
* Make UNIX Work *>'Youl^tf
to Make uni/» ^r fiT 1

1

MILLION

A Reference for
the Rest of Us!

\

by John R. Levine

& Margaret Levine Young
Coauthors of the Bestselling

The Internet For Dummies', 5th Edition

C

'fir

The Fun anif Easy IVay

to Get IVoifc Done /n a
UNIX System

Your First Aid Kit'

for Connecting to the

Internet with UNIX

Covers all Major Versions,

Including Berkeley UNIX,

Solaris, SunOS, and Linux

\ >«M

Digitized by the Internet Archive

in 2010

http://www.archive.org/details/unixfordummiesOOIevi

UNIX® ftr tommies ,M Edition

Copyright © 1998 Hungry Minds, Inc.

All rights reserved.

Cheat Sheet $2.95 value. Item 0419-3.

Hungry Minds~ por more information about Hungry Minds, Inc.

call 1-800-762-2974.

CO lO

c e

c c

For Dummies®: Bestsettinq Book Series (or Beginners

BESTSELLING

BOOK SERES

UNIX® For tommies®,MGMm^l
fc*

Quick list of commands
To Do This

BESTSELLER

BOOK SERIES

Are you intimidated and confused by computers? Do you find

that traditional manuals are overloaded with technical details

you'll never use? Do your friends and family always call you to

fix simple problems on their PCs? Then the For Dummies^

computer book series from Hungry Minds, Inc. is for you.

For Dummies books are written for those frustrated computer users who know they

aren't really dumb but find that PC hardware, software, and indeed the unique vocabulary of

computing make them feel helpless. For Dummies books use a lighthearted approach,

a down-to-earth style, and even cartoons and humorous icons to dispel computer novices'

fears and build their confidence. Lighthearted but not lightweight, these books are a perfect

survival guide for anyone forced to use a computer.

"I like my copyso much I told

friends;now theybought copies.

— Irene C, Orwell, Ohio

"Thanks, Ineeded this book. Now I

can sleep at night.

"

— Robin F, British Columbia, Canada

"Quick, concise, nontechnical,

andhumorous."

— JayA, Elburn, Illinois

Already, millions of satisfied readers agree. They have

made For Dummies books the #1 introductory level

computer book series and have written asking for more.

So, if you're looking for the most fun and easy way to

learn about computers, look to ForDummies books to

give you a helping hand.

Hungry Minds"

1/01

UNIX
FOR

DUMMIES
Hth edition

by John R. Levine

and Margaret Levine Young

UNIX® For Dummies® 4th Edition

Published by
Hungry Minds, Inc.

909 Third Avenue
New York, NY 10022

www. hungry mi nds . com
www . dummi es . com (Dummies Press Web site)

Copyright © 1998 Hungry Minds, Inc. All rights reserved. No part of this book, including interior design, cover

design, and icons, may be reproduced or transmitted in any form, by any means (electronic, photocopying,

recording, or otherwise) without the prior written permission of the publisher.

Library of Congress Catalog Card No.: 98-87434

ISBN: 0-7645-0419-3

Printed in the United States of America

10 9 8

40/SU/QV/QR/IN

Distributed in the United States by Hungry Minds, Inc.

Distributed by CDG Books Canada Inc. for Canada; by Transworld Publishers Limited in the United Kingdom; by

IDG Norge Books for Norway; by IDG Sweden Books for Sweden; by IDG Books Australia Publishing Corporation

Pty. Ltd. for Australia and New Zealand; by TransQuest Publishers Pte Ltd. for Singapore, Malaysia, Thailand,

Indonesia, and Hong Kong; by Gotop Information Inc. for Taiwan; by ICG Muse, Inc. for Japan; by Intersoft for South

Africa; by Eyrolles for France; by International Thomson Publishing for Germany, Austria and Switzerland; by

Distribuidora Cuspide for Argentina; by LR International for Brazil; by Galileo Libros for Chile; by Ediciones ZETA
S.C.R. Ltda. for Peru; by WS Computer Publishing Corporation, Inc., for the Philippines; by Contemporanea de

Ediciones for Venezuela; by Express Computer Distributors for the Caribbean and West Indies; by Micronesia

Media Distributor, Inc. for Micronesia; by Chips Computadoras S.A. de C.V. for Mexico; by Editorial Norma de

Panama S.A. for Panama; by American Bookshops for Finland.

For general information on Hungry Minds' products and services please contact our Customer Care Department

within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

For sales inquiries and reseller information, including discounts, premium and bulk quantity sales, and foreign-

language translations, please contact our Customer Care Department at 800-434-3422, fax 317-572-4002, or write to

Hungry Minds, Inc., Attn: Customer Care Department, 10475 Crosspoint Boulevard, Indianapolis, IN 46256.

For information on licensing foreign or domestic rights, please contact our Sub-Rights Customer Care Department

at 212-884-5000.

For authorization to photocopy items for corporate, personal, or educational use, please contact Copyright

Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, or fax 978-750-4470.

For information on using Hungry Minds' products and services in the classroom or for ordering examination

copies, please contact our Educational Sales Department at 800-434-2086 or fax 317-572-4005.

For press review copies, author interviews, or other publicity information, please contact our Public Relations

department at 317-572-3168 or fax 317-572-4168.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST

EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS OR WARRAN-
TIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFI-

CALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

THERE ARE NO WARRANTIESWHICH EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO
WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE
ACCURACY AND COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN
ARE NOT GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER NOR
AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT
NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES. FULFILLMENT OF EACH
COUPON OFFER IS THE RESPONSIBILITY OF THE OFFEROR.

Trademarks: For Dummies, Dummies Man, A Reference for the Rest of Us!, The Dummies Way, Dummies Daily, and

related trade dress are registered trademarks or trademarks of Hungry Minds, Inc. in the United States and other

countries, and may not be used without written permission. All other trademarks are the property of their

respective owners. Hungry Minds, Inc. is not associated with any product or vendor mentioned in this book. UNIX

is a registered trademark licenced exclusively through X/Open Company Ltd.

Hungry Minds- is a trademark of Hungry Minds, Inc.

About the Authors
Margaret Levine Young and John R. Levine were members of a computer

club in high school — before high school students, or even high schools,

had computers. They came in contact with Theodor H. Nelson, the author

of Computer Lib and the inventor of hypertext, who fostered the idea that

computers should not be taken seriously and that everyone can and should

understand and use computers.

Margy has been using small computers since the 1970s. She graduated from

UNIX on a PDP/1 1 to Apple DOS on an Apple II to MS-DOS and UNIX on a

variety of machines. She has done all kinds of jobs that involve explaining to

people that computers aren't as mysterious as they may think, including

managing the use of PCs at Columbia Pictures, teaching scientists and

engineers what computers are good for, and writing computer manuals and

books, including Dummies 101: The Internet For Windows 95 and Dummies
101: Netscape Navigator (with Hy Bender), Dummies 101: WordPerfect 7 For

Windows 95 and Dummies 101: WordPerfect 6.1 For Windows (with Alison

Barrows), Dummies 101: Access 97 For Windows and Dummies 101: Access For

Windows 95 (with Rodney Lowe), The Internet For Windows For Dummies
Starter Kit, MORE Internet For Dummies, WordPerfect For Windows For Dummies
(with David C. Kay), The Internet For Dummies Quick Reference, Understanding

Javelin PLUS, and The Complete Guide to PC-File. She has a degree in com-
puter science from Yale University.

John wrote his first program on an IBM 1130 (a computer roughly as power-

ful as your typical modern digital wristwatch, only harder to use) in 1967.

His first exposure to UNIX was while hanging out with friends in Princeton in

1974. He became an official system administrator of a networked computer
at Yale in 1975. He started working part-time for Interactive Systems, the

first commercial UNIX company, in 1977 and has been in and out of the

computer and network biz ever since. He put his company on Usenet so long

ago that it appears in a 1982 Byte magazine article, which included a map of

Usenet sites. He used to spend most of his time writing software, but now he

mostly writes books (including Internet SECRETS (with Carol Baroudi), The

Internet For Dummies (also with Carol Baroudi), The Internet For Dummies
Quick Reference, and MORE Internet For Dummies, (all published by IDG
Books Worldwide, Inc.) because it's more fun. He also teaches some com-
puter courses, publishes and edits an incredibly technoid magazine called

The Journal of C Language Translation, and moderates a Usenet newsgroup.

He holds a B.A. and a Ph.D. in computer science from Yale University, but

please don't hold that against him.

Dedication
John and Margy both dedicate this book to their dad, wherever he is. When
last sighted, he was traveling somewhere in Turkey, tasting wine, unless he

was at the beach in the United States — he's a man who knows how to live!

Authors' Acknowledgments
First and foremost, the authors would like to thank Jonathan Weinert for

doing most of the work of updating this book to a fourth edition. Jonathan

provided his invaluable knowledge of UNIX and the Internet, along with his

Du/77A7i/es-compatible twisted sense of humor, and not a moment too late

because we had just about run out of jokes.

The authors thank Antonia Saxon, Jordan Young, Sara Willow Levine Saxon,

Meg Young, and Zac Young for putting up with us while we updated this

book. Thanks also go to our Internet providers: Finger Lakes Technologies

Group and the Trumansburg Home Telephone Company (Trumansburg,
New York), the Shoreham Telephone Company (Shoreham, Vermont), and
SoVerNet (Bellows Falls, Vermont).

Rebecca Whitney did her usual terrific job of shepherding the text from our
hazy scribblings (electronically speaking) to a printed book with her usual

blend of patience and midnight wit, despite the best efforts of her telephone
company to consign her to a permanent offline existence. She got lots of

help, of course, from all the folks listed on the other side of this page.

Publisher's Acknowledgments

We're proud of this book; please register your comments through our Online Registration

Form located at www. dummi es . com.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Rebecca Whitney

Acquisitions Manager: Michael Kelly

Technical Editor: Tara L. Jennings

Editorial Manager: Mary C. Corder

Editorial Assistant: Paul E. Kuzmic

Production

Project Coordinator: E. Shawn Aylsworth

Layout and Graphics: Lou Boudreau,

Angela F. Hunckler, Drew R. Moore,

Brent Savage, Rashell Smith, Kate Snell

Proofreaders: Kelli Botta, Rachel Garvey,

Nancy Price, Ethel M. Winslow,

Janet M. Withers

Indexer: Sherry Massey

General and Administrative

Hungry Minds, Inc.: John Kilcullen, CEO; Bill Barry, President and COO; John Ball, Executive VP,

Operations & Administration; John Harris, CFO

Hungry Minds Technology Publishing Group: Richard Swadley, Senior Vice President and

Publisher; Mary Bednarek, Vice President and Publisher, Networking and Certification;

Walter R. Bruce III, Vice President and Publisher, General User and Design Professional;

Joseph Wikert, Vice President and Publisher, Programming; Mary C. Corder, Editorial Director,

Branded Technology Editorial; Andy Cummings, Publishing Director, General User and Design

Professional; Barry Pruett, Publishing Director, Visual

Hungry Minds Manufacturing: Ivor Parker, Vice President, Manufacturing

Hungry Minds Marketing: John Helmus, Assistant Vice President, Director of Marketing

Hungry Minds Production for Branded Press: Debbie Stailey, Production Director

Hungry Minds Sales: Roland Elgey, Senior Vice President, Sales and Marketing; Michael Violano,

Vice President, International Sales and Sub Rights

The publisher would like to give special thanks to Patrick J. McGovern,

without whom this book would not have been possible.

Contents at a Glance

Introduction /

Part I: In the Beginning 7

Chapter 1: Log Me In, UNIX! 9

Chapter 2: What Is UNIX, Anyway? 17

Chapter 3: A Few Lines on Linux 31

Part II: Some Basic Stuff 35
Chapter 4: Opening Windows on UNIX 37

Chapter 5: Files for Fun and Profit 65

Chapter 6: Directories for Fun and Profit 77

Chapter 7: The Shell Game 87

Chapter 8: Where's That File? 101

Chapter 9: Printing (The Gutenberg Thing) 113

Part III: Getting Things Done 125

Chapter 10: Writing Deathless Prose 127

Chapter 11: Umpteen Useful UNIX Utilities 151

Chapter 12: Installing Software Can Be Tricky 159

Chapter 13: Juggling a Bunch of Programs 173

Chapter 14: Taming Linux 183

Part W: UNIX and the Net 189
Chapter 15: Your Computer Is Not Alone 191

Chapter 16: Across a Crowded Network 199

Chapter 17: Automating Your Office Gossip 209

Chapter 18: Web Surfing for UNIX Users 233

Chapter 19: Turbocharge Your Newsreading 257

Chapter 20: Grabbing Files from the Net 283

Chapter 21: Now Serving the Internet 297

Part V: Help! 305
Chapter 22: Disaster Relief 307

Chapter 23: The Case of the Missing Files 311

Chapter 24: Some Programs Just Won't Die 323

Chapter 25: "My Computer Hates Me" 329

Part VU The Part of Jens 341
Chapter 26: Ten Common Mistakes 343

Chapter 27: Ten Times More Information than You Want about UNIX 347

Index 359

Book Registration Information Back of Book

Cartoons at a Glance
5# Rich Jennant

The 5th Wave

page 125

By Rich Tennant

ThcjlhWfcve

WEU-1MISH4S

paae 35
1*J£p«^STfe

"OJStsffiiBr

.RjchTennanl

J^MMk

paae 189

Cartoon Information:

Fax: 978-546-7747
E-Mail: richtennant@the5thwave.com
World Wide Web: www . the5thwa ve . com

Table of Contents
••••••••••••••••••#•••••••••••••••••••••

Introduction 1

About This Book 1

Conventions Used in This Book 2

Foolish Assumptions 2

How This Book Is Organized 2

Part I: In the Beginning 3

Part II: Some Basic Stuff 3

Part III: Getting Things Done 3

Part IV: UNIX and the Net 3

Part V: Help! 3

Part VI: The Part of Tens 4

Icons Used in This Book 4

Where to Go from Here 4

Part I: In the Beginning 7

Chapter 1: Log Me In, UNIX! 9

Turning Your Computer On and Off 9

A dumb terminal 10

The PC masquerade ball 10

If a train stops at a train station, what happens

at a workstation? 11

X marks the terminal 12

Hey, UNIX! I Want to Log In 13

Direct access 13

Yo, UNIX! — not-so-direct access 13

Logging In: U(NIX) Can Call Me Al 14

Password Smarts 15

Ciao, UNIX! 16

Chapter 2: What Is UNIX, Anyway? 17

Why Do We Ask Such Dumb Questions? 17

May a thousand UNIXes flower 17

What's GNU? 21

Jf(/f
UNIX For Dummies, 4th Edition

How Can You Tell? 22

Cracking the Shell 22

The Bourne and Bourne Again shells 23

The Korn-on-the-cob shell 24

She sells C shells 24

Are Any Good Programs On? 25

Finally! You're Ready to Work 26

We could tell you the password, but then we'd have to kill you 26

What's my file? 27

Oops! 28

Play it again, Sam 28

Everything you wanted to know about typing commands —
but were afraid to ask 29

Chapter 3: A Few Lines on Linux 31

Out of the Frozen North 31

What's Old, What's New 33

Where's Linux? 34

Part 11: Some Basic Stuff 35

Chapter 4: Opening Windows on UNIX 37

UNIX Gets All GUI 37

X marks the window 38

"I'm not just a server— I'm also a client!" 39

Just my look 40

Makeup artists for your windows 40

A field guide to window managers 41

Considerably more than you want to know about

window managers, toolkits, and X 42

Opening a new window 45

Icon do this with a picture 48

Window wrangling a la Motif 48

Switching and layering your windows 49

"Where, oh, where has my window gone?" 50

Stashing your windows 50

Curiouser and curiouser: Changing window sizes 50

Getting rid of windows 51

Motif widgets on parade 52

Menus 52

Radio buttons 53

Table of Contents JC(/ll

Toggle buttons 54

Scales or sliders 54

Option menus 54

Text boxes 55

Scrollable lists and scroll bars 55

Pushbuttons 56

CDE: A Desktop for All Seasons 56

Desktop, here we come! 58

Front and center 58

Tools you can use 59

Filing without tears 60

What's up, doc? 62

Have it your way 63

Desktop, there we go! 64

Terminal Happenings 64

Click, click 64

One last stupid xterm trick 64

Chapter 5: Files for Fun and Profit 65

What Files Do You Have? 65

Let's see the nitty-gritty details 66

Making files come out of hiding 67

Roger, I Copy 67

A good way to lose some work 68

What's in a name? 68

Nuking Files Back to the Stone Age 69

Big, big trouble 69

Good housekeeping 70

What's in a Name (Reprise) 70

Looking at the Guts of a File 71

Is This a Printout I See before Me? 72

Who Goes There? 72

Rock groups, pop groups, and UNIX groups 73

That's mine! 73

Who can do what? 73

Permissions by number 74

If Mom says no, go ask Dad 75

Finding a new owner 76

File seeks new group; can sing, dance, and do tricks 76

UNIX For Dummies, 4th Edition

Chapter 6: Directories for Fun and Profit 77

Good News for Windows and DOS Users 77

What Is a Directory? 78

Divide and Conquer 79

Paths to power 79

Family matters 80

Names for directories 81

There's No Place Like Home 81

I've been working in the directory 81

I want to go home! 83

Putting Your Ducks in a Row 83

Making directories 83

Dot and dot dot 84

Performing neat directory operations 85

Transplanting files 85

Amputating unnecessary directories 85

Renaming a directory 86

Chapter 7: The Shell Game 87

This Output Is Going to Havana: Redirection 87

Grabbing output 88

Redirecting input 89

Gurgle, Gurgle: Running Data Through Pipes 89

Gimme just a little at a time 90

The cat and the fiddle . . . er, file 90

Sorting, sort of 90

Can we get that on paper? 93

Wild and Crazy Wildcards 93

Pick a letter, any letter 93

Stars (***) in your eyes 94

Are kings or deuces wild? 94

Wildcards for DOS users 94

History Repeats Itself 95

History in the key of C 96

BASHing through commands 97

A Korn-ucopia of commands 98

Do I Have To Type the Same Things Every Time I Log In? 98

Terminal Options 100

Table of Contents XIX

Chapter 8: Where's That File? 101

The Search Is On 101

Peering into every directory 102

"Hey, I know the filename!" 102

"I know where to search (sort of)" 103

"At least I know part of the filename" 104

Remote searches 104

It's what's inside that counts 105

What to Do with Files After You Find Them 107

A File By Any Other Name 108

How can you be in two places at once when
you're not anywhere at all? 109

How to play the links 109

How to delete links 109

How to rename a link 110

How to link a bunch of files 110

How to link across the great computer divide Ill

How to make soft links (for users of Linux, UNIX BSD,

and SVR4 only) Ill

How to use soft links (for users of Linux, UNIX BSD, and

SVR4only) 112

Chapter 9: Printing (The Gutenberg Thing) 113

Printing Stuff: Daemons at Work 113

Printing in System V 114

Printing in BSD and Linux 114

Finding Your Printout 114

Printers, printers, everywhere 115

Calling all printers 115

"Help! I've Printed and It Won't Shut Up!" 117

Cancel the order, System V 117

Some final words about stopping the printer 119

Prettying Up Your Printouts 119

Titles and page numbers look so official 119

Marginally yours 120

Seeing double 121

One column can't contain me 121

Troff, Nroff, Groff! 121

Macro mania 122

Let's sneak a peek 123

Printing, for the PostScript-Challenged 123

w UNIX For Dummies, 4th Edition

Part III: Getting Things Done 125

Chapter 10: Writing Deathless Prose 127

UNIX Has Its Way with Words 127

Just the text, ma'am 128

Text formatters aren't really editors 128

Cuisinarts for text: Word processors 129

vi and emacs and pi co are your friends 130

Shy Vi, the Princess of Text Editors 130

Editor a la mode 131

Help! I need somebody! 132

Easy text-entry techniques 132

All kinds of ways to move the cursor 133

Giving your text a makeover 134

Removing unsightly text 134

Nobody undoes it better 134

Write me or save me — just don't lose me 135

Good-bye, vi 135

I just love vi ! 136

A Novel Concept in Editing: emacs Makes Sense 136

A tale of two emacs 137

Telling emacs what to do 139

Another novel concept: Type to enter text 139

Getting around in emacs 139

Making changes in emacs 140

Deleting stuff in emacs 140

Save that file before it's too late! 141

Bidding emacs adieu 141

A Peek at pi co 142

You're my type 142

You move me 143

You're a big help 143

Time for a change 144

Thanks for saving my file 144

I'm outta here 144

Talk to Mr. ed 146

Hey, Wilbur, which command was that? 147

Feeding text to Mr. ed 148

Getting Mr. ed to save your text 148

Show me the file, please 149

A miserable way to edit 149

Undo your thing, ed! 149

Time to ed out 150

Table of Contents XXI

Chapter 11: Umpteen Useful UNIX Utilities 151

Comparing Apples and Oranges 151

Assorted Files 152

Time Is Money— Steal Some Today! 154

Squashing Your Files 155

Compress without stress 155

Zippedy day-tah 156

What's in That File? 158

Chapter 12: Installing Software Can Be Tricky 159

The Software Stork 159

You've bi n had 160

You Too Can Be a Script Writer 161

How to shell a script 161

Getting your script to play 162

Running and rehashing your script 162

Borrowing Other People's Programs 165

The long way 165

The easier way 166

Using an alias 166

Using a shell script 167

Stealing Software from the Network 168

Tar pits 169

Revving up RPM 170

Sneaking Software through the Mail 171

Sneaky shar 171

Getting sneaky with uuencode 172

Making your own sneaky e-mail 172

Chapter 13: Juggling a Bunch of Programs 173

So What Is a Process, Anyway? 174

Any Processes in the House? 175

Mind your ps (and qs) 175

The Linux ps 176

Fancier ps (and qs) 176

Berkeley ps (and qs) 178

Starting Background Processes 179

The Magic of Job Control 180

Take this job and 180

. . . stick it in the background 181

. . . run it in a window in the foreground 181

. . . shove it 181

What happens when two programs try to use the terminal? 182

XXII UNIX For Dummies ' 4th Edition

Chapter 14: Taming Linux 183

Congratulations! You're a System Administrator! 183

The root of all UNIX 184

Adding a user 184

How do I turn this thing off? 185

A Pride of Linuxes 186

"I Need Help!" 187

Part W: UNIX and the Net 189

Chapter 15: Your Computer Is Not Alone 191

Finding Out Who's on Your Computer 192

Finding Out Who's on Other Computers 193

Chatting with Other People on Your Computer 195

I'm talking— where are you? 197

Can we talk? 197

Chatting with faraway folks 198

Chapter 16: Across a Crowded Network 199

On a Computer Far, Far Away 199

Telnet It Like It Is 200

3270: The Attack of the IBM Terminals 202

rl ogi n: The Lazy Man's Remote Login 202

Escaping from rl ogi n 203

Username matching for rl ogi n 203

rsh: One Command at a Time 205

rep: Blatting Files across the Network 205

NFS: You'll Never Find Your Stuff 207

What's NFS? 207

Where are those files, anyway? 208

Chapter 17: Automating Your Office Gossip 209

What You Need in Order to Use E-Mail 209

Addressing the Mail 210

Sending mail to people on your computer 210

Sending mail to people on other computers 211

Sending mail to people "out there" 211

It's dead, Jim 212

Sending Stuff Other Than Text 213

Exchanging Gossip by Using Pine 214

Into the postbox 215

Table of Contents mu
I'm pining for some mail 216

Send this file too 217

Creating your own address book 217

Saving messages 218

Looking in a folder 218

Exchanging Gossip by Using el m 219

Compose yourself 220

Headers up! 220

You send me 221

Getting a read on your mail 222

Putting your mail in folders 223

Saving your mail in text files 223

Printing your mail 224

Attaching stuff by using el m 224

Dealing with uuencoded stuff 226

Exchanging Gossip by Using ma i 1 226

Take a letter 226

What's in my mailbox? 227

Ordering mail around 228

Reading ma i 1 messages 228

Saving your letters for posterity 229

Run that by me again 229

Bye, mail 229

It Slices, It Dices — It's Netscape 229

Mail bonding with Navigator 3.0 230

Mail bonding with Communicator 4.0 231

Chapter 18: Web Surfing for UNIX Users 233

What's a Browser? 233

A Day on the Lynx 234

Coming and going 235

Anatomy of a page 235

Skating the Web 236

Handling long pages 238

Getting help 239

Where have I been? 239

Going right to a URL 241

Printing or saving good stuff 241

Fake Web pages 241

News of the weird 242

Downloading files via Lynx 243

Lynx can act like telnet too 245

xxitf UNIX For Dummies ' 4th Ed >tion

Remembering the good parts 246

Controlling your Lynx 246

Problems 248

Browsing with Pictures: Netscape 248

(Don't bother) configuring Netscape 249

Starting it up 249

Leaving 249

Jumping around the Web 250

Finding other Web pages 251

Printing, saving, or copying good stuff 252

Remembering good places 253

Searching for info 254

Files on the Web 254

Telnetting with Netscape 255

Chapter 19: Turbocharge Your Newsreading 257

How to Read So Much Electronic Gossip That You

Have No Time Left to Work 258

How Do I Read It? 259

Running trn 259

Remember your first time? 260

After the first time 260

Choosing Newsgroups to Read 261

Commanding trn 262

Picking Up the Threads 262

Reading the News 264

File It, Please 266

When Is an Article Not Really an Article? 267

Dealing with Articles That Demand a Response 269

Responding privately by e-mail 270

Possibly making a fool of yourself 271

Being Original 272

Fiddling with Your Newsgroups 273

Remembering where you've been and what you've done 273

Reading the best ones first 274

Killing Articles That Displease You 275

What's a kill file? 275

License to kill 276

Narrowing your view 277

Editing the kill file 277

New hope for the dead 278

Table of Contents ^(/

Using tin 278

Choosing newsgroups 279

Choosing and reading articles 279

Getting uuencoded and shar files out of articles 280

Leaving ti n 280

Using Graphical Newsreaders 280

Newsreading with Collabra 281

Chapter 20: Grabbing Files from the Net 283

You're a Copying Machine 284

Getting connected 284

Getting your file 284

Getting out 285

Files with Finesse 285

When is a file not a file? 285

How to foul up your files in FTP 286

The directory thicket 287

What's that name again? 288

Here's a file in your eye 290

No Names, Please 291

Hello, anonymous! 291

Great Stuff on FTP 293

A word from those etiquette ladies again 293

The FTP Hit Parade 294

UUNET 294

SIMTEL 294

WUARCHIVE 295

RTFM 295

INTERNIC 295

NSFNET 296

The list of lists 296

Chapter 21: Now Serving the Internet 297

The Internet, at Your Service 298

Serving Yourself 299

Getting Served 300

Web Servers Galore 301

Apache is king 301

Netscape is a many-splendored thing 302

A Web site named "hoohoo" 302

A cup of Java 302

Daemons Run Amok 302

A Few Tips for Webmasters 303

KX(/(UNIX For Dummies
-
4th Edition

Part V: Help! 305

Chapter 22: Disaster Relief 307

"My Computer Won't Turn On" 307

"My Mouse Is Acting Glitchy" 308

"The Network Is Gone" 308

"These Aren't My Files!" 309

Wrecked X 309

"It's Not Listening!" 309

"I Give Up" 310

Chapter 23: The Case of the Missing Files 311

How You Clobber Files 31

1

Clobbering files with rm 31

1

Clobbering files with cp, mv, and 1 n 313

Creaming files by using redirection 313

Wrecking files with text editors 314

Ways to Try to Get Files Back 314

Copies, copies, everywhere 315

Call in the backup squad 315

Thank goodness it's backed up! 318

Three Ways Not to Lose Files 319

Are you sure you wanna clobber this one? 320

Idiotproofing save files 320

Don't write on that! 321

Chapter 24: Some Programs Just Won't Die 323

Why Killing Is Sometimes Justified 323

What Process? (Reprise) 324

Fifty Ways to Kill Your Process 324

Dirty Deeds, Done Dirt Cheap 325

When X Goes Bad 327

Chapter 25: "My Computer Hates Me" 329

Arg list too long 330

Broken pipe 331

Cannot access 331

Cross-device link 331

Device or resource busy 331

Different file system 332

File exists 332

File table overflow 332

Table of Contents)C)Ctfii

File too large 332

Illegal option 333

Insufficient arguments 334

I/O error 334

Is a directory 334

Login incorrect 335

No more processes 335

No process can be found 335

No space left on device 335

No such file or directory 336

No such process 336

Not a directory 337

Permission denied 337

RE error 338

Read-only file system 338

Too many links 338

Usage 339

444 mode? (or some other three-digit number) 339

Part V\: The Part of Tens 34 1

Chapter 26: Ten Common Mistakes 343

Believing That It Will Be Easy 343

Mistyping Commands 344

To Press Enter, or Not to Press Enter 344

Working in the Wrong Directory 345

Not Keeping Backup Copies 345

Not Keeping Files Organized 345

Turning Off Your Computer 346

Writing Your Password on a Sticky Note 346

Sending Angry Electronic Mail (Flaming) 346

Chapter 27: Ten Times More Information than

You Want about UNIX 347

Let's Hear It from the man 347

Reading manual pages 349

Printing manual pages 350

Finding the manual page you want 350

It's a bird, it's a plane, it's xman! 351

Scanning the Networks 351

Your basic UNIX news 352

Just for Linux 353

On the Web 354

« « «

XXtflll UNIX For Dummies ' 4th Edition

Other Sources of Information 356

Read a magazine 356

Read a book 357

Join a user group 358

Index 359

Book Registration Information ... Back of Book

Introduction
••••••••••••••••••••••••••••••

mM/elcome to UNIX For Dummies, 4th Edition! Although lots of good

ww books about UNIX are out there, most of them assume that you have

a degree in computer science, would love to learn every strange and useless

command UNIX has to offer (and there are plenty), and enjoy memorizing
unpronounceable commands and options. This book is different.

Instead, this book describes what you really do with UNIX— how to get

started, what commands you really need, and when to give up and go for

help. And we describe it all in plain, ordinary English.

About This Book
This book is designed to be used when you can't figure out what to do next.

We don't flatter ourselves that you are interested enough in UNIX to sit

down and read the whole thing. When you run into a problem using UNIX ("I

thought I typed a command that would copy a file, but it didn't respond with

any message . . ."), just dip into the book long enough to solve your problem.

We have included sections about these kinds of things:

*> Typing commands

*> Copying, renaming, or deleting files

v* Printing files

v* Finding where your file went

*> Using the Internet from UNIX

j> Connecting and communicating with people on other computers

In this fourth edition, we've beefed up the information about Linux, a new,

widely used version of UNIX, and about the Internet, to which many UNIX
computers are connected, including a new chapter on how to host an
Internet site from your very own computer.

UNIX For Dummies, 4th Edition

Conventions Used in This Book
Use this book as a reference. (Or use it as a decorative paperweight —
whatever works for you.) Look up your topic or command in the table of

contents or the index; they refer to the part of the book in which we de-

scribe what to do and perhaps define a few terms, if absolutely necessary.

When you have to type something, it appears in the book like this:

cryptic UNIX command to type

Type it just as it appears. Use the same capitalization we do — UNIX cares

deeply about CAPITAL and small letters. Then press the Enter or Return key

(we call it Enter throughout this book). The book tells you what should

happen when you give each command and what your options are. Some-

times part of the command is in italics; the italicized stuff is a sample name,

and you have to substitute the actual name of the file, computer, or person

affected.

Chapter 25 lists error messages you may run into, and Chapter 26 lists

common user mistakes. You may want to peruse the latter to avoid these

mistakes before they happen.

Foolish Assumptions
In writing this book, we have assumed these things about you:

u* You have a UNIX computer or terminal.

j> You want to get some work done on it.

*> Someone has set it up so that, if you turn it on (in many cases, it's left

on all the time), you are talking to UNIX.

i> You are not interested in becoming the world's next great UNIX expert.

How this Book Is Organized
This book has six parts. The parts stand on their own — you can begin

reading wherever you want. This section lists the parts of the book and what

they contain.

Introduction

Part I: In the Beginning

This part tells you how to get started with UNIX, including figuring out

which kind of UNIX you're using. (You need to know this information later

because commands can differ from one type of UNIX to another.) You learn

how to log in, type UNIX commands, and ask for help. For Linux users, we
include a short chapter on what's it's all about, why Linux is cool, and how
to get more information about Linux.

Part II: Sortie Basic Stuff

Like most computer systems, UNIX stores information in files. This part

explains how to deal with files — creating, copying, and getting rid of them.

It also talks about directories so that you can keep your files organized,

finding files that have somehow gone astray, and printing files on paper.

Part III: Getting Things bone
This part talks about getting some work done in UNIX. It gives step-by-step

instructions for using the most common text editors to create and change

text files, running several programs at the same time (to get confused

several times as fast), and making your Linux system behave, and it gives

you directions for a bunch of other useful UNIX commands.

Part W: UNIX and the Net
Most UNIX systems are connected to networks, and many are connected to

the biggest network of them all: the Internet. This part prepares you for the

world of communications, including instructions for sending and receiving

electronic mail, transferring files over the network, logging in to other

computers over the Internet, and surfing on the World Wide Web. For those

of you with some intestinal fortitude, we include a new chapter on how to

have your Internet site running on your very own UNIX computer.

Part V: Help!

If disaster strikes, check this part of the book. It includes information about
what to do if something bad happens, what to do about backups, and what
to do when you see common UNIX error messages.

UNIX For Dummies, 4th Edition

Part VI: The Part of Tens

This part is a random assortment of other tidbits about UNIX, including

common mistakes and how to get online help — all organized into two
convenient ten-item lists, sort of.

Icons Used in This Book
Some particularly nerdy, technoid information is coming up, which you can
skip (although, of course, we think that it's all interesting).

A nifty little shortcut or time-saver is explained, or you get a piece of

information you can't afford to be without.

Yarrghhh! Don't let this happen to you!

\ Information that applies only if your computer is on a network. If it isn't, you
can skip to the next section.

Something presented in an earlier section of the book or something you
need to remember to do.

The friendly penguin alerts you to information specifically about Linux (see

Chapter 3 to find out what Linux is).

Where to Go from Here
That's all you need to know to get started. Whenever you hit a snag in UNIX,

just look up the problem in the table of contents or index of this book. You
will have the problem solved in a flash — or you will know to find some
expert help.

Introduction

Because UNIX was not designed to be particularly easy to use, don't feel bad
if you have to look up a number of topics before you feel comfortable using

the computer. Most computer users, after all, never have to face anything as

daunting as UNIX (point this statement out to your Windows and Macintosh
user friends)!

If you have comments about this book and your computer can send elec-

tronic mail via the Internet, you can send them to our friendly mail robot

(who will write back) at uni x4@gurus . com. (We authors also read your
message and write back if time permits.) Also visit our Web site with book
info and updates, at http://net. gurus, com. For information about the

For Dummies books in general, surf on by www . dummi es . com.

UNIX For Dummies, 4th Edition

Parti

In the Beginning

The 5th Wave
@ptflTE*Jn*a

BvRichTennant

In this pan . .

«

l^ikes! You have to learn how to use UNIX! Does this

jr mean that you're about to get inducted, kicking and
screaming, into a fraternity of hard-bitten, humorless

nerds with a religious dedication to a 25-year-old operat-

ing system from the phone company? Well, yes and no.

We hope that we're not humorless.

If you're like most UNIX users, a zealot stopped at your

desk, connected your terminal or workstation, gave you
five minutes of incomprehensible advice, demonstrated a

few bizarre games (like roaches that hide behind the

work on your screen), and disappeared. Now you're on
your own.

Don't worry. This part of the book explains the absolute

minimum you need to know to get your UNIX system's

attention, persuade it that you are allowed to use it, and
maybe even accomplish something useful.

Chapter 1

Log Me In, UNIX!
•••a

In This Chapter

Turning your computer on and getting its attention

*> Persuading your computer to let you use it

fr Using usernames, passwords, and all that

p Logging out when you finish

i
mi you read the exciting introduction to this book, you know that we make
«£ some Foolish Assumptions about you, the reader. Among other things, we
foolishly assume that someone else has installed and set up UNIX for you so

that all you have to do is turn your computer on and tell UNIX that you're

there.

If you don't have UNIX already set up on a computer, the best thing you can

do for yourself is find a local UNIX guru or system administrator who is

willing to get you up and running. Unless you really know what you're doing,

installing and setting up UNIX can be painful, frustrating, and time-consuming.

We recommend that you find something more enjoyable to do, such as

cleaning out the grease trap under your kitchen sink or performing urgent

home surgery on yourself. (You can learn how to administer a UNIX system

with some patience and perseverance, but explaining how is way beyond the

scope of this book because each version of UNIX has its own procedures.)

Turning \lour Computer On and Off
If you think that turning your computer on and off is easy, you may be
wrong. Because UNIX runs on so many almost-but-not-quite-compatible

computers — all of which work somewhat differently— you first must figure

out which kind of UNIX computer you have before you can turn it on.

/ Parti: In the Beginning

A dumb terminal

The simplest way to hook up to a UNIX system is with what's known
(sneeringly) as a dumb terminal. You can identify a dumb terminal by a

complete absence of mice and floppy disks and all that other stuff that

causes confusion in a more advanced computer. Much can be said for dumb
terminals: They're simple and reliable. With UNIX, you can do hundreds, if

not thousands, of things wrong to totally scramble a more advanced ma-
chine; these same boo-boos make no difference to a dumb terminal.

Turning on a dumb terminal is easy. You find the power switch (probably on
the back) and flip it on. Because the terminal has no pesky disks and stuff,

you can turn it on or off whenever you want and not break anything. People
make long, sort of theological arguments about whether to leave the picture

tube on all the time. Personally, we turn off our terminals overnight and
don't worry about them at other times.

After you turn on the terminal, you use it to communicate with the computer
that is running UNIX. If the terminal is wired directly to the computer, UNIX
asks you to log in before you can do anything else (see the section "Hey, UNIX!

I Want to Log In," later in this chapter). If not, you may have to perform some
additional steps to call the computer or otherwise connect to it.

The PC masquerade bad
Because PCs are so cheap these days, they're commonly pressed into duty

as terminals. You run a terminal emulator program on a PC, and suddenly the

mild-mannered PC turns into a super UNIX terminal. (Truthfully, it's more
the other way around: You make a perfectly good PC that can run Leisure

Suit Larry and other business productivity-type applications that act like a

dumb terminal that can't do much of anything on its own.)

When you finish with UNIX, you leave the terminal emulator, usually by
pressing Ctrl+X or some equally arcane combination of keys. (Consult your
local guru: No standardization exists.) Like Cinderella at the stroke of

midnight, the terminal-emulating PC turns back into a real PC. To turn it off,

you wait for the PC's disks to stop running (carefully scrutinize the front

panel until all the little red or green lights go out) and then reach around

and turn off the big red switch. If you don't wait for the lights to go out,

you're liable to lose some files.

If you have a network installed, which these days has become so cheap that

nearly everyone does, your PC running Windows may have a network con-

nection to your UNIX system. Windows 98, Windows 95, Windows NT, and
the MacOS (the Macintosh operating system) have the network stuff built in;

on Windows 3.1, however, you have to add extra network software with

names such as Trumpet or Chameleon.

Chapter 1: Log Me In, UNIX! / /

What you were hoping we wouldn't tell you: The
difference between a PC and a workstation

First, you have to understand that this isn't a

technical question — it's a theological ques-

tion. Back in the olden days (about 1980), tell-

ing the difference was easy. A workstation

had a large graphical screen— at least, large

by the standards of those days — 1,000K of

memory, a fast processor chip, and a network

connection, and it cost about $10,000. A PC

had a lousy little screen, 64K of memory, a

slow processor chip, and a floppy or two, and

it cost more like $4,000.

These days, your typical $1,200 PC has a nice

screen (much nicer than what the workstation

used to have) 16,000K of memory, a fast

Pentium processor, a big disk, speakers, and a

network connection. That's much better than

what people used to call a workstation. Does

that make a PC a workstation? Oh, no. Modern

workstations have even better screens, buck-

ets of memory, a turbocharged processor

chip— you get the idea. What's the difference?

Maybe it's the software that people use: Most

workstations are designed to run UNIX (or, in

a few cases, proprietary systems similar in

power to UNIX), whereas PCs run DOS or

Windows or Macintosh software. Wait —
some perfectly good versions of UNIX run on

PC hardware, and Windows NT runs on many
boxes that everyone agrees are workstations.

Now what? You can get into esoteric argu-

ments about the speed of the connection be-

tween the guts of the computer on one hand

and the disks, screens, and networks on the

other hand and argue that workstations have

faster connections than PCs, but some ex-

amples don't fit there, either.

As far as we can tell, if a computer is designed

to run DOS or Windows or the MacOS, it's a

PC. If it's designed to run UNIX, it's a worksta-

tion. If this distinction sounds feeble and arbi-

trary to you, you understand perfectly. Here at

UNIX For Dummies Central, we have a couple

of large PCs running UNIX (which makes
them look, to our eyes, just like workstations)

and a couple of other, smaller ones running

Windows. Works fine for us.

If you do have a network connection, you can use a program called telnet
(described in Chapter 16) to connect to your UNIX system. After telnet is

running and connected to your UNIX system, within your telnet program's
window you get a faithful re-creation of a 1970s dumb terminal and you can
proceed to log in, as described in the next section.

If a train stops at a train station,

What happens at a Workstation?

A workstation is a computer with a big screen, a mouse, and a keyboard. You
may say, "I have a PC with a big screen, a mouse, and a keyboard. Is it really

a workstation?" Although UNIX zealots get into long arguments over this

question, for our purposes, we say that it is.

I 2 Parti: In the Beginning

,*\NG

Turning on a workstation is easy enough: You reach around the back and
turn on the switch. Cryptic things that appear on-screen tell you that UNIX
is going through the long and not-at-all-interesting process of starting up.

Starting up can take anywhere from ten seconds to ten minutes, depending
on the version of UNIX, number of disks, phase of the moon, and so on.

Sooner or later, UNIX demands that you log in. To find out how, skip to the

section "Logging In: U(NIX) Can Call Me Al," later in this chapter.

Turning off a workstation is a more difficult problem. Workstations are

jealous of their prerogatives and do punish you if you don't turn them off in

exactly the right way. Their favorite punishment is to throw away all the files

related to whatever you were just working on. The exact procedure varies

from one model of workstation to another, so you have to ask a local guru

for advice. Typically, you enter a command along these lines:

shutdown +3

This command tells the workstation to shut down (in three minutes, in this

example). With some versions of UNIX, that command would be too easy.

The version we use most often uses this command:

halt

If you use Linux, type this command to shut down the system right away:

shutdown now

The workstation then takes awhile to put a program to bed or whatever else

it does to make it feel important because it knows that you're waiting there,

tapping your feet. Eventually, the workstation tells you that it's finished. At

that point, turn it off right away, before it gets any more smart ideas.

An approved method for avoiding the hassle of remembering how to turn off

your workstation is never to shut off your computer (although you can turn

off the monitor). That's what we do.

X marks the terminal

An X terminal is similar to an extremely stripped-down workstation that can

run only one program— the one that makes X Windows work. (See Chapter 4

to find out what X Windows are — or don't. It's all the same to us.) Turning

an X terminal on and off is pretty much like turning a regular dumb terminal

on and off. Because the X terminal doesn't run programs, turning it off

doesn't cause the horrible problems that turning off a workstation can

cause.

Chapter 1 : Log Me In, UNIX! /3

Hey, UNIX! I Want to Loa In

Whether you use a terminal or a workstation, you have to get the attention

of UNIX. You can tell when you have its attention because it demands that

you identify yourself by logging in. If you use a workstation, whenever UNIX
has finished loading itself, it is immediately ready for you to log in (skip

ahead to the section "Logging In: U(NIX) Can Call Me Al"). You terminal

users (X or otherwise), however, may not be as lucky.

Direct access

If you're lucky, your terminal is attached directly to the main computer, so it

immediately displays a friendly invitation to start working, something like

this:

ttyS034 login:

Well, maybe the invitation isn't that friendly. By the way, the ttyS034 is the

name UNIX gives to your terminal. Why doesn't it use something easier to

remember, like Fred or Muffy? Beats us!

This catchy phrase tells you that you have UNIX's attention and that it is all

ears (metaphorically speaking) and waiting for you to log in. You can skip

the next section and go directly to "Logging In: U(NIX) Can Call Me Al."

If your UNIX system displays a terminal name, make a note of it. You don't

care what your terminal's name is, but, if something gets screwed up and
you have to ask an expert for help, we can promise you that the first thing

the guru will ask is, "What's your terminal name?" If you don't know, the

guru may make a variety of nerd-type disparaging comments. But, if you can
say, "A-OK, Roger. That's terminal ttyl25," your guru will assume that you
are a with-it kind of user and may even try to help you. (Even if her name
isn't Roger.)

\lo, UNIX!— not-so-direct access

If you're using a PC with a modem, you probably have to tell the modem to

call the UNIX system. Although all terminal emulators have a way to make
the call with two or three keystrokes, all these ways are different, of course.

(Are you surprised?) You have to ask your local guru for info.

After your terminal is attached to the computer, turned on, and otherwise

completely ready to do some work, UNIX, as often as not, doesn't admit that

you're there. It says nothing and seems to ignore you. In this way, UNIX
resembles a recalcitrant child — firm but kind discipline is needed here.

Jh Parti: In the Beginning

The most common ways to get UNIX's attention are

v Press the Return or Enter key. (We call it the Enter key in this book, if

you don't mind.) Try it two or three times if it doesn't work the first

time. If you're feeling grouchy, try it 20 or 30 times and use a catchy

cha-cha or conga rhythm. It doesn't hurt anything and is an excellent

way to relieve stress.

v* Try other attention-getting keystrokes. Ctrl+C (hold down the Ctrl key,

sometimes labeled Control, and press C) is a good one. So is Ctrl+Z.

Repeat to taste.

j> If you're attached to UNIX through a modem, you may have to do some
speed matching (described in a minute): Press the Break key a few

times. If you're using a terminal emulator, the Break key may be dis-

guised as Alt+B or some other hard-to-find combination. Ask your guru.

Two modems can talk to each other in about 17,000 different ways, and they

have easy-to-remember names, such as B212, V.32, and V.32bis. (Bis is

French for "and a half." Really.) After you call the UNIX system's modem with

your modem, the two modems know perfectly well which way they're

communicating, although UNIX sometimes doesn't know. Every modem
made since about 1983 announces the method it's using when it makes the

connection. Because the corresponding piece of UNIX code dates from

about 1975, though, UNIX ignores the modem's announcement and guesses,

probably incorrectly, at what's being used.

If you see something like ~xxx— r .
!

" on-screen, you need to try speed

matching. Every time you press Break (or the terminal emulator's version of

Break), UNIX makes a different guess at the way its modem is working. If

UNIX guesses correctly, you see the login prompt; if UNIX guesses incor-

rectly, you see another bunch of ~xxx @(r)
!

" or you see nothing. If UNIX
guesses incorrectly, press Break again. If you overshoot and keep Breaking

past your matched speed, keep going and it'll come around again.

After a while, you learn exactly how many Returns, Enters, Breaks, and
whatnots your terminal needs in order to get UNIX's attention. It becomes
second nature to type them, and you don't even notice what a nerd you look

like while you do it. You have no way around that last part, unfortunately.

Loaqina In: U (NIX) Can Catt Me At
Every UNIX user has a username and password. Your system administrator

assigns you a username and a password. Although you can and should

change your password from time to time, you're stuck with your username.

Chapter 1: Log Me In, UNIX! /§

Before you can start work, you must prove your bona fides by logging in; that

is, by typing your username and password. How hard can it be to type two

words? Really, now. The problem is this: Because of a peculiarity of human
brain wiring, you will find that you can't enter your username and password
without making a typing mistake. It doesn't matter whether your username is

a 1 — you will type Al , 1 a, a ; L, and every other possible combination.

UNIX always considers upper- and lowercase letters to be different: If your

username (sometimes also called your login name) is egbert, you must type

it exactly that way. Don't type Egbert, EGBERT, or anything else. Yes, we
know that your name is Egbert and not egbert, but your computer doesn't

know that. UNIX usernames almost always are written entirely in lowercase.

Pretend that you're a disciple of e. e. cummings.

When you type your username and password and make a mistake, you may
be tempted to press Backspace to clear your mistake. If only life were that

easy. Guess how you clear typing errors when you type your username and
password? You press the # key, of course! (We're sure that it made sense in

1975.) Some— but not all — versions of UNIX have changed so that you can

use Backspace or Delete; you may have to experiment. If you want UNIX to

ignore everything you have typed, press @, unless your version of UNIX has

changed the command key to Ctrl+U (for untype, presumably— doubleplus-

ungood). So, Egbert (as you typed your username), you may have typed

something like this:

ttyS034 login: Eg#egberq#t

Finish entering your username by pressing Enter or Return.

After you type your username, UNIX asks you to enter your password, which
you type the same way and end by pressing Enter (or Return, but we call it

Enter). Because your password is secret, it doesn't appear on-screen as you
type it. How can you tell whether you've typed it correctly? You can't! If

UNIX agrees that you've typed your username and password acceptably, it

displays a variety of uninteresting legal notices and a message from your
system administrator (usually del ete some files, the disk is full)
and passes you on to the shell, which you learn about in Chapter 2.

If UNIX did not like either your username or your password, UNIX says

Log in incorrect and tells you to start over with your username.

Password Smarts
Like every UNIX user, you should have a password. You can get aloni

without a password only under these circumstances:

10 Part I: In the Beginning

u You keep the computer in a locked, windowless room to which you
have the only key, and it's not connected to any network.

*> You don't mind whether unruly 14-year-olds borrow your account and
randomly insert dirty knock-knock jokes in the report you're supposed
to give to your boss tomorrow.

The choice of your password deserves some thought. You want something
easy for you to remember but difficult for other people to guess. Here are

some bad choices for passwords: single letters or digits, your name, the

name of your spouse or significant other, your kid's name, your cat's name,
or anything fewer than eight characters. (Bad guys can try every possible

seven-letter password in less than a day.)

Good choices include such things as your college roommate's name mis-

spelled and backward. Throw in a digit or two or some punctuation, and
capitalize a few letters to add confusion, so that you end up with something
like yeLLasl2. Another good idea is to use a pair of words, like f at ; Head.

You can change your password whenever you're logged in, by using the

passwd program. It asks you to enter your old password to prove that you're

still who you were when you logged in (computers are notoriously skepti-

cal). Then the passwd program asks you to enter your new password twice,

to make sure that you type it, if not correctly, at least consistently. None of

the three passwords you type appears on-screen, of course. We tell you how
to run the passwd program in Chapter 2.

Some system administrators do something called password aging; this

strategy makes you change your password every once in awhile. Some
administrators put rules in the passwd program that try to enforce which
passwords are permissible, and some even assign passwords chosen
randomly. The latter idea is terrible because the only way you can remem-
ber a password you didn't choose is to write it on a Post-It note and stick it

on your terminal, which defeats the purpose of having passwords.

In any event, be sure that no one other than you knows your password. Change
your password whenever you think that someone else may know it. Because
UNIX stores passwords in a scrambled form, even the system administrator

can't find out what yours is. If you forget your password, the administrator

can give you a new one, but she can't tell you what your old one was.

Ciao, UMX!
Logging out is easy— at least compared to logging in. You usually can type

logout Depending on which shell you're using (a wart we worry about in

Chapter 2), you may have to type exit instead. In many cases, you can press

Ctrl+D to log out.

Chapter 2

What Is UNIX, Anyway?

In This Chapter

Why you care: A little boring UNIX history

How to tell which version of UNIX you have

S* How to use the UNIX shell

Shell traps and pitfalls

••

This entire chapter tells you how to figure out which kind of UNIX system

you have gotten involved with. If you really don't think that you care,

skip this chapter. As you read the rest of this book and run into places

where you need to know which kind of UNIX or shell you are using, you can

always come back here.

Why Do We Ask Such Dumb Questions?
"What is UNIX?" UNIX is UNIX, right? Not entirely. UNIX has been evolving

feverishly for close to 30 years, sort of like bacteria in a cesspool — only not

as attractive. As a result, many different varieties of UNIX have existed along

the way. Although they all share numerous characteristics, they differ (we
bet that this doesn't surprise you) just enough that even experienced users

are tripped up by the differences between versions.

May a thousand UAJIXes ftou/er

Indulge us while we tell a historical parable. Imagine that UNIX is a kind of

automobile rather than a computer system. In the early days, every UNIX
system was distributed with a complete set of source code and development
tools. If UNIX had been a car, this distribution method would have been the

same as every car's being supplied with a complete set of blueprints,

wrenches, arc-welders, and other car-building tools. Now imagine that

nearly all these cars were sold to engineering schools. You may expect that

the students would get to work on their cars and that soon no two cars

would be the same. That's pretty much what happened to UNIX.

Iq Part I: In the Beginning

Bell Labs released the earliest editions of UNIX only to colleges and universi-

ties. (Because Bell Labs was The Phone Company at that time, it wasn't

supposed to be in the software business.) From that seed, a variety of

more-or-less scruffy mutants sprang up, and different people modified and
extended different versions of UNIX.

Although about 75 percent of the important stuff is the same on all UNIX
systems, it helps to know which kind of UNIX you're using, for two reasons.

First, you can tell which of several alternatives applies to you. Second, you
can impress your friends by saying things like "HP-UX is a pretty good
implementation of BSD, although it's not as featureful as SunOS." It doesn't

matter whether you know what it means — your friends will be amazed and
speechless.

Throughout this book, we note when a command or feature being discussed

differs among the major versions of UNIX. When we talk about the popular

new Linux system, you see our cute Linux icon in the margin. We don't waste
your time with a family tree of UNIX systems. The following sections de-

scribe the most common kinds.

The two main versions of UNIX are BSD UNIX and System V. Although they

differ in lots of little ways, the easiest way to tell which one you're using is

to see how you print something. If the printing command is 1 p, you have

System V; if it's 1 pr, you have BSD. (If the command is print, you cannot be
using UNIX; nothing in UNIX is that easy.)

Here are the major types of UNIX you're likely to run into:

*> Berkeley UNIX: One of the schools that received an early copy of UNIX
was the University of California at Berkeley. Because no student's

career was complete without adding a small feature to Berkeley UNIX,

you can still see on every part of BSD UNIX the greasy fingerprints of a

generation of students, particularly a guy named Bill, about whom you
hear more later.

The Berkeley people made official Berkeley Software Distributions of

their code (named BSD UNIX) and gave numbers to its versions. The
most widely used versions of BSD UNIX are Versions 4.3 and 4.4.

Berkeley graduates fanned out across the country, working for and
even starting new companies that sell descendants of BSD UNIX,

including Sun Microsystems (which markets SunOS and Solaris),

Hewlett-Packard (HP-UX), Digital Equipment (Ultrix), and IBM (AIX).

Most workstations run some version of BSD UNIX.

*> Post-Berkeley BSDs: Shortly before 4.4BSD came out, the folks at

Berkeley realized that they had made so many changes to BSD over the

years that practically none of the original Bell Labs code was left.

Several groups quickly rewrote the missing 1 percent, adapted the BSD
code for 386 and newer PC-compatible machines, and made all the code

Chapter 2: What Is UNIX, Anyway? / ^

available over the Internet. Three projects (called FreeBSD, OpenBSD,
and NetBSD) continued to improve and update the freely available BSD,

and a company called Berkeley Software Design offers a commercially

supported version of BSD/OS.

*> System V: Meanwhile, back at The Phone Company, legions of program-

mers were making different changes to UNIX. They gave their versions

of UNIX Roman numerals — which are classier than plain ol' digits.

Their current version of UNIX is known as System V. The many subver-

sions of System V are known as System V Release 1 (SVR1) and SVR2,

SVR3, and SVR4. Most nonworkstation versions of UNIX are based on
System V or, occasionally, its predecessor, System III. (What happened
to System IV? Not ready for prime time, we guess.)

Sun Microsystems, from the BSD camp, and AT&T, of the System V
camp, decided to bury the hatchet and combine all the features of BSD
and System V into the final incarnation of System V, SVR4. SVR4 has so

many goodies that it's only slightly smaller than a blimp. If your system

runs SVR4 or its descendants, you have to pay attention to our hints

about both BSD and System V. The last version of SVR4 was SVR4.4.

(Where do they get these numbers?) System V was eventually sold to

Novell (the NetWare people), which retitled it UNIXWare. Novell eventu-

ally sold it to a Microsoft affiliate called the Santa Cruz Operation

(better known as SCO), which retitled it UnixWare (don't ask).

Helpful advice to Sun users: Although Sun changed the name of its

software from SunOS to Solaris, it didn't change the way the software

worked (at least in Solaris 1.0, which is still a BSD-flavored UNIX). If you
use Solaris 1.0, follow the instructions for BSD UNIX. Because Solaris 2.0

is based on SVR4, however, you have to worry about both BSD and
System V. Is this stuff clear? We're still confused about it.

O OSF/1: When System V and BSD UNIX merged to form SVR4, many UNIX
vendors were concerned that, with only one version of UNIX, the

market confusion would be insufficient. They started the Open Software

Foundation, which makes yet another kind of UNIX: OSF/1. Although
OSF/1 is mostly BSD, it is also a goulash of some System V and many
other miscellaneous eyes of newts and toes of frogs.

OSF/1 has largely disappeared; if you use OSF/1, however, pay attention

to the BSD advice in this book, and you should be okay.

W Linux: Without a doubt, the most surprising UNIX development in

recent years has been the appearance— seemingly from nowhere (but
actually from Finland) — of Linux, a rather nice, freely available version

of UNIX. Linux is such a big deal that we devote an entire chapter to it

(the next one, in fact). Chapter 14 also has stuff about Linux for those

brave souls who run their own Linux systems.

Linux resembles SVR4 as much as it resembles any other version of

UNIX.

20 Parti: In the Beginning

Why you should fight rather than switch

The question "Which is better: UNIX or

Windows NT?" has sparked a religious war
between UNIX crusaders and the high priests

of marketing at Microsoft Corporation.

Microsoft would have you believe that NT, its

industrial-strength version of Windows, is a

snazzy new alternative to UNIX, a tired old

system that wore out its welcome in the last

days of disco. According to Microsoft, UNIX

is expensive and impossible to use without a

degree in computer science. NT is cheaper

and easier to use, and, because it's a

Microsoft product, it's just plain better. So

you should junk your UNIX computers and re-

place them with NT servers and workstations

right now, before it's too late! (If we were

cynical, we would point out that Microsoft has

no UNIX version of its own to sell. But we're

not cynical. Are we?)

In spite of rather extravagant Microsoft

claims of NT superiority, the evidence is de-

cidedly mixed. Although many businesses

seem to have made the switch from UNIX to

NT successfully, they're usually on the small- to

medium-size end of the spectrum. If you have

to support a large company that depends on

an extensive network to handle high

volumes of traffic and to serve critical appli-

cations and information, you're much better

off sticking with UNIX.

In case your system administrator is consider-

ing making an ill-advised switch from UNIX

servers to NT servers, here are a few points

you should try to work in during your next

conversation at the company water cooler.

NT servers tend to go down— stop working

properly for one reason or another — fairly

regularly. UNIX servers, on the other hand,

tend to work perfectly for months on end. Run-

ning your company's phone sales department

on an NT server means running the risk of

cutting off all your callers until you can get

your server to reboot, or recover from one of

its little episodes.

According to various independent reports,

more NT security bugs (problems with the way
the system behaves) than UNIX bugs get re-

ported every week. NT simply doesn't have

the built-in security and permissions features

that UNIX has always had.

As far as processing power goes, NT can't

hold a candle to UNIX. NT servers now have a

four-processor limit, although UNIX machines

can handle many, many more. UNIX can

handle larger files, and its architecture pro-

vides as much as 4 billion times more data

space than NT (yup, we said billion). In prac-

tice, this statement means that you have to

replace each of your UNIX machines with mul-

tiple NT machines to maintain the same
amount of computing power.

Which brings us to the question of cost. Al-

though individual NT servers may be cheaper

than individual UNIX servers, the apparent

price advantages quickly evaporate when you

consider the number of servers you need and

the cost of administering and maintaining

them, not to mention hidden costs from server

downtime and data loss.

We could go on (and if you want to meet us

over a couple of beers, we certainly will). Suf-

fice it to say that the Microsoft rumors about

the imminent death of UNIX have been greatly

exaggerated.

Oh, and by the way, UNIX stills leads the way
when it comes to serving Web sites. The Apache

server, which we discuss in Chapter 21, is

still the most widely used Web server in the

world today. And it doesn't cost much. In fact,

it's free.

Chapter 2: What Is UNIX, Anyway? 2 1

V XENIX: A few older versions of UNIX just won't die. The most notable

version is XENIX, originally from Microsoft Corporation and later sold

by the aforementioned SCO. XENIX is considered hopelessly obsolete. It

occupies much less disk space than do more modern versions of UNIX,

and it runs much faster. (To be fair, it's missing some of the more
modern versions' zoomy features, although you're not likely to notice.)

Because XENIX is based on one of the ancestors of System V, most

System V advice applies to XENIX. SCO has now moved most of its

XENIX customers to UnixWare, which is based on System V.

What's GNU)
No tour of UNIX versions is complete without a visit to the Free Software

Foundation, in Cambridge, Massachusetts (not to be confused with the OSF,

Open Software Foundation, which is about six blocks down the street). The
FSF was founded by a brilliant but quirky programmer named Richard

Stallman, who came from MIT, where people wrote lots and lots of software

and gave it all away. He firmly (some would say fanatically) believes that all

software should be free, and he set up the FSF to produce lots of high-

quality free software, culminating in a complete, free version of UNIX.

Despite quite a bit of initial skepticism, the FSF has raised enough money
and been given and lent enough equipment to do just that. The FSF's project

GNU (for GNU's Wot (7NIX) has so far produced versions of most of the UNIX
user-level software. The best known and most widely used pieces are the

text editor GNU Emacs (which we discuss in Chapter 10), most of the other

basic UNIX utilities, and the GNU C compiler (GCC), which is now used on all

the free versions of UNIX, including Linux, as well as on a few commercial

ones.

The GNU crowd continues to work on new stuff, including its piece de

resistance, the GNU Hurd, a complete working version of the guts of the UNIX
system. Early on, fans of free software awaited the GNU Hurd with great

eagerness; now that Linux and the freely available BSD versions have

arrived, however, their eagerness has abated somewhat. Hurd or no Hurd,

GNU Emacs, GCC, and the GNU utilities are here to stay.

What the FSF means by "free" software is a little different from what you may
expect: It means freely available, not necessarily available for free. It means
that if you can find someone willing to pay you a million bucks for some
GNU software, that's perfectly okay. That person, and anyone else to whom
you give or sell GNU software, however, must be free to give or sell it, in

turn, to other people without restriction. The intention is that people can

make money by supporting and customizing software, not by hoarding it.

Although opinions vary about the long-term practicality of this plan, for now
the FSF surely has written some popular software, and at least one company,
Cygnus Support, makes a good business supporting it.

22 Parti: In the Beginning

How Can j/ou Tett>

When you log in to your UNIX system, a variety of copyright notices usually

flash by, with an identification of the type of UNIX you are accessing. Care-

fully scrutinize the information on-screen, and you may be able to tell which
version you have.

Another approach is to type the command uname and press Enter. Some-
times this command displays the name of your computer (such asaardvark
or acctg3). Sometimes, however, the command displays the version of UNIX
you are running. On Linux systems, it says Li nux.

If you can't tell which UNIX version you have, break down, grovel, and ask

your local UNIX expert. When you figure out which type of UNIX you are

running, write it down on the Cheat Sheet in the front of this book. You
never know when you may need to know this stuff.

If you're using a dumb terminal or an X terminal (or a PC acting like a dumb
terminal or connected to your UNIX system by means of a network), the

type of UNIX you're using depends on the maker of the main computer
you're attached to — not on the maker of the terminal. You generally see the

identification of the main computer in a message it sends to the terminal

just before or just after you log in.

Cracking the Shell

Now that you have figured out which general variety of UNIX you have, you
must figure out one other vital consideration: which shell you're using.

Although you may say, "I don't want to use any shell; I just want to get some
work done," the shell is the only way to get to where you want to be.

The guts of UNIX are buried deep in the bowels of the computer. The guts don't

deign to deal with such insignificant details as determining what users may
want to do. That nasty business is delegated to a category of programs known
as shells. A shell is a program that waits for you to type a command and then

executes it. From the UNIX point of view, a shell is nothing special, other than

the first program UNIX runs after you log in. Because you can designate any

old program to run when you log in, any fool can write a shell — indeed, many
have done so. About a dozen UNIX shells are floating around, all slightly

incompatible with each other (you probably guessed that).

Fortunately, all the popular shells fall into two groups: the Bourne (or Korn
or BASH) shell and the C shell. If you can figure out which of the two categories

your shell is in, you can get some work done. (You're getting close!)

Chapter 2: What Is UNIX, Anyway? 23
$£%&>

You can disregard this discussion

about the true nature of shells

What UNIX calls a shell, many other people—
especially DOS users— call a command pro-

cessor. What DOS users call a shell is a fancy

graphical program that is supposed to make

the computer easier to use by displaying cute

little icons for programs and files and other

such user-friendly goodies.

Because the people who wrote UNIX didn't go

for all this wimpy, fru-fru, hand-holding stuff,

their idea of a shell was a program in which

you could type zq to run a program called zq.

(These guys were notoriously lazy typists.) Al-

though user-friendly shells are available for

UNIX, they're not widely used, and we don't

mention them again in this book.

If a Windows or Macintosh fanatic says rude

things about the UNIX shell, you can respond

that, although UNIX may be somewhat chal-

lenging to use, as a UNIX user, at least you're

not a wimp.

You can easily tell which kind of shell you're using. If UNIX displays a $ after

you log in, you have a Bourne-style shell; if UNIX displays a %, you're using

the C shell. Traditionally, System V systems use the Bourne shell, and BSD
systems use the C shell. These days, however, because all versions of UNIX
come with both shells, you get whichever one your system administrator

likes better. Preferences in command languages are similar to preferences in

underwear: People like what they like, so you get what you get, although

these days most of the people we know like BASH, a souped-up Bourne-style

shell.

Linux systems usually come with the BASH shell, a Bourne-style shell.

After you have determined whether you have a Bourne-style shell ($) or a C
shell (%), note this fact on your Cheat Sheet in the front of this book.

If you use a GUI (see Chapter 4), you see windows and icons, not a boring

little UNIX prompt, after you log in. You still need to use a UNIX shell from
time to time, however, usually to perform housekeeping tasks.

The Bourne and Bourne Aqain shells

The most widely used UNIX shell is the Bourne shell, named after Steve

Bourne, who originally wrote it. The Bourne shell is on all UNIX systems. It

prompts you with $, after which you type a command and press Enter. Like

all UNIX programs, the Bourne shell itself is a program, and its program
name is sh. Clever, eh?

2u Parti: In the Beginning

A few alternative versions of the original Bourne shell exist, most notably

the Bourne Again shell (or BASH, whose program name is bash) from the

GNU crowd. This version of the Bourne shell is used in many places because
of its price— it's free. Some people claim that it's still overpriced, but we
don't get into that. BASH is enough like the original Bourne shell that

anything we say about the Bourne shell applies also to BASH. The most
notable advantage of BASH is that it has "command editing," a fancy way of

saying that you can press the arrow keys on your keyboard to correct your
commands as you're typing them, just as you can with DOS (oops, better not

say that when any UNIX fans are listening).

The Kom-on-the-cob shell

After the Bourne shell was in common use for a couple of years, it became
apparent to many people that the shell was so simple and coherent that

one person could understand all its features and use them all effectively.

Fortunately, this shameful situation was remedied by a guy named Dave
Korn, who added about a thousand new features to the Bourne shell and
ended up with the Korn shell (called ksh). Because most of the new features

are of interest only to people who write shell scripts (sequences of shell

commands saved in a file), you can consider the Korn shell the same as the

Bourne shell. Most versions of the Korn shell also have command editing.

She setts C shetts

No, the C shell wasn't written by someone named C. It was written by Bill,

the guy we mentioned earlier. (He sells C shells by the C shore? Probably.)

We would discuss our opinion of the C shell at length, except that Bill is 6'4",

in excellent physical shape, and knows where we live. The C shell's program
name is csh.

The most notable difference between the C shell and the other leading shell

brands is that the C shell has many more magic characters (characters that

do something special when you type them). Fortunately, unless you use a

number of commands with names like ed ! 3x, these characters aren't a

problem.

Many versions of the C shell exist; most of them differ in which bugs are

fixed and which are still there. You may run into a program called tcsh, a

slightly extended C shell with command editing.

Chapter 2: What Is UNIX, Anyway? 25
tf^Sfe

Who says the C shell isn't user-friendly?

If you use the C shell, be aware that some

punctuation characters do special and fairly

useful things.

An exclamation point (!) tells the C shell to do

a command again. Two of them (! I) means to

repeat the last command you typed. One of

them followed by the first few characters of a

command means to repeat the last command
that started with those characters. For ex-

ample, to repeat the last cp command you

gave, type

!cp

This command is great for lazy typists.

You can also use carets (

A
) to tell the C shell to

repeat a command with some change. If you

type this line:

A old A new

the C shell repeats the last command, substi-

tuting "new" for "old" wherever it appears in

what you typed. You can use slashes (/) in a

similar way, although carets are easierto use.

The C shell also uses colons (:) to perform

truly confusing editing of previous commands,

which we don't get into.

In Chapter 7, the section about history's re-

peating itself tells you more about reissuing

shell commands.

Are Any Good Programs On)
You may be wondering why we refer sometimes to commands and some-
times to programs. What's the difference?

A command is something you type that tells UNIX (or actually the shell)

what to do. A program is a file that contains executable code. The confusion

comes because in UNIX, to run a program, you just type its name. (In old-

fashioned operating systems, you usually typed something like RUN

BUDGET_ANALYSIS to run a program called BUDGET_ANALYSIS.)

When you type a command, such as Is or cp or emacs (a text editor we talk

about in Chapter 10), the shell looks at it carefully. The shell knows how to

do a few commands all by itself, including cd and exi t. If the command isn't

one that the shell can do by itself, the shell looks around for a program
stored in a file by the same name.

DOS users may recognize the way this process works — commands DOS can

do itself are called internal commands, and commands that require running

another program are called external commands. Internal commands are also

called built-in commands.

2^ Parti: In the Beginning

Finally! l/ou're Ready to Work
We wrap up this chapter with a little advice about hand-to-hand combat
with the shell. You can give many commands to your shell. Every shell has

about a dozen built-in commands, most of which aren't very useful on a

day-to-day basis. All the other commands are the names of other programs.

The fact that every UNIX system has hundreds of programs lying around

translates into hundreds of possible shell commands.

One nice thing about UNIX shells is that, within a given shell, the way you
type commands is completely consistent. If you want to edit a file called

my - c a 1 e n d a r , for example, and use an editor called e
,
you type this line:

$ e my-calendar

As always, press Enter at the end of the line to tell the shell you have

finished. The shell runs the e editor, which does whatever it does. When you
finish, you return to the shell, where you can issue another command.

Whenever you see a UNIX prompt (either $ or %), a shell is running, waiting

to do your bidding. Throughout this book, we usually refer to the entire

package — UNIX plus shell — as UNIX. We say, "Use the 1 s command to get

UNIX to display a list of files" rather than "Use the 1 s command to get the

shell to get UNIX to display a list of files." Okay?

Now you know which kind of UNIX you are using, which shell you are using,

and why you care. Let's look at a few UNIX (or shell) commands you can use

to begin getting something done.

We could tetl you the password,

but then We'd hatfe to kill you
When you logged in, you probably hated your password because someone
else picked it. Hating your password is a good reason to change it. Another

reason you may want to change it is that, to get this far, you enlisted the aid

of some sort of expert and had to reveal your password. This section shows
how to change your password: Use the passwd command.

This stuff is easy. Just type this line:

passwd

Chapter 2: What Is UNIX, Anyway? 2 7

Ending command lines without hard feelings

Remember to end every command line by

pressing Enter. UNIX is pretty dumb; in most

cases, your pressing Enter is the only way
UNIX can tell that you have finished doing

something.

With a few programs, notably the text editors

vi, pi co, and emacs, you don't need to press

Enter anywhere; we point out those excep-

tions. Everywhere else, remember to press the

Enter key at the end of every line.

A\NG/

As always, press Enter after typing the command. The passwd command
asks you to type your current password to make sure that you are really

you. (If it didn't check, whenever you wandered off to get some more coffee,

someone could sneak over to your desk and change your password. Not

good.) Type your current password and press Enter. The password doesn't

appear on-screen as you type, in case someone is looking over your shoulder.

Then passwd asks for your new password. (Chapter 1 has lots of sage advice

about how to choose a password.) You have to type the new password twice

so that passwd is sure that you typed it correctly. Assuming that you type

the new password twice in the same way, pa s swd changes your password.

The next time you log in, you are expected to know it.

If you forget your password, you have no way to retrieve it; not even your
system administrator can tell you what it is. The administrator can assign

you a new one, though, and you can change it again, preferably to something
more memorable than the one you forgot.

What's my file)

This section discusses a command you use frequently: the 1 s command,
which lists your files. Chapters 5 and 6 talk more about files, directories, and
other stuff 1 s helps you with; for now, here's 1 s Lesson 1. Type the following

line (we're not telling you to press Enter anymore because we know that you
have the hang of it):

Is

The 1 s command lists the names of the files in the current directory.

(Chapter 6 talks about directories.)

2o Parti: In the Beginning

^\N6/

Don't turn off the computer if you make a typo!

To repeat something we have hinted at: If you

make a mistake and all is not going well, do

nor turn off the computer, unplug it, or other-

wise get unnecessarily rough. Although PC

users get used to just turning the darned thing

off if things aren't going well, UNIX computers

don't respond well to this approach.

Instead, suggest politely to UNIX that it stop

doing whatever it is you don't like. To stop a

command, press Ctrl+C, or, on some systems,

the Break key or the Del key.

If the situation is out of control, UNIX is run-

ning a program you don't want, and you can't

get itto stop, you can use some Advanced and

Obscure Techniques to wrestle extremely re-

calcitrant programs into line. See Chapter 24 if

you're desperate.

Oops!

If you are a world-class typist, you can skip this section. If you make thou-

sands of typos a day, as we do, pay close attention. If you type something

wrong, you can probably press the Backspace key to back up and retype it.

If that doesn't work, though, all is not lost. Try the Delete key, the # key

(Shift+3), or Ctrl+H. One of these combinations should work to back you up.

To give up and start the entire line over again (not usually necessary with

nice, short commands, such as 1 s), press Ctrl+U. If that doesn't work, press

the @ key (Shift+2).

Play it again, Sam
Sometimes, you may want to issue the same command again (because it

was so much fun the first time). If you use the C shell, type this line:

1

1

If you use the BASH shell, press the up-arrow key to see the last command
you typed and then press Enter.

In the Korn shell, you can type this line to reissue a command:

If you use the Bourne shell, you're out of luck and must type your command
again.

Chapter 2: What Is UNIX, Anyway? 29

The UNIX cast of special characters

One of the more exciting aspects of typing

shell commands is that many characters are

special. They have special meanings to UNIX;

the next few chapters discuss some of them.

Special characters include the ones in this

list:

< > ' *

E] # |
&

() $? ~

Spaces also are considered special because

they separate words in a command. If you

want to put special characters in a command,

you must quote them. You quote something by

putting quotation marks around it. Suppose

that you have a file called c* (not a great idea,

but sometimes you get these things by mis-

take). You can edit it by typing

You can use either single or double quotation

marks, as long as you're consistent. You can

even quote single quotation marks with double

quotation marks and quote double quotation

marks with single quotation marks. Is that

clear? Nevermind.

Everything you Wanted to knovO

about typinq commands—
but Were afraid to ask
This list shows a wrap-up of what to do when UNIX displays a prompt
(either $ or %) and you want to type a command:

u As you type, the cursor moves along to indicate where you are. The
cursor looks like an underline or a box.

i> If you make a typing mistake, press Backspace (or try Delete, #, or

Ctrl+H).

u To cancel the entire command before you press Enter, press Ctrl+U (or

try @).

u When you finish typing a command, press Enter. (If you don't, UNIX—
and you— will wait forever.)

v If you issue a command that UNIX (actually, the shell) doesn't know,
you see a message like this:

blurfle: Command not found.

