`!1

1

2�2`�
2�2`�

0

� ��Fc
opt
�� (14.251)

= lim
`!1

22
`� � 2�2`�

0

� 2` � R (14.252)

= lim
`!1

2�2`�
0
+2`�+` � R (14.253)

= 0: (14.254)

Here, the first inequality follows from Theorem 14.27; the subsequent inequal-
ity from (14.248); the equality (14.252) holds because jFc

optj = K = nR; and
the final equality holds because (14.245) guarantees that in the exponent the
term with a negative sign dominates all other terms.

14.5 Polar Coding for Symmetric DMCs

In the following we give an alternative definition for weak symmetry of DMCs
that is slightly more formal than Definition 12.11 from Chapter 12. We directly
focus on binary DMCs.

Definition 14.30. A binary DMC W is called weakly symmetric if there exists
a permutation �1(�) : Y ! Y such that

��1
1 (y) = �1(y); y 2 Y; (14.255)

and

W (yj1) =W
�
�1(y)

��0�; y 2 Y: (14.256)

Using �0(�) to denote the identity permutation (i.e., the permutation that
leaves everything the way it is), obviously, any binary DMC satisfies

W (yjx� 0) =W
�
�0(y)

��x�; x 2 f0; 1g; y 2 Y: (14.257)

Thus, combining (14.256) and (14.257), we see that a weakly symmetric binary
DMC satisfies for any a 2 f0; 1g,

W (yjx� a) =W
�
�a(y)

��x�; x 2 f0; 1g; y 2 Y; a 2 f0; 1g: (14.258)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.5. Polar Coding for Symmetric DMCs 331

To understand why Definition 14.30 and Definition 12.11 are equivalent,
let Y1; : : : ;YS be the largest partition6 of Y satisfying[

y2Ys

�
�1(y)

	
= Ys; s = 1; : : : ;S: (14.259)

(The subsets Ys correspond to the subchannels of Section 12.3.) Now note
that for every y 2 Ys there exists a ~y 2 Ys with

W (yj0) =W (~yj1); (14.260)

i.e., each subchannels Ys is uniformly focusing. Indeed, for y 2 Ys,

W (yj0) =W
�
�1(y)

��1� (14.261)

and �1(y) 2 Ys by (14.259).
Moreover,[

y2Ys

�
W (yj0)	 = [

y2Ys

n
W
�
�1(y)

��1�o =
[
y2Ys

�
W (yj1)	; (14.262)

where the first equality follows from (14.258) and the second from (14.259).
Hence, each subchannel is also uniformly dispersive.

In the following we will assume that W is weakly symmetric, i.e., there
exists a corresponding permutation �1(�).
Remark 14.31. Note that in the remainder of this chapter, we will be lazy and
use symmetric, when we actually mean weakly symmetric. M

Lemma 14.32. If W is symmetric, then also W+ and W� are symmetric.

Proof: Using that W is symmetric and using Corollary 14.2, we have for
a 2 f0; 1g

W�(y1; y2ju1 � a)
=

1

2
W (y1ju1 � a� 0)W (y2j0) + 1

2
W (y1ju1 � a� 1)W (y2j1) (14.263)

=
1

2
W
�
�a(y1)

��u1 � 0
�
W
�
�0(y2)

��0�
+

1

2
W
�
�a(y1)

��u1 � 1
�
W
�
�0(y2)

��1� (14.264)

=W���a(y1); �0(y2)��u1� (14.265)

=W�����(a;0)(y1; y2)��u1�; (14.266)

where we have defined

���(a1;:::;an)(y) ,
�
�a1(y1); : : : ; �an(yn)

�T
: (14.267)

6A partition of Y is a split of Y into subsets that are nonzero, disjoint, and add to the
whole:

S
s
Ys = Y. A partition is largest if it contains the largest number of subsets.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

332 Polar Codes

Hence, we have found a corresponding permutation for W� showing that also
W� is symmetric.

Similarly,

W+(y1; y2; u1ju2 � a) = 1

2
W (y2ju1 � u2 � a)W (y2ju2 � a) (14.268)

=
1

2
W
�
�a(y1)

��u1 � u2�W �
�a(y2)

��u2� (14.269)

=W+��a(y1); �a(y2); u1��u2� (14.270)

=W+����(a;a;0)(y1; y2; u1)��u2�: (14.271)

Corollary 14.33. If W is symmetric, then all channels generated from it by the
polar transform are symmetric. In particular, the channels W

(k)
n for k =

1; : : : ; n are symmetric, and also the induced vector channel with input u and
output y is symmetric:

Wtot;n(yju� a) =Wtot;n
�
���aTn(y)

��u�: (14.272)

Proof: The fact that W(k)
n is symmetric follows from a recursive application

of Lemma 14.32.
Using the product notation

Wn(yjx) =
nY

k=1

W (ykjxk); (14.273)

we have

Wtot;n(yju� a) =Wn�y��(u� a)Tn
�

(14.274)

=Wn�y��uTn � aTn
�

(14.275)

=Wn����aTn(y)
��uTn

�
(14.276)

=Wtot;n
�
���aTn(y)

��u�: (14.277)

Recall that the DMC W
(k)
n has input uk and output

�
Y n
1 ; U

k�1
1

�
. Its channel

reliability parameter is therefore defined as

Z
�
W

(k)
n

�
=

X
yn1 ;u

k�1
1

r
W

(k)
n
�
yn1 ; u

k�1
1

���0�W (k)
n
�
yn1 ; u

k�1
1

��1�: (14.278)

We define now a conditional channel reliability parameter as follows

Z
�
W

(k)
n

���uk�1
1

�
,
X
yn1

q
W

(k)
n
�
yn1 ; u

k�1
1

��0�W (k)
n
�
yn1 ; u

k�1
1

��1�: (14.279)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.5. Polar Coding for Symmetric DMCs 333

Proposition 14.34. For a symmetric binary DMC W and for any k 2 f1; : : : ; ng,
the conditional channel reliability parameter of W(k)

n does not depend on the
choice of uk�1

1 :

Z
�
W

(k)
n

���uk�1
1

�
= Z

�
W

(k)
n

���0k�1
1

�
: (14.280)

Proof: Fix some un1 . Then

Z
�
W

(k)
n

���uk�1
1

�
=
X
yn1

q
W

(k)
n
�
yn1 ; u

k�1
1

��0�W (k)
n
�
yn1 ; u

k�1
1

��1� (14.281)

=
X
yn1

q
W

(k)
n
�
���a(y

n
1); u

k�1
1 � ak�1

1

��0� ak�

�
q
W

(k)
n
�
���a(y

n
1); u

k�1
1 � ak�1

1

��1� ak� (14.282)

=
X
yn1

q
W

(k)
n
�
���u(y

n
1); 0

k�1
1

��0� uk�W (k)
n
�
���u(y

n
1); 0

k�1
1

��1� uk� (14.283)

=
X
yn1

q
W

(k)
n
�
���u(y

n
1); 0

k�1
1

��0�W (k)
n
�
���u(y

n
1); 0

k�1
1

��1� (14.284)

=
X
~yn1

q
W

(k)
n
�
~yn1 ; 0

k�1
1

��0�W (k)
n
�
~yn1 ; 0

k�1
1

��1� (14.285)

= Z
�
W

(k)
n

���0k�1
1

�
: (14.286)

Here (14.282) follows from Corollary 14.33; in (14.283) we choose a , u;
and (14.285) holds because for a fixed u, summing over all y is equivalent to
summing over all ���u(y).

We are now ready for a restatement of Theorem 14.29.

Theorem 14.35 (Coding Theorem for Polar Coding on Symmetric DMCs).
Let W be a symmetric binary DMC with positive capacity C(W) > 0.
Fix some rate R < C(W), some 0 < � < 1

2 , and some frozen bits vector
uF. Then the polar coding scheme of rate R satisfies

lim
n!1

P
(n)
e (R;uF)

2�n�
= 0; (14.287)

i.e., polar coding is capacity achieving irrespective of the choice of the
frozen bits vector.

Proof: This follows directly from an adaptation of the proof of Theo-
rem 14.29 using Proposition 14.34.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

334 Polar Codes

14.6 Complexity Analysis

A capacity-achieving coding scheme is useless if the complexity of implement-
ing and operating it is very high. Note that we know from Chapter 11 that
a randomly generated codebook very likely is performing well. However, the
complexity of encoding and decoding for such a random scheme is exuberant
and therefore random codes are only of theoretical interest.

In this section we will now show that polar coding schemes can be operated
at quite low costs.

14.6.1 Encoder

In principle the encoder is straightforward: we need to perform the matrix
multiplication of the n-vector u (combined K information bits and n � K

frozen bits) with Tn. In general this requires O(n2) operations.7 Luckily,
we can improve on this by taking advantage of the recursive structure of our
system. Recalling the discussion in Section 14.2.1 and, e.g., Figure 14.7, we
note that the encoder consists of several blocks (see Figure 14.12): The first
block Pn performs the bit reversal, and the recursive block Gn is responsible
for the main part of the polar transform, calling itself twice with a smaller
number of inputs.

In the following we assume that the complexity of the bit reversal is n
operations, while each EXOR counts as 1 operation. Hence, the complexity
of this encoder is

�encoder(n) = n+ �G(n) (14.288)

where

�G(n) =
n

2
+ 2�G

�
n

2

�
; (14.289a)

�G(2) = 1: (14.289b)

Since n = 2`, we can also reformulate this as

��G(`) = 2`�1 + 2��G(`� 1); (14.290a)

��G(1) = 1: (14.290b)

It thus follows that

��G(`) = 2`�1 + 2
�
2`�2 + 2

�
2`�3 + 2(� � � (14.291)

or

��G(`) =
`�1X
j=0

2`�1�j � 2j =
`�1X
j=0

2`�1 = ` 2`�1 =
1

2
2` `: (14.292)

7See Appendix 14.A for the definition of the big-O notation.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.6. Complexity Analysis 335

+

+

+

~U1

~U2

~Un=2

~Un=2+1

~Un=2+2

~Un

Gn=2

Gn=2

X1

X2

Xn=2

Xn=2+1

Xn=2+2

Xn

Gn

Pn

U1

U2

Un

Figure 14.12: Recursive construction of polar encoder.

Rewriting this again with n = 2` and plugging it into (14.288), we obtain

�encoder(n) = n+
1

2
n log2 n; (14.293)

i.e.,

�encoder(n) 2 O(n log2 n): (14.294)

Note that the structure of the encoder allows parallel computing, i.e., one
can find algorithms using n parallel processors that each then only needs to
perform O(log2 n) operations.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

336 Polar Codes

14.6.2 Decoder

For an arbitrary coset coding scheme, the decoder needs to evaluate for each
k 2 Fc the likelihood ratio

L
(k)
n
�
yn1 ; û

k�1
1

�
,
W

(k)
n
�
yn1 ; û

k�1
1

��0�
W

(k)
n
�
yn1 ; û

k�1
1

��1� : (14.295)

The question therefore arises how one can compute this efficiently. We again
aim for a recursive algorithm, and we would like to make use of the formulas
from Corollary 14.10. To this end, we firstly drop the constraint that k 2 Fc,
but decide to compute L

(k)
n for all k = 1; : : : ; n. Of course, in the end, the

decoder will not use the likelihood ratios belonging to frozen bits, however,
this overhead is more than compensated because many computations can be
reused several times.

So, in order to be able to use the expressions of Corollary 14.10 we group
the likelihood ratios into two classes: one for even k and one for odd k:

n
L
(k)
n
�
yn1 ; û

k�1
1

�
: k = 1; : : : ; n

o
=
n
L
(2j�1)
n

�
yn1 ; û

2j�2
1

�
: j = 1; : : : ;

n

2

o
[
n
L
(2j)
n
�
yn1 ; û

2j�1
1

�
: j = 1; : : : ;

n

2

o
:

(14.296)

Now, using (14.63) we compute

L
(2j�1)
n

�
yn1 ; û

2j�2
1

�
= L

(2j�1)
n (y; û) (14.297)

=
W

(2j�1)
n (y; ûj0)

W
(2j�1)
n (y; ûj1)

(14.298)

=
W

(j)
n=2

�
yl; ûo � ûe

��0�W (j)
n=2

�
yu; ûe

��0�+W
(j)
n=2

�
yl; ûo � ûe

��1�W (j)
n=2

�
yu; ûe

��1�
W

(j)
n=2

�
yl; ûo � ûe

��1�W (j)
n=2

�
yu; ûe

��0�+W
(j)
n=2

�
yl; ûo � ûe

��0�W (j)
n=2

�
yu; ûe

��1�
(14.299)

=

L
(j)
n=2

�
yl; ûo � ûe

�
+ 1

L
(j)

n=2
(yu;ûe)

1 +
L
(j)

n=2
(yl;ûo�ûe)

L
(j)

n=2
(yu;ûe)

(14.300)

=
1 + L

(j)
n=2

�
yl; ûo � ûe

�
L
(j)
n=2

�
yu; ûe

�
L
(j)
n=2

�
yl; ûo � ûe

�
+ L

(j)
n=2

�
yu; ûe

� (14.301)

=
1 + L

(j)
n=2

�
y
n=2
1 ; û

2j�2
1;odd � û2j�2

1;even

�
L
(j)
n=2

�
ynn=2+1; û

2j�2
1;even

�
L
(j)
n=2

�
y
n=2
1 ; û

2j�2
1;odd � û2j�2

1;even

�
+ L

(j)
n=2

�
ynn=2+1; û

2j�2
1;even

� : (14.302)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.6. Complexity Analysis 337

Similarly, using (14.64),

L
(2j)
n
�
yn1 ; û

2j�1
1

�
= L

(2j)
n
�
y; û; û2j�1

�
(14.303)

=
W

(2j)
n

�
y; û; û2j�1

��0�
W

(2j)
n

�
y; û; û2j�1

��1� (14.304)

=
W

(j)
n=2

�
yl; ûo � ûe

��û2j�1
�
W

(j)
n=2

�
yu; ûe

��0�
W

(j)
n=2

�
yl; ûo � ûe

��û2j�1 � 1
�
W

(j)
n=2

�
yu; ûe

��1� (14.305)

=
�
L
(j)
n=2

�
yl; ûo � ûe

��1�2û2j�1

L
(j)
n=2

�
yu; ûe

�
(14.306)

=
�
L
(j)
n=2

�
y
n=2
1 ; û

2j�2
1;odd � û2j�2

1;even

��1�2û2j�1

L
(j)
n=2

�
ynn=2+1; û

2j�2
1;even

�
: (14.307)

Interestingly, the required likelihood ratios for the evaluation of (14.302) and
(14.307) are the same! Thus, for any j 2 f1; : : : ; n=2g, to computen

L
(2j�1)
n

�
yn1 ; û

2j�2
1

�
;L

(2j)
n
�
yn1 ; û

2j�1
1

�o
(14.308)

it is sufficient to known
L
(j)
n=2

�
y
n=2
1 ; û

2j�2
1;odd � û2j�2

1;even

�
;L

(j)
n=2

�
ynn=2+1; û

2j�2
1;even

�o
: (14.309)

Hence, in order to determine the n likelihood ratios (14.295), we need to first
find the n

2 � 2 = n likelihood ratios (14.309). The latter can again be done
recursively!

We first consider the likelihood ratios on the left in (14.309):�
L
(k)
n=2

�
y
n=2
1 ; û2k�2

1;odd � û2k�2
1;even

�
: k = 1; : : : ;

n

2

�
: (14.310)

We introduce the shorthand

v̂
n=2
1 , ûn1;odd � ûn1;even (14.311)

and split (14.310) up into even and odd:�
L
(k)
n=2

�
y
n=2
1 ; v̂k�1

1

�
: k = 1; : : : ;

n

2

�

=

�
L
(2j�1)
n=2

�
y
n=2
1 ; v̂

2j�2
1

�
: j = 1; : : : ;

n

4

�
[
�
L
(2j)
n=2

�
y
n=2
1 ; v̂

2j�1
1

�
: j = 1; : : : ;

n

4

�
:

(14.312)

Again, by (14.302) and (14.307), these classes can be computed once we know
the values of �

L
(j)
n=4

�
y
n=4
1 ; v̂

2j�2
1;odd � v̂2j�2

1;even

�
: j = 1; : : : ;

n

4

�

[
�
L
(j)
n=4

�
y
n=2
n=4+1; v̂

2j�2
1;even

�
: j = 1; : : : ;

n

4

�
: (14.313)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

338 Polar Codes

To evaluate the likelihood ratios on the right in (14.309):�
L
(k)
n=2

�
ynn=2+1; ŵ

k�1
1

�
: k = 1; : : : ;

n

2

�
; (14.314)

where we use the shorthand

ŵ
n=2
1 , ûn1;even; (14.315)

we need to determine�
L
(j)
n=4

�
y
3n=4
n=2+1; ŵ

2j�2
1;odd � ŵ2j�2

1;even

�
: j = 1; : : : ;

n

4

�

[
�
L
(j)
n=4

�
yn3n=4+1; ŵ

2j�2
1;even

�
: j = 1; : : : ;

n

4

�
: (14.316)

Hence, we need to compute n
4 � 4 = n likelihood ratios.

We continue in this fashion until we reach

L1(y) =
W (yj0)
W (yj1) : (14.317)

In this way, in total we evaluate

(`+ 1) � n = (log2 n+ 1) � n (14.318)

times the expressions (14.302) or (14.307) for various different likelihood ra-
tios.

Assuming that the evaluation of (14.302) or (14.307) has a complexity of
at most some constant �, we see that the complexity of the decoder is

�decoder(n) � � � (log2 n+ 1) � n (14.319)

i.e.,

�decoder(n) 2 O(n log2 n): (14.320)

Remark 14.36. Note that if we compute the likelihood ratios (14.295) for all
k 2 Fc separately using (14.302) and (14.307), but without sharing the inter-
mediate results, then

�k(n) � 2�k

�
n

2

�
+ �: (14.321)

Taking �k(1) = 1, this yields

�k(n) � 2` + (2` � 1)� � (1 + �)2` = (1 + �)n; (14.322)

and thus

�decoder(n) � K(1 + �)n = R(1 + �)n2 2 O(n2): (14.323)

M

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.6. Complexity Analysis 339

1

(y81)

2

(y41)

3

(y21)

4

(y1)

21

(y81 ; û
4
1)

22

�
y
4
1 ; û

4
1;even � û

4

1;odd
�

23

�
y
2
1 ; û1 � û2 � û3 � û4

�

5

(y2)

17

(y81 ; û
2
1)

18

�
y
4
1 ; û1 � û2

�

6

(y43)

7

(y3)

29

(y81 ; û
6
1)

30

�
y
4
1 ; û

6
1;even � û

6

1;odd
�

24

�
y
4
3 ; û3 � û4

�

8

(y4)

16

(y81 ; û1)

9

(y85)

10

(y65)

11

(y5)

28

(y81 ; û
5
1)

25

(y85 ; û
4
1;even)

26

�
y
6
5 ; û2 � û4

�

12

(y6)

20

(y81 ; û
3
1)

19

(y85 ; û2)

13

(y87)

14

(y7)

32

(y81 ; û
7
1)

31

(y85 ; û
6
1;even)

27

(y87 ; û4)

15

(y8)

Figure 14.13: Recursive computation of likelihood ratios for successive can-
cellation decoding for a polar coding scheme with blocklength
n = 8 (yielding 8(log2 8 + 1) = 32 terms). The variables above
the nodes show the required inputs of the corresponding likeli-
hood ratio and the number below represents the order of com-
putation when following a depth-first approach. At each node
the corresponding likelihood ratio can only be computed once
the two connected nodes on its right feed back their correspond-
ing likelihood ratio.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

340 Polar Codes

Note that we have not yet discussed the order in which the (log2 n + 1)n

likelihood ratios should be evaluated. Recall that we are doing successive
cancellation decoding, i.e., for the decoding of Uk, ûk�1

1 need to be decided
already. An intuitive procedure is to follow a depth-first algorithm.

Figure 14.13 shows an example for a blocklength n = 8 polar coding
scheme: We start at node 1, which can only compute its likelihood ratio
(LR) if it obtains the LRs from its right neighbors (node 2 and 9). This is not
the case yet, thus we proceed to node 2 (which needs to wait for 3 and 6); to
node 3 (waiting for 4 and 5). Node 4 then actually can compute its LR (based
on the output y1 only), and similarly node 5 (based on y2). This now allows
node 3 to compute its LR and feed it back to node 2. After processing node
6 (based on node 7 and 8), node 2 then feeds back its LR to node 1. Now we
follow the second branch starting from node 1 to pass through nodes 9 to 15.
Finally, node 1 can compute its LR and we can decode for û1, which is now
available for the remainder of the decoding.

We proceed to node 16, that needs as its input y81 and also the freshly
decoded û1. Note that node 16 has already access to the LRs of node 2 and
9 (as these nodes have already finished computing their LR!), thus we can
immediately decode for û2.

We proceed to node 17, etc.

14.6.3 Code Creation

Obviously, code creation complexity is less crucial than encoding and decoding
complexity because a code needs to be created once only and usually in an
offline fashion, while the encoding and decoding are repeated tasks and have
to be executed online.

Nevertheless, the code creation should be achievable in reasonable time
and effort as we cannot afford to spend months of computation time on a
high-speed computer system just for the design of one particular polar code.

The polar code creation basically consists of finding the frozen bits set F
that satisfies (14.241) and the value of the frozen bits vector uF.

To choose F , we need to evaluate the channel reliability parameter Z
�
W

(k)
n
�

for all k = 1; : : : ; n and then sort them. Unfortunately, the computation of
Z(W) grows with the alphabet size of the channel output, and the channel
output alphabets grow with each application of the polar transform. So, in
general no efficient algorithm is known to fulfill this task.

There is the exception of the BEC. We already have seen in Example 14.3
that applying the polar transform to a BEC will result in two new BECs with
different erasure probabilities:

BEC(�)+ = BEC
�
�2
�
; (14.324)

BEC(�)� = BEC
�
2� � �2�: (14.325)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.7. Discussion 341

We also know from Theorem 14.20 that for a BEC,

Z(BEC+) = Z2(BEC); (14.326)

Z(BEC�) = 2Z(BEC)� Z2(BEC): (14.327)

Combined with the fact that

Z
�
BEC(�)

�
= � (14.328)

this allows us to compute all channel reliability parameters recursively in
2(n� 1) steps, i.e.,

�F ;BEC(n) 2 O(n): (14.329)

For a general binary channel, this is not possible. There is a quickly
growing list of publications addressing this topic. Currently, the most efficient
systems use tricks to approximate Z

�
W

(k)
n
�

in clever ways. In particular, one
would like to have at the same time upper and lower bounds to the exact
values that can be computed with much less complexity. This way one might,
strictly speaking, miss out on the polar coding scheme, but one will find a coset
coding scheme with (almost) identical performance in much shorter time. We
omit the details and refer the interested reader to the literature [TV13].

The search for the optimal values of uF brings additional difficulty. Again,
it is practically impossible to check through all possible choices. Luckily, it
turns out that the performance of a polar coding scheme normally is not very
sensitive to the exact choice of uF.

There are further reasons why the frozen bits vector receives less attention:
Firstly, we know that in the case of symmetric channels the value of the frozen
bits vector is completely irrelevant. Secondly, recall that in the derivation of
the average error probability of a coset coding scheme when we average over all
frozen bits vectors, we have made the assumption that the frozen bits vectors
are picked uniformly. Hence, a possible option to avoid the search for a good
frozen bits vector is to use pseudo-random vectors that are deterministic and
therefore known at both transmitter and receiver, but that mimic a uniform
distribution.

14.7 Discussion

The discovery of a first deterministic construction of a capacity-achieving cod-
ing scheme is one of the chief breakthroughs in information theory of the first
decade of the 21st century. Polar coding still suffers from some drawbacks that
at the moment still hampers its widespread use, but there is a lot of research
effort put into these issues.

One of the main point of criticism is the slow error decay rate (zero error
exponent [Mos22, Chapter 17], compare with Theorem 14.29) in comparison to

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

342 Polar Codes

known LDPC or turbo codes. So, given that one chooses a coding rate R < C

small enough such that both LDPC and polar coding schemes exist (LDPC
codes are not capacity achieving!), the polar coding scheme will require longer
blocklengths than LDPC codes to attain the same average error rate.

An important point to make here, however, is that the performance of
polar coding schemes is theoretically known (we have proven bounds!), while
no such bounds are known for LDPC codes. There the usual approach is to
simulate the coding scheme in order to get a good estimate of its performance.
Unfortunately, for situations when one requires extremely small error proba-
bilities like 10�17 (e.g., for a harddrive), simulation is not possible. Therefore,
no one can guarantee that the LDPC scheme will perform as promised and
required! LDPC and turbo coding schemes can show effects like an error floor
at very low values of the error probability and there exist no known ways of
proving where exactly such an error floor occurs. For such cases polar coding
can offer certainty with a provably sufficient performance.

Moreover, it has been shown that by replacing the suboptimal successive
cancellation decoding by other decoding schemes of higher complexity like,
e.g., successive cancellation list decoding [TV15] or soft-output decoding
schemes, [Arı08], [FB14] it is possible to significantly improve the performance
of polar codes.

The main reason for the poorer performance of polar coding, however, lies
hidden in the frozen bits that are — by definition — fixed and therefore irre-
vocably lost for communication. Since polarization happens relatively slowly,
many of the frozen bits are used on channels that actually would have some
small capacity left. In his Shannon Lecture, Arıkan presented a new coding
scheme called polarization-adjusted convolutional (PAC) codes that tries
to fix this. The idea of PAC codes is to use a simple (linear!) convolutional
code around the polar coding scheme. This code will make sure that none
of the bit channels of the polar code is used only for for frozen bits, so the
remaining capacity within those almost useless channels can still be used. The
convolutional code can be decoded with low complexity based on sequential
decoding in a tree [Gal68, pp. 263–286]. The performance of such a combined
convolutional/polar coding scheme is very close to the theoretical limit for any
fixed blocklength! For more details we refer the interested reader to [Arı19b],
[Arı19a].

We have discussed here only the simplest setup the way it was introduced
in the seminal paper of Arıkan [Arı09]. There do exist ways of generalizing
the concept of polarization to DMCs that are not restricted to have binary in-
put alphabets [ŞTA09] [Şaş11a]. Even generalizations to multiple-user setups
[TA12] or to channels with memory have been found [Şaş11b]. The principle of
polarization can also applied to sources, leading to new algorithms for source
compression [Arı10].

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.A. Appendix: Landau Symbols 343

14.A Appendix: Landau Symbols

The Landau symbols are used to describe the asymptotic behavior of functions
and series. They show up particularly in computer science to describe the
complexity of algorithms as a function of the size of the input. For example, a
binary search algorithm to search for a particular element in n elements takes
a number of steps that lies in O(logn), while the bubble-sort algorithm takes
for the same task a number of steps in O(n2).
Definition 14.37. Let f; g : N ! R be given functions. There are five different
Landau symbols:

• Big-O notation: We say that

f(n) 2 O�g(n)� (14.330)

if there exists some constant M > 0 and some n0 2 N such that

jf(n)j �Mjg(n)j; 8n � n0: (14.331)

In words: “f does not grow substantially faster than g.”

• Little-o notation: We say that

f(n) 2 O
�
g(n)

�
(14.332)

if for all arbitrary constants M > 0 there exists some n0 2 N such that

jf(n)j <Mjg(n)j; 8n � n0: (14.333)

In words: “f grows substantially slower than g.”

• Big-Omega notation: We say that

f(n) 2

�
g(n)

�
(14.334)

if there exists some constant M > 0 and some n0 2 N such that

jf(n)j �Mjg(n)j; 8n � n0: (14.335)

In words: “f does not grow substantially slower than g.”

• Little-omega notation: We say that

f(n) 2 !�g(n)� (14.336)

if for all arbitrary constants M > 0 there exists some n0 2 N such that

jf(n)j >Mjg(n)j; 8n � n0: (14.337)

In words: “f grows substantially faster than g.”

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

344 Polar Codes

• Theta notation: We say that

f(n) 2 �
�
g(n)

�
(14.338)

if

f(n) 2 O�g(n)� and f(n) 2

�
g(n)

�
: (14.339)

In words: “f grows essentially as fast as g.”

Note thatO�g(n)� is a set of functions that contains all functions satisfying
(14.331). However, one often sees expressions like f(n) = O�g(n)�, which is
supposed to mean the same thing, but is formally not correct.

In the definitions above we have assumed that the functions map natural
numbers to reals. We can easily generalize this definition for arbitrary func-
tions f; g : Rd ! R and an arbitrary limit x ! x1 by choosing a sequence
fxng with limn!1 xn = x1, defining

~f(n) , f(xn); ~g(n) , g(xn); n 2 N; (14.340)

and then applying Definition 14.37 to ~f and ~g.
While Definition 14.37 is quite easy to understand, it is often not very

convenient. The following proposition simplifies life in that respect.

Proposition 14.38. Let f; g : N ! R be given functions. Then the following
relations hold:

f(n) 2 O
�
g(n)

� () lim
n!1

f(n)

g(n)
= 0; (14.341)

f(n) 2 !�g(n)� () lim
n!1

����f(n)g(n)

���� =1; (14.342)

f(n) 2 O�g(n)� () lim
n!1

����f(n)g(n)

���� <1; (14.343)

f(n) 2

�
g(n)

� () lim
n!1

����f(n)g(n)

���� > 0; (14.344)

f(n) 2 �
�
g(n)

� () 0 < lim
n!1

����f(n)g(n)

���� � lim
n!1

����f(n)g(n)

���� <1; (14.345)

f(n) 2 O�g(n)� () g(n) 2

�
f(n)

�
; (14.346)

f(n) 2 O
�
g(n)

� () g(n) 2 !�f(n)�; (14.347)

and

O
�
g(n)

� � O�g(n)�; (14.348)

!
�
g(n)

� �

�
g(n)

�
; (14.349)

�
�
g(n)

�
= O�g(n)� \
�g(n)�: (14.350)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.B. Appendix: Concavity of Z(W) and Proof of Theorem 14.20 345

Proof: The derivation of these relations is straightforward. We only show
it for (14.341), but omit the rest. If f(n) 2 O

�
g(n)

�
, then by definition for n

large enough

jf(n)j <Mjg(n)j: (14.351)

Hence,

lim
n!1

����f(n)g(n)

���� <M: (14.352)

Since this must hold for any M > 0, we can choose M arbitrarily close to 0,
thereby proving one direction.

On the other hand, assume that the right-hand side of (14.341) holds.
Then for any � > 0 we can find some n0 such that for all n � n0����f(n)g(n)

���� < �; (14.353)

or

jf(n)j < �jg(n)j: (14.354)

Hence, setting M = � and applying Definition 14.37 we see that f(n) 2
O
�
g(n)

�
.

14.B Appendix: Concavity of Z(W) and Proof of (14.152) in
Theorem 14.20

In the following proof we will make use of the Minkowski Inequality for sums.

Lemma 14.39 (Minkowski Inequality for Sums). Let �1; : : : ; �n and �1; : : : ; �n be
nonnegative real numbers. Then for p � 1,

nX
k=1

(�k + �k)
p

! 1
p

�

nX
k=1

�
p
k

! 1
p

+

nX

k=1

�
p
k

! 1
p

; (14.355)

and for p � 1,
nX

k=1

(�k + �k)
p

! 1
p

�

nX
k=1

�
p
k

! 1
p

+

nX

k=1

�
p
k

! 1
p

: (14.356)

Proof: Assume p � 1 and define

f(x; y) ,
�
x1=p + y1=p

�p
; x; y � 0: (14.357)

It can be verified that f(�; �) is convex over all pairs (x; y) in the first quarter
of the plane, i.e., for all � 2 [0; 1] and any choice x0; y0; x1; y1 � 0,

f
�
�x0 + (1� �)x1; �y0 + (1� �)y1

� � �f(x0; y0) + (1� �)f(x1; y1): (14.358)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

346 Polar Codes

Hence, by adapting the Jensen Inequality (Theorem 2.1) to this two-dimen-
sional setup, we obtain for a pair of nonnegative RVs (~X; ~Y):

E
��

~X1=p + ~Y 1=p
�p�

= E
�
f(~X; ~Y)

�
(14.359)

� f�E� ~X�;E�~Y �� (14.360)

=
�
E
�
~X
�1=p

+ E
�
~Y
�1=p�p

: (14.361)

Taking both sides to the power of 1=p and defining X , ~X1=p and Y , ~Y 1=p

yields �
E[(X + Y)p]

�1=p
� E

�
Xp�1=p + E

�
Y p�1=p: (14.362)

Finally, by choosing X and Y to be uniform over f�1; : : : ; �ng and f�1; : : : ;
�ng, respectively, we obtain

1

n

nX
k=1

(�k + �k)
p

! 1
p

�

1

n

nX
k=1

�
p
k

! 1
p

+

1

n

nX
k=1

�
p
k

! 1
p

; (14.363)

from which (14.356) follows by multiplying both sides by n1=p.
The proof of (14.355) is identical apart from the fact that for p � 1 the

function (14.357) is concave instead of convex and that therefore the direction
of the inequality in the Jensen Inequality needs to be reversed.

We are now ready to prove that the channel reliability parameter Z(W) is
concave in W. To this end, let W0 and W1 be two binary-input DMCs and
define for � 2 [0; 1]

W , �W0 + (1� �)W1: (14.364)

Then,

Z(W) =
X
y

q
W (yj0)W (yj1) (14.365)

=
X
y

q
W (yj0)W (yj1) + 1

2

X
y

W (yj0) + 1

2

X
y

W (yj1)� 1 (14.366)

=
1

2

X
y

�q
W (yj0) +

q
W (yj1)

�2

� 1 (14.367)

=
1

2

X
y

 X
x

q
W (yjx)

!2

� 1 (14.368)

=
1

2

X
y

 X
x

q
�W0(yjx) + (1� �)W1(yjx)

!2

� 1 (14.369)

� 1

2

X
y

 X
x

q
�W0(yjx)

!2

+
1

2

X
y

 X
x

q
(1� �)W1(yjx)

!2

� 1

(14.370)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.C. Appendix: Proof of Theorem 14.24 347

= �

0
@1

2

X
y

 X
x

q
W0(yjx)

!2

� 1

1
A

+ (1� �)
0
@1

2

X
y

 X
x

q
W1(yjx)

!2

� 1

1
A (14.371)

= �Z(W0) + (1� �)Z(W1): (14.372)

Here the second equality holds because we add terms that add to zero; the
inequality follows from Lemma 14.39 with p = 1=2, �x = �W0(yjx), and
�x = (1 � �)W1(yjx); and for the last equality we follow the steps (14.365)–
(14.368) in backward order.

We turn to the proof of the LHS in (14.152). To this end, we use Corol-
lary 14.2 to write W� as

W�(y1; y2ju1) = 1

2
W (y1ju1)W (y2j0)| {z }

,W0(y1;y2ju1)

+
1

2
W (y1ju1 � 1)W (y2j1)| {z }

,W1(y1;y2ju1)

: (14.373)

This can be interpreted as a mixture (14.364) with � = 1
2 . Thus, we can use

(14.372):

Z(W�) � 1

2
Z(W0) +

1

2
Z(W1) (14.374)

=
1

2

X
y1;y2

q
W0(y1; y2j0)W0(y1; y2j1)

+
1

2

X
y1;y2

q
W1(y1; y2j0)W1(y1; y2j1) (14.375)

=
1

2

X
y1;y2

q
W (y1j0)W (y2j0)W (y1j1)W (y2j0)

+
1

2

X
y1;y2

q
W (y1j0� 1)W (y2j1)W (y1j1� 1)W (y2j1) (14.376)

=
1

2

X
y2

W (y2j0)
X
y1

q
W (y1j0)W (y1j1)

+
1

2

X
y2

W (y2j1)
X
y1

q
W (y1j0)W (y1j1) (14.377)

=
1

2
Z(W) +

1

2
Z(W) (14.378)

= Z(W): (14.379)

This completes the proof of Theorem 14.20.

14.C Appendix: Proof of Theorem 14.24

Using the random channel selection process defined in (14.109)–(14.111) we
define

Z` , Z(W`): (14.380)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

348 Polar Codes

Together with Theorem 14.20 this leads to a class Z of random processes
fZ`g`2N0 that satisfy

Z0 = z0; for some z0 2 [0; 1]; (14.381)(
Z` = Z2

`�1 if S` = +;

Z` 2
�
Z`�1; 2Z`�1 � Z2

`�1

�
if S` = �;

` = 1; 2; : : : (14.382)

We know from Corollary 14.23 that fZ`g converges (in probability) to a binary
random variable Z1 with

Pr[Z1 = 0] = 1� Pr[Z1 = 1] = I(W): (14.383)

14.C.1 Converse Part

Fix some process fZ`g 2 Z and some � > 1
2 . We define another random

process f ~Z`g:
~Z0 , Z0 = z0; (14.384)

~Z` =

8<
:
~Z2
`�1 if S` = +;

~Z`�1 if S` = �;
` = 1; 2; : : : (14.385)

Note that because of the assumption I(W) < 1 it follows that 0 < z0 � 1.
Comparing with (14.382) shows that f ~Z`g is dominated by fZ`g, i.e., ~Z` � Z`
and therefore

Pr
h
Z` � 2�2�`

i
� Pr

h
~Z` � 2�2�`

i
: (14.386)

Now we note that

~Z` = z2
L

0 (14.387)

with

L =
X̀
j=1

1fSj = +g: (14.388)

Hence,

Pr
h
~Z` � 2�2�`

i
= Pr

h
z2

L

0 � 2�2�`
i

(14.389)

= Pr
h
2L log2 z0 � �2�`

i
(14.390)

= Pr
h
2L log2(1=z0) � 2�`

i
(14.391)

= Pr[L � �`� log2 log2(1=z0)]: (14.392)

Since E[L] = 1
2`, � >

1
2 , and z0 > 0, it follows from the law of large numbers

that this probability tends to 1 as `!1. This proves (14.209).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.C. Appendix: Proof of Theorem 14.24 349

14.C.2 Direct Part

The proof of the direct part that we present here stems from [Tal17] and is
much more direct than the original proof of Arıkan and Telatar [AT09].

We want to show that for any fixed 0 < � < 1
2 ,

lim
`!1

Pr
h
Z` � 2�2`�

i
= Pr[Z1 = 0]: (14.393)

We are actually going to prove a stronger statement:

Lemma 14.40. Take the setup of Theorem 14.24. Then, for any 0 < � < 1
2 ,

lim
`0!1

Pr
h
Z` � 2�2`� 8 ` � `0

i
= Pr[Z1 = 0]: (14.394)

Note that this lemma has an “almost sure”-flavor8 in contrast to (14.393)
that follows the style of “convergence in probability”.

We start by showing that (14.394) indeed implies (14.393). First, note
that

Pr
h
Z`0 � 2�2`0�

i
� Pr

h
Z` � 2�2`� 8 ` � `0

i
(14.395)

because the argument on the RHS contains in addition to the argument of
the LHS some more RVs and therefore the probability of the RHS cannot be
larger than the probability on the LHS. Thus, if (14.394) holds, then

lim
`0!1

Pr
h
Z`0 � 2�2`0�

i
� Pr[Z1 = 0]: (14.396)

On the other hand, by contradiction, assume that there exists some 0 <

� < 1
2 such that

lim
`!1

Pr
h
Z` � 2�2`�

i
> Pr[Z1 = 0]: (14.397)

Then, for an arbitrary � > 0,

Pr[Z1 = 0] < lim
`!1

Pr
h
Z` � 2�2`�

i
(by (14.397)) (14.398)

� lim
`!1

Pr[Z` � �] (2�2`� � � for `� 1) (14.399)

which means that Z` cannot converge to Z1, which is a contradiction to our
setup. Thus, if (14.394) holds, also (14.393) must hold.

Proof of Lemma 14.40: Note that by (14.382) any process fZ`g 2 Z
satisfies

Z`+1 � 2ZD`
` ; ` = 0; 1; : : : ; (14.400)

8See Section 20.2 for a discussion about random convergence.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

350 Polar Codes

where

D` =

8<
:2 if S`+1 = +;

1 if S`+1 = �;
` = 0; 1; : : : (14.401)

Let �a; �b 2
�
0; 12

�
and `a; `b 2 N, `a < `b be parameters. We now define three

events,

Ea ,
�jZ` � Z1j � �a 8 ` � `a	; (14.402)

Eb ,
����� jf`a � j < ` : Dj = 2gj

`� `a � 1

2

���� � �b &���� jf`a � j < ` : Dj = 1gj
`� `a � 1

2

���� � �b 8 ` � `b
�
; (14.403)

Ec , fZ1 = 0g; (14.404)

and a parameter � such that

��a =
1

2
; (14.405)

i.e.,

� =
log(1=2)

log(�a)
: (14.406)

Note that � 2 (0; 1) and that � ! 0 as �a ! 0.
In the situation when event Ea and event Ec occur together, i.e., under

Ea \ Ec, we have for all ` � `a

Z` � �a (14.407)

and thus

Z�
` � ��a =

1

2
=) 2 � Z��` : (14.408)

So, under Ea \ Ec and for ` � `a, (14.400) can be rewritten as

Z`+1 � ZD`��
` ; ` � `a: (14.409)

Next, we also include event Eb, i.e., we now consider the situation when Ea \
Eb \ Ec. We start with Z`a and repeatedly apply (14.409). We know that
roughly half of the time Z` will be taken to the power of 1� � and half of the
time to the power of 2� �. Using Eb we can bound these numbers, so that for
all ` � `b we obtain

Z` � Z(1��)(`�`a)(
1
2
+�b)�(2��)(`�`a)(

1
2
��b)

`a
; ` � `b: (14.410)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

14.C. Appendix: Proof of Theorem 14.24 351

Using (14.407) and the assumption that �a < 1
2 , we can upper-bound Z`a by

2�1:

Z` � 2�(1��)(`�`a)(
1
2
+�b)�(2��)(`�`a)(

1
2
��b)

(14.411)

= 2�2(
1
2
��)`

(14.412)

where the last equality should be read as definition of �, i.e.,

� =
1

2
� `� `a

`

�
1

2
+ �b

�
log2(1� �)�

`� `a
`

�
1

2
� �b

�
log2(2� �) (14.413)

=
1

2
� 1

2
log2(1� �)�

1

2
log2(2� �)

� �b log2(1� �) + �b log2(2� �)
+
`a
`

�
1

2
+ �b

�
log2(1� �) +

`a
`

�
1

2
� �b

�
log2(2� �): (14.414)

Note that by choosing �a sufficiently small such that � becomes sufficiently
small, by choosing �b sufficiently small, and by choosing `b sufficiently large
such that for all ` � `b the term `a

` becomes sufficiently small, � can be made
arbitrarily close to zero.

Thus, we see that for any 0 < � < 1
2 , we can choose �a, �b small enough

and `b large enough such that the event Ea \ Eb \ Ec induces the eventn
Z` � 2�2�` 8 ` � `b

o
: (14.415)

Therefore,

Pr
h
Z` � 2�2�` 8 ` � `b

i
� Pr(Ea \ Eb \ Ec): (14.416)

So it remains to investigate Pr(Ea \ Eb \ Ec).
To this end, we note that since Z` converges to Z1 in probability, i.e.,

lim
`!1

Pr[jZ` � Z1j � �a] = 1; (14.417)

it also must hold that

lim
`a!1

Pr(Ea) = 1: (14.418)

Thus, for an arbitrary �a > 0, we can find an `a large enough such that

Pr(Ea) � 1� �a: (14.419)

Next, note that since fS`g is IID uniform, also fD`g is IID uniform, and
thus by the strong law of large numbers,

lim
`b!1

Pr(Eb) = 1: (14.420)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

352 Polar Codes

Thus, for an arbitrary �b > 0, we can find an `b large enough such that

Pr(Eb) � 1� �b: (14.421)

Hence, for arbitrary �a; �b > 0 we can find `a < `b large enough such that

Pr(Ea \ Eb \ Ec) = 1� Pr(Ec
a [Ec

b [Ec
c) (14.422)

� 1� �Pr(Ec
a) + Pr(Ec

b) + Pr(Ec
c)
�

(14.423)

= 1� �1� Pr(Ea) + 1� Pr(Eb) + 1� Pr(Ec)
�

(14.424)

= Pr(Ea) + Pr(Eb) + Pr(Ec)� 2 (14.425)

� 1� �a + 1� �b + Pr(Ec)� 2 (14.426)

= Pr[Z1 = 0]� �a � �b; (14.427)

where the first inequality follows from the Union Bound, and the second from
(14.419) and (14.421). In combination with (14.416) this proves

Pr
h
Z` � 2�2�` 8 ` � `b

i
� Pr[Z1 = 0]� �a � �b: (14.428)

Since �a; �b are arbitrary and since the probability expression on the LHS
increases with `b (because the number of involved RVs decreases!), this proves

lim
`b!1

Pr
h
Z` � 2�2�` 8 ` � `b

i
� Pr[Z1 = 0]: (14.429)

The other direction

lim
`b!1

Pr
h
Z` � 2�2�` 8 ` � `b

i
� Pr[Z1 = 0] (14.430)

also holds because for an arbitrary `b,

Pr
h
Z` � 2�2�` 8 ` � `b

i
� Pr

�
lim
`!1

Z` = 0

�
(14.431)

= Pr[Z1 = 0]; (14.432)

where the inequality can be argued in a analogous fashion as for the inequality
in (14.395).

This completes the proof.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 15

Joint Source and Channel Coding

In Chapter 11 we have focused exclusively on the data transmission part of the
general system shown in Figure 11.1, and we have assumed that the random
message M is taken uniformly from a large set of possible messages M. In
reality, we will rarely see such a random message, but we will rather encounter
a source of limited alphabet size emitting a sequence of source symbols that
shall be transmitted. Obviously, such a sequence can be taken as the random
message, i.e., the system developed in Chapter 11 will work here, too. The
question, however, is whether we can do better.

If, for example, we transmit a sequence of a million bits and one single
bit is wrongly decoded, then in Chapter 11’s terminology we have failed to
transmit the message — in spite of the fact that 999’999 bits have arrived
correctly. So, from a practical point of view, we are much more interested in
the average bit error probability Pb rather than the block error probability
P

(n)
e (compare also with Section 13.3.3).

In this chapter, we ask the question whether we can increase our trans-
mission rate if we only require that Pb be small, rather than P

(n)
e . We shall

see that we cannot.

15.1 Information Transmission System

We would like to combine our knowledge of source compression and data trans-
mission for the design of an information transmission system. To this end,
consider Figure 15.1: Given is a general discrete stationary source (DSS) with
r-ary alphabet U that we would like to transmit over a discrete memoryless
channel (DMC) with input and output alphabets X and Y, respectively. We
assume that the source generates a symbol every Ts seconds, i.e., the source
generates uncertainty at a rate of

H(fUkg)
Ts

bits/s: (15.1)

353 © Stefan M. Moser — IT, version 6.14

354 Joint Source and Channel Coding

dest. decoder
^U1; : : : ; ^UK

DMC
Y1; : : : ; Yn

encoder
X1; : : : ; Xn

DSS
U1; : : : ; UK

Figure 15.1: Information transmission system using a joint source channel
coding scheme.

In our system we choose to jointly process K source symbols that are trans-
formed into a channel codeword of length n and then sent over the channel.

Definition 15.1. A joint source channel coding scheme consists of an encoder
that maps every source sequence (U1; : : : ; UK) into a channel input sequence
(X1; : : : ; Xn) and of a decoder that makes for every received channel output
sequence (Y1; : : : ; Yn) a guess (Û1; : : : ; ÛK) of the transmitted source sequences.
We define the probability of a decoding error by

P
(K)
e , Pr

h
UK
1 6= ÛK

1

i
: (15.2)

Obviously, for this system to work in the long run, the channel transmission
must be clocked in the correct speed, i.e., if we denote the duration of a channel
symbol by Tc, then we must have

KTs = nTc: (15.3)

We will now derive a very fundamental result that shows when it is possible
to transmit the source’s random messages over the given channel depending
on the source entropy and the channel capacity.

As so often we start with the converse result, i.e., we will prove an upper
limitation on the source entropy, for which any transmission system will not
work.

15.2 Converse to the Information Transmission Theorem

Recall the Fano Inequality (Lemma 11.25 or Corollary 11.27) and apply it to
the random vectors UK

1 and ÛK
1 :

H
�
UK
1

��ÛK
1

� � Hb

�
P

(K)
e

�
| {z }

� log 2

+ P
(K)
e log

�
jUjK � 1| {z }
� jUjK

�
(15.4)

� log 2 + P
(K)
e K log jUj: (15.5)

Hence,

H(fUkg)
Ts

=
1

Ts
lim

K!1
H
�
UK
1

�
K

(15.6)

� 1

KTs
H
�
UK
1

�
(15.7)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

15.3. Achievability of the Information Transmission Theorem 355

=
1

KTs
H
�
UK
1

��ÛK
1

�
+

1

KTs
I
�
UK
1 ; ÛK

1

�
(15.8)

� log 2

KTs
+

1

Ts
P

(K)
e log jUj+ 1

KTs
I
�
UK
1 ; ÛK

1

�
(15.9)

� log 2

KTs
+

1

Ts
P

(K)
e log jUj+ 1

KTs
I(Xn

1 ;Y
n
1) (15.10)

� log 2

KTs
+

1

Ts
P

(K)
e log jUj+ 1

KTs
nC (15.11)

=
log 2

KTs
+

1

Ts
P

(K)
e log jUj+ C

Tc
: (15.12)

Here, (15.6) follows by the definition of the entropy rate; (15.7) follows because
H(UK

1)=K is decreasing in K (see Theorem 6.24); in the subsequent equality
(15.8) we use the definition of mutual information; in (15.9) we use (15.5)
(Fano); the subsequent inequality (15.10) follows from the Data Processing
Inequality (Lemma 11.30); (15.11) relies on our assumption of the channel
being a DMC without feedback and the definition of capacity such that we
can use (11.101); and the finally equality (15.12) is due to (15.3).

Hence, any joint source channel coding scheme with P (K)
e ! 0 for K!1

must satisfy

H(fUkg)
Ts

� C

Tc
: (15.13)

In other words, if

H(fUkg)
Ts

>
C

Tc
; (15.14)

then the error probability is bounded from below and cannot tend to zero
even if we allow for infinite delay K!1.

15.3 Achievability of the Information Transmission Theorem

Next we will turn to the positive side of the theorem that tells us what we
can do. As a matter of fact, it will turn out that we can prove an even better
result: Not only is it possible to transmit the stationary source fUkg reliably
over the DMC as long as (15.13) is satisfied, but we can do this in a way that
separates the source from the channel. We can firstly compress the source
using some data compression scheme that is completely ignorant of the DMC,
and then apply a standard channel code for the given DMC that assumes a
uniform message source and is completely ignorant of the given stationary
source.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

356 Joint Source and Channel Coding

15.3.1 Ergodicity

The derivation of the achievability part makes the assumption of ergodicity.
While we do not investigate whether this assumption holds or not, we try
to motivate why it actually is only a very weak restriction that should be
satisfied for most practical situations: We once again point out that the out-
put of an optimal source compression scheme is (almost) IID and therefore
“automatically” ergodic (compare with Remark 11.1).

Proposition 15.2. The codeword digits Ck0 put out by an optimal source coding
scheme are all (almost) equally likely and (almost) independent of the past.

Proof: By contradiction, assume that the codeword digits are not equally
likely. In this case we could find a Huffman code for the output of the ideal
source coding scheme that combines the least likely digits together, resulting in
a new sequence that is more efficiently representing the source than the output
of the ideal source coding scheme. This is a contradiction to our optimality
assumption of the ideal source coding scheme. Similarly we can argue if the
current codeword was dependent on the past: In this case we could find a new
adaptive Huffman code that can represent the current sequence of codeword
digits using less digits based on the knowledge of the past. Again this is a
contradiction to the optimality of our source coding scheme.

Note that this proposition and its proof are not rigorous. However, this
is not crucial, because we do not directly need the result. The only property
that we need is that the sequence fCk0g satisfies the law of large numbers.
Since an IID sequence definitely does do that, it is hopefully convincing that
an almost IID sequence also does. . .

We also would like to point out that ergodicity is closely related with the
AEP (see Theorem 20.4). For more details we refer to Chapter 20.

15.3.2 Achievable Joint Source Channel Coding Scheme

channel
encoder

fX1; : : : ; Xng
�
1 `-block

parser

fC1; : : : ; C`g
�
1

adaptive
Huffman
encoder

fCkg
�
1

fU1; : : : ; UKg
�
1

Figure 15.2: An encoder for the information transmission system of Fig-
ure 15.1.

We fix some � > 0 and then design an encoder as shown in Figure 15.2. In
a first step, this encoder applies an optimal block–to–variable-length source
encoder (e.g., an adaptive Huffman encoder) that maps a length-K source
sequence into a D-ary codeword Ck. We know from our analysis of source

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

15.3. Achievability of the Information Transmission Theorem 357

compression that for any stationary source fUkg and for the given � > 0,
we can choose a parser length K large enough such that the average source
codeword length E[Lk] of the optimal D-ary codewords Ck satisfies

H(fUkg)
logD

� E[Lk]
K
� H(fUkg)

logD
+ � (for K large enough) (15.15)

(see Theorem 7.3, and compare with Theorem 7.12 and 8.11). As mentioned,
K denotes the parser length (of the source coding scheme), i.e., each D-ary
source codeword Ck describes K source symbols.

We now use this optimal source coding scheme many times in sequence,
say � times (� � 1), such that the total resulting D-ary output sequence
(C1; : : : ;C�) has a total (random) length

P�
k=1 Lk.

We next apply an `-block parser to this D-ary output sequence fCk0g and
split it up into � equally long strings. In order to find out how we should
choose `, we need to consider the (random) length of the output sequence
fCk0g of the adaptive Huffman encoder. To this end, as already discussed in
Section 15.3.1, we assume that this output sequence satisfies the weak law of
large numbers.

If the weak law of large numbers can be applied, then the probability of
1
�

P�
k=1 Lk being close to E[Lk] tends to 1 for � " 1, i.e., we can choose �

large enough such that

Pr

"
1

�

�X
k=1

Lk � E[Lk] + �

#
� 1� � (for � large enough): (15.16)

Based on this observation, we now choose

` ,
�
E[Lk] + �

�
: (15.17)

If the (random) length of fCk0g is less than �`, then we simply fill in random
D-ary digits at the end.1 On the other hand, it is also possible that the
random length of fCk0g is too long:

�X
k=1

Lk > �`: (15.18)

In this case the block-parser will discard some code digits, which will then
result in a decoding error. However, luckily, the probability of this event is
very small: From (15.16) we know that

Pr

"
�X

k=1

Lk > �`

#
= Pr

"
1

�

�X
k=1

Lk >
�
E[Lk] + �

�#
(15.19)

� Pr

"
1

�

�X
k=1

Lk > E[Lk] + �

#
(15.20)

� � (for � large enough): (15.21)
1Note that since the codewords Ck are prefix-free and we know their number (i.e., �),

it is easily possible to discard these randomly generated filling digits at the decoder.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

358 Joint Source and Channel Coding

Finally, the length-` D-ary sequences are used as input for a usual channel
coding scheme for the given DMC. This coding scheme will work reliably as
long as its rate is less than the DMC’s capacity.

Hence, we have two types of errors: Either the source compression scheme
generates a too long compressed sequence (see (15.18) and (15.21)) or the
channel introduces a too strong error for our channel coding scheme:

P
(�K)
e = Pr

�
U�K
1 6= Û�K

1

�
(15.22)

� Pr(compression error)| {z }
� � by (15.21) if �

is large enough

+ Pr(channel error)| {z }
� � if R < C and
n is large enough

(15.23)

� �+ � = 2� (for R < C and for � and n large enough): (15.24)

It only remains to make sure that the code rate R of our channel coding scheme
really is below capacity. For an arbitrary �0 > 0, we have

R =
logD`

n
(15.25)

=
` logD

n
(15.26)

=

�
E[Lk] + �

�
logD

n
(by (15.17)) (15.27)

<
1

n
(E[Lk] + �+ 1) logD (15.28)

� 1

n

�
K �
�
H(fUkg)
logD

+ �

�
+ �+ 1

�
logD (by (15.15), K� 1) (15.29)

=
K

n
H(fUkg) + K� logD

n
+

(�+ 1) logD

n
(15.30)

=
Tc

Ts
H(fUkg) + �Tc logD

Ts
+

(�+ 1)Tc logD

TsK
(by (15.3)) (15.31)

� Tc

Ts
H(fUkg) + �0 (for � small and K large enough): (15.32)

Note that, because of (15.3), if K gets large, also n gets large.
Hence, we can guarantee that R < C (and thereby that our system works)

as long as

H(fUkg)
Ts

<
C

Tc
: (15.33)

15.4 Joint Source and Channel Coding

We have proven the following fundamental result.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

15.4. Joint Source and Channel Coding 359

Theorem 15.3 (Information Transmission Theorem).
Assume a DMC of channel capacity C and a finite-alphabet stationary
and ergodic stochastic source fUkg. Then, if

H(fUkg)
Ts

bits/s <
C

Tc
bits/s (15.34)

(where Ts and Tc are the symbol durations of the source and the channel,
respectively), there exists a joint source channel coding scheme with a
probability of a decoding error P (K)

e ! 0 as K!1.
Conversely, for any stationary stochastic source fUkg with

H(fUkg)
Ts

bits/s >
C

Tc
bits/s; (15.35)

the probability of a decoding error P (K)
e cannot tend to zero, i.e., it is not

possible to send the source data over the DMC with arbitrarily low error
probability.

Note that in the proofs given above we actually used two different ap-
proaches in the converse and in the achievability part:

Approach 1: General Design: We design an encoder that directly maps the source
output sequence into a channel input sequence. The decoder then re-
ceives a channel output sequence and needs to guess which source se-
quence has been sent. This approach has been used in the converse.

Approach 2: Source Channel Separation Coding Scheme: We compress the source
into its most efficient representation and then use a standard channel
code (fit for the given channel and assuming a uniform message) to
transmit the compressed source codewords. The receiver firstly guesses
which codeword has been sent to recover the source codeword and then
decompresses this compressed source description. This approach has
been used in the achievability proof.

A couple of remarks:

• Approach 2 is a special case of Approach 1.

• In Approach 2 the standard channel code is designed assuming that the
input is uniformly distributed. This works even if the source is far from
being uniform because a source compression scheme produces an output
that is (almost) uniform.

• Approach 2 is much easier than Approach 1 because we decouple the
channel from the source: If we exchange the source then in Approach 1

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

360 Joint Source and Channel Coding

we need to redesign the whole system, while in Approach 2 we only
need to find a new source coding scheme. As a matter of fact, if we use
a universal source coding scheme, we do not need to change anything
at all! Similarly, if we exchange the DMC, then we only need to change
the channel code design.

• Note that it is not a priori clear that Approach 2 is optimal because
the data compression scheme completely ignores the channel and the
channel coding scheme completely ignores the source. Luckily, we have
been able to show that Approach 2 is as good as Approach 1.

Hence, we see that we have not only proven the Information Transmission
Theorem, but we have actually shown that Approach 2 works! I.e., we can
separate source from channel and design a system consisting of two completely
separate parts.

Corollary 15.4 (The Source Channel Coding Separation Theorem).
Consider a finite-alphabet stationary and ergodic stochastic source fUkg
and a DMC of capacity C such that (15.34) is satisfied, i.e.,

H(fUkg)
Ts

bits/s <
C

Tc
bits/s: (15.36)

An optimal way of transmitting the source sequence reliably over the
DMC is to firstly apply an optimal data compression scheme (like Lempel–
Ziv or adaptive Huffman) to the source output sequence, and then to
transmit the compressed source codewords using an optimal channel cod-
ing scheme designed for the DMC. Note that the design of the source
coding scheme is independent of the channel and the design of the chan-
nel coding scheme is independent of the source.

We would like to remark that nature does usually not follow the two-stage
design of Approach 2, but uses a direct source-channel code. Examples:

• Human oral languages, transmitted through air. Even with a huge
amount of noise and distortion (e.g., party with loud music and many
people talking at the same time) we are able to understand our conver-
sation partner!

• English text that is sent over an erasure channel: Even if about 50
percent of the letters are erased, we can still decipher the text!

Also note that our proof only holds for a DMC! There are examples of
channels like, e.g., some multiple-user channels, where the two-stage approach
is strictly suboptimal.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

15.5. Rate of a Joint Source Channel Coding Scheme 361

15.5 Rate of a Joint Source Channel Coding Scheme

The perhaps most fundamental difference between the Information Transmis-
sion Theorem (Theorem 15.3) and the channel coding theorem in Chapter 11
(Theorem 11.34) is that in the latter we have a free parameter R that needs
to be chosen appropriately (i.e., R < C) in order to make sure that the system
can work. Here in Theorem 15.3, however, we are given both the DMC with
capacity C and clock Tc and the source with entropy rate H(fUkg) and clock
Ts. We then cannot anymore adapt these parameters to make them match
(unless we start to change the channel or the source!), but have to face either
the situation (15.34), which works, or (15.35), which does not work.

Nevertheless, as we have seen in the derivation of Section 15.3, we still
implicitly have a rate R internally in the encoder: The second half of the
encoder of the source channel separation coding scheme consists of a standard
channel code as discussed in Chapter 11 and has a rate that is, as usual,
defined as

R =
log(# of codewords)

n
: (15.37)

Note that in this case the number of codewords depends on how strongly the
K source digits can be compressed, i.e., it depends on the entropy rate of the
source! Recalling the derivation of the rate in (15.25)–(15.32) we see that, in
an ideal system and asymptotically for K!1, we have

R =
Tc

Ts
H(fUkg): (15.38)

Note that this matches perfectly to the requirement that R < C, i.e., that
(15.33) must be satisfied.

Also note that if the source happens to be a perfectly compressed binary
source in the first place, i.e., if fUkg is an IID uniform binary sequence with
H(fUkg) = 1 bit, then we can omit the source compression scheme and we
have2

R =
K

n
; (15.39)

which by (15.3) also matches to (15.38).
So, whenever we consider the situation of a joint source and channel coding

scheme, we define the implicit rate as

R , Tc

Ts
H(fUkg): (15.40)

2Strictly speaking, we should not write R as in (15.39) because there we do not see the
correct units of bits. The correct form actually is R = K

n
logD, which yields (15.39) if D = 2

and the logarithm is to the base 2.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

362 Joint Source and Channel Coding

15.6 Transmission above Capacity and Minimum Bit Error Rate

We have understood that it is possible to transmit a source over a DMC with
arbitrarily small error probability only if (15.34) is satisfied. The natural next
question to ask therefore is whether we can say something about the minimal
error probability if we try to transmit a source with an entropy rate above
capacity.

To simplify this investigation we will assume in this section that fUkg is
an IID uniform binary source,3 i.e., H(fUkg) = 1 bit. Moreover, we assume
that the parameters of the system and the DMC are such that (15.35) holds,
i.e.,

1

Ts
bits/s >

C

Tc
bits/s: (15.41)

We know that the probability of a message (or block) error

P
(K)
e , Pr

h
UK
1 6= ÛK

1

i
(15.42)

is strictly bounded away from zero (compare again with Figure 15.1). Actually,
it can be shown that P (K)

e tends to 1 exponentially fast in K. However, this is
not really an interesting statement. Since already a single bit error will cause
the total length-K message to be wrong, we realize that some bits still could
be transmitted correctly in spite of a wrong message ÛK

1 . Hence, we are much
more interested in the average bit error probability or, as it is usually called,
the average bit error rate (BER)

Pb ,
1

K

KX
k=1

Pb;k (15.43)

where

Pb;k , Pr
�
Uk 6= Ûk

�
: (15.44)

Unfortunately, as we will show below, the converse also holds when replacing
P

(K)
e by Pb. I.e., if (15.41) holds, then also the BER is strictly bounded away

from zero, even if we let K!1. Can we say more about how far away?
A typical engineering way of trying to deal with the problem that reliable

transmission is impossible is to try to take control by adding the errors pur-
posefully ourselves! So we add an additional building block between source

3Again, this is not a big restriction as we can transform any source into such a memoryless
uniform binary source by applying an optimal compression scheme to it.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

15.6. Transmission above Capacity and Minimum Bit Error Rate 363

destination decoder
^V1; : : : ; ^VK

DMC
Y1; : : : ; Yn

encoder

X1; : : : ; Xn

lossy
compressor

V1 : : : ; VK uniform
BMS

U1 : : : ; UK

Figure 15.3: Lossy compression added to joint source channel coding: We
insert a lossy mapping g(�) between source and channel encoder
to control the introduced errors.

and encoder (see Figure 15.3) that compresses the source sequence UK
1 in a

lossy way such that

1

Ts

H(V K
1)

K
bits/s <

C

Tc
bits/s: (15.45)

Then we know that V K
1 can be transmitted reliably over the channel and the

BER is under our full control by choosing the compressor mapping g(�):
V K
1 = g(UK

1): (15.46)

Example 15.5. As an example consider a compressor scheme g(�) as follows: for
K even

(v1; v2; : : : ; vK�1; vK) = g(u1; u2; : : : ; uK�1; uK) (15.47)

, (u1; u1; u3; u3; : : : ; uK�1; uK�1); (15.48)

i.e., every second information bit is canceled. We then obviously have
1

K
H(V K

1) =
1

2
bits (15.49)

and, assuming that
1

2Ts
bits/s <

C

Tc
bits/s; (15.50)

we can reliably transmit V K
1 , i.e., for any � > 0 we have

Pr
�
V̂k 6= Vk

� � � (15.51)

for K large enough. To simplify our notation we therefore now write4 V̂k = Vk
and get

Pb;k = Pr
�
V̂k 6= Uk

�
= Pr[Vk 6= Uk] =

8<
:0 for k odd;

1
2 for k even

(15.52)

4Strictly speaking we should say that Pr[V̂k = Vk] > 1� �.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

364 Joint Source and Channel Coding

and hence

Pb =
1

2
� Pb,odd +

1

2
� Pb,even =

1

2
� 0 + 1

2
� 1
2
=

1

4
: (15.53)

So we see that we have managed to design a system with average BER Pb = 1
4

subject to 1
2Ts

bits/s being smaller than the channel capacity C
Tc

. �

Example 15.6. Another, more elegant compressor design is based on the (7; 4)

Hamming code. This code is a length-7 binary channel code with the following
16 codewords:

CH =
�
0000000; 1010001; 1110010; 0100011;

0110100; 1100101; 1000110; 0010111;

1101000; 0111001; 0011010; 1001011;

1011100; 0001101; 0101110; 1111111
	
: (15.54)

It can be shown that this code provides a perfect packing of the 7-dimensional
binary space: If we define a “sphere” around every codeword consisting of the
codeword itself plus all length-7 binary sequences with exactly one position
being different from the codeword, then firstly all these spheres will be disjoint
and secondly all spheres together will contain all possible length-7 binary
sequences. Note that each sphere contains eight length-7 sequences.

Hence, we can now design a compressor using “inverse Hamming coding”:
g(u71) = v71 if v71 is a (7; 4) Hamming codeword and u71 has at most one com-
ponent different from v71 . In other words, every sequence u71 is mapped to the
sphere center of its corresponding sphere. Due to the perfect packing prop-
erty, we know that every possible sequence will belong to exactly one sphere
so that this mapping is well-defined.

Since the source produces all 27 = 128 binary sequences of length 7 with
equal probability and since always eight sequences are mapped to the same
codeword, we see that the 16 codewords will show up with equal probability.
Hence,

1

K
H(V K

1) =
log2 16

7
=

4

7
bits; (15.55)

i.e., slightly larger than the rate 1=2 bits of Example 15.5. On the other hand,
we see that

Pb;k = Pr[Uk 6= Vk] =
1

8
(15.56)

because only one of the 8 sequences in each sphere will differ in the kth position
from the correct sequence, and hence

Pb =
1

8
: (15.57)

This is only half the value of the compressor design given in Example 15.5! �

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

15.6. Transmission above Capacity and Minimum Bit Error Rate 365

So, we come back to our original question: What is the optimal compressor
design, i.e., the design that minimizes the BER subject to the average output
entropy being less than the channel capacity?

This question is similarly hard to answer as to find the optimum design of
a channel code. Shannon, however, again found a way to answer part of this
question: He managed to identify the minimum BER that is possible without
specifying how it can be achieved!

In the following we will show his proof. It is again based on the system de-
sign of Figure 15.3, i.e., we split the encoder into two parts: a lossy compressor
and a standard channel encoder.

So we assume that (15.41) holds, but that a compressor is given such that

1

Ts

1

K
H
�
V K
1

�
<

C

Tc
: (15.58)

We then have:

1

K
H
�
V K
1

�
=

1

K
H
�
V K
1

�� 1

K
H
�
V K
1

��UK
1

�| {z }
=0

(15.59)

=
1

K
I
�
V K
1 ;UK

1

�
(15.60)

=
1

K
H
�
UK
1

�� 1

K
H
�
UK
1

��V K
1

�
(15.61)

= 1� 1

K
H
�
UK
1

��V K
1

�
(15.62)

= 1� 1

K

KX
k=1

H
�
Uk
��Uk�1

1 ; V K
1

�
(15.63)

� 1� 1

K

KX
k=1

H(UkjVk) bits; (15.64)

where the first equality follows because V K
1 = g(UK

1); (15.62) holds because
fUkg is IID uniform binary; the subsequent equality follows from the chain
rule; and in the final step we use that conditioning cannot increase entropy.

Note that

H(UkjVk) = Pr[Vk = 0]H(UkjVk = 0) + Pr[Vk = 1] H(UkjVk = 1) (15.65)

= Pr[Vk = 0]Hb
�
Pr[Uk = 1 jVk = 0]

�
+Pr[Vk = 1]Hb

�
Pr[Uk = 0 jVk = 1]

�
(15.66)

� Hb

�
Pr[Vk = 0]Pr[Uk = 1 jVk = 0]

+Pr[Vk = 1]Pr[Uk = 0 jVk = 1]
�

(15.67)

= Hb
�
Pr[Uk = 1; Vk = 0] + Pr[Uk = 0; Vk = 1]

�
(15.68)

= Hb
�
Pr[Uk 6= Vk]

�
(15.69)

= Hb(Pb;k): (15.70)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

366 Joint Source and Channel Coding

Here, the first equality (15.65) follows by definition of conditional entropy; the
subsequent because Uk is binary; and the inequality (15.67) follows from the
concavity of Hb(�):

�Hb(�1) + (1� �)Hb(�2) � Hb
�
��1 + (1� �)�2

�
: (15.71)

Plugging (15.70) into (15.64) and using concavity once more, we get

1

K
H
�
V K
1

� � 1� 1

K

KX
k=1

Hb(Pb;k) (15.72)

� 1�Hb

1

K

KX
k=1

Pb;k

!
(15.73)

= 1�Hb(Pb) bits; (15.74)

where the last equality follows from (15.43).
Hence, from our assumption (15.58) we therefore see that

1

Ts

�
1�Hb(Pb)

� � 1

Ts

1

K
H
�
V K
1

�
<

C

Tc
; (15.75)

which, using the definition (15.40) and the assumption that H(fUkg) = 1 bit,
transforms into

Hb(Pb) > 1� C

R
: (15.76)

In order to include the cases when R � C, we weaken the inequality to

Hb(Pb) � 1� C

R
(15.77)

(which holds trivially when R � C). Thus

Pb � H�1
b

�
1� C

R

�
: (15.78)

Here H�1
b (�) is the inverse function of the binary entropy function Hb(�) for

� 2 [0; 1=2] (and we define H�1
b (�) , 0 for � < 0).

We see that if R > C, then the average bit error rate is bounded away from
zero.

There are two questions that remain:

1. Can we find a lossy compressor that actually achieves the lower bound
(15.78)?

2. Is it possible that another system design that is not based on the idea of
Figure 15.3 (but on the more general system given in Figure 15.1) could
achieve a bit error rate that is smaller than (15.78)?

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

15.6. Transmission above Capacity and Minimum Bit Error Rate 367

The answer to the first question is yes, however, we will not prove it in this
class.5 The proof is based on the concept of rate distortion theory, another
of the big inventions of Shannon [Sha48]. He asked the following question:
Given a certain source and given a certain acceptable distortion, how much
can we compress the source without causing more than the given acceptable
distortion? Actually, we can turn the question also around: Given a certain
source and given desired rate, what is the smallest possible distortion? If we
now choose as a measure of distortion the bit error probability, this question is
exactly our problem described here. It turns out that the smallest achievable
distortion looks exactly like the right-hand side of (15.78).

The second question can be answered negatively. The proof is straightfor-
ward and is based on the Fano Inequality. Consider again the general system
of Figure 15.1. For such a system we have the following:

1

K
H
�
U1; : : : ; UK

��Û1; : : : ; ÛK

�
=

1

K

KX
k=1

H
�
Uk
��U1; : : : ; Uk�1; Û1; : : : ; ÛK

�
(15.79)

� 1

K

KX
k=1

H
�
Uk
��Ûk� (15.80)

� 1

K

KX
k=1

Hb(Pb;k) +
1

K

KX
k=1

Pb;k log(jUj � 1) (15.81)

� Hb

1

K

KX
k=1

Pb;k

!
+ log(jUj � 1)

1

K

KX
k=1

Pb;k (15.82)

= Hb(Pb) + Pb log(jUj � 1); (15.83)

where (15.79) follows from the chain rule; (15.80) follows because condition-
ing reduces entropy; (15.81) follows by the Fano Inequality (17.105); (15.82)
follows from concavity; and the last equality (15.83) from the definition of
the bit error rate (15.43). Actually, note that we have just derived the Fano
Inequality for the situation of bit errors:

1

K
H
�
U1; : : : ; UK

��Û1; : : : ; ÛK

� � Hb(Pb) + Pb log(jUj � 1): (15.84)

We can now re-derive the converse to the Information Transmission The-
orem as follows (compare with (15.6)–(15.12)):

H(fUkg)
Ts

=
1

Ts
lim

K!1
H
�
UK
1

�
K

(15.85)

� 1

KTs
H
�
UK
1

�
(15.86)

5A proof is given in the advanced course [Mos22, Section 11.7].

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

368 Joint Source and Channel Coding

=
1

KTs
H
�
UK
1

��ÛK
1

�
+

1

KTs
I
�
UK
1 ; ÛK

1

�
(15.87)

� Hb(Pb)

Ts
+
Pb log(jUj � 1)

Ts
+

1

KTs
I
�
UK
1 ; ÛK

1

�
(15.88)

� Hb(Pb)

Ts
+
Pb log(jUj � 1)

Ts
+

1

KTs
I(Xn

1 ;Y
n
1) (15.89)

� Hb(Pb)

Ts
+
Pb log(jUj � 1)

Ts
+

1

KTs
nC (15.90)

=
Hb(Pb)

Ts
+
Pb log(jUj � 1)

Ts
+

C

Tc
; (15.91)

where (15.85) follows by the definition of the entropy rate; (15.86) because
H
�
UK
1

�
=K is decreasing in K; (15.87) by definition of mutual information; the

subsequent two inequalities (15.88) and (15.89) by Fano (15.83) and the Data
Processing Inequality (Lemma 11.30); (15.90) by (17.15) and the memoryless-
ness of the DMC; and the final equality holds because KTs = nTc.

If we now again assume that the source is IID uniform binary, we have
H(fUkg) = 1 bit and jUj = 2, and therefore we get from (15.91):

1

Ts
� Hb(Pb)

Ts
� C

Tc
: (15.92)

Hence, we see that (15.77) — and therefore also (15.78) — is satisfied for any
system.

We have once again seen Shannon’s incredible capability of finding funda-
mental insights by sacrificing some answers (in particular the question of how
to design a system). We will come back to (15.78) in Chapter 17.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 16

Continuous Random Variables and
Differential Entropy

So far we have restricted ourselves to discrete alphabets, i.e., all random vari-
ables did only take a finite or at most countably infinite number of values. In
reality, however, there are also often cases where the alphabets are uncount-
ably infinite. We will next introduce the nice special case of continuous RVs
where we can describe the probability distribution with a probability density
function (PDF) (see also the discussion in Section 2.3).

16.1 Entropy of Continuous Random Variables

Let X be a continuous random variable with continuous alphabet X and with
probability density function (PDF) fX(�), i.e.,

Pr[X � x] =
Z x

�1
fX(t) dt: (16.1)

What is its entropy H(X)? To see this, we need to find the probability mass
function (PMF) PX(�) for the continuous random variable X, or at least —
since the PMF is not defined for a continuous random variable — an approx-
imate value of the PMF. Fix some positive value � � 1. Then for every
x 2 X ,

PX(x) �
Z x+�

2

x��
2

fX(t) dt � fX(x)
Z x+�

2

x��
2

dt = � � fX(x): (16.2)

This approximation will become better if we let � become smaller. Using this
approximation in the definition of entropy:

H(X) , �
X
x

PX(x) logPX(x) (16.3)

� �
X
x

� � fX(x) log
�
� � fX(x)

�
(16.4)

369 © Stefan M. Moser — IT, version 6.14

370 Continuous Random Variables and Differential Entropy

= �
X
x

� � fX(x) log��
X
x

� � fX(x) log fX(x) (16.5)

= �log�
X
x

fX(x) ���
X
x

fX(x) log fX(x) �� (16.6)

�#0! lim
�#0
f�log�g

Z
X
fX(x) dx| {z }
=1

�
Z
X
fX(x) log fX(x) dx (16.7)

= lim
�#0
f�log�g| {z }
=1

�
Z
X
fX(x) log fX(x) dx; (16.8)

we realize that

H(X) =1! (16.9)

Actually, this is quite obvious if you think about it: X can take on infinitely
many different values!

So, the original definition of uncertainty or entropy does not make sense
for continuous random variables. How can we save ourselves from this rather
unfortunate situation? Well, we simply define a new quantity. . .

Definition 16.1. Let X 2 X be a continuous random variable with PDF fX(�).
Then the differential entropy h(X) is defined as follows:

h(X) , �
Z
X
fX(x) log fX(x) dx = E[�log fX(X)]: (16.10)

Note that as for the normal entropy, the basis of the logarithm defines the
unit of differential entropy. In particular, the choice of the binary logarithm
gives a differential entropy in bits and the natural logarithm gives a differential
entropy in nats.

From (16.8) we know that

h(X) = H(X)� lim
�#0
f�log�g; (16.11)

i.e., h(X) is a “shift” of H(X) “by negative infinity”. Unfortunately, we will
see that

h(X) can be negative!

A negative uncertainty?!? Very embarrassing. . .

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

16.1. Entropy of Continuous Random Variables 371

Example 16.2. Let X be uniformly distributed on the interval [0; a] for some
value a > 0, X � U([0; a]):

fX(x) =

8<
:

1
a for x 2 [0; a];

0 otherwise.
(16.12)

We now compute the differential entropy for X:

h(X) = �
Z a

0

1

a
log

1

a
dx =

1

a
log a

Z a

0
1 dx = log a: (16.13)

Hence,

if a > 1 =) h(X) > 0; (16.14a)

if a = 1 =) h(X) = 0; (16.14b)

if 0 < a < 1 =) h(X) < 0: (16.14c)

Note that if we let a ! 0, we get h(X) ! �1. This can be understood: if
a = 0, then X only takes on one value with probability 1. It is thus not a
continuous RV, but discrete. Its normal uncertainty is zero (H(X) = 0), which
according to (16.11) corresponds to a negative infinite value of the differential
entropy. So we see that h(X) = �1 basically means that X is not “random
enough”. Note that, as seen in (16.11), the differential entropy will be negative
infinite for any finite value of the corresponding normal entropy. �

Remark 16.3. Even if X is continuous but contains some discrete random vari-
able parts, i.e., if X is a mixture between continuous and discrete random
variable, then h(X) = �1. This can be seen directly from the PDF fX(�),
which will contain some Dirac deltas in such a situation; see the following
example. M

Example 16.4. As an example, consider an random variable Y with cumulative
distribution function (CDF)

FY (y) , Pr[Y � y] =

8>><
>>:
0 y < 0;
y+1
4 0 � y < 2;

1 y � 2

(16.15)

(see Figure 16.1). Note that Y is not continuous, because it has two values
with positive probability:

Pr[Y = a] =

8<
:

1
4 for a = 0 or a = 2;

0 otherwise:
(16.16)

But between 0 and 2, Y is uniformly distributed with a constant density.
Strictly speaking, the PDF is not defined, but we engineers sometimes like to

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

372 Continuous Random Variables and Differential Entropy

FY (y)

1

3

4

1

4

y0 1 2

Figure 16.1: CDF of a random variable that is a mixture of discrete and con-
tinuous.

1

4

1

4

fY (y)

1

4

y0 1 2

Figure 16.2: PDF of the random variable of Figure 16.1: it is a mixture be-
tween two Dirac deltas and a uniform distribution between 0 and
2.

use Dirac deltas:

�Dirac(t) ,

8<
:0 for all t 6= 0;

\100 for t = 0;
(16.17)

where this strange value “1” has to be thought of being such that if integrated
over, it evaluates to 1: Z 1

�1
�Dirac(t) dt , 1: (16.18)

Hence, we can write the PDF of Y as follows:

fY (y) =
1

4
1fy 2 (0; 2)g+ 1

4
�Dirac(y) +

1

4
�Dirac(y � 2) (16.19)

(see Figure 16.2). Note that this PDF indeed integrates to 1:

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

16.2. Properties of Differential Entropy 373

Z 1

�1
fY (y) dy

=

Z 1

�1

�
1

4
1fy 2 (0; 2)g+ 1

4
�Dirac(y) +

1

4
�Dirac(y � 2)

�
dy (16.20)

=

Z 2

0

1

4
dy +

1

4

Z 1

�1
�Dirac(y) dy| {z }

=1

+
1

4

Z 1

�1
�Dirac(y � 2) dy| {z }

=1

(16.21)

=
2

4
+

1

4
+

1

4
= 1: (16.22)

If we now daringly apply the definition of differential entropy to this (weird)
PDF, we get

h(Y) = �
Z 1

�1
fY (y) log fY (y) dy (16.23)

= E[�log fY (Y)] (16.24)

= E
�
�log

�
1

4
1fY 2 (0; 2)g+ 1

4
�Dirac(Y) +

1

4
�Dirac(Y � 2)

��
; (16.25)

i.e., we see that we have a Dirac delta inside of the logarithm. Again, we
have to be careful of what the meaning of such an expression is, but con-
sidering the fact, that �Dirac(0) = 1, it does not really surprise that we get
E[log �Dirac(Y)] =1 and therefore h(Y) = �1. �

Example 16.5. Let X be zero-mean Gaussian distributed with variance �2,
X � N �0; �2�. Then

h(X) = �
Z 1

�1
1p
2��2

e�
x2

2�2 log

�
1p
2��2

e�
x2

2�2

�
dx (16.26)

= �E
�
log

�
1p
2��2

e�
X2

2�2

��
(16.27)

=
1

2
log 2��2 +

E[X2]

2�2
log e (16.28)

=
1

2
log 2��2 +

�2

2�2
log e (16.29)

=
1

2
log 2�e�2: (16.30)

Here we have demonstrated that often the calculations become much simpler
when relying on the expectation-form of the definition of differential entropy.

�

16.2 Properties of Differential Entropy

So how does h(X) behave? We have already seen that h(X) can be negative,
but that a negative value does not imply anything special apart from the fact
that h(X) < 0 means X has less uncertainty than if h(X) were positive. Now
we will explore and find some more (strange) properties.

We start with scaling.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

374 Continuous Random Variables and Differential Entropy

Exercise 16.6. Let Xd be a discrete random variable with entropy H(Xd).
What is the entropy of 2Xd?

H(2Xd) = (16.31)

Why? 1 �

So what about the relation between h(X) and h(2X) for a continuous
random variable X? To compute this, we define a new random variable Y ,
aX for some a > 0. We know that the PDF of Y is

fY (y) =
1

a
fX

�
y

a

�
: (16.32)

Hence,

h(aX) = h(Y) (16.33)

= �
Z
Y
fY (y) log fY (y) dy (16.34)

= �
Z
Y
1

a
fX

�
y

a

�
log

�
1

a
fX

�
y

a

��
dy (16.35)

= log a �
Z
Y
1

a
fX

�
y

a

�
dy �

Z
Y
1

a
fX

�
y

a

�
log fX

�
y

a

�
dy (16.36)

= log a �
Z
X
fX(x) dx| {z }
=1

�
Z
X
fX(x) log fX(x) dx (16.37)

= log a+ h(X); (16.38)

where in the second last step we have changed integration variables and defined
x , y

a . Again, quite embarrassing: The uncertainty changes depending on the
scaling of the random variable!

Lemma 16.7. Let X be a continuous random variable with differential en-
tropy h(X). Let a 2 R n f0g be a real nonzero constant. Then

h(aX) = h(X) + log jaj: (16.39)

Let c 2 R be a real constant. Then

h(X + c) = h(X): (16.40)

Proof: For a > 0, we have proven (16.39) above. The derivation for a < 0

is analogous. The proof of (16.40) is left to the reader as an exercise.

1The solution can be found at the end of this chapter.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

16.3. Generalizations and Further Definitions 375

Remark 16.8. Many people do not like differential entropy because of its weird
behavior. They claim that it does not make sense and is against all “engineer-
ing feeling”. However, the differential entropy has its right of existence. So,
e.g., it can very precisely classify different types of fading channels depending
on the uncertainty in the fading process [Mos05]. M

16.3 Generalizations and Further Definitions

Similarly to normal entropy, we can define a joint and a conditional differential
entropy.

Definition 16.9. The joint differential entropy of several continuous random
variables X1; : : : ; Xn with joint PDF fX1;:::;Xn is defined as

h(X1; : : : ; Xn)

, �
Z
Xn
� � �
Z
X1
fX1;:::;Xn(x1; : : : ; xn) log fX1;:::;Xn(x1; : : : ; xn) dx1 � � �dxn (16.41)

= E[�log fX1;:::;Xn(X1; : : : ; Xn)]: (16.42)

Definition 16.10. Let X and Y be two continuous random variables with joint
PDF fX;Y (�; �). Then the conditional differential entropy of X conditional
on Y is defined as follows:

h(XjY) , �
Z
Y

Z
X
fX;Y (x; y) log fXjY (xjy) dxdy (16.43)

= E
h
�log fXjY (XjY)

i
: (16.44)

From this immediately follows that similarly to the conditional entropy, it
is also holds for the conditional differential entropy that

h(XjY) = EY [h(XjY = y)] (16.45)

=

Z
Y
fY (y)h(XjY = y) dy: (16.46)

Besides its many strange properties, differential entropy also shows good
behavior: Since the chain rule for PDFs work the same way as for PMFs, i.e.,

fX;Y (x; y) = fY (y) � fXjY (xjy); (16.47)

the chain rule also holds for differential entropy:

h(X;Y) = h(Y) + h(XjY): (16.48)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

376 Continuous Random Variables and Differential Entropy

Next we turn to mutual information. Do we have a similar embarrassing
situation as in the case of entropy vs. differential entropy? Luckily, the answer
here is no. You can realize this as follows:

I(X;Y) = H(Y)�H(Y jX) (16.49)

� h(Y)� log�� h(Y jX) + log� (16.50)

= h(Y)� h(Y jX); (16.51)

i.e., the strange “shift by negative infinity” disappears because mutual infor-
mation is a difference of entropies. However, note that since mathematically
it is not possible to define a quantity as a difference of two infinite values,
we use the alternative form (1.121) of mutual information as the basis of our
definition.

Definition 16.11. The mutual information between two continuous random
variables X and Y with joint PDF fX;Y (�; �) is defined as follows:

I(X;Y) ,
Z
Y

Z
X
fX;Y (x; y) log

fX;Y (x; y)

fX(x) fY (y)
dxdy: (16.52)

From this form, it is straightforward to derive the following natural alternative
forms:

I(X;Y) =

Z
Y

Z
X
fX;Y (x; y) log

fY jX(yjx)
fY (y)

dxdy (16.53)

= h(Y)� h(Y jX) (16.54)

and similarly

I(X;Y) = h(X)� h(XjY): (16.55)

Accordingly, we extend the definition of relative entropy (Definition 3.1)
to continuous RVs.

Definition 16.12. Let f(�) and g(�) be two PDFs over the same continuous al-
phabet X . The relative entropy between f(�) and g(�) is defined as

D(f kg) ,
Z
X
f(x) log

f(x)

g(x)
dx: (16.56)

Hence, as before, we can write

I(X;Y) = D(fX;Y kfX � fY): (16.57)

We have more good news: Mutual information and relative entropy behave
exactly as expected also for continuous random variables! I.e.,

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

16.4. Mixed Continuous and Discrete Random Variables 377

I(X;Y) � 0 (16.58)

with equality if, and only if, X ?? Y , and

D(f kg) � 0 (16.59)

with equality2 if, and only if, f(�) = g(�). Here, (16.58) follows directly from
(16.57) and (16.59), and the latter is proven analogously to Theorem 3.3 using
the IT Inequality (Proposition 1.12).

Because

0 � I(X;Y) = h(Y)� h(Y jX) (16.60)

it then also immediately follows that

h(Y) � h(Y jX); (16.61)

i.e., conditioning reduces differential entropy.
Moreover,

I(2X;Y) = I(X;Y) (16.62)

as can be seen from

h(2X)� h(2XjY) = h(X) + log 2� h(XjY)� log 2 (16.63)

= h(X)� h(XjY): (16.64)

Note that from this we also learn that

h(Y)� h(Y j2X) = h(Y)� h(Y jX); (16.65)

i.e., the differential entropy behaves normally in its conditioning arguments:

h(Y j2X) = h(Y jX): (16.66)

16.4 Mixed Continuous and Discrete Random Variables

We have now understood that entropy H(�) only handles discrete random
variables, while differential entropy h(�) only handles continuous random vari-
ables. Mutual information I(�; �), on the other hand, is happy with both types

2Strictly speaking, we should add “almost everywhere”. But note that if two PDFs are
the same almost everywhere, they describe the same probability distribution anyway.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

378 Continuous Random Variables and Differential Entropy

of random variables. So the alert reader might ask what happens if we start
to mix both types of random variables in mutual information? For example,
letting M be a RV taking value in a finite alphabet M and Y 2 R be a
continuous RV, is it meaningful to consider I(M ;Y)?

From an engineering point of view this makes perfect sense. For example,
consider a message M that is translated into a channel input X and then sent
over a channel that adds Gaussian noise (see Chapter 17). Indeed, our engi-
neering intuition does not cheat us, and I(M ;Y) is well-behaved. Nevertheless
there are some quite delicate mathematical issues here. For example, from

I(M ;Y) = h(Y)� h(Y jM) (16.67)

we see that we need to be able to condition differential entropy on a discrete
random variable. This is alright because we know that we can condition a
PDF on a discrete event of positive probability:

h(Y jM) = EM [h(Y jM = m)] (16.68)

=
X
m2M

Pr[M = m]h(Y jM = m) (16.69)

= �
X
m2M

Pr[M = m]

Z 1

�1
fY jM=m(y) log fY jM=m(y) dy: (16.70)

Things are more murky when we expand mutual information the other way
around:

I(M ;Y) = H(M)�H(M jY): (16.71)

How shall we define H(M jY = y)? Note that the event fY = yg has zero
probability! So we see that we cannot avoid defining a joint distribution of M
and Y . To do this properly, one should actually go into measure theory. We
will not do this here, but instead use a heuristic argument that will lead to a
definition (compare also with the discussion in [Lap17, Section 20.4]). So, we
would like to think of Pr[M = m jY = y] as

Pr[M = m jY = y]
??
= lim

�#0
Pr[M = m;Y 2 (y � �; y + �)]

Pr[Y 2 (y � �; y + �)]
: (16.72)

Since

Pr[Y 2 (y � �; y + �)] =

Z y+�

y��
fY (�) d� � fY (y) 2� (16.73)

and

Pr[M = m;Y 2 (y � �; y + �)]

= Pr[M = m] Pr[Y 2 (y � �; y + �) jM = m] (16.74)

= Pr[M = m]

Z y+�

y��
fY jM=m(�) d� (16.75)

� Pr[M = m] fY jM=m(y) 2�; (16.76)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

16.4. Mixed Continuous and Discrete Random Variables 379

where the approximations become more accurate for smaller �, this would give

Pr[M = m jY = y]
??
= lim

�#0
Pr[M = m] fY jM=m(y) 2�

fY (y) 2�
(16.77)

=
Pr[M = m] fY jM=m(y)

fY (y)
: (16.78)

This is intuitively quite pleasing! There is only one problem left: What hap-
pens if fY (y) = 0? Luckily, we do not really need to bother about this because
the probability of Y taking on any value y for which fY (y) = 0 is zero:

Pr[Y 2 fy : fY (y) = 0g] = 0: (16.79)

So we assign an arbitrary value for these cases:

Pr[M = m jY = y] ,

8<
:

Pr[M=m] fY jM=m(y)

fY (y) if fY (y) > 0;

1
jMj otherwise:

(16.80)

Now, we are perfectly able to handle mixed expressions like I(M ;Y), using
either expansion (16.67) or (16.71) (both give the same result!).

In this way, one can even handle mutual information expressions with a
mixture of discrete and continuous RVs on the same side of the semicolon.
Take as example the situation of Figure 11.4 and assume in contrast to the
setup of Chapter 11 that the channel has a continuous-alphabet input and
output, i.e., Xn

1 and Y n
1 are continuous random vectors. We can now prove

that the Data Processing Inequality (Lemma 11.30) still holds in this situation:

I(M ; M̂) � I(M ; M̂) + I(Xn
1 ; M̂ jM)| {z }
� 0

(16.81)

= I(M;Xn
1 ; M̂) (16.82)

= I(Xn
1 ; M̂) + I(M ; M̂ jXn

1)| {z }
=0

(16.83)

= I(Xn
1 ; M̂) (16.84)

� I(Xn
1 ; M̂) + I(Xn

1 ;Y
n
1 jM̂)| {z }

� 0

(16.85)

= I(Xn
1 ; M̂; Y

n
1) (16.86)

= I(Xn
1 ;Y

n
1) + I(Xn

1 ; M̂ jY n
1)| {z }

=0

(16.87)

= I(Xn
1 ;Y

n
1) (16.88)

where (16.83) and (16.87) hold because of Markovity. Note that this proof in
this form actually looks completely identical to the situation where all involved
random variables are discrete. The reason why this derivation in this form
still holds is because every single mutual information expression by itself is

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

380 Continuous Random Variables and Differential Entropy

well-defined using expansions like (16.67) or (16.71). For example, (16.82) can
be written as

I(M;Xn
1 ; M̂) = H(M̂)�H(M̂ jM;Xn

1) (16.89)

and (16.86) as

I(Xn
1 ; M̂; Y

n
1) = h(Xn

1)� h(Xn
1 jM̂; Y n

1): (16.90)

Note, however, that is not possible to expand the mutual information in
(16.89) or (16.90) in the other direction as neither H(M;Xn

1) nor h(M̂; Y n
1) is

defined.3 In such a case one must first use the chain rule for mutual informa-
tion before the other expansion becomes possible.

16.5 Multivariate Gaussian

The multivariate Gaussian distribution is one of the most important (and
easiest!) distributions.4 Therefore we spend some extra time on it.

Theorem 16.13. Let X 2 Rn be a multivariate Gaussian random vector
X � N (���;K) where ��� denotes the mean vector and K is the n � n

covariance matrix

K = E
�
(X� ���)(X� ���)T�; (16.91)

where we assume that K is positive definite (see Appendix B.1). Then

h(X) =
1

2
log
�
(2�e)n detK

�
: (16.92)

Proof: The PDF of X is given as follows:

fX(x) =
1p

(2�)n detK
e�

1
2
(x����)TK�1(x����) (16.93)

(see Appendix B.9). Hence, we have

h(X) = E[�log fX(X)] (16.94)

= E
�
1

2
log
�
(2�)n detK

�
+

1

2
(X� ���)TK�1(X� ���) log e

�
(16.95)

=
1

2
log
�
(2�)n detK

�
3Note that H(M) + h(Xn

1 jM) and h(Y n
1) +H(M̂ jY n

1), respectively, are defined, though.
4If you do not agree that the Gaussian distribution is easy, have a look at Appendices A

and B! Many problems involving Gaussian RVs are solvable, while for general distribution
often this is not the case. Gaussians are your friends!

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

16.5. Multivariate Gaussian 381

+
1

2
E

2
4X

i

X
j

(Xi � �i)
�
K�1�

i;j
(Xj � �j)

3
5 log e (16.96)

=
1

2
log
�
(2�)n detK

�
+

1

2

X
i

X
j

E[(Xi � �i)(Xj � �j)]
�
K�1�

i;j
log e (16.97)

=
1

2
log
�
(2�)n detK

�
+

1

2

X
j

X
i

�
K
�
j;i

�
K�1�

i;j
log e (16.98)

=
1

2
log
�
(2�)n detK

�
+

1

2

X
j

�
KK�1�

j;j
log e (16.99)

=
1

2
log
�
(2�)n detK

�
+

1

2

X
j

(I)j;j log e (16.100)

=
1

2
log
�
(2�)n detK

�
+
n

2
log e (16.101)

=
1

2
log
�
(2�)n detK

�
+

1

2
log en (16.102)

=
1

2
log
�
(2�e)n detK

�
: (16.103)

Theorem 16.14. Let the random vector X 2 Rn have zero mean and some
fixed (positive definite) covariance matrix K, i.e., E

�
XXT

�
= K. Then

h(X) � 1

2
log
�
(2�e)n detK

�
(16.104)

with equality if, and only if, X � N (0;K).

Proof: This theorem follows directly from a generalization of Theorem 3.13
to continuous RVs: Let X be a continuous RV with PDF f(�) that satisfies
the following J constraints:

E[rj(X)] =

Z 1

�1
f(x)rj(x) dx = �j ; for j = 1; : : : ; J; (16.105)

for some given functions r1(�); : : : ; rJ(�) and some given values �1; : : : ; �J.
Then h(X) is maximized if, and only if,

f(x) = f�(x) , e�0+
PJ

j=1
�jrj(x) (16.106)

assuming that �0; : : : ; �J can be chosen such that (16.105) is satisfied and
(16.106) is a PDF.

The proof is analogous to the proof of Theorem 3.13, so we omit it.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

382 Continuous Random Variables and Differential Entropy

Applying this result to our situation, we have the following: Under the
constraints that E

�
XXT

�
= K, i.e., E[XiXj] = Ki;j for all i and j, and that

E[X] = 0, i.e., E[Xi] = 0 for all i, we see that the maximizing distribution
must have a PDF of the form

fX(x1; : : : ; xn) = e
�0+

P
i
�ixi+

P
i

P
j
�i;jxixj ; (16.107)

where the parameters �0, �i, and �i;j must be chosen such that the PDF
integrates to 1 and such that the constraints are satisfied. Note that this
is not hard to do, because it is obvious that this maximizing distribution is
multivariate Gaussian. The theorem then follows from Theorem 16.13.

This result can also be shown using the fact that the relative entropy is
nonnegative. To this end, let ��� be the density of a zero-mean, covariance-K
multivariate Gaussian random vector. Then, for a general PDF fX(�),

0 � D(fXk���) =
Z 1

�1
� � �
Z 1

�1
fX(x) log

fX(x)

���(x)
dx (16.108)

= �h(X)�
Z 1

�1
� � �
Z 1

�1
fX(x) log ���(x) dx (16.109)

= �h(X)� E

"
log

1p

(2�)n detK
e�

1
2
XTK�1X

!#
(16.110)

= �h(X) +
1

2
log
�
(2�)n detK

�
+

1

2
E
h
XTK�1X

i
log e (16.111)

= �h(X) +
1

2
log
�
(2�)n detK

�
+
n

2
log e (16.112)

= �h(X) +
1

2
log
�
(2�e)n detK

�
; (16.113)

where (16.112) is shown in (16.94)–(16.101). Hence,

h(X) � 1

2
log
�
(2�e)n detK

�
: (16.114)

Equality is only possible if we have fX = ���, i.e., if X is multivariate Gaussian.

We can specialize Theorem 16.14 from a vector to a single RV.

Corollary 16.15. LetX be a zero-mean continuous random variable with variance
�2. Then

h(X) � 1

2
log
�
2�e�2

�
(16.115)

with equality if, and only if, X � N �0; �2�.

Solution to Exercise 16.6: H(2Xd) = H(Xd) because the probabilities of
2Xd and of Xd are identical.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 17

Gaussian Channel

17.1 Introduction

After our preparation in Chapter 16, we are now ready to change to a situa-
tion where the channel alphabets are continuous (i.e., the alphabet sizes are
infinite). However, note that at the moment we still stick to a discrete time
k.

The most important such continuous-alphabet discrete-time channel is the
Gaussian channel.

Definition 17.1. The Gaussian channel has a channel output Yk at time k
given by

Yk = xk + Zk; (17.1)

where xk denotes the input of the channel at time k and is assumed to be
a real number xk 2 R, and where fZkg is IID � N �0; �2� denoting additive
Gaussian noise. Note that like for a DMC there is no memory in the channel.
It is therefore quite usual for the channel definition to drop the time index k:

Y = x+ Z: (17.2)

Following our notation for the DMC we describe the Gaussian channel by
the input and output alphabets

X = Y = R (17.3)

and the channel law (now a conditional PDF instead of a conditional PMF!)

fY jX(yjx) = 1p
2��2

e�
(y�x)2

2�2 : (17.4)

In spite of the seemingly quite different nature of this channel compared
to a DMC, it turns out that it behaves very similarly in many respects. There

383 © Stefan M. Moser — IT, version 6.14

384 Gaussian Channel

are only a few changes. To notice the most important difference, consider for
a moment the channel capacity from an intuitive point of view.

Assume first that �2 = 0. Then Zk = 0 deterministically and Yk = xk
without any noise. How big is the capacity in this situation? Note that xk
can take on infinitely many different values and Yk can perfectly “reconstruct”
xk. So, it is not hard to see that C =1!

So we turn to the more realistic situation �2 > 0. How big is capacity now?
Well, note that we have no restriction on xk, i.e., we can choose xk as large as
we want. Therefore it is still possible to choose infinitely many different values
for xk that are infinitely far apart from each other! In particular, choose

xk 2 f0;�a;�2a;�3a;�4a; : : :g (17.5)

and let a ! 1. Since the different values are infinitely far apart from each
other, we will always be able to reconstruct xk from the noisy observation Yk.
And since xk can take on infinitely many different values, we again end up
with C =1!

However, note that again this is not realistic: We will not be able to choose
such large values for xk because in any practical system the available power
is limited. We see that we need to introduce one or several constraints on the
input. The most common such constraint is an average-power constraint.

Definition 17.2. We say that the input of a channel is subject to an average-
power constraint Es if we require that every codeword x = (x1; : : : ; xn) satisfy

1

n

nX
k=1

x2k � Es (17.6)

for some given power Es � 0.

Actually, Es is not really “power”, but symbol energy.1 This is because we
are in a discrete-time setup and power (energy per time) is not defined.

Example 17.3. We consider xk 2 f+
p
Es;�

p
Esg, which satisfies the average-

power constraint:

1

n

nX
k=1

x2k =
1

n

nX
k=1

Es = Es: (17.7)

Moreover, we restrict ourselves to the case n = 1. Then the decoder looks
at Y1 and tries to guess whether +

p
Es or �pEs has been sent. What is the

optimal decision rule?
Recall our discussion of decoding in Section 11.3: The best strategy is to

design an ML decoder (assuming that both messages x1 =
p
Es or x1 = �

p
Es

1Therefore the name Es: E stands for energy and the subscript s stands for symbol.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

17.2. Information Capacity 385

are equally likely). Due to the symmetric noise (a Gaussian distribution is
symmetric around 0), we immediately see that

if Yk � 0 =) decide +
p
Es; (17.8a)

if Yk < 0 =) decide �
p
Es: (17.8b)

What is the probability of error? Again assuming that both values of X1 are
equally likely, we get the following:

Pr(error) = Pr
�
error

���X1 = +
p
Es

�
Pr
h
X1 = +

p
Es

i
+Pr

�
error

���X1 = �
p
Es

�
Pr
h
X1 = �

p
Es

i
(17.9)

=
1

2
Pr
�
error

���X1 = +
p
Es

�
+

1

2
Pr
�
error

���X1 = �
p
Es

�
(17.10)

= Pr
�
error

���X1 = +
p
Es

�
(17.11)

= Pr
h
Y1 < 0

���X1 = +
p
Es

i
(17.12)

= Q
 p

Es

�

!
(17.13)

where the Q-function is defined as

Q(x) , 1p
2�

Z 1

x
e�

�2

2 d� = Pr[G > x] (17.14)

for G � N (0; 1) (see also Appendix A). Hence, we have transformed the
Gaussian channel into a BSC with cross-over probability � = Q

�p
Es
�

�
.

Obviously, this is not optimal. So the question is how to do it better. �

17.2 Information Capacity

Analogously to our discussion of channel coding and capacity for a DMC we
start by defining a purely mathematical quantity: the information capacity.