3 Part I: In the Beginning

This message means that you typed the command wrong, you typed a

command that UNIX doesn't know (maybe a DOS command crept in), or

someone hasn't told UNIX the right places to look for programs.

*> Don't stick extra spaces in the middle of commands, as in pass wd.

Type the command exactly as we show it. On the other hand, do type a

space after the name of the command but before any additional infor-

mation you have to type on the line (read more about that subject in

Chapter 5). Also, do not capitalize except where you know that the

command has a capital letter.

i> You know that a command resembles a sentence, but you don't end it

with a period. UNIX doesn't like the period, and UNIX is extremely

unforgiving.

Chapter 3

A Few Lines on Linux
••••••••••••••••••••

In This Chapter

I? What is Linux?

I* Why should you care?

••••••••••••••••••••••••••••A**

m inux is the hottest thing to arrive in UNIX-land in years: a wildly popular,

A^completely free version of UNIX. It is (quite deliberately) similar to

other versions of UNIX; for the most part, then, everything in this book that

applies to other versions of UNIX also applies to Linux.

Out of the frozen North
In 1992, a guy in Finland named Linus Torvalds took a then-popular, small,

educational version of UNIX called Minix, decided it wasn't quite what he
wanted, and proceeded to rewrite and extend it so that it was more to his

taste. Lots of enthusiastic programmers have started projects like that, but

to everyone's astonishment, Linus actually finished his. By mid-1993, his

system had long since left its Minix roots and was becoming a genuinely

usable version of UNIX. Linus's system was picked up with great enthusiasm
by programmers, and later by users, all over the Internet. It spread like

crazy, to become the fastest-growing part of UNIX-dom.

Linux is popular for three reasons:

j> It works well, even on a small, cheap PC. A 386 PC with 4 MB of random-
access memory (RAM) and a 40MB hard disk can run Linux— barely.

(John bought a computer like that for less than $500, new, from a dealer

who had ordered more than he needed.) On a top-of-the-line Pentium
PC, its performance approaches that of a full-blown traditional UNIX
workstation.

i> Lots of enthusiastic people are working on Linux, with wonderful new
features and additions available every day. Many of them even work.

v It's free!

32 Parti: In the Beginning

The many developers of Linux proudly describe it as a "hacker's system,"

one written by and for enthusiastic programmers. (This classic meaning of

hacker should not be confused with the other, media-debased "computer
vandal" definition.) These programmers keep up the development of Linux

at a brisk pace, and a new "development" version is made available on the

Internet every few days. Every once in awhile, the developers decide that

they have gotten enough bugs out of their recent developments, and they

release a "stable" version, which stays constant for months rather than

days. Most normal people use the stable version rather than a development
version. Using a development version of Linux is sort of like living in a house
inhabited by a large family of carpenters and architects: Every morning
when you wake up, the house is a little different. Maybe you have a new
turret, or some walls have moved. Or perhaps someone has temporarily

removed the floor under your bed. (Oops — sorry about that.)

Linux started life as the operating system of choice for students and other

cheapskates, er, users who wanted a UNIX system of their own but couldn't

afford a traditional UNIX workstation. As Linux has matured into a stable,

reliable UNIX system, this base has expanded to include companies and
institutions that could afford traditional UNIX workstations, but found that

How free is free?

Linux is free software. In the UNIX software

biz, "free" has a concrete meaning that is dif-

ferent from public domain and different from

shareware.

Linux is made available under the GNU Gen-

eral Public License (GPL), Version 2, the same
license the Free Software Foundation uses for

most of its programs. The license has seven

pages of legalese, much of which is about

where copyright notices have to appear and

stuff like that, but the basic plan is simple. In

short, it says:

i> You can copy and distribute Linux and other

GPL software, and you can charge for it.

j> But, anyone to whom you distribute it has

the right to give copies away for free.

v* And, you must include the source code (or

make it available for no more than a repro-

duction fee) in the distribution.

The idea is that people are permitted, even

encouraged, to distribute copies of GPL soft-

ware and to sell maintenance service, as long

as the software itself remains freely available.

Don't confuse free software with shareware,

which is software for which you are supposed

to pay the original author if you use it, or with

public domain software, with which you can

do anything you want.

Although the GPL was subject to considerable

debate and a fair amount of ridicule when it

first came out in about 1990, it has worked

pretty much the way its authors intended: GPL

software (including Linux) is widely available,

and people do indeed constantly work on and

improve it.

Chapter 3: A Few Lines on Linux jj

Linux enabled them to add PC-based workstations at a fraction of the cost.

In fact, Linux is now estimated to have more than 6 million users, making it

the third most popular operating system in the world (behind Windows and

the Macintosh operating system).

What's Old, What's NevO
The original guts of Linux were written from scratch by Linus Torvalds and

have since been greatly changed and extended by other people. He based

Linux more or less on System V (on descriptions of System V; there's no code
from System V). Most programs that people actually use (the shells and
other commands) come from the GNU project, which modeled most of them
after the Berkeley UNIX versions, so most of the commands are BSD-ish.

Because the networking programs are adapted from the Berkeley ones, they

also are all BSD-ish.

Technically speaking, Linux refers only to the operating system "kernel."

When most people refer to a Linux system, though, they usually mean the

whole package: operating system plus the GNU programs that come with it.

Like all UNIX systems, Linux systems can run various shells, editors, and
other software. Most versions of Linux use BASH as the default shell be-

cause it's also new and snazzy.

Keep in mind that because Linux is a moving target, with frequent improve-

ments to the programs, the version of Linux you use is probably not exactly

the same as the version described in any book, including this one. At the

time we wrote this edition of this book, the latest stable version of Linux

was 2.0.34, but even if you have a more recent version, the basic structure is

the same.

A look at the various Web sites and Usenet newsgroups dedicated to Linux

show a veritable flurry of Linux-related activity. New programs, extensions,

and enhancements for Linux appear daily, it seems. Red Hat Linux, for exam-
ple, now offers a range of snazzy new products, including a secure Web
server, a Microsoft Office-like suite of desktop tools called ApplixWare, and a

fully graphical integrated desktop (see Chapter 4 for details about UNIX
desktops).

If you still have any doubt about whether Linux has arrived, consider this:

Red Hat has teamed up with the NASA Goddard Space Flight Center to create

something called Extreme Linux, which lets you set up computer clusters —
many computers acting like one enormous supercomputer — using parallel

processing. You can get the source code, operating system, and manage-
ment tools for about 30 bucks.

An Part I: In the Beginning

You say to-may-to, I say tomahto

A frequent concern of newcomers to Linux is

how to pronounce it correctly, in order not to

sound uninformed. It's simple: However you

pronounce it is wrong — or right, depending

on your audience. Among English speakers in

the United States, at least, opinions seem to

be divided about evenly between "Line-ucks"

and "Linn-ucks."

The name Linux is derived from the first name
of its creator, Linus Torvalds. The "Line-ucks"

group holds that the pronunciation is based on

the usual English pronunciation of Linus. Linus

Torvalds himself, though, a Swedish-speaking

Finn, has helpfully provided an audio file on

the Internet in which he provides the definitive

answer in both English and Swedish. (You can

find the files at the URL h 1 1 p : / /

suns ite.unc.edu/LDP/1 inks. html,

way down at the end of the page. See

Chapter 18 to find out what a URL is.) In the

file, he says, "Hello, this is Lee-noos Torvalds,

and I pronounce Lee-nooks as Lee-nooks." It's

up to you whether you want to say "Linux"

with a Swedish accent, but to our ears his

reading sounds much closer to the Anglicized

"Linn-ucks," so that's what we use.

In Chapter 14, we talk about the latest releases of the most popular versions

of Linux. In Chapter 27, we describe a number of ways you can get additional

information about Linux, including reading one of a number of Usenet news-

groups about Linux or subscribing to a Linux magazine.

Where's Linuti

^\NG/

Linux development happens mostly on the Internet, and if you have an

Internet connection, you can download the entire system at no charge. You do

need either a fast connection or great patience because the system takes up

about 50 disks full of data. A typical 14.4 Kbps online connection would take

about 15 hours to download Linux. Quite a few bulletin-board systems around

the world make Linux code available. A more practical approach is to buy or

borrow a CD-ROM version of Linux, which you can install in an hour or so.

Sounds great, doesn't it? You can install a version of UNIX on your very own
computer! Keep in mind one tiny little snag, however: That makes you the

system administrator. You have to learn how to create user accounts, deal

with disks that fill up, and install and configure software. It's not impossible

(far from it — John has done it for years), but you have much to learn.

The details of installing and setting up Linux are way beyond the scope of

this book. In Chapter 14, we barely touch on a few basics of administering a

Linux system. For more details, take a look at LINUX For Dummies, by Craig

Witherspoon, Coletta Witherspoon, and Jon Hall; LINUX Secrets, 2nd Edition

by Naba Barkakati (both published by IDG Books Worldwide, Inc.); and

Running Linux, by Welsh and Kaufman (O'Reilly & Associates).

Part II

Some Basic Stuff

The 5th Wave BvRichTennant

*mnWSWfc SURE TURNED Cm TO BE A MP^MCUSESVSSA."

In this part . .

.

m j§ NIX, like other computer systems, keeps your

%fW information in things called files. When you work
with UNIX, you frequently need to make new files, rename

files, make copies of particularly interesting files, get rid

of files that have outlived their usefulness, find a file you

have temporarily mislaid, or print what's in a file.

This part of the book also talks about graphical user

interfaces (GUIs), which let you use a mouse to point at

things on-screen. Most people find using GUIs a big im-

provement over typing commands, but you have to know
what to point at and click on. You're about to find out!

Chapter 4

Opening Windows on UNIX

In This Chapter

»• What's a GUI— and should you care?

* How to tell which type of windows you have

> Window-wrangling skills, Motif and otherwise

^ How to get in and out of windows

y How to make UNIX look and act a whole heck of a lot like Those Other Famous
Operating Systems

•••••••

70 answer your first question, GUI stands for graphical user interface and
really is pronounced "gooey " We prefer the term WIMP, which stands for

windows, /cons, and mouse pointing, but for some reason the term never

caught on. Fast-track executives would rather be gooey than wimps, we
suppose.

A GUI is a combination of a graphics screen (one that can show pictures in

addition to text), a mouse (or something like it), and a system that divides

the screen into several windows that can show different things at the same
time. All GUIs work in more or less the same way because they're all based
on the same original work done at Xerox about 20 years ago. The details

differ enough, though, to make you want to tear your hair out.

UNIX Gets Alt GUI
The earliest UNIX systems didn't have fancy, screen-oriented windowing
systems. They didn't have screens at all, in fact — they used loud, rattling

terminals that printed on actual paper. (The historically minded can find

these types of terminals in the Computer Museum in Boston and the

Smithsonian Institution in Washington, D.C. Yes, really.) As the years went
by, UNIX appeared on computers that did have screens (most notably Sun
workstations), and various windowing systems appeared.

38 Part II: Some Basic Stuff

One thing about the UNIX community you've probably come to appreciate

by now is that you can't get everyone to agree on anything, except of course

that UNIX is better than every other kind of system and that anyone who
thinks otherwise is silly. So, not surprisingly, a variety of incompatible

windowing systems arose, each different from the other in various, not

particularly interesting, ways. Nearly all the windowing systems were

proprietary (they belonged to one system vendor or another), and, of

course, no vendor would dream of admitting that someone else's window
system was better than theirs.

K marks the Window
Universities also had a bunch of window system projects. One of the more
successful was the X Window project at MIT (alleged to be a successor to

the W Window project at Stanford — as far as we know, no one created a V
Window project). The X Window system had many virtues, not the least of

which were that it worked adequately well and it was available for free to

anyone who wanted it. So X became the window system everyone used.

Almost all UNIX systems that have any sort of GUI now use one based on the

X Window system (frequently abbreviated to just "X Windows," which has

been known to drive UNIX purists crazy because it sounds too much like

that other famous operating system from Redmond, Washington). Old Sun

workstations used systems named SunView or NeWS; NeXT machines use

NeXTStep (are tHoSE wOrDS cAPiTaLIzed corREctlY?); other than those

exceptions, however, you almost certainly get X Windows.

X (which is an even shorter abbreviation for X Window system) has many
advantages as a windowing system:

j> It runs on all sorts of computers, not just those that run UNIX.

v* It is policy independent: A program can make the screen look any way it

wants; the screen is not constrained to a single style, as it is on the

Macintosh or with Microsoft Windows. (As you may imagine, this

capability is not an unmitigated blessing. Read more about this subject

in the section "Just my look," later in this chapter.)

u* It uses a networked client-server architecture (love those buzzwords).

You can run X on one computer, and the programs that display stuff on-

screen can be on entirely different computers connected by a network.

u* MIT gives it away.

You can imagine which of these important advantages is the one that really

made all the computer makers choose X. Even though MIT gives away the

base version of X, unless you happen to be using the exact same kind of

Chapter 4: Opening Windows on UNIX 39

computer the guys at MIT use (or you feel like compiling and debugging a

gazillion lines of C code), you don't get it for free. You must buy a version

tailored for the particular kind of screen and adapter on your computer. An
exception is XFree86, a free version of X used by PC-based UNIX systems,

such as Linux, which is described in Chapter 3.

How your screen looks depends on which GUI you use. The first part of this

chapter talks about things that are the same for all GUIs. Later, we talk about

how to tell which GUI you are using and how to do things that work differ-

ently for each GUI.

"Vm not just a server—
I'm also a client!"

X was designed from the beginning to work with computer networks. It

makes a clear distinction between the server program, which handles the

screen, keyboard, and mouse, and the client program, which does the actual

computing. Although the two programs are running more often than not on

the same computer, they don't have to be. (Readers who saw John on The

Internet Show on public TV a few years ago may recall one demonstration of

an online subway map of Paris. That was an X application, with the X server

running on a PC in the TV studio in Texas and the client program on a

computer in France, connected by way of the Internet.)

The networkability (is that a word?) of X is most useful in two ways. One
way is that you can be sitting at an X workstation attached to a local net-

work and have windows attached to client programs running on computers
all over the network, often on computers considerably more powerful than

yours. The other way is that you can be using an X terminal, which is a

specialized computer with a screen, a keyboard, a mouse, and network
connections that runs only a single program, an X server. The idea of an X
terminal is that because it's considerably cheaper than a workstation, you
can have a few workstations or larger computers with a flock of inexpensive

X terminals attached and get nearly workstation performance for the X
terminal users, and at a considerably lower price.

X terminals should be a passing fad because these days a standard PC that

runs UNIX, including an X server program, costs about the same as an X
terminal and offers more flexibility. (For this same reason, we don't think

much of "network computers.") Fortunately, because X terminals and
workstations running an X server look and work almost exactly the same, we
don't belabor the difference any longer.

w Part II: Some Basic Stuff

Just my look

Most windowing systems on most kinds of computers make programs use a

consistent style. All Macintosh programs, for example, look pretty much the

same: They all use the same menu, the same little window when you want to

select a file, and similar windows to turn options on and off. One Microsoft

Windows program looks much like all the others: They all use similar sets of

windows.

Do all X Windows programs have a consistent look? Of course not — that

would be too easy. This situation is what the X crowd means by policy

independence: X is utterly agnostic about what windows should look like on-

screen, how keystrokes and mouse clicks should be interpreted, and pretty

much anything else that affects a user. This lack of policy was part of the

original appeal of X because no matter which window system you were used

to, you could make X look just like that system. The good news is that X
offers great flexibility. The bad news is that the word inconsistent barely

scratches the surface of what you run into.

Makeup artists for your windows

One of the ways in which X avoids having any policy built in is that it foists

much of the general window-management jobs onto a program called a

window manager. (Catchy name, huh?) The window manager handles jobs

such as creating borders around each application's main windows; control-

ling how you move, resize, switch among, and iconify windows; and most of

the other tasks that aren't part of any particular application. It's possible to

run X without any window manager, although it's rather unpleasant because,

without one, you have no way to do some things, such as move a window.

We've got something in common
A few companies doing UNIX apparently de-

cided that they had gone too far in the

customizability department, so they got to-

gether with the Open Software Foundation to

create something called the Common Open

Software Environment, which describes how
to build UNIX programs so that they all act and

look something like each other (or at least like

they come from the same planet). In 1995, this

group came out with the Common Desktop

Environment, or CDE, which is a UNIX
windowing system that bears more than a

passing resemblance to the Macintosh and

(Microsoft) Windows desktops. Surprisingly,

CDE is beginning to catch on, especially

among Microsoft Windows and Macintosh us-

ers who are new to UNIX or who need to use

SoftWindows or Macs alongside their UNIX

workstations.

CDE does much more than manage your UNIX

windows. We talk about CDE in the section

"CDE: A Desktop for All Seasons," later in this

chapter.

Chapter 4: Opening Windows on UNIX A /

A field guide to urindout managers

A bunch of competing window "looks" are on the UNIX market. To tell which

one you're stuck with, er, have the pleasure to use, look at the border

around the windows on your screen. If they have 3-D-style borders with

sharp corners, as shown in Figure 4-1, you're using the Motif Window
Manager (MWM); its free lookalike counterpart, FVWM; or DTWM, the

Desktop Window Manager that comes with the Common Desktop Environ-

ment (CDE). If the borders have rounded corners, as shown in Figure 4-2,

you're using OpenLook. If they have a thin border around the sides and

bottom and top borders like those shown in Figure 4-3, you're using a

program called TWM, which comes with the base version of X and is still

sometimes used because it is simple and small.

Figure 4-1:

Atypical

Motif

window.

program, use the commands

xgrabsc -Z >outf i 1 e
.
pz

1

puzzle -picture outf ile.pzl

To hawe xgrabsc sleep for three seconds before rubber-
banding, display processing information, and have the result
displayed with xwud,

xgrabsc -Uws3 • xwud
iecc:ttypl: Johnl>xgrabsc -W > mwnud
iecc : ttyp 1

: John 1 >xuud nwmud
usage: /usr/bin/Xll/xwud [-in <file>l t-noclickl [-geometry <geom>3 [-display <d
isplay>]

[-newl [-std <maptype>l [-rauJ [-wis <wis-type-or-id>l
[-helpl [-rwl [-plane <number>] [-fg <color>] [-bg <color>l

iecc :ttypl: John l>xwud -in mumwd
iecc : ttypi : John 1 > ?xgrab
xgrabsc -U > numwd
iecc : ttypl : John 1 > fxw
xuud -in mumud
iecc : ttypl : John 1 > !xg
xgrabsc -U > mumud

I____________________________________

42 Part II: Some Basic Stuff

Figure 4-3:

Atypical

TWM
window.

Chapter 4: Opening Windows on UNIX nj

Deja vu deja vu

Readers familiar with Microsoft Windows 95

or Windows NT may find the Motif window

manager to be strangely familiar. Its windows

don't look all that much like Windows win-

dows, although the mouse and keyboard tech-

niques are extremely similar. That turns out to

be no coincidence. Because Hewlett-Packard

has a superduper application environment it

sells for both Windows and X, it deliberately

made its X package (from which much of Motif

is derived) as similar to Windows as possible.

For users who switch back and forth between

Windows and Motif (we authors, for example),

this capability is a blessing because the mouse

moves and keystrokes our fingers have memo-
rized for one system work by and large in the

same way in the other. This practically

unprecedented level of compatibility exists

between UNIX and something else, so we
figure that, deep down, it must have been an

oversight.

The X Window system divides the work of controlling what's on-screen

among three separate kinds of programs:

W X server: Draws pictures on-screen and reads user input from the

keyboard and mouse

*> Window manager: Controls where windows appear on-screen, draws
borders around windows, and handles basic window operations, such

as moving windows, shrinking windows to an icon (a little box repre-

senting that window), and expanding icons to windows

*> Clients: Programs that do some real work

For any particular screen, there's one X server, usually (but not always) one
window manager, and a bunch of clients. Every client communicates with

the server to tell it what to draw and to find out what you did; the server

communicates with the window manager when the user asks for a window-
management operation, such as changing the size of a window. Although the

server, window manager, and clients usually run on the same computer, X
Windows enables them to exist on separate machines connected by a

network. It is not unusual to have a setup in which the server runs on an X
terminal, the window manager runs on a nearby workstation, and the clients

are on various machines scattered around the network.

The window manager is usually (except on a few X terminals) a regular UNIX
program. You can stop one window manager and start another if you decide

that you don't like the way your windows look. Client programs can ask the

X server to ask the window manager to do some specialized operations. A
terminal program, for example, can ask the window manager to enable a

user to change the size of the window only to a size that is a whole number

44 Part II: Some Basic Stuff

FVWM: The chameleon of window managers

Because Motif isn't free, it isn't included with

most Linux systems. (Nothing would prevent

you from running Motif under Linux, but most

people aren't prepared to pay more for a win-

dow manager than they paid for the whole

operating system and its included software.)

Instead, with Linux, you usually find the win-

dow manager called FVWM.

The origins of the name FVWM are forever

lost in the mists of history. The VWM part

stands for virtual window manager. The Fpart

is a mystery, though. Fine and feeble are two

frequently offered possibilities.

The "virtual" part of this window manager is

one of FVWM's best-loved features. Rather

than have just a single desktop, you can have

any number of virtual desktops, each with its

own independent set of windows open. Be-

cause each desktop is the size of the screen,

this feature enables you to think of your screen

as a porthole looking at part of a much larger

screen behind it.

FVWM usually displays a little map of all the

virtual desktops at your disposal; Most sys-

tems have either four or nine, although theo-

retically you can have as many or as few as

you want. You move around among all your

desktops by pressing the Ctrl key and then the

arrow key for the direction of the next desktop

according to the little map. Is your desktop

getting too crowded with windows? No need

to close some of them; just pop on over to

another desktop. You can have dozens of pro-

grams open without getting too crowded;

never has slowing your system to a crawl been

easier!

FVWM is almost infinitely configurable. You

can make it look like practically anything,

although its default look is nearly identical

to Motif. A version of FVWM known as

FVWM95 looks remarkably similar to — you

guessed it — Windows 95. (Whether this is

A Good Thing is a favorite point of religious

arguments among many Linux users.) Not

only do its window borders mimic those in

Windows 95, but it also even features a Start

button with pull-up menus. FVWM95 is found

by default on recent releases of Red Hat Linux

(discussed in Chapter 14). Another popular

mutation of FVWM is called AfterStep, which

looks just like the NeXTStep window system.

FVWM has become enormously popular, not

only on Linux but also on other free UNIX ver-

sions. You can even find it on some large com-

mercial systems.

of lines of text. (This kind of communication starts to resemble that in the

ancient Roman Empire, in which proconsuls could officially speak only to

procurators, who could speak to senators, and so on. Computers are like

that.) If no window manager exists, no window-management operations are

available.

Writing an X program is a great deal of work. To make life easier for pro-

grammers, a programmer can build on toolkits of program code that are

already written. MIT sends out X Toolkit (immediately called Xt by the usual

lazy typists). This toolkit provides a set of basic window functions that most

Chapter 4: Opening Windows on UNIX hj

programs use. Starting with Xt, different people have produced libraries of

widgets, or screen elements a program can use. A menu or a file-selection

panel is a widget, for example. The Motif widget set is for programs that

want to look like Motif. Although the Athena widgets from MIT's Project

Athena aren't particularly attractive, many programs use them because

(where have we heard this before?) they're available for free. You can also

find other toolkits for other, less commonly used window systems.

What all this means is that any particular X client uses one of the widget

sets to control what that client's window looks like. A program that uses the

Motif toolkit, for example, is a Motif program. Because clients are separate

from window managers, however, the Motif window manager (named mwm —
the lazy typists strike again) can be running and draw a Motif border around

the windows of clients using other toolkits.

Because of the constant danger that GUI systems could begin to make sense

to users, UNIX people have learned to obfuscate things by using "Motif" to

refer to both the Motif window manager and the Motif toolkit, which are, of

course, completely separate entities. When people refer to "Motif," there-

fore, they may be referring to the window manager or maybe to the toolkit.

Or both. Often it's difficult to tell. This confusion is all just part of the proud

legacy of UNIX evolution.

One school of thought says that we all would be better off if X Windows had

picked a window style and stuck with it so that we would have a single

window manager and a single set of widgets — as every other window
system does — although it's much too late now for that.

Opening a new vOindoW

When you run a new X program, generally speaking, it opens a new window.

In some cases, you want to tell a program that's already running to open
another window (another file for a word processor, for example), although

the way you do that is specific to each program. You have to read the

manual (gasp!) for the program.

You usually have at least one terminal window running. A terminal window
isn't as sinister as it sounds: It's a window that acts like a terminal. The
usual program is called xterm; it acts much like a DEC VT100 terminal. Most
systems also have a modified terminal program that acts like the computer
maker's favorite terminal. Hewlett-Packard systems have hpterm, for

example, which acts like an HP terminal, and some PC UNIX systems have
xpcterm, which acts like a PC console. For most purposes, all these terminal

programs act the same. They start up by running a UNIX shell, and you type

commands just as we describe in this book.

46 Part II: Some Basic Stuff

How do I start Motif, anyway?
You may think that this question would be a

simple one to answer, but, because UNIX is

involved, it's not. The short answer is "Run

mwm" (the Motif Window Manager), although

that technique is not useful because you have

to run mwm at the right time and place.

If you're lucky, your system manager will have

set up everything for you automatically. If

you're on an X terminal or a workstation run-

ning xdm (the X Display Manager), X is already

running when you sit down and waits for you

to enter your username and password, and

Motif starts as soon as you log in.

The next best thing is that you're at a worksta-

tion that has been set up to run X after you log

in so that X and Motif start automatically when
you log in.

Failing that, you have to start X and Motif your-

self after you log in to UNIX. The two most

common start-up commands are s ta rtx and

xi ni t. If you're not sure which one to use, try

them and see what happens. What should

happen is that your screen goes kerflooie/for

a few seconds when it switches from old,

dumb, terminal mode to new, cool, graphical X

mode; a few windows appear, running xterm
(the dumb terminal emulator that runs under

X); and Motif starts and draws attractive bor-

ders around all the windows.

If hone of those things works, we've run out of

ideas, and you have to ask your local expert

how to start X and Motif on your computer or X

terminal.

You can use one of two ways to start a new program that opens a new
window: the GUI-oriented, user-friendly way and the easy way

Follow these steps for the GUI-oriented, user-friendly way:

1 . Move the cursor so that it's not in any of your current windows.

2. Click the Menu mouse button.

This button is the last one (the rightmost button unless you have a left-

handed mouse) in OpenLook and the first button otherwise.

3. Drag the mouse up and down the menu that pops up until you find

the program you want.

4. Let go of the button.

Sometimes you have nested menus: When you pick an item from the

first menu, a second menu pops up, and you must pick an item there

too.

The easy way to start a program has only one step:

1 . Go to a terminal window and type the name of the program you want
to run.

Chapter 4: Opening Windows on UNIX h /

About your mouse
Your mouse (or mouse-like thing) has some

buttons on it. Take a moment to count the but-

tons. Finished counting? (How long could it

have taken?) We hope that you found three

buttons. If you found only two buttons, you

have a problem because most X programs

were written with three-button mice in mind

and don't work well with two-button mice.

Some X servers can be configured to enable

you to get to all the X features by using only

two buttons, although it's much easier to get a

three-button mouse. We've found some per-

fectly usable ones at our local computer store

for $10 or less.

^\N6/

This approach is the same one you use to run any other program or to give a

command. To display another terminal window, type xterm or the name of

the terminal program you use.

Then you have the issue of where on-screen the new window appears. Some
programs and window managers have strong opinions of their own, and the

new window appears wherever the program or window manager thinks that

it should. With other, less opinionated programs, you make the call: A
ghostly window that appears floats near the middle of the screen. You move
the ghost around with the mouse and click when the window is where you
want it. At that point, the ghost materializes into the regular window. This

latter scheme is usually more convenient because the locations the opinion-

ated programs choose for window placement are rarely where you want
them. Beware of one thing, though, while the ghost is on-screen: All other

windows are frozen. If you leave the ghost on-screen for a long time (while

you're at lunch or overnight), all the others can become rather constipated

waiting for the screen to unfreeze so that they can update their windows. If

you're using Motif, your local guru can switch your system between opinion-

ated mode and floating-ghost mode.

Some systems have desktop manager programs (unrelated to window
manager programs) that attempt to make handling programs and files easier.

Desktop managers have sets of icons you click to start common programs.

They enable you to click filenames to edit the file, for example— sort of like

the Macintosh Desktop. Opinions vary on how useful these desktop manag-
ers are. We haven't been crazy about them, although it's worth trying them
for a few minutes because some people find them much easier to use than

menus and shell commands.

45 Part II: Some Basic Stuff

Icon do this With a picture

GUIs are crazy about pictures (they're graphical, after all), especially cute,

little ones. The cutest, littlest ones you run into are called icons. An icon is a

little picture in a little box on-screen that represents a window. When you
tell X Windows to "iconify" a window, the window disappears and an icon

remains. When you double-click (or single-click if you're not using Motif) the

icon, the window comes back just as it was before. Being able to reduce

windows to icons enables you to shove programs out of the way and not

lose what you were doing— one of the best things about window systems.

Figure 4-4 shows a pair of icons, one for an e-mail program and one for a

terminal program. If new mail arrives, the little flag on the mail icon flips up,

which is almost useful enough to make up for its X-treme cuteness.

Chapter 4: Opening Windows on UNIX nQ

Figure 4-5:

Atypical

Motif

window.

Window menu Title area

MotifBurger

: iie Edit Order

Heditwi Fries

Cola Drinks

8 Rare Ketchup Mustard Hamburgers

8 Rare Ketchup Mustard Hamburgers

2 Huge Fries

8 Apple Juice Brinks -.

2 Hell Done Ketchup Mustard Onion Pickle Hamburgers

2 Tiny Fries

4 Coffee Brinks

2 Hell Done Ketchup Mustard Onion Pickle Hamburgers

2 Tiny Fries

4 Coffee Brinks

Iconify

Maximize

Border

I v* Move windows around the screen. This process is even more similar

to shuffling the papers on your desk.

I j> Turn windows into icons and vice versa.

i> Change the size of windows. Create larger areas for long files you're

editing, for example.

Switching and layering your Windows

Suppose that you have two or three windows on-screen. How do you tell

UNIX which window you want to use? The answer is (wait, no— how did

you know that this answer was coming?) it depends. In line with the standard

X rule of never making up its mind about anything, you can switch windows
in two different ways:

j> Click-to-type, or explicit focus: Move the mouse cursor to the window
you want to use, and click the mouse in it somewhere. The window
moves to the front (any overlapping windows drop behind it so that

you can see the entire window).

W Move-to-type, or pointer focus: Move the mouse cursor into the

window you want to use. Even though the window may be partially

obscured by other windows, it becomes active. You can tell when a

window is active because the border around it changes color. Click the

window's title bar if you want to move it to the front. Motif also enables

you to move a window up front like this: Move the cursor into the

window, hold down the Alt or Meta key, and press Fl.

50 Some Basic Stuff

If you have to "click to type" and hate it — or don't and really want to— a

guru skilled in the ways of X (naturally called an X-pert) can change some
parameters and turn "click to type" on or off. We recommend that you live

with whatever you have. So many changeable parameters are available that,

after you begin fiddling with them, it can become X-asperating to figure out

X-actly how your X-pert left them, and you will utter an X-cess of X-pletives.

You can tell which is the active window because the Motif window manager
changes the color of its border to a distinctive darker color. The Motif

standard window-switching rule is click-to-type.

"Where, oh, Where has mg Window gone}"

In Motif, you put the cursor on the title bar, press the first mouse button,

and drag the window to where you want it (you move the window as you
hold down the mouse button). This action also brings the window to the

front because you use the same button to do that.

You can move windows so that they are partially off the edge of the screen,

sort of like pushing papers to the side of your desk so that they hang over

the edge (except that windows are less likely to fall on the floor). This capa-

bility is sometimes useful if the interesting stuff in the window is all at the

top or all on one side.

Stashing your Windows

The title bar of the window has on it little buttons you can click. Near the

right of the title bar is a little box that contains a small dot; when you click

it, you iconify the window; that is, the window turns into an icon.

To get the window back, double-click the icon with the first mouse button.

Icons normally appear in the lower-left corner of the screen, although you

can move them around by dragging the icon around with the mouse. After

you've moved an icon, if you restore the window and then re-iconify it, the

icon reappears where you left it. You can lay out the icons to your taste by

iconifying every window on-screen, moving the icons to tasteful positions,

and then restoring the ones you want to use.

Curiouser and curiouser: Changing Window sizes

The last little bit of window magic involves changing window sizes. Motif

has gone to a great deal of trouble to let you change the size of your win-

dows, which tells us that they gave up trying to make them the right size in

the first place. Oh, well. Little "grab bars" are in each corner of most win-

dows. (The few windows you can't resize don't have grab bars.) You move
the cursor to one of the grab bars, click the first mouse button, drag the

corner to where you want it (make the window larger or smaller), and

release the button. Then do it again two or three times because you never

Chapter 4: Opening Windows on UNIX y /

^\N6

get it right on the first try. Motif also has grab bars (thin, gray borders) on

the top, bottom, and sides of every window, which enable you to change the

height of a window without changing the width or vice versa.

Some programs have strong feelings about how big their windows should

be. In some cases, they don't let you shrink the window to less than a

minimum size. In other cases, you can't change the size. For these programs,

attempts to resize just don't work. You can click and drag the borders all

you want, but nothing moves.

Motif has a shortcut to enable you to expand a window to fill the entire

screen. Click the little box-in-a-box at the right end of the title bar. If you do
the same thing again, the window shrinks back to normal size.

In practice, we rarely blow up windows to full-screen size because few UNIX
programs take advantage of the entire screen. The full-screen option was
much more important when screens were smaller.

ctJVBE/?

Getting rid of vOindouls

Your screen often becomes cluttered with windows you no longer need. You
already know how to turn them into icons to get most of the screen space

back, but sometimes you just want to make the program go away.

Remember that, if 57 different programs are running, even if most of them
are snoozing behind their icons, it can put enough of a load on your com-
puter to slow down the ones you want to use.

Most programs have a natural way to exit. In terminal windows, you log out

from the shell by typing exit or logout in the terminal window. Real windows-

oriented programs usually have menus of their own with a Quit or Exit option

that cleans up and makes the program stop. Because some programs just

won't die, however, you have to take drastic measures.

In Motif, click the little bar in the box at the left end of the title bar; a menu
of window operations pops up, as shown in Figure 4-6. The Restore, Move,

Size, Minimize, and Maximize choices are equivalent to the border-clicking

techniques we just discussed. (Minimize is Motif-ese for "iconify") The two
remaining options can be useful, though. The Lower option pushes the

window behind all the rest so that it doesn't obscure any other windows.
That option is useful when you want to work on something else for a while.

Close closes the window and usually also ends the program that started it.

This option can be handy for programs that get stuck or don't have any
normal way to exit.

52 Part II: Some Basic Stuff

Figure 4-6:

The Motif

window

menu.

Motif offers a set of keyboard equivalents for mouse-haters. To display the

window menu, press Shift+Esc or Alt+spacebar. Then either press the cursor

keys and Enter to choose one of the entries, or press the underlined letter

for the entry you want. For Move and Size, you press the cursor keys to

move or resize the window and then press Enter when you're finished.

You can also use the Alt+key equivalents on the menu, such as Alt+F9 for

Minimize. If your keyboard has two Alt keys (as most PC keyboards do), you
may find that the two Alt keys work differently. Individual programs recog-

nize the left Alt key on our system, and the Motif Window Manager recog-

nizes the right Alt key

Motif uses confusing and inconsistent names in the window-operations

menu. Close destroys the window and the program, and Minimize turns the

window into an icon.

Motif utidqets on parade

The Motif toolkit is a set of programming tools with prewritten bits of

program that programmers can use to build their Motif applications. That

information wouldn't be very interesting except that the bits of program it

includes are the ones that draw stuff on-screen. These so-called widgets

include the usual things that windowing programs use, such as menus,

pushbuttons, text boxes, and scroll bars. Motif widgets have become a de

facto standard for X programs and have sprouted up in seemingly every

application written for X Windows. Even programs that use something other

than Motif widgets often make them look just like Motif programs, with the

dull gray menus and buttons UNIX users have gotten used to.

This section quickly describes the most common widgets. Because they're

all designed to be easy to use, you can easily— even without reading the

instructions — guess how they work.

Menus

Figure 4-7 shows the main window from the MotifBurger sample application

that comes with Motif, with one of its pull-down menus selected. You make
choices from a Motif menu in an obvious way: Click the place you want on

Chapter 4: Opening Windows on UNIX 53

the menu bar at the top of the application's window. If the menu has sub-

entries (as most do), the next-level menu drops down. Click the entry you

want.

Figure 4-7:

An

application

menu.

File

MottfBm

Edit Order

Subait Order

4 Hediuw Ketchup Hi
Create ^^ *»*

1 Hediuw Fries Cancel Order

1 Apple Juice Drint

4 Hediiw Ketchup Hu

1 Hediua Fries

1 Apple Juice Drinks

mmsmBSBsmssmm
1 Kediua Fries

1/

You can also drive Motif applications from the keyboard. To choose a menu
entry, hold down Alt (the left Alt key if you have two) and press the under-

lined letter in the menu entry. If submenus are available, press the up- and

down-arrow keys to move to the entry you want, and then press Enter to

select or Esc to ignore.

Occasionally, you see a couple of other minor variants of menus. Tear-off

menus are similar to pull-down menus except that they have a dotted line

across the top when you pull them down. If you click the dotted line and
drag the menu to a convenient place, it stays there indefinitely so that you
can use it whenever you want. We don't find this feature useful because it

clutters the screen. (The old Motif archrival OpenLook had tear-off-like

menus called pushpins, and Open Look proponents trumpeted them as a major

advantage. Motif probably added them as much to shut up the competition

as because anyone really wanted them.) Sometimes, pop-up menus also

appear when you press the right mouse button, the way the root menu
appears when you click outside any window. Pop-up windows work just like

pull-down windows after they've popped up.

Radio buttons

Figure 4-8 shows a window from the MotifBurger sample application. This

window is somewhat awfully designed because it's full of way too many
different kinds of widgets. It was intended as a demonstration of the various

kinds of widgets, however, which it does just fine.

Beginning at the left side of the figure, the first type of widget you encounter

is the radio button. The Hamburgers Rare/Medium/Well Done box is called a

radio button box because it sort of resembles the buttons on a car radio.

You can click any one of the buttons to select it, and you can select only one
radio button in a group.

54 Part II: Some Basic Stuff

Figure 4-8:

A bunch of

widgets.

Hamburgers

J Ketchup

(tediun J Mustard

^Hell Bone -J Pickle

J Onion

rmaise

MOTIFburger Order- Entry Bo:

Fries

Size Medium

'

Drinks

Orange Juice

Grape Juice

Cola

Quantity

Quantity

You can recognize radio buttons because they're shaped like little diamonds.

You're supposed to be able to select radio buttons by holding down the Alt

key and pressing the underlined letter, although in our experience, that

doesn't always work. Use your mouse to be sure.

loqqte buttons

The list of hamburger condiments, from Ketchup to Mayonnaise, shown in

Figure 4-8 are toggle buttons. When you click one, it turns on if it was off, and

it turns off if it was on — sort of like a toggle switch. Unlike radio buttons,

any or all of the toggle buttons in a group can be selected at a time.

You can recognize toggle buttons because they're little squares.

Scales or sliders

The hamburger Quantity indicator shown in Figure 4-8 is a scale. You can

move it up or down with the mouse to control how many hamburgers to

order. Although this scale looks silly, in some cases scales are just what you

want (the volume control on a sound application, for example).

Scales can be laid out either up and down or left and right. They work the

same either way.

Option menus

The fries Size control shown in Figure 4-8 is an option menu. When you click

it, the complete set of options appears, as shown in Figure 4-9. Move the

cursor to the one you want and click. The menu shrinks back down and

displays the selected option.

Chapter 4: Opening Windows on UNIX yy

Figure 4-9:

How many

fries would

you like

with that?

Tiny

Snail

Medium

Large

Huge

Text boxes

The little Quantity box shown under Fries in Figure 4-8 is a text box. Click the

cursor there, and then type the number of orders of fries you want. The
usual text-editing characters, such as arrow keys and Backspace, work.

This text box is the smallest one we've ever seen. (Hey, it's just a sample

application.) Most text boxes are large enough that the editing keys are

useful. Many text windows also have scroll bars, which we discuss in the

following section.

Scrollable lists and scroti bars

In Figure 4-8, the list of drinks starting with Apple Juice is a scrollable list.

You can move the list up and down in its window by clicking the scroll bar to

the right of the window. The little arrows move the list up and down a small,

fixed amount. You can also drag the block between the arrows up and down
to move the list directly.

How do I leave Motif, anyway
This question is only slightly less complicated

than the one about starting Motif. As usual,

you are the victim of a blizzard of options. Here

are some likely possibilities:

*> Log out by leaving the Motif Window Man-

ager. In this case, move the mouse cursor

outside any windows, click and hold the

right mouse button to display the Motif

root menu, slide the cursor down to Quit,

and release the button. Motif displays an

incredulous little box asking whether you

really want to leave mwm. Click OK.

v Log out by closing the main xterm win-

dow. The trick is to figure out which win-

dow is the main one. If one of them is

labeled Login or Console, that's it. Switch

to that window by moving the mouse to

that window and clicking the left mouse

button. Then type ex 1 1 to the shell in that

window.

When X and Motif exit, the screen usually

kerflooies! again when it goes back to dumb
terminal mode. (If your system uses the X Dis-

play Manager, your system may immediately

go back to the login screen, in which case

you're finished.) If you end up back at a shell

prompt in dumb terminal mode, you then have

to exit from that, too, by typing exi t to that

shell.

56 Part II: Some Basic Stuff

After you've found the item you want, click it to select and highlight it.

(We've selected Apple Juice, although our favorite is Grape Juice because it

gives us the classic cool, purple mustache.)

Pushbuttons

The other controls shown in Figure 4-8 are pushbuttons. They come in two
varieties: buttons with text and buttons with drawings. The two arrows for

the drinks quantity are buttons with drawings. The Apply, Dismiss, and
Reset buttons at the bottom of the window are buttons with text.

They all work in the same way. To select the button and do whatever the

button does, click it.

CDE: A Desktop for Alt Seasons
If you've ever used a Macintosh or one of those other Windows computers,

then you know what a desktop is. When you start up a computer with the

Macintosh or Windows OS installed on it, slick-looking graphics and mouse-

clickable icons and menus take over your entire computer screen, giving

you a common workspace for all your programs and windows. That's the

desktop.

The desktop gives you a slew of ways to keep track of your files and get your

work done efficiently and painlessly. You can open multiple windows and

switch between them with the click of a mouse button. You can do spiffy

stuff such as drag and drop to share files and information among your

programs. Graphical tools that come with the desktop give you views into

the operating system, your files, and your network (if you're on one).

Additional graphical tools let you do neat stuff, such as send and receive

mail, manage print jobs, and change the way your desktop looks.

Although window managers (such as Motif) have been around for quite

some time, real integrated desktops like the ones built into Windows and

the MacOS are just beginning to catch on in the UNIX world. Now you can

choose from a whole crop of UNIX desktops. (See the sidebar "A desktop by

any other name," later in this chapter, for an overview.) The most widely

used UNIX desktops seem to be those based on something called the Common
Desktop Environment, or CDE. CDE is the result of an unprecedented outbreak

of cooperation among a number of UNIX vendors— including Hewlett-Packard,

IBM, Novell, and SunSoft — and the Open Software Foundation (the same
people who brought you Motif, remember?).

CDE desktops are not quite as simple, of course, as their Windows and

MacOS counterparts. The Mac and Windows desktops are developed and

sold only by Apple and Microsoft, respectively. Each company that sells CDE

Chapter 4: Opening Windows on UNIX y/

along with UNIX, on the other hand, offers a slightly different version of CDE
developed exclusively for its own version of UNIX. Unlike the Mac and
Windows desktops, which are built in to the operating system and appear
whenever you start up your computer (like it or not), CDE desktops are

optional. You don't have to use CDE to use UNIX, and you (or, more likely,

your system administrator) can decide whether to have CDE start up when
you log in.

A desktop by any other name
Integrated desktops for UNIX are beginning to

catch on, in part because they make it fairly

easy for Windows and Macintosh users to get

their bearings in the sometimes forbidding

world of UNIX. UNIX, Windows, and Mac com-

puters often happily coexist on the same net-

work, and it's a big advantage to be able to do

things in similar ways no matter which operat-

ing system you happen to be using. Another

reason for the surge in the purchase of UNIX
desktops is the migration of thousands of dis-

gruntled Windows users to Linux, the Young

Turk of the UNIX world (it's described in Chap-

ter 3). Integrated desktops ease the shift by

letting Windows defectors apply their well-

honed techniques and habits to Linux.

CDE desktops come along with the new re-

leases of many of the major versions of UNIX,

such as Solaris and HP-UX. Some companies

that don't sell their own versions of UNIX have

also developed their own versions of CDE.

TriTeal sells the TriTeal Enhanced Desktop (af-

fectionately known as TED) for Red Hat Linux

5.1 . X Inside sells a version of CDE that works
with both Linux and FreeBSD. Hummingbird

Software offers a CDE emulator for both

Windows 95 and Windows NT named Exceed.

Other, non-CDE desktops for UNIX are out

there, too:

*> The K Desktop Environment, or KDE, runs

on Linux, Solaris, FreeBSD, IRIX, and HP-UX.

You can download KDE for free under the

terms of the GNU software guidelines,

from ftp: //ftp. kde.org. (The K, by

the way, just stands for K.)

i* HP-VUE (Visual User Environment) is an

alternative to CDE for HP-UX, complete

with its own window manager (VUEWM)
and distinctive GUI "look." Why does

Hewlett-Packard feel the need to offer

both VUE and CDE desktops with HP-UX?
The best answer, as far as we can tell, is

"Because it can."

W Red Hat Linux comes with a bunch of desk-

tops, all built on some version of FVWM,
for the ultimate in GUI confusion. Depend-

ing on which version of Linux you have,

you may have a desktop (or desktops)

named TheNextLevel, AnotherLevel,

Afterstep (for a NextStep look and feel),

FVWM 95 (for a Windows 95 look and feel),

orLesstif WM.

*> The Caldera Linux distribution includes its

own desktop, named the Desktop by some
immortal wag in the Caldera marketing

department.

Others — many others — are available, you

may be sure. Luckily for us mere mortals, all

desktops have the same purpose and pretty

much the same sets of tools and utilities.

Which desktop you end up with is likely deter-

mined as much by personal preference as by

which flavor of UNIX you happen to be using.

58 Part II: Some Basic Stuff

To enhance the confusion to acceptable UNIX-like levels, CDE is infinitely

customizable by system administrators and UNIX hackers. You can make far-

reaching changes to CDE by switching the CDE default window manager
from DTWM to FVWM, for example. You can tell CDE to launch various

programs automatically when you log in. You can change the way the

keyboard behaves — and so on and so on, ad nauseum.

The good news is that the similarities among versions of CDE far outnumber
the differences; after all, it's supposed to be a common desktop environment.

In practice, and discounting any bizarre modifications an overzealous UNIX
system administrator may have made, using one version of CDE is very

much like using another.

The following sections give you some idea of how to use the Common
Desktop Environment. In the interest of keeping things as simple as possible,

we don't worry about which version of CDE you're using, and we figure that

you'll make whatever adjustments are necessary to account for the idiosyn-

crasies of your configuration.

Desktop, here tie cornel

Bringing up the desktop is much like starting Motif, a subject we cover in

the sidebar "How do I start Motif, anyway?" earlier in this chapter. If you're

lucky, your system administrator has set up your computer so that the CDE
comes up when you turn on your computer or log in. If not, you have to

refer to your local UNIX guru or system documentation to find out which
command to run in which directory.

No matter what the start-up details are, the desktop heralds its imminent

appearance by making your computer screen flicker like Dr. Frankenstein's

laboratory on a stormy night and then replacing whatever your screen was
displaying with a drab gray background, on top of which appear various

tools, toolbars, icons, and programs, depending on how your desktop is

configured. You usually see a version of the FrontPanel across the bottom

of your computer screen.

front and center

The FrontPanel is similar to the control center for the desktop. Actually, it's

more like the dashboard of a fancy car, which puts all the car's doohickeys

and thingums within easy reach of the driver. As with all the elements of the

desktop, you can customize the FrontPanel. Figure 4-10 shows a typical set

of FrontPanel icons, buttons, and other clickable thingies.

Chapter 4: Opening Windows on UNIX jy

Figure 4-10:

The

FrontPanel.
-J

At the center of the FrontPanel are four buttons, named One, Two, Three,

and Four. These buttons let you manage as many as four workspaces. The
idea is that the desktop is in reality four times as large as your computer
screen; in other words, your computer screen shows only one-quarter of

your desktop at a time. Each quarter is a workspace. You can have different

icons, program windows, and whatnot set up in each workspace, all of which
stay put and reappear just as you left them every time you return to the

workspace. For example, you may dedicate one workspace to managing your
UNIX environment, one workspace to dealing with all your communications
(e-mail, FTP, networking), one workspace to your favorite games, and one
workspace to doing work (such as writing the definitive guide to peas and
how to eat them). Rename the workspace buttons Looks, Comms, Games,
and Peas so that you can remember which workspace is which, and then

switch among your workspaces by clicking the buttons. (We recommend
switching from Games to Peas whenever your boss comes around the

corner.)

Toots you can use

The icons to the left and right of the workspace buttons give you mouse-
click access to a typical set of CDE tools. Reading from left to right in Figure

4-10, you see icons for Clock, Group Calendar Manager, File Manager, Termi-

nal Emulator, Mail Tool, Print Manager, Style Manager, Applications Manager,
Help Viewer, and Trash.

You can open each tool or tool set by double-clicking its icon in the

FrontPanel. If the icon has a little upward-pointing triangle above it, you can
click the triangle to pop up a menu of choices (the menu slides out from
behind the FrontPanel like a window shade being drawn upward). Drag to

the choice you want, and then release the mouse button to select it. You can
close a pop-up (or slide-up) menu by clicking the square in the upper-left

corner of the menu and choosing Close or by clicking the triangle again (it

turned into a downward-pointing triangle while you weren't looking). The
menu demurely slides down behind the FrontPanel until it disappears.

Figure 4-11 shows the menu that appears when you click the triangle above
the Applications Manager icon.

60 Part II: Some Basic Stuff

Figure 4-11:

Just

popped in

to see what

condition

my

condition

was in.

All the standard UNIX utilities and programs described in Part HI of this

book (such as f i nd, di f f, ed, vi, and emacs) get zoomy new graphical

versions in the CDE, many of which are easier to use than their command-
line equivalents (easier, that is, if you're used to using a mouse to do your

computing). In fact, CDE desktops come with so many tools and utilities that

it would take an entire book just to describe them all.

Filing without tears

The File Manager looks like the window shown in Figure 4-12, which appears

when you double-click the File Manager icon on the FrontPanel.

The CDE File Manager is much like the MacOS Finder or Windows Explorer.

You can use the CDE File Manager to browse through your files, launch

programs, and, as its name implies, manage your files (open, copy, move, or

delete them or have them over for dinner). The File Manager shows some
kind of icon for each directory and file on your computer. Directory icons

look like file folders; file icons look different depending on which type of file

it is. Figure 4-12 shows icons for seven text files, which look like pieces of

paper with writing on them (clever, no?). The icon with the runner on it

launches a program (in this case, a program named Source Safe 5.0).

The "..(go up)" icon lets you travel up the directory tree toward the root

directory. The series of folder icons at the top of the window shows your

current location (and hence the directory that contains all the stuff you now
see in the File Manager) relative to the root directory. You can jump to any

directory in the branch of the tree you're on by clicking one of these folders.

Chapter 4: Opening Windows on UNIX %) /

Figure 4-12:

Show me

some files,

man!

Selected Vie Help

_jy _iy _jm . J

/ export home tarascio

/export/home/t3rasc i o

~~i

^2 Part ,,: Some Basic Stuff

What's up, doc7

One of the most convenient, friendly, and ultimately un-UNIX-like features of

the CDE is its Help Viewer. The Viewer, as shown in Figure 4-13, is a graphical

help- and documentation-viewing program with full-fledged searching and

printing capabilities. You can view all the man pages (the online documenta-

tion, as described in detail in Chapter 27) for your version of UNIX in a

pleasant, readable format (a giant leap for UNIX-kind, as you know if you've

ever tried to make extensive use of traditional UNIX man pages) and journey

hither and yon by means of an expandable and collapsible outline. The

Viewer can even handle context-sensitive help (in other words, make a game
attempt to guess exactly what information you need at any given moment so

that you don't have to go hunting for it).

Figure 4-13:

The Help

Viewer tells

you all

about itself.

\zmm*
File Edit Search Navigate Help

Volume: Help - Top Level

P Welcome to Help Manager

Common Desktop Environment

Overview and Basic Desktop Skills

History...

Index...

Top Level

Welcome to Help Manager
Each of the titles listed below represents aproductfamily that has installed and

registered its online help. Each title (and icon) is a hyperlink that lists the help within the

family.

• To display a list ofthe help available for a product family, choose its title

(underlined text) or icon.

- Within a product family, find the help you want to view, then choose its title.

- Ifyou need help while using heh? windows, press Fl

.

Common Desktop Environment

Overview and Basic Desktop Skills * Using Help * Audio * File

Manager * File Properties * Front Panel * Application Manager * Print

Manager * Style Manager * Mailer * Image Viewer * Text Editor *

Calendar Manager * Icon Editor * Terminal Emulator * Create Action *

Login Manager and Environment Variables

Overview and Basic Desktop Skills

Overview and Basic Desktop Skills for the Common Desktop

Environment.

Chapter 4: Opening Windows on UNIX (}^

Hai/e it ifour u/ay

Customize, customize, customize! One of the joys of using the CDE is your

ability to change the way your desktop looks and behaves by using the Style

Manager (as shown in Figure 4-14). Use up all that pesky extra time by
changing the colors of various window elements and text; choosing pretty

backdrops to replace your desktop's monotonous gray background; adding

pizzazz and generally making your desktop unusable by choosing decorative

fonts, reconfiguring your keyboard, changing what the various buttons on
your mouse do; and making a thousand other cunning modifications to your
computing environment. Go ahead — indulge yourself. You haven't lived

until you've spent an entire afternoon designing a desktop scheme that

expresses your innermost desires (especially when you should have been
doing something else).

Figure 4-14:

The Style

Manager,

for a

fashionable

desktop.

File Help

® Tl-r 'M

Talkin' trash

The Trash tool is a great boon to UNIX users

susceptible to blowing away important files

with unforgiving UNIX commands such as rm.

When you issue the rm command or one of its

brethren, the files you deleted are gone, plain

and simple. When you're using the File Man-
ager on the desktop, on the other hand, files

you delete get put in a virtual trash barrel,

where they hang around until you tell UNIX to

get rid of them. If you delete a file by mistake,

you can bring the file back to life by following

these steps:

1. Double-click the Trash tool icon (the last

icon on the right end of the FrontPanel, as

shown in Figure 4-10).

2. Root around in the trash until you find the

file.

3. Drag the file from the trash and drop it

back into an appropriate location in the

File Manager.

Remember to empty the trash every now and

again, or else you eventually run out of disk

space.

H Part II: Some Basic Stuff

Desktop, there tie qol

The easiest way to get yourself out of the desktop is to click the Exit

thingum near the workspace buttons on the FrontPanel, which drops you
unceremoniously into good old traditional UNIX character mode.

Terminal Happenings
Even though X Windows enables you to run all the coolest, awesomest,

newest, most graphicalest programs, guess which program people use the

most? It's called xterm, and all it does is act like the kind of VT100 dumb
terminal that window systems are supposed to save us from. Such are the

ways of progress.

Click, click

One place where xterm acts a little better than the dumb terminal it pur-

ports to emulate is in mouse handling. You can select text with the mouse
and then paste the selected text into either the same or a different xterm
window.

To select some text, move the mouse to the beginning of the text, press

down the first (left) mouse button, and move the mouse to the end of the

text. As you move the mouse, the selected text changes color. When you've

selected it all, let go of the mouse button. Normally, xterm selects text

character-by-character; if you double-click rather than just press the mouse
button, however, it selects by word, and if you triple-click, it selects by line.

Users who don't believe in walking and chewing gum at the same time have

an alternative way to select text: Move to the beginning of the selection,

click the left button, and then move to the end of the selection and click the

right button.

Either way, after you've selected the text, move the mouse to the window
where you want to paste it and click the middle button. If, after you've

selected the text, a program erases the window, you can't see the selection

anymore although it's still there and you can still paste it.

One last stupid xterm trick

If the text in your xterm window is insufficiently or excessively legible, you
can make the type larger or smaller. Hold down the Ctrl key and press the

right mouse button to display the xterm VT Fonts menu, from which you
can select font sizes ranging from Unreadable to Huge.

Chapter 5

Files for Fun and Profit

•••

In This Chapter

|» Listing information about files

& Showing who has permission to use files

« Duplicating a file

>> Erasing a file

Renaming a file

Looking at what's in a file

p Printing a text file

?*• Giving a file to someone else

••••*•••••••••

I\ file is a bunch of information stored together, such as a letter to your

¥ \ mom or a database of customer invoices. Every file has a name. You
end up with tons of them.

This chapter explains how to work with files, including getting rid of the

ones you no longer want.

As a reminder, you must log in (as described in Chapter 1) before you can do
any of the nifty things we talk about in this chapter. When you see the UNIX
prompt (% or $), you're ready to rock and roll.

What Fifes bo \lou Hat/e)

To see a list of your files (actually, a list of the files in the working directory,

which Chapter 6 covers), type Is and press Enter. (This is positively the last

time we nag you to press Enter.)

This command stands for list, but could the lazy typists who wrote UNIX
have used the other two letters? No-o-o-o-o. This command lists all the files

66 Part II: Some Basic Stuff

in your working directory. (Chapter 6 discusses directories and how to make
lots of them.) The 1 s command just shows the names of the files in alpha-

betical order, like this:

bin/ budget-97 budget-

Jordan Mail/ meg

budget-99 daveg draft

news. junk zac

In some Linux systems, if the directory contains subdirectories, the

subdirectory names appear in a different color if your screen handles

colors, which is very handy. In BSD UNIX, subdirectory names also have a

slash after them. (Chapter 6 talks about subdirectories, if you're wondering

what we're talking about.)

Let's see the nitty-qxitty details

For more information about your files, use the -
1 option (long form listing):

Is -1

That's a small letter el, by the way, not a number one. This option tells 1 s to

display tons of information about your files. Each line looks like this:

1 johnl 250 Apr 6 09:57 junk3

To switch or not to switch?

Lots of UNIX commands have options. (They

are also called switches because you switch

the options on and off by typing or not typing

them when you type the command. True geeks

call them flags.) Options make commands both

more versatile and more confusing. Probably

the most widely used option is the -1 option

forthe 1 s command, which tells 1 s to display

lots of information about each file. When you

type a command with one or more options,

keep this list of rules handy:

* Leave a space after the command name

(the command 1 s, for example) and be-

fore the option (the -1 part).

<> Type a hyphen as the first character of the

option (-1, for example).

U* Type a space after the option if you want

to type more information on the command

line after the option.

u* If you want to include more than one op-

tion, type another space, another hyphen,

and the next option. You can usually string

multiple options together after one hy-

phen; for example, -al means that you

want option a and option 1

.

Chapter 5: Files for Fun and Profit /

Later in this chapter, in the section "Who can do what?" we explain all the

information in this listing. For now, just notice that the right-hand part of the

line shows the size of the file (250 characters, in this example), the date and

time the file was last modified, and the filename.

Making files come out of hiding

You may have more files in your directory than you think. UNIX enables you

to make things called hidden files, which are just like regular files except that

they don't appear in normal 1 s listings. It's easy to make a hidden file— just

start its filename with a period.

You can see your hidden files by typing

Is -a

To see all the information about your hidden files, type

Is -al

This command combines the - a and - 1 options so that you see the long

version of the complete listing of files. You could get the same thing by
typing

Is -a -1

but that would require typing an extra character and an extra space, an

anathema to lazy UNIX typists.

Roger, I Copy
You can make an exact duplicate of a file. To do it, you must know the name
of the file you want to copy, and you must create a new name to give to the

copy. If a file contains your January budget (called budget . j an, for ex-

ample) and you want to make a copy of it to use for the February budget

(to be called budget. feb, for example), type this line:

cp. budget. jan budget. feb

The lazy typists strike again. Be sure to leave spaces after the cp . command
and between the existing and new filenames. This command doesn't change
the existing file (budget . jan); it just creates a new file with a new name and
with the same contents.

68 Part II: Some Basic Stuff

^\N6/

A qood u/ay to lose some Work
What if a file named budget, feb already exists? Tough cookies! UNIX blows

it away and replaces it with a copy of budget . Jan. It truly is an excellent

idea to use the 1 s command first to make sure that you don't already have a

file with the new name you have chosen.

In Linux and UNIX System V Release 4, you can use the i switch to ask cp

to inform you whether a file with the new name already exists. If it does, the
- i switch asks you whether to proceed. If you have this version of UNIX,

type cp -i rather than just cp to use this nifty little feature.

If all goes well and cp works correctly, it doesn't show you any message.

Blessed silence on the part of UNIX usually means that all is well. You should

use the 1 s command to check that the new file really does exist, just in case.

What's in a name)
When you create a file, you give it a name. UNIX has rules about what makes
a good filename:

v Filenames can be pretty long; they're not limited to eight characters

and a three-character extension, like some operating systems we could

name. In older versions of UNIX, the limit is 14 characters for a

filename; newer versions have a huge limit — in the hundreds of

characters — so you can call a file Some_notes_I_pl an_to_get_
around_to_typi ng_up_eventual 1 y_i f_I_l i ve_that_l ong.

j> Don't use weird characters that mean something special to UNIX or

some shell you may encounter. Stay away from these characters when
you name files:

< >
'

f)

A

[] #

() $

! \

Stick mainly to letters and numbers.

j> Don't put spaces in a filename. Although some programs let you put

them in, spaces cause nothing but trouble because other programs

simply cannot believe that a filename may contain a space. Don't

borrow trouble. Most UNIX people use periods to string together words
to make filenames, such as budget . jan .98 or pumpki n . soup. Under-

scores work too.

i> UNIX considers uppercase and lowercase letters to be completely

different. Budget, budget, BUDGET, and BuDgEt are all different

filenames.

Chapter 5: Files for Fun and Profit ^y

Nuking Files Back to the Stone Aae
You can also get rid of files by using the command the lazy typists call rm.

To erase (delete, remove— it's all the same thing) a file, type

rm budget. feb

^\NG/

If all goes well, UNIX reports nothing and you see another prompt. Use 1 s to

see whether the rm command worked and the file is gone.

Watch out! Under most circumstances, you have no way to get a file back

after you delete it.

To be safe, you can use the -
i option to ask rm to ask you to confirm

deletion of the file. This is a particularly good idea if you use wildcards to

delete a group of files all at one time (see Chapter 7 for more info about

wildcards). For example, if you type

rm -i last-years-budget

UNIX asks:

rm : remove 'last-years-budget'

Press Y to delete the file or N to leave it alone.

Big, big trouble

If you delete something really, really important and you will be called on to

perform ritual seppuku if you can't get it back, don't give up hope. Your

local UNIX guru should make things called backups on some regular basis.

Backups contain copies of some or all of the files on the UNIX system. Your
files may be among those on the backup. Go to the guru on bended knee and
ask whether the file can be restored. If the file wasn't backed up recently,

you may get an older version of it, but hey— it's better than the alternative.

Even before you get yourself into this kind of pickle, you may want to ask

your UNIX expert to confirm that regular backups are made. Make sure that

your important files are included in the backups. If no one is making regular

backups, panic! This is not a safe situation. You had better talk to your
system administrator about getting a tape backup system.

70 Part II: Some Basic Stuff

Good housekeeping

You should get rid of files you no longer use, for several reasons:

v Having all kinds of files lying around becomes confusing, and it's

difficult to remember which ones are important.

v Useless files take up disk space. Whoever is in charge of your UNIX
system probably will bother you regularly to "take out the garbage,"

that is, to get rid of unnecessary files and free up some disk space.

On the other hand, making extra copies of files can be a good idea. If you
have been working on a report for three weeks, making an extra copy every

day or so isn't a bad idea. That way, if you make some revisions that, in

hindsight, were stupid, you can always go back to a previous revision.

What's in a Name (Reprise)

Having given a file a name, you may want to change it later. Maybe you
spelled it wrong in the first place. In any case, you can rename a file by using

the mv (lazy typist-ese for move) command.

Suppose that you made a file called bugdet .march. Oops — dratted

fingers. . . . Type the following line to correct the error in the filename:

mv bugdet. march budget. march

After mv, you type the current name of the file and then the name you want

to change it to. Note that it can be harder to retype the same typo than to

type the name correctly!

Because you can't have two files with the same name in the same directory,

if a file already has the name you want to use, mv thoughtfully blows away
the existing file (probably not what you want to do). Type carefully. Linux and

SVR4 users can use mv - i (like cp - i) to prevent inadvertent file clobbering.

Want to hide a file so that it doesn't appear in your directory listing? Use a

period (.) as the first letter of the filename. To see all your files, including

hidden files, type

Is -al

Chapter 5: Files for Fun and Profit f /

Looking, at the Guts of a File

Although you have been slicing and dicing files for a while now, you still

haven't seen what's inside one. Two basic types of files exist:

Ii>*

Files which contain text that UNIX can display nicely on-screen

u* Files which contain special codes that look like monkeys have been at

the keyboard when you display the files on-screen

The first type of files are called text files. The second type is composed of

spreadsheet files, database files, program files, and just about everything

else. Text editors make text files, as do a few other programs.

To display a text file, type this line:

cat eggplant. recipe

If you want to see the guts of a file that isn't named eggp 1 ant . reci pe,

substitute your file's name. The cat stands for catalog, or maybe catenate—
who knows? We're surprised that the lazy typists didn't call it something like

q. If you try to use cat with a file that doesn't contain text, your screen

looks like a truck ran over it — but you won't hurt anything. Sometimes the

garbage in the file can put your terminal in a strange mode in which charac-

ters you type don't appear or appear as strange Greek squiggles. See

Chapter 22 to learn how to "un-strange" your terminal.

If the file is long, the listing goes whizzing by. (You learn how to look at the

file one screen at a time in Chapter 7.) To see just the first few lines of the

file, you can type this line:

head eggplant. recipe

Most versions of the head command display the first ten lines.

You can ask UNIX to guess at what's in a file, by using the file command. If

you type

file filename

(replacing fi 1 ename with the name of the file you're wondering about),

UNIX takes a guess at what's in the file, by looking at it. It says something
like this:

letter. to. Jordan: ascii text

or this:

unix4d: directory

72 Part II: Some Basic Stuff

Is This a Printout I See before Me}
If a file looks okay on-screen when you use the cat command, try printing

the file. If you use UNIX System V, type this line to print your famous egg-

plant dish:

Ip eggplant. recipe

If you use BSD UNIX or Linux, type

Ipr eggplant. recipe

Assuming that you have a printer that's hooked up, turned on, and has

paper and that your username is set up to use it, the eggplant. recipe file

prints. If it doesn't, see Chapter 9 to straighten things out.

Who Goes There)

Unlike some operating systems we could name (such as . . . oh, Microsoft

Windows, f'rinstance), UNIX was designed from the beginning to be used by
more than one person. Like all multiuser systems, UNIX keeps track of who
owns what file and who can do what with each file. Permissions attached to

each file and directory determine who can use them.

Permissions come in three types:

v* Read permission: Enables you to look at a file or directory. You can use

cat or a text editor to see what's in a file that has read permission. You
also can copy this type of file. Read permission for a directory enables

you to list the directory's contents.

v Write permission: Enables you to make changes to a file. Even if you
can write (change) a file, you can't necessarily delete it or rename it; for

those actions, you must be able to write in the directory in which the

file resides. If you have write permission in a directory, you can create

new files in the directory and delete files from it.

* Execute permission: Enables you to run the program contained in the

file. The program can be a real program or a shell script. If the file

doesn't contain a program, execute permission doesn't do you much
good and can provoke the shell to complain bitterly as it tries (from its

rather dim point of view) to make sense of your file. For a directory,

execute permission enables you to open files in the directory and use

cd to get to the directory to make it your working directory.

Chapter 5: Files for Fun and Profit /Jj

Rack groups, pop groups,

and UNIX groups

Every UNIX user is a member of a group. When the system administrator

created your username, she assigned you to a group. To see which group

you're in, type id.

id

You see something like this:

uid=113(margy) gi d=102(guest) groups=102

(

guest) , 101(book) . 103(cheese)

Groups usually indicate the kind of work you do. UNIX uses groups to give a

bunch of people (the accounting department, for example) the same permis-

sions to use a set of files. All the people who work on a particular project are

usually in the same group so that they can look at and perhaps change each

other's files.

In Linux and BSD, you can be in several groups at a time, which is handy if

you're working on several projects. To find out what groups you're in, type

groups.

That's mine!
Every file and directory has an owner and a group owner. The owner is

usually the person who made the file or directory, although the owner can

sometimes change the ownership of the file to someone else. The group

owner is usually the group to which the owner belongs, although the owner
can change a file's group owner to another group.

If you use Linux or System V, you can change who owns a file with the chown

command (described later in this chapter).

Who can do tfhai!

To see who can do what to a file, use the 1 s command with the -
1 option.

Type this line:

Is -1 myfile

You see something like this:

-rw-r--r-- 1 margy staff 335 Jan 22 13:23 myfile

74 Part II: Some Basic Stuff

If you don't specify a filename (in this case, myf i 1 e), UNIX lists all the files

in the directory, which is often more useful. For every file, this listing shows
all the following information:

j> Whether it's a file, symbolic link, or directory. The first character in the

line is a hyphen (-) if it's a file, an / if it's a symbolic link, and a d if it's a

directory.

u* Whether the owner can read, write, or execute it (as shown by the next

three characters, 2 through 4, on the line). The first character is an r if

the owner has read permission or a hyphen (-) if not. The second

character is a w if the owner has write permission or a hyphen (-) if not.

The third character is an x (or sometimes an s) if the owner has execute

permission or a hyphen (-) if not.

" Whether the members of the group owner can read, write, or execute

the file or directory (as indicated by the next three characters, 5

through 7). An r, w, or x appears if that permission is granted; a

hyphen (-) appears if that permission is not granted.

u* Whether everyone else can read, write, or execute the file or directory

(as indicated by the next three characters, 8 through 10). An r, w, or x
appears if that permission is granted; a hyphen (-) appears if that

permission is not granted.

i> The link count, that is, how many links (names) this file has. For

directories, this number is the number of subdirectories the directory

contains plus 2 (don't ask).

i> The owner of the file or directory.

*> The group to which the file or directory belongs (group owner).

v The size of the file in bytes (characters).

*> The date and time the file was last modified.

*> The filename — at last!

Permissions by number
It's not too difficult to figure out which permissions a file has by looking at

the collection of rs, ws, and xs in the file listing. Sometimes permissions are

written another way, however: with numbers. Only UNIX programmers could

have thought of this method. (It's an example of lazy typists at their finest.)

Numbered permissions are sometimes called absolute permissions (perhaps

because they are absolutely impossible to remember).

When permissions are expressed as a number, it's a 3-digit number. The first

digit is the owner's permissions, the second digit is the group's permissions,

and the third digit is everyone else's permissions. Every digit is a number
from to 7. Table 5-1 lists what the digits mean.

Chapter 5: Files for Fun and Profit /y

Table 5-1

76 Part II: Some Basic Stuff

You can also use numeric (absolute) permissions with chmod. To let the user

or owner and associated group read or change the file, type

chmod 660 announcements

This line sets the owner permission to 6 (read and write), the group permis-

sion to 6 too, and everyone else's permission to (can't do anything).

You can change the permissions for a directory in exactly the same way you
do for a file. Keep in mind that read, write, and execute mean somewhat
different things for a directory.

Finding a neu/ ou/ner

When someone gives you a file, he usually copies it to your home directory.

As far as UNIX is concerned, the person who copied the file is still the file's

owner. In Linux and System V, you can change the ownership of a file you
own by using the chown command.

You tell chown the new owner for the file and the filename or filenames

whose ownership you are changing, as shown in this example:

chown John chapter6

This command changes the ownership of the file named chapter6 to John.

Keep in mind that only you can give away files you own; if you put a file in

someone else's directory, it's polite to chown the file to that user.

Another way to change the owner of a file is to make a copy of the file.

Suppose that Fred puts a file in your home directory and he still owns it. You
can't use chown to change the ownership because only the owner can do
that (you have a chicken-before-the-egg problem here). You can get owner-

ship of a file if you copy the file. When you copy a file, you own the new
copy Then delete the original.

File seeks neu/ qxoup; can sing,

dance, and do tricks

If you own a file or directory, you can change the group that can access it.

The chgrp command enables you to change the name of the group associ-

ated with the file, as shown in this example:

chgrp acctg billing. list

This command changes the group associated with the file bi 1 1 i ng . 1 i st to

the group called acctg.

Chapter 6

Directories for Fun and Profit

In This Chapter

Defining a directory

Getting to the right directory

Defining a home directory

Making a new directory

Erasing a directory

Renaming a directory

Moving a file from one directory to another

Organizing your files

A map of UNIX

Files are great — they're where you store all your important information,

as well as where UNIX itself and all your programs are stored. UNIX
systems have, in fact, tens of thousands of files, even before you create a

single one. Imagine typing your 1 s command and getting a list of 10,000

filenames. Not pretty (or fast).

To avoid this situation, UNIX has things called directories, which enable you
to divide your files into groups. This chapter explains how to organize your

UNIX files into directories and how to find things after you have done so.

Good News for Windows and DOS Users
We have good news about UNIX for you experienced Windows and DOS
users. It works almost exactly the same as Windows and DOS do when it

comes to directories and files. Actually, it's the other way around: A guy
named Mark added directories to DOS back in 1982 and ripped off, er,

emulated the way UNIX did things — with a few confusing changes, of

course.

78 Part II: Some Basic Stuff

Briefly, Windows and DOS users should know the following information

about UNIX directories:

j> All those backslashes (\) you learned to type in Windows and DOS
turn into regular slashes (/) in UNIX. No one knows why Mark decided

that DOS slashes should lean backward. We're sure that he had a very

good reason, of course— maybe the / key on his keyboard was broken.

v* The UNIX cd (change directory) command works (more or less) like the

DOS CD command; remember not to capitalize it in UNIX.

u* The UNIX command for making a directory is mkd i r rather than the

DOS MD command. To remove a directory in UNIX, you use the rmdi r

command rather than the DOS RD command. (Where were the lazy

typists when we needed them?) These two commands also work (more
or less) like the DOS versions. Don't capitalize these commands, either.

v* As always, UNIX believes that uppercase and lowercase letters have

nothing to do with each other. Because the two types of letters are

completely different, be sure to use the correct capitalization when you
type directory names and filenames.

t> If you really like DOS commands and want to make UNIX understand

them, you can make shell scripts (the UNIX equivalent of DOS batch

files) that enable you to type DIR or COPY, for example, while you're

using UNIX. (Chapter 12 tells you how to make shell scripts.) Or, if you
absolutely fall in love with UNIX commands — and who doesn't! — you
can make DOS batch files on your PC so that you can type such immor-
tal character combinations as 1 s and cp while you're using it.

If you understand directories and paths intuitively from your vast experi-

ence with PCs, skip to the sidebar "Getting the big picture," later in this

chapter.

What Is a Directory)

A directory, for the rest of you people, is a group of files or a work area.

(Windows 98, Windows 95, and Macintosh users may recognize it as a

folder.^) You give a directory a name, such as Budget or Letters or Games or

Harold. You can put in a directory as many files as you want.

The good thing about directories (also sometimes called subdirectories, for

no good reason) is that you can use them to keep together groups of related

files. If you make a directory for all your budget files, those files are the only

ones you see while you're working in that directory. Directories make it easy

to concentrate on what you're doing so that you're not distracted by the

zillions of other files on the disk.

Chapter 6: Directories for Fun and Profit fQ

You can make directories, move files into them, rename directories, and get

rid of them. This chapter describes the commands that perform each of

these stunts.

divide and Conquer
Interestingly, a directory can contain other directories. You may have a

directory called Budget, for example, for your departmental budget. The
Budget directory may contain several other directories (also called sub-

directories) such asYearl998, Yearl999, and Estimates. If a directory

contains so many files that you can't find things, you should create some
subdirectories to divide things up.