Definition 17.4. The information capacity of a Gaussian channel with average-
power constraint Es is defined as

Cinf(Es) , max
fX(�) : E[X2]�Es

I(X;Y); (17.15)

where fX(�) denotes the PDF of the input X.
Note that the constraint E

�
X2
� � Es is not the average-power constraint,

but simply a (second-moment) constraint on the maximization defined here.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

386 Gaussian Channel

We compute the value of Cinf(Es):

I(X;Y) = h(Y)� h(Y jX) (17.16)

= h(Y)� h(X + ZjX) (17.17)

= h(Y)� h(ZjX) (17.18)

= h(Y)� h(Z) (17.19)

= h(Y)� 1

2
log(2�e�2) (17.20)

� 1

2
log(2�eVar[Y])� 1

2
log(2�e�2); (17.21)

where the last inequality follows from the fact that a Gaussian RV of given
variance maximizes differential entropy (Corollary 16.15). This step can be
achieved with equality if (and only if) Y is Gaussian distributed with variance
Var[Y]. This is actually possible if we choose the input to be Gaussian as well.

So we have realized that the best thing is to choose the input to be Gaussian
distributed. It only remains to figure out what variance to choose. Since our
expression depends on the variance of Y , we compute its value:

Var[Y] = E
h�
Y � E[Y]

�2i (17.22)

= E
h�
X + Z � E[X]� E[Z]

�2i (17.23)

= E
h�
X + Z � E[X]

�2i (17.24)

= E
h
(X � E[X])2

i
� 2E[Z(X � E[X])] + E

�
Z2� (17.25)

= E
h
(X � E[X])2

i
� 2E[Z]| {z }

=0

E[X � E[X]] + E
�
Z2�| {z }

=�2

(17.26)

= E
h
(X � E[X])2

i
+ �2 (17.27)

= E
�
X2�� (E[X])2| {z }

� 0

+ �2 (17.28)

� E
�
X2�+ �2 (17.29)

� Es + �2: (17.30)

Here, in (17.24) we use that Z has zero mean; (17.26) follows because Z and
X are independent; and the last step (17.30) follows by the constraint on the
maximization. Actually, we could have arrived at (17.28) from (17.22) directly
if we had remembered that for X ?? Z

Var[X + Z] = Var[X] + Var[Z]: (17.31)

Note that the upper bound (17.30) can actually be achieved if we choose X
to have zero mean and variance Es.

Hence,

I(X;Y) � 1

2
log 2�e

�
Es + �2

�� 1

2
log 2�e�2 =

1

2
log

�
1 +

Es

�2

�
; (17.32)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

17.3. Channel Coding Theorem 387

and this upper bound can be achieved if (and only if) we choose X � N (0;Es).
So we have shown the following.

Proposition 17.5. The information capacity of a Gaussian channel is

Cinf(Es) =
1

2
log

�
1 +

Es

�2

�
(17.33)

and is achieved by a Gaussian input X � N (0;Es).

Remark 17.6. Note that from an energy point of view it is silly to transmit
a mean E[X] 6= 0 because the mean is deterministic and does therefore not
contain any information (the decoder can always simply subtract it from the
received signal without changing the mutual information) and because trans-
mitting a mean uses (wastes!) power:

E
�
X2�� (E[X])2 � E

�
X2�: (17.34)

M

17.3 Channel Coding Theorem

Next, we will prove a coding theorem for the Gaussian channel. The proof
will be very similar to the proof of the coding theorem for a DMC given in
Chapter 11. The main difference is that we have to take into account the
average-power constraint (17.6).

We quickly repeat the definition of a coding scheme and its most funda-
mental parameters.

Definition 17.7. An (M; n) coding scheme for the Gaussian channel with av-
erage-power constraint Es consists of

• a message setM = f1; 2; : : : ;Mg;

• a codebook of M length-n codewords x(m) = (x1(m); : : : ; xn(m)), where
every codeword needs to satisfy the average-power constraint

1

n

nX
k=1

x2k(m) � Es; m = 1; : : : ;M; (17.35)

• an encoding function � : M ! Rn that maps the message m into the
codeword x(m); and

• a decoding function : Rn ! M̂ that maps the received sequence y

into a guess m̂ of which message has been transmitted, where usually
M̂ ,M[f0g (with 0 denoting “error”).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

388 Gaussian Channel

Definition 17.8. The rate R of an (M; n) coding scheme is defined as

R , log2M

n
(17.36)

and is said to be achievable if there exists a sequence of (d2nRe; n) coding
schemes (with codewords satisfying the power constraint (17.35)) such that
the maximal probability of error �(n) tends to zero. The operational capacity
is the supremum of all achievable rates.

We now have the following fundamental result.

Theorem 17.9 (Coding Theorem for the Gaussian Channel).
The operational capacity of the Gaussian channel with average-power
constraint Es and noise variance �2 is

C(Es) =
1

2
log2

�
1 +

Es

�2

�
bits per transmission: (17.37)

Hence, operational capacity and information capacity are identical, and
we simply speak of capacity.

17.3.1 Plausibility

Before we properly prove the coding theorem, we give a plausibility argument
of why it holds.

So assume we transmit a codeword x over the channel and receive a vector
Y = x+Z. Hence, Y lies with high probability in a sphere of radius r around
x, where

r =
q

E[kZk2] =
q

E
�
Z2
1 + � � �+ Z2

n

�
=
p
n�2: (17.38)

So, consider such a sphere around each of the possible codewords. As long as
there exist no codewords whose spheres overlap, we will be able to guess the
right message with high probability.

Due to the power constraint on the input, our available energy for each
component of the codewords is limited to Es on average. Therefore, the re-
ceived sequences are likely to be in a sphere of radius

rtot =
q

E[kYk2] =
q

E
�
Y 2
1 + � � �+ Y 2

n

�
(17.39)

=

vuut nX
k=1

E
�
Y 2
k

�
(17.40)

=

vuut nX
k=1

�
E
�
X2
k

�
+ E

�
Z2
k

��
(17.41)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

17.3. Channel Coding Theorem 389

=

vuutE

"
nX

k=1

X2
k

#
+ n�2 (17.42)

�
q
nEs + n�2 (17.43)

=
q
n(Es + �2); (17.44)

where in (17.43) we have used (17.35).

Figure 17.1: The large sphere depicts the n-dimensional space of all possible
received vectors. Each small sphere depicts a codeword with some
noise around it. To maximize the number of possible messages,
we try to put as many small spheres into the large one as possible,
but without having overlap such as to make sure that the receiver
will not confuse two messages due to the noise.

Hence, to make sure that we can transmit as much information as possible,
we need to try to use as many codewords as possible, but the small spheres
of the codewords should not overlap. So, the question is: How many small
spheres of radius r can be squeezed into the large sphere of radius rtot without
having any overlap (see Figure 17.1)?

Note that a sphere of radius r in an n-dimensional space has a volume of
anr

n where an is a constant that depends on n, but not on r. So, if we do
not worry about the shape of the spheres, then at most we can squeeze the
following number of small spheres into the big sphere:

M =
Vol(large sphere)
Vol(small sphere)

=
anr

n
tot

anrn
=

�p
n(Es + �2)

�n
�p

n�2
�n =

Es + �2

�2

!n
2

: (17.45)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

390 Gaussian Channel

Hence, we get a rate

R =
logM

n
=

1

n
� n
2
log

Es + �2

�2

!
=

1

2
log

�
1 +

Es

�2

�
= Cinf(Es): (17.46)

This is exactly what Theorem 17.9 claims.

17.3.2 Achievability

Next we have a look at a rigorous proof. We start with a lower bound on the
rate, i.e., the achievability part of the proof. The idea is very similar to the
proof given in Section 11.8. The only difference is the additional difficulty of
having an average-power constraint to be taken care of.

We go through the following steps:

1: Codebook Design: Identically to the coding theorem for a DMC we generate
a codebook at random. To this end, we fix a rate R, a codeword length n,
and a PDF fX(�). From the information capacity calculations above we
know that the capacity-achieving input distribution is Gaussian, hence
our first attempt is to choose

fX(x) =
1p
2�Es

e�
x2

2Es : (17.47)

But if we generate all codewords like that, what happens with the average-
power constraint? There is hope: By the weak law of large numbers we
know that

1

n

nX
k=1

X2
k
n!1�! E

�
X2� = Es in probability: (17.48)

Hence, it looks like that with a high chance the randomly generated code-
words will satisfy the power constraint.

But we have to be careful with the details! What we actually need in our
analysis of the error probability is the following property: For any given
� > 0 we must have that

Pr

"
1

n

nX
k=1

X2
k > Es

#
� � (17.49)

for some n large enough. Unfortunately, (17.48) only guarantees that for
given � > 0 and � > 0 there exists an n0 such that for all n � n0

Pr

"����� 1n
nX

k=1

X2
k � E

�
X2������ > �

#
� �: (17.50)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

17.3. Channel Coding Theorem 391

Choosing � = �, we obtain from (17.50):

� � Pr

"����� 1n
nX

k=1

X2
k � E

�
X2������ > �

#
(17.51)

= Pr

 (
1

n

nX
k=1

X2
k � E

�
X2� > �

)
[
(
1

n

nX
k=1

X2
k � E

�
X2� < ��

)!
(17.52)

� Pr

"
1

n

nX
k=1

X2
k � E

�
X2� > �

#
(17.53)

= Pr

"
1

n

nX
k=1

X2
k > E

�
X2�+ �

#
: (17.54)

This differs from (17.49) by a small � added to the expected energy E
�
X2
�
.

So, to make sure that (17.54) agrees with the needed (17.49), we must
choose

E
�
X2�+ � = Es; (17.55)

i.e., for the random generation of the codewords we do not use the distri-
bution in (17.47), but instead we reduce the variance slightly: We generate
every letter of all codewords IID � N (0;Es � �):

fX(x) =
1p

2�(Es � �)
e
� x2

2(Es��) : (17.56)

Note that since � can be chosen arbitrarily small, we are not really con-
cerned about this small change.

So we randomly generate the codebook IID according to (17.56), and then
show the codebook to both the encoder and the decoder.

Remark 17.10. Note that in our random design of the codebook we do not
have the guarantee that all codewords will satisfy the power constraint
(17.35)! (We only have the property that a violation of the power con-
straint is not very likely to happen too often.) However, in spite of this,
we do not delete a codeword that does not satisfy the power constraint!

From a practical point of view this makes no sense at all, but it simplifies
our analysis considerably: If we checked every codeword and regenerated
some of them if they did not satisfy the power constraint, then we would
introduce a dependency between the different letters in each codeword
and our analysis would break down. Instead we will take care of the
“illegal” codewords at the receiver side, see below. M

2: Encoder Design: Given some message m 2 �1; : : : ; d2nRe	 that is chosen
by the source according to a uniform distribution

Pr[M = m] =
1

d2nRe ; (17.57)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

392 Gaussian Channel

the encoder picks the mth codeword X(m) and sends it over the channel.

3: Decoder Design: We again use a threshold decoder based on the instanta-
neous mutual information

i(x;y) , log
fX;Y(x;y)

fX(x)fY(y)
; (17.58)

where

fX;Y(x;y) =
nY

k=1

fX(xk) fY jX(ykjxk) (17.59)

with fX(�) defined in (17.56) and fY jX(�j�) denoting the channel law, i.e.,
the conditional PDF of the channel output given the channel input given
in (17.4).

The decoder receives a sequence Y and searches for an m̂ such that for
some given threshold � > 0,

• for m̂

i
�
X(m̂);y

�
> log2 �; (17.60)

• for all ~m 6= m̂

i
�
X(~m);y

� � log2 �; (17.61)

• the codeword X(m̂) satisfies the average-power constraint

1

n

nX
k=1

X2
k(m̂) � Es: (17.62)

If the decoder can find such an m̂, then it will put out this m̂, otherwise
it puts out m̂ = 0, i.e., it declares an error.

We choose the threshold � as in Section 11.8 to be

� , 2n(I(X;Y)��) (17.63)

for some fixed � > 0. Here I(X;Y) is the mutual information between
a channel input symbol X and its corresponding output symbol Y when
the input has the distribution fX(�) given in (17.56), i.e.,

I(X;Y) = h(Y)� h(Y jX) (17.64)

= h(X + Z)� h(Z) (17.65)

=
1

2
log 2�e

�
Es � �+ �2

�� 1

2
log 2�e�2 (17.66)

=
1

2
log

�
1 +

Es � �
�2

�
: (17.67)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

17.3. Channel Coding Theorem 393

Note that if the power constraint is not satisfied by the used codeword,
the decoder will for sure declare an error, even if it actually could have
decoded correctly. With this (from a practical point of view very strange)
decoding rule we actually fix our issue of using codewords that violate the
average-power constraint. For more details, see Part 5: Strengthening
below.

4: Performance Analysis: Identically to the argument given in the proof of the
coding theorem of a DMC, without loss of generality we can assume that
M = 1 is transmitted (recall that each codeword is generated randomly
and independently of all other codewords anyway, so it does not mat-
ter which message is chosen; see (11.124)–(11.130)). We now define the
following events:

F0 ,
(
1

n

nX
k=1

X2
k(1) > Es

)
; (17.68)

Fm ,
n
i
�
X(m);Y

�
> log2 �

o
; m = 1; : : : ; d2nRe; (17.69)

i.e., F0 is the event that the transmitted codeword violates the power
constraint, and Fm is the event that the mth codeword and the received
sequence Y have an instantaneous mutual information above the given
threshold. Hence an error occurs if F0 occurs (i.e., the power constraint
is violated), if Fc

1 occurs (i.e., if the transmitted codeword and the received
sequence have a too small instantaneous mutual information), or if F2 [
F3 [� � � [Fd2nRe occurs (i.e., if one or more wrong codewords have an
instantaneous mutual information with the received sequence Y that is
too big). Using the Union Bound, we obtain:

Pr(error) = Pr(error jM = 1) (17.70)

= Pr
�
F0 [Fc

1 [F2 [F3 [� � � [Fd2nRe
���M = 1

�
(17.71)

� Pr(F0 jM = 1) + Pr(Fc
1 jM = 1)

+

d2nReX
m=2

Pr(Fm jM = 1): (17.72)

From (17.54) and (17.55) we know that

Pr(F0 jM = 1) � �: (17.73)

Then from our choice (17.63) and from the weak law of large numbers it
follows that

Pr(Fc
1 jM = 1) = Pr

�
i
�
X(1);Y

� � log2 �
��M = 1

�
(17.74)

= Pr

"
nX

k=1

i(Xk;Yk) � n
�
I(X;Y)� ��

#
(17.75)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

394 Gaussian Channel

� Pr

"����� 1n
nX

k=1

i(Xk;Yk)� I(X;Y)

����� � �
#

(17.76)

� � (for n large enough): (17.77)

And for m � 2, we have

Pr(Fm jM = 1) = Pr
�
i
�
X(m);Y

�
> log2 �

��M = 1
�

(17.78)

= Pr

�
log2

fX;Y(X(m);Y)

fX(X(m))fY(Y)
> log2 �

����M = 1

�
(17.79)

= Pr

�
fX;Y(X(m);Y)

fX(X(m))fY(Y)
> �

����M = 1

�
(17.80)

=

Z
� � �
Z

(x;y) such that
fX;Y(x;y)>�fX(x)fY(y)

fX(x)fY(y) dxdy (17.81)

=

Z
� � �
Z

(x;y) such that
fX(x)fY(y)< 1

�
fX;Y(x;y)

fX(x)fY(y)| {z }
< 1

�
fX;Y(x;y)

dxdy (17.82)

<

Z
� � �
Z

(x;y) such that
fX(x)fY(y)< 1

�
fX;Y(x;y)

1

�
fX;Y(x;y) dxdy (17.83)

� 1

�

Z
� � �
Z
fX;Y(x;y) dxdy| {z }

=1

=
1

�
: (17.84)

Here, again, we make use of the fact that X(m) is independent of Y such
that their joint density is in product form.

Combining these results with (17.72) now yields

Pr(error) < �+ �+

d2nReX
m=2

1

�
(17.85)

= 2�+
�
d2nRe � 1

�
| {z }

� 2nR

2�n(I(X;Y)��) (17.86)

� 2�+ 2�n(I(X;Y)�R��) (17.87)

� 3�; (17.88)

if n is sufficiently large and if I(X;Y)�R� � > 0 so that the exponent is
negative. Hence we see that for any � > 0 we can choose n such that the
average error probability, averaged over all codewords and all codebooks,
is less than 3� as long as

R < I(X;Y)� � = 1

2
log

�
1 +

Es � �
�2

�
� �; (17.89)

where we have used (17.67). Note that this is arbitrarily close to the
information capacity.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

17.3. Channel Coding Theorem 395

5: Strengthening: Finally, we strengthen the proof:

• Firstly, we would like to get rid of the average over the codebooks.
Since our average error probability is small (� 3�), there must exist
at least one codebook C � that has an equally small error probability,
i.e., we can find a codebook C � satisfying

P
(n)
e (C �) � 3�: (17.90)

• Secondly, we strengthen the proof to obtain a result with respect
to the maximum error probability �(n) instead of the average error
probability P (n)

e . To this end, we consider the good codebook C �, for
which we know that (17.90) holds, and order the codewords according
to their error probabilities �m, m = 1; : : : ; d2nRe. Let ~� , �b2nR=2c
be the error probability of the worst codeword of the better half.
Then

3� � P (n)
e (C �) (17.91)

=
1

d2nRe
d2nReX
m=1

�m (17.92)

=
1

d2nRe
b2nR=2cX
m=1

(better half)

�m|{z}
� 0

+
1

d2nRe
d2nReX

m=b2nR=2c+1
(worse half)

�m|{z}
� ~�

(17.93)

� 1

d2nRe
d2nReX

m=b2nR=2c+1

~� (17.94)

=
d2nRe � b2nR=2c

d2nRe � ~� (17.95)

�
~�

2
: (17.96)

Thus, we have shown ~� � 6�. So if we design a new codebook with
only half the amount of codewords by taking the good codebook C �

and throwing away the worse half of the codewords, we get a new
codebook ~C � with a maximum error probability being very small:

~�(n) � 6�: (17.97)

Note that this new codebook ~C � is also guaranteed to have all code-
words satisfying the average-power constraint (17.35) because the
error probability of any codeword that does not satisfy the power
constraint is 1 and thus could not satisfy (17.97).
But by throwing away half of the codewords, we have also changed
the rate: The rate of ~C � satisfies

~R =
log2

�b2nR2 c�
n

=
log2(b2nR�1c)

n
� nR� 1

n
= R� 1

n
(17.98)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

396 Gaussian Channel

and condition (17.89) becomes

~R � R� 1

n
(17.99)

<
1

2
log

�
1 +

Es � �
�2

�
� �� 1

n
(17.100)

� 1

2
log

�
1 +

Es � �
�2

�
� 2�; (17.101)

where in (17.101) we choose n � 1
� .

• Finally, note that � is a parameter that we can choose freely. Hence,
we can make it as small as we wish, so that condition (17.101) can
be replaced by

~R <
1

2
log

�
1 +

Es

�2

�
: (17.102)

Thus, we have shown that it is possible to design a coding scheme with ar-
bitrarily small error probability if n is chosen large enough and if the rate is
smaller than the information capacity.

17.3.3 Converse

Consider any (d2nRe; n) coding scheme that satisfies the average-power con-
straint (17.35) for all m = 1; : : : ; d2nRe. Using the Fano Inequality (Corol-
lary 11.27) and defining P (n)

e = Pr
�
M 6= M̂

�
, we have

H
�
M
��M̂� � log2 2 + P

(n)
e log2

�d2nRe� (17.103)

� 1 + P
(n)
e log2

�
2nR+1� (17.104)

= 1 + P
(n)
e � (nR+ 1) bits; (17.105)

where in (17.104) we bounded d2nRe � 2nR + 1 � 2 � 2nR = 2nR+1. Recalling
that M is uniformly distributed over f1; : : : ; d2nReg, i.e.,

H(M) = log2
�d2nRe� � nR bits; (17.106)

we bound as follows:

nR � H(M) (17.107)

= I
�
M ; M̂

�
+H

�
M
��M̂� (17.108)

� I
�
M ; M̂

�
+ 1 + P

(n)
e � (nR+ 1) (by (17.105)) (17.109)

� I(Xn
1 ;Y

n
1) + 1 + P

(n)
e � (nR+ 1) (DPI) (17.110)

= h(Y n
1)� h(Y n

1 jXn
1) + 1 + P

(n)
e � (nR+ 1) (17.111)

= h(Y n
1)� h(Zn

1) + 1 + P
(n)
e � (nR+ 1) (17.112)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

17.3. Channel Coding Theorem 397

=
nX

k=1

�
h
�
Yk
��Y k�1

1

�� h
�
Zk
��Zk�1

1

��
+ 1 + P

(n)
e � (nR+ 1) (chain rule) (17.113)

=
nX

k=1

�
h
�
Yk
��Y k�1

1

�� h(Zk)
�

+ 1 + P
(n)
e � (nR+ 1) (fZkg IID) (17.114)

�
nX

k=1

�
h(Yk)� h(Zk)

�
+ 1 + P

(n)
e � (nR+ 1) bits: (17.115)

Here, (17.110) follows from the Data Processing Inequality2 (Lemma 11.30)
based on the Markov chain M (�� X(�� Y (�� M̂ (see Definition 11.28),
and the last inequality follows because conditioning cannot increase entropy.

Now let

Ek ,
1

d2nRe
d2nReX
m=1

x2k(m) (17.116)

be the average energy of the kth component of the codewords when averaged
uniformly over all codewords. Note that due to the average-power constraint
(17.35) we have

1

n

nX
k=1

Ek � Es: (17.117)

Moreover note that

E
�
Y 2
k

�
= E

h
(Xk + Zk)

2
i

(17.118)

= E
�
X2
k

�
+ E

�
Z2
k

�
(Xk ?? Zk and E[Zk] = 0) (17.119)

= E
h
x2k(M)

i
+ �2 (Xk is random because of M) (17.120)

=

d2nReX
m=1

1

d2nRe � x
2
k(m) + �2 (M is uniformly distributed) (17.121)

= Ek + �2 (by definition (17.116)). (17.122)

Hence, we continue with (17.115) as follows:

R � 1

n

nX
k=1

�
h(Yk)� h(Zk)

�
+

1

n
+ P

(n)
e �

�
R+

1

n

�
(17.123)

� 1

n

nX
k=1

�
1

2
log2

�
2�eVar[Yk]

�� h(Zk)

�
+

1

n
+ P

(n)
e �

�
R+

1

n

�
(17.124)

2Recall from the discussion of (16.81)–(16.88) that the Data Processing Inequality con-
tinues to hold even if we mix continuous with discrete RVs!

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

398 Gaussian Channel

� 1

n

nX
k=1

�
1

2
log2

�
2�eE

�
Y 2
k

��� h(Zk)

�
+

1

n
+ P

(n)
e �

�
R+

1

n

�
(17.125)

=
1

n

nX
k=1

�
1

2
log2

�
2�e

�
Ek + �2

��� 1

2
log2

�
2�e�2

��
+

1

n
+ P

(n)
e �

�
R+

1

n

�
(17.126)

=
1

n

nX
k=1

1

2
log2

�
1 +

Ek

�2

�
+

1

n
+ P

(n)
e �

�
R+

1

n

�
(17.127)

� 1

2
log2

1 +

1

n

nX
k=1

Ek

�2

!
+

1

n
+ P

(n)
e �

�
R+

1

n

�
(17.128)

� 1

2
log2

�
1 +

Es

�2

�
+

1

n
+ P

(n)
e �

�
R+

1

n

�
bits: (17.129)

Here, (17.124) follows from Theorem 16.14 that shows that for given vari-
ance and mean the differential entropy is maximized by a Gaussian RV; the
subsequent inequality (17.125) follows from

Var[Yk] = E
�
Y 2
k

�� �E[Yk]�2 � E
�
Y 2
k

�
; (17.130)

(17.126) follows from (17.122); in (17.128) we apply the Jensen Inequality
(Theorem 2.1); and the final step (17.129) is due to (17.117) and the mono-
tonicity of log(�).

Hence, if P (n)
e ! 0 as n!1, we must have

R � 1

2
log

�
1 +

Es

�2

�
: (17.131)

This concludes the proof of the converse and thereby the proof of the coding
theorem.

We add a small remark. The derivation (17.110)–(17.129) actually shows
that (11.101) still holds in the context of a Gaussian channel and in presence
of an average-power constraint:

1

n
I(Xn

1 ;Y
n
1) � Cinf(Es): (17.132)

17.4 Joint Source and Channel Coding Theorem

Similarly to the discrete-alphabet case, next we would like to combine data
compression and channel transmission. I.e., we will look at the combined in-
formation transmission system shown in Figure 17.2, where a general discrete
stationary source shall be transmitted over the Gaussian channel.

If we recall our derivations of the Information Transmission Theorem (The-
orem 15.3) and the Source Channel Coding Separation Theorem (Corollar-
y 15.4) for a DMC, we will quickly note that the derivations can be taken over
one-to-one to the situation of a Gaussian channel. So we will not bother to
re-derive the results again, but simply state it. Note that instead of C we will
directly use the capacity expression of the Gaussian channel (17.37).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

17.4. Joint Source and Channel Coding Theorem 399

dest. decoder
^U1; : : : ; ^UK Gauss.

channel
Y1; : : : ; Yn

encoder
X1; : : : ; Xn

DSS
U1; : : : ; UK

Figure 17.2: Information transmission system using a joint source channel
coding scheme.

Theorem 17.11 (Information Transmission Theorem and Source Channel Coding
Separation Theorem for the Gaussian Channel).
Consider a Gaussian channel with average-power constraint Es and noise
variance �2, and a finite-alphabet stationary and ergodic source fUkg.
Then, if

H(fUkg)
Ts

bits/s <
1

2Tc
log2

�
1 +

Es

�2

�
bits/s (17.133)

(where Ts and Tc are the symbol durations of the source and the channel,
respectively), there exists a joint source channel coding scheme with a
probability of a decoding error P (K)

e ! 0 as K!1.
Moreover, it is possible to design the transmission system such as to

firstly compress the source data in a fashion that is independent of the
Gaussian channel and then use a channel code for the Gaussian channel
that is independent of the source.

Conversely, for any stationary source fUkg with

H(fUkg)
Ts

bits/s >
1

2Tc
log2

�
1 +

Es

�2

�
bits/s; (17.134)

the probability of a decoding error P (K)
e cannot tend to zero, i.e., it is not

possible to send the source data over the Gaussian channel with arbitrarily
low error probability.

We can also take over our discussion from Section 15.6 about the limita-
tions of communication when we transmit above capacity: The lower bound
to the average bit error rate (BER) given in expression (15.78) also holds for
the Gaussian channel.

So, we assume an IID uniform binary source and, in (15.78), we replace
the capacity C by the capacity expression of the Gaussian channel (17.33) and
define

N0 , 2�2 (noise energy level in Joule3); (17.135)

Eb , Es � Ts

Tc
= Es � 1

R
(energy per information bit in Joule); (17.136)

3For a justification for this definition, see (18.46).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

400 Gaussian Channel

b ,
Eb

N0
(signal-to-noise ratio). (17.137)

Here we again have used (compare with (15.38))

R =
Tc

Ts
H(fUkg) = Tc

Ts
bits (17.138)

for fUkg IID uniform binary.
Using these definitions, we transform (15.77) into

Hb(Pb) � 1� 1

2R
log2(1 + 2Rb) (17.139)

or

Pb � H�1
b

�
1� 1

2R
log2(1 + 2Rb)

�
: (17.140)

Here, again, H�1
b (�) is the inverse function of the binary entropy function Hb(�)

for � 2
h
0; 12

i
(and we define H�1

b (�) , 0 for � < 0). As we have discussed in
Section 15.6 already, this lower bound is tight, i.e., there exist schemes that
can approach it arbitrarily closely.

The curve (17.140) is shown in Figure 17.3 as a function of the signal-to-
noise ratio (SNR) for R = 1

2 and R = 1
3 . We see that there exists a rate-12

system design that can achieve an average bit error rate Pb = 10�5 at an SNR
b close to 0 dB, i.e., for Eb � N0.

On the other hand, we are sure that no system with a rate R = 1
2 can yield

a BER less than 10�5 if the signal energy per information bit Eb is less than
the noise energy level N0.

Due to its fundamental importance, the lower bound (17.140) is called
Shannon limit. For many years after Shannon has drawn this line in 1948
[Sha48], researchers have tried very hard to find a design that can actually
achieve this lower bound. Over the years and with great effort, they managed
to gradually close the gap between the existing transmission schemes and the
theoretical limit. For a long period between the 1960s and the early 1990s, the
Shannon limit could only be approached to around 2 dB. However, in 1993 a
big breakthrough was presented at a conference in Geneva: The turbo code
was the first design that managed to get within 1 dB of the limit [BGT93].

A couple of years later, between 1996–1998, the low-density parity-check
(LDPC) codes were rediscovered [MN96], [DM98] and shown to reduce the
performance gap to even smaller values, e.g., 0.1 dB. We use “rediscover”
here because LDPC codes were originally proposed by Robert G. Gallager in
1962 [Gal62]. Yet, at that time, the research community did not realize their
potential. One might argue that due to their high complexity, the computers

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

17.4. Joint Source and Channel Coding Theorem 401

�6 �5 �4 �3 �2 �1 0 1

1 � 10
�6

1 � 10
�5

1 � 10
�4

1 � 10
�3

1 � 10
�2

0:1

1

b [dB]

B
E

R
P

b

R = 1=2 R = 1=3

Figure 17.3: Shannon limit for the Gaussian channel.

at that time could not perform any simulations on LDPC codes and that
therefore this discovery went unnoticed for so long. However, interestingly
enough, Gallager actually ran quite a lot of numerical computations in the
early 60s already and demonstrated performance values of LDPC codes up to
an error probability of 10�4. They were completely ignored for 35 years. . .

So it took the engineers about 50 years (from 1948 to 1998) until they
finally managed to catch up with the pioneering prediction of Shannon for a
DMC and for the Gaussian channel.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 18

Bandlimited Channels

In Chapter 17 we have dropped the assumption of discrete alphabets and
allowed more general continuous alphabets. Now we will also drop the sim-
plification of discrete time and consider a continuous-time channel.

As a matter of fact, in the physical world almost every signal and system is
of continuous-time nature. Still, we engineers prefer to work with discrete-time
problems because they are so much easier to handle and control. Therefore
textbooks often start directly with a discrete-time model and simply assume
that the sampling and digitalization has been taken care of. This script is no
exception!

In this chapter, however, we will try to get a flavor of the real physical
world and how one can try to convert it into a discrete-time setup. We have
to warn the reader that this conversion from continuous time to discrete time
is mathematically very tricky. We will therefore try to give a rough overview
only and skip over quite a few mathematical details. For those readers who
are interested in a clean treatment, the book by Amos Lapidoth [Lap17] is
highly recommended.

Note that in this chapter we will be using the Fourier transform. It is
assumed that the reader has a good basic knowledge of the Fourier transform
and its properties.

18.1 Additive White Gaussian Noise Channel

In contrast to the regularly clocked discrete-time systems, in real continuous-
time systems, the shape of the signal is free to change at any time, but we
usually have a constraint concerning the used frequencies: Only a limited
frequency band is available, either because of technical limitations (any filter
or amplifier has implicit band limitations) or, even more importantly, because
the frequency bands are licensed. Hence, the input signal to our channel is
not only constrained with respect to its average power, but also with respect
to its frequencies.

403 © Stefan M. Moser — IT, version 6.14

404 Bandlimited Channels

We consider the following channel model, that is the simplest, but at
the same time also the most important continuous-time channel model in
engineering. Its name is additive white Gaussian noise (AWGN) channel.
For a given input signal at time t 2 R, the channel output is

Y (t) = x(t) + Z(t): (18.1)

As already mentioned, the input x(�) has to satisfy an average-power constraint
P and is bandlimited to W Hz, i.e., it only may contain frequencies in the
interval [�W;W].

The term Z(t) denotes additive noise. We will assume that Z(�) is a white
Gaussian noise process with a double-sided1 power spectral density (PSD)
that is flat inside of the band [�W;W] and has a value N0

2 . Such a PSD is
called white in an analogy to white light that contains all frequencies equally
strongly. Since the input of the channel is restricted to lie inside the band
[�W;W], it seems reasonable that we do not need to care what the PSD of
Z(�) looks like outside of this band. This intuition can be proven formally.

Claim 18.1. Without loss of generality we may bandlimit Y (�) to the band
[�W;W].

Proof: We omit the proof and refer the interested reader to [Lap17]. This
result is intuitively pleasing because all components of Y (�) outside the fre-
quency band only contain noise and no signal components, so it indeed seems
clear that we can ignore them.

Hence, we do not bother about specifying the PSD completely, but simply
leave its value outside of [�W;W] unspecified. Note, however, that the PSD
certainly cannot be white for all frequencies because such a process would
have infinite power!

Beside the already mentioned constraints on the used power and frequen-
cies, from a practical point of view, the input signal also needs some kind
of time limitation because any practical system will only send finite-duration
signals. But here our first mathematical problem occurs: By a fundamen-
tal property of the Fourier transform no signal can simultaneously be strictly
timelimited and bandlimited!

To deal with this issue we set up the system as follows. We design an
encoder that receives a certain number of IID uniform binary information bits
as input. Depending on the value of these information bits, it then chooses
from a given set of strictly bandlimited signals one signal that it transmits

1We call the PSD double-sided because we define it both for positive and negative
frequencies, �1 < f < 1. Some people prefer to only consider the (physically possible)
positive frequencies f � 0. The PSD is then called single-sided and is simply twice the
value of the double-sided PSD, such that when integrated over its range, both version yield
the same value for the total power.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

18.1. Additive White Gaussian Noise Channel 405

over the channel. We could call these signals codeword-signals, since they
corresponds to the codewords used in the discrete-time setup. Recall that
beside the bandwidth restrictions all codeword-signals also need to satisfy the
average-power constraint (where the average is to be understood to be over
the time-duration of the signal).

The decoder will receive a distorted version of the transmitted signal. It
will observe this received signal for a certain limited time duration of T seconds
and then make a guess of which codeword signal has been transmitted. Note
that we can now define the rate of our system in a similar fashion to the
discrete-time setup: The rate is defined as the logarithmic number of possible
codeword-signals, normalized to the duration of the signal T (or rather the
duration of the observation of the signal).

Due to the noise in the channel and because the decoder only observes
during T seconds, there will be a certain strictly positive probability of making
an error. However, we hope that as long as the rate is small enough, we
can make this error arbitrarily small by making T large. So, we see that the
signal duration (observation duration) T in the continuous-time coding system
corresponds to the blocklength n for a discrete-time coding system.

We describe this setup mathematically.

Definition 18.2. A
�
2RT ; T) coding scheme for the AWGN channel with average-

power constraint P consists of

• 2RT codeword-signals x(m)(�) that are bandlimited to W and that satisfy
the average-power constraint

1

T

Z T

0

�
x(m)(t)

�2
dt � P; m = 1; : : : ; 2RT ; (18.2)

• an encoder � that for a message M = m transmits the codeword-signal
x(m)(�); and

• a decoder that makes a decision M̂ about which message has been
sent based on the received signal Y (t) for t 2 [0; T].

Here, R denotes the rate and is defined as (compare to Definition 11.16):

R , log2(# of codeword-signals)
T

; (18.3)

measured in bits per second. A rate is said to be achievable if there exists a
sequence of

�
2RT ; T) coding schemes such that the error probability Pr[M̂ 6=

M] tends to zero as T !1.

The alert reader will note that we are cheating here: By limiting only
the receiver to the time interval [0; T], but not the encoder, we try to cover
up the problem that a timelimited signal at the transmitter for sure is not

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

406 Bandlimited Channels

bandlimited. How we are supposed to transmit an infinite-length signal in
the first place is completely ignored. . . However, this issue is then “resolved”
in our derivation once we let T tend to infinity.

18.2 Sampling Theorem

The basic idea of our treatment of bandlimited time-continuous signals is
to rely on so-called complete orthonormal systems (CONS),2 i.e., on basis
functions that can be used to describe these functions. We are sure that you
already know a CONS that holds for all energy-limited signals: the signal
description based on the signal’s samples as given by the Sampling Theorem.

Theorem 18.3 (Sampling Theorem (by Nyquist & Shannon)).
Let s(�) be a finite-energy function that is bandlimited to [�W;W] Hz.
Then s(�) is completely specified by the samples of the function spaced
1

2W seconds apart and can be written as

s(t) =
1X

k=�1
s

�
k

2W

�
sinc(2Wt� k) (18.4)

where

sinc(t) ,

8<
:

sin(�t)
�t t 6= 0;

1 t = 0:
(18.5)

We note that

�k(t) ,
1p
2W

sinc(2Wt� k) (18.6)

are the basis functions used to describe s(�) and that
p
2W � s

�
k

2W

�
(18.7)

denote the coordinates of s(�) in this basis.
Proof: The proof relies on the Fourier series of a periodic function g(�):

Suppose g(x) is periodic with period X, i.e.,

g(x+ `X) = g(x); x 2 R; ` 2 Z: (18.8)

Then we know from the theory of Fourier series that g(�) can be written as

g(x) =
1

X

1X
k=�1

ck e
�i2�k x

X (18.9)

2For more details, see Appendix C.8.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

18.2. Sampling Theorem 407

with coefficients

ck ,
Z X

0
g(x) ei2�k

x
X dx: (18.10)

We now apply this idea to a periodic function ŝp(f) with period 2W. I.e.,

ŝp(f) =
1

2W

1X
k=�1

ck e
�i2�k f

2W (18.11)

where

ck =

Z W

�W
ŝp(f) e

i2�f k
2W df: (18.12)

Note that we have not yet specified what ŝp(f) actually is. We correct this
lapse by choosing

ck , s
�
k

2W

�
: (18.13)

Now ŝp(f) is well defined. But what is it? To find out we next compute
the inverse Fourier transform3 of the bandlimited signal s(t) using its Fourier
transform ŝ(f):

s(t) =

Z 1

�1
ŝ(f) ei2�ft df =

Z W

�W
ŝ(f) ei2�ft df: (18.14)

Note that we can restrict the integration limits because we have assumed that
s(�) is bandlimited in the first place.

Now consider the points t = k
2W :

s

�
k

2W

�
=

Z W

�W
ŝ(f) ei2�f

k
2W df: (18.15)

Comparing (18.15) with (18.12), we see that we have
Z W

�W
ŝp(f) e

i2�f k
2W df =

Z W

�W
ŝ(f) ei2�f

k
2W df (18.16)

for all k 2 Z, i.e., we must have that

ŝp(f) = ŝ(f); 8 f 2 [�W;W]: (18.17)
3Since capital letters are already reserved for random quantities, in this script we use a

hat to denote the Fourier transform of a continuous signal. Also note that our definition of
Fourier transform does not make use of the radial frequency !. The advantage is that we do
not need to bother about many factors of 2�. Moreover, f has a very fundamental physical
meaning, while I do not really understand the physical meaning of !. For more about this
choice, I highly recommend to read the first couple of chapters (in particular Chapter 6) of
[Lap17].

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

408 Bandlimited Channels

Since ŝp(f) is a periodic function with period 2W, it also follows that outside
the band [�W;W], the function ŝp(f) will simply repeat itself periodically.
So, finally, we understand that by our definition (18.13) we have chosen ŝp(f)
to be the periodic extension of ŝ(f) with period 2W!

We now also see a way of getting back our original function s(�) from its
samples fs(k=2W)g:

• Using the samples s
� k
2W

�
as coefficients ck in (18.11) we get ŝp(f).

• From ŝp(f) we can then get ŝ(f) back using an ideal lowpass filter
ĥLP(f):

ŝ(f) = ĥLP(f) � ŝp(f) = ĥLP(f) � 1

2W

1X
k=�1

s

�
k

2W

�
e�i2�k f

2W : (18.18)

• Finally we get s(t) back by the inverse Fourier transform.

This proves the first part of the theorem.
To derive the expression (18.4), we use the engineering trick of Dirac Delta

“functions” �(�). Note that �(�) is not a proper function in the mathematical
sense. But we sloppily describe it as a function

�(t) ,

8<
:0 for all t 6= 0;

1 t = 0;
(18.19)

where the “value” 1 is chosen such thatZ 1

�1
�(t) dt = 1: (18.20)

See also Example 16.4.
So consider (18.18) and make the following observations:

• The Fourier transform of a Dirac Delta �(t� kT) is

�(t� kT) b r Z 1

�1
�(t� kT) e�i2�ft dt = e�i2�fkT ; (18.21)

so that

ŝp(f) =
1

2W

1X
k=�1

s

�
k

2W

�
e�i2�k f

2W

r b sp(t) = 1

2W

1X
k=�1

s

�
k

2W

�
�

�
t� k

2W

�
: (18.22)

• The inverse Fourier transform of a lowpass filter ĥLP(�) with bandwidth
W is

�W W

1

= ĥLP(f) r b hLP(t) = 2W sinc(2Wt):

(18.23)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

18.2. Sampling Theorem 409

Hence we get

ŝ(f) = ĥLP(f) � ŝp(f)r b s(t) = hLP(t) ? sp(t) (18.24)

= 2W sinc(2Wt) ?
1

2W

1X
k=�1

s

�
k

2W

�
�

�
t� k

2W

�
(18.25)

=
1X

k=�1
s

�
k

2W

�
sinc

�
2W

�
t� k

2W

��
(18.26)

=
1X

k=�1
s

�
k

2W

�
sinc(2Wt� k): (18.27)

This proves the second part of the theorem.

Remark 18.4 (Sampling via Shah-Function). There is a nice engineering way
of remembering and understanding the Sampling Theorem. We define the
Shah-function as

666T (t) ,
1X

k=�1
�(t� kT): (18.28)

This is a strange “function”, but it has some cool properties. The coolest is
the following:

666T (t) b r 1
T

6661
T
(f); (18.29)

i.e., the Fourier transform of a Shah-function is again a Shah-function! More-
over, observe the following:

• Multiplying a function s(t) by a Shah-function 666T (t) is equivalent to
sampling the function s(�) in intervals of T :

sp(t) = s(t) � T 666T (t) (18.30)

(the additional factor T is introduced here to make sure that the energy
of sp(�) is identical to the energy of s(�)).

• Convolving a function ŝ(f) with a Shah-function 666W(f) is equivalent
to periodically repeating the function ŝ(�) with period W:

ŝp(f) = ŝ(f) ? 666W(f): (18.31)

Now, these two operations are coupled by the Fourier transform! So we un-
derstand the following beautiful relation:

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

410 Bandlimited Channels

tT 2T

s(t)

1

T
fW

ŝ(f)

Figure 18.1: Sampling and replicating frequency spectrum: This figure depicts
the relationship between sampling a bandlimited time signal and
periodically repeating the corresponding spectrum.

sp(t) = s(t) � T 666T (t) b r ŝp(f) = ŝ(f) ? 6661
T
(f): (18.32)

The relationship is also depicted in Figure 18.1.
We see that if 1

T � 2W we will have overlap in the spectrum (so-called
aliasing) and therefore we will not be able to gain the original spectrum back.

On the other hand, if T = 1
2W , then there is no overlap and we can gain

the original function back using an ideal lowpass filter.
If we sample at a slightly higher rate than 2W, i.e., T < 1

2W , then we
can even relax our requirement on the lowpass filter, i.e., it does not need
to be ideal anymore, but we can actually use a filter that can be realized in
practice. M

18.3 From Continuous To Discrete Time

So the basic idea of the Sampling Theorem (Theorem 18.3) or any other CONS
is that any signal s(�) can be described using some basis functions:

s(t) =
X
k

sk �k(t): (18.33)

The basis function have the property of being orthonormal. This means
that they are orthogonal to each other and that they are normalized to have
unit-energy:

Z 1

�1
�k(t) �k0(t) dt =

8<
:1 if k = k0;

0 if k 6= k0:
(18.34)

Due to this property it is easy to derive the coordinates sk of s(�):

sk =

Z 1

�1
s(t) �k(t) dt (18.35)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

18.3. From Continuous To Discrete Time 411

as can be seen when plugging (18.33) into (18.35):Z 1

�1
s(t) �k(t) dt =

Z 1

�1

 X
`

s` �`(t)

!
�k(t) dt (18.36)

=
X
`

s`

Z 1

�1
�`(t) �k(t) dt| {z }

=1 for `=k;
=0 otherwise

(18.37)

= sk: (18.38)

The problem for us now is that we actually do not want to describe Y (t) for
all t 2 R using infinitely many samples, but actually would like to constrain
Y (t) to the interval t 2 [0; T]. According to the Sampling Theorem we sample
at a rate of 1

2W , i.e., we have 2WT samples in this interval. So, we would
simply love to consider only these samples and write

Y (t) �
2WTX
k=1

Yk �k(t); t 2 [0; T]: (18.39)

This, however, does not really work because �k(t) are sinc-functions and there-
fore decay very slowly resulting in large contributions outside of the required
time-interval [0; T]. (We keep ignoring the additional problem that cutting
any function to [0; T] will destroy its band limitations. . .)

However, one can save oneself from this problem if rather than relying
on the CONS based on the Sampling Theorem, we use another CONS based
on the family of the so-called prolate spheroidal functions �k(t). These
orthonormal basis functions have some very nice properties:

• They are strictly bandlimited.

• Even though they are infinite-time, they concentrate most of their energy
inside the time interval [0; T].

• They retain their orthogonality even when they are restricted to [0; T].

Hence, a signal that is bandlimited to [�W;W] can described in the time-
interval [0; T] using only those 2WT orthonormal basis functions �k(�) that
mainly live inside [0; T]. The remaining basis functions only give a very small
contribution that can be neglected. For more details, see Appendix C.8 and
[Lap17, Chapter 8].

To cut these long explanations short (and ignoring many details), it is
basically possible to write

Y (t) = Y1 � �1(t) + Y2 � �2(t) + � � �+ Y2WT � �2WT (t); (18.40)

x(m)(t) = x
(m)
1 � �1(t) + x

(m)
2 � �2(t) + � � �+ x

(m)
2WT � �2WT (t);

m = 1; : : : ; 2RT ; (18.41)

Z(t) = Z1 � �1(t) + Z2 � �2(t) + � � �+ Z2WT � �2WT (t): (18.42)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

412 Bandlimited Channels

Hence, we can describe the channel model (18.1) using the following 2WT

equations:

Yk = xk + Zk; k = 1; : : : ; 2WT : (18.43)

Here the coordinates of the white Gaussian noise process Z(t)

Zk ,
Z T

0
Z(t) � �k(t) dt (18.44)

are random variables that turn out to be IID � N �0; N0
2

�
(for more details see

Appendix C.5). So we realize that (18.43) actually corresponds to a Gaussian
channel model

Y = x+ Z (18.45)

as discussed in Chapter 17, with a noise variance

�2 =
N0

2
(18.46)

and with a blocklength n = 2WT .
By the way, note that the energy of Z(t) inside the band [�W;W] and

inside the time-interval t 2 [0; T] is identical to the total energy of all 2WT

samples Zk:

2W|{z}
bandwidth

� N0

2|{z}
PSD| {z }

power in band [�W;W]

� T|{z}
duration

!
= 2WT| {z }

of samples

� N0

2|{z}
variance

: (18.47)

It only remains to derive how the average-power constraint (18.2) trans-
lates into an average-power constraint Es for this Gaussian channel. Recall
that for the discrete-time model (18.45) the average-power constraint is given
as

1

n

nX
k=1

x2k � Es: (18.48)

Plugging the description (18.41) into the average-power constraint (18.2) we
get

P � 1

T

Z T

0
x2(t) dt (18.49)

=
1

T

Z T

0

�
x1 � �1(t) + x2 � �2(t) + � � �+ x2WT � �2WT (t)

�2
dt (18.50)

=
1

T

�
x21 + x22 + � � �+ x22WT

�
(18.51)

= 2W � 1

2WT

2WTX
k=1

x2k (18.52)

= 2W � 1
n

nX
k=1

x2k; (18.53)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

18.3. From Continuous To Discrete Time 413

where in (18.51) we have used the orthonormality of �k(�). Hence, we see that

1

n

nX
k=1

x2k �
P

2W
(18.54)

i.e., in (18.48) we have

Es =
P

2W
: (18.55)

Now, we recall from Section 17.3 that the (discrete-time) capacity per
channel use of the Gaussian channel (18.45) under an average-power constraint
Es is

Cd =
1

2
log2

�
1 +

Es

�2

�
bits per channel use; (18.56)

which in our situation, using (18.46) and (18.55), translates to

Cd =
1

2
log2

1 +

P
2W
N0
2

!
=

1

2
log2

�
1 +

P

N0W

�
bits per sample: (18.57)

Since in total we have 2WT samples, the total maximum amount of informa-
tion that can be transmitted during the interval [0; T] is

2WT � Cd = WT log2

�
1 +

P

N0W

�
bits: (18.58)

When normalized to T to describe the amount of information that can be
transmitted per second, this finally gives

C = W log2

�
1 +

P

N0W

�
bits/s: (18.59)

So we see that as long as the rate R of our coding scheme (Definition 18.2)
is below the value C given in (18.59), we can choose the signal duration (ob-
servation duration) T long enough to make the error probability as small as
wished. Once again we see the duality of the blocklength n in the discrete-time
system and the signal duration T in the continuous-time system.

Note that by letting T tend to infinity, we also get rid of all the approxi-
mations and imprecisions in our derivation that we have so assiduously swept
under the rug. . .

Hence, we have shown the following, of all his theorems, Shannon’s most
famous theorem.

Theorem 18.5 (Coding Theorem for the AWGN Channel).
Consider a continuous-time channel where the output Y (�) is given by

Y (t) = x(t) + Z(t) (18.60)

with an input x(�) that is bandlimited to W Hz and that is constrained to
have an average power of at most P, and with AWGN Z(�) of double-sided

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

414 Bandlimited Channels

spectral density N0
2 . The capacity of this channel is given by

C = W log2

�
1 +

P

N0W

�
bits/s: (18.61)

We would like to briefly discuss this exciting result. Note that even though
W shows up in the denominator inside the logarithm, it also shows up as
a factor outside of the log. This factor outside is dominant for values of
W � P. Moreover, the capacity expression is monotonically increasing in W.
Its maximum, for W !1, is

C =
P

N0
log2 e bits/s; (18.62)

i.e., for infinite bandwidth the capacity grows linearly with the power. Hence,
we see that usually it is more attractive to increase bandwidth rather than
to increase power. Unfortunately, in practice bandwidth normally is far more
expensive than power.

For this very same reason, the engineers are not so much interested in how
much they can transmit per second, but rather how much they can transmit
per unit band. The figure of interest then becomes C

W , describing how much
rate (in bits/s) one achieves per Hz bandwidth. The capacity formula can
then be written as

C

W
= log2

�
1 +

P

N0W

�
bits

s � Hz
: (18.63)

The term C
W is known as maximum bandwidth efficiency.

So consider some coding scheme using a bandwidth W that transmits at a
rate of R � C bits/s. This scheme has a bandwidth efficiency of R

W . Suppose
further that this coding scheme needs an energy Eb for every information bit
it transmits, i.e., the total power P of this system is

P = R � Eb: (18.64)

Using this in (18.63) leads to

R

W
� C

W
= log2

�
1 +

REb

N0W

�
= log2

�
1 +

Eb

N0
� R
W

�
; (18.65)

i.e., this gives us a lower bound on the required signal-to-noise ratio4 Eb
N0

for
the given bandwidth efficiency:

Eb

N0
� 2

R
W � 1
R
W

: (18.66)

4The ratio Eb
N0

is often referred to as “ebno” and is the most common definition for a
signal-to-noise ratio (SNR); see (17.137).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

18.3. From Continuous To Discrete Time 415

Finally, returning once again to the maximum (at infinite bandwidth)
capacity expression (18.62) and using (18.64), we obtain

Eb

N0
=

C

R
ln 2: (18.67)

Since any reliable system must have R � C, we see that

b =
Eb

N0
� ln 2 = 0:693 = �1:6 dB; (18.68)

i.e., it is not possible to transmit reliably over the AWGN channel at an SNR
smaller than �1:6 dB.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 19

Parallel Gaussian Channels

In this chapter we leave the continuous-time domain again and return to our
discrete-time Gaussian channel model. In Chapter 17 we have already studied
this model in detail. Now we would like to add one new ingredient: What
happens if we have several Gaussian channels available at the same time?
Of course, we can use them all at the same time, and we can simply divide
our available power equally among all of them. But this might not be the
best thing to do, in particular, if some of the Gaussian channels are better
than other (i.e., they have less noise) or if the noise processes that impair the
different signals on the different channels are actually correlated.