Files and directories are stored on disks. Every disk has a main directory

that contains everything on the disk. This directory is called the root

directory. The designers of UNIX were thinking of trees here, not turnips.

They imagined an upside-down tree with the root at the top and the

branches reaching downward, as shown in Figure 6-1. This arrange-

ment of directories is called a tree-structured directory.

Figure 6-1:

A tree-

structured

directory.

(The root directory)

Budget

Year 1999 Year 1998
I

freds.99.estimate
sues.99.estimate

Recipes
I

pumpkin.soup

tiramisu

Strangely, you don't type root when you're talking about the root directory.

Rather, you press /. Just like that: A single slash means "root" in UNIX-ese.

Paths to pouter

Unfortunately, UNIX never shows you the directory structure as a nice

picture, as shown in Figure 6-1. That would be too easy. Rather, to tell UNIX
which file you want to use, you type its pathname. The pathname is the step-

by-step map UNIX follows to get to a file, starting at the root. The pathname
for the file named freds. 99. estimate in Figure 6-1, for example, contains

these steps:

$0 Part II: Some Basic Stuff

/

Budget

/

The root, where you start.

The name of the first directory you move to on
your way to the file.

Confusingly, this slash doesn't refer to another

root; it's just the character used to separate

one name from the next in a pathname.

Yearl999 The next directory on your way to the file.

/ Another separator character.

f reds . 99. estimate The filename you want.

When you type this pathname, you string it all together, with no spaces:

/Budget /Yea rl999/f reds. 99. estimate

Luckily, you don't often have to type big, long pathnames like this one; it's

devilishly hard to get all that right on the first try!

££%&*

Family matters

You can also think of the tree structure of directories as a family tree. In this

way of thinking, the Yearl999 directory is a child of the Budget directory,

and the Budget directory is the parent oftheYearl999 directory. You see

these terms sometimes if you read more about UNIX.

Getting the big picture

If you have a UNIX workstation that's all your

own, most or all of the files on its hard disk are

yours. If you have a terminal and share a UNIX

computer with others, the computer's hard

disk has files that belong to all the users. As

you can imagine, we are talking about oodles

of files. To keep the files — and users! —
organized, UNIX has lots of different

directories.

UNIX has lots of directories for the UNIX pro-

gram files themselves, program files for other

programs, and other stuff you definitely are

not interested in. The files that belong to users

(such as yourself) usually are stored in one

area. A directory called /usr (or sometimes

/home) contains one subdirectory for every

user. If your username is zacyoung, for ex-

ample, the /usr directory contains a sub-

directory called zacyoung, which contains

your files.

Chapter 6: Directories for Fun and Profit q /

Names for directories

Choose names for directories in the same way as you choose names for files:

Avoid funky characters and spaces, and don't make the name so long that

you never type it correctly, for example. Some people capitalize the first

letter of directory names so that they can tell what's a directory and what's

a file. When you type 1 s to list the contents of a directory, the command
lists both filenames and the names of subdirectories. When you use capitali-

zation to distinguish between directory names and filenames, you can

quickly tell which are which.

There's No Place Like Home
Every user has a home directory (sweet, isn't it?) in which you store your

personal stuff, mail, and so on. When you log in, UNIX starts you working in

your home directory, where you work until you move somewhere else. Your

home directory is your subdirectory in the /usr (or /home) directory, so

Zac Young's home directory is /usr/zacyoung. (Although Zac is only three

years old, we're sure that he'll need a home directory shortly.)

Because most UNIX systems involve lots of people sharing disk space and

files, UNIX has a security system to prevent people from reading each

other's private mail or blowing away each other's work (accidentally, of

course). Chapter 5 talks about the security system. In your home directory,

you usually have the right to create, edit, and delete all the files and sub-

directories. You can't do that in someone else's home directory unless the

directory's owner gives you permission.

Ytfe been Working in the directory

Whenever you use UNIX, the directory you are working in is the working

directory. Some people call it the current directory, which also makes sense.

When you first log in, your home directory is your working directory.

Although you start in your home directory, you can move around. If you
move to the /Budget directory, for example, the /Budget directory be-

comes the working directory. (Your home directory is still your home
directory— it never moves.)

If you forget where you are in the directory structure, you can ask UNIX.

Type pwd to ask UNIX where you are. That's short for print working direc-

tory. UNIX doesn't print the information on paper; it just displays it on-

screen. You see something like this:

/Budget/Yearl999

§2 Part |,: s°me Basic Stuff

When you use the 1 s command (or most other UNIX commands), UNIX
assumes that you want to work with just the files in the working directory.

The 1 s command lists just the files in the working directory unless you tell

it to look somewhere else.

To move to another directory to do some work (if you're tired of working

on the budget and want to get back to that recipe for pumpkin soup, for

example), you can change directories. To move from anywhere in the

/Budget directory to the /Recipes directory, type this line:

cd /Recipes

Remember that cd is the change directory command. After the cd (and a

space), you type the directory you want to go to. You can tell UNIX exactly

which directory you want in two ways:

i> Type a full pathname, or absolute pathname (the pathname starting at

the root, as you did earlier). In the /Reci pes example, the slash at the

beginning of the pathname indicates that the pathname starts at the

root.

*> Type a relative pathname (the pathname starting from where you are

now).

This stuff is confusing, we know, but UNIX has to know exactly which direc-

tory you want before it makes the move. Because the disk can have more than

one directory called Reci pes, UNIX has to know which one you want. When
you type a full pathname starting at the root directory, the pathname starts

with a /. When you type a relative pathname starting at the working direc-

tory, the pathname doesn't start with a /. That's how UNIX (and you) can

tell which kind of path it is.

If you are in the /Budget directory (on the /Budget branch of the directory

tree) and want to go to the Yearl999 subdirectory (a branchlet off the main

/Budget branch), for example, just type cd Yearl999. To go to a different

branch or to move upward toward the root, you must type the slashes. To
move from the /Budget/Yea rl999 branchlet back to the main /Budget
branch, type cd /Budget. For example, to move from the /Budget branch to

the / Reci pes branch, type cd /Recipes.

If you try to move to a directory that doesn't exist or if you incorrectly type

the directory name or pathname, UNIX says:

Dudegt: No such file or directory

(or whatever directory name you typed).

Chapter 6: Directories for Fun and Profit qj

I Want to qo home!
If you move to another directory (/Oz, for example) and want to get back to

your home directory (/Kansas, that is), you can do so as easily as clicking

the heels of your ruby slippers three times. (Or were they glass slippers?)

Just type cd. When you don't tell UNIX where you want to go, it assumes
that you want to go home.

Putting \lour bucks in a RovJ
As with everything else in life (if we may be so bold as to suggest it), it pays

to be organized when you're naming files and putting them in directories. If

you don't have at least a little organization, you will never find anything.

Think about which types of files you will make and use. (Word-processing

files? Spreadsheet files?) Then make a directory for every type of file or for

every project you're working on. This section shows you how.

Making directories

Before you create a directory, be sure that you put it in the right place.

Remember that you type pwd to display your working directory (the current

directory).

The most likely place to create a subdirectory is in your home directory. If

you're not there already, type cd to go back home.

When you create a directory, you give it a name. To create a directory called

Temp to hold temporary files, type mkdir Temp.

Most people have a directory called Temp to hold files temporarily. These
files can be the ones you need to keep just long enough to print, to copy to a

floppy disk or tape, or whatever. Anyway, you have one now, too. To confirm

that the Temp directory is there, type this line:

Is

You can even go in there and look around by typing the following (and

pressing Enter after typing the first line):

cd Temp

Is

When you create a directory, it starts out empty (it contains no files).

8t> Part II: Some Basic Stuff

Most people have directories with names something like these examples:

Mai 1 : For electronic mail (see Chapter 17).

Docs: For miscellaneous documents, memos, and letters.

Temp: For files you don't plan to keep. Use Temp to store files you plan

to throw away soon. If you put them in some other directory and don't

erase them when you finish with them, you may forget what they are

and be reluctant to delete them later. Directories commonly fill up with

junk in this way. Make it a rule that any files left in the Temp directory

are considered deletable.

bi n: For programs that you use but that aren't stored in a central place.

Your system administrator may have already made you your own bi n

directory. (See Chapter 12 for information about the bi n directory and
making your own programs.)

You can also make one or more directories to contain actual work.

bot and dot dot

UNIX has two funny pseudo-directory names you can use — especially with

the cd and 1 s commands. One is . (a single dot), which stands for the cur-

rent directory. You type the following line, for example, to tell UNIX to list

the files in the current directory:

Is .

This command is pointless, of course, because typing the following line does
exactly the same thing:

Is

Okay, forget about . (the single dot). But . . (the double dot, or dot dot) can

be useful. It stands for the parent directory of the working directory. The
parent directory is the one of which the working directory is a subdirectory.

The parent is one level up the tree from where you are now. If you're in the

directory /usr/home/zacyoung/Budget, for example, the .. (dot dot, or

parent) directory is /usr/home/zacyoung.

If you type the following line, you see a list of the files in the parent direc-

tory of where you are now. This command can save you from some serious

typing (and the associated errors):

Is

Chapter 6: Directories for Fun and Profit o5

Performing neat directory operations

After you have some directories, you may want to change their names or get

rid of them. You also may want to move a file from one directory to another.

This section shows you how to try that first.

Transplanting files

Chapter 5 describes the use of the mv command to rename a file. You can

use the same command to move files from one directory to another. To get

the mv command to move files rather than just rename them, you tell it the

name of the file you want to move and the name of the path where you want
to put the file.

If you want, you can rename the file at the same time you move it, but

let's keep things (comparatively) simple. Suppose that you put the file

al 1 ens . 99 . estimates into the /Budget/Yearl998 directory rather than

in /Budget/Yea rl999. The easiest way to move it is to go first to the

directory in which it is located. In this example, you type this line:

cd /Budget/Yearl998

Use 1 s to make sure that the file is in the current directory. After you are

sure that the file is there, you can move it to the directory you want by
typing this line:

mv aliens. 99. estimates /Budget/Yearl999

Be sure to type one space after mv and one space between the name of the

file and the place you want to move it to. If you use 1 s again, you discover

that the file is no longer in the working directory (Year 1998). You should

change to the directory to which you moved the file and use 1 s to make
sure that the file is there. Make one typing mistake in a mv command, and
you can move a valuable file to some unexpected place.

Amputating unnecessary directories

You can use the rmdi r command to remove a directory, but what about the

files in the directory? Are they left hanging in the air with the ground blown
out from under them? Nope; you must either get rid of the files in the

directory (delete them) or move them elsewhere before you can hack away
at the directory.

To erase a directory, follow these steps:

1. Use the rm command to delete any files you don't want to keep.

(See Chapter 5 for the gory details of using this command.)

$() Part II: Some Basic Stuff

^\NG/

2. If you want to keep any of the files, move them to somewhere else by
using the mv command (as explained in the preceding section).

3. Move to some other directory when the directory you want to delete

is empty.

UNIX doesn't let you delete the working directory. The easiest thing to

do is to move to the working directory's parent directory:

cd ..

4. Remove the directory by typing this line:

rmdir OldStuff

Replace OldStuff with the name of the directory you want to ax.

5. Use 1 s to confirm that the directory is gone.

You can delete a directory and all the files in it or even a directory and all

the subdirectories and files in them, but this process is dangerous stuff. You
usually are better off sifting through the files and deleting or moving them in

smaller groups. If you're interested in a really dangerous command, which
we shouldn't even be telling you about, you can type rm -r to remove a

directory and all its files and subdirectories in one fell swoop.

Renaming a directory

If you have used DOS, you will be thrilled to learn that in UNIX you can

rename a directory after you create it. (DOS doesn't let you do that, at least

not in early versions.) Again, the mv command comes to the rescue.

To rename a directory, you tell mv the current directory name and the new
directory name. Go to the parent directory of the directory you want to

rename, and then use the mv command. To rename the /Budget directory

/Fi nance, for example, go to the / directory (type cd /) and then type this

line:

iJABEtf

mv Budget Finance

Make sure first that a directory with that name isn't already there. If it is,

UNIX moves the first-named directory to become a subdirectory of the

existing directory. In other words, if a /Finance directory is already there,

/Budget moves to become / Fi nance/Budget. That could be handy, if that's

what you have in mind. Then again, it could drive you out of your mind if

that's not what you expect.

Chapter 7

The Shell Game

In This Chapter

p- Using redirection

Viewing a file one screen at a time

p- Printing the output of any command

c Working with groups of files

£ Avoiding retyping commands, especially after typos

Getting set up each time you log in

p- Setting your terminal options

• ••»••

i
mi you've read the preceding chapters in this book, you know how to work

m, with files and how to type some commands to UNIX (you type them to

the shell, as you know, but let's not get bogged down in that here). UNIX has

a clever way to increase the power of its commands: redirection. This chapter

shows you how to use redirection and how to use wildcards to work with

groups of files.

This Output Is Going to Havana:

Redirection

When you use a UNIX command like 1 s, the result (or output) of the com-
mand is displayed on-screen. The standard place, in fact, for the output of

most UNIX commands is the screen. The output even has a name: standard

output. As you can imagine, you also have standard input, usually via the

keyboard. You type a command; if it needs more input, you type that, too.

The result is output displayed on-screen — all very natural.

You can pervert this natural order by redirecting the input or output of a

program. A better word is hijacking. You say to UNIX, "Don't display this

output on-screen— instead, put it somewhere else." Or, "The input for this

program is not coming from the keyboard this time — look for it somewhere
else."

88 Part II: Some Basic Stuff

The "somewhere else" can be any of these sources:

v^ A file: You can store the output of 1 s (your directory listing) in a file,

for example.

j> The printer: It's useful only for output. Getting input from a printer is a

losing battle.

v* Another program: This one gets really interesting, when you take the

output from one program and feed it to another program!

Bunches of UNIX programs are designed primarily to use input from a

source other than the keyboard and to output stuff to someplace other than

the screen. These kinds of programs are called filters. Readers old enough to

remember what cigarettes are may recall that the advanced ones had a filter

between the cigarette and your mouth to make the smoke smoother, mel-

lower, and more sophisticated. UNIX filters work in much the same way,

except that they usually aren't made of asbestos.

The only exception to this redirection business is with programs, such as

text editors and spreadsheets, that take over the entire screen. Although

you can redirect their output to the printer, for example, you won't like the

results (nor will your coworkers, as they wait for a pile of your garbage

pages to come out of the printer). Full-screen programs write all sorts of

special glop (they give instructions) to the screen to control where stuff is

displayed and what color to use, for example. These instructions don't work
on the printer because printers use their own, different kind of glop. The
short form of this tip is that redirection and editors don 't mix.

Grabbing output

So how do you use this neat redirection stuff, you ask? Naturally, UNIX
does it with funny characters. The two characters < and > are used for

redirecting input and output to and from files and to the printer. You use

another character (|

)to redirect the output of one program to the input of

another program.

To redirect (or snag, in technical parlance) the output of a command, use >.

Think of this symbol as a tiny funnel into which the output is pouring (hey,

we use any gimmick we can to remember which funny character is which).

To make a file called 1 i st . of . fi 1 es that contains your directory listing, for

example, type this line:

Is > list. of .files

UNIX creates a new file, called 1 i st . of . f i 1 es in this case, and puts the

output of the 1 s command into it.

Chapter 7: The Shell Game § £J

A\NG/ If 1 i st . of . f i 1 es already exists, UNIX blows away the old version of the

file. If you don't want to erase the existing file, you can tell UNIX to add this

new information to the end of it (append the new information to the existing

information). To do it, type this line:

Is » list. of. files

The double >> symbol makes the command append the output of 1 s to the

list.of.files file, if it already exists. If 1 i s t . o f . f i 1 e s doesn't exist

already, 1 s creates it.

Some (but not all, of course) versions of the C shell check to see whether
the file already exists and refuse to let you wreck an existing file with

redirection. To overwrite the file if your C shell works this way, use rm to

get rid of the old version. The command that tells the C shell not to clobber

an existing file when you're creating a new file from redirection is set

nocl obber. To turn this protection off, you can use the unset nocl obber
command. We recommend turning on nocl obber every time you run UNIX
(or get a UNIX wizard to help you make this command execute automagically

every time UNIX starts up).

Redirecting input

Redirecting input is useful less often than redirecting output, and we can't

think of a single, simple example in which you would want to use it. Suffice it

to say that you redirect input just like you redirect output except that you
use the < character rather than the > character.

Gurgle, Gurgle: Running
bata Through Pipes

The process of redirecting the output of one program so that it becomes the

input of another program can be quite useful. This process is the electronic

equivalent of whisper-down-the-lane, with each program passing information

to the next program and doing something to what's being whispered.

To play whisper-down-the-lane with UNIX, you use a pipe. The symbol for a

pipe is a vertical bar (|). Search your keyboard for this character. It's often

on the same key with \ (the backslash). Sometimes the key shows the vertical

bar with a gap in the middle, although the gap doesn't matter. If you type

two commands separated by a
| ,
you tell UNIX to use the output of the first

command as input for the second command.

90 Part II: Some Basic Stuff

Gimme just a little at a time

When you have many files in a directory, the output of the 1 s command can
go whizzing by too fast to read, which makes it impossible to see the files at

the beginning of the list before they disappear off the top of the screen. A
UNIX program called more solves this problem. The more program displays

on-screen the input you give it, and it pauses as soon as it fills the screen

and waits for you to press a key to continue. To display your list of files one
screenful at a time, type this line:

Is more

This line tells the 1 s command to send the file listing to the more command.
The more command then displays the listing. You can think of the informa-

tion from the 1 s command gurgling down through the little pipe to the more
command (we think of it this way).

The cat and the fiddle . . . er, file

As explained in Chapter 5, you can use the cat command to display the

contents of a text file. If the text file is too long to fit on-screen, however, the

beginning of the file disappears too fast to see. You can display a long file

on-screen one screenful at a time in these two ways:

j> Redirect the output of the cat command to more by typing this line

(assuming, of course, that the file is called real ly . 1 ong . fi 1 e):

cat really. long. file | more

i> Just use the more command by typing this line:

more really. long. file

If you use the more command without a pipe (without the |), more takes the

file you suggest and displays it on-screen a page at a time.

Sortinq, sort of
A program called sort sorts a file line-by-line in alphabetical order. The
program alphabetizes all the lines according to the beginning of each line.

Each line in the file is unaffected; just the order of the lines changes.

Chapter 7: The Shell Game
ty /

Suppose that you have a file called honors, students, which looks like this:

Meg Young

Shelly Horwitz

Neil Guertin

Stuart Guertin

Sarah Saxon

Zac Young

Gillian Guertin

Tucker Myhre

Andrew Guertin

Megan Riley

Chloe Myhre

To sort it line by line into alphabetical order, type this line:

sort honors. students

The result looks like this:

Andrew Guertin

Chloe Myhre

Gillian Guertin

Meg Young

Megan Riley

Neil Guertin

Sarah Saxon

Shelly Horwitz

Stuart Guertin

Tucker Myhre

Zac Young

The list appears on-screen, however, and nowhere else. If you want to save

the sorted list, type

sort honors. students > students. sorted

You can also sort the output of a command:

Is | sort

Because 1 s displays filenames in alphabetical order anyway, of course, this

example doesn't do you much good. If you want the filenames in reverse

alphabetical order, however (we're stretching for an example here), you can

use the - r option with the sort command:

Is | sort -r

If you're sorting numbers, be sure to tell UNIX. Otherwise, it sorts the

numbers alphabetically (the sort of imbecilic and useless trick only a

computer would do). To sort numbers, use the -n option:

sort -n order. numbers

92 Part II: Some Basic Stuff

Suppose that your file of honors students contains total test scores:

10000 Meg Young

8000 Shelly Horwitz

7000 Neil Guertin

5000 Stuart Guertin

9000 Sarah Saxon

5000 Zac Young

8000 Gillian Guertin

7000 Tucker Myhre

11000 Andrew Guertin

6000 Megan Riley

7000 Chloe Myhre

When you alphabetize things as letters, not as numbers, a 1 comes before

an 8 no matter what, even if it's the first letter of 10. When you alphabetize

things as numbers, 10 comes after 8, not before it. If you sort this file as

letters, with this command:

sort honors. students

you get

10000 Meg Young

11000 Andrew Guertin

5000 Stuart Guertin

5000 Zac Young

6000 Megan Riley

7000 Chloe Myhre

7000 Neil Guertin

7000 Tucker Myhre

8000 Gillian Guertin

8000 Shelly Horwitz

9000 Sarah Saxon

This output does not show the bonus amounts in any useful order. If you
sort the file as numbers, with this command:

sort -n honors. students

you get this more useful listing:

5000 Stuart Guertin

5000 Zac Young

6000 Megan Riley

7000 Chloe Myhre

7000 Neil Guertin

7000 Tucker Myhre

8000 Gillian Guertin

8000 Shelly Horwitz

9000 Sarah Saxon

10000 Meg Young

11000 Andrew Guertin

If the file contains letters, not numbers, the n option has no effect.

Chapter 7: The Shell Game (}$

Can tie qet that on paper}

Being able to print the output of a command is terrifically useful when you
want to send to a printer something that normally appears on-screen. To

print a listing of your files, for example, type this line:

Is
|

Ip

Users of Linux and BSD UNIX use the 1 p r command rather than 1 p. (Chapter 9

explains other stuff about printing.)

You can use more than one pipe if you want to be advanced. To print a

listing of your files in reverse order, for example, you can use this convo-

luted command:

Is
|
sort -r

|
Ip

Wild and Crazy Wildcards
When you type a command, you may want to include the names of a bunch
of files on the command line. UNIX makes the typing of multiple filenames

somewhat easier (as though we should be grateful) by providing wildcards.

Wildcards are the two special characters (still more of them to remember!)

that have a special meaning in filenames:

? Means "any single letter"

* Means "anything at all"

Pick a tetter, any letter

You can use one or more ? wildcards in a filename. Each ? stands for exactly

one character — no more, no less. To list all your files that have two-letter

names, for example, you can type this line:

Is ??

The command Is budget?? lists all filenames that start with budget and
have two— and only two — characters after budget, like budget98 and
budget99; the combination doesn't match budgetl or budget .draft or

Budget98 (because of the uppercase E).

H Part II: Some Basic Stuff

Stars (***) in your eyes

The * wildcard stands for any number of characters. To list all your files

that have names starting with a c, for example, type

Is c*

This specification matches files named customer . 1 etter, c3, and just plain

c. The specification budget .
* matches budget . 1999 and budget .draft,

but not draft . budget. The name *

.

draft matches budget .draft and
wi ndow. draft, but not draft . horse or plain draft. By itself, the filename
* matches everything (watch out when you let the asterisk go solo!).

Are kinqs or deuces Wild)

Unlike some other kinds of operating systems (we don't name any, although

one system's initials are DOS), UNIX handles the ? and * wildcards in the

same way for every command. You don't have to memorize which com-
mands can handle wildcards and which ones cannot. In UNIX, they all can

handle wildcards.

Wildcards commonly are used with the Is, cp, rm, and mv commands. For

example, to copy all the files from the current directory to the temp direc-

tory, you can type

cp * temp

Wildcards for DOS users

Although UNIX wildcards look just like DOS wildcards and they work in

almost the same way, they have a few differences:

*> Because UNIX filenames don't have the three-letter extensions that DOS
filenames use, don't use *

.
* to match all files in a directory. That trick

matches only files that have a dot in their names. A simple * does the trick.

v In DOS, you cannot put letters after the * wildcard — DOS ignores the

letters following the asterisk. In DOS, d*mb is the same as d*, for

example. It's dumb, we know. The good news is that UNIX is not so

dumb. In UNIX, d*mb works just the way you want it to.

Chapter 7: The Shell Game £)$
^\NG

Look before you delete!

The combination of wildcards and the rm com-

mand is deadly. Use wildcards with care when

you delete files. You should look first at the list

of files you're deleting to make sure that it's

what you had in mind. Before you type the

following command, for example, to delete a

bunch of files:

rm *.97

type this line and look at the resulting list of

files:

Is *.97

You may see in that list of . 97 files something

worth keeping that you forgot about.

The most deadly typo of all is this one (do not

type this line!):

rm 17

Notice the space between the * wildcard and

the .97. Although you may have thought that

you were deleting all files ending with .97,

UNIX thinks that you have typed two filenames

to delete:

* This "filename" deletes all the files in the

directory.

.97 This filename deletes a file named .97

(yes, filenames can start with a period). By

the time UNIX tries to delete this (nonex-

istent) file, it has, of course, already de-

leted all the files in the directory!

You end up with an empty directory and lots of

missing files. Watch out when you use rm and
* together!

History Repeats Itself

We make fun of the C shell often (and rightly so), but when Bill wrote it, he

added a lovely feature called hi story. BASH does history too, even more
nicely than the C shell. And the Korn shell has a way to do history that is

clunky but serviceable.

The hi story command enables you to issue UNIX commands again without

having to retype them, a big plus in our book. Bourne shell users may as

well skip the rest of this chapter because it will just make you jealous (or it'll

make you bite the bullet and switch to the BASH shell, by typing bash).

Here's how hi story works. The shell stores in a history list a list of the

commands you've given. Then you can use the list to repeat commands
exactly as you typed them the first time or edit previously used commands
so that you can give a similar command.

96 Part II: Some Basic Stuff

History in the key of C
In the C shell, you can type !! and press Enter to repeat the last command
you typed. The shell displays the command and then executes it.

You can also rerun the last command line that begins with a particular

bunch of letters. If you type

•find

the C shell repeats the last command line that began with the text find. You
don't have to type an entire command. If you type

!f1

it looks for the last command you typed that started with fi, which may be a

find command or f i 1 e command.

To see the history list, type history. You see a list like this:

1

Chapter 7: The Shell Game ^ 7

Now you want to give the same find command, but this time you're looking

for a file named budget. 99. Rather than tediously, arduously retype the

line, character by character and keystroke by keystroke, worrying anxiously

about a possible typo with every key you press, you can tell the C shell to

repeat the last command, substituting 99 for 98. The command is

A 98 A 99

You type a caret (
A
), the old text, another caret, and the text to substitute.

Voila! The C shell displays the new command and then executes it.

BASHing through commands
BASH can do all the cool hi story tricks the C shell can, with some addi-

tional acrobatics. When BASH displays your history list, it usually stores the

last 500 commands you typed, so the list can be huge. To see it a page at a

time, type this command:

history
|
more

To see the last nine commands on the history list, type

history 9

Here comes the neat part — you can press the arrow keys to flip back

through your commands. When you press the up-arrow key (or Ctrl+P, for

previous), BASH shows you the previous command from the history list. You
can press Enter to execute the command. You can keep pressing the up-

arrow key (or Ctrl+P) until you get to the command you want. If you go past

it, you can move back down your history list by pressing the down-arrow
key (or Ctrl+N, for next).

This feature is downright useful and typo-saving! DOS 6.2 has it too, of

course, but who's counting?

After you have displayed on the command line a command from your
history list, you can edit the command before you press Enter to execute it.

Press the left- and right-arrow keys (or Ctrl+B and Ctrl+F, for backward and
/brward) to move the cursor. When you type characters, BASH inserts them
on the command line where the cursor is.

The folks at the Free Software Foundation who wrote BASH are big emacs
fans (as are we) because you can use most emacs editing commands to edit

the command on the command line. For example, pressing Ctrl+A moves
your cursor to the beginning of the line, Ctrl+E moves it to the end of the

98 Part II: Some Basic Stuff

line, Esc+F moves it forward by a word, and Ctrl+K deletes everything to the

right of the cursor. If you, for some reason, prefer vi to emacs, press

Esc+Enter, and BASH changes to a v i -like editor, where you search for

hi story commands by pressing Ctrl+R and Ctrl+S.

Enough about BASH and hi story. You get the general idea!

A Kom-ucopia of commands
We don't use the Korn shell much because we've become rather fond of

BASH, but the Korn shell can do history, too. The hi story command lists

your history list, as does the more cryptic f c - 1 command. To repeat the

last command, just press r and then Enter. That's it— just r. To repeat the

last cat command, type this line:

r cat

To repeat the last command and replace 98 with 99, type

r 98-99

The Korn shell enables you to edit your previous commands in all kinds of

fancy ways, although it's confusing to do, so we suggest that you switch to

the BASH shell if you long to edit and reissue commands.

bo I Ha(/e To type the Same Things

Etfery Time I Log /«?

Most users find that, every time they log in, they type the same commands
to set up the computer the way they like it. You may typically change to

your favorite directory, for example, and then change the terminal settings

(see the following section), check your mail, or do any of a dozen other

things.

The Bourne, Korn, and BASH shells look in your home directory for a file

called .profile when you log in. If the . prof i 1 e file exists, UNIX executes

the commands in that file. The C shell has two corresponding files: .login

(which it runs when you log in) and . cs h re (which it runs every time you
start a new C shell, either at login time or when you type csh).

Your system administrator probably gave you a standard . prof i 1 e or

.login file when your account first was set up. Messing with stuff that's

already there is definitely not a good idea. You may end up unable to log in

Chapter 7: The Shell Game tyty

and then have to crawl to your system administrator and beg for help. So

don't say that we didn't warn you.

The standard .profile, .login, and . c s h r c files vary considerably (why
do we even finish this sentence — you know what we're going to say) from

one system to another, depending on the tastes of the system administrator.

These files usually perform these tasks:

*> Sets up the search path the shell uses to look for commands

j> Arranges to notify you when you have new mail

V (Sometimes) changes the shell prompt from the usual $ or % to some-
thing more informative

If you always type the same commands when you log in, adding new com-
mands at the end of . prof i 1 e or .login is fairly safe. If you do most of

your work in the directory b i g p r o j e c t , for example, you may add the

following three lines to the end of the file your shell uses to start up your

UNIX session (.profile or .cshrc):

change to bi gproject , added 3/98

cd bigproject

echo Now in directory bigproject.

The first line is a comment the computer ignores but is useful for humans
trying to figure out who changed what. Any line that starts with a pound
sign (#) is a comment. The second line is a regular cd command. The third

line is an echo command that displays a note on-screen to remind you of the

directory you're in.

If you use the C shell, a frequently useful command to put in .login is this

one:

set ignoreeof

If you press Ctrl+D in the shell, the shell normally assumes that you're

finished for the day and logs you out — in keeping with the traditional UNIX
"you asked for it, you got it" philosophy. Many people think that you should

be more explicit about your intention to log out and use ignoreeofto tell

the shell to ignore Ctrl+D (the following section tells you what eof has to do
with Ctrl+D) and log out only when you type exit or logout.

100 Part II: Some Basic Stuff

Terminal Options
About 14 zillion different settings are associated with each terminal or

pseudo-terminal attached to a UNIX system, any of which you can change
with the stty command. More than 13 zillion of the 14 zillion shouldn't be

messed with, or else your terminal vanishes in a puff of smoke (as far as

UNIX is concerned) and you have to log in all over again or even get your

system administrator to undo the damage. You can, however, safely change

a few things.

All the special characters that control the terminal, such as Backspace and
Ctrl+Z, are changeable. People often find that they prefer characters other

than the defaults, for any of several reasons: They became accustomed to

something else on another system, the placement of the keys on the key-

board makes some choices more natural than others, or their terminal

emulator is dumb about switching Backspace and Delete. The special

characters that control the keyboard are described in Table 7-1.

Table 7-1

Chapter 8

Where's That File?

In This Chapter

Using the find program to find a file when you know the filename

Telling find where to look

p> Looking for a file when you know only part of the filename

Using the g rep program to find a file when you know what's in it

! Looking for files on other computers on your network

Looking for a directory

Knowing what to do with the files you find

Doing something else while the computer searches for your file

Sharing files by using the 1 n command so that files appear in more than one directory

m Boncha love to set up lots of different directories so that you can

w*f organize your files by topic, program, date, or whatever suits you? We
do. After you have files in all those directories, however, you can also easily

lose them. Is that budget memo in your Budget directory, your Memos

directory, your To Do directory, Fred's Budget. Stuff directory, or some-
where else?

Two programs can help you find files: f i nd and grep. Alternatively, you can

use the 1 n command to create links to your files so that a file can appear in

several directories at a time and you have that many more opportunities to

find it.

The Search Is On
UNIX systems have lots of files. Lots and lots. Tens of thousands, to be more
specific. So where's the memo you wrote last week?

/ 02 Part ||: Some Basic Stuff

Peering into every directory

The first approach to finding a lost file is to use the brute-force method.
Starting in your home directory, use 1 s to search through each of your
directories. In every directory, type this line:

Is important. file

Replace important . fi 1 e with the name of the file you're looking for. If the

file is in the current directory, 1 s lists it. If the file isn't there, 1 s complains
that it can't find the file. This approach can take awhile if you have a large

number of directories. An additional drawback is that you won't find the

missing file if it has wandered off to someone else's directory.

If you know— or think that you know — that your file is nearby, you can

use * (asterisk) wildcards in directory names. (Wildcards are covered in

Chapter 7. They enable you to work with lots of files or directories at one
time.) To find important, file in any of the subdirectories in the working
directory, type this line:

Is */important.f1le

This technique doesn't work if you have directories within directories: It

looks only one level down.

&£&>

"Hey, I knout the filename!"

With luck, you know the name of the file you have lost. If so, you can use the

find program to find it. When you use find, you tell it the name of the file

and the place to start looking. The find program looks in the directory you
indicate and in all that directory's subdirectories.

Links to shadow files

You may run into a situation in which a file

seems to be in several directories at one time

{TwilightZone music here, please). DOS users

know that this situation is patently absurd.

Mac users oughtto be thinking of aliases here;

Windows users ought to be thinking of short-

cuts. UNIX has its own way of letting you keep

a file in several places at the same time. To

avoid excessive clarity, the file can even have

several different names. Seriously, it can be

mighty useful for a file to be in, for example,

the home directories of several people at one

time so that they all can easily share it.

To achieve this magical feat, you use links. We
discuss links in the section "A File By Any

Other Name," later in this chapter. In the

meantime, don't panic if you see a file lurking

around in one place when you're sure that it

belongs somewhere else.

Chapter 8: Where's That File / Q^

Suppose that you're working in your home directory. You think that a file

named ti rami su is in there somewhere. Type this line:

find . -name tiranrisu -print

That is, you type these elements:

i> find (just like you see it here).

j> A space.

i> The directory in which you want the program to begin looking. If it's the

working directory, you can type just a period (which means "right here").

u* Another space.

u* -name (to mean that you will specify a filename).

*> Another space.

*> The name of the file you want to find (tiramisu, in this case).

/> Another space.

i> -print to tell UNIX to print (on-screen) the full name, including the

directory name, to let you know where UNIX finds the file. If you omit

this step and find finds the file, it doesn't tell you. (We know that this

situation is stupid, but computers are like that.) If you use UNIX SVR4
or Solaris, you notice that they fixed up the find command so that it

warns you rather than run the command pointlessly.

The find program uses a brute-force approach to locate your file. It checks

every file in all your directories. This process can take awhile. After find

finds the file, it prints the name and keeps going. If the program finds more
than one file with that name, find finds them and reports them all. After

find has printed a found file, you usually will want to stop the program
(unless you think that it will find more than one match). You stop find by
pressing Ctrl+C or Delete.

If the find command doesn't work and you think that the file may be in

some other user's directory, type the same find command and replace the

. (dot) with a / (slash). This version tells find to start looking in the root

directory and to search every directory on the disk. As you can imagine, this

process can take some time, so try other things first.

"/ knou) Where to search (sort of)
n

Rather than use a period to tell f i nd to begin looking in the working direc-

tory, you can use a pathname. You can type this line, for example:

find /usr/margy -name tiramisu -print

/ Oti Part ||: Some Basic Stuff

This command searches Margy's home directory and all its subdirectories.

(Her home directory name may be something different; see Chapter 6 to find

out about home directories.) To search the entire disk, use the slash (/) to

represent the root of the directory tree:

find / -name tiramisu -print

If your disk is large and full of files, a search from the root directory down
can take a long time — as long as half an hour on a very large and busy
system.

You can even type several directories. To search both Margy's and John's

home directories for files named whi te . chocol ate . mousse, for example,

type this line:

find /usr/margy /usr/johnl -name white. chocolate. mousse -print

If you use the BASH or C shell, rather than type the home directory name,

you can type a tilde (~) and the username; the shell puts in the correct

directory name for you:

find -margy -johnl -name white. chocolate. mousse -print

"At least I knou) part of the filename"

You can use wildcard characters in the filename if you know only part of the

filename. (Remember the * and ? characters that act as "jokers" in file-

names?) Use ? to stand for any single character; use * to stand for any

bunch of characters. There's a trick to this, however: If you use * or ? in the

filename, you have to put quotation marks around the filename to keep the

shell from thinking that you want it to find matching names in only the

current directory.

You can search the entire disk for files that start with budget , for example,

by typing

find / -name "budget*' -print

If you leave out the quotation marks, the search may look like it worked,

although find probably hasn't done the job correctly.

Remote searches

If your system uses NFS (Network File System, as described in Chapter 16),

some or all of the directories and files on your machine may really be on

other computers. The find command doesn't care where files are and

Chapter 8: Where's That File / Q^

cheerfully searches its way into any directory it can get to. Because getting

to files over a network is about half as fast as getting to files stored locally,

telling find to look through a large number of files stored on a network can

take a long time. Consider having a long lunch while find does its thing.

Suppose that you're looking for Dave's famous stuffed-squid recipe. The
obvious way to look for it is with this line:

find -dave -name stuffed-squid -print

If you know that Dave's files are stored on machine xuxa, however, this

command can be much faster:

rsh xuxa "find -dave -name stuffed-squid -print"

See Chapter 16 for details about the rsh command.

It's that's inside that counts

"Hmm ... I don't remember what the file is called, but I'm looking for a

letter I wrote to Tonia, so it should contain her mailing address in the

heading. That's 1471 Arcadia. How do I find it?"

This situation is made for g rep — a great program with a terrible name. It

stands for, if you can believe it, global regular expression and print, or some
such thing. The grep command looks inside files and searches for a series of

characters. Every time it finds a line that contains the specified characters,

it displays the line on-screen. If it's looking in more than one file, grep also

tells you the name of the file in which the characters occur. You control

which files it looks in and which characters it looks for.

Three grep programs exist: grep, eg rep, and fgrep. They are similar, so we
talk just about grep. (Fgrep is faster but more limited, and eg rep is more
powerful and more confusing.)

To look in all the files in the working directory (but not in its subdirectories)

for the characters 1471 Arcadia, type this line:

grep "1471 Arcadia" *

That is, type these elements:

v grep (just as you see it here).

v A space.

*> The series of characters to look for (also called the search string). If the

string consists of several words, enclose it in quotation marks so that

grep doesn't get confused.

106 Part II: Some Basic Stuff

I*>

A space.

\^ The names of the files to look in. If you type * here, g rep looks in all the

files in the current directory.

The grep program responds with a list of the lines in which it found the

search string:

ts.doc: 1471 Arcadia Lane

tonia. letter: 1471 Arcadia La.

The program lists the name of the file and then the entire line in which it

found the search string.

You can do lots of things with grep other than look for files. In fact, we
could write entire (small) books about using grep. For our purposes,

however, here are some useful options you can use when you use grep to

look for files.

If you want to see just the filenames and you don't want grep to show you
the lines it found, use the - 1 (for /ist) option. (That's a small letter /, not a

number 1.) Suppose that you type this line:

grep -1 "1471 Arcadia" *

The grep program responds with just a list of filenames:

ts.doc

tonia. letter

It may be a good idea to tell grep not to worry about uppercase and lower-

case letters. If you use the - i (for /gnore case) option, grep doesn't distin-

guish between uppercase and lowercase letters, as shown in this example:

qrep -1 DOS *

With this command, grep, which is extremely literal-minded, finds both

references to DOS and some "false hits":

fruit. study: salads; in Brazil, avocados are used in desserts,

chapter. 26: DOS vs. UNIX

chapter. 30: Dos and Don'ts

Finally, if you don't know the exact characters that occur in the file, you can

use g rep's flexible and highly powerful (that is, cryptic and totally confus-

ing) expression-recognition capabilities, known in nerdspeak as regular

expressions. The grep program has its own set of wildcard characters, sort

of but not much like the ones the shell uses to enable you to specify all

kinds of amazing search strings. If you're a programmer, this feature can be

useful because you frequently need to find occurrences of rather strange-

looking stuff.

Chapter 8: Where's That File / Q J

Directory assistance

You can look for lost directories in addition to

lost files. Give the f i nd command the option

-type d:

This command searches the entire disk for

directories that begin with Budget.

find / -name
-print

Budget*" -type d

The reason we mention this subject is that g rep's wildcard characters

include most punctuation characters — namely:

. * []
A

$

If you include any of these characters in a search string, grep doesn't do
what you expect. To type any of these characters in a search string, precede
them with a backslash (\). To search for files containing C.I.A., for example,

type this line:

grep "C\.I\.A\." *

The period (.) is grep's wildcard character, like the question mark (?) in the

shell. In this example, if you don't precede the periods with backslashes,

grep would match not only C . I .A. but also CHI FAS (a Peruvian dialect

word meaning "Chinese restaurants," in case you were wondering) and lots

of other things. Don't press your luck — use the backslashes with punctua-

tion marks to be safe.

What to bo With Fifes

After j/ou Find Them
After you find the file or files you were looking for, you can do more than

just look at their names. If you want, you can tell the find command to do
something with every file it finds.

Rather than end the find command with the -print option, you can use
the exec option. It tells fi nd to execute a UNIX shell command every time

it finds a file. The following command, for example, tells the find command
to look for files with names beginning with report:

find . -name "report*" -exec Ipr {}

108 Part II: Some Basic Stuff

Every time the command finds that type of file, it runs the 1 pr program and
substitutes the name of the file for the { } . (You type two curly braces,

which was some nerd's idea of a convenient placeholder.) The semicolon

indicates the end of the UNIX shell command. (You have to put quotation

marks around the semicolon, or else the shell hijacks it and thinks that you
want to begin a new shell command. If that didn't make sense, take our word
for it and remember to put quotation marks around the semicolon when you
use find.) Every time find finds a filename beginning with report, this

command prints the file it found.

You can use almost any UNIX command with the -exec option, so, after you
have found your files, you can print, move, erase, or copy them as a group.

A slight variation is to use ok rather than -exec. The -ok option does the

same thing except that, before it executes each command, find prints the

command it's about to run, followed by a question mark, and waits for you
to agree that that would be a good thing to do. Press Y if you want to do it,

and press N if you want it to skip that particular command.

By using find and exec rm, you can delete many unwanted files in a hurry.

If you make the smallest mistake, however, you can delete many important

and useful files equally as quickly. We don't recommend that you use find

and rm together. If you insist, however, please use -ok to limit the damage.

A File By Any Other Name
Sometimes, it's nice for a file to be in more than one place (that budget file

we keep mentioning, for example). If you were working on it with someone
else, it would be nice if the file could be in both your home directory and

your coworker's home directory so that neither of you would have to use

the cd command to get to it.

A nice feature of UNIX (and you thought there weren't any!) is that this

situation is possible — even easy to set up. A single file can have more than

one name, and the names can be in different directories.

Suppose that two authors are working on a book together (a totally hypo-

thetical example). The chapters of the book are in John's directory: /usr/

johnl/book. What about Margy? It's annoying to have to type the following

line every time work on the book begins:

cd /usr/johnl/book

Instead, it would be nice if the files could also be in /usr/margy/book.

Chapter 8: Where's That File / Qty

Hou) can you be in Mo places at once

u/hen you're not anyuthere at alt?

You allow a file to be in two places at a time by using the 1 n (for link)

command. You tell 1 n two things:

|i> The current name of the file or files you want to create links to

v* The new name

Let's start with just one file. Margy wants to make a link to the file named
chapter! og (it contains the list of chapters). The file is in /usr/johnl/
book. In her book directory, Margy types this line:

In /usr/johnl /book/chapterlog booklog

UNIX says absolutely nothing; it just displays another prompt. (No news is

good news.) It just created a link, or new name, however, to the existing

chapterl og file. The file now appears also in /usr/margy/book as

booklog. You have only one file (UNIX doesn't make a copy of the file or

anything tacky like that) with two names.

Hou) to play the links

After you create a link by using 1 n, the file has two names in two directories.

The names are equally valid. It isn't as though the name /usr/johnl/book/
chapterl og is the "real" name and /usr/margy/book/bookl og is an alias.

UNIX considers both names to be equally important links to the file.

Hou/ to delete links

To delete a link, you use the same rm command you use to delete a file. In

fact, rm always just deletes a link. It just so happens that, when no links to a

file exist, the file dries up and blows away. When you use rm on a file that

has just one name (link), the file is deleted. When you use rm on a file that

has more than one name (link), the command deletes the specified link

(name), and the file remains unchanged, along with any other links it may
have had.

110 Part II: Some Basic Stuff

How to rename a link

You can use the old mv command to rename a link, too. If Margy decides that

it would be less confusing for the book-status file to have the same name in

both places (as it stands now, it's chapterlogto John and bookl og to

Margy), she can type this line:

mv bookl og chapter! og

You can even use the mv command to move the file to another directory.

HovO to link a bunch of files

You can also use 1 n to link a bunch of files at the same time. In this case,

you tell 1 n two things:

j> The bunch of files you want to link, probably using a wildcard character

such as chapter*. You also can type a series of filenames or a combina-

tion of names and patterns. (UNIX may be obscure, but it's flexible.)

v* The name of the directory in which you want to put all the new links.

The 1 n command uses the same names the files currently have when it

makes the new links. It just puts them in a different directory.

The chapterlog business in the preceding example, for example, works so

well that Margy decides to link to all the files in /usr/johnl/book.To make
links in /usr/margy/book, she types this line:

In /usr/johnl/book/* /usr/margy/book

This command tells UNIX to create links for all the files in /usr/johnl/book

and to put the new links in /usr/margy/book. Now every file that exists in

/usr/johnl/book also exists in /usr/margy/book. Margy uses the 1 s

command to look at a file listing for her new book directory. It contains all

the book files. This arrangement makes working on the files much more
convenient.

Chapter 8: Where's That File / / /

Linking once and linking twice

Here's one caveat. The 1 n command in the

example in this section links all the files that

exist at the time the command was given. If

you add new files to either /usr/margy/
book or /usr/johnl /book, the new files

are not automatically linked to the other direc-

tory. To fix this situation, you can type the same

1 n command every few days (or whatever fre-

quency makes sense). The command tells you

that lots of files are already identical in the

two directories and makes links for the new
files.

If you have linked to someone else's files, you

may have permission to read those files but not

to change or write to them. When you ask 1 n to

make the new links, if it tries to replace a file

you couldn't write to, it says something like this:

In: chapterl3: 644 mode?

See Chapter 25 for the exact meaning of this

uniquely obscure message. Press Y if you want

to replace the file, which you probably do in

this case. Press N if you don'twantto replace

the file.

Hovtf to link across the

qreat computer divide

All this talk about links assumes that the files you're linking to are on the

same file system (that's UNIX-speak for disk or disk partition). If your com-
puter has several hard disks or if you're on a network and use files on other

computers (through NFS or some other system, as explained in Chapter 16),

some of the files you work with may be on different file systems.

Here's the bad news: The 1 n command can't create links to files on other file

systems. Bummer. We have good news for some readers, however: Linux,

BSD, and SVR4 systems (that is, any System V and older AT&T-ish systems)
have things called soft links, or symbolic links (symlinks, for short) that are

almost as good.

Soft links enable you to use two or more different names for the same file.

Unlike regular links (or hard links), however, soft links are just imitation

links. UNIX doesn't consider them to be the file's real name.

Hou) to make soft finks (for users of Linux,

UMX BSD, andSVU ontu)

To make a soft link, add the - s option to the 1 n command.

/] 2 Part II: Some Basic Stuff

Suppose that you want a link in your home directory to the reci pe . 1 i st

file in /usr/gi ta. In your home directory, you type this line:

In /usr/gi ta/reci pe . 1 i st gitas. recipes

Rather than respond with serene silence, UNIX responds with this line:

In: different file system

Drat! Gita's home directory is on a different file system from yours, perhaps

even on a different computer. So you make a soft link by sticking an - s into

the command:

In -s /usr/gita/recipe.l ist gitas. recipes

As usual, no news is good news; 1 n says nothing if it worked. Now a file

called gitas. recipes seems to be in your home directory— all through

the magic of soft links. You still have only file, but there's an extra link to it.

How to use soft links (for users of Linux,

UNWBSb, andSVm onlu)

You can look at, copy, print, and rename a soft-linked file as usual. If you
have the proper permissions, you can edit it. If Gita deletes her file, though,

the file vanishes. Your soft link now links to an empty hole rather than to a

file, and you see an error message if you try to use the file. UNIX knows that

the soft link isn't the file's "real" name. When you see a soft link in a long Is

listing, UNIX gives the name of the soft link and also the name of the file it

refers to.

If you try to use a file and UNIX says that it isn't there, check to see whether

it's a dangling soft link (a link to a nonexistent file). Type Is - 1 to see

whether the file is a soft link. If it is, use another Is - 1 on the real filename

to make sure that the file really exists.

To get rid of a dangling soft link, use the rm command to delete it.

Chapter 9

Printing (The Gutenberg Thing)
••

In This Chapter

! How to send stuff to the printer

It* How to find the printer

Stupid printing tricks

m Wn\ess you happen to work in the paperless office of the future (reputed

%/W to be down the hall from the paperless bathroom of the future), from

time to time you will want to print stuff. The good news is that it's usually

easy to do so. The bad news is that nothing is as easy as it should be.

The major extra complication is that the way to print things is different on

UNIX BSD and System V systems. (Remember which one you have? Refer to

Chapter 2 if you don't. You may have written it on the Cheat Sheet in the

front of this book.) We start by explaining how you print something already

in a file; then we go on to the fancy stuff.

Printing Stuff: Daemons at Work
From a human being's point of view, printing stuff in UNIX is simplicity itself:

You use either the 1 p command or the 1 pr command, depending on your

flavor of UNIX.

From your computer's point of view, this arrangement is, of course, way too

simple. To make things suitably complex, the print command doesn't print the

file. What it does is leave a note for another program buried deep inside UNIX,

and this buried program prints your file. This buried program is called a

daemon (pronounced "demon"). The theory behind this arrangement is that a

bunch of people may want to use the printer, and it would be a pain if you had

to wait for the printer to be free. The print command puts your file on a list,

and the daemon runs down the list and does the printing so that you don't

have to wait. The request ID is the name the print command gives to the note

it leaves for the daemon. You can ignore the request ID unless you change

your mind and decide that you don't want to print that file after all.

m Part II: Some Basic Stuff

Printing in System V
If you use UNIX System V, you print stuff with the 1 p command. If you have a

file named my 1 e titer, for example, you print it by typing this line:

1p myletter

UNIX responds with this important information:

request id is dj-2613 (1 file)

Usually that's all you need to do. UNIX responds to your request to print by
telling you the request ID of the print job, which you probably don't care

about. Sometimes you want to pretty up the way the printout looks by
leaving wider margins; we talk about that subject later in this chapter.

Printing in BSD and Linux

If you use Linux or BSD UNIX, printing is just as easy as printing with System

V, except that you use the command 1 pr rather than 1 p. If you have a file

named myl etter, for example, you print it by typing

Ipr myletter

Some systems, notably SVR4 and Solaris, have both the 1 p and 1 pr com-
mands. If you have these versions of UNIX, either command should work
equally well. Note that the 1 pr command doesn't report a request ID.

Finding l/our Printout

^ORK

As far as UNIX is concerned, its only job is to send your file to the printer.

Now the real work begins: finding your printout.

If your UNIX system is attached to a network, chances are that your printer

is attached to some other computer rather than to yours. You may have to

go looking for it to find your printouts.

You may have to ask people in nearby cubicles or stand still in the center of

the office and listen for the sound of printing (a gentle whir and click from

most laser printers). If all else fails, ask your system administrator. Because

your UNIX system may be capable of using more than one printer, your

system administrator may be the only person who can tell you which

printer your printout is on.

Chapter 9: Printing (The Gutenberg Thing) / /y

Aha! There's the printer! If you're lucky, no one else has printed anything

recently, so the paper on top of the printer is all yours. More likely, lots of

people have printed stuff and a pile of paper is on top of the printer— only

some of which is yours.

Every printout should have in front of it a sheet that identifies the file that's

printed, with the username, time, and other odds and ends that seemed
relevant to the person who configured the printer. It's considered tacky to

root through the stack, pick out your own pages, and leave the rest in a

heap. Instead, separate the printouts and leave them on the table or in

printout racks (if available) with the usernames visible. With luck, others

will do the same for you. If you can't find your printout on the printer,

maybe someone else has already separated and stacked the printouts. Or
maybe other users have decided that your printout looked more interesting

than theirs and took it off the printer to read it.

Printers, printers, everywhere

A reasonably large installation probably has several printers, either because

one printer can't handle all the work or because the installation uses

different kinds of printers. When you use the 1 p or 1 pr command, UNIX
picks one printer as the default. If you use 1 p, you use the -d option (that's

a lowercase d— remember that UNIX cares about these things) to identify

the printer. To print your file on a printer named draft, for example, you
type

1p -ddraft myletter

If you use 1 pr, the analogous option is - P (that's an uppercase P), so the

command you type is

lpr -Pdraft myletter

In either case, don't type a space between the -d or - P and the printer

name.

Catting att printers

The list of available printers depends entirely on the whims of the system
administrator. Typically, one day she gets tired of putting up with the slow,

illegible, or chronically broken previous printer, storms into the boss's

office, gets the necessary signature, and buys the first printer available.

Sometimes the old printer is thrown away, sometimes not.

110 Part II: Some Basic Stuff

It's generally not too difficult to get a list of printers known to the system. If

you use the 1 p command to print, type this line to get a list of available

printers:

Ipstat -a all

This line means roughly, "Show me the status of all printers that are active."

The Ipstat program lists the status of all available printers, one per line,

like this:

dj accepting requests since Thu Apr 25 13:43:50 1991

In this case, only one printer, whose name is dj, is available. The listing also

shows you the vital fact that it was installed on a Thursday afternoon in

April 1991. Whoopee.

If you use the 1 pr command to print, try typing this line to get the same
information:

Ipq -a

Woodsman, spare that file!

When you tell UNIX to print a file, the file

doesn't print immediately. UNIX makes a note

to print the file and remembers its filename.

What if you delete the file before UNIX has a

chance to print it? If you print with 1 p, you get

a nasty message because UNIX can't find the

file. If you print with 1 pr, the file is printed

normally because UNIX makes a copy of the

material to print.

To force 1 p to copy the file, you use the <

command-line operator. To send a copy of the

file myfi letothe printer, for example, type

Ip < myfile

You can then delete or change myfi 1 e and

not affect the printout.

If you are printing a large file, 1 p r can take a

long time to make the copy of the file (which it

doesn't really need to do because it's already

in a file in the first place, isn't it?). You can use

1 pr - s to tell UNIX to print from the original

file to save time and disk space. If you use the

- s option, be sure not to delete or change the

file until it's printed.

You can tell 1 pr to delete the file when it has

finished printing it. This capability is some-

times useful when you made the file in the first

place only so that you could print it. Use the

- r option to remove the file after printing:

Ipr -r myfile

For large files, you can use -r and s

together:

Ipr -s -r myfile

Chapter 9: Printing (The Gutenberg Thing) # / /

The 1 pq program responds with a similar list:

lp:

Rank Owner Job Files Total Size

1st johnl 7 longletter 4615 bytes

ps:

no entries

The 1 pq command stands for something like line printer query, and - a

means all printers. In this case, two printers are available, named 1 p and ps,

and something is printing on the first one.

Keep in mind that not every printer the 1 pstat and 1 pq commands report is

usable. System administrators frequently put in the table of printers some
test entries that don't really represent printers you can use.

"Help! Vtfe Printed and It

Won't Shut Up!"

^\N6/

The first time you print something large, you suddenly will realize that you
don't really want to print the file because you have found a horrible mistake

on the first page. Fortunately, you can easily tell UNIX that you have

changed your mind.

If you tell UNIX to print a file that does not contain text, such as a file that

contains a program or a database, in most cases UNIX prints it anyway. In a

classic example of Murphy's Law (anything that can go wrong will go

wrong), files like that tend to print about 12 random letters on each of 400

pages. Every page has just enough junk on it that you can't use that piece of

paper again. As you may expect, people who print a large number of files

like that tend to become unpopular, particularly with coworkers whose
2-page memos are in line behind the 400 pages of junk.

Cancel the order, System V
If you used 1 p to print the file in the first place, you use cancel (we don't

know how that name slipped past the lazy typists) to cancel the print job.

You have to give the cancel command the request ID that 1 p assigned to

the job. If you're lucky, the 1 p command is still on-screen and you can see

the request ID. If that information has vanished from your screen, remain

calm. Remember that the 1 pstat command lists all the requests waiting for

the printer. Type this command:

lpstat

118 Part II: Some Basic Stuff

This command displays a list like the following:

dj -2620 johnl 34895 Dec 23 21:12 on dj

This list tells you that your request was named dj -2620, it was done on
behalf of a user named johnl , the size of the file to be printed is 34895, and
the print command was given on December 23. You can cancel the request

with this command:

cancel dj-2620

UNIX responds with this line:

request "dj-2620" cancelled

UNIX has a surprisingly convenient (surprising for UNIX, anyway) shortcut

you can use. If you give the name of a printer, UNIX cancels whatever is

printing on that printer. If you remember that the local printer is named d j,

you can type the following line to cancel whatever d j is printing:

cancel dj

If you made your printing mistake with the 1 pr command, you use 1 pq to

find out the request ID, which — to add confusion — is called a job number
here. Just type this command:

UNIX responds with a list of print jobs:

Rank Owner Job Files Total Size

1st johnl 12 blurfle 34895 bytes

You need to note the job number (12, in this case). Use that number with the

1 prm command, which, despite its name, removes the request to print

something and not the printer itself:

lprm 12

The 1 prm command usually reports something about "dequeued" lines; this

information is meant to be reassuring, although it's not clear to whom. In

response to the lprm 12 command, for example, UNIX displays this message:

dfB012iecc dequeued
cfA012iecc dequeued

A\NG/

Chapter 9: Printing (The Gutenberg Thing) # / y

Some final Words about

stopping the printer

Most printers have something called an internal buffer, which is where data

to be printed resides before the printer prints it. An internal buffer is good
and bad: It's good because it keeps the printer from stopping and starting if

the computer is a little slow in passing your file to it. It's bad because, after

data is in the buffer, the computer cannot get it back. So, even after you
cancel something you want to print, some of it may still be in the buffer: as

much as 2 pages of normal text or about 20 pages of the junk that results

from printing a nontext file.

You have no easy way to keep from printing the stuff in the printer buffer.

One really bad idea is to turn the printer off in the middle of a page: This

method tends to get the paper stuck and, on laser printers, lets loose a

bunch of black, smeary stuff that gets all over your hands and on the next

1,000 pages the printer prints. If you insist, press the printer's Stop or Off-

line button and wait for the paper to stop moving. Then you can turn the

printer off relatively safely.

After your print request is canceled, the printer probably still has half a

page of your failed file waiting to print. You can eject that page by pressing a

button on the printer labeled something like Form Feed or Print/Check or

even Reset.

Prettying Up j/our Printouts

If you send a file full of plain text to a printer, the result can look ugly: no
margins, titles, or anything else. You can use the pr command to make your

file look nicer. Use it only with plain text files, however, not with files full of

PostScript code, document files from your favorite word processor, or a

desktop publishing program.

Titles andpaqe numbers look so official

The simplest thing you can do with the pr command is to add titles and
page numbers to your printout. By default, the title is the name of the file

and the date and time it was last changed. You can use a pipe (defined in

Chapter 7 as the vertical bar, I) to format with pr and print on a single line:

pr myfile
| 1 pr

/ 20 Part ,,: Some Basic Stuff

(Remember to use the 1 p command rather than 1 pr, if appropriate.) This

command tells the pr program to pretty up the file and pass the results to

the 1 pr program.

You can set your own heading by using the - h option with the pr command:

pr -h "My Deepest Thoughts" myflle | 1 pr

The pr command assumes that printer pages are 66 lines long. If that's not

true for you, rather than the title's appearing at the top of every page, it sort

of oozes down from page to page. You can override the length of the stan-

dard page with the -
1 option. Suppose that the page length is 60 lines. You

type this line:

pr -1 60 myfile | 1 pr

If you want to use pr and not have any heading at the top of the page, use

the -t option:

pr -t myfile | lpr

(This example doesn't do anything interesting to myfi 1 e. In the following

section, however, you see that it really is useful when you combine it with

the margins and stuff.)

Marginally yours

You may frequently put printouts in three-ring binders. Normally, because

printing starts very close to the left side of the page, the hole punch may
put holes in your text and make the page difficult to read — not to mention

make it look stupid. The -o option (that's a lowercase letter o, not a zero, for

offset) pushes the stuff you print to the right, leaving a left margin. To leave

five spaces for a left margin, for example, type this command:

pr -o5 myfile
|
lpr

Sometimes it's nice to leave a wider margin at the bottom of the page. You
can do that by combining the -

1 option (to set the page length, as described

in the preceding section) with the - f option that tells pr to use a special

form-feed character to make the printer start a new page now! (Normally, the
-

1 option uses blank lines to space to the next page, like a typewriter.) Use
the following command if you're in this situation:

pr -o5 -1 50 -f myfile
|

lpr

This command tells UNIX to print just 50 lines per page, indented five

spaces. That amount of space in the margin should be enough for anyone.

Chapter 9: Printing (The Gutenberg Thing) I 2 1

Seeing double

The

122 Part II: Some Basic Stuff

People still use grof f
,
partly because it's free and partly because you can

do fancy stuff with highly structured documents that's difficult or impos-

sible with WYSIWYG formatters. We don't expect that you'll write a great

many grof f documents yourself, but you'll probably run into some on the

Internet or in software packages.

Macro mania
Formatting a document by using trof f and its cousins requires rather low-

level detailed instructions using incomprehensible two-letter codes in the

documents — instructions so detailed that even UNIX weenies find them
tedious (and that's saying a great deal). To relieve the tedium, most trof f

documents take advantage of macro packages that define higher-level

instructions, which people use rather than the low-level stuff. (These macro
packages serve roughly the same function as style formats in Microsoft

Word.) The trof f program has been around for more than 25 years, and
many macro packages have come and gone, although a few have stood the

test of time. Because all of them have been written by lazy typists, each has

a cryptic two-or three-letter name, all starting with -m, the flag code that

tells grof f to use the macro package. Table 9-1 lists a few popular macro
packages.

Table 9-1 Macro Packages

Name Description Origin

-ms Manuscript macros Bell Labs

- mm Different manuscript macros Another part of Bell Labs

-me Eric's macros Somebody's Ph.D. thesis at

Berkeley (must have been a

good thesis because he's

now the head of Novell)

-man Manual page macros Same as -ms

To tell grof f to format a document with the ms macros, for example, you
type

groff -ms filename

It's difficult to tell a priori what macros were used in what document, unless

the author took pity and gave you a clue by naming the file mobyd i c k . ms or

the like. Fortunately, the worst that happens if you use the wrong macro
package is that the document looks ugly. (It's not totally illegible: The text

is still there, but it's formatted incorrectly.) You can try different macro

Chapter 9: Printing (The Gutenberg Thing) / 2?

packages and see which one works least badly. As a rule of thumb, docu-

ments from academia usually use the -me macro package, whereas those

from industry usually use mm or -ms. Documents about the UNIX system

itself usually use -ms because ms was written by some of the same guys who
did the original UNIX work and pages from the online manual (what the man

command shows you) use -man.

Let's sneak a peek
One of the nicest things about grof f is that it's device independent, which
means that it can reformat your document for any of several output devices.

To format your document and display it on a normal, text-only terminal, use

the nroff command:

nroff -ms filename
|
more

(This command actually calls grof f, but tells it to format for plain-text

output. Change the ms to one of the other macro packages if necessary.)

The more command displays the result a screen at a time. Press the

spacebar to move from screen to screen, or press Q when you've seen

enough.

If you're running X Windows, you can tell grof f to display a page at a time,

beautifully typeset in an X window, by typing this command:

groff -TX75 -ms filename

In the window that groff creates, press the spacebar to move from screen

to screen or press Q when you've seen enough. If the type is too small to

read, use -TX100 rather than -TX75 to make the text bigger. (You can't use

any other numbers; X comes with one set of fonts for 75 dot-per-inch

screens and another for 100 dot-per-inch screens, so that's what groff
uses.)

Printing, for the PostScript-Challenged
Earlier in this chapter, we talk about PostScript, the fabulously complicated

printer language that enables you to print fabulously complex documents on
PostScript printers. But what if you don't have a PostScript printer?

These days, the short answer is "Get one." Although PostScript printers

used to cost much more than other kinds of printers, these days you can

buy a perfectly decent PostScript laser printer for less than $1,000. Nonethe-

less, lots of PostScript-free sites are still out there, where Ghostscript comes
to the rescue.

724 Part II: Some Basic Stuff

Ghostscript is a free, GNU version (see the section that talks about what
GNU is in Chapter 2) of PostScript, written by L. Peter Deutsch, a skillful

programmer from way back who surely should have been doing something
else when he wrote it. When Ghostscript runs, it reads its PostScript input

from either a file or the keyboard (not very useful unless you're trying to

learn PostScript) and produces its output on one of a zillion possible output

devices. If you want to see what the PostScript document looks like, you can

tell it to send its output to an X Windows system window. If you want to

print the document, you can send its output to your printer.

If you're lucky, your system manager will have installed Ghostscript so that

it's semiautomatically called when you print a PostScript file. You typically

use the v flag, something like this:

lpr -v floogle.ps

Failing that, in order to run Ghostscript, you type its name (gs) and the

name of the PostScript file to display:

gs floogle.ps

If you just type that line, Ghostscript opens a new X window and displays

the first page offloogle.psin that window— probably not what you want.

Press Ctrl+C once or twice to stop Ghostscript from displaying the page in a

window. To get Ghostscript to do something useful, you have to use

switches — lots and lots of switches:

gs -sDEVICE=deskjet -dNOPAUSE -sOutputFi 1 e=f 1 oogl e. 1 j floogle.ps

quit.ps

What's going on here is that we've set the output device (DEVICE) to a

popular ink-jet printer. We tell it not to pause between pages, we tell it which
output file to create and which PostScript file to print, and then we give it

another file from the Ghostscript library (quit. ps). The quit.ps file

contains a one-line command which tells Ghostscript that it's finished. You
can tailor this command as needed; run gs h to see the available printers.

We expect that you find this subject a wee bit complicated. In practice,

unless your system manager has set up Ghostscript to run automatically,

your best bet is to find a local expert who can tell you the exact command to

use. Lacking an expert, you can still look at PostScript on-screen by using a

slick little program named Ghostview.

Partjll

Getting Things

Done

The 5th Wa«>
SifiicfcTainanl

In this part . .

.

i
an the first two parts of this book, we talk about the

*£ computer, files, mice, printers, and the shell — you
name it. But what about getting some real work done?

To do useful work, you need software. This part talks

about using text editors, word processors, e-mail pro-

grams, and other useful programs. We also talk a little

about installing software and (for you Linux users) doing

a tiny bit of system administration.

Chapter 10

Writing Deathless Prose
•••a

In This Chapter

What is a text editor?

)»> What is a text formatter?

! What is a word processor?

What is a desktop publishing program?

How to use v i if you absolutely have to

>- How to use emacs, which is not that bad, really

p- How to use pi co, which works rather well

How to use ed if you don't have anything better

•••a

1n the land of UNIX, many programs handle text. Where you come from,

«C you may be accustomed to the idea of using a word processor when you
want to type something and print it. Not in UNIX. It has four kinds of pro-

grams for this task, just to keep things interesting.

UNIX Has Its Way tilth Words
The four kinds of UNIX programs that handle text are

u* Text editors

is* Text formatters

v Word processors

v Desktop publishing programs

Before describing the most commonly used text editors in gory detail, we
thought that you would want to know the differences among these four

kinds of programs, in case you plan to impersonate a geek at the next

meeting of your local UNIX users' group.

/ 28 Part lll: Gettin 9 Things Done

Just the text, ma'am
A text editor enables you to

11* Create a file full of text

i> Edit the text

You can print a file by using the 1 p or 1 pr programs, as described in Chapter 9,

although text editors can't do boldface, headers or footers, italics, or all

that other fancy stuff you need in order to produce modern, overformatted,

professional-quality memos.

You may want to use a text editor to write letters and reports. You certainly

will use one to send electronic mail, as described in Chapter 17.

The most commonly used text editors in the land of UNIX are ed, vi, emacs ,

and pi co. We have strong opinions about these editors, which becomes
abundantly clear in the later sections in this chapter, where we tell you how
to use each of them.

Text formatters aren't realty editors

Text formatters are programs that read text files and create nice-looking

formatted output. You use a text editor to make a text file that contains

special little commands only the formatter understands; the . IT command,
for example, makes something italic. When you run the text formatter, it

reads the text file, reads the special little commands, and creates a format-

ted file you can then print. You use 1 p or 1 pr to print the output of the text

formatter.

The most common UNIX text formatter is TeX, pronounced "teccccch" (like

yeccccch), an arcane language popular among mathematicians and physi-

cists because of its capability to format large, complex equations, and

because it produces more aesthetically pleasing results than any of its

competitors. A companion program, LaTeX, is designed to make TeX easier

to use (relatively speaking, of course). (See the nearby sidebar, "Howdy,

TeX!" for more info about TeX and LaTeX and where to get them.)

Another common text formatter is trof f . Some people use nrof f (an older

version of trof f), or grof f, a newer GNU version of the program. With

luck, you never have to use any of them. If you're luck has run out, you may
want to check out the section about trof f, nrof f, and grof f in Chapter 9.

Chapter 10: Writing Deathless Prose / 2y

Howdy, TeX!

The popular TeX text formatter was created

by one Donald E. Knuth, way back in the late

1970s. According to Knuth himself, TeX is a

"typesetting system . . . intended for the cre-

ation of beautiful books — and especially for

books that contain a lot of mathematics."

Like troff and its cousins nroff and

groff, TeX uses macros (prewritten bits of

formatting code) to shield you (theoretically)

from painful, low-level programming chores.

In practice, TeX is hard to handle because it

can do many, many things in a variety of ways,

all proudly anti-intuitive. For people over-

whelmed by the sheer complexity of TeX,

Knuth created something called pi ai n TeX,

which is a slim and trim, stripped-down ver-

sion of TeX. Because TeX overwhelms almost

everyone, almost everyone uses plain TeX
rather than TeX itself.

Over the years, various intrepid UNIX hackers

have taken it upon themselves to write their

own sets of macros that work with TeX. The

best known is probably La TeX (the La part

comes from the last name of its creator, Leslie

Lamport). To make a long story short, La TeX
simplifies TeX by letting you describe the

structure of a document without making you

worry about the way the document looks (sort

of like using the built-in styles in a word pro-

cessor, such as Microsoft Word). Other macro

packages for TeX include Eplain, Lollipop,

pdfTeX (for creating books in Adobe Acrobat),

and HyperTeX (for creating hypertext docu-

ments, such as Web pages, with TeX).

Like many things UNIX, TeX and the TeX
source code and documentation are available

for free; you can download them from various

FTP and Web sites on the Internet. Also, you

can buy one of a number of commercial ver-

sions of TeX; you get technical support and, in

some cases, additional features in exchange

for your money.

The best source of information about TeX,

LaTeX, and related subjects is The TeX Users

Group home page on the World Wide Web
(at http: //www. tug .org/) or one of the

many TeX Usenet newsgroups, such as

comp.text.tex.

Cutsmarts for text: Word processors

Word processors combine the capabilities of text editors and text formatters.

Most word processors are (or try to be) WYSIWYG (an acronym for What
You See Is What You Get), which enables you to see on-screen how the

document (that's what they call their files) will look when you print them.

The most common word processor for UNIX is WordPerfect (available also

for PCs and Macintoshes). Most UNIX users think that word processors are

for wimps (ifhat you see is all you've got) because they like the unintelligible

and unmemorable commands used by text formatters and prefer to imagine
what their text will look like when it is printed rather than be able to see it

on-screen. Text formatters can do more complex things than word proces-

sors can, such as format complicated mathematical expressions, lay out

multipage tables, and neatly organize sections and headers of huge, book-

length documents. But that's probably not your problem.

130 Part " l: Gettin9 Things Done

Building the perfect word processor

By far the most popular word processing

program for UNIX is WordPerfect, from Corel

Corporation. The latest version is WordPerfect

7, which costs somewhere in the neighbor-

hood of $500. WordPerfect brings all the

features you expect from a graphical word

processing package to UNIX computers

running X Windows; you can also get a

comparable character-based version if your

UNIX terminal is graphics-impaired.

WordPerfect runs on just about every version

of UNIX available, including versions of Linux

laterthan Version 2.0.25. WordPerfect also has

various file-conversion utilities so that you can

share your documents with WordPerfect us-

ers running DOS and Windows. The marketing

buzzword for such ecumenical behavior is

cross-platform capability, and it's important

if you have, for example, UNIX users and

Windows users on the same network.

Along with all the usual word processing bells

and whistles, WordPerfect 7 comes packaged

with Netscape Navigator, a few thousand clip

art images and photographs, and more than a

hundred fonts. Find out more about

WordPerfect on the World Wide Web, at

http: //www. word perfect .com/, or give

Corel a call (in Ottawa), at 613-788-6000.

vi and emacs and pi co are ifour friends

The rest of this chapter explains how to use each of the Big Three text

editors (vi , emacs, and pi co), along with some words about how to use the

prehistoric but not yet extinct ed (who, as you will see, is not your friend).

Even if you use a word processor or desktop publishing program, you may
need to use a text editor to do some things, such as these tasks:

u* Write electronic mail (see Chapter 16).

<> Create or edit text files called shell scripts, which enable you to create

your own UNIX commands (see Chapter 12).

u* Create or edit special text files that control the way your UNIX setup

works (see Chapter 7).

*> Write C programs (just kidding!).

Shy Vi, the Princess of Text Editors

The vi text editor can claim a unique status among UNIX editors: Almost
every UNIX system in the universe has v i . This fact makes it a good editor

to know if you plan to be moving around from system to system, because
you can always count on it's being there. Someone may have other reasons

for using v i , but ease of use is not foremost among them.

Chapter 10: Writing Deathless Prose /jl

To run v i , type vi, a space, and the name of the file you want to edit, and

then press Enter.

If you get an error message when you try to run v i , talk to your system

administrator. If the screen looks weird, your terminal type may not be set

right — another reason to talk to your system administrator.

Editor a (a mode
The most distinctive feature of v i (and the one that has spawned legions of

vi -haters, along with a few devotees) is that it is a modal editor. The vi

program is always waiting for one of two things: commands or text (also

known as input). When vi is waiting for a command, it is in command mode.

When it is waiting for text, it is in input mode. Normally, it is up to you to

figure out which mode v i is in at any particular moment— it doesn't give

you a clue.

Most vi commands are one letter long. Some are lowercase letters, and

others are uppercase letters. When you type vi commands, be sure to use

the correct capitalization.

If you're in input mode and want to give a command, press the Esc key.

Whenever we tell you to type a command, it works only if you're in command
mode. If you're not sure which mode you're in, press Esc first. If you are

already in command mode, pressing Esc just makes vi beep.

To switch from command mode to input mode, you tell v i to add the text

after the character the cursor (the point at which you are working) is on

(by using the a command) or to insert the text before the current cursor

position (by using the i command).

Emergency exit from v i

To escape from v i , follow these steps:

1. Press Escape at least three times.

The computer should beep. Now you are

in command mode, for sure.

2. Type the following line and press Enter:

:q!

This line tells v i to quit and not save any

changes.

/32 Part III: Getting Things Done

Helpl I need somebody!
The guy who wrote v i (remember Bill, the grouchy guy who's 6'4" and in

excellent physical condition? — same guy) didn't believe in help, so there

wasn't any.

Fortunately, v i has been used in so many introductory computing courses

that Bill eventually relented and added "novice" mode. Rather than type vi

to run the editor, type vedit to get the same editor with some allegedly

helpful messages. In particular, whenever you're in input mode rather than

command mode, vi displays, at the bottom of your screen, a message such

as INPUT MODE, APPEND MODE, CHANGE MODE, or OPEN MODE. All these

messages mean the same thing (except to Bill, evidently): Text you type

when these messages are visible is added to the file rather than interpreted

as commands.