19.1 Channel Model

We consider J parallel Gaussian channels:

Y (j) = x(j) + Z(j); j = 1; : : : ; J; (19.1)

where x(j) is the input to the jth channel and where Z(j) is additive Gaussian
noise in the jth channel. The channel can actually be nicely written in vector
form:

Y = x+ Z (19.2)

with a vector-input x 2 RJ and with the noise random vector Z being zero-
mean Gaussian with some given nonsingular covariance matrix1 KZZ:

Z � N (0;KZZ): (19.3)

Note that in general we allow the noise vector to be correlated.
For every random message U , the transmitter now does not choose one, but

J codewords. Hence, the codebook does not consist of 2nR length-n codewords,
but rather of 2nR size-(J� n) code-matrices X(m), m = 1; : : : ; 2nR.

1For those readers who are worried about dependent Gaussian random vectors, we highly
recommend to have a look at Appendices A and B.

417 © Stefan M. Moser — IT, version 6.14

418 Parallel Gaussian Channels

We assume a total average-power constraint E, i.e., every code-matrix must
satisfy

1

n

nX
k=1

JX
j=1

�
x
(j)
k (m)

�2 � E; m = 1; : : : ; 2nR; (19.4)

or, in vector-form,

1

n

nX
k=1

xk(m)
2 � E; m = 1; : : : ; 2nR: (19.5)

The engineering meaning of this total average-power constraint is that the
transmitter has (on average over time) a power E available that it is free to
distribute among the J different channels.

We now ask the following question: What is the maximum total amount
of information we can transmit reliably through these J parallel channels?

We will answer this question in a first step for the easier situation when
the components of the noise vector are independent. The general case will
then be treated in Section 19.4.

19.2 Independent Parallel Gaussian Channels

So, in this and the next section, we assume that the parallel channels are
independent of each other, i.e., Z � N

�
0;diag

�
�21 ; : : : ; �

2
J

��
. We can think of

this setup as a transmitter that has J independent antennas or lines available
that can be used at the same time. Note that the channels need not all have
the same noise variance, i.e., some channels can be better (smaller variances)
than others.

Since the channels are independent, a system that will just use these chan-
nels independently is obviously achievable. We only need to make sure that
the average-power constraint is not violated. So, we split the available power
E up into J parts Ej :

Ej � 0; j = 1; : : : ; J; (19.6a)
JX

j=1

Ej = E; (19.6b)

and then we use an independent system for each channel with the correspond-
ing average power Ej . Since each of these channels is an individual Gaussian
channel, we know from Theorem 17.9 that as long as the jth rate is below
the jth channel’s capacity, the probability of making an error on that channel
can be made arbitrarily small. This is true for all channels, so by the Union
Bound it holds that the total error probability can be made arbitrarily small.2

2In accordance with splitting up the power, we also need to split up the message into J

submessages that are then transmitted over the corresponding channel.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

19.2. Independent Parallel Gaussian Channels 419

Thus we have shown that a total rate satisfying

R <
JX

j=1

1

2
log

�
1 +

Ej

�2j

�
(19.7)

is achievable.
To prove that this is indeed the best we can do, we rederive the converse

of Section 17.3.3. The rate of any achievable coding scheme must satisfy

R =
1

n
I(M ; M̂) +

1

n
H(M jM̂) (19.8)

� 1

n
I(M ; M̂) +

1

n
+ P

(n)
e R (19.9)

� 1

n
I(Xn

1 ;Y
n
1) +

1

n
+ P

(n)
e R; (19.10)

where the first inequality follows from the Fano Inequality and second inequal-
ity from the Data Processing Inequality.

We continue to bound the first term of (19.10) as follows:

1

n
I(Xn

1 ;Y
n
1) =

1

n
h(Yn

1)�
1

n
h(Yn

1 jXn
1) (19.11)

=
1

n
h(Yn

1)�
1

n
h(Zn

1) (19.12)

=
1

n

nX
k=1

�
h
�
Yk

��Yk�1
1

�� h(Zk)
�

(19.13)

� 1

n

nX
k=1

�
h(Yk)� h(Zk)

�
(19.14)

=
1

n

nX
k=1

JX
j=1

�
h
�
Y

(j)
k

���Y (1)
k ; : : : ; Y

(j�1)
k

�
� h

�
Z
(j)
k

��
(19.15)

� 1

n

nX
k=1

JX
j=1

�
h
�
Y

(j)
k

�
� h

�
Z
(j)
k

��
(19.16)

=
JX

j=1

1

n

nX
k=1

�
h
�
Y

(j)
k

�
� 1

2
log
�
2�e�2j

��
: (19.17)

Here in (19.13) we use the chain rule and the fact that the Gaussian channel
is memoryless; (19.14) follows because conditioning reduces entropy; the sub-
sequent equality (19.15) follows again from the chain rule and the fact that
the parallel Gaussian channels are independent; and the inequality in (19.16)
holds again because conditioning reduces entropy.

Now, using the same ideas as in (17.116), we define

Ej;k ,
1

2nR

2nRX
m=1

�
x
(j)
k (m)

�2
(19.18)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

420 Parallel Gaussian Channels

to be the average energy of the (j; k)th component of the code-matrix when
averaged uniformly over all code-matrices. Note that due to the average-power
constraint (19.4) we have

JX
j=1

1

n

nX
k=1

Ej;k| {z }
,Ej

� E; (19.19)

where the parameters Ej (j = 1; : : : ; J) have the same meaning as in (19.6).
Moreover, identically to (17.118)–(17.122)

Var
�
Y

(j)
k

�
= E

��
Y

(j)
k

�2�
�
�
E
h
Y

(j)
k

i�2
(19.20)

� E
��
Y

(j)
k

�2�
(19.21)

= E
��
X

(j)
k + Z

(j)
k

�2�
(19.22)

= E
��
X

(j)
k

�2�
+ E

��
Z
(j)
k

�2�
(19.23)

= E
��
x
(j)
k (M)

�2�
+ �2 (19.24)

=
2nRX
m=1

1

2nR

�
x
(j)
k (m)

�2
+ �2 (19.25)

= Ej;k + �2: (19.26)

Thus,

1

n
I(Xn

1 ;Y
n
1) �

JX
j=1

1

n

nX
k=1

�
h
�
Y

(j)
k

�
� 1

2
log
�
2�e�2j

��
(19.27)

�
JX

j=1

1

n

nX
k=1

�
1

2
log
�
2�eVar

h
Y

(j)
k

i�
� 1

2
log
�
2�e�2j

��
(19.28)

�
JX

j=1

1

n

nX
k=1

�
1

2
log
�
2�e

�
Ej;k + �2j

��� 1

2
log
�
2�e�2j

��
(19.29)

=
JX

j=1

1

n

nX
k=1

1

2
log

1 +

Ej;k

�2j

!
(19.30)

�
JX

j=1

1

2
log

1 +

1

n

nX
k=1

Ej;k

�2j

!
(19.31)

=
JX

j=1

1

2
log

1 +

Ej

�2j

!
; (19.32)

where (19.31) follows from the Jensen Inequality because the logarithm is a
concave function, and where in the last equality we have used the definition
of Ej in (19.19).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

19.3. Optimal Power Allocation: Waterfilling 421

Combining (19.32) with (19.10) and letting n tend to infinity, we see that
indeed no coding scheme with P

(n)
e going to zero as n ! 1 can have a rate

larger than the right-hand side of (19.7).
So far, we have derived the following capacity formula for independent

parallel Gaussian channels:

C(E) = max
E1;:::;EJ

Ej�0; j=1;:::;J
JP

j=1

Ej�E

JX
j=1

1

2
log

1 +

Ej

�2j

!
: (19.33)

It remains to evaluate this expression, i.e., we need to figure out how to
choose the power allocation Ej to the J different channels. This will be done
in the next section.

19.3 Optimal Power Allocation: Waterfilling

While still considering the simpler case of independent channels, we now turn
to the question on how to allocate the power Ej to the different channels, i.e.,
we need to evaluate the maximization in (19.33).

We start by pointing out that 1
2 log

�
1 +

Ej

�2j

�
is monotonically increasing

in Ej . Therefore, we see that the maximum will be achieved for a choice of
(E1; : : : ;EJ) such that

JX
j=1

Ej = E (19.34)

with equality.
Note further that 1

2 log
�
1 +

Ej

�2j

�
is a concave function and therefore that

g(E1; : : : ;EJ) ,
JX

j=1

1

2
log

1 +

Ej

�2j

!
(19.35)

is concave, too. We therefore see that (19.33) matches exactly the situation
of the Karush–Kuhn–Tucker conditions3 (Theorem 9.11). An optimal choice

3Strictly speaking we do not have an exact match: In Theorem 9.11 we optimize over a
probability vector that sums to 1, while here we optimize over a vector E = (E1; : : : ;EJ)

T

that sums to E. This, however, is only a question of normalization. We can divide E by E to
make it look like a probability vector, and the normalization factor can then be incorporated
into the parameter � of (19.36).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

422 Parallel Gaussian Channels

of (E1; : : : ;EJ) must satisfy:
@g(E1; : : : ;EJ)

@E`

!
= � 8 ` with E` > 0; (19.36a)

@g(E1; : : : ;EJ)

@E`

!� � 8 ` with E` = 0: (19.36b)

So, we evaluate the Karush–Kuhn–Tucker conditions:

@

@E`

JX
j=1

1

2
log

1 +

Ej

�2j

!
=

1

2
� 1

1 + E`

�2`

� 1
�2`
� log e = 1

2

log e

E` + �2`
; (19.37)

i.e.,
1

2

log e

E` + �2`
= � if E` > 0; (19.38a)

1

2

log e

E` + �2`
� � if E` = 0: (19.38b)

By introducing a new parameter � , log e
2� , we can write this more simply as

E` = � � �2` if E` > 0; (19.39a)

E` � � � �2` if E` = 0; (19.39b)

which is equivalent to

E` = � � �2` if � � �2` > 0; (19.40a)

E` = 0 if � � �2` � 0; (19.40b)

or, even simpler,

E` =
�
� � �2`

�+
: (19.41)

Here � must be chosen such that (19.34) is satisfied, i.e.,
JX

j=1

�
� � �2j

�+
= E: (19.42)

This solution can be very nicely interpreted graphically (see Figure 19.1):
we depict the various channels with bars representing the value of the noise
variance, and we “pour” the available power into the graphic like water. The
parameter � then represents the water level. Hence, if we start with E = 0 and
slowly increase the available power, we will firstly only use the best channel
(the one with the smallest noise variance). All other channels are switched off.
However, because the logarithm is a concave function, the slope is decreasing
with increasing power. Therefore, once we have increased E enough, the second
best channel will yield a slope that is identical to the first and hence we start
also pouring power into the second one. And so on.

This solution is therefore called the waterfilling solution.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

19.4. Dependent Parallel Gaussian Channels 423

�

energy

1 2 3 4 5 6 7

�
2
1

�
2
2

�
2
3

�
2
4

�
2
5

�
2
6

�
2
7

E2
E3

E6

E7

Figure 19.1: Waterfilling solution for the power allocation in J = 7 parallel
independent Gaussian channels.

19.4 Dependent Parallel Gaussian Channels

We now turn to the general situation when the channels are dependent. It
is actually possible to work out the optimal input analytically like we have
done for the independent case in Sections 19.2 and 19.3, but the derivation is
rather lengthy and complicated. We will follow here another approach that is
simpler and that in the end also gives a better explanation of the meaning of
the solution.

�U
X0

�0

+
X

Z

UT
Y

Y0

 0

Figure 19.2: Parallel Gaussian channel with additional rotations.

Consider the parallel Gaussian channel shown in Figure 19.2 where the
input vector x is a rotated version of the output of the encoder:

x = Ux0 (19.43)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

424 Parallel Gaussian Channels

for some orthogonal matrix U, and where the output vector Y is rotated back
before it is fed to the decoder:

Y0 = UTY: (19.44)

First we note that because

kxk2 = kUx0k2 = kx0k2 (19.45)

(which holds because U is orthogonal, i.e., it corresponds to a rotation!), x

satisfies the average-power constraint (19.5) if, and only if, x0 satisfies the
constraint.

Next, we observe that because UTU = IJ,

Y0 = UTY (19.46)

= UT(x+ Z) (19.47)

= UT(Ux0 + Z) (19.48)

= UTUx0 + UTZ (19.49)

= x0 + UTZ: (19.50)

Since according to Appendix B.5 and Lemma B.11,

UTZ � N �0;UT KZZ U
�
; (19.51)

it thus follows that the channel from X0 to Y0 is also a parallel Gaussian
channel with an identical total average-power constraint, but with the noise
having a different covariance matrix UT KZZ U.

Now note that any rate that is achievable from the channel X0 ! Y0 is also
achievable on the channel X! Y (simply define a new encoder �0 consisting
of the original encoder � with attached rotation U and a new decoder 0

consisting of a rotation UT before the original decoder , and note that the
performance of (�0; 0) on X ! Y is obviously identical to the performance
of (�;) on X0 ! Y0). Thus,

C(X! Y) � C(X0 ! Y0): (19.52)

But because �0 and 0 are not necessarily optimal for the channel X! Y, we
do not know if equality holds.

Let C(E;K) denote the capacity of a parallel Gaussian channel with total
average power E and with noise of covariance matrix K. From the discussion
above (19.45)–(19.51) we know that

C(X! Y) = C(E;KZZ); (19.53)

C(X0 ! Y0) = C(E;UT KZZ U); (19.54)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

19.4. Dependent Parallel Gaussian Channels 425

�UT
X00

U
X0

�0

+
X

Z

UT
Y

U
Y0

Y00

 0 channel

Figure 19.3: Setup of Figure 19.2 with one more rotation added. We now
count the inner rotations as being part of a parallel Gaussian
channel. Then the same arguments as before show that any rate
achievable on X00 ! Y00 is also achievable on X0 ! Y0.

i.e., (19.52) transforms into

C(E;KZZ) � C(E;UT KZZ U): (19.55)

Repeating the exact same argument for the situation when a second ro-
tation UT is added between � and U and the corresponding back rotation is
added between UT and , i.e., X0 = UTX00 and Y00 = UY0 (see Figure 19.3),
we obtain analogously to (19.52)

C(X0 ! Y0) � C(X00 ! Y00); (19.56)

i.e.,

C(E;UT KZZ U) � C
�
E;U(UT KZZ U)UT� (19.57)

= C(E;KZZ): (19.58)

Thus, (19.58) and (19.55) combine to show that

C(E;KZZ) = C(E;UT KZZ U); (19.59)

i.e., we indeed have equality and adding the rotation into the system does not
affect its capacity!

This insight allows us now to quickly find the solution for the capacity
of the dependent parallel Gaussian channel: The trick is to transform the
channel into a different channel with independent noise (but with the same
capacity!) and then to use the solution from Sections 19.2 and 19.3.

To this end, we note that for any nonsingular covariance matrix KZZ there
exists an orthogonal matrix U such that

KZZ = UΛUT (19.60)

where Λ is a diagonal matrix with positive entries on the diagonal (see Propo-
sition B.4). By choosing U in Figure 19.2 as this particular matrix, we see

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

426 Parallel Gaussian Channels

that (19.59) transforms to

C(E;KZZ) = C(E;UT KZZ U) (19.61)

= C
�
E;UT(UΛUT)U

�
(19.62)

= C(E;Λ); (19.63)

thereby proving that the capacity of the dependent parallel Gaussian channel
is identical to the capacity of a corresponding independent parallel Gaussian
channel. An optimal solution is thus to first rotate the input so as to “whiten”
the noise, then apply waterfilling on these now independent new channels,
and finally rotate the solution back. Or to express it in terms of Figure 19.2:
The optimal encoder consists of an optimal encoder for the corresponding
independent parallel Gaussian channel in combination with the rotation U.

In mathematical terms, the optimal input is Gaussian

X � N (0;KXX) (19.64)

with a covariance matrix

KXX = Udiag
�
~E1; : : : ; ~EJ

�
UT; (19.65)

where ~E1; : : : ; ~EJ is the optimal waterfilling solution to the corresponding in-
dependent parallel Gaussian channel with covariance matrix Λ:

~Ej = (� � �j)+ (19.66)

such that
JX

j=1

~Ej = E: (19.67)

We end this section by pointing out that in a more general context the
capacity of such vector channels under an average-power constraint (19.5)
actually has a nice general form.

Theorem 19.1 (Coding Theorem for Vector Channels). The capacity of a memory-
less vector channel under the total average-power constraint (19.5) (and under
some technical constraint regarding the channel law) is given as

C(E) = max
fX : E[kXk2]�E

I(X;Y): (19.68)

The proof follows actually similar lines as shown in Section 19.2, but one
needs to be careful, e.g., when trying to apply the Jensen Inequality. In the
case of a Gaussian channel we know the form of the capacity cost function
C(E), which simplifies things quite a bit. In general, the proof works out for
sure if the capacity function given in (19.68) happens to be concave in the
average power.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

19.5. Colored Gaussian Noise 427

19.5 Colored Gaussian Noise

Instead of thinking of several parallel Gaussian channels that are dependent,
we can use the same model (19.2), but interpret it differently as a single
Gaussian channel that is dependent over time, i.e., that has memory. So this
is a first step away from our memoryless models to a more practical situation
where the noise depends on its past.

We consider the following version of a Gaussian channel

Yk = xk + Zk; (19.69)

where fZkg is a Gaussian process with memory, i.e., with a certain given au-
tocovariance function.4 In the frequency domain this dependence is expressed
by the fact that the power spectral density (PSD)5 is not flat. Such a noise
process is usually called colored noise in contrast to white noise.

We omit the mathematical details, but only quickly describe the result.
The optimal solution again will apply waterfilling, however, this time not over
different channels, but instead in the frequency domain into the PSD (see
Figure 19.4).

1

2

1

2

f

N(f)

Figure 19.4: Power spectral density of colored noise with corresponding wa-
terfilling solution.

4For a discussion about the differences between the autocovariance function and the
autocorrelation function see Appendix C.

5Actually, as we are in a discrete-time setting, we should speak of energy spectral density
as power is not even defined for discrete-time signals. However, it is customary to call this
function PSD in spite of the fact that when integrating over it, one obtains the average
energy of the signal, not its power. See also [Lap17, Chapter 13].

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

428 Parallel Gaussian Channels

The capacity of such a colored Gaussian channel with PSD N(f) is given
by

C(E) =

Z 1
2

� 1
2

1

2
log

1 +

�
� �N(f)

�+
N(f)

!
df (19.70)

with � such that
Z 1

2

� 1
2

�
� �N(f)

�+
df = E: (19.71)

In practice that would mean that we actually modulate our information in
the frequency domain of the transmitted signal and choose a power distribu-
tion according to the waterfilling solution. Unfortunately, this then results
in an input signal with very strong dependence over time, which is not very
convenient for demodulation and decoding.

Instead, in practical systems a different approach is taken that is also used
in the context of fading channels. In fading channels, the channel not only
disturbs the input signal by adding additive noise (usually actually white
Gaussian noise, not colored!), but it also filters the input by a linear filter,
i.e., the input is convolved with some impulse response function h(�). In the
frequency domain this means that input is multiplied by the corresponding
transfer function, resulting in a situation similar to the case of colored noise
of Figure 19.4: for different frequencies the input sees a channel of different
quality. Compare with the discussion in Appendix C.6.

In order to handle this, the channel is now split up into many independent
nonoverlapping narrow-band channels, which in a first approximation can be
assumed to be white. This procedure is called discrete multitone and is the
basic working principle of ADSL6 modems: For practical purposes we also
discretize the PSD, i.e., instead of the z-transform, we rely on the discrete
Fourier transform (or rather its fast implementation fast Fourier transform
(FFT)). The information is modulated onto each frequency sample where the
used energy is determined by waterfilling.7 This modulated discrete spectrum
is then converted by the inverse discrete Fourier transform into a discrete-
time signal, which goes — converted by a D/A-converter to a continuous-time
signal — through the channel. On the receiver side, the received signal (after
the A/D-converter) is transformed back into the frequency regime by the
discrete Fourier transform. Each modulated frequency sample suffers from
noise, however, because of the FFT, this noise is independent between each
frequency sample, so in effect, we have J parallel independent channels (where

6ADSL stands for asymmetric digital subscriber line.
7In a practical system, actually not only the energy is adapted, but also the bit rate.

This way the system tries to make sure that all transmitted symbols have a similar error
probability.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

19.5. Colored Gaussian Noise 429

J is the blocksize of the discrete Fourier transform) as discussed in Sections 19.2
and 19.3, and we can therefore decode each frequency sample independently.

So we see the similarities between these fading channels and the correlated
parallel channels of Section 19.4: In Section 19.4, we encode the information
onto ~X and use the matrix U to rotate it to get X, which is then transmitted.
The matrix U basically decouples the channels and makes the noise indepen-
dent.

In the case of fading channels (or also colored noise channels), the fast
Fourier transform takes over the role of decoupling: The FFT matrix makes
sure that we get many independent parallel channels. Note that while U

depends on the channel, the FFT works independently of the channel, thereby
simplifying the system considerably.

We end this discussion by mentioning that orthogonal frequency division
multiplexing (OFDM) — at the moment one of the most important mod-
ulation schemes used for wireless communication systems — is basically the
same thing as discrete multitone, but applied to passband instead of baseband.
So, it achieves the same goal: it creates many independent parallel channels.
However, since in a wireless channel the transfer function changes often and
quickly, one usually does not bother with waterfilling, but simply assigns the
same energy to all subchannels.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 20

Asymptotic Equipartition Property
and Weak Typicality

In this chapter we describe a very powerful tool that is used very often in
information theory: typicality. The basis of typicality is the law of large
numbers.

Since the concept is rather abstract, we have not used it so far, but actually,
several of our main results in this class could have been proven using this tool.
As a matter of fact, in the advanced information theory class [Mos22], we will
make typicality its main tool.

20.1 Motivation

To explain the basic idea of typicality, we use a simple example. Consider an
unfair coin X with PMF

PX(x) =

8<
:0:7 if x = 1;

0:3 if x = 0;
(20.1)

such that H(X) � 0:881 bits.
Now Mr. Unreliable claims that he has twice observed a length-10 sequence

of this unfair coin, i.e., (X1; : : : ; X10) where Xi is IID � PX(�). He asserts that
he got the following two outputs:

1: (X1; : : : ; X10) = 1101011110; (20.2)

2: (X1; : : : ; X10) = 1111111111: (20.3)

Do we believe him?
Well, probably you will agree that the second event is somehow unex-

pected. Our life experience tells us that such a special outcome is not very
likely and we rather expect to see a sequence like the first. This feeling gets
even much stronger if the sequence is longer, e.g., has length 900 instead of
only 10.

431 © Stefan M. Moser — IT, version 6.14

432 Asymptotic Equipartition Property and Weak Typicality

So far so good, but the whole thing becomes strange when we compute
the probabilities of the two sequences:

1: Pr[(X1; : : : ; X10) = 1101011110] = 0:77 � 0:33 � 0:22%; (20.4)

2: Pr[(X1; : : : ; X10) = 1111111111] = 0:710 � 2:82%: (20.5)

Hence, the second sequence is about 13 times more likely than the first! So
how could we think that the first is “more likely”?!?

To resolve this paradox, firstly note that we should not say that the first
sequence is “more likely” (since it is not!), but rather that it is “more ordinary”
or “more typical”.

Secondly — and this is the clue! — we need to realize that even though the
second sequence is much more likely than the first, the probability of observing
a sequence of the same type as the first sequence (20.2) is far larger than the
probability of the second sequence, indeed, it is close to 1. By the “the same
type” we mean a sequence whose occurrence frequencies correspond to the
PMF, i.e., in our case a sequence with about 70% ones and 30% zeros.

On the other hand, the probability of observing some special (nontypical)
sequences like the all-one sequence or the all-zero sequence is close to 0. This
becomes more and more pronounced if the length of the sequences is increased.

Since we usually see sequences like (20.2), we call these sequences typical
sequences.

We can summarize this observation roughly as follows:

When generating an IID length-n sequence, the probability of obtaining
a typical sequence with approximately nPX(0) zeros and nPX(1) ones is
almost equal to 1 for large n.

This fits well with our own experience in real life.
We will show below that we can state this observation differently in a

slightly more abstract way as follows:1

Pr
�n

(x1; : : : ; xn) : PX1;:::;Xn(x1; : : : ; xn) � 2�nH(X)
o�
� 1: (20.6)

This means that we do not only almost for sure get a typical sequence, but
that actually every typical sequence has almost the same probability!

Almost certainly, we get a typical sequence. Among all typical sequences,
the probability of one particular typical sequence is almost uniform.

1In this chapter we will follow the engineering notation and always assume that entropy
is measured in bits. Hence we write 2�nH(X) instead of, e.g., e�nH(X).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

20.2. Random Convergence 433

In the example above we have 2�10H(X) � 0:22%.
In the following sections we will make these ideas a bit more concrete.

20.2 Random Convergence

The definition of convergence of a deterministic sequence a1; a2; : : : to some
value a is quite straightforward. Basically it says that for some n big enough,
an; an+1; : : : will be so close to the convergence point that it will not leave a
given small �-environment around the convergence point. In more mathemat-
ical wording we say that a sequence a1; a2; : : : converges to a and write

lim
n!1 an = a (20.7)

if for any � > 0 there exists a constant N� such that for all n � N�

jan � aj � �: (20.8)

Unfortunately, things are a bit more complicated if we look at the con-
vergence of random sequences. Firstly, we might suspect that in general a
random sequence will converge not to a deterministic value, but to a random
variable.2 Secondly, there are several different types of convergence.

Definition 20.1. We say that a sequence of random variables X1; X2; : : : con-
verges to a random variable X

• with probability 1 (also called almost surely), if

Pr
h
lim
n!1Xn = X

i
= 1; (20.9)

• in probability, if for any � > 0 we have Pr[jXn �Xj > �]! 0 as n!1,
i.e.,

lim
n!1Pr[jXn �Xj � �] = 1; (20.10)

• in distribution, if PXn(x)! PX(x) for all x as n!1, i.e.,

lim
n!1PXn(x) = PX(x); 8x: (20.11)

One can prove that these three types of convergence are in order: If a
sequence converges with probability 1, then it will also converge in probability
and in distribution; and if a sequence converges in probability, it also converges
in distribution. The other way round is not always true. For more details we
refer to probability theory textbooks.

Closely related to random convergence are the following two important
inequalities.

2Luckily there is a large class of random sequences for which the converging random
variable turns out to be deterministic. In particular this holds true in any situation where
the weak law of large numbers can be applied.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

434 Asymptotic Equipartition Property and Weak Typicality

Lemma 20.2 (Markov Inequality). A nonnegative random variable X of finite
mean E[X] <1 satisfies for any a > 0

Pr[X � a] � E[X]

a
; a > 0: (20.12)

Proof: Fix some a > 0 and define

Ya ,

8<
:0 if X < a;

a if X � a:
(20.13)

Since X is nonnegative by assumption, it follows that

Ya � X (20.14)

and therefore

E[Ya] � E[X]: (20.15)

On the other hand, we have

E[Ya] = Pr[X < a] � 0 + Pr[X � a] � a = aPr[X � a] (20.16)

and therefore

aPr[X � a] � E[X]: (20.17)

The result now follows by dividing both sides by a.

Lemma 20.3 (Chebyshev Inequality). A random variable X with finite mean �

and finite variance �2 satisfies for any � > 0

Pr[jX � �j � �] � �2

�2
; � > 0: (20.18)

Proof: This follows directly from applying the Markov Inequality (Lem-
ma 20.2) to (X � �)2 with a = �2.

20.3 AEP

Equipped with this basic understanding of random convergence, we are now
ready to state a very simple, but very powerful result, which is a direct con-
sequence of the weak law of large numbers.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

20.3. AEP 435

Theorem 20.4 (Asymptotic Equipartition Property (AEP)).
If X1; X2; : : : are IID � PX(�), then

� 1

n
logPX1;:::;Xn(X1; : : : ; Xn)

n!1�! H(X) in probability: (20.19)

We remind the reader that PX1;:::;Xn(x1; : : : ; xn) denotes the joint proba-
bility distribution of X1; : : : ; Xn.

Proof: Since functions of independent random variables are also inde-
pendent random variables, and since all Xk are IID, we realize that Yk ,
logPX(Xk) are also IID. Moreover, we note that

PX1;:::;Xn(x1; : : : ; xn) =
nY

k=1

PX(xk) (20.20)

because all Xk are IID. Now recall the weak law of large numbers, which says
that for a sequence Z1; : : : ; Zn of IID random variables of mean � and finite
variance and for any � > 0,

lim
n!1Pr

�����Z1 + � � �+ Zn
n

� �
���� � �

�
= 0: (20.21)

Hence,

lim
n!1�

1

n
logPX1;:::;Xn(X1; : : : ; Xn)

= lim
n!1�

1

n
log

nY
k=1

PX(Xk) (20.22)

= lim
n!1�

1

n

nX
k=1

logPX(Xk) (20.23)

= E[�logPX(X)] in probability (20.24)

= H(X): (20.25)

Remark 20.5. The AEP says that with high probability

PX1;:::;Xn(X1; : : : ; Xn) � 2�nH(X) (20.26)

(simply exponentiate both sides of (20.19)). Hence, for large n almost all se-
quences are about equally likely! This explains the name asymptotic equipar-
tition property.

The AEP holds of course for any base of the logarithm. We will concentrate
on log2 �, such that the inverse function is 2�. M

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

436 Asymptotic Equipartition Property and Weak Typicality

20.4 Typical Set

Based on (20.26) we now give the following definition, that turns out to be
extremely useful in proofs.

Definition 20.6. Fix � > 0, a length n, and a PMF PX(�). Then the typical
set A(n)

� (PX) with respect to PX(�) is defined as the set of all those length-n
sequences (x1; : : : ; xn) 2 Xn that have a probability close to 2�nH(X):

A(n)
� (PX) ,

�
(x1; : : : ; xn) 2 Xn :

2�n(H(X)+�) � PX1;:::;Xn(x1; : : : ; xn) � 2�n(H(X)��)
�
:

(20.27)

Example 20.7. For n = 10, � = 0:01, and PX(�) as in (20.1), we get

(X1; : : : ; X10) 2 A(10)
0:01(PX)

() 2:1 � 10�3 � PX1;:::;X10(X1; : : : ; X10) � 2:4 � 10�3: (20.28)

Hence, the first sequence (20.2) with probability

PX1;:::;X10(1101011110) � 2:22 � 10�3 (20.29)

is typical, while the second sequence (20.3) with probability

PX1;:::;X10(1111111111) � 28:2 � 10�3 (20.30)

is not typical. �

Theorem 20.8 (Properties of A(n)
� (PX)).

1. If (x1; : : : ; xn) 2 A(n)
� (PX), then

H(X)� � � � 1

n
logPX1;:::;Xn(x1; : : : ; xn) � H(X) + �: (20.31)

2. If X1; : : : ; Xn are IID � PX(�), then

Pr
�
(X1; : : : ; Xn) 2 A(n)

� (PX)
�
> 1� �; (20.32)

for n sufficiently large.

3. For all n, the size of the typical set is upper-bounded as follows:
��A(n)

� (PX)
�� � 2n(H(X)+�): (20.33)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

20.4. Typical Set 437

4. For n sufficiently large, the size of the typical set is lower-bounded
as follows:
��A(n)

� (PX)
�� > (1� �) 2n(H(X)��); n sufficiently large: (20.34)

Proof: Part 1 follows trivially from the definition of A(n)
� (PX).

Part 2 follows directly from the AEP applied to the definition of A(n)
� (PX).

To see this, we first rewrite the AEP in mathematical form. The statement
(20.19) says that 8 � > 0 and 8 � > 0 there exists a threshold N�;� such that
for n � N�;� we have

Pr
������ 1

n
logPX1;:::;Xn(X1; : : : ; Xn)�H(X)

���� � �| {z }
Note that by Part 1 any sequence 2 A(n)

� (PX) satisfies this!

�
> 1� �: (20.35)

Now note that the expression inside of the probability in (20.35) actually
corresponds exactly to the definition of the typical set A(n)

� (PX). Hence,
written in a new form, the AEP says nothing else than

Pr
�
(X1; : : : ; Xn) 2 A(n)

� (PX)
�
> 1� �: (20.36)

Since � and � are arbitrary, we can choose them freely. We choose � , � and
are done.

To derive Part 3 we simplify our notation and use a vector notation for
sequences X = (X1; : : : ; Xn).

1 =
X

x2Xn

PX(x) (20.37)

�
X

x2A(n)
� (PX)

PX(x) (drop some terms) (20.38)

�
X

x2A(n)
� (PX)

2�n(H(X)+�) (by definition of A(n)
� (PX)) (20.39)

= 2�n(H(X)+�) �
0
B@ X

x2A(n)
� (PX)

1

1
CA (20.40)

= 2�n(H(X)+�) � ��A(n)
� (PX)

��: (20.41)

Hence,

��A(n)
� (PX)

�� � 2n(H(X)+�): (20.42)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

438 Asymptotic Equipartition Property and Weak Typicality

Finally, Part 4 can be derived as follows. For n sufficiently large we have

1� � < Pr
�
X 2 A(n)

� (PX)
�

(by Part 2, for n suff. large) (20.43)

=
X

x2A(n)
� (PX)

PX(x) (20.44)

�
X

x2A(n)
� (PX)

2�n(H(X)��) (by definition of A(n)
� (PX)) (20.45)

=
��A(n)

� (PX)
�� � 2�n(H(X)��): (20.46)

Hence,

��A(n)
� (PX)

�� > (1� �) 2n(H(X)��) (20.47)

for n sufficiently large.
Hence, we see that the typical set is a relatively small set (its size is only

about 2nH(X), which is in contrast to the total of 2n length-n sequences), but
it contains almost all probability3 Pr

�A(n)
� (PX)

�
> 1� �.

20.5 High-Probability Sets and the Typical Set

We know that A(n)
� (PX) is small, but contains most of the probability. So

the question arises if there exists some other set that is even smaller than
A(n)
� (PX), but still contains most of the probability? In other words, does a

set B(n)� exist such that

��B(n)�

��� ��A(n)
� (PX)

�� (20.48)

and

Pr
�
X 2 B(n)�

�
> 1� �? (20.49)

Note that A(n)
� (PX) is not the smallest such set. This can be seen, for exam-

ple, by recalling that A(n)
� (PX) usually does not contain the most probable

sequence. However, as we will see, the smallest set has essentially the same
size as A(n)

� (PX).
In the following we will use the slightly sloppy, but common notation

Pr(B) , Pr[(X1; : : : ; Xn) 2 B]; (20.50)

where we assume that (X1; : : : ; Xn) are IID � PX(�).
3In literature, one often finds the slightly sloppy notation Pr

�
A
(n)
� (PX)

�
instead of the

more precise Pr
�
X 2 A

(n)
� (PX)

�
.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

20.5. High-Probability Sets and the Typical Set 439

Definition 20.9 (High-Probability Set). For any r-ary alphabet X , any � > 0,
and any positive integer n, let B(n)� � Xn be some set of length-n sequences
with

Pr
�B(n)�

�
> 1� �: (20.51)

Particularly, we could choose B(n)� to be the smallest set such that (20.51)
holds.

Theorem 20.10. Let (X1; X2; : : : ; Xn) 2 Xn be a random sequence chosen IID
� PX(�). For 0 < � < 1

2 and for any �0 > 0 we then have

1

n
log
��B(n)�

�� > H(X)� �0 (20.52)

for n sufficiently large.

Proof: Fix some 0 < � < 1
2 and consider the typical set A(n)

� (PX). We
know that for n sufficiently large, we have

Pr
�A(n)

� (PX)
�
> 1� �: (20.53)

Moreover, by assumption we have

Pr
�B(n)�

�
> 1� �: (20.54)

Using

Pr(A [B) = Pr(A) + Pr(B)� Pr(A \ B) (20.55)

we obtain

Pr
�
A(n)
� (PX) \ B(n)�

�
= Pr

�A(n)
� (PX)

�| {z }
> 1��

+ Pr
�B(n)�

�| {z }
> 1��

� Pr
�
A(n)
� (PX) [B(n)�

�
| {z }

� 1

(20.56)

> 1� �+ 1� � � 1 (20.57)

= 1� �� � (20.58)

for n sufficiently large. Hence,

1� �� � < Pr
�
A(n)
� (PX) \ B(n)�

�
(20.59)

=
X

x2A(n)
� (PX)\B(n)�

PX(x) (20.60)

�
X

x2A(n)
� (PX)\B(n)�

2�n(H(X)��) (20.61)

=
���A(n)

� (PX) \ B(n)�

��� � 2�n(H(X)��) (20.62)

� ��B(n)�

�� � 2�n(H(X)��); (20.63)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

440 Asymptotic Equipartition Property and Weak Typicality

where the fist inequality (20.59) follows from (20.58); the subsequent equality
(20.60) from (20.50); the subsequent inequality (20.61) from the fact that since
x 2 A(n)

� (PX) \ B(n)� the sequence x must be element of A(n)
� (PX) and that

therefore according to the definition of A(n)
� (PX)

PX(x) � 2�n(H(X)��); (20.64)

the subsequent equality (20.62) follows from counting the number of sum-
mands in the sum; and the final inequality (20.63) follows because the number
of elements in A(n)

� (PX) \ B(n)� cannot be larger than the number of elements
in B(n)� .

Since it was assumed that � < 1
2 and � < 1

2 it follows that 1 � � � � > 0

and we can take the logarithm on both sides of (20.63):

log2
��B(n)�

�� > log2(1� �� �) + n(H(X)� �); (20.65)

from which follows that
1

n
log2

��B(n)�

�� > H(X)� �0 (20.66)

where �0 = � � 1
n log2(1 � � � �). Note that �0 can be made arbitrarily small

by an appropriate choice of � and of n large enough.
Hence B(n)� has at least 2n(H(X)��0) elements. This means that A(n)

� (PX)

has about the same size as B(n)� , and hence also the same size as the smallest
high-probability set.

20.6 Data Compression Revisited

(Reminder: In the following all logarithms have base 2, particularly H(U) is
in bits!)

We now will see an example of very “typical” information theory: We use
typical sets to prove our fundamental result about maximum lossless com-
pression (that we know already). The trick is to design a special compression
scheme that is not really practical, but very convenient for a proof.

binary
encoder

Ck

codewords
n-block
parser

Vk

messages
r-ary
DMS

U1; U2; : : :

symbols

Figure 20.1: A binary block–to–variable-length source compression scheme.

We would like to compress the output sequence generated by an r-ary
DMS with distribution PU . We use an n-block parser, so that each message
V is a sequence in Un. See Figure 20.1.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

20.6. Data Compression Revisited 441

We now design a simple coding scheme. We start by grouping all possible
message sequences into two sets: the typical messages that are member of
A(n)
� (PU) and the nontypical messages that are not member of A(n)

� (PU). The
coding for the two groups of messages will then be quite different:

• For each typical message v 2 A(n)
� (PU), we assign a distinct fixed-length

binary codeword of a certain length l1. Since

��A(n)
� (PU)

�� � 2n(H(U)+�); (20.67)

it follows that a possible choice of l1 is

l1 ,
l
log2

��A(n)
� (PU)

��m (20.68)

� log2
��A(n)

� (PU)
��+ 1 (20.69)

� n�H(U) + �
�
+ 1: (20.70)

• For each nontypical message v 62 A(n)
� (PU), we also assign a distinct

fixed-length binary codeword, but of a different length l2. Since

��Un�� = rn; (20.71)

it follows that a possible choice of l2 is

l2 , dlog2 rne � n log2 r + 1: (20.72)

Now we have two types of codewords, some are of length l1 and some are
of length l2. In order to make sure that we can distinguish between them
(i.e., to make sure that the code is prefix-free), we now put a 0 in front of all
codewords of length l1, and a 1 in front of all codewords of length l2. So the
first bit serves as flag that determines the length of the codeword. Hence, the
length of the codeword for a message v 2 Un satisfies

l(v) �
8<
:n(H(U) + �) + 2 if v 2 A(n)

� (PU);

n log2 r + 2 otherwise:
(20.73)

Note that the typical messages are mapped to a short codeword, while the
nontypical messages have long codewords. This seems to be a good com-
pression scheme because we expect to see typical message most of the time.
Moreover, from Theorem 20.8 we also know that all typical sequences have ap-
proximately the same probability, so it seems reasonable to assign codewords
of identical length to them.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

442 Asymptotic Equipartition Property and Weak Typicality

We next compute the expected codeword length:

E[l(V)] =
X
v2Un

PV(v) l(v) (20.74)

=
X

v2A(n)
� (PU)

PV(v) l(v) +
X

v=2A(n)
� (PU)

PV(v) l(v) (20.75)

�
X

v2A(n)
� (PU)

PV(v)
�
n
�
H(U) + �

�
+ 2

�

+
X

v=2A(n)
� (PU)

PV(v)
�
n log2 r + 2

�
(20.76)

=
�
n
�
H(U) + �

�
+ 2

�
Pr
�
A(n)
� (PU)

�
| {z }

� 1

+
�
n log2 r + 2

� �
1� Pr

�
A(n)
� (PU)

��
| {z }
<� for n large enough

by Theorem 20.8-2

(20.77)

< n
�
H(U) + �

�
+ 2 + � � (n log2 r + 2) (20.78)

= n
�
H(U) + �0

�
(20.79)

for n large enough, where

�0 , �+ � log2 r +
2�+ 2

n
: (20.80)

Note that �0 can be made arbitrarily small by choosing � small and n large
enough.

So once again we have proven the following result that we know already
from Chapter 5.

Theorem 20.11. For any � > 0, we can find a prefix-free binary code for an r-ary
DMS U such that the average codeword length per source symbol satisfies

E[L]
n
� H(X) + � (20.81)

for n sufficiently large. Here n is the message length of the n-block parser.

Moreover, also note that from the properties of typical sets we once again
see that the output of a good data compression scheme will be almost uni-
formly distributed (compare with Remark 11.1): In order to make our scheme
almost perfect, we choose an extremely small �, e.g., � = 10�100000000, and
make the blocklength (parser length) n very large such that Pr

�A(n)
�
�
> 1� �

(Theorem 20.8 proves that this is possible!).
Now, basically all sequences that show up are typical and therefore all

get assigned a codeword of the same length l1. Moreover, we also know from

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

20.7. AEP for General Sources with Memory 443

Theorem 20.8 that all typical sequences have (almost) the same probability
2�nH(X). Hence, we see that the output codewords of this compressing scheme
are all equally likely and have the same length. Hence, the output digits indeed
appear IID and uniformly distributed.

20.7 AEP for General Sources with Memory

So far the AEP and its consequences were based on the assumption that the
letters of the sequences are chosen IID. This turns out to be too restrictive.
There are many sources with memory that also satisfy the AEP.

Definition 20.12 (Source satisfying the AEP). A general source fUkg taking
value in some discrete alphabet U is said to satisfy the AEP if the entropy
rate exists,

H(fUkg) = lim
n!1

1

n
H(U1; : : : ; Un); (20.82)

and if

� 1

n
logPU1;:::;Un(U1; : : : ; Un)

n!1�! H(fUkg) in probability: (20.83)

The class of sources that satisfy the AEP is rather large. Indeed the
following holds.

Theorem 20.13 (Shannon–McMillan–Breiman Theorem). Any stationary and er-
godic source taking value in a finite alphabet satisfies the AEP.

Proof: The proof is quite elaborate and therefore omitted. The interested
reader is referred to, e.g., [CT06, pp. 644] or [AC88].

We can now generalize the definition of typical sets as follows.

Definition 20.14. For a given � > 0, a length n, and a source that satisfies
the AEP fUkg, the typical set A(n)

� (fUkg) is defined as the set of all those
length-n source output sequences (u1; : : : ; un) that have a probability close to
2�nH(fUkg):

A(n)
� (fUkg) ,

�
(u1; : : : ; un) : 2

�n(H(fUkg)+�) �

PU1;:::;Un(u1; : : : ; un) � 2�n(H(fUkg)��)
�
: (20.84)

All the properties of Theorem 20.8 continue to hold. This is obvious
because for the derivation of Theorem 20.8 only the AEP has been used. But
in Definition 20.14, we have made it the main assumption that the AEP holds.
We therefore omit the details of the proof, but only repeat the properties here.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

444 Asymptotic Equipartition Property and Weak Typicality

Theorem 20.15.

1. If (u1; : : : ; un) 2 A(n)
� (fUkg), then

H(fUkg)� � � � 1

n
logPU1;:::;Un(u1; : : : ; un) � H(fUkg) + �: (20.85)

2. If fUkg satisfies the AEP, then

Pr
�
(U1; : : : ; Un) 2 A(n)

� (fUkg)
�
> 1� �; (20.86)

for n sufficiently large.

3.
��A(n)

� (fUkg)
�� � 2n(H(fUkg)+�), for all n.

4.
��A(n)

� (fUkg)
�� > (1� �) 2n(H(fUkg)��), for n sufficiently large.

20.8 General Source Coding Theorem

We next use our general definition of typical sets (Definition 20.14) to gener-
alize the source coding theorem to general sources that satisfy the AEP. For
simplicity, we only state it for the case of binary (D = 2) codes. The extension
to general D is straightforward.

We weaken our requirements for source coding by allowing the coding
scheme to be unsuccessful for certain source output sequences, i.e., in certain
cases the source sequence cannot be recovered from the codeword. The success
probability is then defined as the probability that source generates a sequence
that can be recovered successfully from its compressed version.

Specifically, we consider an encoding function

�n : Un ! f0; 1gK (20.87)

that maps a source sequences (U1; : : : ; Un) into a binary codeword C of length
K, and the corresponding decoding function

 n : f0; 1gK ! Un (20.88)

that tries to recover the source sequence by mapping the codeword C into
(Û1; : : : ; Ûn). The efficiency of the coding scheme is given by its coding rate

Rn ,
K

n
bits per source symbol: (20.89)

We can now prove the following general coding theorem.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

20.8. General Source Coding Theorem 445

Theorem 20.16 (General Source Coding Theorem for Sources satisfying the AEP).
Consider a source fUkg that satisfies the AEP. Then for every � > 0,
there exists a sequence of coding schemes (�n; n) with coding rate Rn
satisfying

lim
n!1Rn � H(fUkg) + � (20.90)

such that the success probability tends to 1 as n tends to infinity.
Conversely, for any source fUkg that satisfies the AEP and any coding

scheme (�n; n) with

lim
n!1Rn < H(fUkg); (20.91)

the success probability must tend to 0 as n tends to infinity.

Proof: The direct part can been proven completely analogously to Sec-
tion 20.6. For any source sequence that is typical, we assign a codeword of
length l1, while for any nontypical sequence we allow the system to be unsuc-
cessful. We omit the details.

For the converse, suppose that we have a coding scheme with limn!1 Rn <

H(fUkg). Then there exists some � > 0 small enough and some n0 large
enough such that

Rn < H(fUkg)� 2�; 8n � n0: (20.92)

Using U , (U1; : : : ; Un), we can now bound the performance of this coding
scheme as follows:

Pr(success) = Pr
�
success and U 2 A(n)

� (fUkg)
�

+Pr
�
success and U 62 A(n)

� (fUkg)
�

(20.93)

� Pr
�
success and U 2 A(n)

� (fUkg)
�
+ Pr

h
U 62 A(n)

� (fUkg)
i

(20.94)

=
X

u2A(n)
� (fUkg)

u is successful

Pr[U = u] + Pr
h
U 62 A(n)

� (fUkg)
i

(20.95)

<
X

u2A(n)
� (fUkg)

u is successful

2�n(H(fUkg)��) + � (20.96)

� 2K � 2�n(H(fUkg)��) + � (20.97)

= 2nRn � 2�n(H(fUkg)��) + � (20.98)

= 2�n(H(fUkg)�Rn��) + � (20.99)

< 2�n� + �: (20.100)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

446 Asymptotic Equipartition Property and Weak Typicality

Here the inequality in (20.96) follows from (20.84) and from Theorem 20.15-2;
the subsequent inequality (20.97) holds because under the condition that all
sequences u are successful, each needs a distinct codeword, but there are only
at most 2K such binary sequences; and the last inequality (20.100) follows
from (20.92).

20.9 Joint AEP

We now return to the simpler situation of IID distributions. We next generalize
the AEP (Theorem 20.4) to pairs of sequences (X;Y) where each letter pair
(Xk; Yk) is dependent, but the sequences are still IID over k.

Theorem 20.17 (Joint AEP).
If the sequence of pairs of RVs (X1; Y1); (X2; Y2); : : : is IID � PX;Y (�; �),
then

� 1

n
logPX1;Y1;:::;Xn;Yn(X1; Y1; : : : ; Xn; Yn)

n!1�! H(X;Y) in probability:

(20.101)

Proof: We note that

PX1;Y1;:::;Xn;Yn(x1; y1; : : : ; xn; yn) =
nY

k=1

PX;Y (xk; yk): (20.102)

Hence, by the weak law of large numbers,

lim
n!1�

1

n
logPX1;Y1;:::;Xn;Yn(X1; Y1; : : : ; Xn; Yn)

= lim
n!1�

1

n
log

nY
k=1

PX;Y (Xk; Yk) (20.103)

= lim
n!1�

1

n

nX
k=1

logPX;Y (Xk; Yk) (20.104)

= E[�logPX;Y (X;Y)] in probability (20.105)

= H(X;Y): (20.106)

20.10 Jointly Typical Sequences

Based on the joint AEP, we will also generalize the idea of typical sets to sets
of pairs of sequences that are jointly typical.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

20.10. Jointly Typical Sequences 447

Definition 20.18. The set A(n)
� (PX;Y) of jointly typical sequences (x;y) with

respect to the joint distribution PX;Y (�; �) is defined as

A(n)
� (PX;Y) ,

�
(x;y) 2 Xn � Yn :����� 1

n
logP (x)�H(X)

���� � �;����� 1

n
logP (y)�H(Y)

���� � �;����� 1

n
logP (x;y)�H(X;Y)

���� � �
�

(20.107)

where

P (x;y) ,
nY

k=1

PX;Y (xk; yk) (20.108)

and where P (x) and P (y) are the corresponding marginal distributions.

Remark 20.19. Note that we require that if x and y are jointly typical, then
by definition they are also typical by themselves. Unfortunately, this does
not automatically4 follow from the third condition in (20.107), which explains
why we have to add the two first conditions to the definition of A(n)

� (PX;Y).
Also note that if x and y both are typical by themselves, then this does

not necessarily mean that they are also jointly typical. For this the additional
condition

� 1

n
logP (x;y) � H(X;Y) (20.109)

has to be satisfied. M

Now we can derive similar properties of the jointly typical setA(n)
� (PX;Y) as

we did for the typical set A(n)
� (PX). Like for Theorem 20.4 and Theorem 20.8,

the basic ingredient is again the weak law of large numbers.

Theorem 20.20 (Properties of A(n)
� (PX;Y)).

Let (X;Y) be random vectors of length n that are drawn according to
the distribution P (x;y) ,

Qn
k=1 PX;Y (xk; yk) (i.e., the component pairs

are IID over k). Then we have the following:

1. Pr
h
(X;Y) 2 A(n)

� (PX;Y)
i
= Pr

�
A(n)
� (PX;Y)

�
> 1 � �, for n suffi-

ciently large.

2.
��A(n)

� (PX;Y)
�� � 2n(H(X;Y)+�), for all n.

4In the situation of strong typicality (see [Mos22, Chapter 4],) this problem does not
occur. There the condition for joint typicality directly implies that the sequences are also
typical by themselves.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

448 Asymptotic Equipartition Property and Weak Typicality

3.
��A(n)

� (PX;Y)
�� > (1� �) 2n(H(X;Y)��), for n sufficiently large.