Easy text-entry techniques

Let's make a new file with some more deathless prose so that you can

practice entering text in v i . Run v i with a new filename:

vi madeline

To add text after the current position of the cursor, type the following (you
do not press Enter after a command):

We tell you in a minute how to move the cursor, when you have some text to

move around in. You can press a, for example, to add this text to the newly

created xanadu file:

In Xanadu did Kubla Khan

A stately pleasure-dome decree:

Where Alph, the sacred river, ran

Through caverns measureless to man

Down to a sunless sea.

To get back to command mode, press Esc. Press Esc whenever you finish

typing text so that you are ready to give the next command.

Other commands you can use to enter text include i to insert text before the

current cursor position, A to add the text at the end of the line the cursor is

on, and to add the text on a new line before the current line.

Chapter 10: Writing Deathless Prose /33
The v i program shows you a full-screen view of your file. If the file isn't long

enough to fill the screen, vi shows tildes (~) on the blank lines beyond the

end of the file. Figure 10-1, for example, shows a text file called eati ng . peas

(created in a later discussion about ed) as it would appear in v i

.

Figure 10-1:

Tildes fill up

the blank

lines on the

vi screen.

I eat my peas with honey,

I've done it ill my life.

It makes the peas taste funny,

But it keeps them on my knife.

The cursor appears at the beginning of the first line of the file.

Alt kinds of u)ay$ to motfe the cursor

You can use dozens of commands to move the cursor around in your file,

but you can get to where you want with just a few of them:

Iu*
The arrow keys (<— , ->, T, and I) usually do what you would expect:

They move the cursor in the indicated direction.

Sadly, on some terminals vi does not understand the arrow keys. If this

statement is true for you, press h to move left, j to move down, k to

move up, and 1 to move right. Bill chose these keys on the theory that,

because those keys are a touch typist's home position for the fingers on
the right hand, you can save valuable milliseconds by not having to

move your fingers. Really. In some versions of v i , the arrow keys work
only in command mode; in other versions, they also work in input

mode.

u* Enter or + moves the cursor to the beginning of the next line.

*> The hyphen (-) moves the cursor to the beginning of the preceding

line.

13£ Part " l: Gettin 9 Thin9s Done

*> G (the uppercase letter) moves the cursor to the end of the file.

j> 1G moves the cursor to the beginning of the file. (That's the number 1,

not the letter /. Why ask why?)

Giving your text a makeover
To modify the text you have typed, follow these steps:

1. Move the cursor to the beginning of the text you want to change.

2. To type over (on top of) the existing text, press R.

3. Type the new text. What you type replaces what is already there.

Press Esc when you finish replacing text.

4. To insert text in front of the current cursor position, press s.

5. Type the new text. What you type is inserted without replacing any
existing text. Press Esc when you finish inserting text.

Removing unsightly text

To delete text, follow these steps:

1. Move the cursor to the beginning of the text you want to delete.

2. To delete one character, press the letter x. To get rid of five charac-

ters, type xxxxx. You get the idea.

3. To delete text from the current cursor position to the end of the line,

press uppercase D.

4. To delete the entire line the cursor is on, type dd (the letter d twice).

Nobody undoes it better

Like many text editors, vi has a way to "undo" the most recent change or

deletion you made. Type the following to undo the change:

If you type the following line (in uppercase), vi undoes all changes to the

current line since you moved the cursor to that line:

U

Chapter 10: Writing Deathless Prose /jj

Write me or save me— just don't lose me
To save the updated file, type the following (be sure that you have pressed

Esc first so that you're in command mode):

:w

That's a colon and a w, and then press Enter. You should give this command
every few minutes, in case the confusing nature of vi commands makes you
delete something important by mistake.

Good-bye, vi

To leave v i , type

11

Be sure to press Esc a few times so that you're in command mode before

giving this command. To quit and not save the changes you have made, type

this line:

*t\NG/

:q!

Then press Enter. This line means, "Leave vi and throw away my changes. I

know what I'm doing."

Most other letters, numbers, and symbols are also vi commands, so watch
what you type when you're in command mode. Table 10-1 lists the most
common commands you use with v i

.

Table 10-1

130 Part ,,,: Gettin9 Things Done

Table 10-1 (continued)

Chapter 10: Writing Deathless Prose /3 /

On the other hand, commands in emacs aren't exactly intuitive. Still, we like

them better. In case you are wondering, the name emacs comes from editor

macros because the original version of emacs was written as an extension to

an early text editor called teco, an editor that makes ed (see the section

"Talk to Mr. ed," at the end of this chapter) look like the winner of the Nobel

prize for user-friendliness. (Scary thought, isn't it?)

To run emacs, type this line:

emacs eating. peas

You replace eating. peas with the name of the file you want, of course. If

the file you name doesn't exist, emacs creates it. Like vi , emacs displays a

full-screen view of your file, as shown in Figure 10-2. On the bottom line of

the screen is the status line, which tells you the name of the file you are

editing and other, less interesting information.

Figure 10-2:

The GNU
Emacs

display

in a text

console.

emacs

displays on

the status

line (at the

bottom) the

filename

and other

mysterious

information.

I eat my peas with honey,
I've done it all my life.

It makes the peas taste funny,
But it keeps them on the knife.

— eating. peas [Fundamental] 100/C

A tale of Mo emacs
Unlike vi , emacs does not normally come with UNIX. Because most versions

of emacs are distributed for free, however, most systems have it or can get

it. By far the two most common versions of emacs are GNU Emacs and
XEmacs. Despite its name, XEmacs runs under both X Windows and text-

based consoles, and so does GNU Emacs. The basic commands are the same
for both versions, and the most obvious differences between the two are the

button bars and more sophisticated 3-D look to the windows in XEmacs.
(Compare the difference in Figures 10-3 and 10-4.) Other than that, it really

doesn't matter which you use.

1^8 Part III: Getting Things Done

Figure 10-3:

The GNU
Emacs

display in an

X window

includes

pull-down

menus for

common

commands,

including

save,

search,

undo, and

help.

Buffers Files Tools Edit Search Help

I eat my peas with honey,
I've done it all my life.
It makes the peas taste funny

,

But it keeps them on my knife.

Fundamental .'—L5—hill

Auto-saving

.

Figure 10-4:

The

XEmacs

display

in an X

window

includes a

toolbar in

addition to

pull-down

menus and

a 3-D look

to the

interface.

File Edit Apps Options Buffers Tools

D«J %'< Oil Copy I Putt c5s*i

I eat my peas with honey,
I've done it all my life
It makes the peas taste funny.
But it keeps them on my knife

-XE»acs : eating, peas i ah

To run XEmacs on the eating
eating.peas.

peas file, type the command xemacs

j> If you get an error message when you try to run emacs, ask your system

administrator what's up. The emacs program may have another name
on your system. If your system administrator says that you don't have

emacs, plead with him or her to get it.

i> If emacs looks or acts weird (weirder than usual, that is), your terminal

type may not be set correctly. Again, ask your system administrator to

straighten it out.

Chapter 10: Writing Deathless Prose /3 •

More than just a text editor

The emacs program is a cornucopia of bells

and whistles, including two different mail

packages, a newsreader, a file manager, color

text highlighting, and countless other fun and

unnecessary features. These features make

emacs a much larger package than any other

editor (it has been somewhat accurately

called an operating system disguised as an

editor) and has been known to cause some

system administrators to balk at installing it on

their UNIX machines. For others, it's almost a

way of life, so whether you have access to

emacs may depend on how strongly your sys-

tem administrator feels about those types of

things.

letting emacs What to do
Rather than have two modes, as does vi , emacs treats normal letters, numbers,

and punctuation as text and sticks them in your file when you type them.

(Pretty advanced concept, huh?) Commands are usually given by pressing

combinations of the Ctrl (Control) key and a letter. You also give some
commands by pressing the Meta key and a letter.

On most computers, the Meta key is the Esc key. If your keyboard has an Alt

key, it may be the Meta key. Try Alt to see whether it works. If it doesn't, use

Esc. Unlike with Alt, if you use Esc, you must release the Esc key before you
type the subsequent letter (Esc, release+letter). In the following section, we
tell you to press Esc.

Another noi/et concept: Type to enter text

To enter text, just start typing! The text is inserted wherever your cursor is.

Getting around in emacs
To move the cursor around in your text, use these keys:

*> Arrow keys usually move the cursor up, down, left, and right.

In a few situations, emacs doesn't understand the arrow keys. If that's

true for you, press Ctrl+B to move backward one character, Ctrl+F to

move forward one character, Ctrl+P to move to the preceding line, and
Ctrl+N to move to the next line. At least they tried to make them
mnemonic.

/ () Part lll: Gettin9 Things Done

u* Ctrl+A moves to the beginning of the line.

j> Ctrl+E moves to the end of the line.

t> Esc+< (press Esc and then hold down Shift and press the comma key)

moves to the beginning of the file.

i> Esc+> (press Esc and then hold down Shift and press the period key)

moves to the end of the file.

Making changes in emacs
Even though emacs is a better text editor, you still make typos, change your

mind, and think of brilliant improvements to your text. To change text,

follow these steps:

1. Move the cursor to the beginning of the text you want to change.

2. Type the new text. The text is inserted wherever the cursor is.

3. Delete any text you don't want.

It's that simple. No weird commands required.

Deleting stuff in emacs
emacs has several commands for deleting stuff:

v To delete the character the cursor is on, press Ctrl+D. Or, on many
terminals, press the Del key.

u* To delete text from the cursor to the end of the word (up to a space or

punctuation mark), press Esc and then D.

j> To delete from the cursor to the end of the line, press Ctrl+K.

Emergency exit from emacs
To stop using emacs, press Ctrl+X followed by

Ctrl+C.

This command doesn't save any changes you

made to the file in emacs. It just gets you out.

Some versions of emacs may ask whether

you want to save the file the editor was look-

ing at or say something like "Buffers not saved.

Exit?" (Translation: "Do you really want to quit

without saving your changes?") Press Y for

yes or N for no, as appropriate. If you just want

to get out, press N to the "Do you want to

save" question or Y to the "Buffers not saved"

question.

Chapter 10: Writing Deathless Prose] [f]

SaVe that file before it's too late!

To save the text in the file, press Ctrl+XS (press and hold down the Ctrl key,

press X and S, and then release the Ctrl key). You should save your work
every few minutes. Even though emacs isn't as frustrating as vi (or ed, for

that matter), lots can still go wrong.

Bidding emacs adieu

When you finish editing and want to leave emacs, press Ctrl+XC (press and
hold down the Ctrl key, press X and C, and then release the Ctrl key). You
leave emacs and see the UNIX shell prompt.

If you didn't save your work, emacs politely points out that your "buffers"

(the stuff you have been working on) aren't saved and asks whether you
really want to exit. It suggests N as the safe default in case you want to

return to emacs to save the file. To leave without saving, press Y and then

Enter.

It takes many fewer emacs commands to make a file and type some stuff,

make a few changes, and then save the file and leave than it does with ed or

vi . The emacs program has tons of commands, most of which are utterly

useless. Table 10-2 lists the commonly used emacs commands.

Table 10-2

/ (}2 Part III: Getting Things Done

Moving text in emacs
Although this subject is beyond the scope of

this quick introduction to emacs, we tell you

how to move text from one place to another in

a file. It turns out that when you press Ctrl+K to

kill the text from the cursor to the end of the

line, the killed information is stored in a tem-

porary place called the kill buffer. You can

copy the information from the kill buffer back

into your file by pressing Ctrl+Y (yank it back

into the file). To move some text, kill it with

Ctrl+K, move the cursor to the new location,

and press Ctrl+Y to insert the text where your

cursor is. ("Kill" and "yank" in ema c s-ese cor-

respond to "cut" and "paste" in the regular

world.)

A Peek at pi co
One other editor has become popular: pi co. As the Pine mail program has

spread like wildfire, the editor that comes with it, pi co, has taken off too.

pi co is the easiest to use, if not the most powerful, of the four text editors we
describe in this chapter. It was written by folks at the University of Washington.

To run pi co, type this command:

pi co eating. peas

As usual, type the name of the file you want to edit rather than

eating .peas. \l you type a filename that doesn't exist, pi co creates a file

with that name just for you.

Your system may not have pi co — if not, ask your system administrator if

she can get it for you. Assure her that if she doesn't, you'll pester her ten

times a day for the next year for help with ed or vi

.

The pi co screen looks like the one shown in Figure 10-5. Amazing— pi co

shows you at the bottom of the screen a menu of the most commonly used
commands! What will they think of next?

llou're my type

Typing text into a file by using pi co is a breeze. Just type. That's all. No
modes, commands, or anything strange.

Chapter 10: Writing Deathless Prose / £f^

Figure 10-5:

The pi co

editor is

easy to use,

with a small

menu at the

bottom of

the screen.

UU PICO (tin) 2.5

| eat my peas with honey,
I've done it all my life.

It makes the peas taste Tunny,
But it keeps them on my knife.

w.Mimi.iwi
Cur Pes

To Spell

l/ou motie me
If your cursor keys work in pi co, great. If not, you can use Ctrl+F to move
forward one character, Ctrl+B to move back one character, Ctrl+N to move
to the next line, and Ctrl+P to move to the preceding line. The following keys

also move you around the screen:

V Ctrl+A moves to the beginning of the line.

j> Ctrl+E moves to the end of the line.

j> Ctrl+V moves forward one screenful of text (F8 does this too).

v Ctrl+Y moves back one screenful of text (as does F7).

\lou're a big help

To get help with the pi co commands, press Ctrl+G. If your keyboard has an
Fl key, that should work too. You see pages of helpful information about the

program. Press Ctrl+V to see more or Ctrl+X to return to pi co.

1 1)1} Part lll: Getting Things Done

Time (or a change
It's also easy to edit your text in pi co. Whatever you type is inserted

wherever the cursor is. You can use these commands to edit stuff:

v* Ctrl+D deletes the character the cursor is on.

v Ctrl+ A (that's Ctrl+Shift+6) marks the beginning of some text you want
to work with. You use this command to select a bunch of text to delete

or move.

v Ctrl+K (or F9) deletes ("cuts") the text from the mark to the current

cursor position. Blammo! — the text is gone and is stored in an invisible

holding tank somewhere.

v* Ctrl+U (or F10) "uncuts" or "pastes" the last text you cut, making it

reappear where the cursor is now.

Thanks for saving my file

To save the text in a file, press Ctrl+O (or press F3). pi co asks for the

filename to write the text into, suggesting the filename you used when you
ran pi co in the first place. You can change the name so that the text is

written to a new file or leave it as is, to update the existing file. When you
press Enter, pi co writes the information into the file.

I'm outta here

When you have finished editing and want to leave pi co, just press Ctrl+X. If

you haven't already saved your file, pi co asks whether you really want to

leave, because leaving will lose any changes you made to the file since you
last saved it. Tell it that you do. Then you're out, and you see the shell

prompt.

pi co doesn't claim to be an editor with the power of emacs or vi . After all,

you can't edit ten files at a time, read your mail, and rename files from pi co.

Who cares? It's a nice, easy program for editing text. Isn't that what a text

editor is supposed to be?

Table 10-3 lists the top pi co commands.

Chapter 10: Writing Deathless Prose / [)$

Editors galore: NEdit and jed

UNIX being UNIX, you could use many more

text editors in addition to the Big Three (and

reluctant Fourth) described in this chapter, in-

cluding such alien-sounding programs as sed,

perl, and awk. A few of them, including

NEdit and jed, have graphical user inter-

faces (GUIs, remember?) that let you use your

mouse to get stuff done.

N Ed i t wraps all the fun and frolic of emacs

and pi co plain-text editing in a Windows-

style GUI. Because NEdit is relatively easy to

use (you can select and drag-and-drop text

with your mouse; imagine that!), it has be-

come one of the most popular editors for UNIX

users blessed with some version of X. One of

Nedi t's coolest features is "unlimited undo,"

which means that you can undo all your

actions right back to the beginning of your

NEdit session. Programmers like NEdit
because it's completely customizable and

because it has special features that make

editing files of various types of computer code

easier (features such as syntax highlighting

and parenthesis flashing and matching; if you

don't know what these are already, you

don't care — believe us). NEdit, the latest

version of which is 5.0.2, is free. You can down-

load versions and source code for just about

every flavor of UNIX via FTP from a number of

sites, including ftp://ftp.fnal .gov/

pub/nedi t.

jed is named after its creator, John f. Davis

of MIT (so it's sometimes called JED), jed is

much like emacs, but it takes up much less

space on your computer, jed can do plain-

text editing, to be sure; it can also edit binary

files just like a decent word processor. In fact,

jed can do a reasonable imitation [emulation

is the technical term) of such editors as

emacs, WordStar, and Brief. Like NEdit, jed

offers a slew of programming modes that help

make life a little less trying for programmers

trying to edit abstruse computer code in such

languages as C, C++, FORTRAN, HTML, and

TeX. jed is free; the latest version number is,

curiously, something like 0.98-7. According to

Mr. Davis, jed isn't up to Release 1.0 "be-

cause of lack of adequate documentation,"

which we're sure doesn't scare you off one

bit. You can download jed from ftp://
space. mi t.edu/pub/davi s/jed, among

other FTP sites.

Table 10-3

/ () Part lll: Getting Things Done

Table 10-3 (continued}

Chapter 10: Writing Deathless Prose /
{f

~]

To run ed, type this line:

ed important. letter

(Type the name of your file rather than important . 1 e 1 1

e

r.) If no file has

the name you specify, ed makes one. UNIX responds to this command with a

number, which is the number of characters (letters, numbers, punctuation,

and spaces) in the file, just in case you're being paid to write by the letter.

If you receive an error message when you try to run ed, talk to your system
administrator. Congratulate her on getting rid of that Neanderthal text editor

and find out which text editor you can use.

Hey, Wilbur, Which command Was that)

All ed commands are one-letter long (such as h).

Remember not to capitalize ed commands unless we specifically say to. ed

commands are almost all lowercase letters.

Relatively recent versions of ed (since, oh, about 1983) have a P command
(that's a capital P, one of the few uppercase commands) that turns on a

prompt. If you type P and press Enter, ed prompts you with an asterisk when
it's in command mode and waiting for a command. Is that incredibly user-

friendly or what? This P command enables you to determine when you're in

command mode! Must have snuck that one in when the lazy typists weren't

looking.

If you're in input mode and want to give a command, type this character:

That's just a single period on a line by itself. Typing it switches ed to com-
mand mode.

In the remainder of this discussion about using ed, whenever we tell you to

type a command, it works only if you're in command mode. If you're not

sure, type a period and press Enter first.

If you're in command mode and want to type some text, you switch to text-

input mode. First, however, you must decide whether you're going to append
(by using the a command) after the current line the lines of text you will

type or insert (by using the i command) before the current line. More about
the current line and the a and i commands in a minute.

1 1}8 Part ,,,: Getting Things Done

Feeding text to Mr. ed
Create a file and feed some text to it. Start the process by typing

ed eating. peas

You can name your file something other than eating .peas, if you want.

UNIX responds with a question mark, just to keep you on your toes. (This

time, the question mark tells you that ed just created a new file for you.)

To add (append) new lines of text to the end of the file — in this case, the

end of the file is the same as the beginning because the file is empty— type

UNIX responds by saying nothing, which is your indication that ed is now in

input mode and waiting for you to type some text. Type some pearls of

wisdom, like this:

I eat my peas with honey,

I've done it all my life.

It makes the peas taste funny,

but it keeps them on the knife.

When you finish typing text, type a period on a line by itself to switch ed

from input mode back to command mode. Not that ed gives you a hint that

this process is going on, unless you have used the P command to tell it to

prompt you.

The lines of text are now in your file. Now would be a good time to save the

file, just in case you kick your computer's plug from the wall in your frustra-

tion at having to use such a brainless program.

Getting Mr. edto satie your text

The following command saves your text in a file with ed. If you're in input

mode, remember to type a period on a line by itself to switch to command
mode before giving this command:

That's w for write. UNIX responds with the number of characters now in the

file. Be sure to give this command before leaving ed so that your deathless

prose is saved in the file; in this case, eating. peas (or whatever filename

you used when you ran ed).

Chapter 10: Writing Deathless Prose /
(f, ty

Show me the file, please

Now that you have text in the file, how can you see it or change it? By using

the p (print) command. This command doesn't print anything on the printer;

it just displays it on-screen — another example of superb software engineer-

ing. (Well, it printed on those old Teletypes.) If you type the p command by
itself, as follows, ed displays the current line:

In the case of the sample eati ng . peas file, the current line is the last line in

the file. You can also tell ed which lines to display by typing their line numbers.

To display lines 1 through 4, for example, type this line:

l,4p

You can also use the symbol $ to stand for the line number of the last line in

the file (in case you don't know how many lines are in the file). The following

command always displays the entire file:

l.$p

A miserable Waif to edit

You can change the contents of a line of text with ed, although it involves

giving commands that look like this:

12,13s/wrong/right/

This command substitutes right for wrong in lines 12 through 13, inclusive.

Totally primitive and painful, isn't it? For the amount of editing you probably

do in ed, it's almost easier to delete the line with the typo and insert a new
line. We recommend that you immediately ask your system administrator for

a better text editor.

Undo your thirty, ed/
Wait — ed has one useful, humane command, after all! The u command
enables you to "undo" the last (and only the very last) change you made to

the file. If you delete a line by mistake with the d command, for example, you
can type this line to undo the deletion:

/30 Part lll: Gettin 9 Things Done

*J*BE*

Be sure that you don't make any other changes before using the u command.
It undoes only the last thing you did.

Time to ed out

When you finish making changes and you want to leave ed (or even if you're

not finished making changes and you want to leave ed anyway), type

If you're in input mode, first type a period on a line by itself to get into

command mode. Then press q to quit.

If you haven't saved your work by using the w command, ed just doesn't

quit. Instead, it displays a question mark to tell you that it was expecting a w

command first. To save your changes, type these two commands, pressing

Enter after each:

w

q

If you don't want to save the changes to the file, press q again at the ques-

tion mark. This time, ed believes that you really want to leave and thus

exits. Not a moment too soon!

Chapter 11

Umpteen Useful UNIX Utilities

In This Chapter

A grab bag of useful programs

'** Sorting and comparing files

Stupid calendar tricks

J*» Squashing files to make them smaller

fc» Some other odds and ends

••A*

1n spite of the fact that we have been making fun of UNIX in this book, we
«£ are well aware that UNIX actually has some fairly handy programs lying

around. In this chapter, we look briefly at some of them. All these programs
have a severe case of what is known as Feature Disease (closely related to

the greasy fingerprints mentioned in Chapter 2): They all are bristling with

features and options. Most of the features and options aren't worth mention-

ing, however, so we don't.

Comparing Apples and Oranges
When you have used your UNIX machine for a while, you have piles of files

(say that six times quickly) lying around. Often, many of the files are dupli-

cates, or near duplicates, of each other. Two programs can help sort out this

mess: cmp and di f f.

The simplest comparison program is cmp; it just tells you whether two files

are the same or different. To use cmp to compare two files, type this line:

cmp onefile anotherfile

You replace onefile and anotherfile with the names of the files you want
to compare, of course. If the contents of the two files are the same, cmp

doesn't say anything (in the finest UNIX tradition). If they're different, cmp

tells how far into the files it got before it found something different. You can

compare any two files, regardless of whether they contain text, programs,

databases, or whatever, because cmp cares only whether they're identical.

1$2 Part III: Getting Things Done

A considerably more sophisticated comparison program is di f f . This

program attempts to tell you not only whether two files are different but

also how different they are. The files must be plain text, not word processor

documents or anything else, or else di f f becomes horribly confused. Here's

an example that uses two versions of a story one of us wrote. We compared
files tsel and tse2 by typing this command:

di ff tsel tse2

Enter the name of the older file first and the name of the new, improved
second file. The di f f program responds:

45c45

< steered back around, but the sheep screamed in panic and reared back.

> steered back around, but the goats screamed in panic and reared back.

46a47
> handlebars and landed safely in the snow.

The changes between tsel and tse2 are that, in line 45, the sheep changed
to goats, and a new Line 47 was added after Line 46.

The di f f program reports, in its first line of output (45c45) that changes
(that's what the c stands for) have been made in lines 45 through 45 (that is,

just line 45). Then it displays the line in the first file, starting with a <, and
the line in the second file, starting with a >. We think of this as the di f f way
of saying that you took out the lines starting with < and inserted the lines

starting with >. Then di f f reports that a new line is between lines 46 and 47

in the original file, and it shows the line that was inserted. It's a great way of

seeing what changes have been made when you get a new revision of a

document you have written.

BSD versions of di f f (including the version that usually runs under Linux)

can compare two directories to tell you which files are present in one and
not in the other and to show you the differences between files with corre-

sponding names in the two directories. Run di f f and give it the names of

the two directories.

Assorted Files

Computers are good at putting stuff in order. Indeed, at one time a third of

all computer time was spent sorting. UNIX has a quite capable sorting

program, cleverly named sort, that you may remember meeting briefly in

Chapter 7. Here, we talk about some other ways to use the program.

The sort command sorts the lines of a file into alphabetical order. From the

sort point of view, a line is anything that ends with a carriage return (that

is, you pressed Enter). If you have a file containing a list, with one item per

line, this command alphabetizes the list.

Chapter 11: Umpteen Useful UNIX Utilities J53

The easiest way to use sort is to sort one file into another. In other words,

you tell sort to place the sorted version of the original file in another file.

This way, you don't risk screwing up the original file if the sort runs amok.

To sort the original myf i 1 e into a second file named sortedfile, type this

command:

sort myfile > sortedfile

Although you can sort a file back into itself, you can't do it in the obvious

way. The following line, for example, doesn't work:

sort myfile > myfile

The problem with this command is that the UNIX shell clears out myfi 7 e

before the sort starts (with the result that, when sort tries to sort some-
thing, it finds that my fi 1 e is empty). You can use the -o (for output) option

to tell sort where to put the results, like this:

sort myfile -o myfile

This command works because sort doesn't start to write to the output file

until it has read all its input.

Normally, sort orders its results based on a strict comparison of the

internal ASCII codes the computer uses for storing text. The good news is

that this command sorts letters and digits in the correct way, although some
peculiarities exist: Normally, uppercase letters are sorted before lowercase

letters, so ZEBRA precedes aardvark. You can use the - f (for /old cases

together) option to sort regardless of uppercase and lowercase letters:

sort -f animals -o sortedanimals

Although we could have used the > redirection symbol in this example, with

sort, it's safer to use o. You can use several other options also to tell it to

sort:

- b Ignore spaces at the beginning of the line.

- d Use dictionary order and ignore any punctuation. You usually use

this option with f.

- n Sort based on the number at the beginning of the line. With this

option, 99 precedes 100 rather than follows it, as it does in usual

alphabetical order. (Yes, the normal thing the computer does is

pretty dumb. Are you surprised?)

- r Sort in the reverse order of whatever would have been done
otherwise. You can combine this option with any of the others.

/ 5fy Part " l: Gettin 9 Things Done

We find sorting to be particularly useful in files in which every line starts

with a date, as shown in these examples:

0505 Torn' a ' s birthday

1204 Meg's birthday

1102 Zac's birthday

0318 Sarah's birthday

We could type sort - n to sort this file by date. Notice that we wrote May 5

as 0505 (not 55, for example) so that a numeric sort would work.

You can do much more complex sorting and treat every line as a sequence
of "fields" that sort uses to decide the final sorted order. If you really need
to do this, talk to someone who knows something about sorting.

Time 1$ Money— Steal Some Today!
All UNIX systems have internal clocks. You can ask the system what the date

and time are with the date command:

date

UNIX responds with this information:

Thu Dec 3 15:43:50 EST 1998

Many options enable you to tailor the date format any way you want. Don't

waste your time. UNIX has an idea about the time zone too, and it even does
daylight savings time automatically.

You can schedule things to be done later by using the at command. You say

something like this:

at 5:15pm Jul 4

sort -r myhugefile -o myhugefile.sort

pr -f -2 myhugefile.sort
|

lp

Then you press Ctrl+D to indicate that you've finished giving commands.

You give the a t command and specify a time and date. Then you enter the

commands you want to run at that date and time. Press Ctrl+D on a separate

line to tell UNIX that you're finished listing tasks. In this example, we sort a

huge file and then print it in two columns, all on the Fourth of July, when
presumably no one is around to complain that it's taking too long. If you omit

the date, UNIX assumes that you mean today if the time you give is later than

the current time; otherwise, UNIX assumes that you mean tomorrow.

Chapter 11: Umpteen Useful UNIX Utilities J§§

Any output that normally would go to the terminal is sent back to you by

electronic mail, so you should at least skim Chapter 17 to find out how to

read your mail.

Squashinq j/our Files

One problem that is common to all UNIX systems — indeed, to nearly all

computer systems of any kind — is that you never have enough disk space.

UNIX comes with a couple of programs that can alleviate this problem:

compress and gzi p. They change the data in a file into a more compact
form. Although you can't do anything with the file in this compact form

except expand it back to its original format, for files you don't need to refer

to often, compressing can be a big space saver.

Compress without stress

You use compress and gzi p in pretty much the same way. To compress a

file named confidential . d o c , for example, type this line:

compress -v confidential.doc

The optional - v (for verbose) option merely tells UNIX to report how much
space it saved. If you use it, UNIX responds with this information:

confidential .doc: Compression: 49.79% - replaced with confidential .doc.

Z

The compress program replaces the file with one that has the same name
with . Z added to it. The degree of compression depends on what's in the

file, although 50 percent compression for text files is typical. For a few files,

the compression scheme doesn't save any space, in which case compress is

polite enough not to make a . Z file.

To get the compressed file back to its original state, use uncompress:

uncompress confidential .doc.

Z

This command gets rid of the file confidential .doc.Z and gets back
confidential .doc. You can also use z c a t , a compressed-file version of the

cat program, which sends an uncompressed version of a compressed file to

the terminal, without storing the uncompressed version in a file. The com-
mand is rarely useful by itself but can be quite handy with programs such as

more or 1 p. You use it this way:

zcat confidential .doc.Z
|
more

/50 Part ,,,: Gettin 9 Things Done

This command enables you to see one page at a time what's in the file.

Unlike uncompress, zcat does not get rid of the . Z file.

The GNU crowd weighed in with its own compress-like program named
gzi p. It works the same way that compress does, but uses a different,

slightly better, compression scheme. The gzi p program is analogous to

compress, gunzi p and gzcat uncompress stuff. Use them this way:

gzip -v confidential.doc

gunzip confidential .doc. gz

zcat confidential .doc. gz |
more

Note that the files end with lowercase gz rather than uppercase Z.

Fortunately, gzi p knows how to uncompress files produced by compress as

well as those produced by several other compression programs, so you can

use gunzi p as your one-stop uncompression utility.

A similar but older program that uses a different compacting scheme is

pack. To use it, type this line:

pack confidential.doc

UNIX responds with this information:

/usr/bi n/pack : confidential.doc: 37.1% Compression

You get packed files back with unpack. You can look at packed files with

peat. Packed files end in . z (that's a lowercase z). Like compress, pack

leaves the file untouched if packing doesn't save any space.

Zippedy day-tah

WinZip and PKZIP are widely used compression programs among Windows
and DOS users to create ZIP files containing one or more files compressed
together. You may run into ZIP files if you get information from the Internet

or on a disk from a DOS or Windows system. Fortunately, a number of volun-

teers (led by a perfectly nice guy who goes by the enigmatic handle of Cave

Newt) have written free zipping and unzipping programs named z i p and

unzip. They're both available for free over the Internet.

To unzip a ZIP file, you use unzip:

unzip video- 1 i st .zip

Chapter 11: Umpteen Useful UNIX Utilities / fj "J

^^

How does file compression work, anyway?
This discussion is pretty technical. Don't say

that we didn't warn you.

The issue of optimal codes (codes that use the

least number of bits for a particular file — or

message because at that time they were think-

ing in terms of radioteletypes) was a hot topic

in the late 1940s, challenging the deepest

thinkers in the field. In 1952, a student named

David Huffman published a paper that any

high-school student could understand show-

ing how to use simple arithmetic techniques

to construct optimal codes. Oops. Ever since

then, this kind of code has been known as

Huffman coding. For many years Huffman cod-

ing was the best available, and a UNIX pro-

gram named pack used it.

Normally, every character in a file is stored by

using 8 bits (binary digits, 1s and Os, the small-

est unit of data a computer can handle). Sup-

pose that a file contains 800 A's followed by

100 B's and 100 Cs. That's 1,000 characters, at

8 bits apiece, or 8,000 bits. For this particular

file, a compression program can use much
shorter codes. It can use a 1-bit code for A
and 2-bit codes for B and C. That makes the

total size 800 bits for the A's, and 200 bits

apiece for the S'sandthe Cs— a total of 1,200

bits rather than 8,000. The packed file is a little

larger than that (1,408 bits) because a table at

the front of the packed file indicates which

codes correspond to which letters.

The compress program uses a dictionary-

compression scheme, which is kind of back-

ward from Huffman coding. Rather than try to

find the shortest code for every letter, com-
press runs through the file trying to find

frequently occurring groups of letters it can

encode as a single dictionary entry, or token.

To compress the same file we packed in

the preceding paragraph, compress reads

letter- by- letter and notes that it has seen AA

more than once; then it notices that it has

seen AAA more than once, and so on. It enters

longer and longer runs of A's into its dictionary

until it has runs of more than 300 A's, each

represented by a single dictionary entry and a

single token in the compressed file. When
compress runs into the B's and then the Cs,

it does the same thing and also enters long

runs of B's and Cs in the dictionary.

Using a clever technique (at least, it's clever

to data-compression wonks), compress
doesn't have to store the dictionary in the

compressed file because uncompress can

deduce from the sequence of tokens in the

compressed file the contents of the dictionary

that compress was building. As a result,

compress does a fantastic job on this file

and squashes it to a mere 640 bits from the

original 8,000.

Compression techniques are still a hot topic in

the computer biz, and many techniques have

been patented. The particulartechnique com-

press uses is known as LZW, after Lempel,

Ziv, and Welch, the three guys who thought of

it. Welch, who works for Unisys and made
some improvements to an earlier scheme de-

signed by Lempel and Ziv, has a patent on it.

It's such a cool technique, in fact, that two

other guys named Miller and Wegman, who
work for IBM, invented it at about the same

time, and they also have a patent on it. Be-

cause the patent office is not supposed to

granttwo patents on the same invention, some

people use this situation to suggest that

issuing patents on software isn't a good idea.

Fortunately, neither Unisys nor IBM has ever

objected to the compress program, so you

can go ahead and use it. gzi p and zi p use a

technique that's somewhat similar to LZW but

not covered by patents.

/$$ Part III: Getting Things Done

The unzip command has a bunch of options, the most useful of which is -
1

,

which tells the program to list the contents of the ZIP file without extracting

any of the files. To find out what all the options are, run unzip with no
arguments. If you need to create a ZIP file, you can use the equally boringly

named z i p program:

zip video- list *.txt

This command says to create a file named vi deo- 1 i st . zi p (it adds the

.zip part if you don't) containing all the files in the current directory whose
names end in . txt.

What's in That Fite>

Sometimes you have a bunch of files and no recollection of what they

contain. The file command can give you a hint. It looks at the files you
name on the command line and makes its best guess about what's in the

files. To have file try to figure out what's in the files in the working direc-

tory, type this line:

file *

UNIX responds with this bunch of seemingly incomprehensible information:

sleuthl.doc: data

sleuthl.ms: [ntlroff, tbl , or eqn input text

tsel: ascii text

t s e 2 . Z : compressed file - with 16 bits

This mess says that file figured out that the sleuthl.ms file is a text file

coded for input to the trof f text formatter (those other programs are some
of trof f's helpers), that tsel contains text, and that tse2 . Z is com-
pressed. (The "16 bits" stuff tells basically which version of compress was
used; it doesn't really matter because current versions of compress can

read any compressed file.) The file program guesses "data" whenever it

has no idea what's in a file. Because the first file, sleuthl.doc, was a

Microsoft Word document, something file doesn't know about, it guesses

that it's data.

Chapter 12

Installing Software Can Be Tricky

In This Chapter

Where software comes from (the software stork?)

Where to put software

How to write shell scripts, or files full of commands

How to write aliases for your favorite commands

How to grab software from the Internet

How to send programs by e-mail

How to uncompress, uudecode, and otherwise fool with files that contain programs

• • •

i
Mi you are a Windows or Macintosh user, you probably are thinking: "I can

«C install new programs. What's the big deal? I just stick in a disk or a CD
and type INSTALL, right?" No. In UNIX, it's not that simple, of course. You
face issues of paths, permissions, and other technical-type

stuff we have been protecting you from.

On the other hand, we're not about to train you to be a system programmer.
Every user has a few favorite programs, and you wear out your welcome
quickly if you go off to your local wizard every time you want to use a new
program. Although installing new UNIX programs is much trickier than

installing PC or Mac programs, in many cases you can do it yourself.

The Software Stork
Interesting software comes from many places:

V Some other user on the same machine already has it for his or her own
use and you want to use it too.

u* Some other machine on the network has a program you want for

yourself. See Chapter 16 for the gory details of copying the program
from other machines on the network.

/00 Part l,,: Gettin 9 Things Done

j> Someone sends you programs through e-mail. (Yes, it's possible.)

u* You create files that contain frequently used commands so that you
don't have to type them repeatedly. In UNIX-speak, these files are

called shell scripts. In essence, you make your own multipurpose UNIX
commands.

First, we talk about where you should put your own software. Then we go

into more detail about the mechanics of putting it there.

\/ou'iJe bin had
Every UNIX user should have a bi n directory. It's just a directory named bi n

in your home directory. If it's not there, you can make it by going to your

home directory and typing this line:

mkdir bin

The thing that's special about bi n is that the shell looks for programs there.

Most system administrators automatically set up a bi n directory for users.

If not, and you had to create it yourself, you may have to do some fiddling to

tell the shell to look for programs there. See the sidebar "Your search path,"

later in this chapter, for the bad news.

To put programs in your bi n directory, you just copy them there by using

the cp command. Alternatively, you can move them there by using the mv

command, a text editor, or any other way to create or move a file.

Why is it named bin?
Early on, bin was short for binary/ because

most programs that people put there were, in

fact, compiled binary code. In the late 1970s, a

famous professor of cognitive science at the

University of California published a papertitled

"The Trouble with UNIX," in which he com-

plained bitterly about how difficult it was to

use UNIX. One of the items on his list was that

bin was difficult to remember. One of the

UNIX guys at Bell Labs published a witty re-

buttal and pointed out that many of the alleg-

edly "more natural" command names the

professor suggested were merely the names

the computer system at his university used.

The UNIX guy reported that many Bell Labs

users thought that a bin was the obvious place

to stash their programs. So, it's still a bin.

The famous professor, who's now a researcher

at Hewlett-Packard, has come around some-

what and is reputed to even use UNIX now
and then, although he probably shuts his of-

fice door so that no one can see.

Chapter 12: Installing Software Can Be Tricky] 1

j/ou Too Can Be a Script Writer
You can make your own commands (shell scripts) and put them in your bi n

directory. A shell script is a text file that contains a list of shell commands —
the same commands you type at the shell prompt. You can store a list of

commands as a shell script and run the commands any time by typing the

name of the shell script. This section tells you how.

Hou/ to shell a script

To create a shell script, use any text editor (refer to Chapter 10). Enter the

commands one per line, just as you would type them at the shell prompt.

Save the file in your bi n directory.

Here's an example— if you frequently search for files with names that begin

with budget, you probably are tired of typing this command over and over:

find . -name budget* -print

(Check out Chapter 8 to see how the find command works.) Instead, you
can put this command in a shell script and perhaps name the script

f i ndbud. To do it, create a text file named f i ndbud that contains just one
line: the command.

First you move to your b i n directory because that's where your programs
live:

cd bin

Then you use a text editor to create a text file containing the commands you
want in your script. In this example, we use ed, a creepy editor, but you can
use the editor of your choice instead. Type

ed fi ndbud

UNIX responds with this line:

?f indbud

or maybe

fi ndbud : No such file or directory

102 Part III: Getting Things Done

Either way, you are editing the f i ndbud file. Type this command:

a

This command tells ed to start appending text to the end of the fi ndbud
file. (Remember that because you're using ed, you have to type weird

commands.)

Then type these two lines:

find . -name budget* -print

The dot on a line by itself tells ed to return to command mode. To save the

file, type

UNIX responds with the information that you have saved a file with 29 (or

so) characters:

29

Quit ed by typing this command:

q

You see the shell prompt again. Great! You've created a shell script!

Getting ifour script to plat}

Now you must tell UNIX that the text file you have created is executable —
that it's more than a mere text file. Type this line:

chmod +x fi ndbud

This line marks the fi ndbud file as executable (it's a script the shell can
run).

Running and rehashing your script

To run the shell script, just type its name:

fi ndbud

Chapter 12: Installing Software Can Be Tricky / (}A

«MBE0

Voila! You have just created your own UNIX command! UNIX runs the find
command to look for your budget files.

You're not quite finished, though. Observe what happens when you go to

another directory. Type the following two commands to go to your home
directory and give the f i ndbud command there:

cd

fi ndbud

UNIX may respond with this message:

findbud: Command not found.

If so, type this command to get UNIX to do what you want:

rehash

Now when you type fi ndbud, it works.

What's going on? Well, it's Mr. too-smart-for-his-own-good Shell. Because
programs don't appear and disappear very often, when the shell starts up, it

makes a list of all the commands it can access and where they are. Because
five or six command directories frequently exist, this process saves consid-

erable time (the alternative is to check every directory for every command
every time you type one). The rehash command tells UNIX to rebuild its list

(known in geekspeak as a hash table) because you have added a new com-
mand (the fi ndbud file is really a command, remember?). If the command
still doesn't work, you have to fiddle with your search path — not a pretty

job. See the following sidebar, "Your search path."

Type rehash to tell the shell that you have added a new command and that

you want it to rebuild its list of available commands to include this one. If

you don't give the rehash command and you change directories, you can't

use the newly created shell script during this login session.

We could write an entire book about shell scripts (others have). In fact, we
wrote several chapters about them in MORE UNIX For Dummies (published
by IDG Books Worldwide, Inc.). The finer points naturally vary depending on
which shell you use, although this explanation gives you the general idea.

Shell scripts aren't limited to one line: They can be as long as you want,
which is handy when you have a long list of commands you want to run
regularly.

10U Part III: Getting Things Done

£?»

Your search path

You can ignore this section unless you have

put a command in your bi n directory and the

shell can't find it. Still reading? Sorry to hear it.

The shell has a list of directories that contain

commands; this list is known as the search

path. On any sensible UNIX system, the bi n

directory is already in your search path. If not,

you have to put it there. You do it in two stages:

putting it in once and putting it in permanently.

To see what your current search path is, type

the following line if you're using the C shell:

echo $path

If you have BASH or the Bourne or Korn shell,

type this line:

echo $PATH

Yes, one's uppercase and one's lowercase.

Arrgh! The C shell responds with something

like this:

/bin /usr/bin /usr/ucb/
bin /usr/1 oca! /bin

BASH or the Bourne or Korn shell shows

something like this:

/bin: /usr/bin: /usr/ucb/bin:/
usr/1 ocal /bin:

.

What you have to do is add your bin directory

to the path.

If you use the C shell, type this magical incan-

tation:

set path=($path -/bin)

That's a tilde (~) in the middle. This line tells

the C shell to set the path the same as the

current path ($path), plus the bin
subdirectory of your home directory (~).

If you use BASH or the Bourne or Korn shell,

type this even more magical incantation:

PATH=$PATH
bin export

$H0ME/
PATH

Note that the second time you type PATH and

HOME in the first command, you include a dol-

lar sign ($) in front of them. This line tells the

Bourne or Korn shell to set the path the same

as the current path ($PATH), plus the bin

subdirectory of your home directory ($H0ME).

Same song, different words.

Now you should be able to run your new script

regardless of which directory you're using.

This new, improved path lasts only until you

log out. To put your bi n directory on the path

every time you log in, you must add the incan-

tation to the end of the shell script that runs

automatically whenever you log in. If you use

the C shell, add it to the . 1 ogi n file. If you

use the Bourne or Korn shell, add it to the

.prof i 1 e file.

Yes, these filenames begin with periods.

Filenames that start with periods usually don't

show up in file listings, which is why you

haven't noticed these files in your home direc-

tory. Type the following line to list all your files,

including these hidden ones:

Is -a

In principle, you only have to edit the file, go to

the end, and add the necessary lines. In prac-

tice, it's easy to screw up, so— unless you're

feeling particularly brave — you're probably

better off asking for expert assistance.

Chapter 12: Installing Software Can Be Tricky / ()j

Don't give me any arguments!

Shell scripts can be complete programs. Ev-

ery shell program has lots of swell program-

ming features you don't want to know about.

One is so useful, however, that we're going to

tell you anyway: Your shell scripts can use

information from the command line. That is,

if you type foogl e dog pi g, your script

named foogl e can see that you ran it saying

dog and pi g. The things on the line after the

name of the command are called arguments.

The word dog is the first argument, and pig is

the second one. In shell scripts, the first argu-

ment is named $ 1; the second, $2; and so on.

In shorthand, $* means "all the arguments."

Suppose that you want to write a script named
2print that prints files in two-column for-

mat. (You do that by using the pr command,

described in Chapter 9.) Create a file named
2pri nt that contains this line:

pr f -2 $*
| lp

Then use the chmod and, if necessary, re-

hash commands to make 2pri nt an execut-

able script. If you want to print several files,

one right after the next, in two-column format,

you can type this line:

2print onefile anotherfile
yetanotherfile

In reality, you are saying

pr -f -2 onefile anotherfile
yetanotherfile

|
lp

This line prints all three files in two-column

format. (Note that you may need to use 1 pr

rather than 1 p in this shell script. Refer to

Chapter 9.)

Borrowing Other People's Programs
Lots of times, someone else has a cool program you want to be able to use.

You have two approaches to getting what you want, and both are pretty

easy. Suppose that your friend Tracy has a program named pornotopia in

the bi n directory. (No, we don't know what it does, either.) How can you
run it?

The lonq u?ay

If you use the C shell, you can run the program from Tracy's directory by
typing this line:

-tracy/bin/pornotopia

/ 00 Part " l: Gettin9 Things Done

If you use BASH or the Bourne or Korn shell, you can type this line:

/usr/tracy/bin/pornotopia

The easier itiay

Typing this long string of letters and symbols every time you want to run

the program is a pain. A better way is to put in your bi n directory a link to

the cool program so that you can run it directly. (Links are described in

Chapter 8.) You use the 1 n command to create a link, which makes the file

appear to be in your own bi n directory too.

Try the direct approach. Move to your home directory and create a link:

cd

In ~tracy/bin/pornotopia bin/pornotopia

With any luck, this method works, creating a link from Tracy's file to your
bi n directory. Give or take a quick rehash, you're all set.

The 1 n command doesn't work, however, if you and Tracy have files on
different disks. (All this stuff is explained in Chapters 8 and 16.) In this case,

you may get this unhelpful message:

In: different file system

If you get this message, it's time for Plan B. Most UNIX systems have sym-

bolic links that work across different disks (these links also are explained in

Chapter 8). Try this line:

In -s ~tracy/bin/pornotopia bin/pornotopia

If it works, it makes a symbolic link to the file you want. You're all set: The
link to pornotopia refers to Tracy's version. After a rehash, you're ready

to go.

Using an alias

If you were named pornotopia, you probably would want an alias too.

Fortunately, the BASH, Korn, and C shells give you the ability to invent a

short name for a long command. (Bourne shell users, you're out of luck.

Skip to the next section.)

Time for Plan C. In the BASH and Korn shells, type

alias dobudget=' /usr/tracy/bin/pornotopia'

Chapter 12: Installing Software Can Be Tricky]07

This line tells the shell that, when you type dobudget, you really want to

run Tracy's program. Heh, heh. To avoid inadvertent ease of use, the C

shell's alias command works in almost the same way, but it is punctuated

slightly differently:

alias dobudget 7usr/tracy/bin/pornotop1a'

(In both cases, the single quotes are optional if the command doesn't contain

any spaces or special characters, although it never hurts to use them.)

You can define aliases for any frequently used one-line command. The alias

can contain spaces, pipes, and anything else you can type on a command
line. In BASH, for example, you can type

alias sortnprint='sort -r bigfile
|
pr -2

|
Ipr'

This line makes the new sortnprint command sort your bigfile in

reverse alphabetical order, format it in two columns with pr, and send the

result to the printer. Aliases can also be useful if you are subject (as we are)

to chronic miswiring of the nerves in your fingers. We always type mroe

when we mean more, and the following alias fixes it:

alias mroe=more

(That's the BASH version; the C shell would have a space rather than an

equal sign between mroe and more.)

Aliases you type directly to the shell are lost when you log out. If you want
them to be available permanently, you must put the alias commands in

your . 1 ogi n or . prof i 1 e file, in the same way we mentioned earlier in this

chapter, in the "Your search path" sidebar.

Usinq a shell script

If this method doesn't work either, try Plan D to use Tracy's program: a one-

line shell script. Although we use the ed program because it's easier to

show, you should use a real editor. Start by revving up ed:

ed bin/pornotopia

You get the following helpful response, or something like it:

?bin/pornotopia

Now tell ed to add some text to the file, by typing this command:

a

/08 Part lll: Gettin 9 Things Done

You are now in append mode. Type the command line you want to include in

the shell script, followed by a dot (period) on a line by itself:

/usr/tracy/bin/pornotopia

The dot on a line by itself switches back to ed's command mode. Then type

this command:

This command writes the new shell script file and prints the size of the file.

Then type the following to quit ed:

^\NG/

Type the next command to make your new shell script runnable:

chmod +x pornotopia

If necessary, give this command to tell UNIX to redo its hash table:

rehash

Now your script named pornotopia runs Tracy's original program named
pornotopia. At least one of these three plans should work for any program

lying around anywhere on your system.

We don't even discuss software copyrights, licenses, and ethics here, but, if

you use a copyrighted program, you should pay for it unless you like to

think of yourself as a thief.

Stealing Software from the NetWork
If you are on the Internet, you can get zillions of programs that are free for

the taking. You can get copies of programs in the same way you get copies of

anything else on the Internet — by either using FTP or downloading files

from a Web browser, such as Netscape Communicator. See Chapter 18 for

the inside scoop on downloading files from the Internet.

On many UNIX systems, this process is the most common way to get new
software. Although most of it is shareware or freeware, even some commer-
cial outfits are now selling their programs to be downloaded from the

Internet.

Chapter 12: Installing Software Can Be Tricky] Oy

Tar pits

When you download UNIX software from the Internet, nine times out of ten

the filename ends in either .tar, . tar. Z, or .tar .gz. (We get to the most
common exception in the next section.) Named, oddly enough, tar files, they

don't have anything to do with black, goopy paving material; tar is short for

tape archive. You use this command for backing up (what used to be called

"archiving," in the days when people went out of their way to make comput-

ers Look Important) UNIX systems to tape. (We discuss this use of ta r in

Chapter 23.)

In this section, though, you're seeing ta r in its other role, where it moon-
lights as a software-packaging command. The people who distribute the

software use ta r to glom into one big tar file all the files that make up the

software package (it can have anywhere from just a few to as many as

hundreds of files). This way, you have to download only one big file rather

than hundreds of little files. Because tar files are generally so big, the

software distributors then squish them even more, using either the com-

press command (which results in a file ending in . tar . Z) or the gzi p

command (which results in a file ending in . tar . gz). Using compress used

to be the standard, but because gzi p results in smaller files, it's the com-
pression program most people use these days.

If you're familiar with the Microsoft Windows world, you may have come
across zip files, which end in .zip. These files are the Windows equivalent

of ta r files, except that zip combines the glomming and squishing phases

into one command, an example of efficiency that true UNIX die-hards would
never stand for.

Suppose that you've found a really cool editor that you've decided you can't

live without, and you've download the tar file. It probably looks something
horrendous, like real ly_cool_ed_unix_v .3.4pl6.tar.gz.To unpack
your newly acquired tar file, first you have to unsquish it. If the file ends in

. ta r . Z, type this command:

uncompress real 1 y_cool _ed_uni x_v . 3 . 4pl 5 . ta r .

Z

Otherwise, type this command:

gunzip really_cool_ed_unix_v.3.4pl5.tar.gz

Either way, you end up with a file named r e a 1 1 y_c o o 1 _e d_u n i x_
v.3.4p!6.tar. Notice that the . Z or . gz is gone? This file is much bigger

now that it's unsquished.

/ "JO Part lll: Gettin 9 Things Done

Now you have to untar the file (that's really the way the UNIX gurus phrase

it). This step blows up your tar file into potentially hundreds of little files

and puts them into whatever your current directory is. Make sure that your

working directory is the directory where you really want all those files to be
rather than someplace where you'll have to move them later. (Moving one
tar file where you want it is considerably easier than waiting until after

you've blown it up into multitudes of files.) Okay, ready? Type this command:

tar xvf real1y_cool_ed_unix_v.3.4pl5.tar

The x in xvf stands for extract, the v means verbose so that you can see all

the files being created, and fis for file and is followed by the name of the tar

file.

Don't get too excited yet, because you still have more to do. Included in the

bunch of files you've just created should be a file usually named README or

INSTALL. This file has the rest of the installation instructions specific to the

package you've just downloaded.

ReMinq up RPM
For years, the tar file method has been the only game in UNIX-land for

distributing software over the Internet. For UNIX administrators who are

accustomed to installing software packages, this method has worked just

fine. Among everyone else, though, a growing number of disgruntled users

have clamored for an easier way to install and maintain software. Their calls

were answered by Red Hat Linux, which came up with the Red Hat Package

Manager (RPM).

RPM is a software-management system that is a substitute for ta r. Rather

than download a file ending in . tar . gz, you download one that ends in

. rpm. The RPM utility unpacks the file, puts all the resulting little files in

their correct places, and updates a database of installed software on the

computer. If you later want to install an upgrade, RPM remembers that an

older version is already installed and saves any existing configuration files

while upgrading the necessary files. This feature is enough to generate

grumbling from traditionalists about user-friendliness infiltrating UNIX.

An important caveat about RPM is that you can install software this way
only if you are the system administrator, which for most people happens
only if they have a PC running Linux, as described in Chapter 14. So far, its

use has been limited mainly to systems running Red Hat Linux, although the

use of RPM is not necessarily restricted to Linux, and we've heard of people

using it on other UNIX systems too.

Chapter 12: Installing Software Can Be Tricky / / /

Sneaking Software through the Mail
You can disguise programs as mail messages so that you can mail them
around. This method is often the only way to do samizdat (underground, or

guerilla) software distribution when networks and system administrators

are uncooperative. Two methods are commonly used: shar messages and
uuencoded messages. This section gives you the lowdown on both methods.

Sneaky shar

For short programs and shell scripts, the usual way to send stuff is as a shar

message. A shar message is a shell script that, when you run it, re-creates

the files in question. (If you care, shar rhymes with cigar and is lazy-typist-

ese for she\\ archive.) Shar files are also a convenient way to mail groups of

text files as a unit.

Shar messages usually start with lines like this:

#I/b1n/sh

This is a shell archive (produced by shar 3.49)

To extract the files from this archive, save it to a file, remove

everything above the "!/bin/sh" line above, and type "sh file_name".

#

made 01/05/1997 19:41 UTC by johnl@iecc

Source directory /usr/johnl /bin

Recovering the files is a three-step process:

1. Save the message in a separate file, named something like i ncomi ng-

shar. (See Chapter 17 for instructions.)

2. Use any text editor to delete all the lines from the beginning of the

file to the first line that starts with a #.

If you delete a few of the # lines, don't worry: The shell ignores them
anyway.

3. Feed the edited file to the shell by typing this line:

sh incoming-shar

This command runs the script in the file and creates the program files or

whatever else is in the shar file. (Near the front of most shar messages is a

manifest that lists the files contained in the file.) When you see the UNIX
prompt, the command is finished. Delete the i ncomi ng- shar file and move
the files it created to the appropriate place, probably to your bi n directory.

/ 72 Part ,,l: Getting Things Done

Getting sneaky vOith uuencode
Shar files don't work well for binary programs, so a widely adopted scheme
named uuencode disguises them as text. If you receive a file coded in

uuencode, the message looks something like this:

begin 775 pornotopia

M3
,

$$
,

!C?&RN:4@"0\"!P"P$+'0"S"P"# ,

9"#X"0 $"- <

M#4"+G1E> ' 0" '#0" "T" " . PL"#0 -II (YD

Recovering the binary file from the uuencode file is a two-step process:

1. Save the message in a file with a name along the lines of uu -

incoming.fs

Although UNIX doesn't care what the file is named, choose a name that

makes it easy for you to remember that this file is the original

uuencoded file.

2. Feed the file to the uudecode program by typing this line:

uudecode uu-incoming

You don't have to edit the encoded file to delete the first lines in the file

because uudecode ignores them for you. When you see the UNIX prompt, it

is finished. Then get rid of the uu- i ncomi ng file and move to the appropri-

ate place the binary file that is created.

Making your ou/n sneaky e-mail

What if you want to send a program or other binary file by e-mail? You, too,

can create uuencoded files, just like the big guys. Not surprisingly, you use

the uuencode program. Just follow these steps to create uuencoded files:

1. Type this command:

uuencode pornotopia strange-program > temp

In this command, replace pornotopi a with the file you want to

uuencode, strange -program with the name you want the file to have

when it is uudecoded, and temp with any temporary filename Q'unk is

another perennial favorite). This command creates a uuencoded file

named temp that, when it's uudecoded, creates a file named strange-

program with the same contents as your pornotopia file.

2. Include this uuencoded file at the end of an e-mail message.

The text of the message should say that the message contains a

uuencoded file and what the file is for. (See Chapter 17 to find out how
to send e-mail.)

Chapter 13

Juggling a Bunch of Programs
••

In This Chapter

r What processes are

* Where processes come from

?* What a background program is

^ How to shuffle background programs around

p Hints about windows and background programs

1mi you have a plain old terminal with no windowing system, you may be

44 envious of users with fancy window systems who can pop up a bunch of

windows and run umpteen programs at a time.

Don't. Any UNIX system enables you to run as many programs simulta-

neously as you want. Nearly all the systems let you stop and restart pro-

grams and switch around among different programs whenever you want.

If you're used to an old-fashioned, one-program-at-a-time system, such as

DOS (without Windows) or the pre-System 7 Mac, you may not see the point

of doing several things at a time. Suppose, however, that you're doing

something that takes awhile and the computer can manage with little or no
supervision from you, such as copying a large file over a network (which can

take 10 or 15 minutes). You have no reason to sit and wait for that process

to finish — you can do something useful while the copy runs in the back-

ground.

Or, suppose that you're in the middle of a program and you want to do
something else: You're writing a memo in a text editor and need to check
some e-mail you received to make sure that you spelled someone's name
right. One way to do that is to save the file, leave the editor, run the mail

program, leave the mail program, start the editor again, return to the same
place in the file, and pick up where you left off. What a pain. UNIX enables

you to stop the editor, run the mail program, and resume the editor exactly

where you left it. For that matter, you can run both the editor and the mail

program and flip between them as necessary.

/ Tll Part lll: Getting Things Done

Lots of X Windows
If you're running Motif or any other X Window
graphical user interface (GUI), you've

probably already figured out how to run many

programs at a time: Open several xterm
windows and run a program in each one. You

create a new window by moving the mouse

outside of any window, holding down the left

mouse button to get a menu and selecting

New Window or something similar. If you're

running a version of CDE, running many pro-

grams at a time is even easier: Just double-

click the icon for each program you want to

run. That's it. You don't even have to deal with

opening xterm windows. Read this chapter

anyway, however.

In the interest of fairness, we must point out that yob control, the feature that

enables you to flip back and forth, was written by Bill, the same guy who
wrote the C shell, vi , and NFS (Network File System, described in Chapter

16). In contrast to our opinion of some of his other efforts, we think that job

control is pretty cool.

If you have a process that has run amok, see Chapter 24 to find out how to

kill it.

So What Is a Process, AnyWay)
All the work UNIX does for you is done by UNIX processes. When you log in,

the shell is a process. When you run an editor, the editor is a process. Pretty

much any command you run is a process.

Processes called daemons lurk in the background and wait to do useful things

without manual intervention. When you use 1 p or 1 pr to print something,

for example, a daemon does the real work of sending the material to the printer.

Normally, all this process stuff happens automatically, and you don't have to

pay much attention to it. Sometimes a program gets stuck, however, and you
can't make it go away. If you use a personal computer running DOS or a

Macintosh, the usual response to a stuck program is to restart the computer.

When you run UNIX, resetting the computer is a little extreme for a single

stuck program. For one thing, other running programs and other people who
are logged in do not appreciate having their computer kicked out from

underneath them. Also, UNIX make take awhile to restart from a forced

reboot (our system takes about 20 minutes to check all the disks), and you
run the risk of losing files that were being updated.

Chapter 13: Juggling a Bunch of Programs / /y
tf£5**

Why processes are not programs and vice versa

Although programs and processes are similar,

they're not the same. A process is, more or

less, a running program. Suppose that you're

using X Windows, have two windows on-

screen, and are running vi in both of them.

Although the same program is running in both

windows, they're different processes doing

different things (in this case, editing different

files).

To add to the confusion, some programs use

more than one process apiece. The terminal

program c u, for example, uses two processes:

one to copy what you type to the remote

computer and the other to copy stuff from the

remote computer back to your screen. Some-

times, "hidden" processes take place: Many
programs have a way you can execute any

UNIX command from inside the program. (In

vi and ed, for example, you type ! and the

command you want to run.) In addition to the

command, a shell process usually interprets

the command.

In most cases, it is easy enough to tell in a list

of processes which one is which because

each one is identified by the command that

started it.

Any Processes in the House)
The basic program you use to find out which processes are around is ps (for

process status). Although the details of ps (wait! — how did you know?)
vary somewhat from one version of UNIX to another, two main kinds of ps

exist: the System V kind and the BSD kind. (SVR4 uses the System V kind of

ps, even though SVR4 has a great deal of BSD mixed in. Linux uses a ps that

looks more or less like BSD.)

Mind yowr ps (and <[$)

If you run plain ps, no matter which version of UNIX you have, you get a list

of the processes running from your terminal (or window, if you're using X
Windows). The list looks something like this:

PID TTY TIME COMMAND

24812 ttypO 0:01 -csh

25973 ttypO 0:00 ps

The P I D column gives the process identification, or process ID. To help keep

processes straight, UNIX assigns every process a unique number as an iden-

tifier. The numbers start at 1 and go up. When the PIDs become inconveniently

large (about 30,000 or so), UNIX starts over again at 1 and skips numbers
that are still in use. To get rid of a stuck process, you have to know its PID

to tell the system which process to destroy.

/ 70 Part lll: Gettin9 Things Done

The TTY column lists the terminal from which the process was started. In

this case, ttypO is the terminal, which happens to be pseudoterminal

number 0. (Because UNIX systems were written by and for nerds, they tend

to start counting at rather than at 1.) UNIX uses a pseudoterminal when
you're logged in from a window on your screen or from a remote system
through a network rather than through a real, actual, drop-it-on-your-foot-

and-it-hurts terminal. For our purposes, all terminals act the same, whether
they're real, pseudo, or whatever.

The TIME column is the amount of time the computer has spent running this

program. (The time spent waiting for you to type something or waiting for

disks and printers and so forth doesn't count.)

The COMMAND column shows, more or less, the name of the command that

started the process. If the process is the first one for a particular terminal or

pseudoterminal, the command name starts with a hyphen.

The Linuk ps

The Linux ps command has one additional column:

PID TTY STAT TIME COMMAND
1797 pp5 S 0:00 -bash

1855 pp5 R 0:00 ps

The STAT column shows the status of the process. According to the man

page (online documentation) for the command, R means runnable, S means
sleeping, D means uninterruptible sleep, T means stopped or traced, and Z
means a zombie process. Wow! For our purposes, R means that it's a com-
mand you ran, and other stuff doesn't matter much.

Fancier ps (andqs)
The System V version of ps has lots of options, most of which are useless.

One of the more useful is - f , which produces a "full" listing:

UID

Chapter 13: Juggling a Bunch of Programs Iff

like. P P I D is the parent PID, the PID of the process that started this one. We
had run emacs from the shell and then had told emacs to start another shell

to run a ps command.

The parent PIDs reflect the order in which the processes started each other:

The login shell process (number 3812) is the parent of emacs, which in turn

is the parent of the shell /bi n/sh, which is the parent of ps. (We could

explain why the processes aren't listed in order, but — trust us — you don't

want to know.) All processes in a UNIX system are arranged in a genealogical

hierarchy based on which process started which. The grand ancestor of

them all is process number 1, which is named i ni t. You can trace the

ancestry of any process back to i ni t. "Hark! I am yclept Ps, son of Bourne
Shell, daughter of Emacs, son of Dash-shell (or is that Dashiell?), great-great-

grandson of the ancient and holy Init!"

The C column is a totally technoid number relating to how much the process

has been running lately. Ignore it. ST I ME is the start time, the time of day the

process began. If it began more than 24 hours ago, this column shows the

date. TTY is the name of the terminal the process is using. If you run a GUI,

such as X Windows, and you run the xterm program in a window (as we did

in this example), the entry for TTY doesn't show the terminal you are using.

Instead, it lists the "pseudoterminal" assigned to the window (a useless

piece of information). Sometimes the TTY column shows a ?, which means
that the process is a daemon that doesn't use a terminal.

The COMMAND column shows the full command that began this process,

including (in some cases) the full pathname of the program. (Because
standard system programs live in the directories /bin and / u s r / b i n

, you
see them frequently in ps listings.)

If you're logged in on several terminals or in several windows, you may want
to see all your processes, not just the ones for the current terminal. With the

System V version of ps, you can ask to see all processes for a given user by
using this command:

ps -u tracy

This command lists all processes belonging to user tracy. You can ask to

see any user's processes, not just your own. You can get a full listing for that

user too:

ps -fu tracy

System V has other, less useful switches for ps, notably e, which shows
every process in the entire system.

1 78 Part " l: Gettin9 Things Done

Berkeley ps (and Us)
The basic report from the BSD version of ps looks like this example:

PID TT STAT TIME COMMAND

7335 p4 S 0:00 -csh (csh)

7374 p4 R 0:00 ps

The PID, TIME, and COMMAND columns are the same as those you already

know about. (In the COMMAND column, the true name of the program is

listed in parentheses if a dash or something is in the regular name.) The TT

column lists a short form of the terminal name (pseudoterminal 4, in this

case). STAT lists the status of the process: R means that the process is

running right now; anything else means that it isn't. Usually, you don't care

unless you have a stuck process and you wonder whether it's sitting there

waiting for you to type something (then its status is I or I W) or running off

into the woods (then its status is R).

Adding the - u switch gives a user-oriented report, although perhaps they

had a different kind of user than you and we in mind, as you may gather

from this example:

USER

Chapter 13: Juggling a Bunch of Programs / f y

To see all the processes you started, type this incantation:

ps -aux
|
grep tracy

Replace Tracy's name with your own username. This line redirects the

output of the ps command to the grep command (described in Chapter 8),

which throws away all the lines except those that contain your username.

Starting Background Processes
Starting a background command is simplicity itself. You can run any pro-

gram you want in the background: When you type the command, stick a

space and an ampersand (&) at the end of the line just before you press

Enter.

Suppose that you want to use t r of f to print a file (even though we warned
you not to use it). Because this process is bound to take a long time, for

example, typing the ampersand to run it in the background is wise:

troff a_reallyjarge_file &

The shell starts the command and immediately comes back to ask you for

another command. It prints a number, which is the process ID (or PID)

assigned to the command you just started. (Some shells print a small

number, which they call they'06 number, and a larger number, which is the

PID.) If you know the PID, you can check up on your background program
with the ps command. If you get tired of waiting for the background process,

you can get rid of it with the kill command and the PID, as you see in

Chapter 24.

You can start as many programs simultaneously as you want in this way. In

practice, you rarely want more than three or four. Because only one com-
puter is switching back and forth among the various programs, the more
simultaneous things you do, the slower each one runs.

When your background program finishes, the C, Korn, BASH, and SVR4
Bourne shells tell you that it's finished; older versions of the Bourne shell

say nothing.

/§Q Part III: Getting Things Done

The Magic ofJob Control

A\N6|

Quite awhile ago (in about 1979), people (actually, our pal Bill) noticed that,

many times, you run a program, realize that it will take longer than you
thought, and decide that you want to switch it to a background program. At

the time, the only choices you had were to wait or to kill the program and
start it over by using an & to run it in the background. Job control enables

you to change your mind after you start a program.

The job-control business requires some cooperation from your shell. In SVR4,

all three shells handle job control. In some earlier versions of UNIX, only the C
shell, or sometimes the C shell and Korn shell, handled job control.

Suppose that you start a big, slow program by typing this line:

bigslowprogram somefile anotherfile

The program runs in the foreground because you didn't use an ampersand

(&). Then you realize that you have better things to do than wait, so you press

Ctrl+Z. The shell should respond with the message Stopped. (If it doesn't,

you don't have a job-control shell. Sorry. Skip the rest of this chapter.) At this

point, your program is in limbo. You can do three things to it:

v Continue it in the foreground as though nothing had happened, by
typing fg (which stands for foreground).

j> Stick it in the background by typing bg (for background), which makes
the program act as though you started it with an & in the first place.

<> Kill it if you decide that you shouldn't have run it. This method is

slightly more complicated. Details follow.

Take this job and . . .

UNIX calls every background program you start a yob. A job can consist of

several processes (which, as you know, are running programs). To print a

list of all your files in all your directories with titles, for example, you can

type this line:

Is -1R
|

pr -h "My files" | lp &

This command lists the files with 1 s, adds titles with pr, and sends the mess
to the printer with 1 p, all in the background. Although you use three differ-

ent programs and three separate processes, UNIX considers it one job

because each of the three programs needs the other two in order to get

work done.

Chapter 13: Juggling a Bunch of Programs / q /

Every regular command (those you issue without an &) is also a job, al-

though, until you use Ctrl+Z to stop it, that's not an interesting piece of

information. You can use the jobs command to see which jobs are active.

Here's a typical response to the jobs command:

[1] - Stopped (signal) elm

[2] + Stopped vi somefile

This listing shows two jobs, both of which have been stopped with Ctrl+Z.

One is a copy of el m, the mail-reading program; the other job is the v

i

editor. (The difference between Stopped (signal) and plain Stopped is

interesting only to programmers, so we don't discuss it much.) One job is

considered the currentjob— the one preceded by a plus sign (+); it's the

one most recently started or stopped. All the rest are regular background
jobs, and they can be stopped or running.

. . . stick it in the background

You can tell any stopped job to continue in the background by using the bg

command. A plain bg continues the current job (the one marked by a plus

sign) in the background. To tell UNIX to continue some other job, you must
identify the job. You identify a job by typing a percent sign (%) followed by
either the job number reported by j obs or enough of the command to

uniquely identify it. In this case, the el m job can be called %1, %el m, or %e

because no other job used a command starting with an e. As a special case,

%% refers to the current job. Although some other % combinations are

available, no one uses them. Typing bg %e, for example, continues the el m

job in the background.

. . . run it in a itfindou/ in the foreground

To put a process in the foreground, where it runs normally and can use the

terminal, you use the f g command. Continuing a job in the foreground is so
common that you can use a shortcut: You just type the percent sign and the

job identifier. Typing %1 or %e, for example, continues the elm job in the

foreground. Typing %v or %%, however, continues the vi editor in the

foreground.

. . . shotfe it

To get rid of a stopped or background job, use the kill command with the

job identifier or (if it's easier, for some reason) the PID. You can get rid of

the v i editor job by typing this line:

kill Xv

]$2 Part III: Getting Things Done

Typically, you start a job, realize that it will take longer than you want to

wait, press Ctrl+Z to stop it, and then type bg to continue that process in the

background.

Alternatively, you interrupt a program by pressing Ctrl+Z, run a second
program, and, when the second program is finished, type fg or %% to

continue the original program.

You don't often bring in the gangster kill to turn out the lights on a pro-

gram, although it's nice to know that you have friends in the underworld
who can put a nasty program to sleep for good. Chapter 24 talks more
about it.

What happens When two programs
try to use the terminal?

Suppose that a program running in the background tries to read some input

from your terminal. Severe confusion can result (and did, in pre-job-control

versions of UNIX) if both the background program and a foreground pro-

gram — or even worse, two or three background programs — try to read at

the same time. Which one gets the stuff you type? Early versions of UNIX did

the worst possible thing: A gremlin inside the computer flipped a coin to

decide who got each line of input. That was, to put it mildly, not satisfactory.

With the advent of job control, UNIX enforced a new rule: Background jobs

can't read from the terminal. If one tries, it stops, much as though you had
pressed Ctrl+Z. Suppose that you try to run the ed editor in the background
by using this command:

ed some.fi le &

UNIX responds:

[1] + Stopped (tty input) ed

As soon as ed started and wanted to see whether you were typing anything

it should know about, the job stopped. You can continue ed as a foreground

program by typing fg or %% if you want to type something for ed. You can

kill it (which is all that ed deserves) by typing kill %%.

Chapter 14

Taming Linux
•••a

In This Chapter

A few basics for the reluctant system administrator

How a Linux system is structured

Where to get help

•••a*

I /eah, we know that it's pronounced "linn-ux" or "leen-ux," not "line-ux,"

if but it still needs taming, and if you look around the office and find

nobody other than yourself to fix things, you're the Linux tamer.

Congratulations* j/ou're a System
Administrator!

Using Linux is no different from using any other type of UNIX, as long as it's

on someone else's computer and they have set you up with an account.

When your computer is running Linux, however, and you are responsible for

maintaining it, things become much more complicated. Although we have no
way to teach all the complexities of UNIX system administration in a book
like this one, we can describe a few key points to get you started.

LINUX For Dummies, 2nd Edition, by Craig Witherspoon, Coletta Witherspoon,
and Jon Hall (published by IDG Books Worldwide, Inc.) is a great introduction

to Linux and Linux administration. Running Linux, by Welsh and Kaufman
(published by O'Reilly & Associates), has most of the information you need
to really administer a Linux system. Also, the World Wide Web is awash in

sites devoted to Linux. A good place to start is the Linux home page, at

http: //www. 1 i nux.org/. (See Chapter 18 for more information about the

World Wide Web if you're uncertain what it means.) Chapter 27 of this book
lists a number of other places to go Linux hunting on the World Wide Web.

/81) Part ,,l: Gettin9 Things Done

The root of alt UNIX
UNIX is a multiuser world: Lots of people can use the computer at the same
time, by connecting from remote locations. The first thing you need to know
about administering a Linux system is the difference between the user called

root and every other user. Root (also grandly called the superuser) is the

system administrator. This account has all the privileges to change things

on the system. If you want to add users, install some software, or even turn

off the computer, you must be logged in as root. If you're logged in as

someone other than root and you try to do anything related to system
administration, your computer responds with a barrage of "permission

denied" messages. It's nothing personal. It's just the computer's way of

telling you that in a multiuser environment, it doesn't want just anyone
messing around with it — only the one person it trusts, which is root.

"Fine," you say. "I'll just log in as root all the time and not have to worry
about running into those pesky permission problems." Bad idea! Using the

root account to do non-system-administration tasks is dangerous because
sometime — eventually, when you least expect it — you type a command
you really didn't want to — oh, say, deleting all the files on the hard disk (it

happens more frequently than you may think). If you're logged in as some-
one other than root, the computer replies with a simple "permission

denied." If you're root, though, the damage is done, and UNIX does not have

an "undelete" command! Remember that permissions are your friends!

Adding a user

Assuming that you're convinced about not logging in as root unless you
really must, you have to add a user account for yourself (or for others) to

use for everyday tasks. Suppose that you want to create the username
"bobbyjoe" for yourself. To add this user, log in as root (because adding

users is one of those special, privileged tasks that only root can perform)

and type the command adduser bobbyjoe. The computer creates the new
user and then, if you're lucky, reminds you to set the password for the new
user. Whether or not the computer reminds you, you have to add the

password by typing passwd bobbyjoe. Then enter the password when the

computer asks for it. It asks you to enter it twice, just to make sure that you
typed it correctly.

With some versions of Linux, your computer gives you remedial password
advice if it thinks that you need it. If you create a user named noa h and then

try to add the password ark, your computer may say BAD PASSWORD: It's

WAY too short. If you try to fake the computer out by adding the password
arkarkark, it may say BAD PASSWORD: it does not contain enough
DIFFERENT characters. If you're not sure what constitutes a good pass-

word, go back and read the section in Chapter 1 about password smarts. As

a system administrator, you're responsible for the security of the system, so

don't say that you haven't been warned.