4. Assume (~X; ~Y) � PX � PY, i.e., the sequences ~X and ~Y are inde-
pendently drawn according to the marginals of (20.108). Then

Pr
h
(~X; ~Y) 2 A(n)

� (PX;Y)
i
� 2�n(I(X;Y)�3�); for all n;

(20.110)

Pr
h
(~X; ~Y) 2 A(n)

� (PX;Y)
i
> (1� �) 2�n(I(X;Y)+3�); for n suffi-

ciently large.
(20.111)

Proof: The proof is very similar to the proof of Theorem 20.8. The first
part follows from the weak law of large numbers: Given � > 0, we know that

9N1 s.t. 8n � N1 : Pr

������ 1

n
logP (X)�H(X)

���� > �

�
<
�

3
; (20.112)

9N2 s.t. 8n � N2 : Pr

������ 1

n
logP (Y)�H(Y)

���� > �

�
<
�

3
; (20.113)

9N3 s.t. 8n � N3 : Pr

������ 1

n
logP (X;Y)�H(X;Y)

���� > �

�
<
�

3
: (20.114)

By the Union Bound, we hence see that for all n � maxfN1;N2;N3g,

1� Pr
�
A(n)
� (PX;Y)

�
= Pr

 �
x :

����� 1

n
logP (x)�H(X)

���� > �

�

[
�
y :

����� 1

n
logP (y)�H(Y)

���� > �

�

[
�
(x;y) :

����� 1

n
logP (x;y)�H(X;Y)

���� > �

�!
(20.115)

� Pr

������ 1

n
logP (X)�H(X)

���� > �

�

+Pr

������ 1

n
logP (Y)�H(Y)

���� > �

�

+Pr

������ 1

n
logP (X;Y)�H(X;Y)

���� > �

�
(20.116)

<
�

3
+
�

3
+
�

3
= �: (20.117)

The second part can be derived as follows:

1 =
X

(x;y)2Xn�Yn

P (x;y) (20.118)

�
X

(x;y)2A(n)
� (PX;Y)

P (x;y) (20.119)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

20.10. Jointly Typical Sequences 449

�
X

(x;y)2A(n)
� (PX;Y)

2�n(H(X;Y)+�) (20.120)

= 2�n(H(X;Y)+�)
��A(n)

� (PX;Y)
��; (20.121)

where (20.120) follows from the third condition in the definition of the jointly
typical set (Definition 20.18). Hence,

��A(n)
� (PX;Y)

�� � 2n(H(X;Y)+�): (20.122)

For the third part, note that for n sufficiently large we have from Part 1

1� � < Pr
�
A(n)
� (PX;Y)

�
(for n suff. large) (20.123)

=
X

(x;y)2A(n)
� (PX;Y)

P (x;y) (20.124)

�
X

(x;y)2A(n)
� (PX;Y)

2�n(H(X;Y)��) (20.125)

=
��A(n)

� (PX;Y)
�� � 2�n(H(X;Y)��); (20.126)

where (20.125) follows again from the definition of A(n)
� (PX;Y). Hence,

��A(n)
� (PX;Y)

�� > (1� �) 2n(H(X;Y)��) (20.127)

for n sufficiently large.
Finally, the fourth part is the only new statement. It basically says that if

we generate ~X and ~Y independently, then the chance that they accidentally
look like being jointly typical is very small.

To prove this, assume that ~X and ~Y are independent, but have the same
marginals as X and Y, respectively. Then

Pr
h
(~X; ~Y) 2 A(n)

� (PX;Y)
i
=

X
(~x;~y)2A(n)

� (PX;Y)

P (~x) � P (~y) (20.128)

�
X

(~x;~y)2A(n)
� (PX;Y)

2�n(H(X)��) � 2�n(H(Y)��) (20.129)

=
��A(n)

� (PX;Y)
�� � 2�n(H(X)��)�n(H(Y)��) (20.130)

� 2n(H(X;Y)+�) � 2�n(H(X)��+H(Y)��) (20.131)

= 2�n(H(X)+H(Y)�H(X;Y)�3�) (20.132)

= 2�n(I(X;Y)�3�); (20.133)

where (20.129) follows from the first two conditions of the definition of the
jointly typical set (Definition 20.18), and where (20.131) follows from Part 2.

The lower bound can be derived in a similar fashion.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

450 Asymptotic Equipartition Property and Weak Typicality

Table 20.2: An example of a joint probability distribution.

PX;Y Y = 0 Y = 1 Y = 2 PX

X = 0 1
2 0 1

4
3
4

X = 1 0 1
4 0 1

4

PY
1
2

1
4

1
4

Example 20.21. Consider a joint probability distribution PX;Y given in Ta-
ble 20.2.

Consider now two sequences of length n = 10:

x = (0; 1; 0; 0; 0; 1; 1; 0; 0; 0) (20.134)

y = (0; 0; 2; 1; 0; 2; 0; 0; 1; 2): (20.135)

We see immediately that the sequences look typical with respect to PX and
PY , respectively, however, they cannot have been generated jointly according
to PX;Y because we have various position that are not possible: e.g., (x; y) =
(1; 0) in the second position, or (x; y) = (1; 2) in position 6. So this pair of
sequences is not jointly typical. �

To summarize we can say the following: There are about 2nH(X) typical
X-sequences, 2nH(Y) typical Y -sequences, but only 2nH(X;Y) jointly typical
sequences. Hence, the probability that a randomly chosen, but independent
pair of an X- and a Y -sequence happens to look jointly typical is only about
2�n I(X;Y).

20.11 Data Transmission Revisited

The jointly typical set can be used to find a very elegant proof of the achiev-
ability part of the coding theorem (Theorem 11.34). To demonstrate this, we
will now give a new version of the proof shown in Section 11.8.

Recall our IID random codebook construction based on a distribution
PX(�) (see (11.111)) and our encoder that, given the message m, simply trans-
mits the mth codeword X(m) of C over the channel.

We will now design a new (also suboptimal) decoder: a so-called typicality
decoder. This decoder is quite useless for a practical system, however, it allows
a very elegant and simple analysis. It works as follows. After having received
some y, a typicality decoder looks for an ~m 2M such that

• (X(~m);y) is jointly typical, and

• there is no other message ~m0 6= ~m such that (X(~m0);y) is jointly typical.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

20.11. Data Transmission Revisited 451

If the decoder can find such an ~m, then it will make the decision m̂ = ~m,
otherwise it decides m̂ = 0 (which is equivalent to declaring an error).

We will now analyze the performance of our scheme. We can still (without
loss of generality) assume that M = 1. Let

Fm ,
n
(X(m);Y) 2 A(n)

� (PX;Y)
o
; m = 1; : : : ; 2nR; (20.136)

be the event that the mth codeword and the received sequence Y are jointly
typical. Hence an error occurs if Fc

1 occurs (i.e., if the transmitted codeword
and the received sequence are not jointly typical) or if F2[F3[� � �[F2nR occurs
(i.e., if one or more wrong codewords are jointly typical with the received
sequence Y). Hence, we can write

Pr(error) = Pr(error jM = 1) (20.137)

= Pr(Fc
1 [F2 [F3 [� � � [F2nR jM = 1) (20.138)

� Pr(Fc
1 jM = 1) +

2nRX
m=2

Pr(Fm jM = 1) (20.139)

where the inequality follows from the Union Bound. From Theorem 20.17-1
we know that

Pr
h
(X;Y) 2 A(n)

� (PX;Y)
i
> 1� � (20.140)

i.e.,

Pr(Fc
1 jM = 1) < � (20.141)

for n sufficiently large. Furthermore, we know that Y is completely indepen-
dent of X(m) for all m � 2:

generate X(1)

?
send it

through DMC

?

receive Y

independent
� - generate other

codewords X(m) using
the same PX(�),

but independently
�
�

�
�
��3

�
�

�
�

��+

independent

Hence, by Theorem 20.17-4 it now follows that for m � 2,

Pr(Fm jM = 1) = Pr
�
(X(m);Y) 2 A(n)

� (PX;Y)
���M = 1

�
(20.142)

� 2�n(I(X;Y)�3�) 8n: (20.143)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

452 Asymptotic Equipartition Property and Weak Typicality

Combining these results with (20.139) then yields

Pr(error) � Pr(Fc
1 jM = 1) +

2nRX
m=2

Pr(Fm jM = 1) (20.144)

< �+
2nRX
m=2

2�n(I(X;Y)�3�) (20.145)

= �+
�
2nR � 1

�| {z }
< 2nR

2�n(I(X;Y)�3�) (20.146)

< �+ 2nR � 2�n(I(X;Y)�3�) (20.147)

= �+ 2�n(I(X;Y)�R�3�) (20.148)

� 2� (20.149)

if n is sufficiently large and if I(X;Y) � R � 3� > 0 so that the exponent is
negative. Hence we see that as long as

R < I(X;Y)� 3� (20.150)

for any � > 0 we can choose n such that the average error probability, averaged
over all codewords and all codebooks, is less than 2�:

Pr(error) < 2�: (20.151)

Note that while in Section 11.8 we relied on the weak law of large numbers
to prove our result, here we used typicality. But since typicality is based on
the AEP, which is simply another form of the weak law of large numbers, there
is no fundamental difference between these two approaches.

20.12 Joint Source and Channel Coding Revisited

Finally, we also go back to the proof given in Section 15.3 and show another
version that is based on typicality. So, we assume that the source fUkg satisfies
the AEP. We fix an � > 0 and consider the set of typical sequences A(K)

� (fUkg).
Our system now works in two stages. In a first stage the encoder will look at
a sequence of K source symbols and check whether it is typical or not. If it is
typical, it assigns to it a unique number between 1 and M. If it is not typical,
it does not really matter what the encoder does because the decoder will fail
anyway. So we can assign any number in this case, e.g., we might choose to
assign the number 1.

Note that according to Theorem 20.15-3 the total number of typical se-
quences is upper-bounded by

M � 2K(H(fUkg)+�): (20.152)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

20.12. Joint Source and Channel Coding Revisited 453

Moreover, also note that all typical sequences are by definition (almost) equally
likely: For every u 2 A(K)

� (fUkg) we have

2�K(H(fUkg)+�) � Pr
�
UK
1 = u

� � 2�K(H(fUkg)��): (20.153)

Hence, we can use a standard channel code (designed for a uniform source)
to transmit these messages over the channel. So in the second stage, the
encoder will assign a unique codeword of length n to each of the M possible
messages. At the receiver side we use a joint-typicality decoder: Given the
received sequence Y n

1 , the decoder looks for a unique codeword x that is
jointly typical with Y n

1 . If it finds exactly one such codeword, it regenerates
the corresponding (typical) source sequence uK1 . If it finds none or more than
one, it declares an error.

This system will make an error if either the source sequence happens to
be nontypical or if the channel introduces a too strong error:

P
(K)
e = Pr

�
UK
1 6= ÛK

1

�
(20.154)

= Pr
h
UK
1 =2 A(K)

�

i
� Pr

h
UK
1 6= ÛK

1

���UK
1 =2 A(K)

�

i
| {z }

=1

+ Pr
h
UK
1 2 A(K)

�

i
| {z }

� 1

�Pr
h
UK
1 6= ÛK

1

���UK
1 2 A(K)

�

i
(20.155)

� Pr
h
UK
1 =2 A(K)

�

i
+ Pr

h
UK
1 6= ÛK

1

���UK
1 2 A(K)

�

i
(20.156)

= Pr
h
UK
1 =2 A(K)

�

i
| {z }

� � if K is
large enough

+ Pr
h
(Xn

1 ; Y
n
1) =2 A(n)

� or (~Xn
1 ; Y

n
1) 2 A(n)

�

���UK
1 2 A(K)

�

i
| {z }

� � if R<C and K is large enough

(20.157)

� �+ � = 2� (if R < C and K is large enough): (20.158)

Here in (20.158) the first upper bound follows from the properties of typical
sequences, and the second upper bound follows from the channel coding theo-
rem and holds as long as the rate of the channel code is less than the channel
capacity.

The rate of our channel code can be bounded as follows:

R =
log2M

n
� log2 2

K(H(fUkg)+�)

n
(by (20.152)) (20.159)

=
K

n

�
H(fUkg) + �

�
(20.160)

=
Tc

Ts
H(fUkg) + Tc

Ts
� (by (15.3)) (20.161)

� Tc

Ts
H(fUkg) + �0; (20.162)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

454 Asymptotic Equipartition Property and Weak Typicality

where �0 can be made arbitrarily small by making � small.
Hence, we can guarantee that R < C as long as

Tc

Ts
H(fUkg) + �0 < C: (20.163)

Since �, and therefore �0, are arbitrary, our scheme will work if

H(fUkg)
Ts

<
C

Tc
: (20.164)

20.13 Typicality for Continuous Random Variables

The AEP generalizes directly to the situation of continuous random variables.
Therefore, also all results concerning the Gaussian channel can be derived
based on typicality.

Theorem 20.22 (AEP for Continuous Random Variables).
Let X1; : : : ; Xn be a sequence of continuous random variables that are drawn
IID � fX(�). Then

� 1

n
log fX1;:::;Xn(X1; : : : ; Xn)

n!1�! E[�log fX(X)] = h(X) in probability:

(20.165)

Proof: The proof relies as before on the weak law of large numbers:

lim
n!1�

1

n
log fX1;:::;Xn(X1; : : : ; Xn)

= lim
n!1�

1

n
log

nY
k=1

fX(Xk) (20.166)

= lim
n!1�

1

n

nX
k=1

log fX(Xk) (20.167)

= E[�log fX(X)] in probability (20.168)

= h(X): (20.169)

Definition 20.23. For � > 0 and any n 2 N we define the typical set A(n)
� (fX)

with respect to fX as follows:

A(n)
� (fX) ,

�
(x1; : : : ; xn) 2 Xn :

����� 1

n
log f(x1; : : : ; xn)� h(X)

���� � �
�

(20.170)

where

f(x1; : : : ; xn) ,
nY

k=1

fX(xk): (20.171)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

20.13. Typicality for Continuous Random Variables 455

Note that A(n)
� (fX) has in general (uncountably) infinitely many members

because X is continuous. So it does not make sense to talk about the size of
the set, but instead we define its volume.

Definition 20.24. The volume Vol(A) of a set A � Rn is defined as

Vol(A) ,
Z
� � �
Z
A
dx1 � � �dxn: (20.172)

Theorem 20.25. The typical set A(n)
� (fX) has the following properties:

1. Pr
�
A(n)
� (fX)

�
> 1� �, for n sufficiently large;

2. Vol
�
A(n)
� (fX)

�
� 2n(h(X)+�), for all n;

3. Vol
�
A(n)
� (fX)

�
> (1� �) 2n(h(X)��), for n sufficiently large.

Proof: The proof is completely analogous to the proof of Theorem 20.8.
Part 1 follows from the AEP: 8 �; � > 0, 9N� such that for n � N� we have

Pr

������ 1

n
log f(X1; : : : ; Xn)� h(X)

���� � �
�
> 1� �: (20.173)

Now choose � , �.
Part 2 can be derived as follows:

1 =

Z
� � �
Z
Xn

f(x1; : : : ; xn) dx1 � � �dxn (20.174)

�
Z
� � �
Z
A(n)
�

f(x1; : : : ; xn) dx1 � � �dxn (20.175)

�
Z
� � �
Z
A(n)
�

2�n(h(X)+�) dx1 � � �dxn (20.176)

= 2�n(h(X)+�)
Z
� � �
Z
A(n)
�

dx1 � � �dxn (20.177)

= 2�n(h(X)+�) � Vol
�
A(n)
�

�
: (20.178)

Here, in (20.175) we reduce the integration area (which reduces the value of the
integral because the integrand is nonnegative); and (20.176) follows because
by definition, every sequence in the typical set A(n)

� satisfies

2�n(h(X)+�) � f(x1; : : : ; xn) � 2�n(h(X)��): (20.179)

Hence,

Vol
�
A(n)
�

�
� 2n(h(X)+�): (20.180)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

456 Asymptotic Equipartition Property and Weak Typicality

Part 3 follows from Part 1: For n sufficiently large we have

1� � < Pr
�
A(n)
�

�
(20.181)

=

Z
� � �
Z
A(n)
�

f(x1; : : : ; xn) dx1 � � �dxn (20.182)

�
Z
� � �
Z
A(n)
�

2�n(h(X)��) dx1 � � �dxn (20.183)

= 2�n(h(X)��) � Vol
�
A(n)
�

�
: (20.184)

Hence,

Vol
�
A(n)
�

�
> (1� �) 2n(h(X)��) (20.185)

for n sufficiently large.
The generalization to the joint AEP for continuous RVs, jointly typical sets

A(n)
� (fX;Y), and their properties is completely analogous to Theorem 20.17,

Definition 20.18, and Theorem 20.20, respectively.

Theorem 20.26 (Joint AEP for Continuous Random Variables). If the sequence of
pairs of continuous RVs (X1; Y1); (X2; Y2); : : : is IID � fX;Y (�; �), then

� 1

n
log fX1;Y1;:::;Xn;Yn(X1; Y1; : : : ; Xn; Yn)

n!1�! h(X;Y) in probability:

(20.186)

Proof: Since (Xk; Yk) are IID and by the weak law of large numbers,

lim
n!1�

1

n
log f(X1; Y1; : : : ; Xn; Yn)

= lim
n!1�

1

n
log

nY
k=1

fX;Y (Xk; Yk) (20.187)

= lim
n!1�

1

n

nX
k=1

log fX;Y (Xk; Yk) (20.188)

= E[�log fX;Y (X;Y)] in probability (20.189)

= h(X;Y): (20.190)

Definition 20.27. The set A(n)
� (fX;Y) of jointly typical sequences (x;y) with

respect to the joint PDF fX;Y (�; �) is defined as

A(n)
� (fX;Y) ,

�
(x;y) 2 Xn � Yn :

����� 1

n
log f(x)� h(X)

���� � �;����� 1

n
log f(y)� h(Y)

���� � �;����� 1

n
log f(x;y)� h(X;Y)

���� � �
�

(20.191)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

20.13. Typicality for Continuous Random Variables 457

where

f(x;y) ,
nY

k=1

fX;Y (xk; yk) (20.192)

and where f(x) and f(y) are the corresponding marginal PDFs.

Theorem 20.28 (Properties of A(n)
� (fX;Y)). Let (X;Y) be random vectors of

length n with joint PDF

f(x;y) ,
nY

k=1

fX;Y (xk; yk) (20.193)

(i.e., (X;Y) are IID over k). Then we have the following:

1. Pr
h
(X;Y) 2 A(n)

� (fX;Y)
i
= Pr

�
A(n)
� (fX;Y)

�
> 1 � �, for n sufficiently

large.

2. Vol
�
A(n)
� (fX;Y)

�
� 2n(h(X;Y)+�), for all n.

3. Vol
�
A(n)
� (fX;Y)

�
> (1� �) 2n(h(X;Y)��), for n sufficiently large.

4. Assume (~X; ~Y) � fX �fY, i.e., the sequences ~X and ~Y are independently
drawn according to the marginals of fX;Y. Then

Pr
h
(~X; ~Y) 2 A(n)

� (fX;Y)
i
� 2�n(I(X;Y)�3�); for all n; (20.194)

Pr
h
(~X; ~Y) 2 A(n)

� (fX;Y)
i
> (1� �) 2�n(I(X;Y)+3�); for n suffi-

ciently large.
(20.195)

Proof: By the weak law of large numbers and for a given � > 0, we know
that

9N1 s.t. 8n � N1 : Pr

������ 1

n
log f(X)� h(X)

���� > �

�
<
�

3
; (20.196)

9N2 s.t. 8n � N2 : Pr

������ 1

n
log f(Y)� h(Y)

���� > �

�
<
�

3
; (20.197)

9N3 s.t. 8n � N3 : Pr

������ 1

n
log f(X;Y)� h(X;Y)

���� > �

�
<
�

3
: (20.198)

Thus, by the Union Bound, we have for all n � maxfN1;N2;N3g,

1� Pr
�
A(n)
� (fX;Y)

�
= Pr

 �
x :

����� 1

n
log f(x)� h(X)

���� > �

�

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

458 Asymptotic Equipartition Property and Weak Typicality

[
�
y :

����� 1

n
log f(y)� h(Y)

���� > �

�

[
�
(x;y) :

����� 1

n
log f(x;y)� h(X;Y)

���� > �

�!
(20.199)

� Pr

������ 1

n
log f(X)� h(X)

���� > �

�

+Pr

������ 1

n
log f(Y)� h(Y)

���� > �

�

+Pr

������ 1

n
log f(X;Y)� h(X;Y)

���� > �

�
(20.200)

<
�

3
+
�

3
+
�

3
= �: (20.201)

The second part follows because

1 =

Z
� � �
Z
Xn�Yn

f(x;y) dy dx (20.202)

�
Z
� � �
Z
A(n)
� (fX;Y)

f(x;y) dy dx (20.203)

�
Z
� � �
Z
A(n)
� (fX;Y)

2�n(h(X;Y)+�) dy dx (20.204)

= 2�n(h(X;Y)+�) Vol
�
A(n)
� (fX;Y)

�
; (20.205)

where (20.204) follows from the third condition in (20.191).
The third part holds because for n sufficiently large we have from Part 1

1� � < Pr
�
A(n)
� (fX;Y)

�
(for n suff. large) (20.206)

=

Z
� � �
Z
A(n)
� (fX;Y)

f(x;y) dy dx (20.207)

�
Z
� � �
Z
A(n)
� (fX;Y)

2�n(h(X;Y)��) dy dx (20.208)

= Vol
�
A(n)
� (fX;Y)

�
� 2�n(h(X;Y)��): (20.209)

Finally, to prove the fourth part, assume that ~X and ~Y are independent, but
have the same marginals as X and Y, respectively. Then

Pr
h
(~X; ~Y) 2 A(n)

� (fX;Y)
i

=

Z
� � �
Z
A(n)
� (fX;Y)

f(~x) � f(~y) d~y d~x (20.210)

�
Z
� � �
Z
A(n)
� (fX;Y)

2�n(h(X)��) � 2�n(h(Y)��) d~y d~x (20.211)

= Vol
�
A(n)
� (fX;Y)

�
� 2�n(h(X)��)�n(h(Y)��) (20.212)

� 2n(h(X;Y)+�) � 2�n(h(X)��+h(Y)��) (20.213)

= 2�n(h(X)+h(Y)�h(X;Y)�3�) (20.214)

= 2�n(I(X;Y)�3�); (20.215)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

20.14. Summary 459

where (20.211) follows from the first two conditions in (20.191), and where
(20.213) follows from Part 2.

The lower bound can be derived accordingly.

20.14 Summary

Data Compression (based on AEP): There exists a small subset of all possible
source sequences of size 2nH that contains almost all probability. Hence,
we can represent a source with H bits per symbol with a very small
probability of error.

Data Transmission (based on joint AEP): The output sequence is very likely to
be jointly typical with the transmitted codeword, and the probability
that it is jointly typical with any other codeword is 2�n I. Hence we can
use about 2n I codewords and still have a very small probability of error.

Source Channel Separation Theorem: We can design a source code and a channel
code separately and still be optimal.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Chapter 21

Cryptography

21.1 Introduction to Cryptography

Cryptography is Greek and means hidden writing. It is the art of transmit-
ting a message in hidden form such that only the intended recipient will be
able to read it. There are many ways of trying to achieve this goal. A message
could be hidden such that only a person who knows where to look for it will
find it. Or the recipient needs to know a certain decoding scheme in order to
make sense into a scrambled text. Or the recipient needs to know or possess
a key to unlock an encrypted message.

Cryptography has been very important for a long time in history, simply
because information and knowledge often means power and money. Some
typical examples of how cryptography used to work before it became a science
are as follows:

• The message is written in invisible ink that can be made visible by
adding a certain chemical or heat.

• The message is tattooed into the skin on the head of a man, then the
man waits until his hair has grown back before he travels to the required
destination. There he shaves the hair off again to reveal the message.

• The message is written row-wise into a square grid and then read column-
wise to scramble it.

Cryptography has two very different goals that are often mixed up:

• A cryptographic system provides secrecy if it determines who can re-
ceive a message.

• A cryptographic system provides authenticity if it determines who can
have sent a message.

461 © Stefan M. Moser — IT, version 6.14

462 Cryptography

As a matter of fact, it was only recently in the long history of cryptography
that people have started to appreciate this fundamental difference.

In the following we will give a very brief overview of some main ideas
behind cryptographic systems. We start with Shannon who was the first
person to look at cryptography in a proper scientific way. Basically, he changed
cryptography from being an art to become a “scientific art”.

21.2 Cryptographic System Model

In 1949, Claude E. Shannon published a paper called “Communication Theory
of Secrecy Systems” [Sha49], which gave the first truly scientific treatment of
cryptography. Shannon had been working on this topic due to the second
world war and the insights he gained caused him later on to develop infor-
mation theory. However, after the war his work on cryptography was still
declared confident, and so he first published his work on data compression
and transmission [Sha48]. So usually people firstly refer to the latter and
only then to cryptography, but it actually should be the other way around:
Cryptography really started the whole area of information theory.

In his 1949 paper, Shannon started by providing the fundamental way
of how one should look at a cryptographic system. His system is shown in
Figure 21.1. Actually, Shannon did not yet consider the public and private

public
random
source

message
source

private
random
source

encryp-
tor

decryp-
tor

desti-
nation

secure
channel

enemy
crypt-
analyst

key
source

public channel

R

X

S

Z

Y

^X

X

Z

Figure 21.1: System model of a cryptographic system the way Shannon de-
fined it.

random source, but their inclusion is straightforward. In this system model,

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

21.3. Kerckhoff Hypothesis 463

we have the following quantities:

plaintext: X = (X1; X2; : : : ; XJ) (21.1)

ciphertext: Y = (Y1; Y2; : : : ; Yn) (21.2)

secret key: Z = (Z1; Z2; : : : ; Z`z) (21.3)

public randomization: R = (R1; R2; : : : ; R`r) (21.4)

private randomization: S = (S1; S2; : : : ; S`s) (21.5)

Note that the length of these different sequences do not need to be the same.
The aim of the system is that the message X arrives at the destination in

such a way that the enemy cryptanalyst cannot decipher it. To this end, the
encryptor will use the private key Z, the private randomizer S and the public
randomizer R to transform the message or plaintext X into an encrypted
message Y, called ciphertext. It is then assumed that the enemy cryptanalyst
can only observe Y and R, but does not know the realization of S and Z.
Based on this observation, he will then try to reconstruct the original message
X. The intended receiver, on the other hand, additionally knows the secret
key Z, which must allow him to perfectly recover X from Y. Note, however,
that S is not known to the decryptor, so it must be possible to get X back
without it.

In this most common setup, we assume that the enemy cryptanalyst has
access only to Y and R: This is called ciphertext-only attack. There exist
also more problematic situations where the enemy cryptanalyst also knows the
original message X (and, e.g., tries to figure out the key) — this is known as
known-plaintext attack — or, even worse, can actually choose the plaintext X
himself — denoted chosen-plaintext attack — and thereby look at optimally
bad cases for the encryption that will simplify the breaking.

21.3 Kerckhoff Hypothesis

There is one very important assumption implicit to our system model of Fig-
ure 21.1: We always assume that the enemy cryptanalyst has full knowledge
of how our cryptosystem works. The only parts of the system that remain
secret are the values of key, message, and private randomizer.

This assumption cannot be proven and has been (or even sometimes still
is) questioned. However, there are very good reasons for it: History has shown
that any secret design will eventually be discovered. Either an insider changes
sides, the enemy cryptanalyst is able to steal the plans or a machine, or he is
simply able to reverse-engineer the system’s design. Hence, security based on
the secret design is not fail-proof at all.

This has been properly recognized towards the end of the 19th century by
a man called Auguste Kerckhoff, who made the following postulate.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

464 Cryptography

Postulate 21.1 (Kerckhoff Hypothesis (1883)). The only part of a cryptographic
system that should be kept secret is the current value of the secret key.

21.4 Perfect Secrecy

It is now time to investigate the system of Figure 21.1 more in detail. We see
that the ciphertext Y is a function of X, Z, R, and S. Hence we have

H(YjX;Z;R;S) = 0: (21.6)

The decryptor has no access to S, but must be able to recover the plaintext
from the ciphertext using the secret key and the public randomizer. Hence, a
requirement for the system to work is that

H(XjY;Z;R) = 0: (21.7)

Implicit in the figure there are two more important assumptions:

• X, Z, R, and S are all statistically independent; and

• the secret key Z and the public randomizer R are to be used once only!

Based on these definitions and assumptions, Shannon now gave a simple,
but very powerful definition of what a perfect cryptographic system should
do.

Definition 21.2. A cryptographic system provides perfect secrecy if the enemy
cryptanalyst’s observation (Y;R) is statistically independent of the plaintext
X:

(Y;R) ?? X: (21.8)

In information theoretic notation, this is equivalent to saying that

H(XjY;R) = H(X): (21.9)

It is good to know that it is actually possible to design such perfect-secrecy
systems!

Example 21.3 (One-Time Pad). One possible design of a system that provides
perfect secrecy is shown in Figure 21.2. It is called one-time pad.

The main idea is to use modulo-2 adders that scramble the plaintext with
the key bits. As long as the key bits are IID uniform, the system provides
perfect secrecy, independently of the distribution of the plaintext, as can be
shown as follows:

Pr[Y = y jX = x] = Pr[X� Z = y jX = x] (21.10)

= Pr[x� Z = y jX = x] (21.11)

= Pr[Z = y � x jX = x] (21.12)

=

�
1

2

�n
; (21.13)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

21.4. Perfect Secrecy 465

binary
source

+ +
desti-
nation

secure
channel

enemy
crypt-
analyst

BSS

X̂k

Xk Yk Xk

Zk Zk

Zk

Figure 21.2: A cryptosystem that provides perfect secrecy: one-time pad.

where the last step follows because we have assumed that fZkg is IID uniform.
Therefore we see that Pr[Y = y jX = x] does not depend on x, i.e., X ??
Y. �

Shannon did not only come up with the fundamental definition of perfect
secrecy, but he was also able to prove an important property of it.

Theorem 21.4 (Bound on Key Size).
In any system that provides perfect secrecy, we must have

H(X) � H(Z): (21.14)

Proof: In spite of the theorem’s importance, its proof is astonishingly
simple. It is based on basic properties of entropy:

H(XjY;R) � H(X;ZjY;R) (21.15)

= H(ZjY;R) +H(XjZ;Y;R) (21.16)

= H(ZjY;R) (21.17)

� H(Z): (21.18)

Here, (21.15) follows because adding random variables cannot decrease uncer-
tainty; (21.16) follows from the chain rule; in (21.17) we use our assumption of
perfect recovery (21.7); and the final inequality (21.18) is due to conditioning
that cannot increase entropy.

Hence, if we want perfect secrecy, i.e., H(XjY;R) = H(X), then we must
have that H(X) � H(Z).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

466 Cryptography

In other words, Theorem 21.4 says that the used key must be at least as
long1 as the message!

The alert reader will therefore now complain that instead of going through
all the trouble of encrypting and decrypting the message and transmitting the
secret key (which is longer than the message!) over the secure channel, we
should instead simply use the secure channel to transmit the message in the
first place!

This is not a completely fair observation. For example, there might be
a time difference between the transmission of the secret key over the secure
channel and the transmission of the ciphertext over the public channel. Con-
sider, e.g., the situation of a ship: The key could be generated and brought
aboard before a ship departs, but the secret messages are then sent via ra-
dio transmission once the ship is far out at sea and no secure channel exists
anymore.

Nevertheless, the alert reader has a point. His observation very clearly
puts its finger on the two most fundamental problems of the system shown in
Figure 21.1:

• In a practical situation, we would like to have the key size much smaller
than the plaintext. In other words, we would like to reuse the same key
Z for different messages X.2

• In a practical situation we often do not have a secure channel available.

We will try to address these two issues in the following sections. We start
with an investigation of what happens if one shortens the key length in such
a way that (21.14) is violated.

21.5 Imperfect Secrecy

We have learned that perfect secrecy is possible, but that it is rather expensive
because it needs a large amount of secret key. In many practical situations
perfect secrecy seems too complicated. So the question is what we can do if we
are happy with imperfect secrecy. To analyze this, Shannon again introduced a
quantity that very accurately describes almost every imperfect cryptographic
system.

So we consider again Figure 21.1, but assume for the moment that there
are no public and private randomizers R and S. Moreover, we assume that

1Strictly speaking this is only true with the additional assumption that all message bits
and all key bits are independent and uniform, such that they maximize entropy. If the
message bits have big dependencies, i.e., H(X) is not very large, we might have a shorter
key than the message and still get perfect secrecy as long as (21.14) is satisfied.

2Note that reusing the same key for different messages can be seen as a short-length key
Z being used for a very long message X that actually consists of the concatenation of many
messages.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

21.5. Imperfect Secrecy 467

we use a system that uses a relatively short finite-length secret key Z for a
long message (or equivalently, many concatenated short messages) and that
therefore cannot provide perfect secrecy.

How can we characterize our system? Obviously, since the secret key Z

is of finite length, if we keep using it to encode a sequence of message digits
fXkg, eventually it must be possible to compute the value of Z simply from
the observation of fYkg. So the quality of our system will be determined by

• the minimum number of ciphertext digits Y1; : : : ; Yku that are needed to
determine Z uniquely; and

• the difficulty of actually computing Z from such a sequence Y1; : : : ; Yku .

The latter depends very strongly on the system and on our ingenuity of attack-
ing the cryptographic system. We will discuss more about that in Section 21.6.

The former, however, can be described in quite general form for any rea-
sonably good system. To this end, Shannon gave the following definitions.

Definition 21.5. The key equivocation function feq(�) is defined as follows:

feq(k) ,

8<
:H(Z) k = 0;

H(ZjY1; : : : ; Yk) k = 1; 2; 3; : : :
(21.19)

Furthermore, the unicity distance ku is defined as the smallest k such that
feq(k) � 0. Hence ku is the smallest amount of ciphertext necessary to deter-
mine the key uniquely.3

Ingeniously, Shannon was able to derive a general form of feq(�) that holds
basically for all reasonably good cryptographic systems. He only made two
reasonable assumptions about a cryptosystem:

1. A good cryptosystem will try to make Y1; : : : ; Yk look totally random for
as large k as possible. Hence, for as large k as possible,

H(Y1; : : : ; Yk) � k � log jYj: (21.20)

2. By definition, when the secret key Z is known, Y = (Y1; : : : ; Yn) deter-
mines X completely:

H(Y1; : : : ; YnjZ) = H(X): (21.21)

For most ciphers and sources, it then holds that Y1; : : : ; Yk will determine
a certain percentage of X. Usually,

H(Y1; : : : ; YkjZ) � k

n
H(X) (21.22)

is a good approximation.
3However, as mentioned above already, note that even though theoretically it must be

possible to determine the key Z from Y1; : : : ; Yku because H(ZjY1; : : : ; Yku) � 0, in practice
this should still be a very difficult task!

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

468 Cryptography

Based on these two assumptions we now get

H(Y1; : : : ; Yk;Z) = H(Z) +H(Y1; : : : ; YkjZ) (21.23)

� H(Z) +
k

n
H(X) (21.24)

and

H(Y1; : : : ; Yk;Z) = H(Y1; : : : ; Yk) +H(ZjY1; : : : ; Yk) (21.25)

� k � log jYj+ feq(k): (21.26)

Hence,

feq(k) � H(Z)� k log jYj+ k

n
H(X) (21.27)

= H(Z)� k log jYj
�
1� H(X)

n log jYj
�

(21.28)

, H(Z)� k� log jYj; (21.29)

where the last equality should be read as definition for �.

Proposition 21.6. For most reasonable ciphers, the key equivocation function is
linear in k:

feq(k) � H(Z)� k� log jYj (21.30)

with a slope �� log jYj where

� , 1� H(X)

n log jYj : (21.31)

The basic behavior of the key equivocation function is shown in Fig-
ure 21.3.

From Proposition 21.6 now follows that the unicity distance is approxi-
mately given as

ku � H(Z)

� log jYj : (21.32)

Therefore, since we would like ku to be as big as possible, we need � to be as
small as possible, i.e., H(X) should be as large as possible! For exactly this
goal, the private randomizer S is useful: It helps to increase the entropy!

Example 21.7 (Usage of Private Randomizer). In English text (26 letters +
space), the most likely letter is “space” (probability around 0:1859), then “e”

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

21.6. Computational vs. Unconditional Security 469

ku

H(Z)

k

feq(k)

slope: �� log jYj

Figure 21.3: The key equivocation function.

(probability around 0:1031), etc. If we convert such text into 11-bit symbols
(211 = 2048) in the manner that 381 (= 2048 � 0:1859) of the 2048 symbols
represent “space”, 211 (2048 � 0:1031) symbols represent “e”, etc., and then
choose any of the possible representations uniformly at random using the
private randomizer S, then the output looks uniformly distributed! Note that
the receiver does not need to know S because he can simply replace any of
the 381 space-symbols by “space”, etc. �

So we see that if we use a private randomizer S, in (21.31) we have to
replace H(X) by H(~X) = H(X) + H(S). Therefore the private randomizer
helps increasing the unicity distance, i.e., we will need to know more ciphertext
until Z can (theoretically) be computed from it.

The above analysis is not affected by the use of a public randomizer.
Note that if instead of a ciphertext-only attack we allow a known-plaintext

attack (enemy cryptanalyst also knows X) or, even worse, a chosen-plaintext
attack (enemy cryptanalyst can choose X himself), then we need to replace
H(X) by 0, i.e., � = 1.

21.6 Computational vs. Unconditional Security

Since perfect secrecy is difficult to achieve, most practical systems rely on
“practical” security, which means that we do not rely on the impossibility of
breaking a code, but on the difficulty in breaking it.

If the best super-computer needs 500 years on average to break a certain
cipher, then this is good enough for us (as in 500 years the encrypted message

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

470 Cryptography

is probably useless anyway). We say that such a system is computationally
secure.

However, note that we have the problem that we are not able to prove the
security! There still is the possibility that someone has a brilliant idea and
suddenly finds a way of cracking a code within two hours. So this means that
computational security is not a guaranteed security.

So, by relying on computational security, we try to deal with the un-
practical requirement that the secret key has to have more entropy than the
plaintext (see Theorem 21.4). Another way to put this is that if we rely on
computational security, then we can reuse the same key many times. An at-
tacker will not be able to break our code even if according to the equivocation
function feq the secret key is already fully determined by fYkg.

Unfortunately, in Figure 21.1 we still have another obstacle that hinders
us in practical implementations: the secure channel. We have already men-
tioned that sometimes there might be a secure channel for a certain time
period (e.g., during the time a ship is in the harbor), but not anymore after-
wards. Unfortunately, in many practical situations there simply is no secure
channel. Consider, e.g., the Internet: Nobody is willing to fly to the United
States before being able to establish a secure connection with the amazon.com
servers. . .

Incredibly, there is a solution to this problem: Public-key cryptography
gets rid of the need of a secure channel!

21.7 Public-Key Cryptography

In 1976, Diffie and Hellman [DH76] (and independently Merkle [Mer78]) pub-
lished a paper that gave a fundamentally new idea: They realized that if we
allow to rely on computationally secure systems only, then we can do without
a secure channel !

So, for the remainder of this chapter we leave Figure 21.1 behind, but
consider a new system. We will depict the exact shape of this system later in
Section 21.7.2, see Figures 21.5 and 21.6.

The basic idea could be explained by an analogy shown in Figure 21.4:
Mr. A would like to send a locked suitcase to his friend B without having to
send the key. How can he do it? The idea is simple. Firstly he sends the
suitcase locked. The friend B cannot open it as he does not have the key. But
he can add an additional lock and send the suitcase back to Mr. A. Mr. A now
removes his lock (the lock of his friend B remains there and Mr. A cannot
open it because only B has the key) and then sends the suitcase again to B. B
can now remove his own lock and open the suitcase. We realize: The suitcase
has never been traveling without lock, but there was no need of sending a key!

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

21.7. Public-Key Cryptography 471

A public channel B

A

A

A

A

A

B

B

B

B

B

add

add

remove

remove

Figure 21.4: Analogy on how one can send secret messages without exchanging
keys.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

472 Cryptography

To explain how this idea can be translated into the world of digital com-
munication we need to discuss two crucial definitions introduced by Diffie,
Hellman, and Merkle: the one-way function and the trapdoor one-way func-
tion.

21.7.1 One-Way Function

Definition 21.8. A one-to-one function f(�) is a one-way function if

• it is easy to compute y = f(x) for every x, but

• it is computationally impossible to compute x = f�1(y) for virtually all
y.

The reader may note the unclear language we have been using here: “easy”,
“computationally impossible”, “virtually all”, . . . These are all terms that math-
ematically do not make much sense, however, it turns out that for engineers
they are quite clear and very useful.

As a matter of fact, one-way functions were not inventions of Diffie and
Hellman, but they have been used in different context before. Best known
is their use in login-systems: A user i chooses a password xi that he needs
to present to the login-screen in order to be allowed to log into a computer
system. The computer, however, does not store this password, but computes
yi = f(xi) and stores (i;yi). When logging in, user i gives xi, the computer
computes yi and compares it with the stored value. If they are identical, the
login is approved, otherwise rejected. The advantage of this system is that if
someone somehow gets hold of (i;yi), this will not help him to break into the
system because he cannot compute xi = f�1(yi).

We will now give an example of a (conjectured) one-way function.

Example 21.9. The function

y = f(x) = �x (mod p); (21.33)

where p is a large prime number such that n = p� 1 has a large prime factor
(ideally n = p�1 = 2p0 for p0 also prime), is a (conjectured4) one-way function:

• x = log� y (mod p) is very hard to compute;

4Again, this has not been proven. There is strong evidence, but theoretically there exists
the possibility that one day someone has a brilliant idea on how to quickly compute discrete
logarithms, changing the one-way function to a normal “two-way” function.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

21.7. Public-Key Cryptography 473

• �x (mod p) is easy to compute by squaring: For example,

�1300 = �1024 � �256 � �16 � �4 (21.34)

= �210 � �28 � �24 � �22 (21.35)

= (((�2)2):::)2| {z }
10 squaring
operations

� (((�2)2):::)2| {z }
8 squaring
operations

� (((�2)2)2)2 � (�2)2 (21.36)

needs only 10 squaring operations (if we store the intermediate values
for 2, 4, and 8 squaring operations) and 3 multiplications. Hence, it is
very fast. �

How can we now use one-way functions in the context of cryptography?
Consider the following system of generating a common key between two users:
Fix an � and a p in advance. User i chooses a private key xi (mod p) and
computes a public key yi = �xi (mod p). User j does the same thing. If user
i and j want to communicate, then user i fetches yj and user j fetches yi from
a trusted public database that contains the public keys of many users.

User i now computes

(yj)
xi = (�xj)xi = �xjxi (mod p) (21.37)

and user j computes

(yi)
xj = (�xi)xj = �xixj (mod p): (21.38)

Both get the same value! This common value �xixj (mod p) can now be used
as common secret key on a standard cryptographic system.

An enemy cryptanalyst can also fetch yi and yj , but he can only compute
the common secret key if he manages to compute xi = log� yi (mod p) or
xj = log� yj (mod p), which, as said, is very difficult.

The problem of this system is that both users will always use the same
secret key, which is not a good idea. So Diffie and Hellman expanded their
idea to not only find a common key, but directly create a complete public-key
cryptosystem.

21.7.2 Trapdoor One-Way Function

Definition 21.10. A trapdoor one-way function fz(�) is a family of one-to-one
functions with parameter z (the trapdoor) satisfying the following properties:

1. If z is known, it is easy to find algorithms Ez and Dz that easily compute
fz and f�1

z , respectively.

2. For virtually all z and y, it is computationally infeasible to compute
x = f�1

z (y) even if Ez is known.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

474 Cryptography

3. It is easy to pick a value of z at random.

Again note the mathematically unclear terms “easy”, “computationally in-
feasible”, and “virtually all”.

Let us first assume that such a trapdoor one-way function actually exists
and show how we can use it.

We can create a public-key cryptosystem in the following way. Every user
i chooses a trapdoor zi. (This is easy due to Property 3.) User i then finds
his encryption algorithm Ezi and his decryption algorithm Dzi . He publishes
Ezi in a trusted public database (TPD). Note that usually Ezi and Dzi are
known in advance apart from some parameters, i.e., we only need to publish
these parameters. The decryption algorithm Dzi is kept secret. We say that

• Ezi is the public key, and

• Dzi is the private key.

This system now works both for secrecy and authenticity:

Secrecy: User i wants to send a secret message X to user j. He fetches Ezj
of user j from the TPD, computes Y = fzj (X), and transmits Y. The
ciphertext Y can only be decrypted by user j because only he knows
Dzj to compute X = f�1

zj (Y).

The corresponding system is shown in Figure 21.5.

message
source

encryp-
tor

decryp-
tor

desti-
nation

key
source

public channel

TPD

enemy
crypt-
analyst

^X

X XY

Ez

Ez

Ez

Dz

Figure 21.5: System model of a public-key cryptosystem that provides secrecy.

Authenticity (digital signature): User i applies his private decryption algorithm
Dzi on X: X0 = f�1

zi (X), then transmits (X;X0) to user j. User j can
get Ezi from the TPD and use it to compute fzi(X

0). If X = fzi(X
0),

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

21.7. Public-Key Cryptography 475

then this proves that X must come from user i since only user i knows
Dzi .

The enemy cryptanalyst tries to send a fake message ~X to user j and to
forge a wrong signature ~X0 pretending that the message came from the
legitimate user i. But even though the enemy cryptanalyst has access
to Ezi , he cannot create a proper ~X0 because for that he would need to
know Dzi .

The corresponding system is shown in Figure 21.6.

message
source

encryp-
tor

decryp-
tor

desti-
nation

key
source

public channel

TPD

enemy
crypt-
analyst

X X
~X

X

X0

Dz

Ez

Ez

Ez

~X ~X0

Figure 21.6: System model of a public-key cryptosystem that provides au-
thenticity.

Note that this idea of a digital signature was the most important contribution
of public-key cryptography!

We finish our short insight into public cryptography by stating one of the
best known (conjectured) trapdoor one-way functions. We will only give a
rough big picture and will omit any mathematical details.

Conjecture 21.11 (RSA Trapdoor One-Way Function). The River–Shamir–Adleman
(RSA) trapdoor is given by

z = (p1; p2; e); (21.39)

where p1, p2 are large distinct prime numbers such that p1�1 and p2�1 have
large prime factors and where e is a unit in Z(p1�1)(p2�1) (i.e., an integer for
which there exists a multiplicative inverse in Z(p1�1)(p2�1)). This is easy to
pick at random because powerful algorithms are available to check whether a
number is prime or not.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

476 Cryptography

Using

m , p1p2 (21.40)

we now define the trapdoor one-way function as follows:

fz(x) = xe (mod m): (21.41)

The public key Ez is

Ez = (m; e): (21.42)

Note that with the knowledge of (m; e), fz(x) can be easily computed by the
squaring approach shown in Section 21.7.1.

The private key Dz is

Dz = (m; d); (21.43)

where

d , e�1 (mod (p1 � 1)(p2 � 1)): (21.44)

It can be shown that

(xe)d (mod m) = x; (21.45)

i.e., it is easy to compute x = f�1
z (y) by the squaring approach. However,

even if we know (m; e), to compute d we need to factorize m = p1p2, which is
very hard!

It has been proven that breaking the RSA trapdoor one-way function is
equivalent to factorizing m. So as long as no one can find a way of quickly
factorizing large numbers into its primes, our cryptosystems used throughout
the world for banking, controlling, communicating, etc., are safe.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Appendix A

Gaussian Random Variables

In many communication scenarios the noise is modeled as a Gaussian sto-
chastic process. This is sometimes justified by invoking the Central Limit
Theorem that says that many small independent disturbances add up to a
random process that is approximately Gaussian. But even if no such theorem
can be used, the engineers like to use Gaussian random processes because —
even though Gaussian processes might seem quite scary at first — they are
actually well understood and often allow closed-form solutions.

Rather than starting immediately with the definition and analysis of Gaus-
sian processes, we shall take the more moderate approach and start by first
discussing Gaussian random variables. Building on that we shall discuss Gaus-
sian vectors in Appendix B, and only then introduce Gaussian processes in
Appendix C. Our aim is to convince you that

Gaussians are your friends!

A.1 Standard Gaussian Random Variables

We begin with the definition of a standard Gaussian random variable.

Definition A.1. We say that the random variable W has a standard Gaus-
sian distribution if its probability density function (PDF) fW (�) is given
by

fW (w) =
1p
2�

e�
w2

2 ; w 2 R: (A.1)

See Figure A.1 for a plot of this density.

For this definition to be meaningful it had better be the case that the
right-hand side of the above is a density function, i.e., that it is nonnegative

477 © Stefan M. Moser — IT, version 6.14

478 Gaussian Random Variables

1�1

0:1

2�2

0:2

3�3

0:3

4�4

0:4

5�5

0:5

0
0

w

Figure A.1: The standard Gaussian probability density function.

and that it integrates to one. This is indeed the case. In fact, the density is
positive, and it integrates to one becauseZ 1

�1
e�

w2

2 dw =
p
2�: (A.2)

This latter integral can be verified by computing its square as follows:

�Z 1

�1
e�

w2

2 dw

�2

=

Z 1

�1
e�

w2

2 dw

Z 1

�1
e�

v2

2 dv (A.3)

=

Z 1

�1

Z 1

�1
e�

w2+v2

2 dw dv (A.4)

=

Z �

��

Z 1

0
r e�

r2

2 dr d� (A.5)

= 2�

Z 1

0
e�u du (A.6)

= 2�: (A.7)

Here we used the change of variables from Cartesian (w; v) to polar (r; �):

w = r cos �

v = r sin �

9=
; r � 0; �� � � < �; dw dv = r dr d�: (A.8)

Note that the density of a standard Gaussian random variable (A.1) is
symmetric about the origin, so that if W is a standard Gaussian, then so
is �W . This symmetry also establishes that the expectation of a standard
Gaussian is zero:

E[W] = 0: (A.9)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

A.2. Gaussian Random Variables 479

The variance of a standard Gaussian can be computed using integration by
parts:Z 1

�1
w2 1p

2�
e�

w2

2 dw =
1p
2�

Z 1

�1
w

�
� d

dw
e�

w2

2

�
dw (A.10)

=
1p
2�

�w e�w2

2

����1�1 +

Z 1

�1
e�

w2

2 dw

!
(A.11)

=
1p
2�

Z 1

�1
e�

w2

2 dw (A.12)

= 1: (A.13)

Here we have used the fact that the limit of w exp(�w2=2) as jwj tends to
infinity is zero, and in the last line we used (A.2).

A.2 Gaussian Random Variables

We next define a Gaussian (not necessarily standard) random variable as the
result of applying an affine transformation to a standard Gaussian.

Definition A.2. We say that a random variable X is Gaussian if it can be
written in the form

X = aW + b (A.14)

for some deterministic real numbers a; b 2 R and for a standard Gaussian W .
If b = 0, i.e., if X can be written as X = aW for some a 2 R, then we call

X to be centered Gaussian.

Remark A.3. We do not preclude a from being zero. The case a = 0 leads to X
being deterministically equal to b. We thus include the deterministic random
variables in the family of Gaussian random variables. M

Remark A.4. From Definition A.2 it follows that the family of Gaussian random
variables is closed with respect to affine transformations: If X is Gaussian and
�; � 2 R are deterministic, then �X + � is also Gaussian. M

Proof: Since X is Gaussian, it can be written as

X = aW + b; (A.15)

where W is a standard Gaussian. Consequently,

�X + � = �(aW + b) + � (A.16)

= (�a)W + (�b+ �); (A.17)

which demonstrates that �X + � is Gaussian, because �a is a deterministic
real number, �b+� is a deterministic number, and W is a standard Gaussian.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

480 Gaussian Random Variables

If (A.14) holds then the random variables on the right-hand and the left-
hand sides of (A.14) must be of equal mean. But the mean of a standard
Gaussian is zero so that the mean of the right-hand side of (A.14) is b. The
left-hand side is of mean E[X], and we thus conclude that in the representation
(A.14) the deterministic constant b is uniquely determined by the mean of X,
and in fact,

b = E[X]: (A.18)

Similarly, since the variance of a standard Gaussian is one, the variance of the
right-hand side of (A.14) is a2. So because the variance of the left-hand side
is Var[X], we conclude that

a2 = Var[X]: (A.19)

Up to its sign, the deterministic constant a in the representation (A.14) is
thus also unique.

Based on the above, one might mistakenly think that for any given mean �
and variance �2 there are two different Gaussian distributions corresponding
to

�W + � and ��W + � (A.20)

where W is a standard Gaussian. This, however, is not the case, as we show
in the following lemma.

Lemma A.5. There is only one Gaussian distribution of a given mean � and
variance �2.

Proof: This can be seen in two different ways. The first way is to note that
both representations in (A.20) actually lead to the same distribution, because
the standard Gaussian W has a symmetric distribution, so that �W and ��W
have the same law. The other approach is based on computing the density of
�W + � and showing that it is a symmetric function of �, see (A.22).

Having established that there is only one Gaussian distribution of a given
mean � and variance �2, we denote it by

N (�; �2) (A.21)

and set out to study its PDF. If �2 = 0, then the Gaussian distribution is
deterministic with mean � and has no density1. If �2 > 0, then the density
can be computed from the density of the standard Gaussian distribution: If X
is N (�; �2) distributed, then since �+�W is Gaussian of mean � and variance

1Some would say that the density of a deterministic random variable is given by a Dirac
Delta, but we prefer not to use Dirac Deltas in this discussion as they are not functions.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

A.2. Gaussian Random Variables 481

�2 where W is a standard Gaussian, it follows from the fact that there is only
one Gaussian distribution of given mean and variance, that the distribution of
X is the same as the distribution of �+�W . The density of the latter can be
computed from (A.1) to yield that the density fX of a N (�; �2)-distributed
Gaussian random variable X is

fX(x) =
1p
2��2

e�
(x��)2

2�2 ; x 2 R; (A.22)

which is depicted in Figure A.2.