Chapter 14: Taming Linux]85

Hout do I turn this thinq off}

UNIX is very sensitive to impolite treatment on the part of the operator. If

you just log out and turn off the machine with the power switch, UNIX
reminds you of this rude treatment with a flood of error messages when you
next restart the computer. To turn the machine off, you first must execute

the shutdown command. While logged in as root, enter the command
shutdown now to turn the machine off gracefully. If other users are logged

in and you want to give them some warning, you can type the number of

minutes until shutdown: shutdown +10, for example, waits ten minutes

before shutting down and warns any users who are logged in. To reboot the

computer, shutdown - r now (-r for reboot) shuts down the machine and
then restarts it. Some Linux systems also let the "three-finger salute"

(Ctrl+Alt+Del, familiar to DOS and Windows users) serve as a shortcut for

shutdown -r now.

Windows users of the world, unite!

Users who bring experience with other flavors

of UNIX to their first encounters with Linux will

probably find it relatively easy to get Linux up

and running. The large (and growing) commu-
nity of Windows users who want to add or

switch to Linux will likely encounter some
fairly rough sledding.

One of the great things about Linux is that it

can run on PCs with Intel chips in them. Dis-

gruntled Windows users can therefore switch

to Linux without having to buy a new com-

puter. Windows users who are still sufficiently

gruntled can check out Linux by installing it,

cheek by jowl, on the same computer with

Windows (as long as it has enough free disk

space, of course).

All well and good, in theory. In practice, how-

ever, you can get yourself into trouble with

startling efficiency. Even if it's going to coexist

on your computer with Windows, Linux needs

its own separate file system, which in turn

needs its own separate area of your

computer's disk. These separate areas are

called partitions, or drives, and you have to

have at least two partitions, one for Windows
and one for Linux, to get Windows and Linux to

live together in peace and harmony.

If you have only one big drive or partition on

your computer, you have to create a second

partition before you can even begin installing

Linux. To do so, you have to run a DOS utility

named fdi sk on your computer. The trouble

with f d i s k is that if you make one false move,

everything that's already on your computer

gets wiped out, no questions asked. If you

already have Windows installed on your

computer, do yourself a favor and back up

your system before even thinking about using

f di s k. Then carefully follow whatever in-

structions you have for setting up a computer

that can run both Windows and Linux (known

as a dual-boot system). LINUX For Dummies,

2nd Edition (mentioned earlier in this chapter),

for example, describes the whole process in

gory detail.

/80 Part " l: Getlin 9 Things Done

A Pride of Linuxes

Complete Linux systems are packaged into "distributions," which describe

not how Linux is distributed but rather how the operating system and the

GNU programs are bundled. A few distributions are in common use:

Slackware, Red Hat, Caldera, and Debian. All are available for free via the

Internet or for a small charge on CD-ROM. As a user, it doesn't matter which
distribution you use because they all behave in much the same way. As a

system administrator, though, you should consider the important differ-

ences the distributions have among them.

Slackware, the oldest of the three, has been around since the beginning of

Linux. It is the most "traditional" distribution (traditional in the UNIX sense,

as in not particularly user-friendly) and has little in the way of utilities to

facilitate the management of a Linux system. For this reason, it tends to be

favored by those who have been around UNIX systems for a while.

Red Hat Linux is the most popular distribution. It features plenty of tools to

make the life of a system administrator easier, most notably the Red Hat

Package Manager (RPM), which eases the installation, upgrade, and dele-

tion of software packages, and even the operating system itself. Recently,

Red Hat began adding all sorts of extras to its CD distribution. For about

$50, you can get the Netscape Communicator Web browser, the latest

version of the WordPerfect word processing package, and a whole stack of

graphical applications known as ApplixWare.

The Debian and Caldera OpenLinux distributions, like Red Hat, also provide

interfaces that ease the task of a system administrator. Although these

distributions are not now as popular as Slackware or Red Hat, their popular-

ity is growing quickly. OpenLinux, probably because of its aggressive

marketing campaign, is beginning to give Red Hat a run for its money.

Linux goes commercial

The freely available, "alternative" image of

Linux discouraged commercial enterprises

from adopting Linux in its early days. Under-

standably, many companies did not want to

deal with an operating system that did not

have a corporate entity standing behind it, no

matter how reliable or trouble-free the prod-

uct. To fill this need, a number of companies

have stepped in to provide commercial sup-

port for Linux. Red Hat Software, Inc., for ex-

ample, provides a commercial version of its

Linux distribution in addition to the free ver-

sion. Organizations that purchase the com-

mercial Red Hat distribution can therefore turn

to Red Hat for support rather than (or in addi-

tion to) Usenet. Caldera, Inc., also provides

support for commercial users. Purchasers of

the Caldera OpenLinux package get user sup-

port from Caldera as well as for some addi-

tional commercial software packages that

Caldera includes.

Chapter 14: Taming Linux I Of

If you enjoy editing lots of configuration files and moving them around "by

hand," the old-fashioned way (believe it or not, some people like to do it

that way), you should go with Slackware. Everyone else will find life easier

with Red Hat, Debian, or Caldera.

Many other Linux distributions are out there, of course, so you may want to

do a little more investigating before deciding on a package:

u* DLX Linux and hal91 Floppy Linux: For PC users without much free

space, these packages offer distributions that fit on a single floppy disk.

u* Linux Pro: On the other end of the spectrum, it comes complete with

seven CDs and a 1,600-page encyclopedia of reference information.

v LinuxPPC: It's specifically designed to run on PowerPCs.

v LinuxWare: LinuxWare targets the Windows audience by enabling users

to start the installation from within Windows 95.

v S.u.S.E. Linux: Comes with all kinds of preconfigured software pack-

ages, X servers, and graphical utilities for novice users.

"I Need Helpi"
What happens when you have a problem with Linux? (It has been known to

happen.) If you've shelled out for a commercially distributed CD version,

you get possibly a few months of free support if the company has the where-

withal to offer it. Otherwise, no technical-support hotline exists to call when
things go wrong.

A huge base of Linux users around the world does exist, though, most of

whom have access to the Internet. Usenet is the best place to find help with

Linux, as described in Chapter 19. For someone accustomed to calling a

commercial entity on the phone for tech support, the idea of posting

questions on Usenet may seem foreign, even hopelessly naive. Questions are

generally read by so many thousands of people, though, that the odds are

overwhelming that someone familiar with your problem will read the

question and respond, usually within a day or so. (In fact, many people

claim that Usenet-based support is faster and more reliable than some
technical-support hotlines!) The Linux community as a group still maintains

an attitude of "we're all in this together," and the Usenet support system has

mostly worked. The Linux groups, which tend to be some of the most active

computer groups on all of Usenet, are listed at the end of Chapter 27.

/88 Part ,,l: Getti"9 Thin9s Done

Part IV

UNIX and the Net

The 5th Wave
@f#R\P*NAM

BvRichTennao

Now tate your time avd see

if you can identifg ffie pemi
who 4tactel gcu an e-mali.

In this part . .

.

yl^ost computers that run UNIX are connected to

V Pother computers. Many are parts of office-wide

networks, many have telephone connections to UNIX
systems in other places, some are connected to comput-

ers running operating systems other than UNIX, and an

increasing number are connected to the biggest network

of all: the Internet.

This part of the book reveals how to use your UNIX
system to send and receive e-mail, browse the World

Wide Web, read articles in Usenet newsgroups, transfer

files, and log in to other computers over the Internet. We
even tell you a few things about how to set up your own
Internet site so that you can make files and Web pages on

your own computer available to your cohorts in cyberspace.

Chapter 15

Your Computer Is Not Alone

In This Chapter

Discovering who else is using your computer by using the finger command

P Fingering people who use other computers on the Internet

Communicating with other user computers by using the write and talk commands

£ Talking to everyone at the same time

••••••••••••••••••••••••••••••••ft

from the beginning, UNIX was designed as a multiuser system. In the

early years of UNIX computing, it was considered greedy to keep to

yourself an entire PDP-11/45 (a 1972 vintage minicomputer about the speed
of a PC AT but the size of a trash compactor). It was also kind of expensive.

These days, the cost argument is much less compelling — unless your
computer is a Cray supercomputer or the like— although UNIX remains
multiuser partly because it always was and partly because multiuser

systems make it easier to share programs and data.

Even if you have your own workstation but are attached to a network, your
machine is potentially multiuser because other people can log in to your
machine over the net, as we technoids call a network. (On the other hand,
you can log in to their machines too. See Chapter 16 for details.)

Don't confuse net— any network of computers — with the Net, which is

what we technoids call the Internet. In this day and age, all anyone ever
talks about is the Internet. If your computer is attached to the Internet, you
can talk to literally millions of computers.

In this chapter, you see how you can nose around and find out who's on
your system and on other systems to which you're connected. For the most
part, we talk about the net — the computer network to which your machine
is attached. If we mean the Net (also known as the Internet), we say so. After

you find out who's out there, you can look into getting in touch with them.

If you are the only person who ever uses your computer and you don't have
a network or a phone line (your computer is all alone in the world), skip this

chapter— in fact, skip this entire part of the book.

192 Part IV: UNIX and the Net

Finding Out Who's on \lour Computer
You can use two main commands to find out who's using your machine: who
and finger. The simple way to use either one is just to type who.

The typical response is something like this:

root console Dec 29 20:16

johnl vtOl Dec 21 15:19

johnl ttyp2 Jan 6 16:36

johnl ttypl Jan 6 17:20

johnl ttypO Jan 6 16:36

You see the user, terminal, and login time. User johnl is logged in four times

because he has a bunch of X terminal windows, each of which counts as a

login session. Although the exact output from who varies from one version of

UNIX to another, it always contains at least this much. You can also type who

am i , and UNIX prints just the line for the terminal (or terminal window) in

which you typed the command. (A similar UNIX command, whoa mi
,
prints

only the name of the user logged in at the prompt where you typed the

command.)

A considerably more informative program is f i nger because it produces a

more useful report than who does:

Login

Chapter 1 5: Your Computer Is Not Alone / yj

Project: Working on "UNIX for Dummies, 4th Ed."

Plan:

Write many books, become famous.

The Project and Plan lines are merely the contents of files called .project

and .plan in the login directory. (Yes, the filenames start with periods.) It

has become customary to put a clever remark in your .plan file, but please

don't overdo it. If the user is logged in on more than one terminal or termi-

nal window, finger gives a full report for each terminal. The finger johnl

command we gave reported five times, in fact — one for each login — but

we edited it to save paper.

Finding Out Who's on Other Computers
If your machine is on a network, you can use rwho and f i nger to find out

about other machines. You type the system name you want to check up on
after an @ (at sign.) (Chapter 16 has more information about system names.)

We can check a nearby system, as shown in this example:

finger ©gurus. com

The spdcc . com machine turns out to be not very busy:

[gurus.com]

Login Name TTY Idle When Office

uucp Uucp Daemon 02 Wed 20:13

johnl John R. Levine 03 Wed 20:44 Rm 418

dyer Steve Dyer pO 1 Wed 08:13

You can also ask about an individual by putting that user's name in front of

the@:

finger johnl@gurus.com

This command gives the same sort of report as a local finger does:

[gurus.com]

Login name: johnl In real life: John R. Levine

Directory: /var/users/johnl Shell: /bin/csh

On since Jan 6 9:22:45 on tty02 2 minutes Idle Time

Plan:

no plan

If you're on the Internet, you can — in principle— finger any machine on the

Internet. Because no rule says that machines must answer when you call,

however, in many cases you get a "connection refused" response or even no
response.

m Part IV: UNIX and the Net

The UNIX/Windows accords

Sometimes UNIX computers are on networks

with computers running other operating sys-

tems, such as Windows 98, Windows 95, or

Windows NT. So how do you get your UNIX

and Windows computers to communicate with

each other?

When computers want to speak to one an-

other, they can't just chuck data at one an-

other indiscriminately. They have to use what's

known in computerese as protocols. Proto-

cols are sets of rules by which computers ex-

change data and commands. If two computers

know the same protocols, they can talk turkey,

even if one of those computers is running UNIX

and the other is running Windows.

Computers use all kinds of protocols to com-

municate. On a network, clients connect to

servers by using protocols such as TCP/IP

(Transmission Control Protocol/Internet Pro-

tocol) and IPX (Internetwork Packet

exchange). Computers connected by way of

the Internet exchange files by using protocols

such as FTP (File Transfer Protocol) and HTTP

(HyperText Transfer Protocol).

The particular protocol of interest here is the

Server Message Block, or SMB, protocol.

SMB has been around in one incarnation or

another since 1987, when Microsoft and Intel

(the chip maker) first defined it. Because it

helped to invent SMB, Microsoft includes an

SMB client in all its versions of Windows. Any

server that can talk SMB, therefore, can do

business with a Windows computer, so the

Windows computers can use disks and print-

ers on the server just like on a Windows NT

server, for example.

Enter Andrew Tridgell, a UNIX hacker from

Canberra, Australia, with a firm grasp of the

obvious. He wrote a suite of programs collec-

tively named Samba, which turns almost any

version of UNIX you care to mention into an

SMB server. Samba lets UNIX and Windows
computers do snazzy, friendly stuff, such as

access one another's files and share printers.

In typical UNIX style, dozens of programmers

from around the world have contributed to

Samba over the years, and it's distributed for

free under the infamous GNU public software

guidelines.

SMB is a request-response protocol, in which

a client makes requests of the server, and the

server responds. Because nothing is ever as

easy at is seems where computers are con-

cerned, a client has to make several requests

of a server before anything useful happens.

First, the client has to ask the server which

dialectal SMB it wants to speak (yup, dialect,

just like in real life). Then the client has to

get down on bended knee and politely

request access to the server by giving the

server a username and password. If the server

grants the client an audience, the client can

start petitioning the server with a series of

requests— for example, to locate, open, and

print a particular file.

The latest version of Samba is 1.9.1.7 or higher.

You can download it from the main Samba site,

maintained by the Department of Computer

Science at Australian National University, on

the Web athttp:/7samba.anu.edu.au/
s amba, or via various FTP sites such as ftp : / /

ftp. micro.cal tech. edu/pub/samba.
(If you don't know what these curious strings

of seeming gobbledygook mean, read the

"URL!" sidebar in Chapter 18.) Although

Samba is free, Andrew Tridgell does appreci-

ate it if you give him pizza. The Samba FAQs

(Frequently Asked Questions) at http://
www. samb a. bst.tj /samba/docs/ fa q/

sambafaq.html give you detailed instruc-

tions on how to do so even when "the pizza

donor is twenty thousand kilometres away."

No, we're not making this up.

Chapter 15: Your Computer Is Not Alone / yy

Some systems, particularly main network machines at universities, have set

up f i nger to return user-directory information. Suppose that you ask who's

at MIT:

finger ©mit.edu

You get an introduction to the MIT online directory:

[mit.edu]

Student data loaded as of Dec 15, Staff data loaded as of Dec 19. Notify the

Registrar or Personnel as appropriate to change your information.

Our on-line help system describes

How to change data, how the directory works, where to get more info.

For a listing of help topics, enter finger help@mit.edu. Try finger

help_about@mit.edu to read about how the directory works. Please see

help_url@mit.edu for questions about the new URL field.

You can try to finger a particular individual at MIT too:

finger chomsky@mit.edu

Now you can see the public data about that individual:

[mit.edu]

... There was 1 match to your request, name: Chomsky, Noam A

email: CHOMSKY@MIT.EDU
phone: (617) 555-7819

address: ZZZ-219

department: Linguistics & Philos

title: Linguistics, Institute Professor

alias: N-chomsky

You can engage in wholesale nosiness by using rwho. This command attempts

to compile a list of all the people using all the machines on the local network.

Chatting With Other People

on \lour Computer
After you have figured out who is on your computer, you may want to send
them a message. Message sending has two general schools. The first is the

real-time school, in which the message appears on the other user's screen

while you wait, presumably because it's an extremely urgent message. The
write and talk commands enable you to do that. Excessive use of real-time

messages is a good way to make enemies quickly, however, because you
interrupt people's work all over the place. Be sparing in your blather.

The second school is electronic mail, or e-mail, in which you send a message
the other user looks at when it's convenient. E-mail is a large topic in its own
right, so we save that for Chapter 17.

196 Part IV: UNIX and the Net

Real-time terminal communication has been likened to talking to someone
on the moon because it's so slow: It's limited by the speed at which people

type. Here on Earth, because most of us have telephones, the most sensible

thing to do is to send a one-line message asking the other user to call you on

the phone.

The simpler real-time communications command is wri te. If someone
writes to you, you see something like this on your screen:

Message from johnl on iecc (ttypl) [Wed Jan 6 20:28:42] ...

Time for pizza. Please call me at extension 8649

<E0T>

Usually the message appears in the middle of an editor session and
scrambles the file on your screen. You will be relieved to know that the

scrambling is limited to the screen — the editor has no idea that someone is

writing to you. The file is okay.

In either vi or emacs, you can tell the editor to redraw what's supposed to

be on-screen by pressing Ctrl+L (if you're in input mode in vi
,
press Esc

first).

To write to a user, use the write command and give the name of the user to

whom you want to talk:

write dguertin

After you press Enter, write tells you absolutely nothing, which means that

it is waiting for your message. Type the message, which can be as many
lines long as you want. When you are finished, press Ctrl+D (the general

end-of-input character) or the interrupt character, usually Ctrl+C or Delete.

Because the write command copies every line to the other user's screen as

you press Enter, reading a long message sent by way of the write command
is sort of like reading a poem on old Burma-Shave signs as you drive by

each one.

You want to send an important message, for example, to your friend Dave,

so you type these lines:

write

Chapter 15: Your Computer Is Not Alone / y /

I'm talkinq— vohere are you)
Sometimes write tells you that the user is logged in on several logical

terminals:

dguertin is logged on more than one place.

You are connected to "vtOl".

Other locations are:

ttypl

ttypO

ttyp2

The write command is pretty dumb. If the person you are writing to is

logged in on more than one terminal — or, more typically, is using many
windows in X— write picks one of them at random and writes there. You
can be virtually certain that the window or terminal write chooses is not

the one the user is viewing at the time. To maximize the chances of the

user's seeing your message, use the finger command to figure out which
terminal is most active (the one with the lowest idle time) and write to that

window. Remember the results of the finger command, for example, from a

few pages back:

Login

198 Part IV: UNIX and the Net

The other user sees something like this:

Message from Tal k_Daemon@iecc at 20:47 ...

talk: connection requested by johnl@I ECC

talk: respond with: talk johnl@IECC

If someone tries to talk to you and you're interested in responding, type the

talk command it suggests. If you're in the middle of a text editor or other

program, you must exit to the shell first.

Chatting utith famu/ay folks

The talk command is designed to "talk" to users on other computers. If the

other computer is a long way away, typing rather than talking over the

telephone can make sense. As the Internet stretches around the world, you
may find yourself exchanging messages with someone for whom English is

not a native language. In that case, typing can be faster than trying to

understand someone with a strong accent across a noisy phone connection.

Computers have names, too, which are usually called machine names (read

more about this subject in Chapter 16). To talk to someone on another

computer, give tal k the username and machine name:

talk zac@greattapes.com

After you're connected, talk works just like talking to a local user, except

that sometimes it can take several seconds for characters to get from one
machine to another on an intercontinental link.

If you want to talk to a number of other people, maybe thousands and
thousands of them, you can use a system called Internet Relay Chat (IRC).

We don't have room to describe it in this book, but you can read about it at

our Web site (if you don't know how to find it, see Chapter 18):

http://net. gurus . com/i re

Chapter 16

Across a Crowded Network
•••A

In This Chapter

How to log in to other computers

! Computers to check out on the network

. How to tell whether your files are on a different computer

••••••••••••••••••••••••••••»•••••

1mi your computer is on a network, sooner or later you have to use

m, computers other than your own. Although you can do lots and lots of

things over a network, the two most widespread activities are remote login

and file transfer. If your computer is on a LAN (Local Area Network), you
can probably use files directly that are located on other computers.

On a Computer Far, Far AiVau
Many UNIX systems are attached to the Big Mazooma of networks, the

Internet, which hooks together several million computers around the world.

Because most of the UNIX network software was originally written at Berke-

ley specifically for use on the Internet, all the commands discussed in this

chapter work just fine on the Internet. The only difference you may notice is

that although you can refer to computers on your own network with simple
names, such as pumpki n, in order to talk to computers on the Internet, you
have to give their true names, which can be long and tedious, such as

i ecc . Cambridge. ma . us (a name our computer used to have.)

Remote login is no more than logging in to some other computer from your
own. While you're logged in to the other computer, whatever you type is

passed to the other computer; whatever responses the other computer
makes are passed back to you. In the great UNIX tradition of never leaving

well enough alone, two slightly different remote-login programs exist:

tel net and rl ogi n. A variant of rl ogi n called rsh enables you to give

commands one at a time on other computers.

A file transfer copies files from one system to another. You can copy files

from other systems to your system and from your system to others. Two
different file-transfer programs exist (how did you know that?): ftp and rep.

We talk about ftp in Chapter 18.

200 Part IV: UNIX and the Net

Telnet It Like It Is

Telnetting (in English, you can "verb" any word you want) involves no more
than typing telnet and the name of the computer you want to log in to:

telnet pumpkin

UNIX tells you that it is making the connection and then gives the usual login

prompt:

Trying. .

.

Connected to pumpkin.bigcorp.com.

Escape character is
' A]

'

.

SunOS UNIX (pumpkin.bigcorp.com)
login:

At the login prompt, you type your username and then your password. After

the other computer connects, you log in exactly as though you were sitting

at the other computer. In the following example, we typed John 1 as our
username and then gave our secret password:

login: johnl

Password:

Last login: Thu Jan 7 23:03:58 from squash

SunOS Release 4.1.2 (PUMPKIN) #3: Fri Oct 16 00:20:44 EDT

1992 Please confirm (or change) your terminal type.

TERM = (ansi)

If the other computer asks you what type of terminal you're using, give the

answer appropriate to the terminal you're using. (If you're using an X
terminal window, it's xte rm. Try VT-100, ANSI, or TTY if you're using a dumb
terminal or PC.)

The normal way to leave telnet is to log out from the other computer:

logout

What telnet is really useful for

We mostly use telnet to check our mail while

we're out of town. If you have access to a

computer at a friend's home or office or you

wander by a cybercafe, you can telnet backto

your home computer to check your mail and

otherwise put your digital life in order. It's the

next best thing to being there.

Chapter 16: Across a Crowded Network 2 1

UNIX gives you the following message to tell you that the other computer
has hung up the phone, so to speak:

Bye Bye

Connection closed by foreign host.

Sometimes the other computer is recalcitrant and doesn't want to let you
go. Remember that you're in control. To force your way out, you first must
get the attention of the telnet program by pressing Ctrl+] (that's a right

square bracket). A few versions of tel net use a different escape character

to get tel net's attention. (It tells you which character when you first

connect to the other system.) After you get tel net's attention, type quit to

tell tel net to wrap things up and return to the shell:

Ctrl-]

telnet) quit

Terminal type tedium

If you use a full-screen program, such as the

UNIX text editors emacs and vi or the mail

programs elm and Pine, you have to set your

terminal type. This problem shouldn't exist in

the first place, but it does, so you have to deal

with it.

The problem is that about a dozen different

conventions exist for screen controls such as

clear screen and move to position (x,y). The

program you're using on the remote host has

to use the same convention yourterminal does

(if you're using a terminal) or that your local

terminal program does (if you're on a PC or a

workstation).

If the conventions are not the same, you get

garbage (funky-looking characters) on-screen

when you try to use a full-screen program. In

most cases, the remote system asks you which

terminal type to use. The trick is knowing the

right answer. Here are a few hints to help you

find out:

*> If you're using the X Window system, with

or without Motif, the answer is more likely

to be 1/7-700, a popular terminal from the

1970s that became a de facto standard.

You may also try xterm, the name of the

standard X program that does terminal

emulation.

v If you're using a PC and an emulation pro-

gram, the best answer is usually ANSI be-

cause most PC terminal programs use

ANSI terminal conventions. (ANSI stands

for the American National Standards In-

stitute. One of its several thousand stan-

dards defines a set of terminal-control

conventions that MS-DOS PCs — which

otherwise wouldn't know an ANSI stan-

dard if they tripped over one— invariably

use.)

U* In places where a great deal of IBM equip-

ment is used, the terminal type may be

3101, an early IBM terminal that was also

popular.

The ANSI and VT-100 conventions are not

much different from each other, so if you use

one and your screen is only somewhat
screwed up, try the other.

202 Part IV: UNIX and the Net

3270: The Attack of the IBM Terminals

All the terminals discussed earlier in this chapter that are handled by
telnet are basically souped-up Teletypes, with data passed character by
character between the terminal and the host. This kind of terminal interac-

tion can be called Teletype-ish.

IBM developed an entirely different model for its 3270-series display termi-

nals. The principle is that the computer's in charge. The model works more
like filling in paper forms. The computer draws what it wants on-screen,

marks which parts of the screen users can type on, and then unlocks the

keyboard so that users can fill in whichever blanks they want. Whenever a

user presses Enter, the terminal locks the keyboard, transmits the changed
parts of the screen to the computer, and awaits additional instructions from

headquarters.

To be fair, this method is a perfectly reasonable way to build terminals

intended for dedicated data-entry and data-retrieval applications. The
terminal on the desks at your bank or the electric company are probably

3270s — or more likely these days, cheap PCs emulating 3270s. Because the

3270 terminal protocol squeezes a great deal more on a phone line than

Teletype-ish, it's quite common to have all the 3270s in an office sharing the

same single phone line, with reasonable performance.

The Internet is a big place, and plenty of IBM mainframes run applications

on the Internet. Some of them are quite useful. Most large library catalogs,

for example, speak 3270-ish. Usually, if you telnet to a system that wants a

3270, it converts from the Teletype-ish that tel net speaks to 3270-ish so

that you can use it anyway. Some 3270 systems speak only 3270-ish, how-

ever, and if you telnet to them, they connect and disconnect without saying

anything in between.

A variant of tel net that speaks 3270-ish is called tn3270. If a system keeps

disconnecting, try typing the command tn3270 instead. (Large amounts of

UPPERCASE LETTERS and references to the IBM operating systems VM or

MVS are also tipoffs that you're talking to a 3270.) Even if a 3270 system

allows regular tel net, you get a snappier response if you use tn3270

instead.

rl ogi n: The Lazy Man's Remote Loam
The tel net command is general. You can use it to log in to all sorts of

machines — whether or not they're running UNIX. If you want to log in to

another UNIX system, the rl ogi n command is usually more convenient

Chapter 16: Across a Crowded Network 203

because it automates more of the process. You use rl ogi n in much the

same way you use tel net:

r login pumpkin

UNIX responds:

Last login: Fri Jan 8 14:30:28 from squash
SunOS Release 4.1.2 (PUMPKIN) #3: Fri Oct 16 00:20:44 EDT

Please confirm (or change) your terminal type.

TERM = (ansi)

Hey! It didn't ask for the username or password. What happened? You
frequently have a setup in which a bunch of machines use the same set of

usernames. A database called NIS helps keep all the names consistent

across all the machines.) In that case, after you log in to one machine, all the

others can safely assume that, if you log in to one of them, you will use the

same username to log in to others.

The rl ogi n command also passes along the type of terminal you're using so
that even if the other system asks you to enter your terminal type, it always
guesses correctly if you don't tell it explicitly.

If the remote system doesn't recognize your username, it asks you to type a
username and password, just like telnet does.

Escaping from r 1 o g i n

One place where rl ogi n is quite different from tel net is in how you escape
from a recalcitrant remote system: You type ~. (a tilde followed by a period)

on a line by itself. What you have to press is Enter (or Return), tilde, period,

Enter.

S£5&
Username matching for rl ogi n

This section is pretty nerdy. If you work in an office with a bunch of worksta-
tions, you can assume that they all generally share usernames and skip this

section.

Two files control rl ogi n's assumption that you want to use the same
username when you're logging in to other machines. The first is called

/etc/hosts. equiv. On every machine, this file lists all the other machines
it can "trust" to have matching usernames. If you look at the file and find

lines with + and @ signs, they mean that NIS is providing its own list of

trustworthy machines (generally, all the machines in the department or in

the entire company).

204 Part IV: UNIX and the Net

Individual users may have accounts on machines outside the local group or

department. If you are in this situation, you can have your own file called

. r hosts, which is sort of a private trusted-machine list. . r hosts has a list

of machine names, one per line. If you use rl ogi n from any of those ma-
chines, rl ogi n forgoes asking for your name and password. If you have
different usernames on different machines, edit the file and put the appro-

priate username after the machine name, as shown in this example:

pumpkin

squash

gerbi 1 steph

Translation: You have accounts on pumpki n and squash with the same
username as on the machine you're using now. You also have an account on
gerbi 1 , but your username there is steph.

When you have a different username on the system you're logging in to, you
have to use - 1 to tell rl ogi n the name to use. Suppose that you want to log

in to p r u n e where your login name is s d 1

:

rlogin prune -1 sdl

Notice that the system name comes first. If you have a . r hosts file on
prune that lists both the machine from which you are logging in and your

username on that machine, it doesn't ask you for a password.

Dialing out

Another command that acts sort of like

telnet is cu (for call l/NIX). It activates a

simple "terminal emulator" program that calls

out over the phone. Despite its name, cu can

call any system that has a modem compatible

with the one on your computer. The program is

useful for calling online services like MCI Mail

and CompuServe.

Your system administrator has to set up the list

of system names and phone numbers that cu

uses. After they are set up, you call out by

simply typing this line:

cu systemname

You escape from cu and hang up the phone in

the same way you escape from rl ogi n: by

typing ~. (a tilde followed by a period on a line

by themselves).

Chapter 16: Across a Crowded Network 205

rsh; One Command at a Time
Sometimes rl ogi n is overkill for what you want to do— you just want to

run one command at a time. In this type of situation, the rsh command (for

remote s/?ell) does the trick:

rsh pumpkin lpq

You give rsh the name of the system you want to use and the command you
want to run on that system. This example runs the command 1 pq on system
pumpki n (remember that 1 pq asks what's waiting for the printer on pumpki n).

The rsh command uses the same username strategy r 1 og i n does, so if you
can use rl ogi n to access a system and not give a username or a password,

you can use rsh also. Because rsh doesn't handle the terminal very cleverly,

however, you can't use full-screen commands like vi and emacs. You can use
ed, however. Wow.

An old program, also called rsh, sometimes conflicts with the rsh we talk

about here. The old rsh is the restricted she\\: a version of the Bourne shell

that is of no use to you. If you type rsh pumpkin and UNIX responds by
displaying pumpki n : pumpkin: cannot open or displays a $ and sits

there, you have the old rsh. If UNIX displayed the $, type exit to make it go
away. If you have the old rsh, what we call rsh is probably called remsh or

r s h e 1 1 , so try those names instead.

rep; Slatting Files across the NeWork
Although tel net and rl ogi n may be the next best thing to being there,

sometimes there's no place like your home machine. If you want to use files

that are on another machine, rep is often the easiest thing to do. (You can
also use ftp to blat files across the network, but because that's a larger

topic, we give it all of Chapter 18.)

The idea behind rep is that it works just like cp (the standard copy com-
mand) — except that it also works on remote files that you own or that

you at least have access to. To refer to a file on another machine, type the

machine name and a colon before the filename. To copy a file named mydata
from the machine named pumpki n and call it pumpki ndata, you type

rep pumpkin -.mydata pumpkindata

To copy it the other way (from a file called pumpki ndata on your machine
to a file called mydata on a machine called pumpki n), you type this line:

rep pumpkindata pumpkin -.mydata

206 Part IV: UNIX and the Net

The rep program uses the same username rules as do rl ogi n and rsh. If

your username on the other system is different from that on your own
system, type the username and an @ sign before the machine name:

rep steph@pumpkin:mydata pumpkindata

If you want to copy files in another user's directory (tracy, for example) on
the other system, place the user's name after a ~ (a tilde) before the

filename. Suppose that you need one of Tracy's files:

rep pumpkin :~tracy/somef'11 e tracyfile

To copy an entire directory at a time, you can use the r (for recursive) flag

to tell rep to copy the entire contents of a directory:

rep -r pumpkin :projectdir .

This command says to copy the directory projectdi r on machine pumpki n

into the current directory (the period is the nickname for the current

directory) on the local machine.

You can combine all this notation in an illegible festival of punctuation:

rep -r steph@pumpkin:~tracy/projectdir tracy-project

Translation: "Go to machine pumpki n, where my username is steph, and get

from user tracy a directory called projectdi r and copy it to a directory

on this machine called tracy-project." Whew!

In the finest UNIX tradition, rep is extremely taciturn: It says nothing unless

something goes wrong. If you are copying a large number of files over a net-

work, it can take awhile (a couple of minutes), so you may have to be more
patient than usual while waiting for it to do its work, rep is done when you
see the UNIX prompt.

If you copied stuff to another machine and want to see whether it worked,

use rsh to give an 1 s command afterward to see which files are on the other

machine:

rep -r projectdi r pumpki nisquashproject

rsh pumpkin Is -1 squashproject

Although rep is reliable (if it didn't complain, the copy almost certainly

worked), it never hurts to be sure.

Chapter 16: Across a Crowded Network 207

NFS: \lou'tt Nei/er Find j/our Stuff
If your computer is on a LAN, the computer is probably set up to share files

with other computers. Quite a few different schemes enable computers to

use files on other machines. These schemes are named mostly with TLAs
(Three Letter Acronyms) such as AFS, RFS, and NFS. This chapter talks

mostly about NFS (you'll never /ind your stuff) because that's the most
commonly used scheme, even though it works, in many ways, the worst. If

you didn't like the C shell or the vi editor, you won't like NFS either; it also

was written by Bill, the big guy with the strong opinions.

What's NFS)
The NFS (Network File System) program enables you to treat files on
another computer in more or less the same way you treat files on your own
computer.

You may want to use NFS for several reasons:

u* Often you have a bunch of similar computers scattered around, all

running more or less the same programs. Rather than load every

program on every computer, the system administrator loads one copy
of everything on one computer (the server) so that all the other

computers (the clients) can share the programs.

v Centralizing the files on a server makes backup and administration

easier. It's much easier to administer one disk of 4,000 megabytes than

to administer 10 disks of 400 megabytes apiece. It's also easier to back
up everything because everything is all in one place rather than spread

around on a dozen machines.

v Another use of NFS is to make a bunch of workstations function as a
shared time-sharing system. It is reasonably straightforward to set up a

bunch of workstations so that you can sit down at any one of them, log

in, and use the same set of files regardless of where on the network
they physically reside. This capability is a great convenience. Also, by
using programs such as tel net (discussed earlier in this chapter), you
can log in to another machine on the network and work from that

machine (which is handy if the other machine is faster than yours or

has some special feature you want to use).

v* In heterogeneous networks, NFS is a fancy term for networks with

different kinds of computers. NFS is available for all sorts of comput-
ers, from PCs to mainframes. A version of NFS is commonly run on PCs
to enable PC users to use files physically located on UNIX or other

systems.

208 Part IV: UNIX and the Net

Where are those files, anyufay?

NFS works by mounting remote directories. Mounting means pretending that a

directory on another disk or even on another computer is actually part of the

directory system on your disk. Files that are stored in lots of different places

can then appear to be nicely organized into one tree-structure directory.

Whenever UNIX sees the name of a directory— /stars/elvis,for exam-
ple— it checks to see whether any names in the directory are mount points,

which are directories in which one disk is logically attached to another.

Your system may have the directory /stars mounted from some other

machine, for example, and then the directory el vi s and all the files in it

reside on the other machine.

The easiest way to tell which files are where is with the df (Disk Free space)

command. It prints the amount of free space on every disk and tells you
where the disks are. Here's a typical piece of df output:

Filesystem

Chapter 17

Automating Your Office Gossip

In This Chapter

What is e-mail?

What are e-mail addresses?

Where is your mailbox?

How to use the Pine program

>- How to use the elm program

) How to use the mail program

How to use Netscape to read your mail

) How to organize your mail into neat piles

•••••••••••••••

Electronic mail (or e-mail) is the high-tech way to automate interoffice

chatter, gossip, and innuendo. Using e-mail, you can quickly and effi-

ciently circulate memos and other written information to your coworkers,

including directions to the beer bash this Saturday and the latest bad jokes.

You can even send and receive e-mail from people outside your organization,

if you and they use networked computers.

If your organization uses e-mail, you probably already have some. In fact,

vitally important but unread mail may be waiting in your mailbox at this very
moment. Probably not, but who knows? You can tell whether unread messages
are in your mailbox because UNIX displays this message when you log in:

You have mail

.

What j/ou Need in Order to Use E-Mail
Any UNIX system handles e-mail for users on that system. To exchange e-

mail with the outside world, your computer must be on a network— or at

least have a phone line and a modem. You definitely don't want to know how
to set up a mail network or make connections to other computers — if your
computer doesn't already have e-mail on it, it's time to talk to a UNIX wizard.

210 Part IV: UNIX and the Net

In the great tradition of UNIX standardization, it has about 14 different mail-

sending-and-receiving programs. (Fortunately, they all can exchange mail

with each other.) To find out whether your computer can do e-mail, try using

the simple ma i 1 program to see whether you have any mail waiting. Just

type this line:

mail

UNIX says No mail if no mail is waiting or blats a copy of the first unread

message to your screen. In the latter case, if you don't want to read your

mail right now, press x (for exit) and press Enter to get out. We talk more
about reading your mail later in this chapter.

To receive mail, you need a mailbox. (Not one of those tasteful roadside

mailboxes, in this case. It's an invisible mailbox made up entirely of elec-

tronic data.) Your system administrator can make (or already has made) one

for you if your organization uses e-mail. The mailbox comes in the form of a

file named something like /var/mai 1 / yourusername. It contains your

unread mail and any mail you choose to leave lying around. You may also

have a directory named mail or Ma i 1 (some systems capitalize it, some
don't — sigh) in your home directory that you can use to sort your mail into

piles and keep it for historical reference.

To read the mail in your mailbox and send mail, you use a program such as

mail or el m or Pine. If you use Motif or CDE, you can use a fancy X Windows
mail program, such as exmh.

Addressing the Mail
E-mail, like regular mail (usually referred to by e-mail advocates as snail mail)

needs an address, usually called a net address or e-mail address. To send mail

to a person, you send it to his or her username (refer to Chapter 1 for infor-

mation about logging in with a username). If the other user uses a different

computer than the one you use, the mail system has to know which com-

puter the other person is on — and the address becomes more complicated.

Sending mail to people on your computer

For people who use the same computer you do (you both use terminals

connected to the same computer running UNIX), the mail address is just

their username. If you enter georgew for your username, that's your mail

address too. Make sure that you don't use uppercase letters in the mail

address unless the username also does.

Chapter 17: Automating Your Office Gossip 211

Sending mail to people on other computers

You can send mail to people who use other computers if your computer is

connected to their computer on a network. For people who use other comput-
ers, you send mail by telling the mail system which computer they use.

Computers have names too, you know. They sometimes have boring names
that indicate what they are used for, such asmarketingorcorpacctg.
Sometimes all the computers in an organization are named according to a

more interesting scheme, such as naming them all after fish, spices, or

cartoon characters. It's traditional in UNIX networks to give the computers
tasteful yet memorable names. One company we worked for had computers
named haddock, cod, and f 1 ounder. Another company used basil, chervi 1

,

dill, fennel, and gi nger. At Internet for Dummies Central, they're named
chi co, astrud, xuxa, torn, and i van, after some of our favorite Brazilian

singers.

When you're writing to someone on another computer on your network,

include the computer name in the mail address by using an at sign (@) to

indicate where they are "at." If your friend Nancy, for example, has the

username nancyb and uses a computer named gi nger, her mail address is

nancyb@gi nger.

A skillful system administrator can automatically note which computer
each user in an organization uses. With luck, you can merely send mail by
username, and the system automagically figures out which computer to

send it to.

If you have trouble with addresses, the easiest way to send a message to

someone is to wait until that someone sends a message to you and then

reply to it. All mail programs have a command (usually r) that replies to the

message you just read. Messages almost always have return addresses, and
the r command enables you to send a message without typing an address.

Sending mail to people "out there
n

If your computer network has phone connections to the outside world, you
can probably also send mail to people out in the wide world of The Internet:

the invisible network of UNIX and other computers that extends worldwide.

Check with your system administrator or other e-mail users to find out

whether your organization is "on the Net" (connected to the outside world).

To correspond with people on the outside, you need an Internet address for

the person you want to send mail to. After you have the address, type it

exactly the way she wrote it. Internet addresses tend to look like this:

el lenz@persimmon.greattapes .com

212 Part IV: UNIX and the Net

The part in front of the @ is the person's username. The rest of the address

is the name of the computer and other information about where the com-
puter is, usually the name of the company. The computer name, company
name, and so on are connected by periods. The last three letters frequently

tell you what kind of organization it is: com is for companies, for example,

and edu is for educational institutions. Sometimes the parts of the address

spell out the city, state, and country where the computer is located. It's all

very well organized, really.

If your computer is on the Internet, you can also exchange mail with users

of commercial services, such as CompuServe and America Online (AOL).

For details, see the following sidebar, "Sending mail to people who use

online services."

When you're typing Internet addresses, keep these points in mind:

V Be sure that you don't type any spaces in the middle of the address.

Don't use spaces in usernames or computer names or on either side of

the @ or a period.

t> Don't capitalize anything unnecessarily. Check the capitalization of the

person's username and computer name. Most addresses are composed
entirely of small letters.

v Don't forget the periods that separate the parts of an Internet address.

If your computer is on the Internet and you want to try out network mail,

send a message to the authors of this book, at uni x4@gums . com, and tell

us what you think of the book. Our computer sends you an automatic reply,

and we read your message, too. (If you can get that address right, you're

already halfway to being a mail wizard.)

It's dead, Jim
If you get an address wrong, you usually get the message back within a few

minutes (for mail on your own computer or your own network) or a few

days (for mail that has bounced around the Internet). The dead letter usually

has all kinds of cryptic automated error messages in it, but the gist is clear:

The message wasn't delivered. Check the address and try again. Generally,

the safest way to address a message is to reply to someone else's message.

Chapter 17: Automating Your Office Gossip 213

Sending mail to people who use online services

You can send mail to people who don't use

UNIX computers. By using the Internet, you

can usually send mail to anyone who uses

CompuServe, AOL, and other services.

To send mail to a CompuServe user, do the

following:

V Find out his or her CompuServe user ID. It

is a nine- or ten-digit number with a

comma somewhere in the middle, such as

71234,5678. Most CompuServe user IDs

begin with a 7, for reasons we don't claim

to understand — probably because of its

mystical significance.

u* For purposes of sending mail from UNIX,

replace the comma in the CompuServe

user ID with a period, as in 71234.5678.

Because Internet addresses aren't al-

lowed to contain commas, you have to

make this change.

v Tack ©CompuServe, com to the end of

the number and, voila! — you have the

person's Internet address, as in this example:

71234 . 5678@compuserve . com

Some CompuServe users have signed up for

usernames so that you can write to them at

JoeBl ow@compuserve . com.

To send mail to an America Online (AOL) user,

you do more or less the same thing as for a

CompuServe user:

v* Find out the AOL screen name, such as

Steve Case.

u* Take out any spaces and tack@aol .com

to the end of the number. Voila! — you

have the person's Internet address, as

shown here:

stevecase@aol . com

For users of Prodigy Classic, use the Prodigy

username followed by @prodi gy . com:

XYZ666Q@prodi gy . com

For users of Prodigy Internet, use the Prodigy

username followed by@prodi gy . net:

f urdl e@prodi gy .net

Sending Stuff Other Than Text

These days, e-mail is getting to be such a widespread practice that you may
want to send things other than plain old short text messages. For example,

we e-mailed most of the chapters in this book as Microsoft Word documents
to our long-suffering editor. Most mail programs now have commands for

attaching files to e-mail messages, or at least including text files in messages.

If you want to send a text file by e-mail, just include the text file as part of

your message. Note, however, that UNIX e-mail was designed for sending

text, not for sending programs, graphics, or formatted word processing files.

2U Part IV: UNIX and the Net

Luckily, several ways of cheating have been developed so that the e-mail

system doesn't realize that e-mail messages actually contain stuff other than

text. The two most widely used methods are

u* Uuencoding: This method involves using a uuencoding program to

convert the file to text and a uudecoding program to convert the text

back to the original file. We described uuencoding in Chapter 12, in the

section about getting sneaky with uuencode.

v MIME (Multipurpose Internet Mail Extensions): This method is much
easier to use than uuencoding because many newer mail programs
handle it automatically.

When we describe mail programs, we tell you whether they work with

MIME. All UNIX mail programs work with uuencoding because you have to

do the work.

Before sending a file by using a uuencoded or MIME attachment, you may
want to send a plain old nonattached e-mail message to the intended

recipient, asking whether he can handle uuencoding or MIME.

Exchanging Gossip by Using Pine
Pine was originally a cut-down version of el m (which we describe next, for

pineless users) intended for novice users, which makes it even easier to use

than elm. Now it's become much more powerful than elm ever was. It has

lots of nice menus to remind you of what to do next, and it even uses pi co, a

simple editor, for composing mail.

To run Pine, just type pine. You see a display like the one shown in Figure 17-1.

If you're using UNIX by way of a communications program, watch out for

which terminal you're emulating. Pine works fine if your program emulates a

VT100 terminal, but not so well if it emulates an ANSI terminal. You can

usually change which terminal your program emulates.

The figure shows Pine's main menu, with a list of its favorite commands. Like

el m, Pine uses one-letter commands. Note that one of the commands is

highlighted — you can also choose commands by pressing the up- and

down-arrow keys to move the highlight and then pressing Enter.

Chapter 17: Automating Your Office Gossip 2 1

5

Figure 17-1:

Pine's

menu,

listing

the most

popular

commands.

HELP

COMPOSE MESSAGE

FOLOER INDEX

ft ADDRESS BOOK

S SETUP

Q QUIT

Gel help using Pine

Compose and send a message

Uieu messages in current folder

Update address book

Configure or update Pine

Exit the Pine program

Copyright 1989-1993. PIflE is a trademark of the University of Washington.

Help a PrevCmd g RelMotes
OTHER CMOS | [ListFldrs] I MexlCmd | KBLook

This list shows the commands you're most likely to use:

W Press c to compose (write a new message).

u* Press i to see a list of your messages.

W Press q to exit from Pine.

v* Press ? for lots of helpful online help.

Into the postbox

To use Pine to send mail, press c. Pine runs pi co, a nice, simple editor we
describe in more detail in Chapter 10. Rather than start with a blank file, you
see the headers, ready for you to fill in: To, Cc, Attchmnt (for attaching files

to a message— skip that one for now), and Subject. Use pi co to type the

header information and the text of your message. Then press Ctrl+X to leave

pi co. Pine sends the message and displays the main menu again.

If you decide not to send the message after all, you can press Ctrl+C to

cancel it.

This list shows you some cool things you can do while you're writing your
message:

v For lots of helpful information about how to use Pine, you can press

Ctrl+G. Pine has complete online help.

<> You can even check the spelling of your message — just press Ctrl+T

Pine checks all the words in your message against its dictionary and
highlights each word it can't find.

210 Part IV: UNIX and the Net

I'm pittinq for some mail

To read your mail, press i to see the index of messages, as shown in Figure

17-2. The messages are numbered, with codes (N for new messages you
haven't read, D for messages you have deleted, and A for messages you have
answered) in the left margin. One of the messages is highlighted.

Figure 17-2:

Mist

of your

messages,

in Pine.

H 2

II 3

Apr 6 To; John R Levine

Apr 6 Margy Lewine Young
(474) Trying out some software!
(710) It's budget tine again...

Help
OTHER CMOS

11a in Menu
[Uieutlsg]

Prevtlsg

Nexttlsg

PrevPage
NextPage

Delete
Undelete

Reply
Forward

To read a message, move the highlight to it, by pressing the up- and down-
arrow keys or by pressing p (for previous) and n (for next). Then press v to

view the message.

When you are looking at a message, here are some things you can do:

*> Forward the message to someone else, by pressing f. Pine lets you start

composing a message, with the text of the original message included in

the text of this message.

u* Reply to the person who sent the message, by pressing r. Pine automati-

cally addresses the message to the person who sent the original one.

u* Delete the message by pressing d. The message doesn't disappear right

away, but it is marked with a D on the list of messages. When you exit

from Pine, your deleted messages really are deleted. (If you change

your mind, you can undelete a message by pressing u.)

v Move on to the next message by pressing n, or move back to the

preceding one by pressing p.

*> Return to Pine's main menu by pressing m.

Chapter 17: Automating Your Office Gossip 217

Send this file too

Pine can handle MIME attachments with great ease and flair— nothing to it.

To attach a file in Pine, move the cursor to the Attchmnts : line and press

Ctrl+J while you're composing the message. When Pine prompts you for the

filename, type it and press Enter. That's all it takes!

Creating your ovtfn address book
If you use Pine to send messages to Internet addresses, it can certainly be
annoying to type long, complicated Internet addresses. That's a good reason

to let Pine do it for you — set up an address book.

When you press a at the Pine menu, you switch to address book mode. (It

even says ADDRESS BOOK at the top of the screen.) If you have already

entered some addresses, Pine lists them.

When you finish fooling with your address book, press m to return to Pine's

main menu.

To create an entry in your address book when the program is in address
book mode, follow these steps:

1. Press a.

Pine asks for the full name of the person.

2. Type the person's last name, a comma, and then the first name, and
then press Enter.

Pine asks for a nickname (the name you type when you address mail).

3. Type the nickname (make it short but easy to remember).

Finally, Pine asks for the person's e-mail address.

4. Enter the e-mail address just as you would when you address a
message.

Pine stores the entry in your address book and lists it on the address
book screen.

If you make a mistake, you can edit an entry later. Just highlight it on the list

of addresses, and press e to edit it.

You can also create an address book entry directory from the address of a

message. If you're looking at a message from someone whose address you
want to save, just press t. Pine prompts you for the person's full name (it

may even suggest it, if it's part of the message header), nickname, and e-mail

address (Pine suggests the address of the sender of the current message).

218 Part IV: UNIX and the Net

Sign here

You can make a signature file, a file that con-

tains text for Pine or e 1 m to include at the end

of every message. The file must be named

. signature and be in your home directory.

Use your text editor to make a signature file.

Keep it short (no more than three lines long),

and include your name, your e-mail address,

other address information you want everyone

to know, and (if you have room) a pithy or

philosophical message that characterizes you.

After you've created a signature file, you don't

have to type this stuff at the end of every mes-

sage. To test it, send a message to yourself

and see how the signature looks. The signa-

ture appears at the bottom of the message

when you compose it. To omit the signature

information from a message, just delete it.

Saving messages
Pine enables you to create lots of folders in which to put your messages so

that you can save them in an organized manner. To save a message in a

folder, press s when you're looking at it or when it's highlighted on the list of

messages.

If you save a message to a folder that doesn't exist, Pine asks whether you
want to create it. Press y to do so. When you move a message to a folder,

Pine automatically deletes it from your inbox. Very tidy.

Looking in a folder

After you've put messages in folders, you may want to look at them later.

When you see Pine's main menu, you can press 1 (the lowercase letter L) to

select which folder to look in. Pine automatically makes several for you,

including these:

j> INBOX: Your incoming messages. Messages remain there until you
delete or move them.

v sent-mail: Messages you've sent.

j> saved-messages: A place to save messages before you send them.

Move the highlight to the folder you want, and then press Enter. Pine lists

the messages in the folder.

You can make more folders by moving messages into them (as described in

the preceding section).

Chapter 17: Automating Your Office Gossip 2 1 y

What's all this junk at the beginning of the message?
An e-mail message has a header that the mail

program (ma i 1 , e 1 m , Pine, or whatever) cre-

ates automatically. The header consists of

these pieces:

k* The To address (the person to receive the

mail)

i> The From address (the return address)

W The Cc addresses (the addresses to send

copies to)

v The Bcc address (the addresses to send

blind copies to)

v The subject

*> Optional information you rarely use, such

as expiration date, priority, which mailer

mailed the message, and sometimes (for

incoming messages) the arcane route the

message took to get to you

Don't worry if the header looks like gobbledy-

gook— it is. On incoming mail, the header can

have all sorts of extra glop that reports on

which systems have passed it along, which

program was used to send the mail, and lots of

other useless stuff.

You can specify cc addresses, the subject,

and other information for messages you send.

Exchanging Gossip by Using e 1 m
The el m mail-reading program is a heck of a lot easier to use than either

version of the ma i 1 program (which we describe later in this chapter, for the

desperate), although it's not as nice as Pine. The el m program even tells you
once in awhile what is going on. Like Pine, it also helps you organize your
mail into folders if you plan to save your messages.

To read your mail, send mail, or peruse mail you left lying around the last

time, type this line:

elm

The el m program displays a list of your mail messages, as shown in Figure 17-3.

Figure 17-3:

A list of mail

messages

in el m.

Mailbox is ' /usr/mai 1 /margy ' with 3 messages [ELM 2.3 PL11]I

1 Dec 22 John R. Levine (49) a few troff hints!

2 Dec 23 Jordan M. Young (12) Bye. bye. Brazil!!
N 3 Dec 23 Meg Young (10) Hi. cutie!

!

220 Part IV: UNIX and the Net

This display is called the mail index. The first letter on every line tells you
which messages are new (N), old and already read (blank), old and unread

(0), and deleted (D). The listing also shows the date the mail was received,

who sent it, the number of lines in the message, and the subject. Below the

index are instructions, including the one-letter commands you use to read

and send mail:

u* Use the T and i (or press j and k) to highlight the message you want to

read, reply to, delete, or whatever.

*> Press Enter to read the highlighted message.

v* Press d to delete a message.

j> Press u to undelete a message you didn't want to delete.

*> Press m to send (mail) a message.

i> Press r to reply to a message.

*> Press f to forward a message to someone else.

*> Press > or press s to save the message in a folder or text file.

i> Press p to print the message.

v Press q to quit the elm program.

i> Press ? for more help.

Compose yourself

To use el m to send mail, press m. The program asks you for the address, the

subject of the message, and addresses to send copies to. Then it runs a text

editor, usually vi . (You can arrange for el m to run another editor if you
loathe v i as much as we do — see the tip in the "You send me" section, just

a couple of paragraphs from now.) Use the editor to type the text of the

message. When you finish, save the message and exit from the editor. (If

you're forced to use v i
,
press Esc and type ZZ to save the message and exit

from v i .)

Headers up!

Next, el m gives you a chance to edit the message (perhaps to add a PS.),

fool with the header (useful if you decide that your message is so fascinating

it should be sent to a wider audience), forget the whole thing, or send the

message off.

Chapter 17: Automating Your Office Gossip 22 7

Press h to edit the header for the message, el m displays all the components
of the header, including the addressee and the subject line. You can change

most of them or add names of people to receive copies of the message
(cc's).

To change each of these things, press the letter shown in front of the

parenthesis. To add cc's, for example, press c. el m asks you for the list of

addresses to send copies to. Enter the addresses, separated by at least one
space, and press Enter. If el m recognizes the address, it displays the person's

name in parentheses after the e-mail address. Otherwise, it shows just the

address you typed.

When you have finished fooling with the header, press Enter to indicate that

you're finished.

1/ou send me
After you're finished fooling with the header, el m asks what to do with the

message:

And now: s

Choose e)dit message, Dshell, h)eaders, c)opy file, s)end. or f)orget.

Press s to send the message. You can also press e to go back and edit some
more or h to change the headers (To, Cc, Bcc, and Subject, for example).

You don't have to worry about the other, less useful choices.

You can change the editor el m uses for writing and editing mail messages.

(Thank goodness, because otherwise you may have to use v i !) When you're

using elm and looking at the mail index, follow these steps.

1. Press o to look at the el m options.

2. Press e to change the editor you use.

3. Type the name of the editor you usually use to edit text files (we like

emacs and pico).

4. Press > to save this change.

5. Finally, press i to see the mail index again.

222 Part IV: UNIX and the Net

Getting a read on \}ow mail

To read a message, highlight its line in the mail index and press Enter. The
el m program displays the message — or the first screen of it if it's a long

message.

When you finish reading the message, you can do several things with it:

i> Delete it (press d).

i> Forward it to someone else (press f and tell el m the address to forward

it to).

u* Reply to it (press r).

u Save it. To leave it hanging around in your mailbox, press the spacebar
to leave the current message and go to the next message, or press i to

leave the current message and return to the mail index. In either case,

the message remains unaltered. Alternatively, you can save the mes-

sage in a folder or text file (see the following sections).

Mail hound

Another UNIX mail program worth mentioning

is the humbly named mutt. Michael Elkins, a

physics undergrad at California's Harvey

Mudd College, wrote the original version of

mutt in 1995 when he finally got fed up

with the limitations of el m. (mutt's motto for

the ages: "All mail clients suck. This one just

sucks less.")

Although written from scratch, mutt was
originally based on elm, with various ideas

from Pine and other UNIX mail clients thrown

in to create a unique hybrid, or mongrel — in

short, a mutt. (And you thought that mutt
was an ultranerdy acronym for Mail User

Transaction Terminal, didn't you?) Unlike el m,

which is a basic text-based, one-message-at-

a-time affair, mutt can handle colors (fancy

that!) and message threads. Threads group

messages based on their subjects so that you

can tell which messages are responses to

which. Threading is particularly useful if you

carry on lengthy e-mail conversations with a

number of different correspondents or if you

subscribe to especially active mailing lists.

All in all, this mutt can hunt. It lets you attach

files to e-mail messages by using MIME (elm

can't, if you recall). It supports PGP (pretty

good privacy) encoding for keeping your love

letters secret. It automatically opens a Web
page in your browser when you click a URL in

a mail message (if you don't know what that

means, try Chapter 18). It has "tons of op-

tions." It's small. And in the best UNIX tradi-

tion, it's free.

You can download mutt from FTP sites all

over the Internet, including the FTP archive at

the computer science department of Michael

Elkins' alma mater. (Check it out at ftp://
ftp . cs . hmc . edu/ pub /me.) It also comes

along with various versions of Linux, such as

Red Hat Linux and Caldera OpenLinux.

Chapter 17: Automating Your Office Gossip 223

Putting your mail in folders

If you like to save mail messages, you can save them with el m in folders, one
folder per topic or one folder per sender. You can have lots of folders —
each one is just a text file in your Mail directory (note the initial uppercase
letter).

To save a message to a folder, either highlight the message in the mail index

or display the message. Then press > or press s. The elm program asks for

the name of the folder you want to save the message to. For some reason,

folder names begin with = (an equal sign). The el m program suggests a

folder with the name of the person who sent the message, assuming that

you want to save messages organized by sender. You can type any name you
want, however (no space and no funny characters other than the = at the

beginning).

To see the messages in a folder, return to the mail index and press c to

change folders. Type the name of the folder you want to use (or press ? to

see a list of your folders). Be sure to type the = at the beginning of the folder

name. You see a list of messages just like the mail index of your original

mailbox.

All the same commands work in a folder that work in your regular mailbox.

After you highlight a message, for example, you can read it by pressing

Enter, forward it by pressing f, or delete it by pressing d.

To return to your regular mailbox, press c again and then press ! when e 1 m

asks for the name of the folder. (Don't ask us why.)

SaVinq your mail in text files

You can also save a message in a text file so that you can edit it later or

include it in a word processing document. Use the > or s command to move
the message, but, rather than type a folder name (which always begins with

an =), type a filename (such as message.text). The el m program creates the

file in your home directory and puts the message there. If the file already

exists, elm adds the message to the end of the existing file so that you can
save a series of messages to a single text file.

22k Part IV: UNIX and the Net

Printing your mail

To print a message on the printer, highlight the message in the mail index or

display the message. Then press p to print it.

Attaching stuff by using el m
Unfortunately, most versions of e 1 m can't attach files to e-mail messages by
using the popular MIME system described earlier in this chapter. Bummer,
but there it is.

If you want to send a text file, just include it in your e-mail message. The
pi co command to include another file in a message is Ctrl+R, and the emacs

command is Ctrl+XI (that is, press Ctrl+X, release the Ctrl key, and press I).

If you want to send a file that contains something other than text, you can

do it with uuencoding. Follow these steps:

1. Create a uuencoded version of the file you want to send, by typing

this command to the shell:

uuencode fUe-to-send new-name > temp

In this command, replace fi 1 e-to-send with the file you want to

uuencode, new-name with the name you want the file to have when it is

uudecoded, and temp with any temporary filename (junk is another

perennial favorite).

2. Run el m and compose a new message. Address it as usual.

3. At the beginning of the message, explain that you are sending a

uuencoded message.

4. At the end of the message, include the file you created in Step 1

(which is named temp or whatever you typed in place of temp).

If you use pi co as your editor, press Ctrl+R to include the file. If you use

emacs as your editor, Press Ctrl+X I to include the file.

5. Send the message.

Chapter 17: Automating Your Office Gossip 22.7

Netiquette

E-mail has been around long enough for an

etiquette style to have sprung up around it,

just as with real mail. Here are some tips:

Be polite. The written word tends to sound

stronger and more dogmatic than speech. Sar-

casm and little jokes don't always work.

Don't write anything when you are annoyed. If

you get a message that you find totally obnox-

ious, don't answer it right away! You will be

sorry if you do, because you will overreact

and look just as obnoxious yourself. How do

we know this? We used to do it, too. Everyone

does at first, until they learn not to take e-mail

too seriously. The exchange of needlessly ob-

noxious messages is so common that it has a

name: flaming. Don't do it.

Be brief.

Be sure to sign your messages. The header

shows where a message comes from, but your

recipient may not remember who you are from

your cryptic e-mail address.

Use normal punctuation and capitalization.

That is, DON'T CAPITALIZE EVERYTHING. It

looks as though you are shouting, and that's

not polite (see the first tip in this list).

Watch out for acronyms. E-mail is full of them,

and you had better know what the common
ones mean. A list of acronyms is at the end of

this sidebar.

Don't assume that e-mail is private. Any re-

cipient of your mail can easily forward it to

other people. Some mail addresses are really

mailing lists that redistribute messages to

many other people. Also, glitches in the mail

system may send your messages to various

electronic dead-letter offices. In one famous

case, a mistaken mail address sent a message

to tens of thousands of readers. It started

"Darling, at last we have a way to send mes-

sages that is completely private "

If you need to indicate emotion, most people

use emoticons, little pictures made up of char-

acters to look like faces. If you see :), for

example, just look at it sideways: You see a

little smiley face which usually means that

whatever you just read was a joke. (You get a

sad face if you use the other parenthesis for

the mouth.) Some people— particularly those

who use CompuServe— type <gri n> or <g>
or<smi 1 e>. (An opposing viewpoint says that

if you need one of those emotion things, it's a

better idea to rewrite your message to make it

clearer what you mean.)

Here's a list of the most common e-mail

acronyms:

BTW By The Way

IMHO In My Humble Opinion

I0W In Other Words

PITA Pain In The Armpit

PMFJI Pardon Me For Jumping In

ROFL Rolling On Floor, Laughing

Real Soon Now (ha!)RSN

RTFM

TIA

Read the Manual (that is, you could

have looked it up yourself)

Thanks In Advance

226 Part IV: UNIX and the Net

Dealing With uuencoded stuff

If you receive a message that contains a uuencoded file, here's what to do:

1. Tell el m to run the message through the uudecoder, by typing this

command:

That's a vertical bar and then the name of the command uudecode.

2. The original file should be reconstituted.

So what's the new file named? Look on the begin line of the uu-incoming file

(or the original e-mail message that contained the file) — it shows the length

of the file in bytes and the name the uudecoded file will have.

Exchanging Gossip by Using mail
The basic mail program comes with every brand of UNIX and is an accept-

able way to read and send mail. Not great, but acceptable if you have

nothing else. It can't deal with MIME attachments, if you're wondering.

Take a tetter

Assuming that you want to send mail to your friend Jonathan W, you can

send a message with the mail program by typing this line:

mail jonathanw

Some versions of ma i 1 prompt you to enter a subject line for the message;

others respond by doing nothing. You can tell that something is afoot

because you don't see a UNIX shell prompt such as $ or % anymore. The
ma i 1 program is waiting for you to type the message. So, type something, as

many lines long as you want:

Yo. Jonathan! I think I've fiaured out how to use the e-mail on this
thing!

Send a message back so that I can see if my mailbox works. Thanks.

Press Enter when the line reaches the right end of the screen (or window) to

make it easier to read. Otherwise, your line wraps around to another line,

and UNIX may put the line break in the middle of a word.

Chapter 17: Automating Your Office Gossip 22 /

When you finish typing the message, type a period on a line by itself to tell

the ma i 1 program that you are finished. The ma i 1 program confirms that it

has sent the message by doing nothing other than displaying a UNIX prompt.

(Because some particularly ancient versions of ma i 1 don't understand the

dot, you have to press Ctrl+D to tell it that you're finished.)

Because the mail program is so helpful, you may want to consider using a

better program, like el m or Pine. If you have to use mail, send yourself a

test message to make sure that it is working. System V computers usually

have a really old and awful mail program named ma i 1 and a somewhat
better one named Mail. (These guys really had a lot of fun thinking up
names for these programs.) If you can use Ma i 1 rather than mail, do so

because it's more likely to work the way it's supposed to. (Often, mail

doesn't even understand Internet mail addresses.)

What's in my mailbox)

To read your mail, reply to letters, and do other mail-related stuff, type this

command on a line by itself:

mail

The mail program starts by showing you your unread mail. Some versions

print the first unread message or show a list of incoming messages. Then the

program displays a prompt:

As you doubtless found intuitively obvious from that prompt, the ma i 1

program understands many commands and is ready for you to type one.

If ma i 1 hasn't already showed you a list of messages, press h to tell it to

show you a listing of the messages in your mailbox (if there are any).

Figure 17-4 shows what you may see when you start the mail program. The
little > shows you which message ma i 1 is working with (the current message).

Figure 17-4:

What you

may see

when you

start mai 1

.

3

228 Part IV: UN|X and the Net

Ordering mai 1 around
The ma i 1 program understands lots of commands, including these:

v* Press Enter to see the current message (the one the > points to).

*> To move to a different message, type the message number (the first

thing on the line in the list of headers).

i> Press d to delete the current message (usually after you have read it).

u* Press u to undelete a message you didn't want to delete.

u* Press m and type mailaddress to send (mail) a new message. (Use a

real username or mail address rather than mailaddress.)

*> Press r to reply to the current message.

i> Press z to see more message headers if you have too many to fit on-

screen.

u* Press p to print the current message.

v* Press q to quit the mail program.

i> Press ? for more help.

Reading mai 1 messages
To read a message, type its message number (the number at the beginning

of the line). To read the current message (the one with the >), just press

Enter. The mail program displays the message— or the first screen of it if

it's a long message.

When you finish reading the message, you can do several things with it:

u* Delete it (press d).

i> Reply to it (press r). Then type a message (like the one to Nancy, a few

pages ago). End the message by typing . (a period) on a line by itself.

u* Save it (see the following section).

If you don't make any other arrangements, messages you have read are

saved in a file named mbox, which can get pretty big if you don't edit it now
and then.

Chapter 17: Automating Your Office Gossip ££y

SaVinq your tetters far posterity

You can save a message in a text file to edit later or include in a word
processing document. To save the current message (the one you are reading

or have just finished reading), type this line:

s filename

Replace fi 1 ename with the name of the text file you want to create. If the

text file already exists, mail adds the current message to the end of the file;

You can save a series of messages to a single text file in this way.

Run that by me aqain

To print a message (on the screen, not on the printer) press p. You want to

do this when you are looking at a list of messages and you want to see the

contents of one of them. If you want to see a message other than the current

one, put the message number (shown in the list of headers) after the p:

P 5

Bye, mail
To quit mail, press q. You see the UNIX prompt.

It Slices, It bices— It's Netscape
Netscape Communicator, the all-singing, all-dancing Web browser, also

happens to have a mail program built into it. If you're familiar with Netscape
on another kind of computer (Windows or Mac), the UNIX version works
almost identically. Because Netscape started distributing Communicator for

free, the latest and greatest version (Communicator 4.0) is the most popular.

Some excessively loyal (stubborn? lazy?) people still use the older version

(Navigator 3.0), but the newer version is so much better and so easy to get

that it's hard to feel sorry for them. (If you're still using Navigator, do
yourself a favor and download Communicator 4.0 from the Netscape Web
site, at http: //www. netscape, com/downl oad.)

Netscape, as a prime example of the Great Expanding Blob school of soft-

ware design, can do much more than we have room to describe here. See
The Internet For Dummies, 5th Edition, and MORE Internet for Dummies, 4th

Edition (both from IDG Books Worldwide, Inc.), for more details.

230 Part IV: UNIX and the Net

Mail bondinq With Nariqator 3.0
Okay, so you didn't take our advice, and you still insist on using Navigator

3.0. To be fair, perhaps you're in the power of a stubborn system administra-

tor who hasn't got around to making the zoomier Communicator 4.0 avail-

able to you, a lowly, disenfranchised X terminal user. In case that's the case,

this section's for you.

After you have Netscape running, just choose WindowOMail to read or send

mail. You see a three-part window, with the names of your mailboxes (Inbox

and Trash, unless you've made some new ones) in one part, the titles of the

messages in a second part, and the contents of the current message in the

third part.

To send a message, click the New Mail Message button on the toolbar. (You

can do this in any Netscape window, not just in the mail window.) Netscape

opens a new message-composition window. Type the recipient's name in the

To field, the message subject in the Subject field, and the body of the message

in the large, otherwise empty window. Then click Send to send your message.

To read mail with Netscape, click the Get Mail button on the toolbar to

retrieve any waiting mail. Depending on how Netscape is set up, you may
have to enter your login password again. It grabs all your mail and puts it

into your Inbox and displays the sender and subject of each message.

After the mail is in your Inbox, click on a message to display its contents.

After you've displayed a message, you can click the Delete, Reply, Reply All,

or Forward buttons. (Reply All composes a reply to the sender and all other

recipients of a message.) You can step through the messages in your mail-

box by clicking the Next and Previous buttons and print a message with the

Print button.

Outlook: Partly cloudy

You may be wondering why we haven't

mentioned Outlook Express, the Microsoft

answer to Netscape Messenger. Microsoft

has pretty much ignored UNIX, except when it

has been less than pleasant about UNIX in its

Windows NT marketing campaigns. As a

result, Microsoft has hardly done any UNIX

development of its Internet Explorer Web
browser, which contains Outlook Express. So

far, Internet Explorer runs only on Solaris 2.5

and up (although a preliminary version is also

available for HP-UX). Netscape, in contrast,

runs on just about every version of UNIX, in-

cluding Linux, and many Linux distributions in-

clude Netscape Communicator for free. If you

don't want the worldwide UNIX community to

look down its collective nose at you, use

Netscape. (In case you're wondering, the

Solaris version of Outlook Express works ex-

actly the same as the Windows version, ex-

cept that the Solaris version is buggier.)

Chapter 17: Automating Your Office Gossip 23 7

Mail bonding With Communicator 4.0
After people had figured out how Netscape 3.0 worked, the Netscape
developers addressed that deplorable situation by inventing the new,

incompatible Netscape Communicator. Fortunately, although the screens

have all changed, the functions are pretty much the same.

To start Messenger, the mail part of Communicator, choose Communicator^
Messenger Mailbox. This action opens the Inbox, which you can see in

Figure 17-5. The layout of the window has changed somewhat, so now the

top half lists the messages in the current mailbox, and the bottom shows the

current message.

To send a message, click the New Msg (New Message) button on the toolbar.

The window that opens is chock-full of incomprehensible icons, although

you can ignore most of them. First, you have to enter the name of your
recipient. At the top of the window are a couple of lines that look sort of like

lined notebook paper. Near the left end of the line may be an entry that says
To or Cc or Bcc. If it says anything other than To, click the little arrow to

the left of the Cc or Bcc and switch it to To. Having done that, type your
recipient's address on the right half of your freshly updated To: line. If you
have other recipients, you can enter them on the next lines, one per line.

Having done that, you can move on to the subject. This process is easier—
type the subject in the Subject box. Now you can enter your message into

the rest of the window.

Figure 17-5:

Hey, look!

A personal

message

from the

CEO of

Netscape!

Netscape FoWei mmm
£ie £dit View G_o Message Communicator Help

Get Msg New Msg Reply Forward Fie Next Print Security Delete

Hide: Welcome to Netscape Communicator

Subject: Welcome to Netscape Communicator

Date: Mon, 02 Jun 1997 12:00:00 -0800

From: "Marc Andreessen" <info@netscape.com>

Organization: Netscape Communications

To: Netscape Communicator User

MARC ANDREESSEN

Document Done m \&

232 Part IV: UNIX and the Net

^\NG/ Messenger offers a fantasia of fantastic formatting features. Don't use any of

them unless you are 110 percent sure that your recipient uses Netscape 4.0.

Anyone else sees illegible pseudo-Web-page glop and will likely throw your

message away.

After you have created your message, click the Send button. If you've used

any of the formatting features, or even if you haven't, Netscape pops up a

window warning you that your recipient may not be able to handle the

beautiful formatting and gives you some options. Pick the middle option,

Send in Plain Text Only, and click Send. Whew!

To see your new mail, click the Get Msg button on the toolbar. (You may be

prompted for your login password, depending on your mail setup.) After you

have mail in your mailbox, double-click on a message in the message listing

to see that message in a new window. Again, the Reply, Forward, Next, and

Previous buttons do what they look like they should.

Chapter 18

Web Surfing for UNIX Users

In This Chapter

What is the Web?

Using Lynx

P- Using Netscape Navigator

Finding great Web pages

The World Wide Web (WWW, or just the Web) is the zoomiest, coolest

Internet facility around. It contains lots of information, including pic-

tures and other non-text stuff, in the form of hypertext. As you read through
the information, therefore, you can click (or otherwise select) words,
pictures, or buttons to zoom right to related information. These clickable

words, pictures, and buttons are called links.

The amazing thing about all these linked pages is that a page may be stored

on any Internet host computer in the world. If you're looking at a page
stored on a computer in Brookline, Massachusetts, a link on that page may
jump you to a page stored in Basel, Switzerland. You never even notice,

unless you look carefully at the names of the Web pages.

What's a Browser}
You read the World Wide Web by using a browser. If you're stuck with a plain

old text-based terminal (for example, if you have connected to a remote
UNIX host with tel net), you can use a text-only browser named Lynx. "Text-

only" means that you don't get to see any of the cool pictures, animations,

and sounds that have made the Web the phenomenally popular success that

it is. If you use X Windows, you can use a graphical browser such as

Netscape, currently the most popular browser for UNIX. With a graphical

browser, you get to see all the cool stuff as well as the text. (Does this type
of browser make the browsing experience any more educational or enrich-

ing? In some cases, maybe, but mostly it just makes it more fun.) This

chapter describes both Netscape and Lynx.

23b Part IV: UNiX and the Net

sJ*****

URL!

The World Wide Web brought us the extremely

useful concept of Uniform Resource Locators,

or URLs. The point of a URL is to have a simple

and consistent way to name Internet re-

sources that tells you both the type of the

resource and where to find it. A URL consists

of a resource type, a colon, and a location.

URLs look horrendous. In most cases, the lo-

cation is two slashes, the hostname where the

resource can be found, a slash, and a filename

on that host.

Commonly used resource types are shown in

this list:

http: A HyperText Transfer Protocol docu-

ment; that is, something in native Web
format

ftp: A directory or file on an FTP server

news: A Usenet news item (unsupported

by many Web browsers)

gopher: A gopher menu (an early Internet-

based information system that is dwindling

as quickly as the Web is expanding)

Here's a typical URL:

http: //net. gurus. com/
toc-u4d4.html

The reason that most URLs look more like run-

on typos than actual locations is that they

were originally designed to be read by com-

puters rather than actual human beings. Still,

their structure has an underlying order, and

understanding that order helps to demystify

them (a little). The sample URL is a Web docu-

ment. Reading backward, the part after the

last slash is the filename: toe - u4d4 . html

.

The part following the two slashes is the

hostname of the computer: net . gurus . com.

Finally, back at the beginning, you see http:,

which just tells the browser to use the http
resource type (the Web) to view this file.

Although URLs were originally intended as a

way for computers to pass around resource

names, they've also become widely used as a

way to tell people about Internet resources,

and that's how we use them in this section of

the book. It's unfortunate that they're so diffi-

cult to type!

When you start Netscape or Lynx, you can begin with the Web page it

suggests and find your way to the information you want by following the

hypertext links. (Don't worry— we tell you how.) Alternatively, you can

jump directly to a Web page if you know its name. These names are called

URLs (for Uniform Resource Locators) — see the preceding sidebar, "URL!"

to read about them.

A bay on the Lynx
Lynx is a boring-looking, character-based, graphics-impaired Web browser,

but by gosh, it works. For most UNIX users (except those with GUI inter-

faces), Lynx is the only browser they can use. It was created at the Univer-

sity of Kansas. This chapter describes Version 2.8.

Chapter 18: Web Surfing for UNIX Users 235

There's no place like home
You hear a great deal these days about home
pages. Everyone who is anyone has a home
page. So what are they?

A home page is a page on the World Wide
Web that serves as a starting point for infor-

mation about something. If, for example, you

want information about our ...For Dummies
books, you may want to start at the Internet

Gurus Central home page, which is at http : //

net .gurus .com.

Home pages generally contain introductory in-

formation about the entity whose home page it

is, along with lots of links to other pages. Many
home pages for organizations have URLs such

as http: //www. something, where some-
thing is the Internet domain name for the

organization. Guess whose home page is

http: //www. mi crosoft . com?

If your UNIX system doesn't have Lynx, you (or your system administrator)

can get it for free by anonymous FTP from ftp2.cc.ukans.edu in the
pub/ 1 ynx directory. For up-to-date information about Lynx, you can sub-
scribe to the Lynx mailing list by sending the message subscribe lynx-
dev your-nameto 1 i stserv@ukanaix. cc . ukans.edu (be sure to replace

your-name with your actual name).

Coming and going

To run Lynx, just type lynx. You see a Web page (for example, the page
shown in Figure 18-1). This particular page is the home page of The World, a

Boston-based Internet provider.

When you're in Lynx, you can exit at any time by pressing q. Lynx asks
whether you really want to leave — press y.

If you don't want Lynx to ask you whether you really, really, truly want to

leave, press Q (capitalized) or press Ctrl+D to quit.

Anatomy of a page
Lynx tells you the name of the Web page (in words, not the URL) in the
upper-right corner of the screen. The bottom two lines of the screen com-
prise a cryptic little menu that reminds you about which keys do what. The
third line from the bottom displays various helpful messages. In Figure 18-1,

it tells you that this Web page is too long to fit on-screen and how to see the

rest of it. The rest of the screen is the Web page itself.

230 Part |V: UN|X and the Net

Figure 18-1:

Lynx

springs into

action!

Brief instruction

A link Title of the page

Home of

Software Tool & Die: Home Page (pi of 3)

THE WORLD

Public Access Internet

Welcome to HBBTOHfl 's Web server, For more information on HHBHBE.
select any reference to "j

[INLINE] This WWW server is still under construction,

Personal Homepages
(internet Resources about and around New

Arrow keys: Up and Down to move. Right to follow a link; Left to go back.

H)elp 0)ptions P)rint 6)o f1)ain screen Q)uit /=search [delete] ^history listt:

A Web page can contain text, links, pictures, sounds, and movies. Unfortu-

nately, Lynx can deal with only text and links. Text looks (not surprisingly)

like text. Hypertext links (things you can click to view a related Web page)

are displayed in reverse video. Graphics, sound, and movies aren't dis-

played. Instead, Lynx shows you something such as [INLINE] or [IMAGE].

This technique is Lynx's way of saying, "Nyaah, nyaah, nyaah! I see a picture

here, but I'm not going to show it to you!"

Skating the Web
Each link (highlighted word or phrase) on the Web page connects to an-

other page on a related topic. The links that say The Worl d, for example,

connect to a page that describes Software Tool & Die's World Internet

service. The Homepages link connects to a list of home pages about indi-

vidual people.

One of the links appears in a different color on-screen. (This color difference

doesn't show up worth a darn on paper, so in Figure 18-1 you can't tell that

the first link is displayed in white letters on black and that the others are in

yellow on black. Your colors may differ.) This link is the selected link. To

select a link, follow these steps:

1. Press the arrow keys so that the link you want is selected.

2. Press the right-arrow key or Enter to jump to the linked page.

Chapter 18: Web Surfing for UNIX Users 23 7

The linked page appears (sometimes after a short delay while Lynx retrieves

the page over the Internet).

So that's it! To "surf the Web," you just move from page to page until you
find something interesting. Here are some surfing pointers:

v The links you see may be numbered — if they are, you can choose a

link by typing its number and pressing Enter.

** To return to the page you were looking at previously, press the left-

arrow key.

v* To return to the first screen you saw when you started Lynx, you can
press m at any time. Lynx calls this first screen your main screen.

v* To display a good starting point for surfing, press i for index. The Web
page that Lynx displays depends on the one your system administrator

chose. One popular index page is the Wei come to the World-Wide
Web page at CERN, the laboratory near Geneva, Switzerland, where the

Web was invented (see Figure 18-2).

i> Sometimes a link doesn't take you to a different Web page. Sometimes it

takes you to another part of the same page. It is common (and conve-

nient) for long Web pages to contain a table of contents at the top of

the page, with links to the major headings.

Figure 18-2:

One of the

Worldwide

Web's own

home

pages.

Welcome to the World-Wide Web (pi of 2)

THE WORLD-WIDE WEB

This is just one of many access points to the web, the universe of
information available over networks. To follow references, just type
the number then hit the return (enter) key.

The features you have by connecting to this telnet server are very
primitive compared to the features you have when you run a W3 "client"
program on your own computer. If you possibly can, please pick up a

client for your platform to reduce the load on this service and
experience the web in its full splendor.

For more information, select bt.

ft list of available I43 client pr

Everything about the U3 projectl
in H

238 Part IV: UN|X and the Net

Where do all these pages come from?

Web pages don't all come from any one

source. Lots of universities and companies

have Web pages — right now it's the in thing

for anyone and everyone to have a Web page

about themselves (so much for humility). Most

Internet providers run Web servers, or pro-

grams that store Web pages and make them

available to any Web browser that wants to

display them. If you get the urge to have your

own Web page, read Chapter 21 for encour-

agement (or discouragement, as the case

maybe).

Web pages are usually stored as ASCII text

files. In addition to the text the Web browser

displays, special instructions are written in a

language called HTML (Hypertext Markup Lan-

guage), which is discussed in the sidebar

"Here's HTML in your eye!" later in this

chapter. These instructions include marking

headings and lists, links to other pages, and

information about nontextual stuff, such as pic-

tures and sounds. Several books are available

that tell you how to write Web pages in HTML,

including our MORE Internet For Dummies, 4th

Edition (IDG Books Worldwide, Inc.).

Before you rush to create your own Web
page, however, with a picture of your dog and

a list of your kids' latest cute utterances,

consider this question: How will people find

your page? Sure, your friends will see your

page after they type the URL you proudly give

them. But will anyone else ever see it? Re-

member thatthe way most people display most

pages is by selecting a link to the page. Will

any other pages contain links to your page?

Probably not.

Handling long pages
Some Web pages just fit on the screen, and others are miles long (or they

seem like it). You can press the PgUp and PgDn keys to move around the

page one screenful at a time. Pressing the Home and End keys (if your

keyboard has them) moves you to the very top and the very bottom of the

page (we let you guess which does which).

If you're looking for something in particular on a very long page, you may
want to try the Lynx search commands. The page shown in Figure 18-2, for

example, is 14 screens long and can be tedious to look through for a specific

topic.

Instead, press the slash key (/) to begin a search. Lynx says Enter a

search string. Type a word or phrase and press Enter. Lynx skips to the

part of the page that includes the word or phrase, if it occurs on the page.

Chapter 18: Web Surfing for UNIX Users 239

Getting help

If you want help, you can see hypertext help pages by pressing H (be sure to

capitalize it). You see a page like the one shown in Figure 18-3.

240 Part IV: UNIX and the Net

Figure 18-4:

The history

of Lynx.

Lynx History Page

-- You selected:

YOU HflUE REACHED THE HISTORY PAGE

The No rid -Wide

You selected: —————M^—
You selected:MP—^—
You selected: milUMIIiMlHI
You selected: ^MM—

1

You selected: MMMM——
Arrow keys: Up and Down to move. Right to follow a link; Left to go back.

H)elp 0)ptions P)rint 6)0 N)ain screen Q)uit /=search [delete] =history list

£5f«

Here's HTML in your eye!

As you may know, Web pages are written in a

language called HTML, which includes in-

structions to tell the browser about text, head-

ings, links, graphics, and anything else a Web
page may contain. Each browser reads the

HTML information about a page, formats it

tastefully, and displays it. Different browsers

use different formatting.

If you want to see the actual HTML version of

a page in Lynx, just press the backslash (\

)

key. You see something like this:

<HTML>
<HEAD>
<TITLE>Great Tapes for Kids!
www.greattapes.com </TITLE>
<!- Changed by: Margy Levine
Young, ll-Nov-1998 ->
</HEAD>

<BODY BGCOLOR="#FFFFFF"
BACKGROUND="back.gif">
<CENTERXIMG SRC="ti tl e. gi f

"

HEIGHT=30 WIDTH=500X/CENTER>

<Hl>Great Tapes for Kids: A

Catalog of the Best Children's
Video

and Audio Tapes</Hl>

Have you ever seen a terrific,
educational tape at a

friend's house, a tape that
your kids loved, and then
never been able to find the
tape for sale? Many of the
best kids' video- and
audiotapes aren't in your
local video store, but you
can order them here!

All those brackets surround HTML markings,

which tell Lynx (and other Web browsers)

about how to format the text and where to put

pictures and links. If you want more informa-

tion about HTML, the Lynx help system in-

cludes an introduction to HTML The CERN
home page also has links to HTML introduc-

tory documents.

Chapter 18: Web Surfing for UNIX Users 2 It 1

Going right to a URL
If you know the URL of the Web page you want to see, and if you have the

stomach to attempt to type it, press g (for goto). Type the URL, and be

careful about both the punctuation and the capitalization (yes, capitaliza-

tion counts). Then press Enter. Lynx gets the page you want.

Printing or saving good stuff

What if you want to print what's on a Web page? If you press p, you see the

Lynx Printing Options page, which looks something like the one shown in

Figure 18-5. The exact options on this page depend on your Lynx installation.

Figure 18-5:

How do you

want to

save this

page?

Lynx Printing Options

PRINTING OPTIONS

There are 928 lines, or approximately 14 pages, to print.
You have the following print choices
please select one:

——

—

AlUMiMlAMUFm

gsHSGsmsEBHsan
Arrow keys: Up and Oown to move. Right to follow a link; Left to go back.

H)elp 0)ptions P)rint G)o N)ain screen Q)uit / : search [delete] : history list

Some of the options on this page enable you to save the text of the page in a

file rather than print it.

Fake Web pages
As you wander around the Web, you may stumble across a Usenet
newsgroup, telnet session, or list of files on an FTP server. How did that stuff

sneak onto the Web, you may ask. Lynx, like most Web browsers, can display

not only Web pages but also information from other Internet services. Lynx
makes the information look like a Web page, but it's not.

21*2 Part IV: UNIX and the Net

Using "fake" Web pages in this way is a wonderfully clever way to make lots

of information about a topic accessible by way of a single program (your
browser). Lynx can display Usenet newsgroups, FTP sites, Gopher menus,
and telnet sessions for you. How convenient!

Metis of the rteird

Figure 18-6 shows you how a Usenet newsgroup looks in Lynx. It lists the

latest 30 or so articles, with a link at the top of the page to display earlier

articles. (See Chapter 19 for background information about Usenet.)

Figure 18-6:

Here's a list

of articles

in the

newsgroup

misc. rural.

Chapter 18: Web Surfing for UNIX Users 2£}3

Figure 18-7:

More

Usenet

gossip.

Re: Propose new group: al t . 1 i ving . t ightuad (pi of 2)

RE: PROPOSE MEM GROUP: AIT . UUING . TIGHTWAD

9 IUr 1995 17:52:02 -0500

Rutgers University
Newsgroups:

reat idea, I'd love having a group I could post to like I knew what I

Arrow keys: Up and Down to move. Right to follow a linkj Left to go back.
H)elp Options P)rint G)o M)ain screen Q)uit /=search [delete] =history list

Another link, Reply to news g roup (s), posts a follow-up article. If you
choose this link, Lynx asks for your e-mail address, the subject of the post,

and whether you want to include the original message, and then it runs an
editor to enable you to type your post. After you type the message, Lynx
asks whether you really want to post it. Think twice— will it really be of

interest to lots of people in the newsgroup, not just to you and the person
who wrote the post to which you are replying?

Although Lynx is a pretty good Web browser, it's a lousy news program. If

you spend much time reading news, switch to a real news program, such as

trn, nn, or ti n. See Chapter 19 for details.

botinloadinq files Via Lynx
With Lynx, you don't need a separate FTP program for downloading files. If a

Web page contains a link to an FTP server and you choose that link, you see
the message Retrieving FTP di rectory, and Lynx displays the files on
the FTP server as a Web page, similar to the one shown in Figure 18-8.

You see one directory on the FTP server. For each item in the directory,

Lynx displays its date and time, which type of thing it is (directory or file),

its name, and its size. For files, it guesses which type of file it is. Follow
these steps:

244 Part IV: UNIX and the Net

Chapter 18: Web Surfing for UNIX Users 21}5

Figure 18-9:

How do you

want to

download

this file?

Lynx Download Options

00UNL0R0 OPTIONS

You have the following download choices
please select one:

[1]

[,'ffinm«nrrmrTTw«r

[5]—^^——I
[63lgP»HI!W»lll,»WH4I.HHmE

Arrow keys: Up and Oown to move. Right to follow a link; Left to go back.
H)elp Options P)rint G)o M)ain screen Qjuit /^search [delete] =history list

Here are a few tips for downloading files with Lynx:

u* It may take some time to connect to the FTP server. Many FTP servers

are overburdened and overbooked — you may not be able to connect
in some cases.

v* If you start at the root directory of the FTP server, you may have to

press PgDn once or twice before you get to the directories you are

looking for. (Many FTP servers store their publicly accessible files in a

directory named /pub.)

j> If you want to use Lynx to access an FTP site, just press g and then type

ftp://ftpsite/, replacing ftps He with the name of the site. To look at

the files at gatekeeper .dec . com, for example, you type ftp: //

gate keeper. dec. com/.

*> If the file transfer doesn't seem to work, try another type of transfer, as

described in Step 4. You may have to exit from Lynx and use the 1 s

command to see whether the file has in fact arrived. If the transfer still

doesn't work, it's time to make a note of the FTP server name and the

file you want and then fire up the regular FTP program.

Lynx can act (ike telnet too

Chapter 16 explains how you can log in to other computers to get informa-

tion. Some of the computers are mentioned on Web pages, and amazingly

enough, you can use Lynx to telnet to them.

246 Part IV: UNIX and the Net

When you click a telnet link, Lynx automatically connects by way of telnet.

You have to log in and so on, just as you would if you were using the telnet

program. When you're finished, be sure to log out — you can press q to tell

Lynx to log you out. When you see the Con nee ti on closed by foreign
host message, you are logged out.

Remembering the good parts
The World Wide Web has tens of millions of pages on it, and thousands are

added every day (well, almost). When you find one that looks interesting

and useful (or fun), it would be nice to be able to return to it easily. Other-

wise, finding it again may be impossible!

You can return to it! You can create a bookmark for the page— that is, add
its address (its URL) to a list of your favorite Web pages.

Before you can begin making your own bookmarks, you have to tell Lynx
where to store them. Press (the letter) to see the Options menu, which is

described in more detail in the following section. The third option is the

name of the file in which bookmarks are stored. If you see a filename for this

option, fine— just leave it alone. It may already be set to something such as

lynx_bookmarks . html . If no filename appears, press B, type a filename, and

then press Enter. To leave the Options menu, press > (Shift+.) to save your

changes and then press r to return to the normal Lynx screen.

Now you have a file just waiting to contain some bookmarks. To add a page

to your bookmark file, press a. Lynx asks whether you want to make a

bookmark for that page you are viewing (if so, press d) or to the page you
would see if you chose the selected link (if so, press 1 — the letter). All that

seems to happen is that Lynx displays the friendly, upbeat message Done

!

Behind the scenes, however, Lynx has added the URL of the current page or

link to your bookmark file. To see your list of bookmarks, press v. You see a

page like the one shown in Figure 18-10. To go to a Web page on your list of

bookmarks, just select its link. It's like having your own Web page full of

your favorite links!

Controlling your Lynx
Lynx has some options you can set to control some things about how it

works. When you press o, you see the Lynx Options menu.

Chapter 18: Web Surfing for UNIX Users 24 7

Figure 18-10:

Some of our

favorite

places.

Bookmark file

You can
usual ly
administ
This fil

inval id

appears
help fil

1. CD"
2. [2]

3. [3]

4. [4]

delete links using Ihe new remove bookmark command, it is

the 'P.' key but may have been remapped by you or your system
rator

.

e may also be edited with a standard text editor. Outdated or
links may be removed by simply deleting the line the link
on in this file. Please refer to the Lynx documentation or
es for the HTML link syntax.

Uirtual

subject
Lynx Users wio
Data sources class if

ZHGBOHSHEBara
Arrow keys: Up and Down to move. Right to follow a link; Left to go back.

H)elp 0)ptions P)rint G)o H)ain screen Q)uit /^search [delete] ^history list

To change an option, type the capitalized letter in the option name. For

some options, you then type the setting you want (such as the name of your
favorite editor for the Editor option). For other options, only a few possibili-

ties exist, and you can press any key (except Enter) to flip among them.
Then press Enter when you see the one you want.

When you finish setting your options, press > to save them. Then press r to

return to what you were doing in Lynx.

Here are some options you may want to fool with:

v Editor: This option controls which editor Lynx runs when you use it for

sending mail. We recommend emacs because it's our favorite, although
you may prefer pi co or vi . Type the full pathname of your editor. You
can send e-mail to the owners of most Web pages by using the Lynx c

command.

u* Personal mail address: Set this option to your own, complete e-mail

address. Lynx uses it when you mail Web pages to yourself or as your
return address when you mail things to others.

j> Keypad as arrows or numbered links: If you set this option to num-
bered links, each link in a page is numbered, and you can choose a link

by typing its number.

After you change this option, exit from Lynx and start it up again.

2£>8 Part IV: UNIX and the Net

i> User mode: This option is usually set to Novice, so that Lynx displays

two lines of helpful menu items at the bottom of the screen. If you
already know all the Lynx commands you need and would rather see

two more lines of Web page, set this option to Intermediate. If you want
to see the URL of each Web page, set it to Advanced.

Problems

The third line from the bottom of the screen displays various messages to

tell you what to do or to let you know what's going on. Here are a few

messages you may see:

*> Making HTTP connection to kuf acts . cc . ukans . edu. This mes-

sage means that Lynx is asking kuf acts . cc . ukans . edu, or whatever

host computer it mentions, for the Web page you want.

*> http request sent: waiting for response. If the Internet is very

busy, a message like this one tells you that you're experiencing a brief

delay. Lynx has spoken (metaphorically) to the host on which the Web
page lives and is waiting to get the actual page.

^ Alert! Unable to connect to remote host or Al ert ! Unable

to access document. If you see this message, the host on which the

information is stored is so busy that it doesn't have time for you. Or

maybe it's down for repairs. Either way, try again later.

Browsing With Pictures: Netscape
Other browsers are available for UNIX, although Netscape currently wins the

prize for most ubiquitous Web browser for UNIX computers. Versions of

Netscape exist for UNIX, Windows, and the Macintosh. They all work in more
or less the same way.

The Netscape Corporation calls its browser Netscape "Navigator" to

distinguish it from Netscape Messenger (the Netscape e-mail program; see

Chapter 17) and Netscape Collabra (the Netscape Usenet newsreader, which

we cover in Chapter 19), but everyone else just calls the browser "Netscape."

Netscape has dubbed the 4.0 version of its browser software "Netscape

Communicator." This package bundles the Navigator browser with a bunch
of other software that you may or may not find useful. Aside from having a

completely new interface (did we say confusing?), other programs in

addition to the Navigator browser, and an appetite for lots more disk space

and memory, Version 4.0 does much the same stuff as Version 3.0. The
commands we mention in this section are for Version 4.0.

Chapter 18: Web Surfing for UNIX Users 2£)

Hey! What about Internet Explorer??!?

At the time we wrote this edition of the book,

Microsoft Internet Explorer, Netscape's chief

rival in PC Land, has a shaky toehold in the

UNIX world. Why? Partly because it's avail-

able for only one version of UNIX (Solaris 2.5

or higher), partly because of Microsoft's thinly

veiled fear of and contempt for all things UNIX,

partly because Internet Explorer for UNIX is

full of bugs, and partly because Netscape gets

distributed for free with various versions of

UNIX and Linux. Apparently, a version of

Internet Explorer for HP-UX is in the works,

but Microsoft has yet to make a serious com-

mitment to supporting the UNIX community.

(bon't bother) configuring Netscape
Because Netscape is an X and Motif application, it uses dozens and dozens
of X resources you can customize. Here's our advice: Forget it. The standard

configuration works fine, and our sad experience is that most changes you
can make only make it worse.

Starting it up
You start Netscape by typing netscape in your shell. (Or, with luck, maybe
you have a Netscape entry on your Motif or CDE menu.)

Netscape automatically loads the Netscape home page from its headquar-
ters. You see a window like the one shown in Figure 18-11.

If you have a slow Internet connection, it may take quite awhile to load the

attractive nautical graphic at the top of the window. If you get impatient,

choose EditOPreferences, choose Advanced, and uncheck Automatically

Load Images to tell it not to bother loading the images in pages you retrieve.

In that case, it replaces the images with little graphic icons. Netscape is

relatively smart about remembering which images it already has, so if a page
uses an image it already has, it automatically displays the image.

Leaving

When you finish using Netscape, choose FileOExit from the menu. (You can
also use the keyboard shortcut Alt+Q.)

250 Part IV: UNIX and the Net

Figure 18-11:

Netscape

Mission

Control.

Chapter 18: Web Surfing for UNIX Users 25 1

v* Back: Takes you to the preceding page you retrieved. If the button is

gray, you have no page to back up to.

v* Forward: After you have backed up by using the Back button, Netscape

displays the next page you retrieved. If the button is gray, no next page

exists yet.

*> Reload: Reloads the current Web page. Click it if Netscape can't load a

page correctly or if you think that the page may have changed since the

last time Netscape loaded it and you want to try again.

j> Home: Returns you to your home page, which is usually a page about

Netscape, unless your system manager has made it something else.

v Search: Search the World Wide Web for a topic. This button takes you

to a page where you can select from among several different search

engines.

*> Guide: Enables you to go to various places on the Internet that

Netscape has deemed interesting.

j> Print: Prints the current page.

v* Security: Options for the paranoid: This button enables you to change

security settings, such as encryption of Web pages and e-mail. Unless

you're really into network security issues, it's probably best to leave

these unchanged.

*> Stop button: If Netscape takes forever to retrieve something, click this

to tell it to forget it.

Finding other Web pages
If you know the URL (the official technical name) of a Web page you want to

see, you can tell Netscape to go directly to it:

1. Choose FileCOpen Page from the menu (or press Alt+O).

Netscape asks for the URL name, using the dialog box shown in Figure

18-12.

2. In the URL box, type the URL.

With luck, you have the URL in a file on your computer somewhere so

that you can copy it by using copy-and-paste with the mouse.

3. Click Open In Navigator.

Netscape retrieves the URL you requested.

252 Part IV: UNIX and the Net

Figure 18-12:

Whereto

now?

H<-:S~e-':--- ;;.-: ..- . - ;.

File Edit View Go Communicator

PS 3 & i S c* £
Back Forward Reload Home Search Guide Print Security

k" Bookmarks ^ Location: Ihttp: //net. gurus com/

Help

£ Internet _j Lookup _j New&Cool ^ Netcaster

V Netscape: Open Page

Enter the World Wide Web location (URL) or specify

the local file you would like to open:

Si

Choose File..

4 H

a
2 Open In Navigator

s

Open In Composer
|

Clear Cancel

^ All Books

a People

» Zap

«5-"

I

I provided handy color-coded flags to tell you which books are still au courartt and which are

shockingly obsolete, with links to find the current ones and prevent inadvertent obsolesence. (Since

the Internet is involved, of course, this can happen in a blink of an eye.)

Order

100%

Latest edition Up to date, rush out and get at least one copy if you don't have it already.

: ;«- <div @P \t-

The URL of the page you're looking at is displayed in the Location box at the

top of the Netscape window. To go to a new URL, you can just type it in this

box rather than use the FileOOpen Page menu item.

Often you get e-mail or read a Usenet item that contains a URL. Rather than

retype the URL, highlight the URL in the mail or news window, and then

switch to Netscape, click Open, click Clear (if some text is already in the text

window), and then click the middle mouse button in the text window to

paste in the URL you selected.

If you want to go to a URL that has the form http: //www. somethi ng . com,

Netscape offers a shortcut: You can simply type the somethi ng part of the

URL in the Location box, and Netscape fills in the rest automatically.

Clicking the shooting-star N logo in the upper-right corner takes you to the

Netscape home page. It's where you check for new releases and develop-

ments in Netscape.

Printing, saving, or copying good stuff

To print the displayed page, choose FileOPrint from the menu. It suggests a

print command, which you generally should leave alone, and asks whether

Chapter 18: Web Surfing for UNIX Users 253

you want to print to the printer or to a file. If you select file, a box enables

you to set the filename. Then click the Print button in that window to send

the page to the printer.

Remembering good places
When you find a particularly interesting page, you can add it to your list of

Bookmarks of favorite Web pages. Choose BookmarksOAdd Bookmark from

the Location toolbar (or CommunicatorOBookmarksOAdd Bookmark from

the main menu, or press Alt+D) to remember the current page.

To go to a page on your Bookmark list, follow these steps:

1. Choose Bookmarks from the Location toolbar.

It's next to Location and below all the other buttons at the top of the

window.

2. Scroll down to the entry you want on the bookmark list.

3. Release the mouse button.

To delete a bookmark or change its name, choose BookmarksOEdit
Bookmarks (or Alt+B), as shown in Figure 18-13.

Figure 18-13:

Select

and edit

Netscape

bookmarks.

Go Communicator

Reload Home Search Guide Print

^. Location: Jhttp : //net. gurus, com/

Alt+K

File Edit View

J

I

Back

£ * Bookmarks

Add Bookmark

File Bookmark

Edit Bookmarks...

j£ Personal Toolbar Folder

^Internet Gurus Central

./ Red Hat Software, Inc.

^WhiteCap Development Corporation

'^Welcome to Netscape

^Software Download
|
Index of Products

Help ;

j

security

Alt+B

,TM Central

ne of the authors of The Iraemet For Dummies, soil the

eking, isn't it?) and many other books. We offer updates,

iseful advice for our current and future readers.

about our Windows 98 books, the new 1998 editions of

srbooks.

. New
Books

>* A" BooKs

J People

J
Updates

The Book Update- O- Mafic news

Wondering whether your book collection is up to date? Wonder no more, on each book page we've

•provided handy color-coded flags to tell you which books are still au courant and which are

I shockingly obsolete, with links to find the current ones and prevent inadvertent obsolesence. (Since

the Internet is involved, of course, this can happen in a blink of an eye.)

Latest edition Up to date, rush out and get at least one copy if you don't have it already.

http:/Avww.redhat.com/ ^P s£

25k Part IV: UNIX and the Net

Highlight the bookmark you want to edit, and select EdiK>Bookmark
Properties to change it or EditCDelete to delete it.

Searching for info

Of all the Web directories (or search engines, as they're known), the best is

AltaVista, at http : //al tavi sta . di gi tal . com/. Enter keywords you want
to search for, and Alta Vista begins searching through millions of Web pages

around the world.

Another good bet is Yahoo, at http:// www .yahoo.com/. The Yahoo home
page has links to categories and subcategories and, a couple of levels down,
to interesting pages all over the Internet.

Several search engines are available to you by clicking the Search button on
the toolbar.

For a list of the search pages we find useful, check out http : //

net . gurus . com/f avori te . phtml — you see a list of some of our favorite

Web sites too.

If you think that you'll use AltaVista or Yahoo a great deal, add them to your

bookmarks by choosing BookmarksOAdd Bookmark from the menu.

Files on the Web
You can use Netscape to download files from FTP servers. Follow these

steps:

1. Choose FileOOpen Page (or press Alt+O or click the Location box
near the top of the window).

Netscape asks for the URL of the information you want, using the dialog

box that was shown in Figure 18-12.

2. In the URL box, enter a URL like this:

ftp: //hostmachine/

In place of hostmachine, type the name of the FTP server. Don't forget

the two slashes before it and one slash after it.

3. Click OK.

Netscape connects to the FTP server, logs in as anonymous, and
displays the root directory of the system. Items with a little folder icon

are directories, and clicking them moves to that directory. Items with

little paper icons are text files. Items with a little block of ones and
zeroes are binary information.

Chapter 18: Web Surfing for UNIX Users 255

4. Move to the directory that contains the file you want.

5. Click the file with the right mouse button to download it.

Using the right button pops up a menu instead of displaying the link.

From the menu, choose Save Link As. Netscape asks where to put the

file and then retrieves the file and stores it on your disk.

leinettinq With Netscape

If you see a URL that begins with telnet, you can use Netscape to run a

telnet program for you and look at particular information on other systems:

1. Choose FileOOpen Page (or press Ctrl+O).

2. In the URL box, enter the URL that begins with t el net.

Netscape starts an xterm window running telnet, which connects to the

Internet host computer, asks you for the username and password to

use, and displays whatever the information that the URL describes.

This telnet program is the same one you can run directly. See Chapter 16 for

details.

256 Part IV: UNIX and the Net

Chapter 19

Turbocharge Your Newsreading

In This Chapter

What is Usenet?

What's a newsreader?

Running trn

Selecting newsgroups

Selecting threads

Reading articles

Responding to articles

) Killing the boring stuff

Understanding how t i n works

Understanding how Netscape Collabra works

••

J\lo\. long after e-mail was invented, some people in North Carolina

w thought that having a distributed bulletin-board system would be

neat. People could send messages from their local machine, the messages

would be distributed to a couple of other machines, and users on all the

machines could see all the messages. These folks figured that this system

would be popular and could handle dozens of messages per day.

They were right: It's popular. Most of the machines are now connected via

the Internet, although plenty of dial-up links still exist, and more than

100,000 machines are now hooked up, with sites on every continent. (We
hear that a machine is even on the Internet at one of the research stations in

Antarctica.) The system handles about 100,000 messages totaling more than

a gigabyte (that's a billion keystrokes) of text every day. This monster is

known as Usenet, or sometimes net news.

258 Part IV: UNIX and the Net

How to Read So Much Electronic Gossip

That \!ou Hatfe No Time Left to Work
Usenet messages are filed in topic categories called newsgroups, of which
more than 20,000 exist. Newsgroup topics range from technical discussions

of computer architecture to gossip about old trains, nudism, and intermi-

nable political arguments. Reading all this stuff could take a large chunk of

your workday (about 24 hours daily, or perhaps slightly more). Fortunately,

the standard newsreading programs enable you to specify which groups you
want to see and which ones you don't. You can identify, within groups, the

topics and authors in which you are or are not interested.

Because many of the computers that run Usenet are UNIX systems, many
newsgroups discuss UNIX topics. Usenet can be a good way to find other

people with questions and comments about UNIX. In Chapter 27, we list

some UNIX-related newsgroups.

If you get Usenet, you can probably send out your own Usenet messages.

Please resist the urge to do so until you have been reading news for a few

weeks, so that you have an idea of what's appropriate to send and what
isn't. Also read the newsgroup called news, announce, new users; it con-

tains helpful advice for new Usenet users.

The most amazing thing about Usenet is who's in charge of it: no one. It's

just a big, informal, cooperative setup. The programs most commonly used

to file and transfer news were written by a guy in Cambridge, Massachusetts,

who probably should have been working on his regular job instead. The
various newsreading programs come from educational and commercial

sites all over the world. The money to pay for the network time is, by and
large, hidden in corporate telephone budgets. It's the definitive example of

pioneer networking.

For general information about Usenet newsgroups, see Chapter 13 in

MORE Internet For Dummies, 4th Edition, which we wrote (IDG Books
Worldwide, Inc.).

To use Usenet, you have to learn these three Important News Skills:

v* How to read the news that interests you

v^ How not to read the news that doesn't interest you, because much
more news is sent every day than any single human could ever read

*> How to post articles of your own (definitely optional)

Not every UNIX system gets Usenet newsgroups. Some employers have the

benighted idea that spending hours every day reading alt. fan . power

.

rangers and rec . sports . basebal 1 . ny-mets may not be the absolute

,^\NG/

Chapter 19: Turbocharge Your Newsreading 259

best use of your time. If none of the newsreaders in this chapter works on
your system, come up with some plausible reason to read newsgroups and
talk to your system administrator or Internet provider. ("Gee, I really need
up-to-date information about widgets, so I have to be able to read the

comp . gi zmos . wi dgets newsgroup everyday")

HovO bo I Read It)

Most UNIX systems have at least one program for reading Usenet news-

groups — these programs are called newsreaders. The most basic is r n ; more
powerful versions are called things such as trn and nn and tin. This chapter

describes trn in detail because it's our favorite and describes ti n a little, too.

Many systems provide at least one of these programs for reading Usenet

newsgroups. At the end of this chapter, we nod in the direction of graphical

newsreaders, such as Netscape Collabra, for you X Windows users.

Note: UNIX newsreading programs tend to be really, really picky about the

capitalization of the commands you type. For example, pressing the lower-

case letter r may do one thing, and pressing an uppercase R may do another.

In this chapter, we tell you for each and every command whether to type a

lowercase or uppercase letter. When in doubt, type just what you see in this

book.

Running trn

fllNG/

The trn program is a major improvement over rn, on which it is based,

because it is threaded (in fact, its name stands for mreaded readnews). In

newsgroup lingo, a thread is an article along with all its follow-up articles,

including follow-ups to follow-ups, and so on. The program can organize all

the articles in a newsgroup into threads, list them, and enable you to choose
the topics that look interesting. This capability makes it easy to find the

wheat from among the chaff (the articles of interest amid all the surrounding

dreck).

Editor swamp alert

If you decide to respond to articles, either by

e-mail or by posting a follow-up article, your

newsreader runs a text-editing program. We
can't predict which one it is because it

depends on the way the system is set up. It's

probably either vi or emacs. Neither is par-

ticularly easy to use (refer to Chapter 10).

260 Part IV: UNIX and the Net

To run t rn, just type trn— simple enough. If your system doesn't have it,

tough luck. Skip ahead for information about nn or ti n. This section de-

scribes trn Version 3.6, by the way.

If you find that trn can't perform all the commands we tell you about in this

chapter, you may have to tell it specifically that you plan to use all of its

features. To do so, type trn -x -X to run it.

Remember your first time)

The first time you run trn, it checks in your home directory to see whether

you have a file named . news re. (Yes, the filename begins with a period.)

You may not have noticed the file because the period at the beginning of the

filename makes it hidden in normal file listings. The . news re file stores

information about which newsgroups you subscribe to and which messages

you've already read in each one. (For the gory details about . news re, see

the section "Remembering where you've been and what you've done," later

in this chapter.)

If you've ever run any newsreader, it created this file. If not, trn just makes
you a brand-new one, in your home directory. It also figures that you must
be a newbie, so it displays some (allegedly) helpful messages. Press the

spacebar to make them go away.

This new . news re file is a list of every blessed newsgroup your system

carries, and the list can be long. This first time you run trn, you have to go

through them and unsubscribe to the groups you don't plan to read. Don't

worry— you can change your mind later and subscribe again. For each

newsgroup in the list, it asks whether you want to read it, to which you reply

y or n. If you get tired of answering questions, press Shift+N to tell it not to

subscribe to any more groups. (You can go back later and pick up ones you
may have missed.)

After the first time

After you've run trn once, it remembers which newsgroups you are inter-

ested in and asks you about only those you subscribe to.

When new newsgroups are created, which happens every day now that

Usenet is getting to be so popular, you have to decide whether to add them
to your . news re file. You see a message similar to the following one, de-

pending on the name of the new newsgroup:

Newsgroup alt .binaries, sounds. uti 1

i

ties not in .newsrc -- subscribe? [ynYN]

Chapter 19: Turbocharge Your Newsreading 2V 1

To subscribe to the newsgroup and begin reading it now, press y (that's a

lowercase y). To skip it forever, press n (again, a lowercase one). To add all

the new newsgroups, press Shift+Y. To tell trn not to ask you about any of

the new groups, press Shift+N.

If you choose to subscribe to a newsgroup, you see this message:

Put newsgroup where? [$
A .Lq]

The various potions in the square brackets control exactly where in your
. news re file you want to put this newsgroup. To put it at the end, just press

the spacebar.

The trn program thoughtfully lets you know whether you have e-mail

waiting. If so, it says (Mai 1) at the beginning of some prompts.

Choosing Nertsqxoups to Read
For each newsgroup in your . news re list, trn suggests that you read its

articles. If this is your first time, the newsgroup is probably news. announce,

newusers, the newsgroup for folks who are new to newsgroups. It's not a

bad idea to peruse these articles, but we get to that topic later. The way trn

suggests a newsgroup is with this message:

67 unread articles in news .announce. newusers -- read now? [+ynq]

(The number of messages varies.) The [+ynq] tells you possible responses:

U* Press + (the plus sign, which is usually Shift+=) to see the list of threads

for this newsgroup so that you can select which threads to read. (If you
choose this option, skip down to the section "Picking Up the Threads,"

later in this chapter.)

i* Press y (lowercase) to go ahead and look at the newsgroup article by
article. (If you choose this one, skip down to the section "Reading the

News," later in this chapter.)

*> Press n (lowercase) to not read this newsgroup, at least not now. You
see the next newsgroup on its list.

*> Press q (lowercase) to quit trn altogether.

You can also press u (lowercase) to unsubscribe from the newsgroup so

that you're never bothered by it again.

262 Part IV: UNIX and the Net

If you always like to look at the thread selector for a newsgroup, you
can make pressing + (go to the thread selector first) the default for the

newsgroup rather than y (go directly to reading articles). When trn asks

whether you want to read the newsgroup, press t (lowercase). This choice

turns thread selection on for this newsgroup, assuming that it was off. (If it

was already on, this choice turns it off.) For each newsgroup, trn remem-
bers whether you like to select threads first and presents the appropriate

default so that if you press the spacebar, you get what you want. We invari-

ably prefer to see the thread selector unless the group has so few messages
that it's easier to look at all of them.

Commanding trn
When trn gives you a list of possible commands in square brackets (such as

[+y nq]), you generally can press any of the options that are listed. Don't

press Enter— trn moves along right away as soon as you press a key. Also,

you can press the spacebar to choose the first option in the square brackets

(this one is the default option).

Occasionally, commands are more than one letter long, usually because they

enable you to specify extra information, such as a filename in which to save

a message. Commands that are longer than one letter must be followed by
pressing Enter so that trn knows when you're finished typing.

While you're reading the news, trn always does one of four things:

v Offers a newsgroup to read

v* Displays a list of threads to choose among

v Offers an article to display

i> Pauses while it displays an article that is too long to fit on-screen

Confusingly, different commands work in these four situations. Luckily, you
don't have to use many commands very often, and trn suggests the most
likely options.

You can press h (lowercase) at any time to see trn's online help. It's rather

concise but can certainly be helpful, especially as a reminder.

Picking Up the Threads
It's about time to read some news! When trn asks whether you want to read

a newsgroup and offers the options [+ynq], press + (the plus sign) to see

the list of threads for the newsgroup. You see a list of threads (topics) like

the one shown in Figure 19-1.

Chapter 19: Turbocharge Your Newsreading 203

Figure 19-1:

What topics

are we
talking

about?

Fjlc Edit Qisconncct Settings Metwork Help

nets announce newusers

David
David
David
David
David
David
David

Lawrence
Lavrence
Lawrence
Lavrence
Lawrence
Lavrence
Lavrence

Stephanie Silva
Stephanie Silva
Stephanie Silva
Stephanie Silva
Stephanie Silva
Stephanie Silva
Stephanie Silva
Stephanie Silva
Ron Dippold
Mark Moraes
Mark Moraes

40 articles (moderated)

List of Active Newsgroups . Part I
>List of Active Newsgroups. Part II
Alternative Newsgroup Hierarchies. Part I
Alternative Newsgroup Hierarchies. Part II
Mailing Lists Available in Usenet
List of Moderators for Usenet
Hov to Create a New Usenet Newsgroup
Publicly Accessible Mailing Lists. Part 1/8
>Publicly Accessible Mailing Lists. Part 2/8
>Publicly Accessible Mailing Lists. Part 3/8
>Publicly Accessible Mailing Lists. Part 4/8
>Publicly Accessible Mailing Lists. Part 5/8
>Publicly Accessible Mailing Lists. Part 6/8
>Publicly Accessible Mailing Lists. Part 7/8
>Publicly Accessible Mailing Lists. Part 8/8
Usenet Newsgroup Creation Companion
Changes to 'USENET Software: History and Sources'
Changes to *Vhat is Usenet?"

— Select threads (date order) Top 45X [>Z]

21

The top line of the screen shows the name of the newsgroup (in this ex-

ample, it's news . announce . newusers), along with the number of articles

waiting to be read and whether it is moderated. (Moderated newsgroups
have editors who control which messages get posted.)

Underneath that is a list of articles, organized into threads. Each thread is

assigned a letter, down the left edge of the screen. (The list skips some
letters, which are used for commands.) For each article, you see the author

and the subject line.

The bottom line of the display tells you to choose some threads and tells

you whether there are more articles than will fit on the screen (there usually

are). For example, Figure 19-1 contains the top 45 percent of the articles in

the newsgroup.

If you want to read the articles in a thread, press the letter assigned to the

thread. A plus sign appears next to the thread letter, showing that this

thread has been chosen. (If you change your mind, press the thread's letter

again to deselect it.)

To see more threads, press > (which is usually Shift+. [period]). You can tell

when you get to the end of the list of threads when you see Bot on the

bottom line of text.

To back up and see previous pages of threads, press < (which is usually

Shift+, [comma]). To begin at the beginning again, press A (Shift+6), or to go

to the end, press $ (Shift+4).

26k Part IV: UNIX and the Net

When you've chosen the threads you want, use one of these commands:

i> Press Shift+X to mark all the articles in all the threads you didn't choose
as having been read already so that t rn doesn't ask you about them
again. Then begin reading the articles in the threads you did pick.

v Press Shift+N to forget all about this newsgroup and look at the next

one on your . news re list. Or press Shift+P to move to the preceding

newsgroup.

Reading the Aleuts

If you pressed Shift+X after choosing the threads you wanted or if you
pressed y when trn first asked about the newsgroup, trn begins showing

you the articles one at a time. First, it shows you the article's headers, as

shown in Figure 19-2.

Chapter 19: Turbocharge Your Newsreading 205

i** If the article doesn't interest you, press
j
(a lowercase/) to "junk" the

article. This choice marks the article as read (so that it doesn't offer it

to you again later) and goes to the end of the article.

i> If the entire topic is boring and you don't want to see any more articles

that have the same subject line, press k (a lowercase /?) to kill the topic.

You skip any articles in this thread (or any other thread) that have the

same text in the subject line.

v* To quit looking at this newsgroup (for now, anyway), press q. The
program asks you about the next newsgroup in your list.

At the end of the article, trn asks:

End of article 757 (of 818) -- what next? [npq]

Again, you have lots of options:

v* To see the next article you haven't read yet, press n (lowercase) or

press the spacebar.

W To see the preceding unread article, press p (lowercase). (If you've

already read all the previous articles, nothing happens.)

v^ To see the same article again, press Ctrl+R.

u* To move the first article in the next selected thread, press > (Shift+.

[period]).

*-" To quit reading this newsgroup, press q (lowercase). The program asks

whether you want to read the next newsgroup in your list.

j> To kill (mark as read) all articles that have this subject line, press k

(lowercase k).

*> To kill the entire thread, including articles with a different subject line,

press Shift +J.

Rot what?
Usenet has a system for protecting you from

gross, disgusting, obscene, or otherwise of-

fensive articles. Offensive articles can be

posted by using a simple code called Rot 13. If

you try to read an article and it appears as

gibberish, you can press Ctrl+X to start the

article over and decode it as it goes. But don't

complain to us (or anyone else) if it offends

you! Incidentally, if you press Ctrl+X by mis-

take and want to read the article au nature!,

press Ctrl+R to redraw it normally.

266 Part IV: UNIX and the Net

Searching for something

You can use trn's search command to find

articles that contain a particular word or set of

characters in the subject line, anywhere in the

header, or anywhere in the article. To search

for articles that contain text in the subject line,

type this command:

/text

If you want to look for articles that contain text

anywhere in the header, type this command:

/text/h

For articles that contain text anywhere in the

text of the articles themselves, as well as in

the headers, type this command:

I textI a

To search backward through previous articles,

press ? rather than / in any of these commands.

W If you are way behind on reading this newsgroup and you want to give

up the idea of ever catching up, press c (that's a lowercase c). The
program marks all the unread articles in the newsgroup as read. The
next time you read this group, you see only the new articles.

j> If you have lost interest in this newsgroup, press u (lowercase u) to

unsubscribe from it.

File It, Ptease
You can save the text of an article in a file if you want to transfer it to

another machine, include it in a word-processing document, or just plain

keep it. Follow these steps:

1. When you are at the end of an article you want to save, type this

command:

s filename

Press lowercase s, and replace fi 1 ename with the name you want to

give to the file that contains the article.

If the file already exists, trn sticks the article at the end of it. (This

feature works well when you want to save an entire series of articles in

a file: As you save each article, trn adds it to the end of the file.)

If the file doesn't exist, trn asks which kind of file to make:

File /usr/margy/News/save. it doesn't exist

use mailbox format? [ynq]

Chapter 19: Turbocharge Your Newsreading 2 \) /

2. To save the article in a regular text file, press n (lowercase). To save

it in the kind of file in which mail programs store e-mail messages,
press y (lowercase).

If you don't tell trn otherwise, it saves files in a directory named News in

your home directory. You can enter a pathname if you want to put the file

elsewhere. Use a tilde (~) to tell trn to put a file in your home directory:

s -/article. about. chickens

We find that saving messages in mailbox format is most convenient because
then we can use a mail program such as Pine or el m to handle files of saved
articles. (The only difference between a mailbox file and a non-mailbox file

is that a mailbox has a separator line before each message.)

When Is an Article Not Really an Article)

Sometimes a news article contains not plain text, but rather a coded version

of a binary file or group of files. You can sneak files into articles in two
common ways: uuencoding and using shar files.

We introduce uuencoding and shar files in Chapter 12, where we explain

how to attach files to e-mail messages; in case you skipped that chapter,

however, we describe them again here. In a uuencoded message, a single

binary file is turned into a bunch of ugly-looking text:

begin 644 sample

M5V]W(2!)9B!Y;W4@86-T=6%L;'D@=
, EP960@:6X@=&AKR!W:&]L92!F:6QE

M(&%N9"!U=61E8V]D960@:70@<W5C8V5S<V9U;&QY+'T*>61U)W)E(&$@<F5A

M;&QY(&lE9&EC871E9"!R96%D97(N(B !$<F]P('5S(&$@;F]T92!A= n
!M;W)E

M=6YI>$!I96-C+F-0;2!A;F0-"FUE;G1I;VX@<V5C<F5T(&-09&4@6#$S+@T*

"#0H*
f

end

Usually, uuencoded files are much longer than this one, although they're all

equally ugly. Really long ones are often split across several news messages
to keep each individual article to a reasonable size. Uuencoded files are

most often found in groups such as comp . bi nari es .ms-wi ndows, in which
case they're runnable programs, or in groups such as al t . bi nari es .

p i c t u r e s . e r o t i c a , in which case they're digitized pictures of, er, various

stuff.

268 Part IV: UNIX and the Net

A shar file (short for shell archive) contains a group of files. Although the

files most often contain program source code, they can contain any text

files. Here's a short example:

#!/bin/sh

This is a shell archive (produced by shar 3.49)

To extract the files from this archive, save it to a file, remove

evervthina above the "!/bin/sh" line above, and tvDe "sh
file_name" .

#

made 05/25/1997 01:43 UTC by johnl@iecc

Source directory /usr/johnl

#

existing files will NOT be overwritten unless ~c is specified

#

This shar contains:

length mode name

#

112 -rw-rw-r-- poem

#

^ =============
p 0em

==============

if test -f 'poem' -a X"$l" != X"-c"; then

echo 'x - skipping poem (File already exists)'

el se

echo 'x - extracting poem (Text)'

sed 's/ A X//' << 'SHAR_E0F' > 'poem' &&

I eat my peas with honey

I ' ve done it all my life

It makes them taste real funny

But it keeps them on my knife.

SHAFLEOF

chmod 0664 poem
|

|

echo 'restore of poem failed'

Wc_c="~wc -c < 'poem'
*

"

test 112 -eq "$Wc_c"
|

|

echo 'poem: original size 112, current size' "$Wc_c"

fi

exit

The trn program makes it easy to extract the useful bits from uuencoded or

shar files. When you see this type of message, you can extract its contents

by pressing e (lowercase) followed by the name of the directory in which to

extract it. (If you just press e and then press Enter, trn uses your News

directory.) Multipart uuencoded files are also handled more or less auto-

matically. After you extract the contents of the first part of a uuencoded
message, trn says (continued), and it's up to you to find the next part and
press e again. After the last part, it says Done. Shar files are extracted in the

Chapter 19: Turbocharge Your Newsreading 2 y

H\NG/

same way as uuencoded files, except that there's no such thing as a multi-

part shar file. (Large programs may be multipart messages, but each one is

a separate shar file.)

Shar and uuencode files present some enormous potential security holes.

Shar files are really no more than lists of commands for the UNIX shell that

create the files to be extracted. Although this setup offers considerable

flexibility, it also means that a prankster can stick in some commands you
would just as soon not execute, such as ones that delete all your files. Shar

files from moderated groups (groups in which all the messages are examined
and approved by a third party before being sent out) are generally okay, but

the files in other groups are only as reliable as the people sending them.

Shar scanning programs are available that scan shar files for untoward
commands. Check with your system manager to see whether any of these

programs is available on your system.

Uuencoded files of pictures are unlikely to cause any trouble, other than the

hair on your palms you may get from looking at some of them. Uuencoded
binary programs should be treated with the same skepticism as any other

binary programs. Again, the ones that come from moderated groups are pretty

safe; others are less so. A scan with a virus checker is always appropriate.

beating rtith Articles That

Demand a Response
If you read an article that demands a response, you have two options:

Respond privately by sending e-mail to the person who wrote it, or post a

follow-up article to the newsgroup. This list shows you how to decide which

way to go:

j> If your response will be of interest to only the person who wrote the

article, send e-mail.

v* If you are really mad, take a walk before doing anything. If you're still

mad and you just have to reply, send e-mail.

*> If the original article contains errors that everyone reading it should

know about, post a follow-up article, but only after checking that 12

other people haven't already done the same thing.

j> If you have additional information about the subject that will be of

universal interest to those reading the original article, post a follow-up

article.

270 Part IV: UNIX and the Net

Responding privately by e-mail

When you are at the end of an article to which you want to respond pri-

vately, these steps show you what to do:

1. Decide whether you want to quote parts of the article in your e-mail.

If you do, press Shift+R. Otherwise, press r (lowercase).

You see a bunch of confusing messages, followed by a question about
including a prepared file.

2. Assuming that you have not prepared a text file in advance that you
now want to include in your e-mail, press Enter to tell trn not to

include any file.

The program now asks which editor you want to use.

3. If you don't like the editor it suggests, type the command you use to

start your editor. Otherwise, just press Enter.

The trn program runs the editor. If you chose to include the text of the

original article, it is already sitting on-screen, indented to show that

you are quoting it. The headers for the e-mail are at the top of the

screen too.

4. Delete unnecessary text.

Be sure to delete the boring header lines from the original article (not

the ones that address your e-mail message, at the top of the screen —
the ones that are quoted from the original article). Also delete parts

of the article that you don't plan to discuss in your e-mail message.

Pare the quoted text to the minimum, just enough to remind

the person what article it is you just read and are responding to.

5. Type your reply. Be clear, polite, and reasonable.

6. Save your message and exit from the editor, using whatever com-
mands work in your editor.

The program asks:

Check spelling, Send, Abort, Edit, or List?

7. To run a spelling checker, press c (lowercase). To forget all about
sending this e-mail, press a (lowercase). To return to the editor to

make one more little change, press e (lowercase). To send the mes-

sage, press s (lowercase). Then press Enter.

The program asks whether you want it to stick your signature file at the

end of the message. (A signature file is a file called .signaturein your

home directory, and it contains your name, return address, and other

info.)

Chapter 19: Turbocharge Your Newsreading 271

8. Press y or n (both lowercase) and press Enter.

You return to you where you left off— right at the end of the article you
just responded to.

You can press r (lowercase) to send an e-mail message to anyone, not just to

the person who wrote the article you just read. If you suddenly get the urge

to write a note to your mom, press r and follow the steps to enter the editor.

After you are editing your response, you can change the To line to any
address you want, rather than to the article's author, and the Subject line

to any subject.

Possibly making a fool of yourself

Okay, you've decided to take the plunge. You have something so interesting

to say that you want to post it publicly, where it can be read, appreciated,

savored, misconstrued, or laughed at. Here's how to do it:

1. Press Shift+F to tell trn that you want to post a follow-up article, and
include some or all of the original article.

The program gives you a sage warning:

This program posts news to thousands of machines throughout the entire

civilized world. Your message will cost the net hundreds if not

thousands of dollars to send everywhere. Please be sure you know

what you are doing.

Are you absolutely sure that you want to do this? [ny]

2. If you have thought better of it, pres n and press Enter. You can
always send an e-mail message to the article's author and then decide

to go public later. If you still want to post an article, press y. Then
press Enter.

The program asks whether you want to include a prepared file (a text

file you've already written).

3. Assuming that you have not prepared in advance a text file you now
want to include in your article, press Enter to tell trn not to include

any file.

The program may ask which editor you want to use. Or it may just

dump you into an editor, probably v i

.

4. If you don't like the editor it suggests, type the command you use to

start your editor. Otherwise, just press Enter.

The trn program runs the editor. If you chose to include the text of the

original article, it is already sitting on-screen, indented to show that

you are quoting it. The headers for your follow-up article are at the top

of the screen, too.

272 Part IV: UNIX and the Net

Look at the Newsgroups : line at the top of the message. It lists the

newsgroups to which this article will be posted.

5. Delete any newsgroups that wouldn't be interested in your article.

6. Move down to the beginning of the text of the article you are reply-

ing to, and delete unnecessary text.

Be sure to delete the boring header lines along with any parts of the

article you don't plan to refer to. Pare the quoted text to the minimum,
just enough to remind newsgroup readers what exactly you are re-

sponding to.

7. Type your reply. Be clear, polite, and reasonable.

8. Save your message and exit from the editor, using whatever com-
mands work in your editor.

Lines in Usenet articles are usually limited to 70 characters. If any of

the lines in your article is longer than that, trn warns you about it so

that you can go back and fix it. Then trn gives you this choice:

Check spelling, Send, Abort, Edit, or List?

9. To run a spelling checker, press c. To forget all about posting this

article, press a. To return to the editor to make one more little

change, press e. To send the message, press s. Then press Enter.

Your article wings out across the universe, and trn displays a mes-

sage confirming it. Then you are back at the end of the article you
responded to.

When you post an article to an unmoderated newsgroup, the article is

distributed directly all over the Internet. When you post to a moderated
newsgroup, the article is e-mailed to the person (or group) who moderates

the newsgroup. The moderator decides whether the article is appropriate to

post. You generally get an automated response from the moderator's com-
puter and sometimes follow-up mail from the moderator.

Before sending a real posting to a real newsgroup, experiment in the misc.

test newsgroup, which exists exactly for this purpose. You won't annoy
anyone by posting to mi sc . test — no one reads the message there anyway.

Being Original

You can post an article that isn't a follow-up to any other message. That is,

you can launch a brand-new thread on a brand-new topic, if you want.

To do so, press f when you are reading the newsgroup to which you want to

post the article. The program asks whether you want to respond to the

Chapter 19: Turbocharge Your Newsreading 2 73

article you just read or start a new topic. Press y to start a new topic, and
type the subject of the article when trn asks.

Fiddling urith \lour Netfsgwups
When trn offers a newsgroup for you to read, you can give dozens of com-
mands. In addition to the four commands listed earlier in the chapter

(+, y, n, and q), you can use this command to add or delete newsgroups
from your list:

j> To delete a newsgroup from your list (that is, to unsubscribe to it),

press u (that's a lowercase if).

u* To add a newsgroup that's not on your .news re list, type this command:

g newsgroupname

Replace newsgroupname with the exact name of the newsgroup. For

example, if you are interested in naturist activities, type this command:

g rec.nude

j> If you are not sure of the exact name of the newsgroup you are looking

for, type

a text

Replace text with a word or part of a word. For example, if you are

interested in gardening, type

a garden

If trn finds any newsgroups with names that contain those characters,

it asks whether you want to subscribe to each one. Press y or n to

subscribe or not. When trn asks where to put the newsgroup, just

press the spacebar.

&£a*

Remembering Where you've been

and What you'tfe done
All newsreading programs store information about your particular prefer-

ences and situation, including which newsgroups you subscribe to and
which messages you've already read. (Because messages in each newsgroup
are numbered, the newsreader can just remember the range of message

21k Part IV: UNIX and the Net

numbers you've seen.) The information is stored in a file named . news re.

Whether you use rn,trn,ornnto read the news, they all share the informa-

tion in the . news re file. This file is the way most newsreading programs don't

forget all about what you've subscribed to and what you've already read.

To look at your . news re file, when trn asks whether you want to look at a

newsgroup, press Shift+L. You see a listing like this:

Status N

Chapter 19: Turbocharge Your Newsreading 2 75

When t rn asks whether you want to read a newsgroup and you want to

move this newsgroup to a different location in your list of newsgroups, press

m and then Enter. Then press one of these options:

v Press A to put it first.

v Press $ to put it last.

v* Press a number to tell trn what line number to put it on in your
. newsrc file.

v* Press + and the name of another newsgroup to put it after that

newsgroup.

*> Press q (lowercase) to forget the whole thing.

Kitting Articles That Displease \lou

We abhor violence as much as you do, but sometimes you gotta do what you
gotta do. An ugly fact of Usenet life is that a great deal of garbage appears in

newsgroups, mixed in with the good stuff. One powerful method of avoiding

the garbage is to use trn's thread selector, described earlier in this chapter,

in the section "Choosing Newsgroups to Read." A more permanent method
is the kill file.

What's a kilt (He)

The trn program has two kinds of kill files: your global kill file, which
applies to all your newsgroups, and kill files for each newsgroup. Both types

of kill files contain information about which types of Usenet messages you
never, never want to see. Because trn simply skips over messages de-

scribed in your kill files, they never bother you.

For example, what if some idiot decides that it is very funny to send gross

and useless messages to a newsgroup you like to read. You can skip over

them, true, but wouldn't it be nice to just tell trn, "Look, if you get any
message from that idiot, ignore them! I don't want to see them!" With kill

files, you can.

Alternatively, if you are interested in only a small subset of the articles in a

newsgroup, you can tell trn, "In this newsgroup, I want to see only articles

that contain thus-and-such in the subject." Rather than kill a group of

articles, you can kill all except a group of articles. You can use kill files to

select articles, too.

276 Part IV: UNIX and the Net

The global kill file contains a list of commands that trn executes every time

you begin reading a newsgroup. Newsgroup kill files contain the commands
that trn executes when you enter that particular newsgroup. The com-
mands usually tell trn which articles to kill (that is, ignore and never show
you) or select (that is, ignore all the other articles). Your global kill file is

stored in your News directory and is named KILL.

The kill files for each newsgroup are stored in subdirectories of your News

directory. For example, your kill file for the rec. humor. funny newsgroup is

stored in News /rec/ humor/ funny/ KI LL.

Using newsgroup kill files is usually better than using the global kill files

because the types of articles you want to kill or to select tend to differ

widely from newsgroup to newsgroup. If trn has to execute a bunch of

unnecessary commands at the beginning of each newsgroup, it can slow

down your newsreading. On the other hand, an unfortunate spate of adver-

tisements has been posted to every newsgroup in the known universe (a

practice known as spamming, which is an insult to the Spam brand meat-

type product) for which a global kill file is the best response.

Killing newsgroup articles has nothing to do with killing UNIX processes

with the kill command, as described in Chapter 24. Just thought you may
be wondering.

License to kill

You can add commands to your newsgroup kill file when you are choosing

the threads to read, but the best time is when you are reading articles. When
you are looking at a particularly obnoxious article, here's how to draw some
blood:

1. Press Shift+A.

This step adds a command to the newsgroup kill file, telling trn what to

do with all articles that have the same subject as this article, both now
and in the future, forever.

The program then asks [+j . ,] (surely one of the most inspired

prompts of all time) — this is its way of asking what exactly you want

to do with these articles.

2. To kill (skip) all the articles, press j (lowercase). To kill all the articles

as well as any replies to them, press
,
(a comma).

A faster way of killing articles on the same subject as the current article is

by pressing Shift+K. This method is the same as typing Aj.

Chapter 19: Turbocharge Your Newsreading 2/7

Narrowing your i/ieW

Alternatively, you may want to tell t rn that you are interested only in

articles about a certain subject, now and forever. When you are looking at an
article on that subject, press Shift+A (uppercase). Then press + to look at

only articles about that subject. Or press . (period) to look at only those
articles and replies to them.

Editing the kill file

You can use a text editor to look at what's in your kill file and make some
changes. To edit your global kill file, wait until trn is asking whether you
want to read a newsgroup. Rather than answer, press Ctrl+K. To edit a
newsgroup kill file, when you are reading that newsgroup, press Ctrl+K.

Either way, trn runs a text editor and loads up the appropriate kill file.

Each line in a kill file contains one command, telling t rn to either skip all

articles that fit a certain description or to look only at articles that fit a
description. The first line in a kill file tells trn the message number of the
latest message that trn has looked at, as in this example:

THRU 13567

Commands look like this:

/Buzz off, buddy!/:]

The text between the slashes tells trn what text to look for in the subjects

of articles. The character after the colon (ay, in this example) tells trn what
do with the articles:/ to junk them, a comma to junk them and their replies,

a + to select only them, and a period to select only them and their replies.

Not exactly easy to remember!

Here's another example: Suppose that you read the newsgroup
news, groups, which is where discussions about new newsgroups take

place. However, it can have several hundred messages a day. You are

interested only in articles that have anything to do with cats. To see only
those articles, you can add the following line to the kill file for the

news .groups kill file:

/cat/:+

This command selects all articles with a subject line that contains the

word cat.

21

S

Part IV: UNIX and the Net

Aleu/ hope for the dead
If you add a command to a kill file and then change your mind, the only way
to get rid of it is to edit the kill file. When you are in the newsgroups, press

Ctrl+K to edit the file. Look for the command (if it's the last one you created,

it's at the end of the file). Using your editor's commands, delete the whole
line or modify it until it does what you want.

Usinq tin
Another newsreader worth looking at is tin, written by Iain Lea, at Siemens

in Germany. Because this program makes superior use of a terminal screen,

many users prefer it over the other leading brands.

Start ti n by typing tin (tricky, eh?). You see a screen like the one shown in

Figure 19-3.

Figure 19-3:

t i n shows

you some

newsgroups.

~~J

Chapter 19: Turbocharge Your Newsreading 2 / v

Choosing newsgroups

Your subscribed groups are listed with a line number on the left and the

number of unread articles on the right. You can move up and down by
pressing the cursor keys and PgUp and PgDn or by typing the line number.
To look at the articles in a group, move the cursor to that group's line and
press Enter.

The t i n program updates the index files it keeps for the group (which can
take awhile for a busy group) and then displays a list of articles.

Choosing and reading articles

For each topic, you see a line number, a plus sign if unread articles are

under that topic, the number of follow-ups to the article, the title, and the

author.

To read a particular article, move to the article by pressing the cursor keys
or typing the line number, and then press Enter. Pressing Tab to go to the

next unread article is usually more convenient.

In an article, you can use these keys:

u* Pressing Tab displays the next page of the article or, on the last page,

the next unread article. On the last page of the last unread article,

pressing Tab displays the next group with unread news. (Perhaps we
should offer a "ti n convenience keyboard" that has only a giant Tab
key.)

v If you want to skip to the next article without reading the rest of the

current one, press n to move to the next article or press Shift+N to

move to the next unread article.

j> Press i to go back to the article index (the list of article names) and
press i again to return to the index of newsgroups.

v Most other commands are similar to trn and nn: For example, you
press r or Shift+R to reply to the author of an article, f or Shift+F to post

a follow-up, and c to catch up a group (pretend that you've read it all).

v Press h at any point for a surprisingly readable help screen.

280 Part |V: UN|X and the Net

Getting uuencoded and shar files

out of articles

One thing t i n does quite differently is extract uuencoded and shar files. It's

not hard, but it's not obvious. Follow these steps:

1 . Display the article index for the group with the articles you want to

extract.

2. Move to each article to be extracted (just one for a shar file or one or

more for a multipart uuencoded file) and tag each one by pressing

Shift+T.

The program displays sequential numbers for each article tagged.

3. Tell ti n to save the tagged articles in a temporary file by pressing s.

4. When tin asks for a filename, give it one.

A traditional temporary file name is f oo.

After ti n saves the articles, it asks what to do with them.

5. Press s to extract a shar file or u to extract a uuencoded file.

The program thoughtfully deletes the temporary file if the extract

worked.

6. Press Shift+U to untag the articles you just saved and extracted.

Leading tin
Press q for quit. (You probably guessed that.) The program asks whether it

should catch up all the groups you looked at (that is, mark all unread

articles as read). Press n, and you're finished.

Using Graphical Newsreaders
Several graphical newsreaders are available for UNIX. They don't necessarily

do the job of reading newsgroups any better than their text-based counter-

parts, but they're certainly prettier and arguably easier to learn. If you

prefer clicking buttons with the mouse to typing obscure commands, see

whether any of these is available on your system. The most commonly
encountered graphical newsreaders that run under X Windows are knews,

nn-tk (which, as its name suggests, is based on nn), and Qnews.

Chapter 19: Turbocharge Your Newsreading 28 1

Neutsreadinq With Collabra

The Netscape Collabra newsreader comes bundled with the Netscape
Communicator package. Although it's not a great newsreader, it's free, it

requires no extra setup, and it's conveniently located on your browser's

main menu.

After you have Netscape running, you can open the Netscape Message
Center by choosing CommunicatorOMessage Center or Communicator^
Collabra Discussion Groups. In a stroke of design genius, both commands do
exactly the same thing: They open the Netscape Message Center (as shown
in Figure 19-4), a sort of centralized launching pad from which you can open
any of your Messenger mailboxes or newsgroups to which you may have
already subscribed.

Figure 19-4:

The

Netscape

Message

Center:

Where the

news is.

282 Part IV: UNIX and the Net

Figure 19-5:

All the

news that's

fit to

subscribe

to.

V Netscape

All Groups) Search for a Group] New Groups]

Chapter 20

Grabbing Files from the Net
• • • • •

In This Chapter

Getting files from all over the Internet

! Stashing files all over the Internet

» Lotsa swell stuff for FTP

? Navigating in anonymous land

! Finding files by name

aiowr
f

n Chapter 18, we explain how to use your Web browser to grab files

«C stored on the Internet. Web browsers are definitely the easiest way to

download files to your computer; just find a Web page with a link to the file

and click the link.

If you want to copy to or from a non-UNIX machine, however, or if you want
to retrieve files from a public file archive on a machine on which you don't

have a personal account, you need an industrial-strength file-copying

program. Your Web browser just can't cut the mustard (whatever that

means). Instead, you can use the File Transfer Protocol (FTP) system, which
is widely used on computers all over the Internet.

You can use FTP to transfer files to or from computers on which you have
accounts. You can also use FTP to download (transfer to your computer)
files from any of a bunch of publicly available FTP servers out there on the

Internet. Thousands of public FTP servers are on the Internet, each with

hundreds of files that may be of use, including text, pictures, and programs.

It's just a matter of locating them and downloading them!

After we tell you about how to use FTP, we list some of the big FTP servers

you may want to use.

28tt Part IV: UNIX and the Net

\/ou're a Copying Machine
It's simple to copy a file from one place to another (but don't forget —
computers are involved). Here's how it works: Log in to the other computer
for FTP, and tell it what you want to copy and where you want it copied.

Getting connected

To run the ftp program, you type ftp and the name of the host computer
where the FTP server you want is:

ftp ftp.iecc.com

(That's John's computer. It has files, but perhaps not all that many in which
you're interested, unless you care deeply about techniques for translating

one programming language to another.) Substitute the FTP server's name for

ftp . i ecc . com.

Assuming that the FTP server is not too busy to let you connect, it greets

you with a message like this:

Connected to ftp.iecc.com.

220 iecc FTP server (Version 4.1 8/1/91) ready.

The computer asks for your username and password on the host computer.

If you don't have an account on the computer, don't panic. See the section

"No Names, Please," later in this chapter. (On this particular computer,

unless you happen to be one of the authors of this book, it's extremely

unlikely that you have an account. We're using it as an example.)

If the FTP server likes you, it says something like this:

230 User johnl logged in.

ftp)

The f tp> is the FTP prompt, telling you that it's ready for you to type a

command.

Getting your file

To copy a file from the FTP server (the host computer) to your own com-

puter, use the get command:

get README

Chapter 20: Grabbing Files from the Net 285
Substitute the name of the file in place of README in this command. FTP says
something like this:

150 Opening ASCII mode data connection for README (12686 bytes).

226 Transfer complete.

local: README remote: README

12979 bytes received in 28 seconds (0.44 Kbytes/s)

FTP always tells you much more than you want to know about the transfer.

When it says that the transfer is complete, you have the file.

You have to type the filename by using the syntax the server uses. In

particular, if the server is a UNIX system (as most are), upper- and lower-

case are different, so README, Readme, and readme are different filenames.

Getting out

When you finish transferring files, type the command quit. FTP responds
with this heartfelt message:

221 Goodbye.

Files rtith Finesse

That's basically how FTP works, although you need to know, of course,

about 400 other odds and ends to use FTP effectively.

When is a fife not a (He)

When it's a text file. The FTP definition specifies six different kinds of files, of

which only two types are useful: ASCII and binary. An ASCII file is a text file.

A binary file is anything else. FTP has two modes, ASCII and binary (also

called image mode), to transfer the two kinds of files. When you transfer an
ASCII file between different kinds of computers that store files differently,

ASCII mode automatically adjusts the file during the transfer so that the file

is a valid text file when it's stored on the receiving end. A binary file is left

alone and transferred verbatim.

You tell FTP which mode to use with the bi na ry and asci i commands
(user input is shown in bold):

ftp)

286 Part IV: UNIX and the Net

In the preceding example, the / is for binary or image mode (after 25 years, the

Internet protocol czars still can't make up their minds what to call it), and the

A is for ASCII mode. Like most FTP commands, binary and a s c i i can be
abbreviated by lazy typists to the first three letters — so b i n and a s c suffice.

Hou) to fout up your files in FTP
The most common FTP error that inexperienced Internet users (and experi-

enced users, for that matter) make is transferring a file in the wrong mode.
If you transfer a text file in binary mode from a UNIX system to a DOS,

Windows, or Macintosh system, the file looks something like this (on a

DOS or Windows machine):

This file

should have been

copied in

ASCII mode.

On a Mac, the entire file looks like it's on one line. When you look at the file

with a text editor on a UNIX system, you see strange A M symbols at the end
of each line. You don't necessarily have to retransfer the file. Many network-

ing packages come with programs that do ex post facto conversion from one
format to the other.

If, on the other hand, you copy something that isn't a text file in ASCII mode,
it gets scrambled. Compressed files don't decompress; executable files don't

execute (or they crash or hang the machine); images look unimaginably bad.

When a file is corrupted, the first thing you should suspect is the wrong
mode in FTP.

If you are FTP-ing (Is that a verb? It is now) files between two computers of

the same type, such as from one UNIX system to another, you can and

should do all your transfers in binary mode. Whether you're transferring a

text file or a nontext file, it doesn't require any conversion, so binary mode
does the right thing.

Patience is a virtue

The Internet is pretty fast, but not infinitely so.

When you're copying stuff between two com-

puters on the same local network, information

can move at about 200,000 characters per sec-

ond. When the two machines are separated

by a great deal of intervening Internet, the

speed drops — often to 1,000 characters per

second or fewer. If you're copying a file that's

500,000 characters long, it takes only a few

seconds over a local network, but it can take

several minutes over a long-haul connection.

Chapter 20: Grabbing Files from the Net 28 7

It's often comforting to get a directory listing before issuing agetorput
command, so that you can have an idea of how long the copy will take.

The directory thicket

Every machine you can contact for FTP stores its files in many different

directories, which means that to find what you want, you have to learn the

rudiments of directory navigation. Fortunately, you wander around directo-

ries in FTP in pretty much the same way as you do on your own system. The
command you use to list the files in the current directory is d i r, and to

change to another directory you use the command cd, as in this example:

ftp) dir

288 Part |V: UN|X and the Net

You often find that the directory on your machine in which you start the FTP
program is not the one in which you want to store the files you retrieve. In

that case, use the 1 cd command to change the directory on the local

machine.

To review: cd changes directories on the other host; 1 cd changes directories

on your own machine. (You may expect cd to change directories corre-

spondingly on both machines, but it doesn't.)

What's that name aqain)

Sometimes on your machine, you have to give a file a name that's different

from the name it has on a remote machine. (This statement is particularly

true on DOS machines, on which many UNIX names are just plain illegal, as

well as when you're retrieving Macintosh, Windows 95, or Windows NT files,

which can contain spaces and special characters.) Also, if you need to get a

bunch of files, it can be tedious to type all the get commands. Fortunately,

FTP has work-arounds for both those problems. Suppose that you've found a

file named rose and you want to download it as rose . gi f because it

contains a GIF-format image. First, make sure that you're in binary mode,
and then retrieve the file with the get command. This time, however, you
give two names to get — the name of the file on the remote host and the

local name— so that it renames the file as the file arrives. You do this as

shown in this interaction:

ftp> bin

200 Type set to I.

ftp> get rose2 rose2.gif

200 PORT command successful

.

150 Opening BINARY mode data connection for rose2 (47935 bytes).

226 Transfer complete.

local: rose2.gif remote: rose2

47935 bytes received in 39 seconds (1.2 Kbytes/s)

Next, suppose that you want to get a bunch of the files that begin with ru. In

that case, you use the mget (which stands for multiple GET) command to

retrieve them. The names you type after mget can be either plain filenames

or wildcard patterns that match a bunch of filenames. For each matching
name, FTP asks whether you want to retrieve that file:

ftp) mget ru*

mget ruby? n

mget ruby2? n

mget ruger_pistol? n

mget rugfurOl? n

mget rush? y

Chapter 20: Grabbing Files from the Net 28

y

200 PORT command successful .

150 Opening BINARY mode data connection for rush (18257 bytes).

226 Transfer complete.

1 ocal : rush remote: rush

18257 bytes received in 16 seconds (1.1 Kbytes/s)

mget rushOl? y

200 PORT command successful

.

150 Opening BINARY mode data connection for rushOl (205738 bytes).

local: rushOl remote: rushOl

205738 bytes received in 200.7 seconds (1.2 Kbytes/s)

mget rush02?

If you find that mget matches more files than you expected, you can stop it

with the usual interrupt character for your system — typically Ctrl+C or Del:

Continue with mget? n

ftp) quit

221 Goodbye.

You can even interrupt in the middle of a transfer if a file takes longer to

transfer than you want to wait.

You also can do an express mget, which doesn't ask any questions and

enables you to find exactly the files you want. To tell FTP not to ask you
about each file, use the prompt command before you give the mget com-

mand, as this example shows:

290 Part IV: UNIX and the Net

Here's a file in your eye

Okay, now you know how to retrieve files from other computers. How about
copying the other way? It's just about the same procedure, except that you
use put rather than get. The following example shows how to copy a local

file called rnr to a remote file called rnr . new:

ftp) put rnr rnr. new

200 PORT command successful .

150 Opening ASCII mode data connection for rnr. new.

226 Transfer complete.

local: rnr remote: rnr. new

168 bytes sent in 0.014 seconds (12 Kbytes/s)

(As with get, if you want to use the same name when you make the copy,

leave out the second name.)