1�1 2�2 3�3 4�4 5�5 6 7 8 9
0

0:05

0:1

0:15

0:2

0

w

�� �

�+ �

Figure A.2: The Gaussian probability density function with mean � = 2 and
variance �2 = 4.

Here we have used the fact that if X = g(W) where g(�) is a deterministic
one-to-one function (in our case g(w) = �+ � �w) and where W is of density
fW (�) (in our case (A.1)), then the density fX(�) of X is given by

fX(x) =

8><
>:
0 if for no � with fW (�) > 0 is x = g(�);

1��dg(w)
dw

jw=�
��fW ��� if � satisfies x = g(�) and fW (�) > 0:

(A.23)

From the fact that Gaussian random variables are closed under determin-
istic affine transformations, it follows that if X � N (�; �2) with �2 > 0 then
(X ��)=� is also a Gaussian random variable. Since it is of zero mean and of
unit variance, it follows that it must be a standard Gaussian, because there
is only one Gaussian distribution of zero mean and unit variance. We thus
conclude:

X � N (�; �2) =) X � �
�

� N (0; 1); �2 > 0: (A.24)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

482 Gaussian Random Variables

Recall that the cumulative distribution function (CDF) FX(�) of a random
variable X is defined as

FX(x) , Pr[X � x] (A.25)

=

Z x

�1
fX(�) d�; x 2 R; (A.26)

where the second equality holds if X has a density function fX(�). If W is a
standard Gaussian then its CDF is thus given by

FW (w) =

Z w

�1
1p
2�

e�
�2

2 d�; w 2 R: (A.27)

There is, alas, no closed-form expression for this integral. To handle such
expressions we next introduce the Q-function.

A.3 Q-Function

Definition A.6. The Q-function is defined by

Q(�) , 1p
2�

Z 1

�
e�

�2

2 d�: (A.28)

We thus see that Q(�) is the probability that a standard Gaussian random
variable will exceed the value �. For a graphical interpretation of this integral
see Figure A.3.

Note the relationship of the Q-function to the error function :

Q(�) = 1

2

�
1� erf

�
�p
2

��
: (A.29)

The Q-function is a well-tabulated function, and we are therefore usually
happy when we can express answers to various questions using this function.
The CDF of a standard Gaussian W can be expressed using the Q-function
as follows:

FW (w) = Pr[W � w] (A.30)

= 1� Pr[W � w] (A.31)

= 1�Q(w): (A.32)

Similarly, with the aid of the Q-function we can express the probability that a
standard Gaussian random variable W will take a value in some given interval
[a; b]:

Pr[a �W � b] = Pr[W � a]� Pr[W � b] (A.33)

= Q(a)�Q(b); a � b: (A.34)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

A.3. Q-Function 483

�0

Q(�)

�� 0

Q(��)

Figure A.3: Graphical interpretation of the Q-function.

More generally, if X � N (�; �2) with � > 0 then

Pr[a � X � b] = Pr[X � a]� Pr[X � b] (A.35)

= Pr

�
X � �
�

� a� �
�

�
� Pr

�
X � �
�

� b� �
�

�
(A.36)

= Q
�
a� �
�

�
�Q

�
b� �
�

�
; a � b: (A.37)

Here the last equality follows because (X��)=� is a standard Gaussian random
variable, see (A.24).

The Q-function is usually only tabulated for nonnegative arguments. The
reason has to do with the symmetry of the standard Gaussian density (A.1).
If W � N (0; 1) then, by the symmetry of its density,

Pr[W � ��] = Pr[W � �] (A.38)

= 1� Pr[W > �] (A.39)

= 1� Pr[W � �]; (A.40)

see Figure A.3. Consequently,

Q(�) +Q(��) = 1; � 2 R; (A.41)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

484 Gaussian Random Variables

and it suffices to tabulate the Q-function for nonnegative arguments. Note
also that from the above it follows that Q(0) = 1=2.

There is an alternative expression for the Q-function, that can be quite
useful. It is an integral expression with fixed integration limits:

Q(�) = 1

�

Z �=2

0
e�

�2

2 sin2 � d�; � � 0: (A.42)

This expression can be derived as follows. One computes a two dimensional
integral in two different ways. Let X � N (0; 1) and Y � N (0; 1) be inde-
pendent random variables. Consider the probability of the event X � 0 and
Y � � where � > 0. Since the two random variables are independent, it
follows

Pr[X � 0 and Y � �] = Pr[X � 0] � Pr[Y � �] (A.43)

=
1

2
Q(�): (A.44)

We shall now proceed to compute the left-hand side of the above in polar
coordinates centered at the origin (see Figure A.4). This yields

1

2
Q(�) =

Z 1

0

Z 1

�

1

2�
e�

x2+y2

2 dy dx (A.45)

=

Z �=2

0

Z 1
�

sin �

1

2�
e�

r2

2 r dr d� (A.46)

=
1

2�

Z �=2

0

Z 1
�2

2 sin2 �

e�t dtd� (A.47)

=
1

2�

Z �=2

0
e�

�2

2 sin2 � d�; (A.48)

where we have performed the change of variable t = r2=2.
We collect some of the properties of the Q-function in the following propo-

sition.

Proposition A.7. Let W � N (0; 1) and let X � N (�; �2) for � > 0.

1. The CDF of W is given in terms of the Q-function as

FW (w) = 1�Q(w): (A.49)

2. The probability of a half-ray can be expressed as

Pr[X > �] = Q
�
�� �
�

�
: (A.50)

3. The symmetry of the standard Gaussian distribution implies that it
suffices to tabulate the Q-function for nonnegative arguments:

Q(��) +Q(�) = 1: (A.51)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

A.3. Q-Function 485

x

y

�

�

r

r sin � = �

area of integration

Figure A.4: Computing 1
2 Q(�) by the use of polar coordinates.

4. In particular, the probability that W is positive is given by

Q(0) = 1

2
: (A.52)

We next describe various approximations for the Q-function. We are par-
ticularly interested in its value for large arguments2. Since Q(�) is the prob-
ability that a standard Gaussian random variable W exceeds �, it follows
that

lim
�!1Q(�) = 0: (A.53)

Thus, large arguments to the Q-function correspond to small values of the
Q-function. The following bound will justify the approximation

Q(�) � e��2

2 ; �� 1: (A.54)

Proposition A.8. The Q-function can be bounded as follows:

1p
2��

e�
�2

2

�
1� 1

�2

�
< Q(�) < 1p

2��
e�

�2

2 ; � > 0; (A.55)

1p
2��

e�
�2

2

�2

1 + �2

!
< Q(�); � 2 R; (A.56)

and

Q(�) � 1

2
e�

�2

2 ; � � 0: (A.57)
2This corresponds in many digital communication applications to low probabilities of

bit errors.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

486 Gaussian Random Variables

Moreover, the following bounds are less tight for j�j � 1, but tighter around
� = 0 (and also valid for negative �):

max

�
1� 1

2
e
p

2
�
�; 0

�
� Q(�) � min

�
1

2
e�
p

2
�
�; 1

�
; � 2 R: (A.58)

The bounds of Proposition A.8 are depicted in Figure A.5.

�3 �2 �1 0 1 2 3 4
�0:2

0

0:2

0:4

0:6

0:8

1

1:2

�

Q(�)

upper bound in (A.55)
lower bound in (A.55)
upper bound (A.57)
lower bound (A.56)
upper bound in (A.58)
lower bound in (A.58)

Figure A.5: Various upper and lower bounds on the Q-function according to
Proposition A.8.

Proof: Using the substitution t = x2=2, the upper bound in (A.55) can be
derived as follows:

Q(�) =
Z 1

�

1p
2�

e�
x2

2 dx (A.59)

<

Z 1

�

x

�

1p
2�

e�
x2

2 dx (� > 0) (A.60)

=

Z 1

�2=2

1p
2��

e�t dt (A.61)

=
1p
2��

e�
�2

2 : (A.62)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

A.4. Characteristic Function of a Gaussian 487

For the lower bound (A.56), firstly define

'(x) , 1p
2�

e�
x2

2 (A.63)

and note that

d

dx
'(x) = �x 1p

2�
e�

x2

2 = �x'(x) (A.64)

and therefore

d

dx

�
'(x)

x

�
=
x d
dx'(x)� '(x)

x2
(A.65)

=
�x2'(x)� '(x)

x2
(A.66)

= �x
2 + 1

x2
'(x): (A.67)

So, for � > 0, we get�
1 +

1

�2

�
Q(�) =

Z 1

�

�
1 +

1

�2

�
1p
2�

e�
x2

2 dx (A.68)

>

Z 1

�

�
1 +

1

x2

�
1p
2�

e�
x2

2 dx (A.69)

=

Z 1

�

x2 + 1

x2
'(x) dx (A.70)

= � '(x)
x

����1
�

(A.71)

=
'(�)

�
=

1p
2��

e�
�2

2 : (A.72)

For � � 0, we note that the left-hand side of (A.56) is nonpositive and there-
fore trivially a (alas quite loose) lower bound.

The lower bound in (A.55) is strictly smaller than the lower bound (A.56)
and therefore implicitly satisfied.

The upper bound (A.57) follows by replacing the integrand in (A.42) with
its maximal value, namely, its value at � = �=2.

The proof of (A.58) is omitted.

A.4 Characteristic Function of a Gaussian

Definition A.9. The characteristic function �X(!) of a random variable X is
defined for every ! 2 R by

�X(!) , E
h
ei!X

i
=

Z 1

�1
fX(x) e

i!x dx; (A.73)

where the second equality holds if X has a density.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

488 Gaussian Random Variables

The characteristic function is intimately related to the Fourier transform of
the density function. Some things to recall about that characteristic function
are given in the following proposition.

Proposition A.10. Let X be a random variable of characteristic function �X(!).

1. If E[Xn] < 1 for some n � 1, then the rth order derivative �
(r)
X (!)

exists for every r � n and

E[Xr] =
�
(r)
X (0)

ir
: (A.74)

2. IfX and Y are two random variables of identical characteristic functions,
then they have the same distribution.

3. If X and Y are two independent random variables of characteristic func-
tions �X(!) and �Y (!) respectively, then the characteristic function
�X+Y (!) of the sum X + Y is given by the product of the individual
characteristic functions:

�X+Y (!) = �X(!) � �Y (!); X ?? Y: (A.75)

If X � N (�; �2), then it can be verified by direct computation that

�X(!) = ei!��
1
2
!2�2 : (A.76)

Consequently, by repeatedly taking the derivatives of the above, we obtain
from (A.74) the moments of a standard Gaussian distribution:

E[W �] =

8<
:1 � 3 � � � (� � 1) if � is even;

0 if � is odd;
W � N (0; 1): (A.77)

We mention here also that

E[jW j�] =
8<
:1 � 3 � � � (� � 1) if � is even;q

2
� � 2(��1)=2 �

�
��1
2

�
! if � is odd;

W � N (0; 1): (A.78)

Closely related to the characteristic function is the moment generating
function MX(�) of a random variable X, which is defined as

MX(�) , E
h
e�X

i
=

Z 1

�1
fX(x) e

�x dx (A.79)

for those values of � for which the expectation is finite. Here the second equal-
ity holds if X has a density. The moment generating function is intimately
related to the double-sided Laplace transform of the density function.

Using the characteristic function we can readily show the following.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

A.5. Summary 489

Proposition A.11. If X � N ��x; �2x� and Y � N ��y; �2y� are two independent
Gaussian random variables, then also their sum X + Y is Gaussian:

X + Y � N
�
�x + �y; �

2
x + �2y

�
: (A.80)

Proof: Since X � N ��x; �2x� and Y � N ��y; �2y� it follows from (A.76)
that

�X(!) = ei!�x�
1
2
!2�2x ; (A.81)

�Y (!) = ei!�y�
1
2
!2�2y : (A.82)

Since the characteristic function of the sum of two independent random vari-
ables is equal to the product of the individual characteristic functions, we
have

�X+Y (!) = �X(!) � �Y (!) (A.83)

= ei!�x�
1
2
!2�2x � ei!�y� 1

2
!2�2y (A.84)

= ei!(�x+�y)�
1
2
!2(�2x+�

2
y): (A.85)

But this is also the characteristic function of a N ��x + �y; �
2
x + �2y

�
random

variable. Since two random variables can have the same characteristic func-
tion only if they have the same distribution, we conclude that X + Y �
N ��x + �y; �

2
x + �2y

�
.

Using the fact that a deterministic affine transformation of a Gaussian ran-
dom variable results in a Gaussian random variable and the above proposition,
we obtain the following.

Proposition A.12. If X1; : : : ; Xn are independent Gaussian random variables,
and �1; : : : ; �n are deterministic real numbers, then the random variable

Y ,
nX
`=1

�`X` (A.86)

is a Gaussian random variable with mean

E[Y] =
nX
`=1

�` E[X`] (A.87)

and variance

Var[Y] =
nX
`=1

�2
` Var[X`]: (A.88)

A.5 Summary

Top things to remember about Gaussian random variables are as follows:

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

490 Gaussian Random Variables

• There is only one Gaussian distribution of a given mean � and variance
�2. It is denoted N (�; �2) and it is either deterministic (if �2 = 0) or of
density

fX(x) =
1p
2��2

e�
(x��)2

2�2 ; x 2 R: (A.89)

• If X has a Gaussian distribution, then any deterministic affine transfor-
mation of X is also Gaussian. That is, if X is Gaussian and �; � 2 R
are deterministic, then

�X + � (A.90)

is also Gaussian.

• If X � N (�; �2) and �2 > 0, then (X � �)=� has a standard Gaussian
distribution, i.e.,

X � �
�

� N (0; 1); �2 > 0: (A.91)

• The Q-function is defined as

Q(�) = 1p
2�

Z 1

�
e�

�2

2 d�: (A.92)

It can be used to compute the probability that a Gaussian random vari-
able lies within an interval.

• The sum of any finite number of independent Gaussian random variables
is also a Gaussian random variable. The sum’s mean is the sum of the
means, and the sum’s variance is the sum of the variances.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Appendix B

Gaussian Vectors

Before we can introduce the multivariate Gaussian distribution1 or Gaus-
sian vectors, we need to make a short detour and discuss some special types
of matrices, so-called positive semidefinite matrices, and random vectors in
general.

B.1 Positive Semidefinite Matrices

We will see that positive semidefinite matrices are a special kind of symmetric
matrices. Therefore, before we state their definition, we quickly review some
properties of symmetric matrices.

Recall that a real matrix A is said to be symmetric if

A = AT: (B.1)

Obviously, a symmetric matrix must be square. Next, we remind the reader
that square matrices can be characterized using the concept of eigenvectors
and eigenvalues. An eigenvector is a vector x with a special direction par-
ticular to the given square matrix such that when it is multiplied with the
matrix, it again results in a vector of the same direction (but possibly of
different length):

Ax = �x: (B.2)

The scaling factor � is called eigenvalue.
We also remind the reader that even a real matrix can have complex

eigenvalues.2 For symmetric matrices, however, things are much nicer.

1Multivariate distribution is just a fancy word for joint distribution of several random
variables. It contrasts univariate distribution, which means the distribution of a single
random variable.

2At least it is not difficult to show that the eigenvalues of real matrices always come in
complex conjugate pairs.

491 © Stefan M. Moser — IT, version 6.14

492 Gaussian Vectors

Lemma B.1. All eigenvalues of a (real) symmetric matrix are real (and therefore
the corresponding eigenvectors can be chosen to be real, too). Moreover, the
eigenvectors of a symmetric matrix that belong to different eigenvalues are
always perpendicular.

Proof: Suppose that for a symmetric A, (B.2) holds where for the moment
we need to allow � and x to be complex. Now multiply (B.2) by xy from the
left:3

xyAx = xy�x = �xyx = �kxk2: (B.3)

Here kxk2 > 0 because an eigenvector cannot be the zero vector by definition.
On the other hand, taking the Hermitian conjugate of (B.2) and multiplying
both sides by x from the right yields:

xyAyx = xyATx = xyAx !
= xy�yx = xy�*x = �*xyx = �*kxk2; (B.4)

where we have used that A is real and symmetric. Comparing (B.3) and (B.4)
now shows that

� = �*; (B.5)

i.e., � 2 R. This proves the first claim.
To prove the second claim, suppose that x1 and x2 are two eigenvectors

of A belonging to two eigenvalues �1 and �2, respectively, where we assume
that �1 6= �2. Since A and �i are real, we can assume that xi are also real.
We now have the following:

�1x
T
1x2 = (�1x1)

Tx2 (B.6)

= (Ax1)
Tx2 (B.7)

= xT
1A

Tx2 (B.8)

= xT
1Ax2 (B.9)

= xT
1 (Ax2) (B.10)

= xT
1�2x2 (B.11)

= �2x
T
1x2; (B.12)

where we again have used the symmetry A = AT. Since �1 6= �2 by assump-
tion, we must have that

xT
1x2 = 0; (B.13)

proving that the eigenvectors are orthogonal.
3Note that by the Hermitian conjugation xy we denote the transpose and complex con-

jugate version of the vector x, i.e., xy = (x*)T.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

B.1. Positive Semidefinite Matrices 493

Note that Lemma B.1 can be generalized further to prove that a real
symmetric n�nmatrix always has n eigenvectors that can be chosen to be real
and orthogonal (even if several eigenvectors belong to the same eigenvalue).
For more details see, e.g., [Str09].

We are now ready for the definition of positive (semi-)definite matrices.

Definition B.2. We say that an n � n real matrix K is positive semidefinite
and write

K � 0 (B.14)

if it is symmetric and if

���TK��� � 0; 8��� 2 Rn: (B.15)

We say that a matrix K is positive definite and write

K � 0 (B.16)

if it is symmetric and if

���TK��� > 0; 8��� 6= 0: (B.17)

Positive semidefinite matrices have nice properties as is shown in the fol-
lowing proposition.

Proposition B.3 (Properties of Positive Semidefinite Matrices). A symmetric n� n
real matrix K is positive semidefinite if, and only if, one (and hence all) of the
following equivalent conditions holds:

1. All the eigenvalues of K are nonnegative.

2. The matrix K can be written in the form K = UΛUT where the matrix
Λ is diagonal with nonnegative entries on the diagonal and where the
matrix U is orthogonal, i.e., it satisfies UUT = In.

3. The matrix K can be written in the form K = STS for some n�n matrix
S.

4. One possible choice of S is

S = Λ1=2UT: (B.18)

The analogous proposition of positive definite matrices is as follows.

Proposition B.4 (Properties of Positive Definite Matrices). A symmetric n� n real
matrix K is positive definite if, and only if, one (and hence all) of the following
equivalent conditions holds:

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

494 Gaussian Vectors

1. All the eigenvalues of K are positive.

2. The matrix K can be written in the form K = UΛUT where the matrix
Λ is diagonal with positive diagonal entries and where the matrix U is
orthogonal, i.e., it satisfies UUT = In.

3. The matrix K can be written in the form K = STS for some nonsingular
n� n matrix S.

4. One possible choice of S is

S = Λ1=2UT: (B.19)

Proof: The second statement follows directly from the fact that positive
(semi-)definite matrices are symmetric and hence have n real and orthogonal
eigenvectors 1; : : : ; n: we define

U ,

0
BBBBBBBB@

" � � � "
� � �

 1 � � � n

� � �
� � �

1
CCCCCCCCA

(B.20)

and note that it is orthogonal:

UUT = UTU = In: (B.21)

Further, we define the diagonal matrix Λ

Λ ,

0
BBBBBBB@

�1 0 � � � 0

0 �2
: : :

:::
:::

: : :
: : : 0

0 � � � 0 �n

1
CCCCCCCA

(B.22)

where �i denote the n eigenvalues (possibly some of them are identical). Then
we have

KU = K

0
BBBBBBBB@

" � � � "
� � �

 1 � � � n

� � �
� � �

1
CCCCCCCCA

(B.23)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

B.1. Positive Semidefinite Matrices 495

=

0
BBBBBBBB@

" � � � "
� � �

K 1 � � � K n

� � �
� � �

1
CCCCCCCCA

(B.24)

=

0
BBBBBBBB@

" � � � "
� � �

�1 1 � � � �n n

� � �
� � �

1
CCCCCCCCA

(B.25)

=

0
BBBBBBBB@

" � � � "
� � �

 1 � � � n

� � �
� � �

1
CCCCCCCCA
�

0
BBBBBBB@

�1 0 � � � 0

0 �2
: : :

:::
:::

: : :
: : : 0

0 � � � 0 �n

1
CCCCCCCA

(B.26)

= UΛ; (B.27)

and hence, using (B.21),

KUUT = K = UΛUT: (B.28)

To prove the first statement note that by definition (B.15), for the choice
��� = � ,

0 � T
�K � = T

� (K �) = T
� (�� �) = ��

T
� �| {z }
=1

= �� : (B.29)

For positive definite matrices the inequality is strict.
To prove the remaining two statements, note that because of the nonneg-

ativity of the eigenvalues, we can define

Λ1=2 ,

0
BBBBBBB@

p
�1 0 � � � 0

0
p
�2

: : :
:::

:::
: : :

: : : 0

0 � � � 0
p
�n

1
CCCCCCCA

(B.30)

and

S , Λ1=2UT: (B.31)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

496 Gaussian Vectors

Note that for positive definite matrices, all eigenvalues are strictly positive
and therefore S is nonsingular. Then

STS =
�
Λ1=2UT�TΛ1=2UT (B.32)

= UΛ1=2Λ1=2UT (B.33)

= UΛUT (B.34)

= K: (B.35)

Here the last equality follows from (B.28).
As a consequence of Propositions B.3 and B.4 (and of Definition B.2) we

have the following two corollaries.

Corollary B.5. If K is a real n� n positive semidefinite matrix and if ��� 2 Rn is
arbitrary, then ���TK��� = 0 if, and only if, K��� = 0.

Proof: One direction is trivial and does not require that K be positive
semidefinite: If K��� = 0 then ���TK��� must also be equal to zero. Indeed, in this
case we have by the associativity of matrix multiplication ���TK��� = ���T(K���) =

���T0 = 0.
As to the other direction we note that since K � 0 it follows that there

exists some n� n matrix S such that K = STS. Hence,

���TK��� = ���TSTS��� (B.36)

= (S���)T(S���) (B.37)

= kS���k2: (B.38)

Consequently, ���TK��� = 0 implies that S��� = 0, which implies that STS��� = 0,
i.e., that K��� = 0.

Corollary B.6. If K is a real n � n positive definite matrix then ���TK��� = 0 if,
and only if, ��� = 0.

Proof: This follows immediately from Definition B.2.

B.2 Random Vectors and Covariance Matrices

A random vector is a quite straightforward generalization of a random variable.

Definition B.7. An n-dimensional random vector (or also called a random
n-vector) X is a (measurable) mapping from the set of experiment outcomes

 to the n-dimensional Euclidean space Rn:

X :
! Rn; ! 7! x: (B.39)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

B.2. Random Vectors and Covariance Matrices 497

Thus, a random vector X is very much like a random variable, except that
rather than taking value in the real line R, it takes value in Rn.

The density of a random vector is the joint density of its components. The
density of a random n-vector is thus a real valued function from Rn to the
nonnegative reals that integrates (over Rn) to one.

Definition B.8. The expectation E[X] of a random n-vector

X = (X1; : : : ; Xn)
T (B.40)

is a vector whose components are the expectations of the corresponding ele-
ments of X:

E[X] ,

0
BBB@

E[X1]
:::

E[Xn]

1
CCCA: (B.41)

Hence, we see that the expectation of a random vector is only defined if
the expectations of all of the components of the vector are defined. The jth
element of E[X] is thus the expectation of the jth component of X, namely,
E[Xj]. Similarly, the expectation of a random matrix is the matrix of expec-
tations.

If all the components of a random n-vector X are of finite variance, then
we can define its n� n covariance matrix KXX as follows.

Definition B.9. The n� n covariance matrix KXX of X is defined as

KXX , E
h
(X� E[X])(X� E[X])T

i
: (B.42)

That is,

KXX = E

2
6664
0
BBB@
X1 � E[X1]

:::

Xn � E[Xn]

1
CCCA
�
X1 � E[X1] � � � Xn � E[Xn]

�
3
7775 (B.43)

=

0
BBBBBB@

Var[X1] Cov[X1; X2] � � � Cov[X1; Xn]

Cov[X2; X1] Var[X2] � � � Cov[X2; Xn]
:::

:::
: : :

:::

Cov[Xn; X1] Cov[Xn; X2] � � � Var[Xn]

1
CCCCCCA: (B.44)

If n = 1 so that the n-dimensional random vector X is actually a scalar,
then the covariance matrix KXX is a 1�1 matrix whose sole component is the
variance of the sole component of X.

Note that given the n�n covariance matrix KXX of a random n-vector X,
it is easy to compute the covariance matrix of a subset of its components. For

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

498 Gaussian Vectors

example, if we are only interested in the 2� 2 covariance matrix of (X1; X2)
T,

all we have to do is pick the first two columns and two rows of KXX. More
generally, the r�r covariance matrix of (Xj1 ; Xj2 ; : : : ; Xjr)

T for 1 � j1 < j2 <

� � � < jr � n is obtained from KXX by picking rows and columns j1; : : : ; jr.
For example,4 if

KXX =

0
BBBBB@
30 31 9 7

31 39 11 13

9 11 9 12

7 13 12 26

1
CCCCCA; (B.45)

then the covariance matrix of (X2; X4)
T is0

@39 13

13 26

1
A: (B.46)

Remark B.10. At this point we would like to remind the reader that matrix
multiplication is a linear transformation and therefore commutes with the
expectation operation. Thus if H is a random n � m matrix and A is a
deterministic `� n matrix, then

E[AH] = AE[H]; (B.47)

and similarly if B is a deterministic m� � matrix then

E[HB] = E[H] B: (B.48)

Also the transpose operation commutes with expectation: If H is a random
matrix then

E
�
HT� = (E[H])T: (B.49)

M

We next prove the following important lemma.

4The alert reader might notice that this matrix is positive semidefinite: It can be written
as STS where

S =

0
BBB@
1 2 2 5

2 3 2 1

3 1 1 0

4 5 0 0

1
CCCA:

This is no accident as we will see soon.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

B.2. Random Vectors and Covariance Matrices 499

Lemma B.11. Let X be a random n-vector with covariance matrix KXX

and let A be some (deterministic) m � n matrix. Define the random
m-vector Y as

Y , AX: (B.50)

Then the m�m covariance matrix KYY is given by

KYY = AKXX AT: (B.51)

Proof: This follows from

KYY , E
�
(Y � E[Y])(Y � E[Y])T

�
(B.52)

= E
�
(AX� E[AX])(AX� E[AX])T

�
(B.53)

= E
�
A(X� E[X])(A(X� E[X]))T

�
(B.54)

= E
�
A(X� E[X])(X� E[X])TAT� (B.55)

= AE
�
(X� E[X])(X� E[X])TAT� (B.56)

= AE
�
(X� E[X])(X� E[X])T

�
AT (B.57)

= AKXX AT: (B.58)

One of the most important properties of covariance matrices is that they
are all positive semidefinite.

Theorem B.12. Covariance matrices satisfy the following three properties.

1. All covariance matrices are positive semidefinite.

2. Any positive semidefinite matrix is the covariance matrix of some ran-
dom vector.5

3. Covariance matrices are symmetric.

Proof: Part 3 follows both from the definition of covariance matrices and
from Part 1, once Part 1 is proven.

To prove Part 1, let X be a random n-vector with covariance matrix KXX

and define Y , ���TX for an arbitrary deterministic vector ���. Then

0 � Var[Y] = E
h
(Y � E[Y])2

i
= KYY = ���T KXX ���; (B.59)

where the last equality follows from (B.51). Since this holds for arbitrary ���,
it follows by definition that KXX � 0.

5Actually, it is always possible to choose this random vector to be jointly Gaussian. See
Definition B.19 of Gaussian random vectors below.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

500 Gaussian Vectors

To prove Part 2, let K � 0. Then we know that there exists a matrix
S such that K = STS. Now let W be a random n-vector with independent
components of variance 1, i.e., KWW = In, and define X , STW. By (B.51)
we then have

KXX = STInS = STS = K: (B.60)

Proposition B.13. Let Z be a random n-vector of zero mean and of covariance
matrix KZZ. Then one of the components of Z is a linear combination of the
other components with probability 1 if, and only if, KZZ is singular.

Proof: One of the components of Z is a linear combination of the other
components with probability 1 if, and only if, there exists some nonzero vector
��� 2 Rn such that ���TZ is zero with probability 1. This, on the other hand,
is equivalent to ���TZ having a zero variance. By Lemma B.11 this variance is
���T KZZ ���, which by Corollary B.5 is zero if, and only if, KZZ ��� = 0, i.e., KZZ

is singular.
The above proposition can be extended to take account of the rank of KZZ.

Proposition B.14. Let Z be a zero-mean random vector of covariance matrix KZZ.
The columns `1; : : : ; `r of the n � n covariance matrix KZZ are linearly inde-
pendent and span all the columns of KZZ if, and only if, the random r-vector
(Z`1 ; : : : ; Z`r)

T has a nonsingular covariance matrix and with probability 1
each component of Z can be written as a linear combination of Z`1 ; : : : ; Z`r .

Example B.15. For example, suppose that

KZZ =

0
BB@
1 1 1

2 2 1

3 3 1

1
CCA
0
BB@
1 2 3

1 2 3

1 1 1

1
CCA =

0
BB@
3 5 7

5 9 13

7 13 19

1
CCA: (B.61)

We note that the three columns of KZZ satisfy the linear relationship:

(�1)

0
BB@
3

5

7

1
CCA+ 2

0
BB@

5

9

13

1
CCA� 1

0
BB@

7

13

19

1
CCA = 0: (B.62)

This linear relationship implies the linear relationship

�Z1 + 2Z2 � Z3 = 0 (B.63)

with probability 1. �

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

B.3. Characteristic Function 501

B.3 Characteristic Function

Definition B.16. Let X be a random n-vector taking value in Rn. Then its
characteristic function �X(�) is a mapping from Rn to C. It maps a vector
!!! = (!1; : : : ; !n)

T to �X(!!!) where

�X(!!!) , E
h
ei!!!

TX
i

(B.64)

= E
h
ei
Pn

`=1
!`X`

i
; !!! 2 Rn: (B.65)

If X has the density fX(�), then

�X(!!!) =

Z 1

�1
� � �
Z 1

�1
fX(x) e

i
Pn

`=1
!`x` dx1 � � �dxn: (B.66)

Note that (B.66) is a variation of the multi-dimensional Fourier transform
of fX(�). It is thus not surprising that two random n-vectors X, Y are of the
same distribution if, and only if, they have identical characteristic functions:

X
L
= Y () �X(!!!) = �Y(!!!); 8!!! 2 Rn: (B.67)

From this one can show the following lemma.

Lemma B.17. Two random variables X and Y are independent if, and only if,

E
h
ei(!1X+!2Y)

i
= E

h
ei!1X

i
� E
h
ei!2Y

i
; !1; !2 2 R: (B.68)

Proof: One direction is straightforward: If X and Y are independent,
then so are ei(!1X) and ei(!2Y), so that the expectation of their product is the
product of their expectations:

E
h
ei(!1X+!2Y)

i
= E

h
ei!1X ei!2Y

i
(B.69)

= E
h
ei!1X

i
E
h
ei!2Y

i
; !1; !2 2 R: (B.70)

As to the other direction, suppose that X 0 has the same law as X, that Y 0

has the same law as Y , and that X 0 and Y 0 are independent. Since X 0 has the
same law as X, it follows that

E
h
ei!1X

0
i
= E

h
ei!1X

i
; !1 2 R; (B.71)

and similarly for Y 0

E
h
ei!1Y

0
i
= E

h
ei!1Y

i
; !2 2 R: (B.72)

Consequently, since X 0 and Y 0 are independent,

E
h
ei(!1X

0+!2Y 0)
i
= E

h
ei!1X

0
i
� E
h
ei!2Y

0
i

(B.73)

= E
h
ei!1X

i
� E
h
ei!2Y

i
; !1; !2 2 R: (B.74)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

502 Gaussian Vectors

where the second equality follows from (B.71) and (B.72).
We thus see that if (B.68) holds, then the characteristic function of the vec-

tor (X;Y)T is identical to the characteristic function of the vector (X 0; Y 0)T.
Consequently the joint distribution of (X;Y) must be the same as the joint
distribution of (X 0; Y 0). But according to the latter distribution the two com-
ponents (X 0 and Y 0) are independent, hence the same must be true for the
joint distribution of the two components of the former. Thus, X and Y must
be independent.

B.4 Standard Gaussian Vector

We are now ready to introduce Gaussian random vectors. Similar to the
Gaussian random variable situation, we start with the standard Gaussian
vector.

Definition B.18. We shall say that a random n-vector W is an n-dimensional
standard Gaussian vector if its n components are independent scalar stan-
dard Gaussians. In that case its density fW(�) is given by

fW(w) =
nY
`=1

�
1p
2�

e�
1
2
w2
`

�
(B.75)

=
1

(2�)n=2
e�

1
2

Pn

`=1
w2
` (B.76)

= (2�)�
n
2 e�

1
2
kwk2 ; w 2 Rn: (B.77)

Here we use w to denote the argument of the density function fW(�) of W,
and we denote by w1; : : : ; wn the n components of w.

Note that the definition of standard Gaussian random variables is an ex-
tension of the standard scalar Gaussian distribution. The sole component of
a standard one-dimensional Gaussian vector is a scalar of a N (0; 1) distribu-
tion. Conversely, every scalar that has a N (0; 1) distribution can be viewed
as a one-dimensional random vector of the standard Gaussian distribution.

A standard Gaussian random n-vector W has the following mean and
covariance matrix:

E[W] = 0 and KWW = In: (B.78)

This follows because the components of W are all of zero mean; they are
independent (and hence uncorrelated); and of unit variance.

The characteristic function of a standard Gaussian n-vector W can be
easily computed from the characteristic function of a N (0; 1) scalar random
variable, because the components of a standard Gaussian vector are IID �

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

B.5. Gaussian Vectors 503

N (0; 1):

�W(!!!) = E
h
ei
Pn

`=1
!`W`

i
(B.79)

= E

"
nY
`=1

ei!`W`

#
(B.80)

=
nY
`=1

E
h
ei!`W`

i
(B.81)

=
nY
`=1

e�
1
2
!2` (B.82)

= e�
1
2
k!!!k2 ; !!! 2 Rn: (B.83)

Here in (B.82) we have used the characteristic function of a standard Gaussian
RV.

B.5 Gaussian Vectors

Definition B.19. A random n-vector X is said to be a Gaussian vector if for
some positive integerm there exists a deterministic n�mmatrix A; a standard
Gaussian random m-vector W; and a deterministic n-vector b such that

X = AW + b: (B.84)

A Gaussian vector is said to be a centered Gaussian vector if b = 0, i.e.,
if we can write

X = AW: (B.85)

Note that any scalar N (�; �2) random variable, when viewed as a one-
dimensional random vector, is a Gaussian vector. Indeed, it can be written
as �W + �. Somewhat less obvious is the fact that the (sole) component
of any one-dimensional Gaussian vector has a scalar Gaussian distribution.
To see that note that if X is a one-dimensional Gaussian vector then X =

aTW+ b, where a is an m-vector, W is a standard Gaussian m-vector, and b
is a deterministic scalar. Thus,

X =
mX
`=1

a`W` + b; (B.86)

and the result follows because we have seen that the sum of independent
Gaussian scalars is a Gaussian scalar (Proposition A.12).

The following are immediate consequences of the definition:

• Any standard Gaussian n-vector is a Gaussian vector.

Choose in the above definition m = n; A = In; and b = 0.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

504 Gaussian Vectors

• Any deterministic vector is Gaussian.

Choose the matrix A as the all-zero matrix.

• If the components of X are independent scalar Gaussians (not necessarily
of equal variance), then X is a Gaussian vector.

Choose A to be an appropriate diagonal matrix.

• If

X1 = (X1;1; : : : ; X1;n1)
T (B.87)

is a Gaussian n1-vector and

X2 = (X2;1; : : : ; X2;n2)
T (B.88)

is a Gaussian n2-vector, which is independent of X1, then the random
(n1 + n2)-vector

(X1;1; : : : ; X1;n1 ; X2;1; : : : ; X2;n2)
T (B.89)

is Gaussian.

Suppose that the pair (A1;b1) represent X1 where A1 is of size
n1 �m1 and b1 2 R

n1 . Similarly let the pair (A2;b2) represent X2

where A2 is of size n2 �m2 and b2 2 R
n2 . Then the vector (B.89)

can be represented using the (n1 + n2)� (m1 +m2) block-diagonal
matrix A of diagonal components A1 and A2, and using the vector
b 2 Rn1+n2 that results when the vector b1 is stacked on top of the
vector b2.

• Assume that X is a Gaussian n-vector. If C is an arbitrary deterministic
��n matrix and d is a deterministic �-vector, then the random �-vector
CX+ d is a Gaussian �-vector.

Indeed, if X = AW+b where A is a deterministic n�m matrix, W
is a standard Gaussian m-vector, and b is a deterministic m-vector,
then

CX+ d = C(AW + b) + d (B.90)

= (CA)W + (Cb+ d); (B.91)

which demonstrates that CX + d is Gaussian, because (C � A) is a
deterministic � � m matrix, W is a standard Gaussian m-vector;
and Cb+ d is a deterministic �-vector.

• If the Gaussian vector X has the representation (B.84), then

E[X] = b and KXX = AAT: (B.92)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

B.5. Gaussian Vectors 505

The behavior of the mean follows from (B.47) by viewing W as a
random matrix and noting that its expectation is zero. The covari-
ance follows from Lemma B.11 and (B.78).

By (B.92) we conclude that an alternative definition for a Gaussian random
vector is to say that X is a Gaussian random vector if X � E[X] is a zero-
mean or centered Gaussian vector. We shall thus focus our attention now on
centered Gaussian vectors. The results we obtain will be easily extendable to
noncentered Gaussian vectors.

Specializing (B.91) to the zero-mean case we obtain that if X is a centered
Gaussian vector, then CX is also a centered Gaussian vector. This has the
following consequences:

• If X is a centered Gaussian n-vector, then any subset of its components
is also a centered Gaussian vector.

The vector (Xj1 ; : : : ; Xjp)
T where 1 � j1; : : : ; jp � n results from

applying CX where C is a p� n matrix of entries

(C)�;` = 1f` = j�g: (B.93)

For example,

X3

X1

!
=

0 0 1

1 0 0

!0BB@
X1

X2

X3

1
CCA: (B.94)

• Similarly, if X is centered Gaussian, then any permutation of its elements
is centered Gaussian.

The proof is identical. For example,0
BB@
X3

X1

X2

1
CCA =

0
BB@
0 0 1

1 0 0

0 1 0

1
CCA
0
BB@
X1

X2

X3

1
CCA: (B.95)

By (B.92) we see that in the representation (B.84) the vector b is fully
determined by the mean of the random vector. In fact, the two are the same.
The matrix A, however, is not determined by the covariance matrix KXX of
the random vector. Indeed, KXX may be written in many different ways as
the product of a matrix by its transpose. One would therefore be mistakenly
tempted to think that there are many different Gaussian distributions of a
given mean and covariance matrix, but this is not the case. We shall see that
there is only one.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

506 Gaussian Vectors

B.6 Mean and Covariance Determine the Law of a Gaussian

One way to see that the mean and covariance matrix of a Gaussian vector fully
determine its law is via the characteristic function: If X = AW where A is an
n�m deterministic matrix and them-vector W is a standard Gaussian vector,
then the characteristic function �X(�) of X can be calculated as follows:

�X(!!!) = E
h
ei!!!

TX
i

(B.96)

= E
h
ei!!!

TAW
i

(B.97)

= E
h
ei(A

T!!!)TW
i

(B.98)

= e�
1
2
kAT!!!k2 (B.99)

= e�
1
2
(AT!!!)TAT!!! (B.100)

= e�
1
2
!!!TAAT!!! (B.101)

= e�
1
2
!!!T KXX !!!; !!! 2 Rn: (B.102)

The characteristic function of a centered Gaussian vector is thus fully deter-
mined by its covariance matrix. Since the characteristic function of a random
variable fully specifies its law (see (B.67)), we conclude that any two centered
Gaussians of equal covariance matrices must have identical laws, thus proving
the following theorem.

Theorem B.20. There is only one multivariate centered Gaussian distribution
of a given covariance matrix. Accounting for the mean we have that there
is only one multivariate Gaussian distribution of a given mean vector and a
given covariance matrix.

We denote the multivariate Gaussian distribution of mean ��� and covariance
K by N (���;K).

This theorem has extremely important consequences. One of which has to
do with the properties of independence and uncorrelatedness. Recall that any
two independent random variables are also uncorrelated. The reverse is, in
general, not true. It is, however, true for jointly Gaussian random variables.
If X and Y are jointly Gaussian, i.e., (X;Y)T is a Gaussian 2-vector, then X
and Y are independent if, and only if, they are uncorrelated. More generally
we have the following corollary.

Corollary B.21. Let X be a centered Gaussian (n1 + n2)-vector. Let X1 =

(X1; : : : ; Xn1)
T correspond to its first n1 components, and let X2 = (Xn1+1;

: : : ; Xn1+n2)
T correspond to the rest of its components.6 Then the vectors X1

6Note that we are slightly overstretching our notation here: X1 denotes the first com-
ponent of X, while X1 denotes a vector (whose first component by definition also happens
to be X1).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

B.6. Mean and Covariance Determine the Law of a Gaussian 507

and X2 are independent if, and only if, they are uncorrelated, i.e., if, and only
if,

E
�
X1X

T
2

�
= 0: (B.103)

Proof: The easy direction (and the direction that has nothing to do with
Gaussianity) is to show that if X1 and X2 are independent, then (B.103)
holds. Indeed, by the independence and the fact that the vectors are of zero
mean we have

E
�
X1X

T
2

�
= E[X1]E

�
XT

2

�
(B.104)

= E[X1](E[X2])
T (B.105)

= 00T (B.106)

= 0: (B.107)

We now prove the reverse using the Gaussianity. Let X be the (n1+n2)-vector
that results from stacking X1 on top of X2. Then

KXX =

0
@E
�
X1X

T
1

�
E
�
X1X

T
2

�
E
�
X1X

T
2

�
E
�
X2X

T
2

�
1
A (B.108)

=

0
@KX1X1 0

0 KX2X2

1
A; (B.109)

where we have used (B.103).
Let X0

1 and X0
2 be independent vectors such that the law of X0

1 is identical
to the law of X1 and such that the law of X0

2 is identical to the law of X2.
Let X0 be the (n1 + n2)-vector that results from stacking X0

1 on top of X0
2.

Note that X0 is a centered Gaussian vector. This can be seen because, being
the components of a Gaussian vector, both X0

1 and X0
2 must be Gaussian,

and since they are independent, the vector that is formed by stacking them
on top of each other must also be Gaussian. Since X0

1 and X0
2 are zero-mean

and independent, and since the law (and hence covariance matrix) of X0
1 is

the same as of X1 and similarly for X0
2 we have that the covariance matrix of

the vector X0 is given by

KX0X0 =

0
@KX0

1X
0
1

0

0 KX0
2X

0
2

1
A (B.110)

=

0
@KX1X1 0

0 KX2X2

1
A: (B.111)

But this is identical to the covariance matrix (B.109) of the zero-mean Gaus-
sian X. Consequently, since zero-mean Gaussian vector of the same covariance
matrix must have the same law, it follows that the law of X is identical to the

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

508 Gaussian Vectors

law of X0. But under the law of X0 the first n1 components are independent
of the last n2 components, so that the same must be true of X.

A variation on the same theme:

Corollary B.22. If the components of the Gaussian vector X are uncorrelated so
that the matrix KXX is diagonal, then the components of X are independent.

Proof: This follows by a repeated application of the previous corollary.

Another consequence of the fact that there is only one multivariate Gaus-
sian distribution with a given mean and covariance is the following corollary.

Corollary B.23. If the components of a Gaussian vector are independent in pairs,
then they are independent. (Recall that in general X;Y; Z can be such that
X;Y are independent; Y; Z are independent; X;Z are independent; and yet
X;Y; Z are not independent. This cannot happen if X;Y; Z are the compo-
nents of a Gaussian vector.)

Proof: To see this consider the covariance matrix. If the components are
independent in pairs the covariance matrix must be diagonal. But this is also
the structure of the covariance matrix of a Gaussian random vector whose
components are independent. Consequently, since the covariance matrix of
a Gaussian vector fully determines the vector’s law, it follows that the two
vectors have the same law, and the result follows.

The following corollary is extremely useful in the study of signal detection.

Corollary B.24. Suppose that Z is a Gaussian vector of covariance �2In, where
In is the n� n identity matrix. This is just another way of saying that Z has
n components that are IID, each distributed � N (0; �2).

Let f���`gn`=1 be n orthonormal deterministic vectors so that

h���`; ���`0i , ���T
` ���`0 =

8<
:1 if ` = `0;

0 if ` 6= `0:
(B.112)

Then the random variables hZ; ���1i; : : : ; hZ; ���ni are IID � N (0; �2).

Proof: Let ~Z denote the vector

~Z =

0
BBB@
hZ; ���1i

:::

hZ; ���ni

1
CCCA: (B.113)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

B.6. Mean and Covariance Determine the Law of a Gaussian 509

Note that ~Z can be represented as

~Z =

0
BBB@
 ���T

1 !
:::

 ���T
n !

1
CCCAZ; (B.114)

thus demonstrating that ~Z is a Gaussian vector. Its covariance can be com-
puted according to Lemma B.11 to yield

K~Z~Z =

0
BBB@
 ���T

1 !
:::

 ���T
n !

1
CCCAE

�
ZZT�

0
BBBBB@
" � � � "

���1 � � � ���n

� � �

1
CCCCCA (B.115)

=

0
BBB@
 ���T

1 !
:::

 ���T
n !

1
CCCA�2In

0
BBBBB@
" � � � "

���1 � � � ���n

� � �

1
CCCCCA (B.116)

= �2

0
BBB@
 ���T

1 !
:::

 ���T
n !

1
CCCA

0
BBBBB@
" � � � "

���1 � � � ���n

� � �

1
CCCCCA (B.117)

= �2In: (B.118)

Here the last equality follows by (B.112).
This same corollary can be also stated a little differently as follows.

Corollary B.25. If W is a standard Gaussian n-vector and U is orthogonal, i.e.,

UUT = UTU = In; (B.119)

then UW is also a standard Gaussian vector.

Proof: By the definition of a Gaussian vector we conclude that UW is
Gaussian. Its covariance matrix is

UKWW UT = UInU
T = UUT = In: (B.120)

Thus, UW has the same mean (zero) and the same covariance matrix (In) as a
standard Gaussian. Since the mean and covariance of a Gaussian fully specify
its law, UW must be standard.

The next lemma shows that in the definition of Gaussian vectors x =

AW + b we can restrict ourselves to square n� n matrices A.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

510 Gaussian Vectors

Lemma B.26. If X is an n-dimensional centered Gaussian vector, then there
exists a square deterministic n � n matrix A such that the law of X is the
same as the law of AW where W is an n-dimensional standard Gaussian.

Proof: Let KXX denote the n�n covariance matrix of X. Being a covari-
ance matrix, it must be positive semidefinite, and there therefore exists some
n� n matrix S such that KXX = STS. Consider now the random vector STW

where W is standard n-dimensional Gaussian. Being of the form of a matrix
multiplying a Gaussian vector, STW is a Gaussian vector, and since W is cen-
tered, so is STW. By Lemma B.11 and by the fact that the covariance matrix
of W is the identity, it follows that the covariance matrix of STW is STS, i.e.,
KXX. Thus X and STW are centered Gaussians of the same covariance, so
that they must be of the same law. The law of X is thus the same as the law
of the product of a square matrix by a standard Gaussian.

This idea will be extended further in the following section.

B.7 Canonical Representation of Centered Gaussian Vectors

As we have seen, the representation of a centered Gaussian vector as the re-
sult of the multiplication of a deterministic matrix by a standard Gaussian
vector is not unique. Indeed, whenever the n � m deterministic matrix A

satisfies AAT = K it follows that AW has a N (0;K) distribution. (Here W

is a standard m-vector). This follows because AW is a random vector of co-
variance matrix AAT; it is — by the definition of the multivariate centered
Gaussian distribution — a centered Gaussian; and all centered Gaussians of a
given covariance matrix have the same law. In this section we shall focus on
a particular choice of the matrix A that is particularly useful in the analysis
of Gaussians. In this representation A is a square matrix and can be written
as the product of an orthogonal matrix by a diagonal matrix. The diago-
nal matrix acts on W by stretching and shrinking its components, and the
orthogonal matrix then rotates the result.

Theorem B.27. Let X be a centered Gaussian n-dimensional vector of covariance
matrix KXX. Then X has the same law as the centered Gaussian

UΛ1=2W (B.121)

where W is a standard n-dimensional Gaussian vector, the columns of the
orthogonal matrix U are orthonormal eigenvectors of the covariance matrix
KXX, and the matrix Λ is a diagonal matrix whose diagonal entries correspond
to the eigenvalues of KXX with the �th diagonal element corresponding to the
eigenvector in the �th column of U.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

B.7. Canonical Representation of Centered Gaussian Vectors 511

Remark B.28. Because Λ is diagonal we can explicitly write Λ1=2W as

Λ1=2W =

0
BBB@
p
�1W1

:::p
�nWn

1
CCCA: (B.122)

Thus, in the above theorem the random vector Λ1=2W has independent compo-
nents with the �th component being N (0; ��) distributed. This demonstrates
that a centered Gaussian vector is no other than the rotation (multiplication
by an orthogonal matrix) of a random vector whose components are indepen-
dent centered univariate Gaussians of different variances. M

Proof of Theorem B.27: The matrix KXX is positive semidefinite so
that it can be written as KXX = STS where S = Λ1=2UT where KXX U = UΛ;
U is orthogonal; and Λ is a diagonal matrix whose diagonal elements are the
(nonnegative) eigenvalues of KXX. If W is a standard Gaussian then STW is
of zero mean and covariance STS, i.e., the same covariance as X. Since there
is only one centered multivariate Gaussian distribution of a given covariance
matrix, it follows that the law of STW is the same as the law of X.

Example B.29. Figures B.1 and B.2 demonstrate this canonical representation.
There the contour and mesh plots of four two-dimensional Gaussian vectors
are shown:

X1 =

0
@1 0

0 1

1
AW; KX1X1 = I2; (B.123)

X2 =

0
@2 0

0 1

1
AW; KX2X2 =

0
@4 0

0 1

1
A; (B.124)

X3 =

0
@1 0

0 2

1
AW; KX3X3 =

0
@1 0

0 4

1
A; (B.125)

X4 =
1p
2

0
@ 1 1

�1 1

1
A
0
@1 0

0 2

1
AW; KX4X4 =

1

2

0
@5 3

3 5

1
A; (B.126)

where W is a standard Gaussian 2-vector

W � N
0
@0;

0
@1 0

0 1

1
A
1
A: (B.127)

�

The above proposition can also be used in order to demonstrate the linear
transformation one can perform on a Gaussian to obtain a standard Gaussian.
Thus, it is the multivariate version of the univariate result showing that if
X � N (�; �2), where �2 > 0 then (X � �)=� has a N (0; 1) distribution.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

512 Gaussian Vectors

�4
�2

0
2

4

�4

�2

0

2

4

0

0:1

x
(1)
1

x
(2)
1

�4
�2

0
2

4

�4

�2

0

2

4

0

0:1

x
(1)
2

x
(2)
2

�2 0 2

�2

0

2

x
(1)
1

x
(2
)

1

�4 �2 0 2 4

�2

0

2

x
(1)
2

x
(2
)

2

Figure B.1: Mesh and contour plot of the densities of the joint two-dimen-
sional Gaussian vectors X1 and X2 given in Example B.29.

Proposition B.30. Let X � N (���;K) and let U and Λ be as above. Assume that
K is positive definite so that its eigenvalues are strictly positive. Then

Λ�1=2UT(X� ���) � N (0; I) (B.128)

where Λ�1=2 is the matrix inverse of Λ1=2, i.e., it is a diagonal matrix whose
diagonal entries are the reciprocals of the square-roots of the eigenvalues of K.