The mput command works just like the mget command does, only in the

other direction. If you have a bunch of files whose names begin with uu and
you want to copy most of them, issue the mput command, as shown in this

example:

(As with mget, you can use the prompt command to tell it to go ahead and

not to ask any questions.)

Most systems have protections on their files and directories that limit where
you can copy files. Generally, you can use FTP only to put a file anywhere
that you could create a file if you were logged in directly. If you're using

anonymous FTP (see the section "No Names, Please," later in this chapter),

you usually can't put any files to the other host.

Chapter 20: Grabbing Files from the Net 2 >J /

A bunch of other file-manipulation commands are sometimes useful, as in

this example of the delete command:

delete somefile

(Replace somefi 1 e with the name of the file you want to delete.) This

command deletes the file on the remote computer, assuming that the file

permissions enable you to do so. The mdel ete command deletes multiple

files and works like mget and mpiit do. The mkdi r command makes a new
directory on the remote system (again assuming that you have permissions

to do so):

mkdir newdir

(Replace newdi r with the name of the directory you want to make.) After

you create a directory, you still have to use cd to change to that directory

before you use put or mput to store files in it.

If you plan to do much file deleting, directory creation, and the like, it's

usually much quicker to log in to the other system by using telnet (dis-

cussed in gory detail in Chapter 16) to do your work and using the usual

local commands.

No Names, Please
The first part of this chapter shows you how to FTP to systems where you
already have an account. What about the other 99.9 percent of the hosts on
the Internet, where no one has ever heard of you?

You're in luck. On thousands of systems, you can log in with the username
anonymous. For the password, enter your e-mail address. (This arrangement
is strictly on the honor system — if you lie, they still let you log in.) When
you log in for anonymous FTP, most hosts restrict your access to only

certain directories that are allowed to anonymous users. You can hardly

complain, though, because anonymous FTP is provided free, out of sheer

generosity.

Hetto, anonymous*
When you log in, you frequently get a friendly message, like this one:

230- If your FTP client crashes or hangs shortly after login please try

230- using a dash (-) as the first character of your password. This will

230- turn off the informational messages that may be confusing your FTP

(continued)

292 Part IV: UNIX and the Net

This system may be used 24 hours a day, 7 days a week. The local

time is Wed Aug 12 12:15:10 1998.

You are user number 204 out of a possible total of 250.

All transfers to and from wuarchive are logged. If you don't like

this then disconnect now!

(continued)

230- client.

230-

230-

230-

230-

230-

230-

230-

230-

230-

230- Wuarchive is currently a DEC Alpha AXP 3000, Model 400. Thanks to

230- Digital Equipment Corporation for their generous support of wuarchive.

230-

230-P1 ease read the file README
230- it was last modified on Sat May 17 15:02:13 1997 - 452 days ago

230 Guest login ok, access restrictions apply.

When you're logged in, you use the same commands to move around and

retrieve files as you always do.

*ORK

Chapter 20: Grabbing Files from the Net 203

URLs for FTPing

URLs? Yikes! It's that three-letter acronym

from Chapter 18. More than just a way to de-

note hypertext Web pages, URLs are ways of

naming general Internet resources, including

FTP sites. Here's the way you describe a file

you can get over the Internet by using the

ftp program:

ftp: //hostname /pathname

Suppose that you see this URL:

ftp://rtfm.mit.edu/pub/net/
internet. txt

That means to FTP to rtfm.mit.edu, move

to the /pub /net directory, and get the

i nternet .txt file.

Great Stuff on FTP
Hundreds of gigabytes of stuff are available for FTP, if you know where to

find them. Before you start cruising FTP sites, however, here are a few words
about strategy.

A vford from those etiquette ladies again

Please recall that all anonymous FTP servers (hosts that enable you to log

in for FTP without requiring that you have an account there) exist purely

because someone feels generous. Any or all can go away if the provider feels

taken advantage of, so remember these rules:

u* Pay attention to restrictions on access times noted in the welcome
message. Remember that servers are in time zones all over the world. If

the server says to use it only between 6 p.m. and 8 a.m., but it's in

Germany and you're in Seattle, you can use it between 9 a.m. and 1 1 p.m.

your time.

j> Do not upload material unless you're invited to. (And don't upload

material inappropriate to a particular archive— we hope that this

advice would be obvious, but experience suggests otherwise.)

2% Part IV: UNIX and the Net

A few words about navigation

All the FTP servers discussed in this chapter

require you to log in using the usemame
anonymous. For the password, use your

e-mail address.

Many servers have a small file called readme
that you should retrieve the first time you

use the server. This file usually contains a

description of the material that's available and

the rules for using the server.

If you log in to an FTP server and don't see any

interesting files, lookfor a directory called pub
(for public). For reasons lost in the mists of

history, UNIX systems by tradition put all the

good stuff there.

The FTP Hit Parade
This section lists some available FTP systems, including the name and
location of the system, particular rules for its use, and what's there.

UUNET
ftp.uu.net

UUNET Communications, Virginia

Accepts FTP only from hosts With registered names

UUNET is probably the largest archive available on the Internet. It has

masses of software (mostly for UNIX in source form), archives of material

posted on Usenet, files and documents from many publishers and vendors,

and mirrors of many other archives around the Internet.

SIMTEL
Mirrored at WuarchiVe.viusti.edu, oak.oaktand.edu, ftp.uu.net, nic.funet.fi,

src.doc.ic.ac.uk, archie.au, and nic.switch.ch

SIMTEL, the premier archive for MS-DOS material, also has a great deal of

stuff for Macs, CP/M (remember that?), and UNIX. SIMTEL itself was an

ancient DEC-20 computer at an Army base in New Mexico. Although it has

long since shut down, mirror systems are still available, and someone is still

updating and maintaining the archive.

Chapter 20: Grabbing Files from the Net 205

WUARCHWE
u>uarchu/e. u/ustt.edu

Washington University, Missouri

This large program and file archive includes mirrors of many other program-
ming archives, with megabytes of stuff for DOS, Windows, Macintosh, and
other popular computer systems. WUARCHIVE also contains the largest

collection of GIF and JPEG pictures (all suitable for family viewing, by the

way) on the Internet.

£\NG/

mm
rtfm.mit.edu

Massachusetts Institute of Technology, Massachusetts

RTFM is the definitive archive of all the FAQ (Frequently Asked Questions)

messages on Usenet. Hence, RTFM is a treasure trove of information for

everything from the state-of-the-art in data compression to how to apply

for a mortgage to sources of patterns for Civil War uniforms. Look in the

directories pub/usenet- by -group and pub/usenet-by-hierarchy.

RTFM also has an experimental Usenet address database, containing the

e-mail address of every person who has posted a message to Usenet in the

past several years. That database is in pub/usenet-addresses.

Because RTFM is an extremely popular site and limits itself to 50 simulta-

neous non-MIT connections, it can be extremely difficult to get into. Some-
times it has taken us several days.

1NTERNK
ftp.internic.net

Internet NetWork Information Center, Virginia

This central repository for information about the Internet includes copies of

all the standards and RFC documents that define the network. Also,

INTERNIC has information about many other FTP archives available on the

Internet.

296 Part IV: UNIX and the Net

NSFNET
nic.nsf.net

National Science Foundation do MERIT, Michigan

The NSFNET is (or at least used to be) the largest backbone network on the

Internet. It has a great deal of boring administrative stuff and some interest-

ing statistics about how big the Internet is and how fast it's growing. Look in

stati sti cs/nsfnet.

NSF publications not related to the NSFNET can be found at stis.nsf.gov,

or the mail server s t i s s e r v@n sf.gov.

The list of lists

sri.com

SRI International, California

Look in the directory neti nf o for the file i nterest-groups. It's one of the

largest available lists of public mailing lists on various topics. The contents

of this list are published in book form and sold for about $25, but you can

get it via FTP or e-mail for free!

Chapter 21

Now Serving the Internet

In This Chapter

Getting yourself an Internet presence

What domains are

How to choose Web server software

What you need to serve e-mail, FTP, and other cool Internet resources

A few words about Webmastering

••a**

1n the preceding few chapters, we tell you everything you ever wanted to

*£ know (more, probably) about how to use your UNIX computer to take

advantage of popular Internet resources such as telnet, e-mail, newsgroups,

FTP, and the World Wide Web. Well, you have something to offer the world

yourself, dadgum it! You're wondering how all those other people got their

stuff on the Internet, and whether you can do it, too.

Of course you can do it, too. With UNIX, in fact, you have ways to get your-

self on the Internet rather inexpensively, assuming that your ambitions are

modest. No matter what approach you end up taking, getting on the Internet

is a matter of setting up, or at least getting access to, some kind of Internet

server. To be more specific, you have to set up (or get someone else to set

up for you) server programs for each kind of Internet resource you want to

provide. If you want to serve your own e-mail, you need POP (Post Office

Protocol) and SMTP (Simple Mail Transfer Protocol) servers. If you want
your computer to act as a telnet site, you need a telnet server. If you want to

make interesting files available for people to download to their own comput-
ers, you need an FTP server. If you want people to read your exquisite,

erudite, and potentially moneymaking Web pages, you need a Web server.

In this chapter, we talk mostly about Web servers, not because we think that

e-mail, telnet, FTP, and other non-Web resources are unimportant, but

because full-featured Web servers like the ones we tell you about in this

chapter usually come with all the software you need in order to set up those

other Internet resources.

298 Part IV: UNIX and the Net

The internet, at \lour Service

What you do on the Internet is a function of who you are and what you want

to accomplish. An Internet presence can be as simple as a set of Web pages

that trumpet to the world your personal tastes in music and literature. It can

be as complex as a full-fledged online catalog sales company, replete with

shopping carts, virtual cashiers, automatic e-mail notification, password-

protected customer accounts, and encryption capabilities to ensure secure

transactions.

If you're interested in doing something as foolhardy, er, complex as setting

up your own online catalog sales company, you need much more informa-

tion than we have space to provide in this book about UNIX. Allow us to

suggest Selling Online For Dummies, by Leslie Heeter Lundquist, as a good

place to start. (It's from IDG Books Worldwide, so it has to be good.)

To make things as simple as possible, you have only two realistic ap-

proaches to getting yourself an Internet presence. The approach that's right

for you depends on what you want to do, how much time and money you're

willing to spend, and the height of your technical pain threshold:

u* Host your own site: To host your own site, you need at least one

dedicated computer, permanently connected to the Internet and

running some brand of Web server software. Hosting your own site

requires you to act as your own system administrator and Webmaster
(the author and manager of your Web site). Although administering and

maintaining your own Web site is not for the technically faint of heart,

it's well within the powers of a mere mortal such as yourself. In ex-

change for the money you spend to buy the stuff you need and the time

you spend to set everything up and keep it running, you get complete

freedom and total control over whatever it is you want to do on the

Internet. Because the permanent Net connection costs at least several

hundred dollars per month, you probably don't want to choose this

approach until you're sure that you're serious about your Web site.

i> Get someone to host your site for you. In practice, that "someone"

usually turns out to be an Internet service provider, or ISP. ISPs are the

people who sell you basic Internet services, such as e-mail and Web
access. Many ISPs also offer Web-hosting services: For a monthly fee,

they do all the technical heavy lifting for you. If you don't need your

own dedicated server, you can usually buy a few megabytes of space on

one of your ISP's servers for about $20 a month (less, in some cases)

and upload your Web pages via FTP.

A complete discussion of setting up your own Web site is well beyond the

scope of this book. It's a book in it's own right, in fact. Nonetheless, in the

following sections, we try to give you some pointers to get you started on

the right foot.

Chapter 21: Now Serving the Internet £yy

Domainia

If your Web site supports a business or other

official organization, you may want to con-

sider applying and paying for your own do-

main name. A domain name is a unique name
that identifies a computer or group of comput-

ers on the Internet. For example, we regis-

tered the domain name gurus . com, so our

Website is named www. gurus .com and our

FTP site is named ftp.gurus.com. Regis-

tering a domain name costs $35 per year,

and on top of that you need at least two sepa-

rate servers — a main server and a backup

server — with permanent Internet connec-

tions to qualify for a domain name. Your server

has to have DNS (domain name system) soft-

ware running on it so that it can respond to

requests for a name in your domain. If you

don't want to deal with the gory technical de-

tails, you can pay an Internet service provider

to act as your domain server. (Most ISPs are

only too happy to find a reason to take your

money, and in this case it's probably money
well spent.)

The part of a domain name to the right of the

last dot is called the zone. A number of so-

called generic domains also exist: com for

profit-taking enterprises, org for nonprofit

outfits, gov for the U.S. government, edu for

educational institutions, are some examples.

Two-letter country domains also exist — f r

for France, mx for Mexico, and us for United

States, for example.

The organization that handles generic domain

name registrations is InterNIC. If you plan to

register your own generic domain name, you

send a form to InterNIC via e-mail. Complete

instructions and registration forms are avail-

able from the InterNIC Web site, at http : / /

www. interni c .net/.

For a discussion of Webmastering that doesn't shy away from the gory
details, see Setting Up an Internet Site For Dummies, 3rd Edition, by Jason

Coombs, Ted Coombs, David Crowder, and Rhonda Crowder (IDG Books
Worldwide, Inc.).

Serving f/oursetf

If you're hosting your own Web site, you have to have a computer with a

permanent, dedicated connection to the Internet. The speed, or bandwidth,

of your connection depends on such factors as how much traffic you expect

your Web site to get and how much money you have to spend. For example,

a full-time dial-up connection offering standard speeds of 28.8 to 56 kilo-

bytes per second (a kilobyte is a thousand bytes) costs somewhere in the

neighborhood of $100 a month. A Tl line, at 1.5 megabytes per second, is

more than 25 times as fast as the fastest dial-up connection. As you may
expect, a Tl line costs more than 25 times as much as dial-up connection. If

you're serving a modest little Web site, a dial-up connection works just fine,

thank you. If you're running your business online, you have to bite the bullet

and get a Tl if you expect more than a few customers at any one time. (A T3

300 Part IV: UNIX and the Net

line gives you a speed of 45 megabits per second. These babies cost at least

$10,000 a month, so we figure that you're not planning to run one to your

home computer any time soon.)

After you have your connection squared away, you have to install the

software that turns your computer into a Web server. A Web server is simply

a computer that hosts Web pages. The Web server computer runs a program

that fulfills requests from other computers for Web pages stored on the Web
server's disks. A UNIX machine makes a great Web server because the Web
was designed using UNIX programs.

For example, John has computer named net .gurus . com on the Internet. It

runs Apache (an excellent choice on John's part because Apache is fast,

reliable, and — most important — free). When you view the author team's

Web site, at http://net. gurus, com, your computer sends a request for a

Web page to the Apache program on net . gurus . com, and Apache sends the

page back to your computer so that you can see it on your screen. Other

popular Web servers include Netscape's and the NCSA server (Apache's

grandfather). We talk more about UNIX Web servers later in this chapter.

After you've installed a Web server on your UNIX system, you tell the Web
server the directory where the Web pages will be stored (the Web direc-

tory). You can store Web pages in that directory and its subdirectories. To

make a Web page accessible to the world, you create the page with a Web-
authoring program (or with any text editor), test it on your own system to

avoid embarrassing typos, and move or copy the page to your Web direc-

tory. After the page is in the Web directory, anyone can see the page if they

know its URL (Web address).

If you're learning about UNIX to be a Webmaster, you need to know how to

Iv
Install, configure, and maintain your Web server program

*> Create and modify Web pages

Getting Served
Suppose that you've decided to forego the expense and hassle of hosting

your own site. You've opted to pay your Internet service provider a reason-

able monthly fee (probably around $20) to give you some space on one of

its Web servers. On your own computer, you create and store the Web pages

you want to put out, or post, on the Internet. You can see them by using your

own Web browser, although no one else can see them until you upload them

to your ISP's server.

Chapter 21 : Now Serving the Internet 3v 7

Usually, you upload your Web pages to a Web server by using FTP (see

Chapter 20 to find out how to transfer files). Ask your Internet service

provider (or whoever runs the Web server you are using) where to put your
Web page files. Also ask whether you need to give any special commands to

tell the Web server about your files.

Here are some tips for uploading Web pages:

v^ Because Web pages are text, you upload your Web pages as ASCII (not

binary) files. Graphics files are not text, so upload them as binary files.

*> UNIX cares about capitalization in filenames. If you create Web pages on
a PC or Mac and upload them to a UNIX-based Web server, check the

capitalization of your filenames.

v* Name your main Web page with the name index.html, which is the

default Web page name. If you omit the filename from a URL when
you're retrieving a Web page, your Web browser usually gets the

page i ndex. html. For example, if someone types the URL http: //

www.greattapes . com/, the Web browser displays the i ndex. html

file on that computer.

Web Servers Galore
If you're hosting your own Web site, you have to get a Web server, install it,

configure it, and keep it running. Choosing the UNIX Web server package
that's best for you is a question of finding the right set of features at the

right price. (In the case of Apache, the right price happens to be free.)

Some of the more comprehensive Linux distributions include, for free, a Web
server along with server software for other Internet resources such as e-mail,

news, and FTP. For example, Red Hat Linux 5.1 includes the Apache Web
server, an e-mail server, a domain name server (for translating domain
names into the IP addresses that network software needs), a news server,

and an FTP server. Caldera's OpenLinux 2.1 includes the Netscape FastTrack

Web server.

Apache is kinq

The Apache Web server is free and fast and popular. It runs on every UNIX
you can think of, including Linux. (Versions for Windows 95 and Windows NT
are also in the works.) In fact, it's the most popular Web server of any kind

in use today. If you're on the Web, surf to the home page of the Apache
HTTP Server Project, at http: //www. apache . org, for all information and
downloads. You can also check out Apache Server For Dummies, by Ken A.L.

Coar (IDG Books Worldwide, Inc.).

302 Part IV: UNIX and the Net

Netscape is a many-sptendored thing

Netscape, the maker of the popular Communicator and Navigator Web
browsers, offers various Web servers that run on UNIX (see http : / /

home .netscape . com/servers/i ndex . html on the Web). Its flagship

server, Enterprise Server, runs on Digital UNIX, HP-UX, AIX, IRIX, and Solaris

(as well as Windows NT). Netscape Enterprise Server sets you back from

$1,300 to $2,000, depending on the options you choose. If you want to serve

e-mail and news along with the Web, you have to consider shelling out

$4,100 for Netscape's SuiteSpot Standard edition. If you don't have that kind

of money, the Netscape FastTrack server dispenses with all the bells and
whistles (as well as with the Netscape FTP server) for only $300 — or for

nothing, if you buy Caldera's OpenLinux. (Such a deal!)

A Web site named "hoohoo
n

The National Center for Supercomputing Applications at the University of

Illinois offers, for free, the famous NCSA HTTPd server (the most recent

version of which is 1.5.2a). You can read about it and download it from the

NCSA Web site, at http : //hoohoo . ncsa . ui uc . edu. Although the HTTPd
server is still popular, it's unsupported — in other words, you have no one
to guarantee that it works or to bail you out if run into problems. It's also

somewhat outdated because it sort of morphed into Apache after its creator

left the University of Illinois.

A cup afja(/a

As you may expect, Sun Microsystems (the maker of the Solaris OS) has its

own UNIX Web server, the Java Web Server, which runs on UNIX, Linux,

Windows NT, and OS/2. You can check it out on the Web at http : / /

j serv. j ava. sun. com/products/ we bserver/i ndex. html.

Daemons Run Amok
Providing most Internet services is a matter of installing, configuring, and
running daemons. A daemon is simply a program you configure, start up,

and then forget about. It runs in the background, where you can't see it. The
only time you have to deal with it is when something goes wrong with it (a

mercifully rare occurrence) or when you want to change the way it behaves.

We introduce daemons in Chapter 9, where we talk about the daemon that

handles UNIX print jobs.

Chapter 21 : Now Serving the Internet 3(/j

Some Internet resource servers, such as telnet and FTP, are standard parts

of all UNIX distributions. Some UNIX (and Linux) distributions also include

Internet servers for other resources, such as e-mail and news. In some
cases, these servers are included with your Web server. If neither your UNIX
nor Web server package includes the servers you need, you have to find or

purchase them separately. Fortunately, free versions abound on Web sites

and FTP sites on the Internet.

Here are a few tips about what you may need to help get you started:

i^ E-mail: If you want to serve your own e-mail, you need an SMTP server

and a POP or IMAP server. SMTP (Simple Mail Transfer Protocol) defines

the way computers pass a mail message to each other until it gets

delivered to a user's mailbox. POP (Post Office Protocol) and IMAP
(Internet Mail Access Protocol) define how the user who got the message
retrieves it from the mailbox. Some mail clients require POP; others,

such as Pine, require IMAP instead. The most popular, although not the

best, SMTP server is called sendmail, and large books are devoted to its

care and feeding.

v Telnet and FTP: Use the telnet and FTP daemons included in your UNIX
or Linux distribution. Because security issues are always a major
concern when you give unknown computers access to your computer,

be vigilant about potential security breaches.

V News: Providing news requires that you set up an NNTP (Network
News Transfer Protocol) server and news database. News servers are

less frequently included with OS and Web server distributions. Fortu-

nately, a number of free news servers are available for downloading,

such as INN (Internet News Software Consortium, which is responsible

for INN development, recently released as Version 2.0). Be forewarned:

Hosting Usenet news requires a serious amount of disk space (3 gig-

abytes per week is in the ballpark) and enough bandwidth to handle

the traffic (56K is the minimum).

Other resources you may consider providing are the highly addictive Internet

Relay Chat, equally addictive games such as MUDs (Multi-User Dungeons)
and MUSHes (Multi-User Shared Hallucinations), Gopher, and streaming video

and audio. As with the basic services, you have to determine whether your OS
or Web server package includes the server software you need.

A Few Tips for Webmasters
Now you've done it: You've gone ahead and decided to host your own Web
site. You've registered a domain name, shelled out big bucks for computers
and Internet connections, installed and configured server software, and
even posted your first home page on the World Wide Web. Your job here is

finished, right?

304 Part IV: UNIX and the Net

Not on your life. Your job is just beginning. For Web surfers, the beauty of

the Internet is that it's available 24 hours a day, seven days a week. For

Webmasters, the round-the-clock nature of the Internet can become a

maintenance nightmare. If your site is down for a few hours or longer or if

it goes down for short periods on a regular basis, you quickly lose your
audience. If you're trying to run a business online, these types of outages

can be disastrous.

Both the Apache and NCSA HTTPd servers are extremely reliable, which,

along with being free, are good reasons to use them. Problems do occur,

however, and you have to know how to recover from them quickly. Make
sure that your backup server is an accurate copy, or mirror, of your main
server so that you can cut over to it in case your main server fails. You
should also make sure that you can log on to your computer from a remote
location so that you can do server administration (troubleshooting, shut-

downs, restarts) without having to be in the same room with your computer.

Your vacation in Fiji will be ruined if the server running your catalog sales

company quits working and you have to fly home to deal with it.

Often, problems with a Web site occur because of gremlins running around
in your Web pages. HTML, the language you use to define your Web pages, is

extremely literal and unforgiving. Make sure that you have a good HTML
reference and a way to test your pages before casting them on the waters of

the Web. The Netscape Communicator package has a graphical Web page

program called Composer, which has an HTML editor that novice Web page

designers may find easy to use. We recommend that you use a text editor

with at least syntax highlighting to make your coding job easier (see Chapter

10 for some suggestions).

Our last tip is perhaps our most important: Whatever you do, keep it simple.

Updating and maintaining your site's content is a big job. If you're going it

alone, you have to become a graphics designer, writer, software developer,

and system administrator all rolled into one— not an easy task for anyone.

If you run into trouble, ask for help. Many people in situations similar to

yours are only too happy to share with you their horror stories and hard-

earned wisdom. A good place to look for help is Usenet, where you can

find and communicate with UNIX Webmasters in newsgroups such as

comp. infosystems .www. servers, unix. (See Chapter 19 for more informa-

tion about Usenet, and Chapter 27 for a listing of UNIX-related newsgroups.)

PartV

Help!

The 5th Wave ByRkhTennant

In this part .

.

.

7he point of this book is to help you when things go

wrong. That's what makes it different from "good

news" books that talk only about how everything should

work in a perfect world. If you've read the first four parts

of this book, you know that "good news" and "UNIX"

rarely appear in the same sentence. This part of the book
lists things that go wrong, error messages you may see,

and what you can do about them.

Chapter 22

Disaster Relief

In This Chapter

"My computer won't turn on"

"My mouse is acting glitchy"

P- "The network is gone"

j»- "These aren't my files!"

"It's not listening!"

Wrecked X

) "I give up"

•••a

7he tiny, infinitesimal chance that you may run into some kind of problem
with your computer always exists. The problem can be something major

(such as losing the funniest interoffice memo you have seen in years) or

minor (perhaps accidentally deleting the analysis you have spent two
months creating). Some computer problems you can fix— some you can't.

The situation is similar to cars: You can pump gas yourself and maybe
change the oil, but when it's time to rebuild the engine, call for help. (We do,

anyway.)

"My Computer Won't Turn On"
You come in to the office one morning, flip the switch on your computer, and
nothing happens. Uh-oh. Lots of things could have happened:

u* Is your computer plugged in? It sounds stupid, but we have had
computer problems when the people who clean the office bumped their

vacuum cleaners into the outlet all our equipment was plugged in to. If

you're using a terminal or X terminal, this check applies to both the

terminal and the computer.

V Check the power-strip switch. If the computer is plugged in to a power
strip that has its own on-off switch, check that switch's position. People

have been known to turn off the switch inadvertently with their toes.

$08 Part V: Help!

v* Is the computer still attached? Are the cables that connect the com-
puter, keyboard, screen, and whatever else still connected? If your

terminal is connected to a network, is the network cable firmly at-

tached to the computer? Try wiggling it a little, even if it looks okay.

*> Does the rest of the office have power? Plug a lamp into the same
outlet as the computer and make sure that the lamp turns on. (True

story: "Hello, help desk? My computer won't turn on." "Is it plugged in

correctly?" "I can't tell. The power failed, and none of the lights work.")

<> Is the picture on the screen turned off? The computer can be turned

on, and the screen can even be on, but the picture on the screen can be

dimmed. Fool with the brightness knob (remember where the knob was
positioned when you started fiddling with it).

i> Does your computer have a screen-blanker program? Press a key to

make sure that a screen-blanker program hasn't blacked out your

screen as a favor to you. (We like to press the Shift key because it has

no other effect on the computer.) Moving the mouse a little also

unblanks the screen.

If the problem isn't the power, it's probably not something you can fix

yourself. Call your system administrator for help. Some component may
have burned out. Stay calm — it does not mean that the files stored on your

disk are gone. They are probably fine: Disks remember data perfectly well

with the power off.

"My Mouse Is Acting Gtitchy
n

If you have a computer with a male mouse (a mouse with a ball underneath),

dust or crumbs inside it can prevent the ball from rolling smoothly. Most

mice with balls have a way to remove the ball for cleaning, usually by

turning a plastic ring that surrounds the opening for the ball or by sliding

the ring to the front or side. (We don't begin to suggest appropriate names
for that ring.) Turn the mouse over so that the ball falls into your hand and

not on the floor, gently wipe off the grit, and snap it all back together. Female

mice (optical mice, with no balls) appreciate it if you occasionally wipe off

the mouse pad with a tissue. Also, look at the bottom of your female mouse:

If it's turned on and working, you should be able to see a little, red lamp

through one of the openings.

//
The NetWork Is Gone

n

Trying to solve most network problems is not for the faint of heart. One
thing you can try is to check the cables in the back of your computer. Is the

network cable firmly attached to the computer? Try wiggling it a little, even

if it looks okay. Otherwise, it's time to call in the experts.

Chapter 22: Disaster Relief $09

"These Aren't My Files!"

Normally, when you log in, you start working in your home directory. If you
type cd, you return to the home directory from whichever directory you
may have roamed to.

If cd doesn't get you back home, you may not be who you think you are. Try
typing whoami or who am i. If someone else's username appears, your
computer thinks that that's who you are! A coworker may have logged in to

your computer to do some work for a moment. Here are your options:

* Send some malicious e-mail, which will arrive looking as though your
coworker sent it. Delete all her files that look important, and then log

out and pretend that nothing happened.

v Log out without fouling anything up, and then log in as yourself. Type
logout.

Maybe you have to type exit or just press Ctrl+D. At any rate, when you
see the login screen, log in as yourself.

Most courses in business ethics tell you that the second option is preferred

by all except the slimiest of bottom-feeding MBAs, but the urge to send
goofy e-mail is sometimes irresistible. Remember: You may be caught.

WreckedX
If you use Motif or another X Window variant, now and then you may find

your screen in a most peculiar state, one in which you can move the mouse
pointer around, but none of the windows changes and you can't type

anything in any windows. Often you can fix this problem by restarting the

window manager, which is the program that controls which window gets

what. Move the mouse pointer outside any window and click and hold the

left or right mouse button (which one depends on which window manager
you're using) to display the window manager menu. That menu should have
an item such as "Restart mwm" or "Restart fvwm". Choose that option. With

luck, everything will be fixed.

"It's Not Listening!"

The computer is on, you're working away, and suddenly it doesn't respond

to anything you type. It's the Abominable Frozen Computer.

$10 Part V: Help!

The computer is probably fine — it's a program that has frozen up. Try

these things to try to get the program's attention:

*> Press Esc a bunch of times.

u* Press Ctrl+C a bunch of times.

t* Press Ctrl+D a bunch of times.

u* Press Ctrl+S and then Ctrl+Q a bunch of times. (You never know what
will work.)

**" If you are running Motif, CDE, or another X Windows-based system, see

whether you can use the mouse to select another window or whether

you can type a command or two in a shell window. If you can, you can

probably arrange to murder the frozen program and start it up again

(see the following section).

v* If your window system is completely stuck, you can usually murder the

window system and start it over again without having to restart your

computer.

If your computer is on a network or has more than one terminal, you can ask

a computer guru to kill the program. If you're feeling brave, you can kill the

program yourself. When you kill a program, you lose any work you were
doing in that program since the last time you saved data to the disk.

1 Gfre Up»

Sometimes discretion is the better part of valor (whatever that means). If

you need to call for help, be sure to do the following:

v* Don't turn off the computer. Unless flames are coming from the screen

and threatening to engulf your entire office, this option is not a good
idea.

i> Know the symptoms. Be ready to tell someone what happened and

which actions you took to fix the problem.

j> Know what has changed recently. Did you install new software? Did

you run something you have not run before? New things are always

suspicious.

i> If you call for help by phone, call from within reach ofyour computer.

Your savior may want you to try a few maneuvers at the keyboard.

Chapter 23

The Case of the Missing Files

•••ft******

In This Chapter

* Four easy ways to lose files

& Some ways to get files back

fe Three almost-as-easy ways not to lose files

Sooner or later, you will delete a file by mistake. Scratch that "later":

Sooner than you think, you will delete a file by mistake. In far too many
cases, you are out of luck, although you can do a few things to avoid disaster.

Hou) \lou Clobber Flies

Contrary to the usual image of UNIX users being radically technical and
without a creative bone in their bodies, we submit that typical UNIX users
are immensely creative: They can come up with a zillion inventive ways to

avoid the computer altogether and, when they are forced to sit down to

stare the computer in the face, they can come up with a dozen more inven-

tive reasons for why things went wrong. UNIX programmers have written

thousands of useful freeware and shareware programs, when they should
have been getting some work done. You can make files disappear in lots of

ways (either intentionally or accidentally). This section lists the four main
ways you can trash files — although you can probably come up with a dozen
new and creative ways to do the vanishing act with your files.

Clobbering files With rm
Because disks are not infinitely large, sooner or later you have to get rid of

some files. (Some wag once commented that the only thing that's standard
among UNIX systems is the message-of-the-day reminding users to delete

unneeded files.)

3/2 Part V: Help!

The normal way to get rid of files is the rm (for remove) command. Until

(notice that we didn't say unless) you screw up, rm removes only what you
want it to. Recall that you tell rm the names of the files you want to remove:

rm thisfile thatfile somedir/anotherfile

You can remove more than one file at a time, and you can specify files in

other directories (rm removes just the file and not the directory).

This method is usually pretty safe. The tricky part comes when you use

wildcards. If you use a word processor that leaves backup files with names
ending in . ba k, for example, you can get rid of all of them with this command:

rm *.bak

That's no problem — unless you put in an extra space (Do not type this

line!):

rm * .bak

Note the little, tiny space between the asterisk and the dot. In response to

this command, UNIX says

rm: .bak non-existent

Uh-oh. UNIX decided that you wanted to delete two things: * and .bak.

Because the asterisk wildcard matches every single filename in the working

directory, every single filename in the working directory is deleted. Then

UNIX tries to delete a file named .bak, which isn't there. Bad move.

At this point, we recommend that you panic, gnash your teeth, and throw

Nerf balls at the computer. After you calm down a little, read the rest of this

chapter for some possible ways to get your files back.

You can also make slightly less destructive but still aggravating mistakes

when you forget just which files you have. Suppose that you have files

named secti onOl, secti on02, and so on, up to secti onl9. You want to

get rid of all of them, so you type this line:

rm sec*

Now suppose that you forgot that you have a file named second. version,

which you want to keep. Oops. Bye-bye, second. vers ion.

The obvious solution is to delete things one at a time. Unless you're an

extremely fast and steady typist, however, that's not practical. In the

following sections, we make some suggestions about that, too.

Chapter 23: The Case of the Missing Files 3*3

Clobbering files u/ith cp, mv, and 1 n

Are you feeling paranoid yet, as though every time you press the R and M
keys you're going to blow away a year's worth of work? Wait — it gets worse.

The cp, mv, and 1 n commands can also clobber files by mistake: If you use

one of these programs to copy, rename, or link a file (respectively) and a file

already has the new name, the existing file gets clobbered. Suppose that you
type this command:

mv elbow armpit

If you already had a file named a rmpi t — blam! It's gone! The same thing

happens if you copy or link. Copying is a little different: Here's an example of

the most annoying case of blasting away good files with trash when you use

the copy command:

cp important. file. save important. file

As a responsible and paranoid computer user, you want to save a copy of an

important file before you make some changes. But your fingers work a little

faster than your brain and you get the two names switched (left-handed

users are particularly prone to getting names sdrawkcab) — and blam!

(again) you've just copied an obsolete saved version over the current

version. Fortunately, you can arrange your file-saving habits to make this

kind of mistake harmless, or at least mostly harmless.

Creaming files by using redirection

A third popular way to blow away valuable files is by using redirection. If

you redirect the output of a command to a file that already exists, whammo!
UNIX blows away the existing file and replaces it with your redirected

output.

For example, if you type this command:

Is -al > dirlist

and you already have a file named dirlist, it's gone now, replaced by the

new listing.

If you use the BASH shell, you can give this command:

noclobber=l

3//J Part V: Help

If you use the C shell, you can give this incantation:

set noclobber

Better yet, get a UNIX wizard to help you include this command in your
.cshrcor .profile file so that the command is given automatically every
time you start the shell. This command tells the shell to ask you before

using redirection to clobber files.

When you redirect output to a file, you can tell UNIX to add the output to the

end of an existing file. Rather than type one >, you type two:

Is -al » dirlist

You have little reason not to use >> every time you think of using >.

Wrecking files utith text editors

The fourth way you're likely to smash files is in a botched editor session.

The problem usually comes up after you have been editing a file for a while

and realize that you have screwed up: The changes you have made are not

what you want, so you decide to leave the editor. On the way out, however,

you write the botched changes to the disk and wreck the original file. A
similar problem occurs when you use an editor to look at a file: Although

you may not intend to change anything, you may make some inadvertent

changes anyway. (This can easily happen in emacs, where pretty much
anything you type goes straight into the file.) If you're not careful, you can

write the changes to the disk by mistake.

If you use v i
, you can avoid the accidental-clobber problem by typing view

rather than vi. The vi ew editor is the same as the vi editor (vi and vi ew

are links to the same program). The vi ew editor works the same as vi

except that it doesn't let you write changes to the file. Keep it in mind.

Although some versions of emacs can mark files as read-only so that you
can't make changes to the files, the methods of doing so aren't entirely

standardized. In GNU Emacs, you press Ctrl+X, Ctrl+R in a file window, and
Emacs puts an inscrutable 11 on the status line at the bottom of the screen.

To be even more careful, you can press Ctrl+X and then Ctrl+R to open a file

as read-only in the first place.

Ways to Try to Get Fifes Back
Now you've done it: You've clobbered something important, and you really,

really want it back. Let's see what you can do.

Chapter 23: The Case of the Missing Files jlj
If you're used to other systems, such as Windows 95, in which you can
magically get deleted stuff back from the Recycle Bin, we're sorry to tell you
that UNIX doesn't let you do that (unless you're lucky enough to be using a

UNIX desktop with a Trash tool; see the sidebar in Chapter 4 about talkin'

trash). If it's gone, it's gone. (A version of the Norton Utilities that includes

an unerase command is available for some versions of UNIX, although it isn't

widely used.)

Copies, copies, everywhere

Maybe you have stashed away in a different directory other copies of the file

you deleted. For our important files, we stick copies in a directory named
save (or something similar). Also, sometimes you can reconstruct the
information from a different form. If you clobber a word processor file, for

example, you may have a backup version (the . ba k files mentioned earlier

in this chapter) that's close to the current version. You may have printed

the deleted file to a file (rather than directly to the printer) and can edit the
print file back into document form.

If you share your computer with other people or use a network, see whether
someone else has a copy. It's a rare file that exists in only one place.

Catt in the backup squad
It's really gone, huh? Now it's time for the final line of defense: backups. You
do have backups, don't you?

We interrupt this chapter for a stern lecture: Always make backups. If your
system administrator is on the ball, tape backups are made automatically

every night. All you have to do is go to the administrator, with chocolate-

chip cookies in hand, and ask politely for some help in getting your valuable

file back from the previous night's backups. If no backups exist, it's fair to

jump up and down and scream that someone had better get on the ball.

Seriously, backups are a standard part of any administrator's job, by either

making the backups personally or overseeing operators who do the backing
up. (After the procedures are set up, making backup tapes is so simple that

you can practically train your dog to do it. One reason that it sometimes
doesn't get done is that backing up is boring.)

370 Part V: Help!

ctfBE/?

Why you need backups

Making backups is a pain. The question isn't

whether you will lose data — it's when. Here

are some events that have sent us heading for

the backup tapes:

v* The obvious one: We deleted a file by

mistake.

i> Just as we were saving a file, the power

failed and scrambled both the old and new
versions of the file. Yikes!

v* One day, while working on the insides of

the computer (one of us is a closet nerd),

we accidentally dropped a screwdriver on

the disk controller. Exciting sparks came

out and fried the controller card that at-

taches the diskto the restofthe computer.

We got a new controller card and found

that, although the disk was physically fine,

the new controller wasn't quite compat-

ible with the old one, and we had to refor-

mat the disk and restore everything from

tape.

*> We remembered hearing that we should

absolutely, positively run a "disk-head

parking" program before moving our hard

disk, so we ran one. Unfortunately, it was
a version that was incompatible with the

hard disk, so it parked the disk head right

off the edge of the disk, way out past what

you may call the Long-Term Parking Area.

We could hear the disk head banging on

the side of the hard disk as it tried to get

back on. Rats!

** Back in the good old days, computers

weighed about 15,000 pounds and you

needed a forklift to move one. Now they

weigh about 25 pounds, which means that

if the cleaning people bump into one with

a vacuum cleaner, they can knock it over

with a clunk that can put an unreadable

ding into the disk. Oops— sorry, lady.

Although you probably have horror stories of

your own, they all have the same moral: Make
those backups.

If your system administrator doesn't make backups, you had better learn

how to do it yourself. If you have a tape unit on your machine, the proce-

dure is usually as follows:

1. Put a tape in the tape unit and flip the latch to seat the tape firmly.

2. Give a command to copy files to the tape, usually the tar (tape

archive) or pax (portable archive ex-change) program.

On Sun workstations, the program is ba r (backup archive). The exact

things you have to say to the tar program vary from one system to

another, mostly because of the peculiarities of different kinds of tape

units. You can't use the regular cp command because tapes aren't

logically organized the same way disks are. This process can take

awhile — maybe an hour for a largish disk.

3. Take the tape out of the tape unit.

Chapter 23: The Case of the Missing Files j J /

4. Write the current date on the label so that you know that it's a
current backup.

(The sensibly paranoid alternate several tapes, in case one of them
goes bad. We describe this subject in more detail in the "Backup
strategies" sidebar, later in this chapter.)

5. Put the tape back in its box, and put the box back on the shelf.

6. Once a week (or some other frequency), take the backup tape and
store it off-site, such as in another office or at someone's house or, if

you're really serious, in your safe-deposit box. (We do that.)

The usual way to back up stuff on Linux is to use ta r. To back up to tape,

type this fabulously memorable command:

tar cvf /dev/rftO *

The cvf means Create, Verbose Report, to File, and /dev/rftO is the name
of the tape unit. The * means to back up all the files in your directory; if you
have a large number of them, you can list specific files and directories

instead.

Some systems don't have tapes; they have disks. Disks are a major pain for

backup use for two reasons: You need a stack of them, and you must format

them first.

Before you can use a disk, you must format it, which means that the com-
puter writes some bookkeeping junk on it to mark where to put the data and
in the process checks to be sure that no bad spots are on the disk. Fortu-

nately, you have to do this only one time per disk. Formatting disks is easy

but tedious and (sing along with us as we say this) varies, of course, from
one system to another. You stick the blank disk in the computer and type

the formatting command, and UNIX formats it. If you're stuck with disk

backups, ask your administrator for help in setting up the procedure, and
while you're feeding all the disks into the drive, consider getting a tape drive.

If you back up to disks, type this line in Linux:

tar cvMf /dev/fdO *

The M means multiple disks because you can't put much stuff on one disk.

Linux tells you when to swap disks. Be sure to write the backup date and the

disk number on each disk so that they don't get out of order.

If you have a large number of files, copying everything to tape can take

awhile (perhaps an hour or so). You may want to do the backup over lunch.

Or do what we do, and have your administrator arrange to run the tar

program automatically every morning at about 3 a.m. We leave a tape in the

tape unit every night. When we come back the next morning, the backup has

3/S Part V: Help!

been done, and we take the tape out and put it away. The tar command
creates a report that is e-mailed to us so that we can check to see whether
the tape was written correctly.

Thank goodness it's backed up!
Getting stuff back from a tape also involves the use of ta r but is somewhat
trickier because you want to restore just the files you clobbered. Ask for

help — at least the first time. Generally speaking, you put the tape in the

drive in the same way you did to make the backup, and then you type a ta r

or pax command similar to one of these:

tar xvf /dev/tape somedir/clobberedfile

pax -rv -f /dev/tape somedir/clobberedfile

In the tar command, xvf stands for extract verbosely from. In the pax

command, - r v - f similarly means read ferbosely from. Either way, the

command is followed by the name of your tape drive (it's often /dev/tape,

except on Linux, where it's usually /dev/rftO) and the name of the file to

look for. The tape spins as tar or pax runs down the tape looking for the file

you want. When it finds the file, it reads the file to the disk, reports that it

did so, and stops. If you clobbered a bunch of files, you can use wildcards:

tar xvf /dev/tape "somedir/*"

pax -rv -f /dev/tape "somedir/*'"

You have to use quotation marks around the wildcards because the files to

match are on the tape, where tar or pax can find them, not on the disk

where the shell (which normally handles wildcards) can find them.

To restore files on Linux from a tape, type

tar xvf /dev/rftO "somedir/*'

To restore from disks, type

tar xvMf /dev/fdO "somedir/*"

If you want to see which files are on the tape and not restore any of them
just now, use one of these commands:

tar tvf /dev/tape

pax -v -f /dev/tape

You should try to run the restore command from the same directory where

the program that made the backup tape ran. If it's a system backup, that's

probably the root directory (/).

Chapter 23: The Case of the Missing Files j / y

Backup strategies

The obvious way to do tape backups is to copy

the entire contents of the disk to a tape every

night. Here are a couple reasons, however,

that it may not be the best approach:

j> The disk may contain too much stuff to fit

on a tape. Tape and disk manufacturers

continually battle to see which one can

outstrip the other. The battle is evenly

matched — as we write, they're both in

the 4 gigabyte (4,000 megabyte) range, al-

though many people are still using 150MB

tapes, which are smaller than most disks

on UNIX systems.

<> Because you may not notice for a day or

two that you clobbered something impor-

tant, a scheme that gives you a few days'

grace to getyour data back would be nice.

is Murphy's Law saysthatthe system will fail

as it's writing a backup tape, so you had

better not depend on one tape.

The best scheme is a combination of rotating

and incremental backups. With rotating back-

ups, a set of tapes is used in rotation; five

tapes, for example, one written every Monday,

one every Tuesday, and so on. Because each

tape is written only once a week, if you delete

a file by mistake on Tuesday, for example, the

file is still on the Monday tape until the follow-

ing Monday. You then have nearly a week to

realize that it's gone and get it back. The num-

ber of tapes you use depends on your budget

and your paranoia. Some people use as few as

two, some as many as seven. (We use four

because we bought a four-pack of tapes.)

With incremental backups, you back up only

what has changed. Generally, you do a full

backup of everything on the disk at infrequent

intervals — once a month, for example. This

process may take five or six tapes, but because

you do it only once a month, it's not that bad of a

job. For the daily incremental backup, you back

up only what has changed since the last full

backup (it should fit on a single tape). Any given

file is then either on the full backup (if it hasn't

changed in a long time) or on the current

backup, so you have only two places to look.

If you have a large tape budget, you may want

to have two sets of tapes you use alternately

for full backups, in case your system fails while

it is writing the full backups. Sometimes full

backups are stored off-site in a bank vault or

other safe place, but a trade-off exists: the

security of the vault versus the inconvenience

of going to the bank when you need to recover

a file. If you're paranoid, you can have two full

backups: one off-site and one on-site.

Your system administrator should handle all

this, of course. It's useful to understand at

least the rudiments of backup theory, how-

ever, so that when the administrator hands

you several different tapes that may contain

your file, you understand why.

Three Ways Not to Lose Files

Now you're probably quaking in your boots (or sandals, depending on where

you live). You figure that, if you so much as touch the keyboard, you will do

horrible, irreparable damage and spend the next week spinning tapes. It's

not that bad. This section tells you some tricks to avoid deleting files by

mistake in the first place.

Part V: Help!

Are you sure you itianna clobber this one?

When you delete files with rm, use the - i (for /nteractive) switch:

rm -i s*

This line tells rm to ask you before it deletes each file, prompting you with

the filename and a question mark. You answer y if you want to delete it, and

anything else to tell UNIX not to delete. (Remember that the question UNIX

asks is, "Should I delete this?" and not "Do you want to keep this?")

The main problem with -
i is that it can become tedious when you want to

delete a large number of files. When you do that, you probably use wild-

cards. To be safe, check that the wildcards refer to the files you think they

do. To make that check, use the 1 s command with the same wildcard. If you

want to delete all the files that start with section, for example, and you think

that you can get away with typing only sec and an asterisk, you had better

check what sec* refers to. First give this command:,
UNIX responds with an appropriate list:

second. version section04 section08 sectionl2 sectionl6

sectionOl section05 section09 secti onl3 secti onl7

secti on02 section06 sectionlO secti onl4 secti onl8

secti on03 section07 sectionll sectionl5 sectionl9

Hey, look! There's that file second, vers i on. You don't want to delete it, so

it looks like you have to type section* to get the correct files in this case.

\diotproo{inq satfe files

The best way to make temporary backup copies of files is to make a direc-

tory named save and put all saved copies of files there, as shown in this

example:

mkdir save

cp important. file save

These commands tell UNIX to make a directory named save and then to

make a copy of important.filetosave/important.file. If you reverse

the order of the names, nothing happens. Suppose that you type this line

instead:

cp save important. file

Chapter 23: The Case of the Missing Files j2 1

UNIX makes this observation:

<save> directory

UNIX is saying that you can copy a file to a directory but that you can't

copy a directory to a file. As a result, UNIX doesn't copy anything. To copy

a file back from the save directory, you have to use its full name: save/

important.fi 1 e.

A variation of this process is a two-step delete. Suppose that you have a

bunch of files you want to get rid of but some good files are mixed in the

same directory. Make a directory named trash, and then use mv to move to

the trash directory the files you plan to delete:

mkdir trash

mv thisfile thatfile these* trash

mv otherfile somefile trash

Then use the 1 s command to check the contents of t r a s h. If something you

want is in that directory, move it back to the current directory by using this

command:

mv trash/these. are. still .good

(The dot at the end means to put the file back in the current directory.)

After you're sure that nothing other than trash is in trash, you can use rm

with the - r option:

rm -r trash

This line tells rm to get rid of trash and everything in it.

Don't vOrite on that!

Another thing you can do to avoid damage to important files is to make

them read-only. When you make files read-only, you prevent cp and text

editors from changing them. You can still delete them, although rm, mv, and

1 n ask you before doing so. The chmod command changes the "mode" of a

file (as explained in the section "If Mom Says No, Go Ask Dad" in Chapter 5).

Here's how to use chmod to make a file read-only:

chmod -w crucial -file

The w means not writable. To make changes to the file later, do another

chmod but use +w instead. (This stuff doesn't involve inspired command

syntax, but the old syntax was even worse and used octal digits.) After a file

is made not writable, editors can't change it. The vi program and some

322 Part V: Help!

versions of emacs even display a note on-screen that the file is read-only. If

you try to delete it, rm, mv, or 1 n asks you in a uniquely user-hostile way
whether that's really what you had in mind. Suppose that you type the

following line and crucial -file is a read-only file:

rm crucial -file

UNIX responds with this line:

crucial -file: 444 mode ?

The number may not be 444: It may be 440 or 400 (depending on whether

your system administrator has set things up so that people can normally see

the contents of other people's files). As with rm - i
,
you type y if you want

to delete the file, or anything else to say that you don't want to delete this

valuable data.

Chapter 24

Some Programs Just Won't Die

In This Chapter

Killing a process with a keystroke or two

Killing a process by using the ps command

. Bringing dead terminals to life

••A*

I #ou can almost always get rid of recalcitrant programs without

jr rebooting. In this chapter, we talk about how to figure out which
processes you have and how to make unwanted ones go away. Before

reading this chapter, be sure that you've read Chapter 13, where we talk

about how you can juggle processes and do neat tricks, such as stop one
program, run another one, go back to the first one, and pick up exactly

where you left off.

Why Kilting Is Sometimes Justified
Why kill a process? Don't even the smallest processes deserve to live?

In a word, no. Sometimes a program hangs, and your computer just sits

there, inert. Or sometimes a program get stuck in some kind of loop and
never ends. Or sometimes you give the wrong command and realize that you
don't want to run that program after all. To stop the process in which the

program is running, you kill the process.

Suppose that you're running along, minding your own business, and you find

that you have a program that just won't stop. Veil, ve haff vays to make eet

stop. First, we discuss the normal ways to kill a process, and then we get

into some serious artillery.

324 par,v:He| p !

What Process) (Reprise)

In Chapter 13, in the section about whether any processes are in the house,

we tell you how to use the ps command to see which processes you have
running. In case you're too weak from struggling with UNIX to turn back to

Chapter 13, just type the ps command to see a list of your processes. Note

the PID (process ID) of the process you want to kill. You can identify which
process is the one that needs to be offed, because ps shows you the com-
mand line that started each process.

Fifty Ways to Kitt \lour Process

The usual way to get rid of a process is to press the interrupt character,

which is usually Ctrl+C, although sometimes it's Delete. In most cases, the

rogue program gives up peaceably and you end up back in the shell. Some-
times, though, the program arranges to handle Ctrl+C itself. If you use the ed

editor (if you're a masochist) and you press Ctrl+C, for example, ed returns

to command mode rather than give up and throw away any work you have

done. To exit ed, you have to use the q command.

If the interrupt character doesn't work, you can up the ante and use the quit

character, generally Ctrl+ \ (a reverse slash or backslash — not the regular

forward slash). The quit character not only kills the program but also saves

the dead body of the process (this description is awfully morbid, but we
didn't invent these terms) in a file named, for arcane historical reasons,

core (or maybe programname. core). The shell then gives this requiem:

Quit (core dumped)

This message tells you that the process is dead and that its body has been

put on ice with the filename core.

Most programs that catch Ctrl+C give up under the greater onslaught of

Ctrl+ \. If the program you were running is one written locally, your system

administrator may appreciate your saving the core file, because it includes

clues about what was going wrong when you killed the program. Otherwise,

delete any core files with rm because they're a waste of space.

Because a program can immunize itself to Ctrl+ \ (ed, for example, just

ignores it), the next possibility is the stop character (always Ctrl+Z). The
stop character doesn't kill the program, it just puts it to sleep and returns

you to the shell. (See Chapter 13 for more information about what Ctrl+Z

really does and how it can be useful even with programs you like.) After

you're back in the shell, you can apply the stronger medicine described in

the following section.

Chapter 24: Some Programs Just Won't Die 325
^\NG/

For Ctrl+Z to work, your shell must do some of the work. Many versions of

the Bourne shell aren't up to it and ignore Ctrl+Z. The C, BASH, and Korn
shells are Ctrl+Z-aware.

dirty deeds, done dirt Cheap
No more Mister Nice Guy: It's time for merciless slaughter. If you were
successful in the preceding section at putting the process to sleep with

Ctrl+Z, go ahead and kill it with the procedure in this section.

All the following techniques require that you have a terminal or window in

which you can type some commands to do the dirty deeds. If Ctrl+Z didn't

work to put the process to sleep, you may not have a shell prompt at which
to type the requisite commands. Here are other places you can type the

commands to kill the process:

W If you're running X Windows, any window other than the one with the

stuck program will do.

j> Otherwise, you may have to find another terminal attached to your
computer or go to another computer on the network and use telnet or

rl ogi n to get into your computer.

v* If no other terminal or window is available and you have no other way
into the machine, you're out of luck and probably have to reboot.

Before you reboot, check with your system administrator, who may
know some other tricks.

This simple two-step procedure murders a rogue process:

1. Find out the rogue process's true name.

2. Utter the true name in an appropriate spell to murder it.

The true name of a process is its PID, one of the things ps reports. First do a

ps command to find out the PID of your victim. To find out the PID, follow

these steps:

1. If you pressed Ctrl+Z to put the rogue process to sleep and you're

using the same terminal to kill it utterly, type a plain ps.

Otherwise, you may have to use a different terminal to kill the process

because the amok process has taken over your own terminal.

2. In this case, you have to tell ps which user's processes you want to

see. If you use Linux, type this command:

ps -u username

326 Part V: Help!

Replace username with your own login name so that you see the

processes you're running.

If you use System V, type this command:

ps -fu username

If you use BSD, type

ps -a

Suppose that you see the following listing after typing ps - f u j ohnl , which
lists all the processes for user j ohnl (the listing is shortened to save space):

UID PID PPID C

johnl 24806 24799

STIME TTY

Jan 18 ?

TIME COMMAND

0:39 xclock

The PID of the process you want to kill is 24806. You kill it by typing the

kill command:

kill 24806

The normal type of kill sends a request to a process: "Please, nice Mr.

Process, would you be so kind as to croak?" Although this method usually

works, occasionally a program doesn't take the hint. Another kind of kill, the

ominously named Number-Nine kill, offers the victim no choice. Type this

command:

kill -9 24806

If you stop a particularly uncooperative program with Ctrl+Z, a regular kill

may provoke it to retaliate by trying to take over your terminal (something

the shell, fortunately, prevents). The following example shows a true-life

transcript of our attempts to murder our old text editor pal, ed. First, we
pressed Ctrl+Z, which put it to sleep. Then we tried a regular kill. When ed

tried to strike back, we did a Number Nine. Sayonara, Bud.

% ed badfile

Chapter 24: Some Programs Just Won't Die j27

Resuscitating a terminal

If you blow away a program that reads a char- 2. Type stty, a space, and sane (as op

acter at a time from your terminal, such as v i posed to the insane state your terminal i:

ii yuu uiuvv away a (jiuyiani inaiic

acter at a time from your terminal, such as v i

or emacs, the dead process leaves your ter-

minal in a rather peculiar state that makes it

hard to get any work done. The following

three-step method usually brings the terminal

hank:back:

1. Press Ctrl+J.

The shell may complain about strangely

named nonexistent commands. Ignore its

whining.

posed to the insane state your terminal is

in). Press Enter.

You may not see anything on-screen. Re-

main calm.

3. Press Ctrl+J again.

This step should put your terminal back

into a usable state.

When X Goes Bad
If you're using X Windows in any of its multiple guises (particularly Motif)

on a workstation or PC running UNIX and are especially unlucky, X itself may
freeze the entire screen. If you can get into your computer through another

terminal or a network, you can get rid of X Windows. Doing so makes all the

programs using X go away so that you have to log in all over again. The trick

is to figure out which program is X Windows. Here's an edited ps report from

a System V system:

UID

328 Part V: Help!

You can find out which process is X in two easy ways:

*> The command line has the strange code : 0, which turns out to be X-ese

for "the screen right there on the computer."

*> The amount of computer time used (in the STAT column) is large

because X is, computationally speaking, a pig.

After you figure out which process is X, you can give it the old Number-Nine

kill and probably be able to log back in.

If you're using an X terminal, the Number-Nine kill doesn't apply because X
itself runs in the terminal and not in the main computer. In this case, you kill

X by restarting the X terminal. In the worst case, you turn the terminal off

and back on, although your system administrator can probably tell you an

easier way.

Chapter 25

"My Computer Hates Me"

In This Chapter

Lots of error messages

|» What they mean

) What to do about them

•••••••••••••••••••••••••••••••••A**

Question: You type a command. UNIX says something incomprehensible.

What does it mean? What should you do?

Answer: Look in this chapter for the error message. We tell you what the

message means and what you can do to fix the problem.

Most error messages start with the name of the command you tried to use. If

you want to use the cp command to copy a file, for example, but you spell

the name of the file incorrectly, cp can't find a file with the name you typed,

so it says something like this:

cp: No such file or directory

At the beginning of the line is the name of the command that failed to work.

After the colon comes the UNIX error message— UNIX's attempt to explain

the problem.

This chapter contains the most common error messages, in alphabetical

order. In some of our explanations, we refer to things called arguments, not

because we are feeling argumentative but because that's the technical name
for the information you type on the command line after the command.
Suppose that you type this line:

cp proof .that. elvis. lives save

cp is the command, proof .that . el vi s . 1 i ves is the first argument, and
save is the second argument. You can have lots of arguments on the line:

The number you need depends on the command you use (cp requires two).

Type a space between arguments.

330 Part V: Help!

UNIX also has things called options, which tell the command how you want it

to work. Options always start with a hyphen (-). Suppose that you type this

line:

Is -1

The -
1 tells the 1 s command how you want it to display the files. Options

don't count as arguments. If you type this line:

Is -1 *

the - 1 is an option, and * is the first (not the second) argument.

This stuff is nitpicky, but, if UNIX complains about a particular argument or

option, knowing exactly which item it doesn't like comes in handy.

And now (drum roll, please), the error messages!

Arq list too lonq

Meaning: The list of arguments (stuff on the command line after the name of

the command) is too long.

Probable cause: When you type a wildcard character as part of a filename

or pathname, UNIX replaces it with the list of filenames and then calls the

command. If you go wild with the asterisks, the result is a very long list. The
list can be more than 5,000 characters long, so it's unlikely that you typed

too long a list of filenames, unless you're an unusually fast typist.

Example: You are in the root directory (/) and type this line:

Is */*

If a large number of files is in the root directory and its subdirectories, */*

turns into a really long list.

Solution: Check the wildcards you used in the command, and use fewer of

them.

Newer versions of UNIX allow much longer argument lists than older ones

did. If you're using a modern system, such as Linux or BSD/OS, and get this

message, something strange is probably going on.

Chapter 25: "My Computer Hates Me" ^3 1

Broken pipe

Meaning: You are running two programs connected by a pipe, and the

program at the receiving end of the pipe exited before it received all its data

(refer to Chapter 7).

Probable cause: You get this error occasionally when you use a pipe (|

) to

redirect the output of a program into the more program and then press q to

cancel the more program before you see all the output. The program has no
place to put its output because you canceled the more program, so you get

this error. In this case, it's harmless.

Example: You type this line:

man furgle
|
more

The man program (which displays frequently incomprehensible UNIX manual
pages) shows you screen after screen of boring information. You press q to

cancel the more program, but the man program gives you the error message.

Solution: Nothing to do— it's not really an error!

Cannot access

See the section "No such file or directory," later in this chapter.

Cross-device link

See the section "Different file system," later in this chapter.

Device or resource busy
Meaning: A device, such as a terminal or printer, is in use by another

program.

Probable cause: Sometimes you see this message when you try to use cu or

t i p to access a terminal that's already in use by another program or user.

Example: You type this line:

cu somesystem

Solution: Wait until the other user finishes.

332 Part V: Help!

different file system

Meaning: You're using the 1 n command to create a link to a file in a different

file system (a different disk or a disk on a different computer).

Probable cause: If your system can't do soft links (see Chapter 7), you can't

create a link from one file system to another. The file you want to link to is

probably in a different file system from the directory in which you want to

make the link (usually the working directory).

Solution: Use the df command to find out which disks your computer has

and which directories are on which disk.

If your version of UNIX can't do soft links, you're out of luck. The only

solution may be to make a copy of the file rather than create a link to it.

File exists

Meaning: A file by that name already exists.

Probable cause: When UNIX expected the name of the file you want to

create, you typed the name of a file that already exists.

Solution: You rarely see this message, because most UNIX commands blow

away an existing file when they want to create a new one by the same name
(which is not always what you want).

File table otferftou/

Meaning: The system is way too busy and can't juggle as many files simulta-

neously as all the users have asked it to.

Probable cause: The system isn't configured correctly, or someone is doing

way too much work.

Solution: Complain to the system administrator.

File too large

Meaning: You are trying to make a file that is too big.

Chapter 25: "My Computer Hates Me" 333

Probable cause: The maximum file size is set by your system administrator.

A maximum file size prevents a messed-up program from making a file that

uses up the entire disk by mistake. You're not likely to really want to make a

file this big. It usually happens when you use >> to add a copy of a file to

itself, so you end up copying the file over and over until it passes the preset

size limit.

Example: You type the line shown here:

pr myfile » myfile

Solution: Check the command and make sure that you're saying what you
mean. If you're sure that you want to make a really big file, talk your system
administrator into upping your file-size limit.

Illegal option

Meaning: You typed an option that doesn't work with this command.
(Options tell the command how you want it to work. They begin with a

hyphen.)

Probable cause: You typed a hyphen in front of a filename, or you typed the

wrong option.

Example: You type this line:

Is -j

Because the 1 s command has no - j option, you get an error message.
Frequently, after the illegal opt i on message, UNIX also prints a line

about usage, which is its cryptic way of reminding you about which options

do work with the command. (See the "Usage" section, later in this chapter.)

Solution: Check your typing. Look up the command in this book to make
sure that you know which option you want. Alternatively, use the man
command to display an exhaustive and exhausting list of every option the

command may possibly understand.

334 Part V: Help!

Insufficient arguments
Meaning: You left out some information.

Probable cause: The command you are using needs more arguments than

the ones you typed. UNIX may also print a usage message in its attempt to

tell you which arguments you should have typed. (See the "Usage" section,

later in this chapter.)

Example: The cp command needs two arguments: The first one tells it what
to copy from, and the second one tells it what to copy to. You can't leave out

either one.

Solution: Check your typing. If the command is one you don't use often,

check to make sure that you've used the correct arguments and options.

I/O error

Meaning: I/O is computerese for mput and output. Some physical problem

has occurred during the reading or writing of information on a disk, tape,

screen, or wherever your information lives.

Probable cause: Broken disk drive.

Solution: Tell your system administrator. You may have big trouble ahead.

Is a directory

Meaning: You typed the name of a directory when UNIX wanted a filename.

Probable cause: The command you typed is trying to do something to a

directory rather than to a file. You can look at a directory by using a text

editor, but it looks like binary junk with filenames mixed in. You can't change

a directory by editing it.

Note that emacs has a special mode (called di red mode) for "editing"

directories. But emacs has its own special way to create, rename, and delete

files, too.

Solution: Make sure that you type a filename, not the name of a directory.

Chapter 25: "My Computer Hates Me" $35

Login incorrect

Meaning: You are trying to log in and didn't enter a correct username or

corresponding password.

Probable cause: Two possibilities exist: One is that you typed your pass-

word incorrectly, and the other is that you typed your username incorrectly.

Solution: Type slowly and deliberately, especially when you type your

password and can't see what you are doing. If you have trouble remember-

ing your password, use the passwd command to change it to something

more memorable, as described in Chapter 2.

No more processes

Meaning: Your system can't create any more new processes.

Probable cause: This message appears when you tell UNIX to create a new
process, and UNIX can't do it. Refer to Chapter 24 for information about

processes.

Possible reasons for this message are that the system doesn't have any

more space for this kind of thing. Occasionally you get this message on very

busy systems when you try to run something or if you start dozens of

background processes (refer to Chapter 13).

Solution: Wait a minute and try the command again. If you have lots of

background processes, get rid of some of them. If you see this message
often, complain to your system administrator.

No process can be found
See the section "No such process," later in this chapter.

No space left on device

Meaning: The disk is full.

Probable cause: Either your files take up too much space or someone
else's do.

Part V: Help!

Solution: Delete something to make space. If you don't think that you can or

you don't have any large files, talk to your system administrator. She has

probably already gotten the same message and is checking to see who is

taking up all the space.

No such file or directory

Meaning: UNIX can't find a file or directory with the name you typed.

Probable cause: You spelled a filename or pathname wrong. This problem

happens to most of us ten times a day. If you typed a pathname, you may
have misspelled any of the directory names it contains. You may also have

capitalized something incorrectly.

Example: You type this line:

cp june.bugdet save

The file isn't named June, bugdet, however— it's June . budget.

Solution: Check your spelling and capitalization. Use the 1 s command to see

how the file and directory names are spelled and whether they have any

uppercase letters. For the pathname, check to see whether it should begin

with a slash (which means that it is an absolute pathname that describes the

path from the root directory) or not (which means that it is a relative pathname

that describes the path from the working directory). See Chapter 6 for more

information about pathnames.

No such process

Meaning: UNIX can't find the process you are referring to.

Probable cause: You have given a command that talks about processes,

probably a kill command to stop a runaway process. (Chapter 24 de-

scribes what a process is and why you may want to kill the poor thing.)

Solution: The process may already have gone away, in which case no

problem exists. You may have mistyped the PID that specifies which process

to do in. Check your typing and use the ps command to check the PID.

Chapter 25: "My Computer Hates Me" ^3 7

Not a directory

Meaning: UNIX needed the name of a directory, but you typed a filename or

the name of something else.

Probable cause: Either you spelled a directory name incorrectly or you
forgot to create a new directory.

Example: You type this line:

cd /gillian

but no directory is named /gillian.

Solution: If you are referring to a new directory you planned to create, make
it first by using the mkdi r command. If you are referring to an existing direc-

tory, get the spelling right. Use the 1 s command to see how it's spelled.

Permission denied

Meaning: You don't have permission to do whatever the last command you
issued tried to do.

Probable cause: You are trying to change, move, or delete a file you don't own.

Example: You type this line:

rm /usr/bill/resignation. letter

But you are not Bill. Because you don't have permission to delete this file,

UNIX doesn't let you.

Solution: Use the Is - 1 command to find out who owns the file and what its

permissions are (refer to Chapter 5 for information about permissions). If

you think that you ought to be able to mess with the file, make your own
copy of it or talk to the owner of the file or your system administrator.

338 Part V: Help!

RE error

Meaning: You are using the grep program and it doesn't understand what
you're searching for. (RE stands for regular expression.)

Probable cause: You probably have to use backslashes in front of a charac-

ter that is a wildcard in grep.

Example: You type this line:

grep '[x' myfile

Solution: Put a backslash in front of any character that has a special wild-

card meaning in grep (grep wildcards include periods, asterisks, square

brackets, dollar signs, and carets). If you are searching for text that contains

special characters, put single quotation marks around the text to match.

Read-only fife system

Meaning: You are trying to change a file that UNIX is not allowed to change.

Probable cause: Some disks, particularly NFS remote disks, are marked
read-only so that you can't create, delete, or change files on them. It doesn't

matter what the permissions are for the individual files: The entire file

system can't be changed.

Solution: Talk to your system administrator. Alternatively, make a copy of

the file you want to change and change the copy.

Too many (inks

Meaning: You are trying to make so many links to a file that you have

exceeded the maximum number of links to a file.

Probable cause: The maximum number of links to a file is 1,000. You must

be a heck of a typist to get this message, or more likely you were running a

script that linked a little more enthusiastically than you had intended.

Because the parent directory is linked to each of its subdirectories, you also

get this message if you try to make more than 1,000 subdirectories in one

directory.

Solution: Stop making links.

_ Chapter 25: "My Computer Hates Me" 33s

Usage
Meaning: UNIX doesn't like the number or types of arguments you typed

after the command. It is telling you (in its own cryptic way) the correct way

to use the command.

Probable cause: UNIX usually displays this message with another, more

specific message. Check out the other message to see what the real problem

was. The usage message is the UNIX reminder about how to use the com-

mand. After usage, you see the command, followed by the options and

arguments you can use with the command. Unfortunately, you get no clue

about what the options do.

Example: You type this line:

kill abc

UNIX responds with this message:

usage: kill [signo] pid

This line means that the correct way to use the kill command is to type

kill, a space, (optionally) the type of signal you want to send to the process,

another space, and then the process ID. Don't type the [] — we stuck them

in to let you know which part of the command is optional — not that it's

entirely clear from the message!

Solution: Check your typing, as always. Make sure that spaces are between

things on the line (between filenames or between a filename and an option,

for example). If you don't use this command often, check to make sure that

you have the correct arguments (filenames and so on) and options (things

that begin with a dash, such as the -/ in 1 s -
1
). Look up the command in

this book or consult the UNIX manual page about it (see Chapter 27 for

instructions on how to display manual pages).

Mb model (or some other

three-digit number)

Meaning: You don't have permission to change this file, but you have told

UNIX to delete it.

Probable cause: You are using rm, mv, or 1 n to remove or replace a read-only

protected file or a file that belongs to someone else. (Refer to Chapter 5 for

information about permissions.) Rather than refuse outright to do what you

asked, UNIX asks whether you really want to do it.

3£0 Part V: Help!

Example: You used the chmod command to make an important file read-only.

Then you decide to delete it by typing this line:

UNIX asks whether you really want to delete it, even though the file is

read-only.

Solution: The question mark at the end of this message indicates that UNIX

is asking you a question. By divine intuition, you are supposed to guess that

UNIX is asking whether you want to complete the command anyway. Press y
if you want to go ahead and do the command. Press anything else if you

want to cancel it (for this file, anyway).

If you own the file, you can change its permissions by typing this line:

chmod 644 filename

Rather than type f i 1 ename, type the real filename. This command has the

result of allowing anyone to read or write to the file.

Part VI

The Part of Tens

The 5th Wave ByRichTennant
@PWtf&MUMlT-

$Uf£,HE'S A HTML DIFFERENT,

ftrr^VlCRKSlWD AND KEEPS

U£9<5t£[AFREECFa£iS.

In this part . .

.

MMNIX uses many commands, programs, options, and

%rW other stuff— much more than we can pack into this

book. The real, official manuals for a UNIX system take up
about three feet of shelf space. (For cost savings, all the

pages of these manuals are blank because no one ever

reads them, but if you don't tell, neither will we.)

In this part of the book, we organize facts into neat lists of

ten (actually, two lists) so that they're easier to remember.

Astute readers may claim that neither of these lists con-

tains exactly ten items. Well, we were using mixed radix

arithmetic (survivors of new math in school may remember
some of this subject from fourth grade), so a chapter with

eight items has ten items counting in base 12, and a

chapter — what? You say that we can't bamboozle you
with such nonsense? Truth is, we can't count.

Read on — good stuff is in this part, regardless of the

numbers.

Chapter 26

Ten Common Mistakes
•••a

In This Chapter

p- Mistyping commands

fr Believing that it will be easy

) Pressing Enter or not pressing Enter

Working in the wrong directory

) Not keeping backup copies

Ifc- Not keeping files organized

Turning off your computer

Writing your password on a note next to your computer

Sending angry electronic mail (flaming)

•••••••••••••••••••••

l^ere are ten (or so) of the most common user mistakes we have run

¥ m into. Although you will probably invent some new ones yourself, at

least avoid the ones on this list.

BetieVina That It Witt Be Easy
UNIX was designed a long, long time ago in computer time (computer years

are similar to dog years, except that 50 computer years equal a human
year). Software design has made a great deal of progress since 1972, and
UNIX has not. If you are used to a Macintosh or a PC with Windows, or even
a PC with DOS, UNIX isn't easy to use.

On the other hand, UNIX has a certain cachet and glamour; it takes a macho
person (of either gender) to face it. You should give yourself major kudos,

and maybe even one or two of those cookies you made to bribe your UNIX
wizard, every time you get UNIX to do something useful.

3M Part VI: The Part of Tens

Mistyping Commands
If you type a command the UNIX shell doesn't understand, it says that it

can't find the command. The reason is that it looks high and low for a file

with the name you just typed, hoping to find the program you want to run.

And then it says

eatmylunch: Command not found.

Or perhaps it says

eatmylunch: not found

The exact wording varies from shell to shell (we would bet that you already

guessed that). To make sure that you type a command properly:

v Check your spelling (as always). You may have typed a correctly

spelled English word rather than the garbled set of letters that com-
prise the name of the program.

j> Check your capitalization. Capital and small letters count as com-
pletely different things in filenames and, therefore, in commands.
Nearly every command uses only small letters.

is* Change directories (maybe). You may have given the right command,
but UNIX may not know where to look for the file containing the pro-

gram. If you know where the program file is, move to that directory and

give the command again. If you don't know where the file is, either look

for it (as described in Chapter 23) or give up and ask your system

administrator or local wizard.

Jo Press Enter, or Not to Press Enter

Depending on which program you are using, sometimes you must press

Enter (or Return) after a command, and sometimes you don't. In the UNIX
shell, you always have to press Enter or Return before UNIX performs the

command. If you don't, UNIX waits forever for you to do so.

In other programs, particularly in text editors like emacs and vi , as soon as

you press the command (Ctrl+K to delete a line in emacs, for example), the

program does it right away. If you press Enter or Return after the command,
emacs sticks a new line in your file, and vi moves down to the next line.

When you use a program you're not familiar with, hesitate a moment before

pressing Enter or Return to see whether the computer may already be

performing the command. If nothing is happening, press Enter or Return.

Chapter 26: Ten Common Mistakes jUj

Working in the Wrong Directory
If you use separate directories to organize your files, make sure that you are

in the proper directory when you begin working. Otherwise, UNIX won't find

the files you want to work on.

To find out which directory you're in, type pwd. Remember that this com-
mand stands for print working directory.

If you're really lost, you can type whoami. This command tells you your
username.

To move back to your home directory, type cd.

Not Keeping Backup Copies
Sooner or later, it happens. You give an rm command to delete a file, and
UNIX deletes the wrong file or deletes everything in the directory. Chances
are that you typed an extra space or spelled a filename wrong, but the point

is — what now?

See Chapter 23 to find out how to proceed if you delete something impor-
tant. The best approach is to keep extra copies of important files: in another
directory, on a floppy disk, or on a backup tape that either you or your
system administrator makes. If you haven't talked to your system adminis-

trator about backups, now is a good time to find out whether your files are

backed up automatically; you can also tell him which of your directories

contain files you want to have backed up.

Not Keeping Files Organized
Unless you do all your work on one or two files, you will run into trouble if

you don't do the following:

u* Make directories for the groups of files you use. (Refer to Chapter 6 to

find out how.) Directories help you separate your files into groups of

files you use together.

*> Use filenames that mean something. UNIX lets you name your files with

nice long names, so take advantage of it (up to a point, anyway). Filenames

should tell you what's inside the file rather than make you guess.

3M Part VI: The Part of Tens

Turning Off \lour Computer
Leaving your computer on all the time is better than turning it off at the

wrong time. Chapter 1 talks about this subject in detail. UNIX can get

messed up if you turn off your computer (if you kick the plug out by mis-

take, for example) without warning it that you are going to do so.