Proof: Since the product of a deterministic matrix by a Gaussian vector
results in a Gaussian vector and since the mean and covariance of a Gaussian
vector fully specify its law, it suffices to check that the left-hand side of (B.128)
is of the specified mean (namely, zero) and of the specified covariance matrix
(namely, the identity matrix).

B.8 Characteristic Function of a Gaussian Vector

Let X � N (���;K) where K = STS. Then X can be written as

X = STW + ���: (B.129)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

B.8. Characteristic Function of a Gaussian Vector 513

�4
�2

0
2

4

�4

�2

0

2

4

0

0:1

x
(1)
3

x
(2)
3

�4
�2

0
2

4

�4

�2

0

2

4

0

0:1

x
(1)
4

x
(2)
4

�3 �2 �1 0 1 2 3
�4

�2

0

2

4

x
(1)
3

x
(2
)

3

�4 �2 0 2 4
�4

�2

0

2

4

x
(1)
4

x
(2
)

4

Figure B.2: Mesh and contour plot of the densities of the joint two-dimen-
sional Gaussian vectors X3 and X4 given in Example B.29.

Using the characteristic function of a standard Gaussian vector (B.83), we can
now easily derive the characteristic function of X:

�X(!!!) = E
h
ei!!!

TX
i

(B.130)

= E
h
ei!!!

T(STW+���)
i

(B.131)

= E
h
ei!!!

TSTW+i!!!T���
i

(B.132)

= E
h
ei(S!!!)

TW
i
ei!!!

T��� (B.133)

= �W(S!!!) � ei!!!T��� (B.134)

= e�
1
2
kS!!!k2 � ei!!!T��� (B.135)

= e�
1
2
(S!!!)T(S!!!)+i!!!T��� (B.136)

= e�
1
2
!!!TSTS!!!+i!!!T��� (B.137)

= e�
1
2
!!!TK!!!+i!!!T���: (B.138)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

514 Gaussian Vectors

B.9 Density of a Gaussian Vector

As we have seen, if the covariance matrix of a centered random vector is sin-
gular, then with probability 1 at least one of the components of the vector can
be expressed as a linear combination of the other components. Consequently,
random vectors with singular covariance matrices cannot have a density.

We shall thus only discuss the density of the multivariate Gaussian dis-
tribution for the case where the covariance matrix K is nonsingular, i.e., is
positive definite. In this case all its eigenvalues are strictly positive. To derive
this density we shall use Theorem B.27 to represent the N (0;K) distribution
as the distribution of the result of

UΛ1=2W (B.139)

where U is an orthogonal matrix and Λ is a diagonal matrix satisfying KU =

UΛ. Note that Λ is nonsingular because its diagonal elements are the eigen-
values of the positive definite matrix K.

The following example motivates the discussion about the rank of the
matrix A in the representation (B.84).

Example B.31. Suppose that the random 3-vector

X = (X1; X2; X3)
T (B.140)

can be represented in terms of the standard Gaussian 4-vector W as

0
BB@
X1

X2

X3

1
CCA =

0
BB@

1 1 2 3

�1 5 3 1

1 7 7 7

1
CCA
0
BBBBB@
W1

W2

W3

W4

1
CCCCCA: (B.141)

Hence, X is centered Gaussian. Since�
1 7 7 7

�
= 2

�
1 1 2 3

�
+
�
�1 5 3 1

�
(B.142)

it follows that

X3 =
�
1 7 7 7

�
0
BBBBB@
W1

W2

W3

W4

1
CCCCCA (B.143)

=

�
2
�
1 1 2 3

�
+
�
�1 5 3 1

��
0
BBBBB@
W1

W2

W3

W4

1
CCCCCA (B.144)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

B.9. Density of a Gaussian Vector 515

= 2
�
1 1 2 3

�
0
BBBBB@
W1

W2

W3

W4

1
CCCCCA+

�
�1 5 3 1

�
0
BBBBB@
W1

W2

W3

W4

1
CCCCCA (B.145)

= 2X1 +X2; (B.146)

irrespective of the realization of W! Consequently, the random vector X can
also be written as:

0
@X1

X2

1
A =

0
@ 1 1 2 3

�1 5 3 1

1
A
0
BBBBB@
W1

W2

W3

W4

1
CCCCCA; and (B.147)

X3 = 2X1 +X2: (B.148)

The reader is encouraged to verify that X can also be written as:

0
@X2

X3

1
A =

0
@�1 5 3 1

1 7 7 7

1
A
0
BBBBB@
W1

W2

W3

W4

1
CCCCCA; and (B.149)

X1 = �1
2
X2 +

1

2
X3: (B.150)

This example is closely related to Example B.15: Also here we have a
singular covariance matrix

KXX =

0
BB@
15 13 43

13 36 62

43 62 148

1
CCA; (B.151)

and therefore at least (in this case actually exactly) one component of X can
be written as a linear combination of the others with probability 1. However,
note the subtle difference here: Since the Gaussian vector is fully specified
by mean and covariance, the fact that the covariance matrix shows a relation
between components will not only imply a corresponding relation between
the components with probability 1, but actually deterministically ! So, we
emphasize that (B.148) holds deterministically and not only with probability
1. �

The above example generalizes to the following proposition.

Proposition B.32. If the zero-mean Gaussian n-vector X has the representation
(B.84) with an n�m matrix A of rank r, then it can also be represented in the

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

516 Gaussian Vectors

following way. Choose r linearly independent rows of A, say 1 � j1; : : : ; jr � n.
Express the vector ~X = (Xj1 ; : : : ; Xjr)

T as ~AW where ~A is an r �m matrix
consisting of the r rows numbered j1; : : : ; jr of A. The remaining components
of X can be described as deterministic linear combinations of Xj1 ; : : : ; Xjr .

Note that it is possible to reduce m to r using the canonical representation
of ~X.

If one of the components of a random vector is a linear combination of the
others, then the random vector has no density function. Thus, if one wishes
to work with densities, we need to keep the linear dependency “on the side”.

We are now ready to use the change of density formula to compute the
density of

X = UΛ1=2W; (B.152)

where as discussed we assume that the diagonal matrix Λ has only positive
entries. Let

A , UΛ1=2 (B.153)

so that the density we are after is the density of AW. Using the formula for
computing the density of AW from that of W and noting that

AAT = UΛ1=2�UΛ1=2�T = UΛ1=2Λ1=2UT = UΛUT = K (B.154)

we have

fX(x) =
fW(A�1x)

jdet(A)j (B.155)

=
exp

�
�1

2(A
�1x)T(A�1x)

�
(2�)n=2jdet(A)j (B.156)

=
exp

�
�1

2x
T(A�1)T(A�1x)

�
(2�)n=2jdet(A)j (B.157)

=
exp

�
�1

2x
T(AAT)�1x

�
(2�)n=2jdet(A)j (B.158)

=
exp

�
�1

2x
TK�1x

�
(2�)n=2jdet(A)j : (B.159)

We now write jdet(A)j in terms of the determinant of the covariance matrix
K as

jdet (A)j =
q
det (A) � det (A) (B.160)

=
q
det (A) � det (AT) (B.161)

=
q
det (AAT) (B.162)

=
q
det (K) (B.163)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

B.10. Linear Functions of Gaussian Vectors 517

to obtain that if X � N (���;K) where K is nonsingular, then

fX(x) =
exp

�
�1

2(x� ���)TK�1(x� ���)
�

p
(2�)n det(K)

; x 2 Rn: (B.164)

B.10 Linear Functions of Gaussian Vectors

From the definition of the multivariate distribution, it follows quite easily that
if X is an n-dimensional Gaussian vector and if C is an m � n deterministic
matrix, then the m-dimensional vector CX is also a Gaussian vector (see also
(B.91)). By considering the casem = 1 we obtain that if ��� is any deterministic
n-dimensional vector then ���TX is a one-dimensional Gaussian vector. But
the components of a Gaussian vector are univariate Gaussians, and we thus
conclude that the sole component of ���TX is a univariate Gaussian, i.e., that
the random variable ���TX has a univariate Gaussian distribution. Note that
the mapping x 7! ���Tx is a linear mapping from the d-dimensional Euclidean
space to the real line. Such a mapping is called a linear function.

We shall next show that the reverse is also true. If X is an n-dimensional
random vector such that for every deterministic ��� 2 Rn the random vari-
able ���TX has a univariate Gaussian distribution, then X must be a Gaussian
vector.

We have the following theorem.

Theorem B.33. The n-dimensional random vector X is Gaussian if, and only
if, for every deterministic n-vector ��� 2 Rn the random variable ���TX has a
univariate Gaussian distribution.

Proof: We thus assume that X is an n-dimensional random vector such
that for every deterministic ��� 2 Rn the random variable ���TX has a univariate
Gaussian distribution and proceed to prove that X must have a multivariate
Gaussian distribution. Let KXX be the covariance matrix of X, and let ���X
denote its mean. Let !!! 2 Rn be arbitrary, and consider the random variable
!!!TX. This is a random variable of mean !!!T���X and of covariance !!!T KXX !!!;
see Lemma B.11. But we assumed that any linear functional of X has a
Gaussian distribution, so

!!!TX � N �!!!T���X; !!!
T KXX !!!

�
: (B.165)

Consequently, by the characteristic function of the univariate Gaussian distri-
bution (A.76) we conclude that

E
h
ei!!!

TX
i
= e�

1
2
!!!T KXX !!!+i!!!T���X ; !!! 2 Rn: (B.166)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

518 Gaussian Vectors

But this also represents the characteristic function of X. According to (B.138)
this is identical to the characteristic function of a multivariate Gaussian of
mean ���X and covariance matrix KXX. Consequently, since two random vectors
that have the same characteristic function must have the same law (B.67), it
follows that X must be a Gaussian vector.

B.11 Summary

Top things to remember about the multivariate centered Gaussian distribution
are as follows:

1. The multivariate centered Gaussian distribution is a generalization of
the univariate centered Gaussian distribution in the following sense. A
random vector that has only one component, i.e., that takes value in
R, has a centered multivariate Gaussian distribution if, and only if, its
sole component — when viewed as a scalar random variable — has a
univariate N (0; �2) distribution for some �2 � 0.

2. Moreover, every component of a multivariate centered Gaussian vector
has a centered univariate Gaussian distribution.

3. The reverse, however, is not true. Just because each component of a ran-
dom vector has a univariate centered Gaussian distribution, it does not
follow that the vector has a multivariate centered Gaussian distribution.
(ATTENTION!). Compare also with Points 11 and 12 below.

4. Given any n�n positive semidefinite matrix K � 0, there exists a unique
multivariate centered Gaussian distribution of the prescribed covariance
matrix K. This distribution is denoted N (0;K).

5. To generate a random n-vector X of the law N (0;K) one can start with
a random n-vector W whose components are IID � N (0; 1) and set

X = UΛ1=2W; (B.167)

where the matrix U is orthogonal; the matrix Λ is diagonal and

KU = UΛ: (B.168)

Here Λ1=2 is a diagonal matrix whose diagonal elements are the nonneg-
ative square-roots of the corresponding diagonal entries of Λ.

6. If X � N (0;K) where K is positive definite (K � 0) and U and Λ are as
above, then

Λ�1=2UTX � N (0; In): (B.169)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

B.11. Summary 519

7. If X � N (0;K) where K is positive definite (K � 0), then X has the
density

fX(x) =
1p

(2�)n det(K)
e�

1
2
xTK�1x: (B.170)

This can be interpreted graphically as follows. Let W, U and Λ be as
above. Note that the condition K � 0 is equivalent to the condition
that the diagonal entries of Λ and Λ1=2 are strictly positive. The level
lines of the density of W are centered circles; those of the density of
Λ1=2W are ellipsoids of principal axes parallel to the Cartesian axes;
and those of UΛ1=2W are rotated versions of those of Λ1=2W. Compare
with Figures B.1 and B.2.

8. If the covariance matrix K � 0 is not positive definite (but only positive
semidefinite), then the N (0;K) distribution does not have a density.
However in this case, if X � N (0;K), then a subset of the components of
X have a jointly Gaussian distribution with a density and the rest of the
components of X can be expressed as deterministic linear combinations
of the components in the subset. Indeed, if columns `1; : : : ; `d are linearly
independent and span all the columns of K, then every component of X
can be expressed as a deterministic linear combination of X`1 ; : : : ; X`d

and the random d-vector ~X = (X`1 ; : : : ; X`d)
T has a centered Gaussian

distribution with a density. In fact, ~X has a N �0; ~K� distribution where
the d� d covariance matrix ~K is positive definite and can be computed
from K by picking from it rows `1; : : : ; `d and columns `1; : : : ; `d.

9. If C is a deterministic m � n matrix and the random n-vector X has a
N (0;K) distribution, then the random m-vector CX is also a centered
Gaussian vector. Its m�m covariance matrix is CKCT.

10. Consequently:

• Any random vector that results from permuting the components of
a centered Gaussian vector is also a centered Gaussian vector.

• Picking a subset of the components of a Gaussian vector and stack-
ing them into a vector results in a centered Gaussian vector.

• If the covariance matrix of a centered Gaussian X is a scalar multi-
ple of the identity matrix I, then the distribution of X is invariant
under multiplication by a deterministic orthogonal matrix U.

11. Let the random n1-vector X1 be N (0;K1) distributed and let the ran-
dom n2-vector X2 be N (0;K2) distributed. Then if X1 and X2 are
independent, the (n1 + n2)-vector that results when the vector X1 is

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

520 Gaussian Vectors

stacked on top of the vector X2 has a multivariate centered Gaussian
distribution: 0

@X1

X2

1
A � N (0;K); K =

0
@K1 0

0 K2

1
A: (B.171)

(Here K is an (n1 + n2)� (n1 + n2) matrix.)

12. The above extends to the case where more than two independent Gaus-
sian vectors are stacked into a longer vector. In particular, if the com-
ponents of a random vector are independent and they each have a uni-
variate Gaussian distribution, then the random vector has a multivariate
Gaussian distribution with a diagonal covariance matrix.

13. If a subset of the components of a Gaussian vector are uncorrelated with
a different subset of the components of the same vector, then the two
subsets are statistically independent.

14. If the components of a Gaussian vector are independent in pairs, then
they are independent.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Appendix C

Stochastic Processes

Stochastic processes are not really difficult to understand when viewed as a
family of random variables that is parametrized by the time index t. However,
there are a few mathematical subtleties concerning measurability, integrability,
existence, and certain nasty events of zero Lebesgue measure. Our treatment
here will mostly ignore these issues and try to concentrate on the main engi-
neering picture. We highly recommend, however, to have a closer look at the
exact treatment in [Lap17, Chapter 25].

C.1 Stochastic Processes & Stationarity

A stochastic process X(t; !) is a generalization of random variables: It is a
a collection of random variables that is indexed by the parameter t. So, for
every fixed value t, X(t; �) is a random variable, i.e., a function that maps the
outcomes of a random experiment to a real number:

X(t; �) :
! R; ! 7! X(t; !): (C.1)

On the other hand, for a fixed ! 2
, X(�; !) denotes the realizations of all
these random variables, i.e., we have now a function of time:

X(�; !) : R! R; t 7! X(t; !): (C.2)

This function is usually called sample-path, sample-function, or realization.
Similar to the case of random variables, it is usual to drop ! and simply write
X(t) for t 2 R. Here the capitalization of X points to the fact that a random
experiment is behind this function.

More formally, we have the following definition.

Definition C.1. A stochastic process fX(t)gt2T is an indexed family of random
variables that are defined on a common probability space (
;F ; P). Here T
denotes the indexing set that usually will be T = R, denoting continuous
time, or T = Z, denoting discrete time.

521 © Stefan M. Moser — IT, version 6.14

522 Stochastic Processes

In the following we will concentrate on continuous-time stochastic pro-
cesses, i.e., we will assume that T = R.

In order to make sure that a stochastic process fX(t)g is clearly defined, we
need to specify a rule from which all joint distribution functions can, at least
in principle, be calculated. That is, for all positive integers n, and all choices
of n epochs t1; t2; : : : ; tn, it must be possible to find the joint cumulative
distribution function (CDF),

FX(t1);:::;X(tn)(x1; : : : ; xn) , Pr
�
X(t1) � x1; : : : ; X(tn) � xn

�
: (C.3)

Once such a rule is given, any other property of the stochastic process can
be computed. For example, the mean E[X(t)] = X(t) and the covariance
Cov[X(t); X(u)] of the process are specified by the joint distribution functions.
In particular,

Cov[X(t); X(u)] , E
h�
X(t)�X(t)

��
X(u)�X(u)

�i
: (C.4)

Representing fX(t)g in terms of its mean X(�), and its fluctuation

~X(t) , X(t)�X(t); t 2 R; (C.5)

the covariance simplifies to

Cov[X(t); X(u)] = E
�
~X(t) ~X(u)

�
: (C.6)

Most noise functions have zero mean, in which case
�
~X(t)

	
= fX(t)g and the

covariance therefore Cov[X(t); X(u)] = E[X(t)X(u)].

Example C.2. Let : : : ; S�1; S0; S1; : : : be a sequence of IID random variables and
define the pulse h(t) , 1f0 � t < Tg. Then

X(t) =
1X

`=�1
S` h(t� `T) (C.7)

is a stochastic process where the sample functions are piecewise constant over
intervals of size T . The mean is E[X(t)] = E[S`] for t 2 [`T ; (` + 1)T). Since
fS`g is IID, this means that

E[X(t)] = E[S]; 8 t: (C.8)

The covariance is nonzero only for t and u in the same interval, i.e.,

Cov[X(t); X(u)] = Var[S`] (C.9)

if, for some integer `, both t and u lie in the interval [`T ; (`+1)T). Otherwise
Cov[X(t); X(u)] = 0:

Cov[X(t); X(u)] =

8<
:Var[S] if 9 ` 2 Z s.t. t; u 2 [`T ; (`+ 1)T);

0 otherwise:
(C.10)

�

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

C.1. Stochastic Processes & Stationarity 523

We see from Definition C.1 that it is not a simple matter to properly define
a general stochastic process: We need to specify infinitely many different joint
distributions! To ease our life, we will have to make some more assumptions
that will allow to simplify the specification and analysis of a stochastic process.

Definition C.3. A stochastic process fX(t)g is called stationary or strict-sense
stationary (SSS) if for every n 2 N, any epochs t1; : : : ; tn 2 R, and every
� 2 R,

�
X(t1 + �); : : : ; X(tn + �)

� L
=
�
X(t1); : : : ; X(tn)

�
; (C.11)

where “L
=” stands for “equal in law”, i.e., the random vectors on both sides

have the same probability distribution.

In words this means that a stationary stochastic process will not change
its probability distribution over time. In particular this means that, e.g.,
the mean X(t) must be constant (i.e., not depend on t) and the covariance
Cov[X(t); X(u)] must be a function of the difference t� u only.

A weaker condition that nevertheless proves useful in many situations is
wide-sense stationarity.

Definition C.4. A stochastic process fX(t)g is called weakly stationary or wide-
sense stationary (WSS) if the following conditions hold:

1. The variance of X(t) is finite.

2. The mean of X(t) is constant for all t 2 R:

E[X(t)] = E[X(t+ �)]; 8 t; � 2 R: (C.12)

3. The covariance of X(t) satisfies

Cov[X(t); X(u)] = Cov[X(t+ �); X(u+ �)]; 8 t; u; � 2 R: (C.13)

In the following we will usually use stationary to refer to SSS processes,
but WSS to refer to weakly stationary processes.

From our discussion above we immediately get the following proposition.

Proposition C.5. Every finite-variance stationary stochastic process is WSS.

However, note that the reverse is not true: Some WSS processes are not
stationary.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

524 Stochastic Processes

C.2 Autocovariance Function

We next restrict ourselves to WSS processes. For such processes we can define
the autocovariance function.

Definition C.6. The autocovariance function KXX : R! R of a WSS stochastic
process fX(t)g is defined for every � 2 R by

KXX(�) , Cov[X(t); X(t+ �)]; (C.14)

where the right-hand side does not depend on t because fX(t)g is assumed to
be WSS.

Remark C.7. Many people like to call KXX(�) autocorrelation function. This,
however, is strictly speaking not correct because correlation is normalized
to have values between �1 and 1, i.e., the autocorrelation function is the
autocovariance function divided by the variance of the process:

�XX(�) ,
Cov[X(t); X(t+ �)]

Var[X(t)]
; � 2 R: (C.15)

(Note again that the right-hand side does not depend on t because fX(t)g
is assumed to be WSS.) To increase the confusion even further, the term
“autocorrelation function” is also used to describe the function

Rss : � 7!
Z 1

�1
s(t+ �)s(t) dt (C.16)

for some deterministic function s(�). I prefer to call the function (C.16) self-
similarity function (following the suggestion of Prof. Amos Lapidoth and
Prof. James L. Massey). M

The following properties of the autocovariance function are analogous to
Theorem B.12.

Theorem C.8 (Properties of the Autocovariance Function).

1. The autocovariance function KXX(�) of a continuous-time WSS process
fX(t)g is a positive definite function, i.e., for every n 2 N, and for every
choice of coefficients �1; : : : ; �n 2 R and epochs t1; : : : ; tn 2 R:

nX
i=1

nX
i0=1

�i�i0 KXX(ti � ti0) � 0: (C.17)

2. The autocovariance function KXX(�) of a continuous-time WSS process
fX(t)g is a symmetric function:

KXX(�) = KXX(��); � 2 R: (C.18)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

C.3. Gaussian Processes 525

3. Every symmetric positive definite function is the autocovariance function
of some WSS stochastic process.1

Proof: To prove Part 2 we calculate

KXX(�) = Cov[X(t+ �); X(t)] (C.19)

= Cov
�
X(t0); X(t0 � �)� (C.20)

= Cov
�
X(t0 � �); X(t0)

�
(C.21)

= KXX(��); (C.22)

where we have defined t0 = t+ � and used that Cov[X;Y] = Cov[Y;X].
To prove Part 1 we compute

nX
i=1

nX
i0=1

�i�i0 KXX(ti � ti0) =
nX
i=1

nX
i0=1

�i�i0 Cov[X(ti); X(ti0)] (C.23)

= Cov

"
nX
i=1

�iX(ti);
nX

i0=1

�i0X(ti0)

#
(C.24)

= Var

"
nX
i=1

�iX(ti)

#
(C.25)

� 0: (C.26)

We omit the proof of Part 3 and refer to [Lap17, Chapter 25] for more details.

C.3 Gaussian Processes

The most useful stochastic processes for representing noise are the Gaussian
processes.

Definition C.9. A stochastic process is Gaussian if, for every n 2 N and all
choices of epochs t1; : : : ; tn 2 R, the random vector

�
X(t1); : : : ; X(tn)

�T is
jointly Gaussian.

From our discussion about Gaussian vectors in Appendix B we know that
a Gaussian vector has a finite variance and is completely specified by its mean
and covariance matrix. More precisely, we have the following.

1Actually, it is always possible to choose this WSS process to be stationary Gaussian.
See Definition C.9 of a Gaussian process below.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

526 Stochastic Processes

Corollary C.10 (Properties of Gaussian Processes).

1. A Gaussian process has a finite variance.

2. A Gaussian process is stationary if, and only if, it is WSS.

3. A stationary Gaussian process is fully specified by its autocovariance
function and its mean.

Proof: The proof follows in a straightforward way from our results in
Appendix B. We omit the details.

Example C.11. The process in Example C.2 is a Gaussian process if the under-
lying variables fS`g are Gaussian. However, note that this process is neither
stationary nor WSS. This can be seen if we realize that from (C.10) we have

Cov

�
X

�
T

4

�
; X

�
3T

4

��
= Var[S]; (C.27)

but

Cov

�
X

�
3T

4

�
; X

�
5T

4

��
= 0; (C.28)

even though for both cases
3T

4
� T

4
=

5T

4
� 3T

4
=

T

2
: (C.29)

Thus, Part 3 of Definition C.4 is violated. �

C.4 Power Spectral Density

It is quite common under engineers to define the power spectral density
(PSD) of a WSS stochastic process as the Fourier transform of its autoco-
variance function. There is nothing wrong with this, however, it does not
really explain why it should be so. Note that the PSD has a clear engineering
meaning: It is a power density in the frequency domain! This means that
when integrated over a frequency interval, it describes the amount of power
within this interval. So a practical, operational definition of the PSD should
state that the PSD is a function that describes the amount of power contained
in the signal in various frequency bands.

Luckily, it can be shown that for WSS processes this (operational) power
spectral density coincides with the Fourier transform of the autocovariance
function.

Theorem C.12. Let fX(t)g be a zero-mean WSS stochastic process with con-
tinuous autocovariance function KXX(�), � 2 R. Let SXX(f), f 2 R, denote
the double-sided power spectral density function of fX(t)g. Then:

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

C.5. Linear Functionals of WSS Stochastic Processes 527

1. SXX(�) is the Fourier transform of KXX(�).
2. For every linear filter with integrable impulse response h(�), the power

of the filter output fY (t) = (X ? h)(t)g when fed at the input by X(t)

is

Power of (X ? h)(�) =
Z 1

�1
SXX(f)jĥ(f)j2 df; (C.30)

where ĥ(�) denotes the Fourier transform transform2 of h(�).

Proof: We ignore the mathematical details and refer to [Lap17, Chap-
ters 15 & 25] again. The proof of Part 2 follows from Theorem C.16 below.

Note that in (C.30) we can choose the filter to be a bandpass filter of very
narrow band and thereby measure the power contents of fX(t)g inside this
band: For

ĥ(f) =

8<
:1 if f 2 [f0; f1];

0 otherwise
(C.31)

we have that the total power of the output signal fY (t) = (X ? h)(t)g isZ f1

f0
SXX(f) df: (C.32)

Hence, SXX(f) represents the density of power inside a frequency band. For
a more detailed description of linear filtering of stochastic processes we refer
to Section C.6.

C.5 Linear Functionals of WSS Stochastic Processes

Most of the processing that must be done on noise waveforms involves either
linear filters or linear functionals. We start by looking at the latter. Con-
cretely, we are interested in integrals of the formZ 1

�1
X(t)s(t) dt (C.33)

for some WSS process fX(t)g and for a (properly well-behaved) deterministic
function s(�). Ignoring some mathematical subtleties,3 we think of (C.33) as

2Since capital letters are already reserved for random quantities, in this script we use a
hat to denote the Fourier transform.

3For example, we have to worry about the measurability of the stochastic process and the
integrability of the deterministic function. Moreover, even for such nice assumptions, there
might be some realizations of the stochastic process for which the integral is unbounded.
However, one can show that such events have zero probability. For more see [Lap17, Chap-
ter 25].

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

528 Stochastic Processes

a random variable, i.e., we define

Y ,
Z 1

�1
X(t) s(t) dt: (C.34)

Heuristically, we can derive the mean of Y as follows:

E[Y] = E
�Z 1

�1
X(t) s(t) dt

�
(C.35)

=

Z 1

�1
E[X(t)] s(t) dt (C.36)

=

Z 1

�1
E[X(0)] s(t) dt (C.37)

= E[X(0)]

Z 1

�1
s(t) dt; (C.38)

where we have used the linearity of expectation and the WSS assumption of
fX(t)g. Similarly, writing � , E[X(0)] and ~X(t) = X(t)� �, we get

Var[Y] = Var

�Z 1

�1
X(t) s(t) dt

�
(C.39)

= Var

�Z 1

�1

�
~X(t) + �

�
s(t) dt

�
(C.40)

= Var

�Z 1

�1
~X(t) s(t) dt+ �

Z 1

�1
s(t) dt

�
(C.41)

= Var

�Z 1

�1
~X(t) s(t) dt

�
(C.42)

= E

"�Z 1

�1
~X(t) s(t) dt

�2
#

(C.43)

= E
��Z 1

�1
~X(t) s(t) dt

��Z 1

�1
~X(�) s(�) d�

��
(C.44)

= E
�Z 1

�1

Z 1

�1
~X(t) s(t) ~X(�) s(�) dtd�

�
(C.45)

=

Z 1

�1

Z 1

�1
E
�
~X(t) ~X(�)

�
s(t) s(�) dtd� (C.46)

=

Z 1

�1

Z 1

�1
s(t) KXX(t� �) s(�) dtd�: (C.47)

Here in (C.42) we use the fact that adding a constant to a random variable
does not change its variance, and the last equality follows from the definition
of the autocovariance function.

Note that using the definition of the self-similarity function (C.16), we can
write this as follows:

Var[Y] =

Z 1

�1

Z 1

�1
s(t) KXX(t� �) s(�) dtd� (C.48)

=

Z 1

�1

Z 1

�1
s(� + �) KXX(�) s(�) d� d� (C.49)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

C.5. Linear Functionals of WSS Stochastic Processes 529

=

Z 1

�1
KXX(�)

Z 1

�1
s(� + �) s(�) d� d� (C.50)

=

Z 1

�1
KXX(�) Rss � d�: (C.51)

Recalling Parseval’s Theorem,Z 1

�1
g(t) h(t) dt =

Z 1

�1
ĝ(f) ĥ*(f) df; (C.52)

we can express this in the frequency domain as

Var[Y] =

Z 1

�1
SXX(f) jŝ(f)j2 df: (C.53)

Even though these derivations are heuristic and actually need some justi-
fication, they are basically correct. We have the following theorem.

Theorem C.13. Let fX(t)g be a WSS stochastic process with autocovariance
function KXX(�). Let s(�) be some decent deterministic function. Then the
random variable Y in (C.34) is well-defined and has a mean given in (C.38)
and a variance given in (C.51) or (C.53).

We continue with integrals of the form
R1
�1X(t)s(t) dt, but with the ad-

ditional assumption that fX(t)g is Gaussian. Actually, we even consider a
slightly more general form of a linear functional:

Y ,
Z 1

�1
X(t)s(t) dt+

nX
i=1

�iX(ti); (C.54)

for some stationary Gaussian process fX(t)g, a decent deterministic func-
tion s(�), some n 2 N, and arbitrary coefficients �1; : : : ; �n 2 R and epochs
t1; : : : ; tn 2 R. Following a similar derivation as shown above, one can prove
the following theorem.

Theorem C.14. Consider the setup of (C.54) with fX(t)g being a stationary
Gaussian stochastic process. Then Y is a Gaussian random variable with
mean

E[Y] = E[X(0)]

 Z 1

�1
s(t) dt+

nX
i=1

�i

!
(C.55)

and variance

Var[Y] =

Z 1

�1
KXX(�) Rss � d� +

nX
i=1

nX
i0=1

�i�i0 KXX(ti � ti0)

+ 2
nX
i=1

�i

Z 1

�1
s(t)KXX(t� ti) dt: (C.56)

Here, Rss � denotes the self-similarity function of s(�), see (C.16).

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

530 Stochastic Processes

Proof: This theorem is a special case of Theorem C.15.
As a matter of fact, this theorem can be extended as follows.

Theorem C.15. Let the random vector Y = (Y1; : : : ; Ym)
T have components

Yj ,
Z 1

�1
X(t) sj(t) dt+

njX
i=1

�j;iX(tj;i); j = 1; : : : ;m; (C.57)

where fX(t)g is a stationary Gaussian process, fsj(�)gmj=1 are m (decent)
deterministic functions, fnjgmj=1 are nonnegative integers, and the coefficients
f�j;ig and the epochs fti;jg are deterministic real numbers for all j 2 f1; : : : ;
mg and all i 2 f1; : : : ; njg. Then Y is a Gaussian vector with a covariance
matrix whose components can be computed as follows:

Cov[Yj ; Yk] =

Z 1

�1
KXX(�)

Z 1

�1
sj(t)sk(t� �) dtd�

+

njX
i=1

�j;i(sk ? KXX)(tj;i)

+
nkX
i0=1

�k;i0(sj ? KXX)(tk;i0)

+

njX
i=1

nkX
i0=1

�j;i�k;i0 KXX(tj;i � tk;i0) (C.58)

or, equivalently,

Cov[Yj ; Yk] =

Z 1

�1
SXX(f) ŝj(f) ŝ

*
k(f) df

+

njX
i=1

�j;i

Z 1

�1
SXX(f) ŝk(f) e

i2�ftj;i df

+
nkX
i0=1

�k;i0
Z 1

�1
SXX(f) ŝj(f) e

i2�ftk;i0 df

+

njX
i=1

nkX
i0=1

�j;i�k;i0
Z 1

�1
SXX(f) e

i2�f(tj;i�tk;i0) df: (C.59)

Proof: Since by Definition C.9 for any choice of time epochs t1; : : : ; tn,
the vector

�
X(t1); : : : ; X(tn)

�T is Gaussian and since the components Yj all
are linear functionals of such vectors, it is quite intuitive that Y is a Gaus-
sian vector. We ignore the mathematical subtleties of this proof and refer to
[Lap17, Chapter 25]. The expression (C.59) follows from (C.58) using Parse-
val’s Theorem; and (C.58) can be justified as follows:

Cov[Yj ; Yk] = Cov

"Z 1

�1
X(t) sj(t) dt+

njX
i=1

�j;iX(tj;i);

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

C.6. Filtering Stochastic Processes 531

Z 1

�1
X(�) sk(�) d� +

nkX
i0=1

�k;i0X(tk;i0)

#
(C.60)

= Cov

�Z 1

�1
X(t) sj(t) dt;

Z 1

�1
X(�) sk(�) d�

�

+

njX
i=1

�j;i Cov

�
X(tj;i);

Z 1

�1
X(�) sk(�) d�

�

+
nkX
i0=1

�k;i0 Cov

�Z 1

�1
X(t) sj(t) dt;X(tk;i0)

�

+

njX
i=1

nkX
i0=1

�j;i�k;i0 Cov[X(tj;i); X(tk;i0)] (C.61)

=

Z 1

�1

Z 1

�1
Cov[X(t); X(�)] sj(t) sk(�) dtd�

+

njX
i=1

�j;i

Z 1

�1
Cov[X(tj;i); X(�)] sk(�) d�

+
nkX
i0=1

�k;i0
Z 1

�1
Cov[X(t); X(tk;i0)] sj(t) dt

+

njX
i=1

nkX
i0=1

�j;i�k;i0 KXX(tj;i � tk;i0) (C.62)

=

Z 1

�1

Z 1

�1
KXX(t� �) sj(t) sk(�) dtd�

+

njX
i=1

�j;i

Z 1

�1
KXX(tj;i � �) sk(�) d�

+
nkX
i0=1

�k;i0
Z 1

�1
KXX(tk;i0 � t) sj(t) dt

+

njX
i=1

nkX
i0=1

�j;i�k;i0 KXX(tj;i � tk;i0): (C.63)

C.6 Filtering Stochastic Processes

Next we discuss the result of passing a WSS stochastic process through a
stable4 linear filter with impulse response h(�). Figure C.1 illustrates the
situation.

Since for a fixed t, the output can be written as

Y (t) =

Z 1

�1
X(�)h(t� �) d�; (C.64)

4A linear filter is called stable if its impulse response h(�) is integrable.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

532 Stochastic Processes

fX(t)g h(�) fY (t) = (X ? h)(t)g

Figure C.1: Filtered stochastic process.

we can (more or less) directly apply our results from the Section C.5 about
linear functionals. Again we will ignore some mathematical subtleties here
and refer to [Lap17, Chapter 25] for any proofs.

Theorem C.16. Let fY (t)g be the result of passing the centered (zero-mean)
WSS stochastic process fX(t)g of autocovariance function KXX(�) through the
linear filter with (decent) impulse response h(�). Then we have the following:

1. fY (t)g is a centered WSS stochastic process with autocovariance func-
tion

KYY (�) = (KXX ? Rhh)(�); � 2 R: (C.65)

where Rhh � is the self-similarity function of h(�) (see (C.16)).

2. If fX(t)g has PSD SXX , then fY (t)g has PSD

SYY (f) =
��ĥ(f)��2 � SXX(f); f 2 R: (C.66)

3. For every t; � 2 R,

E[X(t)Y (t+ �)] = (KXX ? h)(�); (C.67)

where the right-hand side does not depend on t.

4. If fX(t)g is Gaussian, then so is fY (t)g. Even better, for every choice of
n;m 2 N and epochs t1; : : : ; tn; tn+1; : : : ; tn+m 2 R, the random vector�

X(t1); : : : ; X(tn); Y (tn+1); : : : ; Y (tn+m)
�T (C.68)

is a centered Gaussian random vector. The covariance matrix can be
computed using KXX(�), (C.65), and (C.67).

Note that the joint Gaussianity of the random variables in (C.68) follows
from Theorem C.13. Indeed we can express X(tj) as

X(tj) =

Z 1

�1
X(t)sj(t) dt+ �jX(tj); j = 1; : : : ; n; (C.69)

for sj(�) the zero function and �j = 1, and Y (tj) similarly as

Y (tj) =

Z 1

�1
X(t)sj(t) dt+ �jX(tj); j = n+ 1; : : : ; n+m; (C.70)

for sj : t 7! h(tj � t) and �j = 0.
Also note that Theorem C.12 actually is a consequence of Theorem C.16.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

C.7. White Gaussian Noise 533

C.7 White Gaussian Noise

The most important stochastic process in digital communication is so-called
white Gaussian noise. This noise is often used to model additive noise in
communication systems and in many other places, too. Sometimes, its use is
actually not really justified from a practical point of view, but is motivated
merely because the white Gaussian noise can be handled analytically.

Our definition differs from the usual definition found in most textbook in
the sense that we specify a certain bandwidth and define the white Gaussian
noise only with respect to this given band. The reason for this is that it
is impossible to have white Gaussian noise over the whole infinite spectrum
as such a process would have infinite power and its autocovariance function
would not be defined.5

Definition C.17. We say that fN(t)g is white Gaussian noise of double-sided
power spectral density N0

2 with respect to the bandwidth W if fN(t)g is a
stationary centered Gaussian random process that has PSD SNN (�) satisfying

SNN (f) =
N0

2
; f 2 [�W;W]: (C.71)

Note that our definition on purpose leaves the PSD unspecified outside the
given band [�W;W].

We can now apply our knowledge from Sections C.5 and C.6 to this defi-
nition and get the following key properties of white Gaussian noise.

Corollary C.18. Let fN(t)g be white Gaussian noise of double-sided power spec-
tral density N0

2 with respect to the bandwidth W.

1. If s(�) is a properly well-behaved function that is bandlimited to W Hz,
then Z 1

�1
N(t)s(t) dt � N

�
0;

N0

2
hs; si

�
; (C.72)

where we define the inner product of two real functions u(�) and v(�) as

hu;vi ,
Z 1

�1
u(t)v(t) dt: (C.73)

2. If s1(�); : : : ; sm(�) are properly well-behaved functions that are bandlim-
ited to W Hz, then the m random variables

Y1 ,
Z 1

�1
N(t)s1(t) dt; (C.74)

:::

Ym ,
Z 1

�1
N(t)sm(t) dt (C.75)

5The common definition tries to circumvent this issue by using Dirac Deltas. While this
might be convenient from an engineering point of view, it causes quite a few mathematical
problems because Dirac Deltas are not functions.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

534 Stochastic Processes

are jointly centered Gaussian random variables of covariance matrix

KYY =
N0

2

0
BBBBBB@

hs1; s1i hs1; s2i � � � hs1; smi
hs2; s1i hs2; s2i � � � hs2; smi

:::
:::

: : :
:::

hsm; s1i hsm; s2i � � � hsm; smi

1
CCCCCCA: (C.76)

3. If �1(�); : : : ; �m(�) are properly well-behaved functions that are bandlim-
ited to W Hz and that are orthonormal

h���i; ���i0i =
8<
:1 if i = i0;

0 otherwise;
(C.77)

then the m random variablesZ 1

�1
N(t)�1(t) dt; : : : ;

Z 1

�1
N(t)�m(t) dt (C.78)

are IID � N (0;N0=2).

4. If s(�) is a properly well-behaved function that is bandlimited to W Hz,
and if KNN (�) is the autocovariance function of fN(t)g, then

�
KNN ? s

�
(t) =

N0

2
s(t); t 2 R: (C.79)

5. If s(�) is a properly well-behaved function that is bandlimited to W Hz,
then for every epoch t 2 R

Cov

�Z 1

�1
N(�)s(�) d� ;N(t)

�
=

N0

2
s(t): (C.80)

Proof: Parts 1 and 3 are special cases of Part 2, so we directly prove
Part 2. Using (C.59) of Theorem C.15 with �j;i = 0, we get

Cov[Yj ; Yk] =

Z 1

�1
SNN (f) ŝj(f) ŝ

*
k(f) df (C.81)

=

Z W

�W
SNN (f) ŝj(f) ŝ

*
k(f) df (C.82)

=
N0

2

Z W

�W
ŝj(f) ŝ

*
k(f) df (C.83)

=
N0

2

Z 1

�1
ŝj(f) ŝ

*
k(f) df (C.84)

=
N0

2

Z 1

�1
sj(t) sk(t) dt; (C.85)

where in (C.82) we use that s1(�); : : : ; sm(�) are bandlimited.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

C.8. Orthonormal and Karhunen–Loeve Expansions 535

For Part 4 we write KNN (�) as inverse Fourier transform of SNN (�):
�
KNN ? s

�
(t) =

Z 1

�1
s(�)KNN (t� �) d� (C.86)

=

Z 1

�1
s(�)

Z 1

�1
SNN (f) e

i2�f(t��) df d� (C.87)

=

Z 1

�1
SNN (f)

Z 1

�1
s(�) e�i2�f� d� ei2�ft df (C.88)

=

Z 1

�1
SNN (f)ŝ(f) e

i2�ft df (C.89)

=

Z W

�W
SNN (f)ŝ(f) e

i2�ft df (C.90)

=
N0

2

Z W

�W
ŝ(f) ei2�ft df (C.91)

=
N0

2
s(t): (C.92)

Finally, Part 5 follows from a derivation similar to (C.60)–(C.63) in combina-
tion with Part 4.

C.8 Orthonormal and Karhunen–Loeve Expansions

The following material is pretty advanced and is presented only for those
readers who want to go a little more deeply into the topic of representing
stochastic processes by orthonormal expansions. Recall that a set of (complex)
functions �1(�); �2(�); : : : is called orthonormal ifZ 1

�1
�i(t)�

*
i0(t) dt = 1

�
i = i0

	
(C.93)

for all integers i; i0. These functions can be complex, but we will mostly stick
to real examples. The limits of integration throughout this section will be
taken as (�1;1), but usually the functions of interest are nonzero only over
some finite interval [T0; T1].

The best known such set of orthonormal functions are those in the Fourier
series,

�n(t) =
1p
T
ei2�n

t
T (C.94)

for the interval [�T=2; T=2]. We can then take any continuous square-inte-
grable function x(�) over [�T=2; T=2] and represent it by

x(�) =
X
i

xi�i(�); where xi =
Z 1

�1
x(t)�*

i (t) dt: (C.95)

For real functions, one can avoid the complex orthonormal functions by using
sines and cosines in place of the complex exponentials.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

536 Stochastic Processes

The nature of this transformation is not due to the special nature of si-
nusoids, but only due to the fact that the function is being represented as
a series of orthonormal functions. To see this, let f�i(�)g be any set of real
orthonormal functions, and assume that a function x(�) can be represented as

x(�) =
X
i

xi�i(�): (C.96)

Multiplying both sides of (C.96) by �j(�) and integrating yieldsZ 1

�1
x(t)�j(t) dt =

Z 1

�1

X
i

xi�i(t)�j(t) dt: (C.97)

Interchanging the order of integration and summation and using (C.93), we
get Z 1

�1
x(t)�j(t) dt = xj : (C.98)

Thus, if a function can be represented by orthonormal functions as in (C.96),
then the coefficients fxig must be determined as in (C.98), which is the same
pair of relations as in (C.95). We can also represent the energy in x(�) in terms
of the coefficients fxig. Since

x2(t) =

 X
i

xi�i(t)

!
�
0
@X

j

xj�j(t)

1
A (C.99)

for all t, we getZ 1

�1
x2(t) dt =

Z 1

�1

X
i

X
j

xixj�i(t)�j(t) dt =
X
i

x2i : (C.100)

Next suppose x(�) is any real square-integrable function and f�i(�)g is an
orthonormal set. Let xi ,

R1
�1 x(t)�n(t) dt and let

�k(t) , x(t)�
kX
i=1

xi�i(t) (C.101)

be the error when x(�) is represented by the first k of these orthonormal
functions. First we show that �k(�) is orthogonal to �j(�) for 1 � j � k:

Z 1

�1
�k(t)�j(t) dt =

Z 1

�1
x(t)�j(t) dt�

Z 1

�1

kX
i=1

xi�i(t)�j(t) dt (C.102)

= xj � xj = 0: (C.103)

Viewing functions as vectors, �k(�) is the difference between x(�) and its pro-
jection on the linear subspace spanned by f�i(�)g1�i�k. The integral of the

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

C.8. Orthonormal and Karhunen–Loeve Expansions 537

squared error is given by

Z 1

�1
x2(t) dt =

Z 1

�1

�k(t) +

kX
i=1

xi�i(t)

!2

dt (C.104)

=

Z 1

�1
�2k(t) dt+

Z 1

�1

kX
i=1

kX
j=1

xixj�i(t)�j(t) dt (C.105)

=

Z 1

�1
�2k(t) dt+

kX
i=1

x2i : (C.106)

Since �2k(t) � 0, we have the Bessel Inequality,

kX
i=1

x2i �
Z 1

�1
x2(t) dt: (C.107)

We see from (C.106) that
R1
�1 �2k(t) dt is nonincreasing with k. Thus, in the

limit k ! 1, either the energy in �k(�) approaches 0 or it approaches some
positive constant. A set of orthonormal functions is called complete over
some class C of functions if this error energy approaches 0 for all x(�) 2 C. For
example, the Fourier series set of functions in (C.94) is complete over the set
of functions that are square integrable and zero outside of [�T=2; T=2]. There
are many other countable sets of functions that are complete over this class
of functions. Such sets are called complete orthonormal systems (CONS).

The question now arises whether a countable set of functions exists that is
complete over the square-integrable functions in the interval (�1;1). The
answer is yes. One example starts with the Fourier series functions over
[�T=2; T=2]. This set is extended by adding the time shifts of these functions,
shifting by kT for each integer k. Note that the Fourier integral functions
ei2�ft over all f 2 R do not work here, since there are an uncountably infinite
number of such functions and they cannot be made orthonormal (i.e., they
each have infinite energy).

Parseval’s relationship is another useful relationship among functions

x(�) =
X
i

xi�(�) (C.108)

and

y(�) =
X

yi�(�): (C.109)

This relationship states thatZ 1

�1
x(t)y(t) dt =

X
i

xiyi: (C.110)

To derive this, note thatZ 1

�1

�
x(t)� y(t)�2 dt =X

i

(xi � yi)2: (C.111)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

538 Stochastic Processes

Squaring the terms inside brackets and canceling out the terms in x2 and y2,
we get (C.110).

These same relationships work for stochastic processes. That is, consider a
segment of a stochastic process, X(t), T1 � t � T2. Assume that the covariance
function

KXX(t; �) , Cov[X(t); X(�)] (C.112)

is continuous, and represent X(�) by an orthonormal set that is complete over
finite-energy functions in the interval [T1; T2]. Then we have

X(�) =
X
i

Xi�i(�); Xi =

Z 1

�1
X(t)�i(t) dt: (C.113)

The Karhunen–Loeve expansion is an orthonormal expansion using a par-
ticular set of orthonormal functions. These orthonormal functions are chosen
so that for some particular zero-mean stochastic process fX(t)g, T1 � t � T2,
of interest, the random variables fXig in (C.113) are uncorrelated.

It will be easiest to understand this expansion if we first look at the related
problem for a discrete-time, zero-mean stochastic process over a finite interval,
say fX(1); X(2); : : : ; X(T)g. This is simply a set of T random variables with
a covariance matrix KXX. We have seen that KXX has a set of T orthonormal
eigenvectors qi, 1 � i � T . The corresponding eigenvalues are nonnegative,
and they are positive if KXX is positive definite.

If we visualize sampling the finite-duration (T1 � t � T2) continuous-time
process fX(t)g very finely, at intervals of width �, then we have the same
problem as the discrete-time case above. If we go to the continuous-time limit
without worrying about mathematical details, then the eigenvector equation
KXX q = �q changes into the integral eigenvalue equation

Z T2

T1

KXX(t; �) �(�) d� = ��(t); T1 � t � T2: (C.114)

The following theorem is a central result of functional analysis, and is proved,
e.g., in [RSN90, p. 242].

Theorem C.19. Assume that KXX(�; �) is continuous and square integrable with
a value greater than 0, i.e.,

0 <

Z T2

T1

Z T2

T1

K2
XX(t; �) dtd� <1: (C.115)

Then all solutions of (C.114) have nonnegative eigenvalues �. There is at
least one solution with eigenvalue � > 0 and at most a finite number of
orthonormal eigenvectors with the same positive eigenvalue. Also, there are

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

C.8. Orthonormal and Karhunen–Loeve Expansions 539

enough eigenfunctions f�i(�)g with positive eigenvalues so that for any square-
integrable continuous function x(�) over [T1; T2],

x(�) =
X
i

xi�i(�) + h(�); (C.116)

where h(�) is an eigenfunction of eigenvalue 0.

Note that T1 can be taken to be �1 and/or T2 can be taken to be +1 in
the above theorem. (Unfortunately, this cannot be done for a stationary pro-
cess since KXX(�; �) would not be square integrable then.) What this theorem
says is that the continuous-time case here is almost the same as the matrix
case that we studied before. The only difference is that the number of eigen-
values can be countably infinite, and the number of orthonormal eigenvectors
with eigenvalue 0 can be countably infinite.

The eigenvectors of different eigenvalues are orthonormal (by essentially
the same argument as in the matrix case), so that what (C.116) says is that
the set of orthonormal eigenvectors is complete over the square-integrable
functions in the interval [T1; T2]. This indicates that there are many possible
choices for complete orthonormal sets of functions.

There are a few examples where (C.114) can be solved with relative ease,
but usually it is quite difficult to find solutions. But this is not important
because the Karhunen–Loeve expansion is usually used to solve detection and
estimation problems abstractly in terms of this orthonormal expansion, and
then convert the solution into something that is meaningful without actually
knowing the concrete values of the expansion.

We now proceed to derive some of the properties of this expansion. So, we
assume that KXX(�; �) is continuous and satisfies

Z T2

T1

KXX(t; �) �i(�) d� = �i�i(t); t 2 [T1; T2]; (C.117)

and define the random variables fXig as

Xi ,
Z T2

T1

X(t)�i(t) dt: (C.118)

To see that these random variables are uncorrelated, we note that

E[XiXj] = E

"Z T2

T1

Z T2

T1

X(t)X(�) �i(t) �j(�) dtd�

#
(C.119)

=

Z T2

T1

Z T2

T1

KXX(t; �) �i(t) �j(�) dtd� (C.120)

=

Z T2

T1

�i�i(t) �j(t) dt (C.121)

= �i 1fi = jg; (C.122)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

540 Stochastic Processes

where in (C.121) we have used (C.117) and where the last equality (C.122)
follows from orthogonality.

Next we want to show that

KXX(t; �) =
X
i

�i�i(t)�i(�); (C.123)

where equality holds almost everywhere. This is called Mercer’s Theorem. To
show this, assume that the eigenvalues of (C.114) are arranged in descending
order and consider approximating KXX(t; �) by

Pk
i=1 �i�i(t)�i(�). Letting �k

be the integral of the squared error, we have

�k =

Z T2

T1

Z T2

T1

KXX(t; �)�

kX
i=1

�i�i(t)�i(�)

!2

dtd� (C.124)

=

Z T2

T1

Z T2

T1

K2
XX(t; �) dtd� � 2

kX
i=1

Z T2

T1

Z T2

T1

�i�i(t)�i(�)KXX(t; �) dtd�

+

Z T2

T1

Z T2

T1

kX
i=1

�2i�
2
i (t)�

2
i (�) dtd� (C.125)

=

Z T2

T1

Z T2

T1

K2
XX(t; �) dtd� � 2

kX
i=1

Z T2

T1

�2i�i(t)�i(t) dt

+
kX
i=1

�2i

Z T2

T1

�2i (t) dt

Z T2

T1

�2i (�) d�| {z }
=1

(C.126)

=

Z T2

T1

Z T2

T1

K2
XX(t; �) dtd� �

kX
i=1

�2i : (C.127)

We see from (C.124) that �k is nonnegative, and from (C.127) that �k is non-
increasing with k. Thus �k must reach a limit. We now argue that this limit
must be 0. It can be shown that KXX(t; �) �Pk

i=1 �i�i(t)�i(�) is a covari-
ance function for all k, including the limit k ! 1. If limk!1 �k > 0, then
this limiting covariance function has a positive eigenvalue and a correspond-
ing eigenvector which is orthogonal to all the eigenvectors in the expansionP1

i=1 �i�i(t)�i(�). Since we have ordered the eigenvalues in decreasing or-
der and limi!1 �i = 0, this is a contradiction, so limk!1 �k = 0. Since
limk!1 �k = 0, and since �k is the integral squared of the difference between
KXX(t; �) and

Pk
i=1 �i�i(t)�i(�), we see that

KXX(t; �) =
1X
i=1

�i�i(t)�i(�) (C.128)

with equality almost everywhere. As an added bonus, we see from (C.127)
that Z T2

T1

Z T2

T1

KXX(t; �) dtd� =
1X
i=1

�2i : (C.129)

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

C.8. Orthonormal and Karhunen–Loeve Expansions 541

Finally, we want to show that

X(t) =
1X
i=1

Xi�i(t); t 2 [T1; T2]; (C.130)

where the sum is over those i for which �i > 0 and with equality in the sense
that the variance of the difference in the two sides of (C.130) is 0. To see this,
note that

E

2
4Z T2

T1

X(t)�

X
i

Xi�i(t)

!2

dt

3
5

= E

"Z T2

T1

X2(t) dt

#
� 2

X
i

E
�
Xi

Z T2

T1

X(t)�i(t) dt| {z }
=Xi

�

+
X
i

X
i0

E[XiXi0]| {z }
=�i 1fi=i0g

Z T2

T1

�i(t)�i0(t) dt| {z }
=1fi=i0g

(C.131)

= E

"Z T2

T1

X2(t) dt

#
� 2

X
i

E
h
X2
i

i
+
X
i

�i (C.132)

= E

"Z T2

T1

X2(t) dt

#
�
X
i

�i: (C.133)

We know that the left side of (C.131) is zero if the eigenvectors of zero eigen-
value are included, but (C.133) shows that the equality holds without the
eigenvectors of zero eigenvalue. Since E

�
X2(t)

�
= KXX(t; t), this also verifies

the useful identity

Z T2

T1

KXX(t; t) dt =
1X
i=1

�i: (C.134)

These results have all assumed that KXX(�; �) is continuous. We now look
at two examples, the first of which helps us to understand what happens if
KXX(�; �) is not continuous, and the second of which helps us to understand a
common engineering notion about degrees of freedom.

Example C.20 (Pathological Nonexistent Noise). Consider a Gaussian process
fX(t)g where for each t 2 R, X(t) � N (0; 1). Assume also that

E[X(t)X(�)] = 0; 8 t 6= �: (C.135)

Thus KXX(t; �) is 1 for t = � and 0 otherwise. Since KXX(�; �) is not continuous,
Theorem C.19 does not necessarily hold, but because KXX(�; �) is zero almost
everywhere, any orthonormal set of functions can be used as eigenvectors of
eigenvalue 0. The trouble occurs when we try to define random variables

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

542 Stochastic Processes

Xi ,
R T2
T1
X(t)�i(t) dt. Since the sample functions of fX(t)g are discontinuous

everywhere, it is hard to make sense out of this integral. However, if we try
to approximate this integral as

Y� =

T2=�X
`=T1=�

X(`�)�i(`�)�; (C.136)

then we see that

Y� � N
0
@0; �2 T2=�X

`=T1=�

�2i (`�)

1
A: (C.137)

This variance goes to zero as � ! 0, so it is reasonable to take Xi = 0. This
means that we cannot represent X(�) = P

iXi�i(�). It also means that if we
filter X(�), the filter output is best regarded as 0. Thus, in a sense, this kind of
process cannot be observed. We can also view this process as white Gaussian
noise in the limit as the power spectral density approaches 0.

The point of this example is to show how strange a stochastic process
fX(t)g is when KXX(t; �) is discontinuous at t = � . It is not hard to show
that if a WSS process has an autocovariance function KXX(�) that is continuous
at t = 0, then it is continuous everywhere, so that in some sense the kind of
phenomena in this example is typical of discontinuous covariance functions.

�

Example C.21 (Prolate Spheroidal Wave Functions). We usually view the set
of waveforms that are essentially timelimited to [�T=2; T=2] and essentially
bandlimited to [0;W] as having about 2WT degrees of freedom if WT is large.
For example, there are 2WT + 1 orthonormal sine and cosine waves with
frequency f �W in the Fourier series over [�T=2; T=2]. This notion of degrees
of freedom is inherently imprecise since strictly timelimited functions cannot
be strictly bandlimited and vice versa. Our objective in this example is to
make this notion as close to precise as possible.

Suppose fX(t)g is a stationary process with power spectral density

SXX(f) =

8<
:1 f �W;

0 elsewhere:
(C.138)

The corresponding autocovariance function is

KXX(�) =
sin(2�W�)

��
; � 2 R: (C.139)

Consider truncating the sample functions of this process to [�T=2; T=2]. Be-
fore being truncated, these sample functions are bandlimited, but after trun-
cation, they are no longer bandlimited. Let f�i; �i(�)g be the eigenvalues and
eigenvectors of the integral equation (C.114) for KXX(�) given in (C.139) for

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

C.8. Orthonormal and Karhunen–Loeve Expansions 543

�T=2 � � � T=2. Each eigenvalue/eigenvector pair �i; �i(�) has the property
that when �i(�) is passed through an ideal low pass filter and then truncated
again to [�T=2; T=2], the same function �i(�) appears attenuated by �i (this
is in fact what (C.114) says). With a little extra work, it can be seen that the
output �i(�) of this ideal low pass filter before truncation has energy �i and
after truncation has energy �2i .

The eigenvectors �i(�) have an interesting extremal property (assuming
that the eigenvalues are ordered in decreasing order). In particular, �i(�)
is the unit energy function over [�T=2; T=2] with the largest energy in the
frequency band [0;W], subject to the constraint of being orthogonal to �j(�)
for each j < i. In other words, the first i eigenfunctions are the orthogonal
timelimited functions with the largest energies in the frequency band [0;W].

The functions �i(�) defined above are called prolate spheroidal wave func-
tions and arise in many areas of mathematics, physics, and engineering. They
are orthogonal, and also their truncated versions to [�T=2; T=2] are orthogo-
nal.

Finally, when WT is large, it turns out that �i is very close to 1 for
i � 2WT , �i is very close to 0 for i � 2WT , and the transition region has
a width proportional to ln(4�WT). In other words, as WT gets large, there
are about 2WT orthogonal waveforms that are timelimited to [�T=2; T=2] and
approximately bandlimited to [0;W]. �

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Bibliography

[AC88] Paul H. Algoet and Thomas M. Cover, “A sandwich proof of the
shannon–mcmillan–breiman theorem,” The Annals of Probability,
vol. 16, no. 2, pp. 899–909, April 1988.

[Arı08] Erdal Arıkan, “A performance comparison of polar codes and Reed–
Muller codes,” IEEE Communications Letters, vol. 12, no. 6, pp.
447–449, June 2008.

[Arı09] Erdal Arıkan, “Channel polarization: A method for constructing
capacity-achieving codes for symmetric binary-input memoryless
channels,” IEEE Transactions on Information Theory, vol. 55,
no. 7, pp. 3051–3073, July 2009.

[Arı10] Erdal Arıkan, “Source polarization,” in Proceedings IEEE Interna-
tional Symposium on Information Theory (ISIT), Austin, TX,
USA, June 13–18, 2010, pp. 899–901.

[Arı19a] Erdal Arıkan, “From sequential decoding to channel polarization and
back again,” September 2019, arXiv:1908.09594 [cs.IT]. Available: h
ttps://arxiv.org/abs/1908.09594

[Arı19b] Erdal Arıkan, “Shannon Lecture: From sequential decoding to chan-
nel polarization and back again,” July 10, 2019, ISIT, Paris, France.
Available: https://youtu.be/1yiSUPj42aQ

[AT09] Erdal Arıkan and İ. Emre Telatar, “On the rate of channel polariza-
tion,” April 6, 2009, arXiv:0807.3806v3 [cs.IT]. Available: https://a
rxiv.org/abs/0807.3806v3

[BGT93] Claude Berrou, Alain Glavieux, and Punya Thitimajshima, “Near
Shannon limit error-correcting coding and decoding: Turbo-codes,”
in Proceedings IEEE International Conference on Communica-
tions (ICC), Geneva, Switzerland, May 23–26, 1993, pp. 1064–1070.

[BT02] Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Prob-
ability. Belmont, MA, USA: Athena Scientific, 2002.

545 © Stefan M. Moser — IT, version 6.14

https://arxiv.org/abs/1908.09594
https://arxiv.org/abs/1908.09594
https://youtu.be/1yiSUPj42aQ
https://arxiv.org/abs/0807.3806v3
https://arxiv.org/abs/0807.3806v3

546 Bibliography

[CA05a] Po-Ning Chen and Fady Alajaji, “Lecture notes on information the-
ory,” vol. 1, Department of Electrical Engineering, National Chiao
Tung University, Hsinchu, Taiwan, and Department of Mathematics
& Statistics, Queen’s University, Kingston, Canada, August 2005.

[CA05b] Po-Ning Chen and Fady Alajaji, “Lecture Notes on Information The-
ory,” vol. 2, Department of Electrical Engineering, National Chiao
Tung University, Hsinchu, Taiwan, and Department of Mathematics
& Statistics, Queen’s University, Kingston, Canada, August 2005.

[CT06] Thomas M. Cover and Joy A. Thomas, Elements of Information
Theory, 2nd ed. New York, NY, USA: John Wiley & Sons, 2006.

[DH76] Whitfield Diffie and Martin E. Hellman, “New directions in cryp-
tography,” IEEE Transactions on Information Theory, vol. 22,
no. 6, pp. 644–654, November 1976.

[DM98] Matthew C. Davey and David J. C. MacKay, “Low-density parity
check codes over GF (q),” IEEE Communications Letters, vol. 2,
no. 6, pp. 165–167, June 1998.

[Eli75] Peter Elias, “Universal codeword sets and representations of the inte-
gers,” IEEE Transactions on Information Theory, vol. 21, no. 2,
pp. 194–203, March 1975.

[Fan49] Robert M. Fano, “The transmission of information,” Research Labo-
ratory of Electronics, Massachusetts Institute of Technology (MIT),
Technical Report No. 65, March 17, 1949.

[FB14] Ubaid U. Fayyaz and John R. Barry, “Low-complexity soft-output
decoding of polar codes,” IEEE Journal on Selected Areas in
Communications, vol. 32, no. 5, pp. 958–966, May 2014.

[Fei54] Amiel Feinstein, “A new basic theorem of information theory,” IRE
Transactions on Information Theory, vol. 4, no. 4, pp. 2–22,
September 1954.

[Gal62] Robert G. Gallager, Low Density Parity Check Codes. Cam-
bridge, MA, USA: MIT Press, 1962.

[Gal68] Robert G. Gallager, Information Theory and Reliable Communi-
cation. New York, NY, USA: John Wiley & Sons, 1968.

[Har28] Ralph Hartley, “Transmission of information,” Bell System Techni-
cal Journal, vol. 7, no. 3, pp. 535–563, July 1928.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Bibliography 547

[Huf52] David A. Huffman, “A method for the construction of minimum-
redundancy codes,” Proceedings of the IRE, vol. 40, no. 9, pp.
1098–1101, September 1952.

[HY10] Siu-Wai Ho and Raymond W. Yeung, “The interplay between en-
tropy and variational distance,” IEEE Transactions on Informa-
tion Theory, vol. 56, no. 12, pp. 5906–5929, December 2010.

[Khi56] Aleksandr Y. Khinchin, “On the fundamental theorems of informa-
tion theory (Russian),” Uspekhi Matematicheskikh Nauk XI, vol. 1,
pp. 17–75, 1956.

[Khi57] Aleksandr Y. Khinchin, Mathematical Foundations of Informa-
tion Theory. New York, NY, USA: Dover Publications, 1957.

[Knu89] Donald E. Knuth, “Typesetting concrete mathematics,” TUGboat,
vol. 10, no. 1, pp. 31–36, April 1989. Available: https://www.tug.or
g/TUGboat/Contents/contents10-1.html

[Lap17] Amos Lapidoth, A Foundation in Digital Communication, 2nd ed.
Cambridge, UK: Cambridge University Press, February 2017.

[Mas96] James L. Massey, Applied Digital Information Theory I and II,
Lecture notes, Signal and Information Processing Laboratory, ETH
Zürich, 1995/1996. Available: https://www.isiweb.ee.ethz.ch/archi
ve/massey_scr/

[MC12] Stefan M. Moser and Po-Ning Chen, A Student’s Guide to Cod-
ing and Information Theory. Cambridge, UK: Cambridge Uni-
versity Press, January 2012, ISBN: 978–1–107–01583–8 (hardcover)
and 978–1–107–60196–3 (paperback).

[Mer78] Ralph Merkle, “Secure communication over insecure channels,”
Commmunications of the Association for Computing Machin-
ery (ACM), pp. 294–299, April 1978.

[MN96] David J. C. MacKay and Radford M. Neal, “Near Shannon limit
performance of low density parity check codes,” Electronics Letters,
vol. 32, no. 18, pp. 1645–1646, August 1996, reprinted with printing
errors corrected in vol. 33, no. 6, pp. 457–458.

[Mos05] Stefan M. Moser, Duality-Based Bounds on Channel Capacity,
ser. ETH Series in Information Theory and its Applications. Kon-
stanz, Germany: Hartung-Gorre Verlag, January 2005, ISBN: 3–
89649–956–4, vol. 1, edited by Amos Lapidoth. ISBN 3–89649–956–
4. Available: https://moser-isi.ethz.ch/publications.html

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

https://www.tug.org/TUGboat/Contents/contents10-1.html
https://www.tug.org/TUGboat/Contents/contents10-1.html
https://www.isiweb.ee.ethz.ch/archive/massey_scr/
https://www.isiweb.ee.ethz.ch/archive/massey_scr/
https://moser-isi.ethz.ch/publications.html

548 Bibliography

[Mos22] Stefan M. Moser, Advanced Topics in Information Theory (Lec-
ture Notes), 5th ed. Signal and Information Processing Labora-
tory, ETH Zürich, Switzerland, and Institute of Communications
Engineering, National Yang Ming Chiao Tung University (NYCU),
Hsinchu, Taiwan, 2022. Available: https://moser-isi.ethz.ch/scripts
.html

[Pop18] “2018 World Population Data Sheet,” Population Reference Bureau,
1875 Connecticut Avenue, Washington DC, USA, Tech. Rep., Au-
gust 2018. Available: https://www.prb.org/

[PPV10] Yury Polyanskiy, H. Vincent Poor, and Sergio Verdú, “Channel cod-
ing rate in the finite blocklength regime,” IEEE Transactions on
Information Theory, vol. 56, no. 5, pp. 2307–2359, May 2010.

[RSN90] Frigyes Riesz and Béla Sz.-Nagy, Functional Analysis. New York,
NY, USA: Dover Publications, 1990.

[Şaş11a] Eren Şaşoğlu, “Polarization and polar codes,” Foundations and
Trends® in Communications and Information Theory, vol. 8,
no. 4, pp. 259–381, 2011.

[Şaş11b] Eren Şaşoğlu, “Polarization in the presence of memory,” in Pro-
ceedings IEEE International Symposium on Information The-
ory (ISIT), St. Petersburg, Russia, July 31 – August 5, 2011, pp.
189–193.

[Say99] Jossy Sayir, “On coding by probability transformation,” Ph.D. dis-
sertation, ETH Zürich, 1999, Diss. ETH No. 13099. Available: http
s://doi.org/10.3929/ethz-a-002093628

[Sha48] Claude E. Shannon, “A mathematical theory of communication,”
Bell System Technical Journal, vol. 27, pp. 379–423 and 623–656,
July and October 1948.

[Sha49] Claude E. Shannon, “Communication theory of secrecy systems,”
Bell System Technical Journal, vol. 28, no. 4, pp. 656–715, October
1949.

[ŞTA09] Eren Şaşoğlu, İ. Emre Telatar, and Erdal Arıkan, “Polarization for
arbitrary discrete memoryless channels,” in Proceedings IEEE In-
formation Theory Workshop (ITW), Taormina, Sicily, October
11–16, 2009, pp. 144–148.

[Str09] Gilbert Strang, Introduction to Linear Algebra, 4th ed. Wellesley,
MA, USA: Wellesley-Cambridge Press, 2009.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

https://moser-isi.ethz.ch/scripts.html
https://moser-isi.ethz.ch/scripts.html
https://www.prb.org/
https://doi.org/10.3929/ethz-a-002093628
https://doi.org/10.3929/ethz-a-002093628

Bibliography 549

[TA12] İ. Emre Telatar and Emmanuel A. Abbe, “Polar codes for the m-
user multiple access channel,” IEEE Transactions on Information
Theory, vol. 58, no. 8, pp. 5437–5448, August 2012.

[Tal17] Ido Tal, “A simple proof of fast polarization,” IEEE Transactions
on Information Theory, vol. 63, no. 12, pp. 7617–7619, December
2017.

[Tun67] Brian P. Tunstall, “Synthesis of noiseless compression codes,” Ph.D.
dissertation, Georgia Institute of Technology, Atlanta, September
1967.

[TV13] Ido Tal and Alexander Vardy, “How to construct polar codes,” IEEE
Transactions on Information Theory, vol. 59, no. 10, pp. 6562–
6582, October 2013.

[TV15] Ido Tal and Alexander Vardy, “List decoding of polar codes,” IEEE
Transactions on Information Theory, vol. 61, no. 5, pp. 2213–
2226, May 2015.

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

List of Figures

Chapter dependency chart . iv

1.1 Two hats with four balls each . 4
1.2 Binary entropy function Hb(p) . 10
1.3 Illustration of the IT Inequality . 11
1.4 Diagram depicting mutual information and entropy 21

2.1 Graphical proof of the Jensen Inequality 35

3.1 Example demonstrating how to maximize entropy 44
3.2 Example demonstrating how to minimize entropy 45

4.2 Basic data compression system for a single random message U 55
4.3 Definition of a binary tree . 58
4.4 A binary tree with five codewords . 59
4.5 A ternary tree with six codewords . 59
4.6 A decision tree corresponding to a prefix-free code 60
4.7 Examples of codes and its trees . 60
4.8 Extending a leaf in a ternary tree . 61
4.9 Illustration of the Kraft Inequality . 64
4.10 An example of a binary tree with probabilities 66
4.11 A binary tree with probabilities . 69
4.12 Graphical proof of the Leaf Entropy Theorem 70
4.13 A Shannon-type code for the message U 74
4.14 Another binary prefix-free code for U 75
4.17 Construction of a binary Fano code 81
4.18 Construction of a ternary Fano code 81
4.19 One possible Fano code for a random message 82
4.20 A second possible Fano code for the same random message . . 82
4.21 A third possible Fano code for the same random message . . . 83
4.22 Code performance and unused leaves 88
4.23 Improving a code by removing an unused leaf 89
4.24 Creation of a binary Huffman code 91
4.25 Different Huffman codes for the same random message 93

551 © Stefan M. Moser — IT, version 6.14

552 List of Figures

4.26 More than D� 2 unused leaves in a D-ary tree 94
4.27 Creation of a ternary Huffman code 97
4.28 Wrong application of Huffman’s algorithm 98
4.29 Construction of a binary Fano code 98
4.30 A Fano code for the message U . 99
4.32 A binary Huffman code for a message U 100
4.34 Set of all codes . 102

5.1 A coding scheme for an information source 108
5.2 Variable-length–to–block coding of a DMS 122
5.3 Two examples of message sets . 125
5.4 A proper message set for a quaternary source 126
5.5 A proper message set for a DMS . 128
5.6 Example of a Tunstall message set for a BMS 129
5.7 Tunstall message set for a BMS . 132
5.9 Quasi-proper message set. 136

6.1 A series of processing black boxes . 140
6.2 State transition diagram of a binary Markov source 142
6.3 Examples of irreducible and/or periodic Markov processes . . . 145
6.5 Transition diagram of a source with memory 147

7.1 A general compression scheme for a source with memory 155
7.2 A first idea for a universal compression system 159
7.9 An Elias–Willems compression scheme 164

8.1 Parsing with the tree-structured Lempel–Ziv algorithm 180
8.2 Parsing with the tree-structured Lempel–Ziv algorithm 181

9.1 Examples of convex and nonconvex regions in R2 184
9.2 Example of a concave function . 186
9.3 Maximum is achieved on the boundary of the region 188
9.4 Slope paradox: maximum on boundary of region 193

11.1 Most general system model in information theory 218
11.2 Binary symmetric channel (BSC) . 220
11.3 Binary erasure channel (BEC) . 221
11.4 Simplified discrete-time system model 221
11.5 Decoding regions . 229
11.6 Binary erasure channel (BEC) . 232
11.7 A Markov chain . 236
11.8 Independence of Y and X(m) for m � 2 244

12.1 The BEC is uniformly dispersive . 252
12.2 The uniform inverse BEC is uniformly focusing 253

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

List of Figures 553

12.3 Example of a strongly symmetric DMC 254
12.4 The BEC is split into two strongly symmetric DMCs 256
12.5 A weakly symmetric DMC . 259
12.6 Two strongly symmetric subchannels 259
12.7 Mutual information is concave in the input 262
12.8 Mutual information is convex in the channel law 263

13.1 Convolutional encoder . 268
13.2 Tree code . 270
13.3 Trellis code . 271
13.4 Binary symmetric channel (BSC) . 271
13.5 Decoding of trellis code . 273
13.6 Binary symmetric erasure channel (BSEC) 274
13.9 Viterbi decoding of convolutional code over BSEC 276
13.10 Detour in a trellis . 277
13.11 State-transition diagram . 280
13.12 Signalflowgraph of the state-transition diagram 281
13.13 Example of a signalflowgraph . 281
13.14 Another example of a signalflowgraph 283
13.15 Example of detours . 287

14.1 Polar transform . 292
14.2 Binary erasure channel (BEC) . 293
14.4 I(W+)� I(W�) as a function of I(W) 298
14.5 Second application of the polar transform 299
14.6 Third application of polar transform 301
14.7 Vector channel Wtot;8 . 303
14.8 Vector channel Wtot;2n . 304
14.9 Polarization of BECs . 309
14.10 Tree of recursive application of polar transform 313
14.11 Range of possible values of

�
I(W);Z(W)

�
. 320

14.12 Recursive construction of polar encoder 335
14.13 Recursive computation of likelihood ratios for successive

cancellation decoding . 339

15.1 Joint source channel coding . 354
15.2 Encoder for information transmission system 356
15.3 Lossy compression added to joint source channel coding 363

16.1 CDF of noncontinuous RV . 372
16.2 PDF of noncontinuous RV with Dirac deltas 372

17.1 The n-dimensional space of all possible received vectors 389
17.2 Joint source channel coding . 399

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

554 List of Figures

17.3 Shannon limit for the Gaussian channel 401

18.1 Sampling and replicating frequency spectrum 410

19.1 Waterfilling solution . 423
19.2 Parallel Gaussian channel with additional rotations 423
19.3 Parallel Gaussian channel with two additional rotations 425
19.4 Power spectral density of colored noise 427

20.1 A binary block–to–variable-length source compression scheme 440

21.1 System model of a cryptographic system 462
21.2 Perfect secrecy: one-time pad . 465
21.3 The key equivocation function . 469
21.4 Secret messages without key exchange 471
21.5 System model of a public-key cryptosystem: secrecy 474
21.6 System model of a public-key cryptosystem: authenticity . . . 475

A.1 The standard Gaussian probability density function 478
A.2 The Gaussian probability density function 481
A.3 Graphical interpretation of the Q-function 483
A.4 Computing 1

2 Q(�) . 485
A.5 Bounds on Q(�) . 486

B.1 Mesh and contour plot of joint Gaussian density 512
B.2 Mesh and contour plot of joint Gaussian density 513

C.1 Filtered stochastic process . 532

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

List of Tables

4.1 Binary phone numbers for a telephone system 53
4.15 The binary Shannon code for a random message U 77
4.16 The ternary Shannon code for a random message U 77
4.31 The binary Shannon code for a random message U 100
4.33 Various codes for a random message with four possible values 101

5.8 A Tunstall code . 133

6.4 Convergence of Markov source to steady-state distribution . . . 146

7.3 Example of a recency rank list . 160
7.4 Updated recency rank list . 160
7.5 Example of a default starting recency rank list 161
7.6 Standard code . 161
7.7 First Elias code . 162
7.8 Second Elias code . 163

10.1 Derivation of optimal gambling for a subfair game 210

13.7 Viterbi metric for a BSEC, unscaled 275
13.8 Viterbi metric for a BSEC . 275

14.3 Probability distribution of BEC� . 295

20.2 An example of a joint probability distribution 450

555 © Stefan M. Moser — IT, version 6.14

Index

Italic entries are to names.

Symbols
h�; �i, 533
L
=, 523
T, 9
y, 492
??, 30
(��, 235
666, 409
j � j, 12

A(n)
� , 436, 443, 454

C, 248
D(�k�), 37, 376
Eb, 399, 414
Eb=N0, 400, 414
Es, 384
b, 400
H, 6
h, 370
Hb, 9
I, 19
1f�g, 226
L1 -distance, 39, 41, 45
N0, 399
O(�), 343
O(�), 343

(�), 343
Q, 385, 482
Rx(y), 95
V (�; �), 39

A
Abbe, Emmanuel, 342
achievability part, 71
ADSL, 428
AEP, see asymptotic equipartition

property
Alajaji, Fady, xvi
Algoet, Paul H., 443
aliasing, 410
alphabet, 29
arithmetic coding, 79, 111

decoding, 120
encoding, 116

Arıkan, Erdal, xvi, 291, 292, 323,
342, 349

asymptotic equipartition property,
435, 443

for continuous random
variables, 454

joint, 446, 456
attack

chosen-plaintext, 463, 469
ciphertext-only, 463
known-plaintext, 463, 469

authenticity, 461
autocorrelation function, 524
autocovariance function, 427, 524

properties, 524
average, see expectation
AWGN, see additive white

Gaussian noise under

557

558 Index

noise

B
bandwidth, 404, 406, 413
bandwidth efficiency, 414
Barry, John R., 342
BEC, see binary erasure channel

under channel
BER, see bit error rate
Berrou, Claude, 291, 400
Bertsekas, Dimitri P., 144
Bessel Inequality, 537
betting

bookie’s strategy, 201
dependent races, 212
doubling rate, 198, 203, 210

increase, 212
Dutch book, 202
expected return, 196
fair odds, 201
growth factor, 196, 203, 210
odds, 195
optimal, 199, 207, 211, 212
proportional, 199, 211, 212
risk-free, 201
strategy, 195
subfair odds, 202
superfair odds, 202
uniform fair odds, 202

conservation theorem, 203
with side-information, 210

Bhattacharyya Bound, 231
Bhattacharyya distance, 231, 317
big-Omega notation, 343
big-O notation, 343
binary digit, 8
bit, 3, 7, 8

codeword, 267
information, 267, 363

bit error rate, 275, 362, 399
average, 285, 289
lower bound, 366, 400

minimum, 365
bit reversal permutation, 300, 305
block error probability, 226
blocklength, 221
Breiman, Leo, 443
BSC, see binary symmetric

channel under channel
BSEC, see binary symmetric

erasure channel under
channel

C
capacity, 248

information, 224, 385
Karush–Kuhn–Tucker

conditions, 264
of AWGN channel, 413
of colored Gaussian channel,

428
of DMC, 248
of Gaussian channel, 384, 387
of parallel Gaussian channel

dependent, 426
independent, 421

of strongly symmetric DMC,
254

of weakly symmetric DMC,
257

operational, 233, 388
Cauchy–Schwarz Inequality, 317
CDF, see cumulative distribution

function
Central Limit Theorem, 477
Cesáro mean, 149
chain rule, 18, 22, 375
channel, 218

additive white Gaussian noise,
404

AWGN, see additive white
Gaussian noise channel
under channel

bad, 308

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Index 559

binary erasure, 220, 232, 252,
256, 290, 293

inverse, 253
binary symmetric, 220, 254,

265, 271
binary symmetric erasure, 274
capacity, 248
child, 293
conditional probability

distribution, 219
decoder, 222
discrete-time, 218
discrete memoryless, 219
encoder, 221
Gaussian, 383

with memory, 427
good, 308
input alphabet, 219
input constraints, 384
law, 219
mediocre, 308
output alphabet, 219
parallel Gaussian, 417
perfect, 291
strongly symmetric, 254
uniformly dispersive, 251
uniformly focusing, 252
useless, 292
weakly symmetric, 255

test algorithm, 256
channel coding, 217

main objective, 227
channel coding theorem, 236, 248
channel mutual information, 295,

319
channel reliability parameter, 317,

319
concavity, 346

characteristic function, 487, 501
Chebyshev Inequality, 434
Chen, Po-Ning, xiii, xvi
ciphertext, 463
code, 54, 222

adaptive Huffman, 156
arithmetic, 111

decoding, 120
encoding, 116

block, 269
block–to–variable-length, 108
convolutional, 267
coset, 324
efficiency, 135
Elias–Willems, 164
Fano, 79
for positive integers

first Elias code, 162
second Elias code, 163
standard code, 161

Hamming, 364
Huffman, 86

binary, 90
D-ary, 96

instantaneous, 57
LDPC, see low-density

parity-check code under
code

Lempel–Ziv
analysis, 179
performance, 182
sliding window, 167
tree-structured, 178

low-density parity-check, 291,
342, 400

polar, 291, 328
prefix-free, 54, 57, 102
quality criterion, 123
rate, 226
Shannon, 76, 84
Shannon-type, 73, 84

wrong design, 86
singular, 54, 101
three-times repetition, 222
tree, 269
trellis, see convolutional code
turbo, 291, 342, 400
typicality, 440

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

560 Index

uniquely decodable, 54, 55,
101, 102

universal, 158, 166
variable-length–to–block, 122
variable-length–to–variable-

length, 134
codebook, 222, 225
codeword, 53, 55, 221

average length, 55
code-matrix, 417

coding scheme, 56, 225
efficiency, 135
for AWGN channel, 405
for Gaussian channel, 387
joint source channel, 354
rate, 226, 388

coding theorem
channel, 236
for a DMC, 248

converse, 238
for a DMS

block–to–variable-length,
109

converse, 128
variable-length–to–block,

133
for a DSS, 158

block–to–variable-length,
166

Elias–Willems, 166
for a single random message,

84
converse, 72

for a source satisfying the
AEP, 445

for the AWGN channel, 413
for the Gaussian channel, 388
for vector channels, 426
Information Transmission

Theorem, 359
joint source and channel, 359
polar coding, 328, 333
source, 109, 236

source channel coding
separation, 360

complete orthonormal system,
406, 537

compressibility, 173
compression

adaptive Huffman, 158
Elias–Willems, 166
infinite sequence, 171
information lossless, 172
sliding window Lempel–Ziv,

167
source with memory, 158
tree-structured Lempel–Ziv,

182
universal, 166, 167, 171, 178

concave function, 185
concavity, see convexity, 185
CONS, see complete orthonormal

system
convergence, 433

almost surely, 433
in distribution, 433
in probability, 32, 433
with probability one, 433

converse part, 71
convexity, 34, 184, 185, 366

of a region, 184
of mutual information, 260

convolutional code, 267
decoder, 269
encoder, 267

coset coding, 324
performance, 326

covariance matrix, 497
properties, 499

Cover, Thomas M., xiii, xv, 85,
225, 254, 258, 443

cryptography, 217, 461
attack, see attack
basic assumptions, 464
Kerckhoff Hypothesis, 464

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Index 561

public-key, see public-key
cryptography

system model, 462
cumulative distribution function,

371, 482, 522

D
data compression, 55, 155, 217,

459
optimal, 217, 356

Data Processing Inequality, 236
data transmission, 217, 459, see

also information
transmission system

above capacity, 362
delay, 233
reliable, 233

Davey, Matthew C., 291, 400
decoder

channel, 222
convolutional code, see trellis

decoder under decoder
genie-aided, 306
MAP, 228
ML, 228, 269
successive cancellation, 306
threshold, 242
trellis code, 269
typicality, 450

decoding region, 229
delay, 110, 233, 249
depth, 60
differential entropy, 370

conditional, 375
conditioning reduces entropy,

377
joint, 375
maximum entropy

distribution, 381
of Gaussian vector, 380
properties, 374

Diffie, Whitfield, 470

Dirac delta, 371, 372, 408, 409
discrete memoryless channel, 219,

353
capacity, 248
strongly symmetric, 254
symmetric, 331
uniformly dispersive, 251
uniformly focusing, 252
weakly symmetric, 255, 330

test algorithm, 256
without feedback, 222, 223

discrete memoryless source, 107
discrete multitone, 428
discrete stationary source, 140,

155, 353
encoding, 156
entropy rate, 148

discrete time, 218
dispersive, 251
distribution, see probability

distribution
multivariate, 491
univariate, 491

DMC, see discrete memoryless
channel

DMS, see discrete memoryless
source

doubling rate, 198, 201, 203, 210
fair odds, 201
increase, 212

DPI, see Data Processing
Inequality

DSS, see discrete stationary
source

E
ebno, 414
efficiency, 135
Elias, Peter, 85, 162, 163
Elias code, 162, 163
encoder

channel, 221

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

562 Index

convolutional, 267
signalflowgraph, see

signalflowgraph
state-transition diagram,

279
rate, 267
source, 55, 108
trellis code, see convolutional

encoder under encoder
energy

noise, 399
per information bit, 399, 414
per symbol, 384

entropy, 6, 147
binary entropy function, 9
conditional

conditioned on event, 13
conditioned on RV, 13

conditioning reduces entropy,
14, 377

differential, see differential
entropy

joint, 9
maximum entropy

distribution, 42, 49, 381
minimum entropy

distribution, 43, 46
more than two RVs, 17
of continuous RV, 370, see

also differential entropy
properties, 11, 13, 40, 42, 46
relative, see relative entropy
unit, 7, 8

entropy rate, 147, 148
properties, 149

ergodicity, 164
error function, 482
error probability, 226, 232

average, 226
Bhattacharyya Bound, 231
bit, see bit error rate
maximum, 226
worst case, 226

Euclid’s Division Theorem, 95,
131

event, 27
atomic, 28
certain, 27
impossible, 27

expectation, 30, 33, 497
conditional, 31
total, 32

expected return, 196

F
fading channel, 428
Fano, Robert M., 79, 86, 234, 235
Fano code, 79
Fano Inequality, 234, 235, 396

for bit errors, 367
Fayyaz, Ubaid U., 342
feedback, 222
Feinstein, Amiel, xv
FFT, see fast Fourier transform

under Fourier transform
finite state encoder, 172

analysis, 177
compressibility, 173
information lossless, 172

fish, see under friends, not under
food

focusing, 252
Fourier series, 406
Fourier transform, 407, 527

fast, 428
friends, see Gaussian distribution
FSE, see finite state encoder

G
Gallager, Robert G., xvi, 342,

400
gambling, 195
Gaussian distribution, 373, 477
Q-function, 385, 482

properties, 484, 485

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Index 563

centered Gaussian RV, 479
centered Gaussian vector, 503
characteristic functions, 488
friend, 477
Gaussian process, 525
Gaussian RV, 479
Gaussian vector, 503

PDF, 517
standard Gaussian RV, 477
standard Gaussian vector, 502
white, 533

genie, see decoder
Glavieux, Alain, 291, 400
growth factor, 196, 203, 210
guaranteed progress property, 295,

317

H
Hamming code, 364
Hamming distance, 269
Hamming weight, 269
Hartley, 7
Hartley, Ralph, 2
Hartley information, 2
Hellman, Martin E., 470
Ho, Siu-Wai, 41–43
Ho,Siu-Wai, 45
homogeneous, see Markov process
horse betting, 195
Huffman’s algorithm

for D-ary codes, 96
for binary codes, 90

Huffman, David A., 86, 87
Huffman code, 86

binary, 90
D-ary, 96

I
IID, see independent and

identically distributed
under independence

independence, 30, 33

independent and identically
distributed, 107

indicator function, 226
information, 1, 8, see also mutual

information
information lossless, 172
Information Theory Inequality, 10
information transmission system,

217, 353, see also data
transmission

Information Transmission
Theorem, 359

inner product, 533
orthonormal, 534, 535

irreducible, see Markov process
IT Inequality, 10

J
Jensen Inequality, 34, 186, 346

K
Karhunen–Loeve expansion, 538
Karush–Kuhn–Tucker conditions,

189
for betting, 204
for capacity, 264
for parallel Gaussian channels,

421
Kerckhoff, Auguste, 463
Kerckhoff Hypothesis, 464
key equivocation function, 467,

468
Khinchin, Aleksandr Y., 24, 25
KKT conditions, see

Karush–Kuhn–Tucker
conditions

Knuth, Donald E., ii
Koch, Tobias, xv
Kraft Inequality, 63
Kroupa, Tomas, 79
Kullback, Solomon, 37

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

564 Index

Kullback–Leibler divergence, see
relative entropy

L
L1 -distance, 39, 41, 45
Lagrange multiplier, 189
Landau, Edmund G. H., 343
Landau notation, 343
Lapidoth, Amos, xvi, 317, 378,

403, 404, 407, 411, 427,
521, 525, 527, 530, 532

law of large numbers, 32, 123, 212,
245, 348, 356, 435

Leaf Counting Lemma, 61
Leaf Depth Lemma, 61
Leaf Entropy Theorem, 69
Leibler, Richard, 37
Lempel–Ziv code

sliding window, 167
tree-structured, 178

analysis, 179
performance, 182

lexicographic order, 111
linear filter, 531
linear functional, 527
little-omega notation, 343
little-o notation, 343

M
MacKay, David, 291, 400
MAP, see maximum a posteriori
Markov chain, 235
Markov Inequality, 434
Markov process, 140

balance equations, 144
convergence, 146
enlarging alphabet, 141
entropy rate, 151
homogeneous, 141
irreducible, 144
normalization equation, 144
of memory �, 141

periodic, 145
specification, 143
state diagram, 142
stationary, 146
steady-state distribution, 144
time-invariant, 141, 146
transition probability matrix,

142
martingale, 315
Mason’s rule, 282
Massey, James L., xv, xvi, 9
matrix

orthogonal, 493
positive definite, 493
positive semidefinite, 493
symmetric, 491

maximum a posteriori, 228
maximum likelihood, 228
McMillan’s Theorem, 102
McMillan, Brockway, 102, 443
Mercer’s Theorem, 540
Merkle, Ralph, 470
message encoder, 55, 108
message set, 122

legal, 124, 135
optimal, 130
proper, 125
quasi-proper, 135, 136
Tunstall, 128

metric, 272
for a BSEC, 275

Minkowski, Hermann, 345
Minkowski Inequality, 345
ML, see maximum likelihood
moment generating function, 488
Moser, Stefan M., xiii, xv, xvi,

39, 40, 329, 341, 367, 375,
431, 447

mutual information, 19, 376
conditional, 22
convexity, 260
instantaneous, 241
properties, 20, 376

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Index 565

self-information, 8, 21

N
nat, 7
Neal, Radford, 291, 400
noise

additive, 383, 404
additive colored Gaussian, 427
additive white Gaussian, 404,

533
energy, 399
Gaussian, 383
whitening, 426

normal distribution, see Gaussian
distribution

Nyquist, Harry T., 406

O
odds, 195

fair, 201
subfair, 202
superfair, 202
uniform fair, 202

OFDM, see orthogonal frequency
division multiplexing

one-time pad, 464
one-way function, 472
orthogonal frequency division

multiplexing, 429
orthonormality, 534, 535

complete, 537
expansion, 538

P
PAC, see polarization-adjusted

convolutional code
packing, 364
parser, 108

block, 108, 155, 357
Tunstall, 131
variable-length, 122

Parseval’s Theorem, 529, 537
parsing, 173

distinct, 173
Path Length Lemma, 67
PDF, see probability density

function
perfect packing, 364
plaintext, 463
PMF, see probability mass

function
polar code, 291, 328

bad channel, 308
bit reversal permutation, 300
channel mutual information,

295
channel reliability parameter,

317
children channel, 293
coding theorem, 328, 333
complexity, 334
coset code, 324
frozen bits, 324
good channel, 308
matrix notation, 305
mediocre channel, 308
polarization, 299, 308, 310
polar transform, 292
speed of polarization, 323
successive cancellation

decoder, 306
ugliness, 310

polarization, 292, 299, 308, 310,
322

speed, 323
polarization-adjusted

convolutional code, 342
polar transform, 292

channel mutual information,
295

channel reliability parameter,
317

guaranteed progress property,
295

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

566 Index

reliability parameter, 317
Polyanskiy, Yury, xv
Poor, H. Vincent, xv
poplar code

polarization-adjusted
convolutional code, 342

positive definite function, 524
positive definite matrix, 493

properties, 493
positive semidefinite matrix, 493

properties, 493
power constraint

average, 384
total average, 418

power spectral density, 404, 427,
526

white, 404
prefix-free code, 54, 57, 102
probability density function, 33,

369
conditional, 33
joint, 33

probability distribution, see
probability mass function
or probability density
function

probability mass function, 28, 369
conditional, 30
joint, 29
marginal, 30

probability measure, 27
probability vector, 184

region of, 185
process, see stochastic process
prolate spheroidal function, 411,

542
proper message set, 125
proportional betting, 199, 211, 212
PSD, see power spectral density
public-key cryptography, 470

one-way function, 472
private key, 473, 474
public key, 473, 474

RSA, 475
squaring approach, 473
system model

authenticity, 475
secrecy, 474

trapdoor one-way function,
473

trusted public database, 473,
474

R
random coding, 239
randomization

private, 463
public, 463, 468

random message, 55
random process, see stochastic

process
random variable

continuous, 33, 369
discrete, 28
Gaussian, see under Gaussian

distribution
indicator, 234

random vector, 496
Gaussian, see under Gaussian

distribution
rate, 226, 232, 361, 388

achievable, 233, 388
rate distortion theory, 135, 367
recency rank calculator, 160
relative entropy, 37, 376

properties, 49
reliability parameter, 317

concavity, 346
remainder, 95
Riesz, Frigyes, 538
root, see tree or trellis
RSA, 475
RV, see random variable

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

Index 567

S
sample space, 27
Sampling Theorem, 406
Şaşoğlu, Eren, 342
Sayir, Jossy, 85, 122
secrecy, 461

computationally secure, 470
imperfect, 466
perfect, 464

one-time pad, 464
properties, 465

secret key, 463
self-information, see under

mutual information
self-similarity function, 524
Separation Theorem, 360, 459
set volume, 455
Shah-function, 409
Shannon, Claude E., 4, 24, 75,

85, 86, 232, 241, 367, 400,
406, 443, 462

Shannon–McMillan–Breiman
Theorem, 443

Shannon-type code, 73, 84
wrong design, 86

Shannon code, 76, 84
Shannon limit, 400
signal-to-noise ratio, 400, 414
signalflowgraph, 281

cofactor, 283
determinant, 282
loop, 280
Mason’s rule, 282
open path, 280
path gain, 281
transmission gain, 281

signalflowgraphs, 280
sinc-function, 406
SNR, see signal-to-noise ratio
source coding, 217
source coding theorem, 109, 236
source parser, see parser

SSS, see strict-sense under
stationarity

state-transition diagram, 279
stationarity, 140, 523

strict-sense, 140, 523
weak, 140, 523
wide-sense, 140, 523

steady-state, see Markov process
stochastic process, 139, 521

stationary, see stationarity
Strang, Gilbert, 493
successive cancellation decoder,

306
support, 6
system model, 218, 221
Sz.-Nagy, Béla, 538

T
Tal, Ido, 341, 342, 349
Telatar, İ. Emre, xvi, 323, 342,

349
Theta notation, 344
Thitimajshima, Punya, 291, 400
Thomas, Joy A., xiii, xv, 85, 225,

254, 258, 443
time-invariant, see Markov

process
toor, see trellis
total expectation, 32
total variation distance, 39
TPD, see trusted public database

under public-key
cryptography

transmission, see data
transmission

transmission gain, see under
signalflowgraph

trapdoor one-way function, 473
RSA, 475

tree, 58
branching entropy, 68, 69
depth, 60

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

568 Index

extended root, 62
extending a leaf, 61
leaf, 58
leaf entropy, 68, 69
node, 58
root, 58
unused leaf, 60, 63, 88, 92, 95
with probabilities, 65

trellis, 269
detour, 277
number of detours, 277
root, 271
toor, 271

trellis code, see convolutional
code

Tsitsiklis, John N., 144
Tunstall’s algorithm, 131
Tunstall, Brian P., 134
Tunstall Lemma, 129
Tunstall message set, 128
typicality, 431
typical sequence, 432

jointly, 447, 456
typical set, 436, 443, 454

high-probability set, 439
properties, 436, 444, 447, 455,

457

volume, 455

U
uncertainty, see entropy
unicity distance, 467, 468
uniform distribution, 371
uniformly dispersive, 251
uniformly focusing, 252
Union Bound, 243, 327
universal compression, 135, 166,

167, 171, 178, 182

V
Vardy, Alexander, 341, 342
Verdú, Sergio, xv
Viterbi algorithm, 272
volume, 455

W
waterfilling, 422
whitening, 426
WSS, see wide-sense under

stationarity

Y
Yeung, Raymond W., 41–43, 45

© Copyright Stefan M. Moser — IT, version 6.14, 14 Sep. 2023

	Preface
	Shannon's Measure of Information
	Motivation
	Uncertainty or Entropy
	Definition
	Binary Entropy Function
	The Information Theory Inequality
	Bounds on H(U)
	Conditional Entropy
	Extensions to More RVs
	Chain Rule

	Mutual Information
	Definition
	Properties
	Conditional Mutual Information
	Chain Rule

	Comments on our Notation
	General
	Entropy and Mutual Information

	Appendix: Uniqueness of the Definition of Entropy

	Review of Probability Theory
	Discrete Probability Theory
	Discrete Random Variables
	Continuous Random Variables
	Jensen Inequality

	Entropy, Relative Entropy, and L1-Distance
	Relative Entropy
	L1-Distance
	Relations between Entropy and L1-Distance
	Estimating PMFs
	Extremal Entropy for given L1-Distance
	Lower Bound on Entropy in Terms of L1-Distance

	Maximum Entropy Distribution

	Data Compression: Efficient Coding of a Single Random Message
	A Motivating Example
	A Coding Scheme
	Prefix-Free or Instantaneous Codes
	Trees and Codes
	Kraft Inequality
	Trees with Probabilities
	What We Cannot Do: Fundamental Limitations of Source Coding
	What We Can Do: Analysis of Some Good Codes
	Shannon-Type Codes
	Shannon Code
	Fano Code
	Coding Theorem for a Single Random Message

	Optimal Codes: Huffman Code
	Types of Codes
	Appendix: Alternative Proof for the Converse Part of the Coding Theorem for a Single Random Message

	Data Compression: Efficient Coding of a Memoryless Random Source
	Discrete Memoryless Source
	Block–to–Variable-Length Coding of a DMS
	Arithmetic Coding
	Introduction
	Encoding
	Decoding

	Variable-Length–to–Block Coding of a DMS
	General Converse
	Optimal Message Sets: Tunstall Message Sets
	Optimal Variable-Length–to–Block Codes: Tunstall Codes
	Efficiency of a Source Coding Scheme

	Stochastic Processes and Entropy Rate
	Discrete Stationary Sources
	Markov Processes
	Entropy Rate

	Data Compression: Efficient Coding of a Random Source with Memory
	Block–to–Variable-Length Coding of a DSS
	Elias–Willems Universal Block–To–Variable-Length Coding
	Recency Rank Calculator
	Codes for Positive Integers
	Elias–Willems Block–to–Variable-Length Coding for a DSS

	Sliding Window Lempel–Ziv Universal Coding Scheme

	Data Compression: Efficient Coding of an Infinitely Long Fixed Sequence
	Information-Lossless Finite State Encoders
	Distinct Parsing
	Analysis of Information-Lossless Finite State Encoders
	Tree-Structured Lempel–Ziv Universal Coding Scheme
	Analysis of Tree-Structured Lempel–Ziv Coding

	Optimizing Probability Vectors over Concave Functions: Karush–Kuhn–Tucker Conditions
	Introduction
	Convex Regions and Concave Functions
	Maximizing Concave Functions
	Appendix: Slope Paradox

	Gambling and Horse Betting
	Problem Setup
	Optimal Gambling Strategy
	Bookie's Perspective
	Uniform Fair Odds
	What About Not Gambling?
	Optimal Gambling for Subfair Odds
	Gambling with Side-Information
	Dependent Horse Races

	Data Transmission over a Noisy Digital Channel
	Problem Setup
	Discrete Memoryless Channels
	Coding for a DMC
	Bhattacharyya Bound
	Operational Capacity
	Two Important Lemmas
	Converse to the Channel Coding Theorem
	Channel Coding Theorem

	Computing Capacity
	Introduction
	Strongly Symmetric DMCs
	Weakly Symmetric DMCs
	Mutual Information and Convexity
	Karush–Kuhn–Tucker Conditions

	Convolutional Codes
	Convolutional Encoder of a Trellis Code
	Decoder of a Trellis Code
	Quality of a Trellis Code
	Detours in a Trellis
	Counting Detours: Signalflowgraphs
	Upper Bound on the Bit Error Probability of a Trellis Code

	Polar Codes
	Polar Transform
	Polarization
	Recursive Application of the Polar Transform
	Matrix Notation
	Are these Channels Realistic?
	Polarization
	Proof of Theorem 14.15
	Attempt on a Polar Coding Scheme for the BEC

	Channel Reliability
	Polar Coding
	Coset Coding Scheme
	Performance of Coset Coding
	Polar Coding Schemes

	Polar Coding for Symmetric DMCs
	Complexity Analysis
	Encoder
	Decoder
	Code Creation

	Discussion
	Appendix: Landau Symbols
	Appendix: Concavity of Z(W) and Proof of (14.152) in Theorem 14.20
	Appendix: Proof of Theorem 14.24
	Converse Part
	Direct Part

	Joint Source and Channel Coding
	Information Transmission System
	Converse to the Information Transmission Theorem
	Achievability of the Information Transmission Theorem
	Ergodicity
	Achievable Joint Source Channel Coding Scheme

	Joint Source and Channel Coding
	Rate of a Joint Source Channel Coding Scheme
	Transmission above Capacity and Minimum Bit Error Rate

	Continuous Random Variables and Differential Entropy
	Entropy of Continuous Random Variables
	Properties of Differential Entropy
	Generalizations and Further Definitions
	Mixed Continuous and Discrete Random Variables
	Multivariate Gaussian

	Gaussian Channel
	Introduction
	Information Capacity
	Channel Coding Theorem
	Plausibility
	Achievability
	Converse

	Joint Source and Channel Coding Theorem

	Bandlimited Channels
	Additive White Gaussian Noise Channel
	Sampling Theorem
	From Continuous To Discrete Time

	Parallel Gaussian Channels
	Channel Model
	Independent Parallel Gaussian Channels
	Optimal Power Allocation: Waterfilling
	Dependent Parallel Gaussian Channels
	Colored Gaussian Noise

	Asymptotic Equipartition Property and Weak Typicality
	Motivation
	Random Convergence
	AEP
	Typical Set
	High-Probability Sets and the Typical Set
	Data Compression Revisited
	AEP for General Sources with Memory
	General Source Coding Theorem
	Joint AEP
	Jointly Typical Sequences
	Data Transmission Revisited
	Joint Source and Channel Coding Revisited
	Typicality for Continuous Random Variables
	Summary

	Cryptography
	Introduction to Cryptography
	Cryptographic System Model
	Kerckhoff Hypothesis
	Perfect Secrecy
	Imperfect Secrecy
	Computational vs. Unconditional Security
	Public-Key Cryptography
	One-Way Function
	Trapdoor One-Way Function

	Gaussian Random Variables
	Standard Gaussian Random Variables
	Gaussian Random Variables
	Q-Function
	Characteristic Function of a Gaussian
	Summary

	Gaussian Vectors
	Positive Semidefinite Matrices
	Random Vectors and Covariance Matrices
	Characteristic Function
	Standard Gaussian Vector
	Gaussian Vectors
	Mean and Covariance Determine the Law of a Gaussian
	Canonical Representation of Centered Gaussian Vectors
	Characteristic Function of a Gaussian Vector
	Density of a Gaussian Vector
	Linear Functions of Gaussian Vectors
	Summary

	Stochastic Processes
	Stochastic Processes & Stationarity
	Autocovariance Function
	Gaussian Processes
	Power Spectral Density
	Linear Functionals of WSS Stochastic Processes
	Filtering Stochastic Processes
	White Gaussian Noise
	Orthonormal and Karhunen–Loeve Expansions

	Bibliography, Lists of Figures and Tables, and Index
	Bibliography
	List of Figures
	List of Tables
	Index