If you use UNIX from a terminal rather than directly with a workstation, it

may make sense to turn off the terminal (not the computer) at night. Check
with your system administrator.

Writing \lour Password on a Sticky Note
Okay, maybe this one doesn't apply if you work at home, live alone, and don't

have any friends, cleaning people, or burglars. Otherwise, you should keep

your password to yourself. Not that anyone has malicious intent — let's not

get paranoid — but people can get curious around computers. And you
never know when an inquisitive 14-year-old who knows more about UNIX
than you do will appear on the scene. If you can't remember your password,

choose a new one that is more memorable. (Refer to Chapter 1 for hints.)

Sending Angry Electronic Mail (Flaming)

j*W

jcJABE*

Electronic mail can bring out your insidious side. There you are, sitting alone

in your cubicle with your computer, and you get ticked off at something,

usually some stupid message sent by a coworker. Before you know it, you
have composed and sent a tactless, not to say downright rude, response.

It's easy to say things in e-mail that you would never say in person or even

write in a memo. But e-mail has an off-the-cuff, spontaneous style in most
organizations, and it can get you into trouble.

Sarcasm seldom works in e-mail — instead, you just sound mean. Gentle

suggestions can turn into strident demands just because they appear in ugly

computer type on a computer screen. Rude mouthing off via e-mail even has

a special name: flaming. A message full of tactless, pointless complaints is

referred to as a flame. A series of flames between two or more people is

called a flame war. You get the idea.

Recipients of your mail can easily forward copies of it to anyone else, so

imagine that everyone in the office may read your missives. Think twice

before sending e-mail containing negative remarks! Then don't send it.

Remember that the best way to end an unpleasant exchange is to let the

other person have the last word.

Chapter 27

Ten Times More Information

than You Want about UNIX

In This Chapter

How to use the man command for online help

What's on a manual page

^ Other books about UNIX

UNIX information on the Internet

••••••••••••••••••••••••••••••••••••••a*

IMy e wish that this book contained every single thing you may ever want
WW to know about UNIX. We considered writing the book that way, but

our publisher frowned on printing a book with 25,000 pages. (Books like that

are hard to bind, not to mention hard to pick up off the floor.) So, we tried to

include just the information that new UNIX users really need to know. If you
read this entire book, however, you'll be well on your way to becoming a

seasoned UNIX veteran. For additional seasoning, this chapter points you in

the direction of more advanced facts about UNIX.

Let's Hear It from the man
You thought that UNIX was completely unhelpful. For the most part, you're

absolutely right. A standard UNIX command called man (for manual),

however, can give you online help.

Sound good? Well, yes and no. The information is there, all right, but it's

written in a rather nerdy style and can be difficult to decipher. Each part of

the online manual is written, of course, on the assumption that you have
read all the other parts and know what all the commands are called. The man

command is definitely worth knowing about, though, when you just can't

remember the options for a command or what to type where on the com-
mand line after the command name.

348 Part VI: The Part of Tens

The man's online manual contains manual pages for every UNIX command,
and other pages about internal functions that programmers use, formats for

various system file types, descriptions of some of the hardware that can be
attached to your UNIX system, and other odds and ends. When you type the

man command, you indicate which page or pages you want.

All manual pages have a standard format. Figure 27-1 shows part of the

manual page for d check, a program a system administrator may use to deal

with people whose files take up too much space on the disk.

Chapter 27: Ten Times More Information than You Want about UNIX 3^0
W DESCRIPTION: A few paragraphs about the command. For commands

with a large number of options, the description can run for a few pages.
A list of options usually is included, with an explanation of every one.
Sometimes you see examples, although not often enough.

v SEE ALSO: Lists names of related manual pages, if any.

*> WARNINGS and BUGS: May list a command's known bugs or common
problems. Then again, it may not.

j> FILES: A list of the files this command uses. The el m and mai 1 com-
mands, for example, use your Mail directory, the central list of mail-

boxes, and other files. (Your system administrator usually sets up
these files — they're rarely something you want to fool with yourself.)

The manual pages for el m and mai 1 mention these files.

Reading manual paqes
To see a manual page, type this line:

man unixcommand

Except, of course, you substitute for uni xcommand the name of the UNIX
command you're interested in. Some versions of man present the manual
page a screen at a time. Other versions just whip the page by at maximum
speed, assuming that you can read 150,000 words per minute. If that hap-
pens (and you can't read that fast), you can use the usual more command to

display the manual page a screen at a time by typing this command:

man unixcommand I more

On the other hand, if you're on a system that normally presents manual
pages a screen at a time and you want it to whip by at full speed because
you just finished a speed-reading course— so you can read 150,000 words
per minute (or, more likely, because your terminal is a PC and you're captur-

ing the terminal output to a file) — type the following line (the dash tells

UNIX that you're a fast reader):

man - unixcommand

350 Part VI: The Part of Tens

Printing manual pages
You can also print the manual pages for later perusal. To print the manual
pages, type this line:

man unixcommand
|

lpr

Remember to use 1 p, if that is the command you use to print. A better

technique may be to put the manual pages in a file first, remove the informa-

tion you don't want, and print the result. You could type the following line,

for example (remember to substitute for f i 1 ename the name of the file you
want the information in):

man unixcommand > filename

Then edit the file with a text editor (refer to Chapter 10) and print it (refer to

Chapter 9). Before you print the file, however, keep in mind that the online

manual pages are generally identical to the printed manual pages in the

dusty UNIX manuals on the shelf, except that the printed manual pages are

typeset so that they're easier to read. Rather than print the online page, it's

often better to look it up in the paper manual. (Bet you didn't think we
would ever tell you to do that!)

If you have a laser printer, you can often print the manual pages with nice

fonts and italics and such rather than the typewriter-like version you see on-

screen. Ask your local guru for advice. Usually, you use trofforgroff
typesetting programs.

Finding the manual page you tiant

If you use the man command, you have no good way to find out which

manual pages are available. Sometimes, it can be difficult to find the one you
want. Suppose that you type this line:

man In I more

UNIX shows you this message:

man: In not found

The 1 n command has no separate manual page. Instead, it shares a set of

pages with cp and mv. You get information about 1 n by typing this line:

man cp
|
more

_ Chapter 27: Ten Times More Information than You Want about UNIX \y /

(Typical UNIX ease of use!) If man doesn't display anything about the com-
mand you want, try some similar commands. BSD UNIX systems have an
apropos command that suggests manual pages relevant to a particular

topic, so you can type apropos In to see what it has to say.

In addition to manual pages about commands, you can find lots of pages
about other topics. You can type this line, for example:

man ascii

If necessary, you can type this line:

man ascii I more

This command shows you a table of the ASCII-character codes for all the

characters text files can contain. Although you probably aren't interested in

them, it does look impressively technoid.

It's a bird, it's a plane, it's xman/
If you use X Windows or Motif, you can use the xman command to look at

manual pages. The nice thing about xman is that it displays a list of the

available manual pages. When you run xman, it pops up a little box with

three buttons, one of which is labeled Manual Page. If you click that button,

a larger window then displays a manual page describing xman. Choose
Display Directory from the Options menu on that page, or press Ctrl+D as a

shortcut, to see a screen of all the manual pages it has — probably more
than 100 of them. Click the one you want to see, and xman switches to that

page. Press Ctrl+D again to return to the directory of manual pages. Read
the initial description of xman for other tricks you can get xman to do, such

as show you two or three different pages at a time or search for keywords in

manual-page titles.

Scanning the Networks
If your system is connected to the Internet or if you have dial-up access to

an Internet provider, you can connect to Usenet, a gigantic, distributed

online bulletin-board system described in Chapter 19. Because most sys-

tems on Usenet are running on UNIX systems, Usenet has a great deal of

discussion of UNIX issues and questions.

352 Part VI: The Part of Tens

\lour basic UNIX nevOs

Usenet discussions are loosely organized into about 10,000 topic areas, or

newsgroups. Table 27-1 lists some newsgroups that discuss UNIX topics.

Table 27-1 UNIX-Related Newsgroups

Chapter 27: Ten Times More Information than You Want about UNIX 353

Group

Part VI: The Part of Tens

Table 27-2 (continued}

Chapter 27: Ten Times More Information than You Want about UNIX j55
Linux

W Linux Online!: This site, at http: //www. 1 i nux. org/, is the source for

Linux information on the Web, maintained by a nonprofit organization

of Linux users.

u* The Linux Resource Kit: At http: //www. secretagent . com/, this site

has very good installation, networking, administration, and program-
ming how-to's for Linux and Apache. It has links to major sources of

Linux distributions, downloads, and news and is a well-designed site.

is* The Linux Documentation Project: The project (at http : /

/

sunsi te . unc . edu/mdw/) has tons of Linux documentation, news,

links, and downloads.

W Red Hat: Red Hat maintains a site (at http: //www. redhat . com/) that

serves as a clearinghouse for all kinds of information about Linux.

*> The Debian GNU/Linux site: This site (at http://www.debian.org/)
is also worth checking out.

*> LinuxMall.com: "Get it all at the Linux Mall!" The Linux Superstore is at

http: //www. 1 i nuxmal

1

.com/.

X Windows and such

v The Open Group: Formerly the Open Software Foundation, or OSF
(based in Cambridge, Massachusetts), this nonprofit organization helps

develop standards for such UNIX-related technologies as Motif, X
Windows, and the Common Desktop Environment. Its desktop home
page, at http: //www. camb.opengroup.org/tech/deskt op/, has all

kinds of introductory and technical information about graphical UNIX
systems.

v* The Motif Zone: The Motif Zone has everything you ever wanted to

know about Motif (at http: //www. mot i f zone. com/).

is* The XFree86 Project: Its home is at http: //www.xf ree86 . org/.

Web browsers

W The Lynx Users' Guide: Maintained by the Academic Computing
Services group at the University of Kansas, the guide is yours for

the viewing, at http : //www. cc . ukans .edu/lynx_hel p/

Lynx_users_gui de . html

.

i> Netscape: Netscape maintains information and downloads for its

Communicator browser for UNIX at http: //home, netscape, com/

eng/mozilla/4.0/relnotes/unix-4.0.html.

W Microsoft Internet Explorer: Although we don't recommend it,

Internet Explorer is indeed available for Solaris 2.5 and later. You
can read about it for yourself and download it from http : / /

www. mi crosoft.com/ie/unix/.

356 Part VI: The Part of Tens

Other stuff

i> The Apache Project: It's the official Web site (http : / /

www. apache, org/) of the most popular Web server in the world.

Get documentation, FAQs, the latest news, and free downloads.

v Apache RTFM: This site has a great set of reference pages on how to

use the Apache server and is especially useful for beginners (http : / /

www. jl k. net/apache/).

j> Samba: Check out the worldwide home of the package that lets your

UNIX system provide networked logical disks to Windows PCs (at

http: //www. sa mb a. bst.tj /samba/samba, html), with documenta-

tion, FAQs, how-to's, news, and downloads. Includes pizza supply

details for paying Samba's creator in the only kind of currency he

seems to recognize.

Other Sources of Information
Your system administrator or nearby UNIX users probably have copies of

UNIX manuals lying around. The pages of some of these manuals usually

look much like the manual pages you get with man.

The advantage of the printed manual is that an index is in the front (or the

back). It is usually a permuted or KWIC index (an overly clever abbreviation

for key word in context), which means that you can find an entry by looking

under any of the words in the title except for boring ones, such as the. To

find the page for the cp command (the title of the manual page is cp, In,

mv— copy, link, or move files), for example, you can look in the permuted

index under cp, In, mv, copy, link, move, or files.

Then again, it's not a bad idea to try typing help, just to see what happens.

Someone may have installed some kind of help system — you never know.

UNIX is used widely enough that a growing industry of UNIX books, maga-

zines, user groups, and conferences has sprung up. Any of them can provide

additional help and information.

Read a magazine

Several weekly or monthly magazines cover UNIX. Most of them include in

their titles either the name UNIX or the code phrase Open Systems (for

systems that act like UNIX but haven't licensed the UNIX trademark).

Chapter 27: Ten Times More Information than You Want about UNIX ?^ "J

Because you probably have already thrown away mail inviting you to subscribe

to most of them, we don't belabor the point. The major brands of worksta-
tions (Sun, Hewlett-Packard, and IBM) also have magazines that specifically

cover those product lines. Although some of these magazines tend to be
awfully technical, they can be interesting for product reviews and announce-
ments about new UNIX hardware and software packages.

If you use Linux, take a look at the Linux Journal, the magazine for and
about Linux. (Its address is P.O. Box 55549, Seattle, WA 98155-0549 USA;
phone 206-782-7733; e-mail, 1 i nux@ssc . com.) The technical level varies

from totally introductory to fairly technical.

Read a book
Yeah, we know: You may have (or not) just read this book. We mean read

another book. Here are a few you may like:

v* Levine and Young, More UNIX For Dummies; IDG Books Worldwide, Inc.

(Big surprise, huh?) Get more info about UNIX shells, script-writing

languages, and the use of the Internet from UNIX.

u* Levine and Young, UNIX For Dummies Quick Reference, 3rd Edition; IDG
Books Worldwide. (Equally big surprise.) The Quick Reference has
essential information from the book you're reading and a detailed

command reference, squashed down into a smaller, less expensive,

pocket-size form.

i^ Daniel Gilly, UNIX in a Nutshell; O'Reilly. A complete UNIX reference, the

one we turn to when memory fails. It comes in various editions for

different versions of UNIX and is intended for more advanced users

than our UNIX For Dummies Quick Reference.

v* Witherspoon, Witherspoon, and Hall, LINUX For Dummies, 2nd Edition;

IDG Books Worldwide. This one tells how to survive installing, using,

administering, and networking Linux, for beginners with some technical

tolerance.

j> Welsh and Kaufman, Running LINUX; O'Reilly. All about installing and
using Linux, it's medium technical but quite informative.

j> Naba Barkakati, LINUX Secrets, 2nd Edition; IDG Books Worldwide. This

one covers a wide range of topics, from hardware debugging to using

Linux in your business.

v The Linux Bible, Yggdrasil Computing. The online Linux documents are

neatly printed and bound — all 1,200 pages of them.

358 Part VI: The Part of Tens

Join a user group

Two major UNIX user groups exist. The older one, called Usenix, dates back

to about 1976; it is traditionally for technical users. The other is Uniforum,

formerly /usr/group, which is more for business users. Each one sponsors

annual conferences and publishes a newsletter. You can also find local and

regional UNIX user groups; you tend to find out about these groups from

notes posted on physical or electronic bulletin boards. User groups can be

great sources of help because chances are good that someone out there has

already run into many of the same problems you have and has some ideas

that may help.

Index
••••••••••••••a

• Numbers
and Symbols •
%CPU column, BSD ps

program, 178

%MEM column, BSD ps
program, 178

3101 emulation,

described, 201

3270-series display terminals,

described, 202
444 mode? error message,

339-340

•A*
absolute (full) pathname,

described, 82
absolute permissions,

numbering system,
74-75

accounts
adding users in Linux, 184
root (superuser), 184

acronyms, e-mail, 225
active window, described,

49-50
Adobe Acrobat, pdfTeX

macros, 129
AfterStep window manager,

NeXTStep window
system similarities, 44

aliases

described, 102
running programs from

other users' directories,

166-167
alphanumeric sorts,

described, 90-92
Alt key, menu item selection

techniques, 53
AltaVista, Web directory, 254
ampersand (&) character,

background processes,
180-182

anonymous FTP, described,
291-292

•••••••••••••*

anonymous FTP servers,

described, 293
ANSI (American National

Standards Institute),

terminal emulation, 201
AOL (America Online),

e-mail address conven-
tions, 213

Apache Web server, 301
Arg list too long error

message, 330
argument list, length, 330
arguments
defined, 329
shell scripts, 165

arrow keys, BASH shell his-

tory list navigation, 97
articles, reading newsgroup

postings, 261-266
ASCII codes, sort order, 153
ASCII files, described, 285
asterisk (*) character
anything wildcard, 93-95
directory or file search,

102, 104
grep program search,

106-107
multiple file links, 110-111

at (@) sign character
clearing typing errors, 15

e-mail address conven-
tions, 211

fingering other computers
or users, 193

restarting command-line
entry, 28-29

Athena widgets,

described, 45
attachments, e-mail files,

213-214

8
background processes
described, 179
ending with kill command,

179, 181

background programs, jobs,

180-182

Backspace key
clearing mistyped user-

names or passwords, 15

deleting typing errors,

28-29
backup copies, keeping, 345
backup servers, 304
backups
described, 69
how to do, 316
Linux, 317-318
needed, 316-319
restoring from, 318-319
strategies, 319
using to find clobbered

files, 315
bandwidth, 299
BASH (Bourne Again shell)

shells

arrow key history list

navigation, 97
background processes, 179

command history list uses,

97-98
described, 24
emacs-style cursor posi-

tioning shortcut keys,

97-98
find program search, 104

Linux, 23
profile file, 98-99
running programs from

other user's direc-

tories, 166-168
search path, 164

up-arrow key last com-
mand repeater, 28

vi-style history list search
keys, 98

batch formatters,

described, 121

Bell Labs, UNIX development
history, 18

Berkeley UNIX versions,

described, 18

bin directory

adding to search path, 164

links, 166

naming history, 160

program storage, 160

shell script storage, 161

UNIX For Dummies, 4th Edition

binary code, bin directory

roots, 160

binary files, described, 285

Bis, modem speed-matching
conventions, 14

book, how to use, 1

bookmarks, described,

246, 253
borders
active window color, 49-50

window controls, 48-51

window manager version

and type indicator,

41-42

bottom margins, printer

settings, 120

bounced e-mail,

described, 212
Bourne shell

background processes, 179

described, 23-24

dollar sign ($) character

indicator, 23

profile file, 98-99

running programs from
other users' directories,

166-168
search path, 164

sh program name, 23

variations, 24

Bourne, Steve, Bourne
shells, 23-24

Break key
stopping command

processing, 28

terminal emulator connec-
tions, 14

Broken pipe error

message, 331

browsers
described, 233-234

Lynx, 234-248
Netscape Communicator

4.0, 248-255
BSD (Berkeley Software

Distributions) UNIX
versions

described, 18

diff program, 152

lpr command, 114

printing, 114

ps command, 178-179

symlinks, 111-112

buffers, printer, 119

bugs, described, 20

built-in (internal) DOS com-
mands, described, 25

C column, System V ps
program, 177

C shell

background processes, 179

caret (
A
) character com-

mand repeater, 25

colon (:) character com-
mand editing, 25

command history list uses,

96-97
csh program name, 24

cshrc file, 98-99
described, 24-25
exclamation point (!)

character command
repeater, 25

double exclamation point

(!!) character command
repeater, 25, 28

exclamation point (!)

character command
repeat, 96

find program search, 104

login file, 98-99
punctuation character

uses, 25

running programs from
other users' directories,

165-168

search path, 164

slash (/) character
command repeater, 25

tcsh (extended C shell)

variation, 24

Caldera OpenLinux
commercial version, 186

features, 186-187

Cannot Access error

message, 331

capitalization, in com-
mands, 344

caret (
A
) character, C shell

command repeater, 25

CDE (Common Desktop
Environment)

customization options, 63

described, 40

DTWM (Desktop Window
Manager), 41-42

exiting the desktop, 64

features, 61

File Manager, 60-61

FrontPanel elements, 58-59

Help Viewer, 62

multitasking, 174

network access, 61

print processes, 61

startup process, 58
Style Manager

customization, 63

toolkit, 59-60
Trash tool, 63

character searches, grep
program, 105-107

chat, described, 195-198

child directories,

described, 80
click-to-type (explicit focus),

described, 49

client programs,
described, 39

client/server architecture, X
(X Window system),
38-39

clients, described, 43

cmp program, 151-152

colon (:) character, C shell

command editing, 25

colors, active window
border, 49-50

columnar format,

printing, 121

com domain name zone,

profit-taking enter-

prises, 299
COMMAND column
BSD ps program, 178

ps programs, 176

System V ps program, 177

command line

deleting typing mistakes,

28-29
Enter key at end of com-

mand line, 27, 29

restarting command entry

with at (@) sign

character, 28-29

shell program's entry

conventions, 26

shell script arguments, 165

command processor,

described, 23

commands
See also programs
adduser, Linux, 184

at, 154

cancel, 117-118

case sensitive, 2

cat (catalog or catenate),

71,90

Index 361
cd (change directory), 78,

82-83
cd (home directory), 345
chmod (change mode),

75-76
chown (change owner),

73,76
command not found error

message, 29-30
conventions used in book, 2

cp (copy), 67-68, 313
cu (call UNIX), 204

date, 154

described, 25
df (Disk Free space), 208
elm program, 220-226
emacs program, 141

Enter key to activate, 344
external, DOS, 25
fdisk, DOS, 185

file, 71, 158

finger, 192-195
FTP listing, 292
halt, 12

head, 71

history, 95
id, 73

internal (built-in), DOS, 25
kill, 179. 181,326
kill-9, 326
In (link), 109-112,313,350
logout, 16

lp (print), 72, 114-117
lpq, 117-118
lpr, 114-117
lprm, 118

Is (list), 27, 65-66
mail program, 228
man (manual), 347, 350
manual pages for help, 348
menu item selection

techniques, 52-53
mistyping, 344
mkdir (make directory),

78,83
more, 90
mv (move), 70, 85-86,

110,313
option switches (flags), 66
passwd, Linux, 26-27, 184
path, 164
pico program, 143, 145-146
Pine program, 215-218
pr, 119-121

press Enter or not?, 344
printing output, 93

profile file execution, 98-99
ps (process), 324
pwd (print working

directory), 81,345

q (quit), 324
rehash, 163
rm (remove), 69, 109,

311-312
rmdir (remove directory),

78, 85-86
shell history list, 95-98
shell program repeater

keys, 28
shutdown, Linux, 12, 185
shutdown now, Linux,

12, 185

sort, 152-154
sorting output of, 91

special characters, 29-30
standard output display, 87
startx, 46
stopping while process-

ing, 28
stty, 100

talk, 195-198
tar, 168-170
terminal-control charac-

ters, 100

trn newsreader conven-
tions, 261-262

uname, 22
UNIX and Internet support,

199

versus programs, 25
vi program, 131, 135-136
when to use spaces, 30
who, 192

whoami (tells user-

name), 345
wildcard uses, 93-95
write, 195-198
xinit, 46

xman, 351

comment indicator, pound
sign (#) character, 99

Common Open Software
Environment,
described, 40

communications, user chat,

195-198
comparison programs,

151-152
components, book sections,

2-4

compress program, 155-156

CompuServe, e-mail address

conventions, 213
computers
chatting with other users,

195-198
determining UNIX

version, 22
dumb terminals, 10

fingering users, 192-195
frozen, 309-310
logging in to UNIX, 13-15

machine names, 198

PCs, 10-11

powering up, 10-12

remote login, 199
sending e-mail to other

users, 210
shutting down properly, 28
turning off, 346
UNIX types, 9-12
UNIX workstations, 11-12

won't come on, 307-308
X terminals, 39, 39

connections, terminal

emulators, 13-14

controls

terminal character, 100

window borders, 48-51

conventions, used in book, 2

copies, lost files, 315
core files, deleting, 324
Corel Corporation,

WordPerfect program,
129-130

cover sheets, printouts, 115

cross-device link error

message, 331

cross-platform capability,

described, 130

Ctrl key
emacs program command

combinations, 139

pico program command
combinations, 143,

145-146
Ctrl+Alt+Del keys, Linux

support, 185

Ctrl+C keys
stopping command

processing, 28
stopping find program

search, 103

Ctrl+H keys, deleting

command line mis-

takes, 28-29
Ctrl+U keys, restarting

command-line entry, 28

UNIX For Dummies, 4th Edition

current job, described, 181

current (working) directory

described, 81-82
listing files with Is

command, 27
cursors, on-screen

display, 29

Cygnus Support, GNU
software, 21

/)•
daemons, 174,302-303

See also processes
data, losing, 311-314
Davis, John E., jed devel-

oper, 145

Debian Linux, features,

186-187
DEC VT100 terminal, xterm

program emulation, 45

Del key
clearing mistyped user-

names or passwords, 15

deleting command-line
mistakes, 28-29

stopping command
processing, 28

stopping find program
search, 103

desktop manager programs,
described, 47

Desktop, Caldera Linux, 57

Deutsch, Peter L.,

Ghostscript program
developer, 123-124

device independent, groff

program formatting, 123

device or resource busy
error message, 331

dialects, SMB (Server

Message Block), 194

diff program, 151-152
different file system error

message, 332
difficulty assessment, 343
directories

bin, 160
case-sensitive naming

conventions, 78, 81

changing, 344
changing permissions,

75-76
child/parent relation-

ships, 80

creating, 83-84
current (working), 81-82

d (directory) character in

file listing, 74

described, 78-79
file pathname conventions,

79-80
file search, 102

find program search,

102-105
for groups of files, 345
FTP listing, 287-288
grep program search,

105-107
home, 81

link count indicator, 74

mounting, 208
moving files between, 85
moving link files

between, 110

ownership rights, 73

rep program uses, 206
remote search, 104-105
removing (deleting), 85-86
renaming, 86
root, 79

sample types, 83-84
shell script processing, 78

slash (/) character
indicator, 78

store Web pages, 300
subdirectories, 78-79

switching between, 82
tree-structure, 79

Windows and DOS similari-

ties and differences,

77-78
working in wrong, 345

directory (d) character,

directory indicator, 74

distribution packages, Linux,

186-187
DLX Linux, features, 187

dollar sign ($) character,

Bourne-style shell

indicator, 23

domain name, 299
domain name zone, 299
DOS command processor,

versus UNIX shells, 23

DOS, internal (built-in)

versus external

commands, 25

double dot (..) character,

parent directory

indicator, 84

double exclamation point

(!!) character, last C
shell command repeat,

25,28
double greater-than (>>)

character, appending
data to a file, 89

double-spaced printouts, 121

down-arrow key (Ctrl+N)

BASH shell history list

navigation, 97
downloads, file transfer time

considerations, 286
drives, Linux and Windows

PC file system sharing,

185

DTWM (Desktop Window
Manager), rounded
border corners, 41-42

dual-boot systems, Linux
and Windows PC, 185

dumb terminals

described, 10

logging in, 13-14

powering up, 10

shutting down properly, 10

UNIX names, 13

UNIX version type and num-
ber determination, 22

• £
ed program
appending versus inserting

text, 147-148
command conventions, 147

described, 146-150

exiting, 150

input mode command
entry, 147

line editor, 146
modifying text, 149

saving files, 148

starting, 147

undoing last change, 149

viewing files, 149

edu domain name zone,

educational institu-

tions, 299
egrep program, character

searches, 105

electronic mail See e-mail

Elkins, Michael, mutt
program, 222

Index 303

elm program
carbon copy (c com-

mand), 221

composing mail (m
command), 220

deleting messages (d

command), 222

editing headers (h com-
mand), 220-221

editing messages (e com-
mand), 221

forwarding messages
({ command), 222

mail index message
display, 219-220

mail index navigation, 220

MIME attachments, 224

printing mail (p com-
mand), 224

reading messages, 222

replying to a message
(r command), 222

saving messages (s com-
mand), 222-223

sending mail (m com-
mand), 221

uudecoding messages,
224-226

vi text editor, 220

emacs program
command conventions,

139, 141

Ctrl-key combinations,

139, 141

cursor-key navigation,

139-140

deleting text, 140

described, 136-142

editor macros, 137

emergency exit tech-

nique, 140

exiting, 141

extended features, 139

GNU versus XEmacs
versions, 137-138

modifying text, 140

saving files, 141

selecting and moving
text, 142

starting, 137

status line information, 137

teco roots, 137

text-entry conventions, 139

versions, 137-138

e-mail

acronyms, 225

address conventions,
210-213

at (@) sign character

address conven-
tions, 211

authors' addresses, 5

bounced (incorrect

address), 212

cautions, 346

checking for, 210

commercial-service users,

212-213
elm program, 219-226

e-mail, 210
emoticons, 225

file attachments, 213-214

flaming, 225

header text elements, 219

Internet users, 211-212

mail program, 226-229

mutt program, 222

netiquette, 225

Netscape Communicator 4.0

program, 229-232

Netscape Navigator 3.0

program, 230

PGP (Pretty Good Privacy)

program, 222

Pine program features,

214-219
responding to newsgroup

articles, 269-271

samizdat software distribu-

tion, 171-172

sending to other users on

same computer
system, 210

sending to users on other

computers, 211

shar message, 171

system requirements,

209-210
uuencode program, 172

versus snail (postal)

mail, 210

e-mail daemons, 303

emoticons, described, 225

Enter key
activate UNIX com-

mands, 344

pressing at end of com-
mand line, 27, 29

terminal emulator connec-

tions, 14

error messages
444 mode?, 331-332

arg list too long, 330

broken pipe, 331

cannot access, 331

command not found, 29-30

cross-device link, 331

device or resource

busy, 331

different file system,

166, 332

file exists, 332

file table overflow, 332

file too large, 332-333

I/O error, 334

illegal option, 333

incorrect password, 184

insufficient arguments, 334

is a directory, 334

login incorrect, 15, 335

no more processes, 335

no process can be
found, 335

no space left on device,

335-336

no such file or directory,

82, 336

no such process, 336

not a directory, 337

permission denied, 184, 337

RE error, 338

read-only file system, 338

syntax, 329

too many links, 338

Usage, 339

ex program, 146

exclamation point (!)

character, C shell

command repeater,

25,96
execute (x) character

permission indicator, 74

execute permission, de-

scribed, 72

explicit focus (click-to-type),

window layering, 49

external commands, de-

scribed, 25

Extreme Linux, described, 33

fgrep program, character

searches, 105

file attachments, e-mail,

213-214

file compression
described, 157

(continued)

UNIX For Dummies, 4th Edition

file compression (continued)

LZW (Lempel, Ziv, and
Welch) technique, 157

file exists error message, 332

file lists, permission indica-

tors, 74

File Manager, CDE, 60-61

filenames, selecting logical,

345
file systems, NFS (Network

File System), 207-208
file table overflow error

message, 332
file too large error message,

332-333
file transfers, described, 199

files

appending data with
double greater-than

(>>) character, 89

ASCII, 285
backing up, 69
binary, 285
case-sensitive naming

conventions, 68
changing permissions,

75-76
checking for existing when

copying, Linux, 68
comparing, 151-152
compressing and

uncompressing, 155-158

confirming deletions, 69
confirming rm, 320
copying, 67-68
copying over existing,

67-68
cshrc, 98-99
deleting, 69
deleting before and after

printing, 116

deleting core, 324
deleting wrong one, 345
displaying multiple

screens, 90
failure to organize, 345
find program search,

102-105
finding copies, 315
getting into wrong ones,

309
grep program search,

105-107
hidden, 67
hiding and displaying, 67
hyphen (-) character

indicator, 74

information display, 74
kill, trn newsreader,

275-278
link count indicator, 74
links, 102, 108-112
listing, 65-66
listing with Is command, 27
listing with wildcards,

93-94
login, 98-99
long-form listing, 66-67
losing, 311-314
losing by redirection, 313
make read-only, 321-322
moving between direc-

tories, 85
naming conventions, 68
newsrc, 260, 274
ownership rights, 73

pathname conventions,
79-80

permission types, 72

PostScript, 123-124
prepared, 271

printing, 72

profile, 98-99
rep program uses, 205-206
reassigning ownership, 76

redirecting output to, 88
redirection, 313
remote search, 104-105
removing accidentally,

311-314
renaming, 70

renaming when copying,
67-68

renaming when download-
ing from FTP site,

288-289
rescuing, 313
retrieving lost, 314-319
safeguarding, 319-322
saving, 320-321
search techniques, 102-107
select logical names, 346
shar (shell archive), 171,

267-269
sorting, 152-154
sorting contents, 90-92

text, 71

text editor to wreck, 314
unable to find, 344
unclobber, 313
UNIX reserved charac-

ters, 68
untarring, 170

uploading to an FTP server,

290-291
viewing contents, 71, 158

when to delete, 70

wildcard deletion

cautions, 95
wildcards with rm com-

mand, 320
filters, described, 88
find program
executing programs with,

107-108
stopping with Ctrl+C key

combination, 103

stopping with Delete

key, 103

flags, command option
switches, 66

flame war, 346
flaming

avoiding, 346
described, 225

floating windows,
described, 47

folders. See directories

foreground processes, job

control, 180-182
form-feed characters,

printing new page, 120

fr (France) country domain
name, 299

free software, 32

FrontPanel, CDE, 58-59
FSF (Free Software Founda-

tion)

GNU developer, 21

GNU GPL (General Public

License) Version 2, 32

FTP (File Transfer Protocol)

anonymous FTP, 291-292
ASCII files, 285
binary files, 285
command listing, 292
described, 194, 283
directory listing, 287-288
file download process,

284-285
file transfer mode errors,

286-287
file transfer time consider-

ations, 286
file types, 285-286
image mode, 285
renaming files when

downloading, 288-289

Index $65

server connection
process, 284

starting, 284

uploading files, 290

URL conventions, 293

ftp: (File Transfer Protocol)

server, 234

FTP daemons, 303

FTP sites

INTERNIC, 295

jed program, 145

KDE (K Desktop Environ-

ment), 57

Lynx download, 235

mutt program, 222

NEdit program, 145

NSFNET, 296

public mailing list list, 296

RTFM, 295

Samba program, 194

SIMTEL, 294

UUNET, 294
WUARCHIVE, 295

full (absolute) pathname,
described, 82

FVWM window manager
3-D style borders, 41

features, 44

Linux support, 44

unlimited virtual desk-

tops, 44
FVWM95 window manager,

Windows 95 similari-

ties, 44

G

gov domain name zone, U.S.

government, 299

grab bars, window sizing,

50-51

graphics, Lynx browser
nonsupport, 236

greater-than (>) character,

redirection, 88-89

grep program
character searches,

105-107

non-case sensitive

searches, 106

regular expression
search, 106

search string conventions,

105-106

wildcards, 106-107

groff program
batch formatter, 121

described, 121-123

device independent, 123

text formatter uses, 128

WYSIWYG formatting,

121-122

group owner, described, 73

groups
changing file and directory

permissions, 75-76

file and directory owner-

ship, 73

identifying, 73

read/write/execute file

list permission indica-

tors, 74

gzip program, 155-156

ghost windows, positioning

on screen, 47

Ghostscript program,
PostScript emulation,

123-124

Ghostview program, viewing

PostScript files, 124

GNU
described, 21

emacs program, 136-142

Ghostscript program,
123-124

GPL (General Public

License) Version 2, 32

groff program, 121-123, 128

gzip program, 156

GNU Hurd, described, 21

gopher: (gopher menu), 234

H
hackers, described, 32

hal91 Floppy Linux,

features, 187

handshake process, modem
connections, 14

hard links, described, 111

hash table, described, 163

header text, e-mail mes-
sages, 219

Help Viewer, CDE, 62

help, preparing to ask

for, 310
Hewlett-Packard, HP-VUE

(Visual User Environ-

ment) desktop, 57

hidden files

described, 67

listing, 70

period (.) character prefix,

67,70
hidden process,

described, 175

hijacking input and output,

described, 87

history list, shell command
uses, 95-98

home directory

described, 81

getting to, 309

returning to, 83

home pages, described, 235

HP terminal, hpterm pro-

gram emulation, 45

hpterm program, HP
terminal emulation, 45

HP-VUE (Visual User Envi-

ronment), described, 57

HTML (HyperText Markup
Language),
described, 240

HTTP (HyperText Transfer

Protocol),

described, 194

http: (HyperText Transfer

Protocol)
document, 234

Huffman coding,

described, 157

Huffman, David, Huffman
coding, 157

Hummingbird Software,

Exceed CDE
emulator, 57

hypertext, described, 233

hypertext documents,
HyperTeX macro
package, 129

hyphen (-) character

command option prefix, 66

file indicator, 74

in options, 329

1
-i (interactive) switch, rm

command, 320

I/O error error message, 334

icons
described, 48, 50

minimizing windows, 48, 50

used in book, 4

illegal option error

message, 333

366 UNIX For Dummies, 4th Edition

image mode, FTP, 285
information

books, 357
magazines, 356-357
man (online manual), 347

scanning networks, 351-356

Usenet bulletin board, 351

user groups, 358
Web sites, 354-356

INN (Internet News Software
Consortium), 303

input

redirection < and > charac-

ters, 89
standard, 87

Insufficient arguments error

message, 334

internal (built-in) DOS com-
mands, described, 25

internal buffers, printers, 119

Internet

downloading software

from, 168-170
e-mail, 211-212
hosting your own site, 298

IRC (Internet Relay Chat)

service, 198

UNIX command
support, 199

versus networks, 191

Internet Explorer 4.0, UNIX
limited support,

230, 249
Internet server, 297
interrupt character (Ctrl+C),

to kill process, 324
IPX (Internetwork Packet

eXchange),
described, 194

IRC Gnternet Relay Chat), 198

is a directory error

message, 334
ISPs (Internet Service

Provider), 298

Java Web server, 302

job control, described, 174,

180-182

job number
background processes, 179

described, 118

jobs
current, 181

described, 180

K
K Desktop Environment

(KDE), described, 57

keyboards
menu item selection

techniques, 53

standard input device, 87

keystrokes, terminal emula-
tor program connec-
tions, 14

kill files

adding commands to, 276

customizing, 277
described, 275
editing, 277-278
newsreader uses, 275-276

trn newsreader, 275-278

killing a process. See
process

knews newsreader, 280

Knuth, Donald E.,

plain TeX program devel-

oper, 129

TeX program devel-

oper, 129

Korn, Dave, Korn shells, 24

Korn shell

background processes, 179

command history list

uses, 98
described, 24

ksh program name, 24

profile file, 98-99

repeat (r) character, 28

running programs from
other user's direc-

tories, 166-168

search path, 164

• £•
Lamport, Leslie, LaTeX

program developer, 129

LaTeX program, 128-129

left-arrow key (Ctrl+B), BASH
shell history list

navigation, 97

less-than (<) character,

redirection, 88-89

licenses, GNU GPL
Version 2, 32

line editors, described, 146

link (1) character, symbolic
link indicator, 74

link count indicator, file and
directory listing, 74

links

bin directory, 166

creating, 109

deleting, 109

described, 233, 250

files, 102, 108-112

moving between direc-

tories, 110

multiple files, 110-111

networked files, 111

renaming, 110

Web page, 236-238
Linux
adding user accounts, 184

advantages, 31

avoiding overwriting

existing files when
renaming, 70

backups, 317-318
BASH shell, 23

canceling print jobs, 118

changing file ownership
assignment, 76

checking for existing file

when copying, 68

commercial versions, 186

Ctrl+Alt+Del shutdown and
restart procedure, 185

development history, 31-33

diff program, 152

distribution packages,
186-187

download considera-

tions, 34

dual-boot system
support, 185

Extreme version, 33

file system require-

ments, 185

FVWM window manager, 44

GNU GPL (General Public

License) Version 2

license, 32

hacker's system, 32

kill a process, 325-326

lpr command, 93, 114

multiple group assignment
support, 73

printer status, 116

printing, 114

pronunciations, 34

ps command, 176

Red Hat version, 33

restoring from tape

backup, 318

Index 367

root (superuser)
account, 184

soft (symbolic) links,

111-112

stable versus development
versions, 32

system administrator

duties, 183-185

system administrator shut-

down procedures, 185

System V description

roots, 33

technical support re-

sources, 187

versions, 19, 33

Web servers, 301

Web sites, 355

Windows PC support

issues, 185

Linux newsgroups, 353-354

Linux Pro, features, 187

LinuxPPC, features, 187

LinuxWare, features, 187

logging in

login incorrect error

message, 15

passwords, 15

remote computers, 199

UNIX recognition methods,
13-14

usernames, 15

wrong files, 309

logging out, described, 16

login files, user preferences,

98-99
login incorrect error

message, 335

login name, case sensitive, 15

Lundquist, Leslie Heeter, 298

Lynx browser
bookmarking pages, 246

described, 234-235

development history, 234

error messages, 248

fake Web pages, 241-242

FTP file download, 243-245

going to a URL, 241

help system, 239

history list, 239-240

HTML display, 240

image nonsupport, 236

index display, 237

keypad as arrows and
numbered links, 247

linking to another part of

the same page, 237

linking to other Web pages,

236-238
option settings, 246-248

page elements, 235-236

page navigation, 238

personal mail address, 247

printing Web page con-

tents, 241

quitting, 235

returning to main
screen, 237

returning to previously

visited link, 237

search strings, 238

selected link colors, 236-237

starting, 235

telnet support, 245-246

text editor options, 247

Usenet newsgroup display,

242-243

user modes, 248

LZW (Lempel, Ziv, and
Welch) compression,
described, 157

Af •
machine names,

described, 198

MacOS, UNIX network
support, 10-11

macro packages,
122-123, 129

macros, described, 129

magazines, 356-357

mail program
checking for e-mail capa-

bility, 210

commands, 228

deleting messages
(d command), 228

printing on-screen

(p command), 229

quitting (q command), 229

reading messages, 227-228

replying to a message
(r command), 228

saving messages, 229

sending messages (m
command), 226-227

mailbox, described, 210

manual pages
finding, 350-351

format, 348

parts, 348-349
printing, 350

reading, 349

xman to display avail-

able, 351

margins, print settings, 120

menus
command selection

techniques, 52-53

MotifBurger, 52-55

option, 54-55

pop-up, 53
pull-down, 53

pushpins, OpenLook, 53

tear-off, 53

MIME (Multipurpose Internet

Mail Extension)

e-mail file attachments, 214

Pine program support, 217

mirror server, 304

mistakes
believing that it will be

easy, 343

capitalization in com-
mands, 344

changing directories, 344

check spelling of com-
mands, 344

command-line deleting,

28-29

failure to organize files, 345

mistyping commands, 344

not keeping backup
copies, 345

press Enter or not?, 344

sending angry e-mail, 346

turning off computer, 346

working in wrong
directory, 345

writing password on sticky

note, 346

MIT
X (X Window system)

developer, 38

X Toolkit, 44

modems
cu (call UNIX)

command, 204

handshake process, 14

speed matching, 14

terminal emulator connec-

tions, 13-14

moderated newsgroups,
described, 263

more program, pausing

screen display, 90

Motif toolkit

described, 52
(continued)

368 UNIX For Dummies, 4th Edition

Motif toolkit (continued)

menus, 52-53

option menus, 54-55

pushbuttons, 56
radio buttons, 53-54

scales, 54

scroll bars, 55-56

scrollable lists, 55-56

sliders, 54

tear-off menus, 53

text boxes, 55

toggle buttons, 54

Motif widgets, described, 45

MotifBurger, menus, 52-55

mounting, described, 208

mouse
cleaning, 308
three-button support, 47

move-to-type (pointer

focus), described, 49

MUDs, 303
multiple file links, described,

110-111

multitasking, described,

173-174
multiuser systems,

described, 191

MUSHes, 303
mutt program, e-mail

uses, 222
MWM (Motif Window

Manager)
3-D style borders, 41

bringing a window to the

front, 49-50
common window

elements, 49

exiting programs properly,

51-52
exiting properly, 55

keyboard command
equivalents, 52

logout process, 55

MotifBurger menus, 52-55

multitasking, 174

sizing windows with grab

bars, 50-51

startup process, 46

title bar window sizing

shortcut, 51

toolkit widgets, 52-56

window menu commands,
51-52

Windows 95 similarities, 43

mx (Mexico) country domain
name, 299

Af
naming conventions
case-sensitive filenames, 68

directories, 78, 81

files, 68
UNIX reserved char-

acters, 68

NASA Goddard Space Flight

Center, Extreme
Linux, 33

NCSA HTTPd Web server, 302

net (network) versus Net
(Internet), 191

net address, e-mail, 210

net news, described, 257

netiquette, e-mail conven-
tions, 225

Netscape Collabra, Usenet
newsreader, 281-282

Netscape Communicator 4.0

bookmarks, 253-254
configuration settings, 249

described, 248
downloading files, 254-255

e-mail uses, 229-232
exiting properly, 249

linking to Web pages,

250-251
navigation buttons, 251

printing Web pages,
252-253

saving Web pages to a

file, 253
searches, 254
startup process, 249

telnet support, 255
URL entry conventions,

251-252
Netscape Enterprise

Server, 302

Netscape FTP server, 302

Netscape Navigator 3.0 pro-

gram, e-mail uses, 230

Netscape Web server, 302

Netscape's SuiteSpot

Standard edition, 302

networked files, linking, 111

networks
CDE access, 61

chatting with other users,

195-198
file linking, 111

fingering users, 192-195

NFS (Network File System),
207-208

not working, 308
printer locations, 114-115

remote login, 199

remote searches, 104-105

samizdat e-mail software

distribution, 171-172

scanning, 351-356
stealing software from,

168-170
versus Internet, 191

news daemons, 303
news: (Usenet news

item), 234
newsgroups, 352-354
described, 258
Lynx browser article

display, 242-243

moderated versus
open, 263

monitoring before posting

messages, 258
prepared file posting, 271

subscribing to, 260-261

TeX information, 129

tin program, 278-280

UNIX Webmasters, 303-304

Usenet topic categories,

258-259
newsrc file, trn newsreader

information, 260, 274

newsreaders
described, 259
graphical, 280-282

knews, 280
Netscape Collabra, 281-282

nn, 280
nn-tk, 280
Qnews, 280
reading articles, 261-266

NFS (Network File System)
locating files with df

(Disk Free space)

command, 208
mounting remote direc-

tories, 208
remote directory and file

search, 104-105

uses, 207-208
nn newsreader, 280

nn-tk newsreader, 280

NNTP (Network News
Transfer Protocol), 303

no more processes error

message, 335

no process can be found
error message, 335

Index 36$

no space left on device error

message, 335-336

no such file or directory

error message, 336

no such process error

message, 336

not a directory error

message, 337

nroff program
described, 121-123

text formatter uses, 128

numbers, sorting, 91-92

•0
online manual, 347-351

online services

cu (call UNIX) command,
204

e-mail uses, 212

OpenLook
DTWM (Desktop Window

Manager), 41

pushpins, 53

operating systems, UNIX
networking support,

10-11

optimal codes, described,

157

option menus, described,

54-55
options
command switches, 66

defined, 329

org domain name zone,

nonprofit outfits, 299

OSF (Open Software Founda-

tion), 21

CDE, 56-64

Common Open Software

Environment, 40

Motif developers, 42

OSF/1 versions, described, 19

Outlook Express, UNIX non-

support, 230

output
printing, 93

redirecting, 87-93

redirection < and > charac-

ters, 88-89

sorting command
output, 91

sources, 88

standard, 87

owners
changing file ownership

assignment, 76

changing file and directory

permissions, 75-76

read/write/execute file list

permission indica-

tors, 74

ownership, files and directo-

ries, 73

P
pack program, Huffman

coding, 156-157

page numbers, printing,

119-120

parent directory

described, 80

double dot (..) character

indicator, 84

partitions, Linux/Windows
PC file system sharing,

185

passwd program, 16

passwords
aging, 16

case sensitive, 15

changing with passwd
command, 16, 26-27

clearing typing errors, 15

creating, 15-16

keeping secret, 346

logging in, 15

naming conventions, 16

pathnames
absolute (full), 82

described, 79-80

relative, 82

PC console, xpcterm
program emulation, 45

PCs
See also computers
logging in, 13-14

powering up, 10-11

shutting down properly, 10

terminal emulator pro-

gram, 10-11

versus workstations, 11

percent sign (%) character,

C shell indicator, 23

period (.) character

command nonsupport, 30

grep program search

wildcard, 107

hidden file prefix, 67, 70

permission denied error

message, 184, 337

permissions
absolute, 74-75

changing, 75-76

execute (x) character,

72,74
read (r) character in file

listing, 72, 74

root (superuser) account,

Linux, 184

write (w) character, 72, 74

PGP (Pretty Good Privacy),

mutt program
support, 222

pico program
command conventions,

143, 145-146

cursor key navigation, 143

described, 142-146

exiting, 144

help system, 143

Pine text editor, 215

saving files, 144

starting, 142

text-entry conventions, 142

PID column
BSD ps program, 178

process identification

(process ID), ps

programs, 175

PID (process ID), 324-325

Pine program
address book (a com-

mand), 217

ANSI terminal emulation,

214
attachments (Ctrl+J), 217

canceling messages
(Ctrl+C), 215

deleting messages (d

command), 216

editing address book entry

(e command), 217

e-mail features, 214-219

folder selection (1 com-
mand), 218

forwarding messages
(f command), 216

header text elements, 219

help system (Ctrl+G), 215

menu commands, 215

message codes, 216

MIME attachment
support, 217

pico text editor, 215
(continued)

370 UNIX For Dummies, 4th Edition

Pine program (continued)

reading messages
(p/n/v commands), 216

replying to a message
(r command), 216

return to main menu
(m command), 216

saving address to address
book (t command), 217

saving message
(s command), 218

sending mail

(c command), 215
signature files, 218
spell checking messages

(Ctrl+T), 215
undeleting messages

(u command), 216
VT100 terminal emula-

tion, 214
pipe (I) character
redirecting output of

program, 89, 331

using with more
program, 90

PKZIP program, 156

plain TeX program, 129

pointer focus (move-to-type),

window layering, 49

policy independence, X (X

Window system), 38, 40

POP (Post Office

Protocol), 297
pop-up menus, described, 53

post-Berkeley BSD UNIX
versions, described,
18-19

PostScript printers,

Ghostscript emulation,
123-124

pound sign (#) character
clearing mistyped user-

names and passwords,
15

comment indicator, 99
deleting command-line

mistakes, 28-29
PPID column, System V ps

program, 177

prepared files, newsgroup
postings, 271

print jobs, canceling, 117-119

printers

attachment types, 114-115

internal buffers, 119

listing, 115-117

PostScript, 123-124

redirecting output to, 88

status listing, 116-117
printing

BSD, 114
canceling print jobs,

117-119
command output, 93
cover sheets, 115

described, 113

double-space settings, 121

file content, 72

form-feed character, 120

job numbers, 118

Linux, 114

Lynx browser Web page
contents, 241

manual pages, 350
network locations, 114-115

System V, 114

troff program, 121-123

printouts

bottom margin settings, 120

columnar format, 121

cover sheets, 115

double-spacing, 121

network locations, 114-115

page numbering, 119-120

three-ring binder margin
settings, 120

titles, 119-120

process ID (process identifi-

cation), PID column
display, 175

process killers

commands, q (quit), 324
interrupt character

(Ctrl+C), to kill

process, 324
quit character (Ctrl+Y), 324

stop character (Ctrl+Z),

324-325
processes
ampersand (&) character

background processing,

180-182
background, 179

background and foreground
job control, 180-182

described, 173-175

finding X Windows, 328
hidden, 175

interrupt character to

kill, 324
job control, 180-182

killing, 323-325
status checking, 175-179

stop character (Ctrl+Z), 324
versus programs, 175

Prodigy Classic, e-mail ad-

dress conventions, 213
Prodigy Internet, e-mail ad-

dress conventions, 213
profile files, user prefer-

ences, 98-99
programs
See also commands,

software, utilities

background, 180-182

bin directory storage, 160

client/server relation-

ships, 39
comparison utilities,

151-152
compression utilities,

155-158
described, 25

desktop manager, 47

ed, 146-150
egrep, 105

elm, 219-226
emacs, 136-142
e-mail, 214-232
ex, 146
executing with find

command, 107-108

exiting properly, 51

fgrep, 105

find, 102-105

Ghostscript, 123-124

Ghostview, 124

grep, 105-107

groff, 121-123, 128

hpterm, 45
input/output filters, 88
killing, 323
ksh (Korn shell), 24

LaTeX, 128-129

Linux distribution pack-

ages, 186-187

lpstat, 116

mail, 226-229
more, 90

mutt, 222
NEdit, 145

Netscape Collabra, 281-282

Netscape Communicator
4.0, 229-232

Netscape Navigator 3.0, 230

newsreaders, 259-282
nroff, 121-123, 128

passwd, 16

perl, 145

Index 371

PGP (Pretty Good
Privacy), 222

pico, 142-146, 215

Pine, 214-219

plain TeX, 129

ps (process status),

175-179
public-domain software, 32

rep, 205-206
redirecting output to, 88

redirection cautions, 88

rlogin, 202-204

rsh, 199, 205

running from other users'

directories, 166-167

Samba, 194

sed 145

sh (Bourne shell), 23-24

shareware versus free

software, 32

sort, 90-92

startup process, 46

tcsh (extended C shell), 24

telnet, 11, 199-201

terminal emulator, 10-14

terminating, 323-328

TeX, 128-129

text editors, 128, 132-150

text formatters, 128-129

three-button mouse
support, 47

tin newsreader, 278-280

tn3270, 202

trn newsreader, 259-279

troff, 121-123, 128

uudecode, 172

uuencode, 172

versus commands, 25

versus processes, 175

vi, 130-136

window managers, 40-45

WordPerfect, 129-130

xpeterm, 45

xterm, 45, 64, 201

protocols
3270-series terminals, 202

described, 194

FTP (File Transfer Proto-

col), 194, 283-296

HTTP (HyperText Transfer

Protocol), 194

IPX (Internetwork Packet

exchange), 194

request-response, 194

SMB (Server Message

Block), 194

TCP/IP (Transmission
Control Protocol/

Internet Protocol), 194

ps (process status) programs

BSD, 178-179

checking process status,

175-179

COMMAND column
information display, 176

Linux, 176

PID column, 175

process ID (process identi-

fication) display, 175

System V, 176-177

TIME column information

display, 176

TTY column information

display, 175

public-domain software,

described, 32

publications

Apache Server For

Dummies, 301

Internet For Dummies, 229

The Linux Bible, 357

LINUX For Dummies, 2nd
Edition, 34, 183, 185, 357

LINUX Secrets, 2nd Edition,

34, 357
MORE Internet For Dummies,

229, 238, 258

MORE UNIX For Dummies,
136, 163, 357

Running Linux, 34, 183, 357

Selling Online For

Dummies, 298

Setting Up an Internet Site

For Dummies, 299

UNIX For Dummies Quick

Reference, 357

UNIX in a Nutshell, 357

pull-down menus,
described, 53

pushbuttons, described, 56

pushpins, OpenLook tear-off

menus, 53

•/?•

Q*
Qnews newsreader, 280

question mark (?) character,

any single letter

wildcard, 93

quit character (CtrlA), 324

radio buttons, described,

53-54

rep program, remote file

management, 205-206

RE error error message, 338

read (r) character permis-

sion indicator, 74

read only files, 321-322

read permission,

described, 72

readers, authors' assump-
tions, 2

Read-only file system error

message, 338

Red Hat Linux
commercial version, 186

described, 33

desktops, 57

features, 186-187

FVWM95 window
manager, 44

RPM (Red Hat Package
Manager), 170

TED (TriTeal Enhanced
Desktop) support, 57

redirection

described, 87

of files, 313

filter programs, 88

pipe (I) character, 89

redirection < and > charac-

ters, 88-89

regular expression, grep

program search, 106

relationships

child/parent directories, 80

client/server programs, 39

relative pathname,
described, 82

remote computers
chatting, 198

fingering users, 193-195

rep program file manage-
ment, 205-206

rlogin command, 202-204

rsh command, 205

sending e-mail to, 211

telnet login, 200-202

remote directories,

mounting, 208

remote login, described, 199

remote searches, described,

104-105

3 72 UNIX For Dummies » 4th Edition

repeat (r) character, Korn
shell command re-

peater, 28

request-response protocol,

described, 194

reserved characters, file-

naming conventions, 68

resource types, URL ele-

ments, 234
right-arrow key (Ctrl+F),

BASH shell history list

navigation, 97

rlogin program
escaping from a remote

system, 203
login procedure, 203
remote login, 199

tilde (-) character escape
method, 203

username matching,
203-204

uses, 202-204
rogue process, killing, 325
root (superuser) account,

described, 184

root directory, slash (/)
character indicator, 79

Rot 13 code, newsgroup
articles, 265

RPM (Red Hat Package
Manager), 170

rsh program, remote login,

199, 205
RSS column, BSD ps pro-

gram, 178

•5
S.u.S.E. Linux, features, 187

Samba program, 194

samizdat, e-mail software
distribution, 171-172

save files, 320-321

scales, described, 54
scripts, shell, 24, 160-164

scroll bars, described, 55-56
scrollable lists, described,

55-56
search engines,

described, 254
search path, described, 164

search strings,

described, 105

searches
asterisk (*) character

wildcard, 102, 104

directories, 102

find program, 102-105
grep program, 105-107
Lynx browser, 238
regular expression, 106

remote, 104-105
stopping with Ctrl+

C keystroke, 103

stopping with Delete

key, 103

trn newsreader articles, 266
security, PGP (Pretty Good

Privacy), 222
server programs,

described, 39

servers, anonymous FTP, 293

shar (shell archive) message,
described, 171

shar files, Usenet articles,

267-269
shareware, versus free

software, 32

shell programs
BASH (Bourne Again shell),

Linux, 23-24
Bourne (sh), 23-24
built-in commands, 26

C (csh), 24-25
character type indica-

tors, 23
command-line entry

conventions, 26

command not found error

message, 29-30
commands, versus

programs, 25

described, 22-23

history command uses,

95-98
history list, 95-98

job control, 180-182

search path, 164

Korn (ksh), 24
logging out, 99
types, 22-25
version/type determina-

tion, 23

versus DOS command
processor, 23

shell scripts

bin directory storage, 161

command-line argu-

ments, 165

described, 24, 78, 160-161

running, 162-163

running programs from
other users' directo-

ries, 167-168
search path, 164

shar (shell archive)

message, 171

writing, 161-164
Shift+3 keys, deleting

command-line mis-

takes, 28
shortcuts, described, 102

signature files, Pine pro-

gram, 218
sites, whom to host, 298
Slackware Linux, features,

186-187
slash (/) character
C shell command

repeater, 25

directory indicator, 78

root directory indicator), 79

sliders, described, 54

SMB (Server Message Block)

protocol, described, 194

SMTP (Simple Mail Transfer

Protocol), 297
snail (postal) mail, versus

e-mail, 210
soft (symbolic) links,

described, 111-112

software
See also programs
bin directory storage, 160

e-mailing, 171-172

free versus shareware ver-

sus public domain, 32

resources, 159-160
stealing from the network,

168-170

sorts

command output, 91

file contents, 90-92

spaces
after option switch, 66

avoiding in filenames, 68

between arguments, 329
between command and

option switch, 66

when to use, 30
special characters

commands, 29-30
terminal-control, 100

UNIX reserved, 68

speed matching, modem
connections, 14

spelling, check in, com-
mands, 344

Index 373
spreadsheets, redirection

cautions, 88
standard input, described, 87

standard output,

described, 87
START column, BSD ps

program, 178

STAT column, BSD ps

program, 178

STIME column, System V ps

program, 177

stop character (Ctrl+Z),

324-325
Style Manager, CDE

customization, 63

subdirectories, described,
78-79

superuser (root) account,

described, 184

SVR4 Bourne shell, back-
ground processes, 179

SVR4 systems, symlinks,

111-112
switches, command

options, 66
symbolic (soft) links

described, 111-112

1 (link) character in file

listing, 74

running programs from
other users' directo-

ries, 166

symlinks, described, 111-112

system administrator
adding user accounts in

Linux, 184

file backup responsi-

bility, 69
Linux management tasks,

183-185
mailbox setup, 310
password aging, 16

printer assignments, 114

root (superuser) account,
Linux, 184

shutting down a Linux
system, 185

user group assignment
responsibility, 73

user permissions, 72-76
username assignment

responsibility, 14-15

System V versions
described, 19

canceling print jobs,

117-118

lp command, 114

printing, 114

ps command, 176-177

•!•
tape backups, 318. See also

backups
tar command, software-

packaging uses, 168-170

TCP/IP (Transmission
Control Protocol/

Internet Protocol),

described, 194

tear-off menus, described, 53
technical support, Linux

resources, 187

Teletype-ish terminal

interaction, described,

202
telnet daemons, 303
telnet program
remote login, 199

terminal type settings, 201

terminal type support,
201-202

uses, 200-202
UNIX system connec-

tions, 11

terminal emulator program
connection keystrokes, 14

described, 10-11

modem connections, 13-14

terminal types
3270-series display, 202
setting, 201

Teletype-ish, 202
terminal windows
described, 45

exiting properly, 51

terminal-control char-

acters, 100

terminals

background job process-

ing, 182

control characters, 100

fixing after killing a

process, 327
TTY column display, ps

programs, 175

TeX program, described,
128-129

text boxes, described, 55
text editors

ed, 146-150

emacs program, 136-142
ex program, 146

jed, 145

NEdit, 145

newsreaders, 259
perl, 145

pico, 142-146, 215
redirection cautions, 88
sed, 145

shell script writing tool,

161-164
uses, 128

vi, 130-136, 220
wreck files, 314

text files, described, 71

text formatters

groff, 128

nroff, 128

TeX, 128-129
troff, 128

uses, 128-129
text selections, xterm

program techniques, 64
threads, described, 259
three-ring binder margins,

printer settings, 120

tilde (~) character, rlogin

program escape
procedure, 203

TIME column
BSD ps program, 178

ps programs, 176

tin newsreader, described,

278-280
title bar, clicking to bring a

window to the front,

49-50
titles, printing, 119-120

tn3270 program,
described, 202

toggle buttons, described, 54
too many links error

message, 338
toolkits

CDE, 59-60
described, 44-45
widget sets, 45

Torvalds, Linus, Linux
developer, 31-34

Trash tool, CDE, 63

tree-structured directory,

described, 79

Tridgell, Andrew, Samba
developer, 194

TriTeal, Trifeal Enhanced
Desktop (TED), 57

37b UNIX For Dummies, 4th Edition

trn newsreader
adding newsgroups,

260-261
adding and deleting, 273

article search, 266
command option selec-

tions, 261-262
e-mail article response,

269-271

header information

elements, 264
kill files, 275-278
navigating articles, 264-265

new thread creation,

272-273
newsrc file, 260, 274

ordering newsgroups,
274-275

posting articles, 271-272

reading articles, 261-266

responding to articles,

269-272
saving articles to a file,

266-267
shar files, 267-269
starting, 260
subscribing to a

newsgroup, 260-261

text editors, 259
thread (topic) listing,

262-264
threads, 259
uuencoding articles,

267-269
troff program
background processes, 179

macro packages, 122-123

text formatter uses, 128

typesetter runoff, 121-123

troubleshooting
computer won't turn on,

307-308
getting help, 310
getting into wrong home

directory, 309
mouse, 308
network is gone, 308
unresponsive computer,

309-310
X Windows screen, 309

TT column, BSD ps
program, 178

TTY column
ps programs, 175

System V ps program, 177

TWM window manager,
border style, 41-42

typing mistakes, correcting

on the command line,

28-29

U
UID column, System V ps

program, 176

uncompress program,
155-156

UNIX
case-sensitive commands, 2

case-sensitive pass-

words, 15

case-sensitive user-

names, 15

command characters, 29-30

computer types, 9-12

development history, 17-20

network operating system
support, 10-11

proprietary windowing
systems, 38

version type and number
determination, 22

versions, 18-21

versus Windows NT, 20

UNIX newsgroups, 352-353

UNIX OS Web sites, 354-355

unzip program, 156-158

up-arrow key (Ctrl+P)

BASH shell history list

navigation, 97

BASH shell command
repeater, 28

uploading Web pages,

300-301

URLs (Uniform Resource
Locators)

FTP conventions, 293

Web address conventions,

234, 300
us (United States) country

domain name, 299

usage error message, 339

Usenet
described, 257
Lynx browser newsgroup

article display, 242-243

monitoring newsgroups
before posting mes-
sages, 258

newsgroup topic catego-

ries, 258-259
Rot 13 code, 265
TeX newsgroups, 129

Usenet bulletin board, 351

user groups, joining, 358
usernames
case sensitive, 15

clearing typing errors, 15

described, 14-15

logging in, 15

users
adding accounts in

Linux, 184

chatting, 195-198

directory tree structure,

79-80
fingering, 192-195

home directory, 81

identifying group assign-

ment, 73

permission types, 72-76

profile file preferences,

98-99
root (superuser)

account, 184

utilities

See also programs
cmp, 151-152
comparison programs,

151-152
compress, 155-156

compression programs,
155-158

date and time, 154-155

diff, 151-152
gzip, 155-156

pack, 156-157

PKZIP, 156

RPM (Red Hat Package
Manager), 170

scheduling with at com-
mand, 154

sort program, 152-154

uncompress, 155-156

unzip, 156-158

WinZip, 156

zip, 156-158

uudecode program, 172

uuencode program, 172

e-mail file attachments, 214

Usenet article shar files,

267-269

Index 375

V
versions
determining, 22

Linux, 33

Linux distribution pack-

ages, 186-187

vi program
command conventions,

131, 135-136

command mode, 131

cursor-movement keys,

133-134

deleting text, 134

described, 130-136

elm text editor, 220

emergency exit tech-

nique, 131

exiting, 135

help system, 132

input mode, 131

modal editor, 131

modifying text, 134

saving files, 135

text-entry techniques,

132-133

undoing most recent

change, 134

virtual desktops, FVWM
window manager, 44

VT Fonts menu, xterm

program, 64

VT-100 emulation, X (X

Window system), 201

W
Web browsers, 355. See also

browsers
Web pages
described, 238

uploading, 300-301

Web servers

Apache, 301

described, 238, 300

Java, 302

Linux, 301

MUDs, 303
MUSHes, 303

NCSA HTTPd, 302

Netscape, 302

setting up, 299-300

Web sites

AltaVista, 254

Apache HTTP Server

Project, 301

authors, 5

bandwidth, 299

directory, 300

dummies.com, 5

hoohoo, 302

Internet Gurus Central, 235

InterNIC, 299

Linux, 183, 355

Linux pronunciations, 34

Netscape, 302

Netscape Communicator
4.0, 229

Samba FAQs, 194

Samba program, 194

search engine listing, 254

Sun Microsystems, 301

Tl line, 299

T3 line, 300

TeX Users Group, 129

UNIX, 300

UNIX OS, 354-355

WordPerfect program, 130

X Windows, 355

Yahoo, 254

Webmasters
backup servers, 304

HTML, 304
newsgroups, 304

tips, 303-304

UNIX, 300

widgets
described, 45

Motif toolkit, 52-56

wildcards
asterisk (*) character,

93-95
described, 93

directory/file search,

102, 104

grep program, 106-107

grep program search,

106-107

in command line, 330

multiple file links, 110-111

period (.) character, grep

program search, 107

question mark (?) charac-

ter, 93

UNIX versus DOS conven-

tions, 94-95

using with rm
command, 320

window managers
AfterStep, 44

border version and type

indicator, 41-42

CDE (Common Desktop
Environment), 56-64

determining version and

type, 41-42

DTWM (Desktop Window
Manager), 41

FVWM, 41,44
FVWM95, 44

MWM (Motif Window
Manager), 41-43

processes, 40

TWM, 41

X(X Window system),

40-45

window menu (Shift+Esc and

Alt+spacebar), Motif,

51-52

windowing systems

CDE (Common Desktop
Environment), 40

X (X Window system),

38-64

Windows 95/98/NT, UNIX
network support, 10-11

Windows NT, versus UNIX, 20

windows
active, 49-50

border controls, 48-51

closing, 51-52

common Motif elements, 49

explicit focus, 49

floating, 47

iconifying (minimizing),

48,50
layering order, 48-50

maximizing, 50

opening new, 45-47

pointer focus, 49

positioning on screen, 47

sizing with grab bars, 50-51

switching between, 49-50

terminal, 45

WinZip program, 156

word processors

described, 129-130

WordPerfect program,

129-130

WYSIWYG formatting,

129-130

WordPerfect program
cross-platform capa-

bility, 130

UNIX support, 129-130

working (current) directory,

described, 81-82

workspaces, FrontPanel

management, 59

376 UNIX For Dummies, 4th Edition

workstations
described, 11-12

logging in, 13-14

powering up, 12

shutting down properly, 12

versus PCs, 11

versus X terminals, 39
write (w) character permis-

sion indicator, 74

write permission,
described, 72

WWW (World Wide Web)
browsers, 233
home page, 235
URL conventions, 234

WYSIWYG formatting

"roff" program batch
formatters, 121-122

word processors, 129-130

X
X (X Window system)
advantages, 38
CDE (Common Desktop

Environment), 56-64
clients, 43
closing windows, 51-52
development history, 38-39
emacs-supported versions,

137-138
freezing the screen, 327
getting rid of, 327
minimizing windows, 48, 50
multitasking, 174
networked client/server

architecture, 38-39
opening new windows,

45-47
policy independence, 38, 40

screen problems, 309
three-button mouse

support, 47
VT-100 emulation, 201

window managers, 40-45
Windows 95 similarities, 43
X servers, 43
X terminals, 12, 39
X Toolkit (Xt), 44-45
xdm (X Display

Manager), 46
XFree86 version, 39
xterm program, 64

X Inside, CDE version, 57
X servers, described, 43
X terminals

described, 12, 39
powering up, 12

shutting down properly, 12

UNIX version type and
number determination,
22

versus workstations, 39

X Toolkit (Xt), described,
44-45

X Windows Web sites, 355
xdm (X Display Manager), 46
XENIX versions,

described, 21

xpcterm program, PC
console emulation, 45

xterm program
DEC VT 100 terminal

emulation, 45

selecting text, 64
terminal emulation, 201

uses, 64
VT Fonts menu, 64

Yahoo, Web directory, 254

•!•
zip program, 156-158
zone, domain name, 299

Special Offer For IDG Books Readers

FREE
IDG Books/PC WORLD CD Wallet

and a Sample Issue of

PC WORLD

THE #1 MONTHLY COMPUTER MAGAZINE

How to order your sample issue and FREE CD Wallet:

Cut and mail the coupon today!

Call us at 1-800-825-7595x434

Fax us at 1-415-882-0936

Order online at

www.pcworld.com/resources/subscribe/BWH.html

.For Dummies is a registered trademark under exclusive license to IDG Books Worldwide. Inc.. from International Data Group. Inc.

FREE GIFT/SAMPLE ISSUE COUPON
Cut coupon and mail to= PC World. P0 Box 55029. Boulder. CO 80322-5029

YES! Please rush my FREE CD wallet and my FREE

sample issue of PC WORLD! If I like PC WORLD. I'll honor
HJ^1

your invoice and receive 11 more issues (12 in all) for just

$1 9.97—that's 727. off the newsstand rate.
Company

No Cost Examination Guarantee.

If I decide PC WORLD is not for me. I'll write "cancel"

on the invoice and owe nothing. The sample issue and

CD wallet are mine to keep, no matter what.

Address

City
State Zip

PCWORLD

Email

Offer valid in the U.S. only. Mexican orders please send $39.97 USD. Canadian orders send $39.97, plus 7% GST

(#R12A669680). Other countries send $45.97. Savings based on annual newsstand rate of $71.88

.

7BW86

Special Offer For IDG Books Readers

aaBHUBlfrom Your PC!

Every issue of PC World is packed

with the latest information to help

you make the most of your PC.

•Top 100 PC and Product Ratings

• Hot PC News

• How Tos, Tips, & Tricks

• Buyers* Guides

• Consumer Watch

• Hardware and Software Previews

• Internet & Multimedia Special Reports

• Upgrade Guides

• Monthly ©Home Section

YOUR FREE GIFT!

As a special

bonus with your

order, you will

receive the

IDG Books/

PC WORLD

CD wallet

perfect for transporting

and protecting your CD collection

.For Dummies is a registered trademark under exclusive license to i06 Books MfiHUii jMihTiwIiFlEliniiTTni ri

Send Today
for your sample issue

and FREE IDG Books/PC WORLD CD Wallet!

How to order your sample issue and FREE CD Wallet.

•
1 Cut and mail the coupon today!

Mail to: PC World. P0 Box 55029. Boulder. CO 80322-5029

B1

Call us at 1-800-825-7595x434

Fax us at 1-415-882-0936

(<•* Order online at www.pcworld.com/resources/subscribe/BWH.html

PC WORLD
•

YOUK \
ONLINE]

,KE60UKCS WWW.DUMHIE6.COM

Discover Dummies Online!

The Dummies Web Site is your fun and friendly online resource for the latest informa-

tion about For Dummies books and your favorite topics. The Web site is the place to

communicate with us, exchange ideas with other For Dummies readers, chat with

authors, ar\d have fun!

Ten Fun and Useful Things You Can Do
at www.dummies.com

1. Win free For Dummies books and morel

2. Register your book and be entered In a prize drawing.

3. Meet your favorite authors through the Hungry Minds

Author Chat Series.

4. Exchange helpful Information with other For Dummies readers.

5. Discover other great For Dummies books you must have!

6. Purchase Dummleswear exclusively from our Web site.

7. E3uy For Dummies books online.

6>. Talk to us. Make comments, ask questions,

get answers!

9. Download free software.

10. Find additional useful resources

from authors.

Link directly to these ten

fun and useful things at
. »» j . I* r\ £ i For other technology titles from Hungry Minds, go to

http://www.dummies.com/10useful wJ.hun^mindS.com

Not on the Web yet? It's easy to get started with Dummies 10T: The Internet For

Windows' 9S> or The internet For Dummies" at local retailers everywhere.

Find other For Dummies books on these topics:

Business • Career • Databases • Food & Beverage • Games • Gardening

Graphics • Hardware • Health & Fitness • Internet and the World Wide Web
Networking • Office Suites 'Operating Systems • Personal Finance • Pets

Programming • Recreation • Sports 'Spreadsheets • Teacher Resources

Test Prep • Word Processing

Hungry Minds

FOR DUMMIE6
BOOK REGISTRATION

We Want to hear

from you!

?nd ly.

ook

Visit dummies.com to register this book and tell us how you liked it!

i> Get entered in our monthly prize giveaway.

i^ Give us feedback about this book— tell us what you like best,

what you like least, or maybe what you'd like to ask the author

and us to change!

v Let us know any other For Dummies topics that interest you.

Your feedback helps us determine what books to publish, tells us what

coverage to add as we revise our books, and lets us know whether

we're meeting your needs as a For Dummies reader. You're our most
valuable resource, and what you have to say is important to us!

Not on the Web yet? It's easy to get started with Dummies 10P: The

Internet For Windows' 98 or The Internet For Dummies* at local retailers

everywhere.

Or let us know what you think by sending us

a letter at the following address:

For Dummies Book Registration

Dummies Press

10475 Crosspoint Blvd.

Indianapolis, IN 46256
BESTSELIJNG

BOOK SERIES

Completely

Updated for

UNIX— and the

Internet!

The Ultimate Reference for
Getting Up and Running
with a UNIX System

Become a UNIX whiz in no time! Whenever you have a
question or run into a problem, UNIX9ForDummies9

,

4th Edition, is right here for you. With clear instructions
and easy-to-follow examples, bestselling author team
John Levine and Margaret Levine Young cut right through
all the technojargon and UNIX commands- bringing you
the answers you need just when you need them.

Inside, find helpful advice on how to:

• Choose the right flavor of UNIX for you

• Set up and operate UNIX terminals

• Manage files, directories, and printing

• Use the Common Desktop Environment and other window systems

• Browse the Web, send and receive e-mail, and read Usenet newsgroups

• Troubleshoot and solve common problems

• Find out what's new and exciting about Linux

About the Authors

John Levine and Margaret Levine Young are a brother/sister writing
team with many ForDummies® titles to their credit, including The Internet
For Dummies®, 7th Edition, and E-Mail ForDummies9 2nd Edition.
A computer book author and instructor, John is also the editor and
publisher of a nerdy technical magazine. A former consultant and
computing manager for Columbia Pictures, Margaret is now a full-time
computer writer.

Technical Review
by Tara L. Jennings

Research and Database Specialist
Parker, Nichols, and Company

Let These Icons
Guide You!

Points you to shortcuts and
insights that save you time
and trouble

Highlights key points for

effective UNIX use

Alerts Linux users to stuff

just for them

Also Available!

LINUX

DUMMIES

7
" ,,85555"50419

READER LEVEL
Beginning to Intermediate

COMPUTER BOOK SHELVING CATEGORY
PCs/Operating Systems/UNIX

$21.99 USA
$32.99 Canada/£1S.99 UK

Dummies Press"
a division of

Hungry Minds, Inc.

see us at:

www.dummies.com
for Info on other Hungry Minds titles:

wvvw.hungry-minds.coni

ISBN 0-7645-0419-3

52199

9 780764 504198

