Bestselling
Computer
Book Series

A Reference for
the Rest of Us!

by John R. Levine
& Margaret Levine Young (

Coauthors of the Bestselling
_ The Intemet For Dummies’, 5th Edition

MNK‘W

AN
MILLIO

The Fun and Easy Way~
to Get Work Done in a
UNIX System

Your First Aid Kit
for.-Connecting to the
Internet with UNIX

Covers all Major Versions,
Including Berkeley UNIX,
Solaris, Sun0S, and Linux

BESTSELLING
BOOK SERIES

Printing

On System U UNIX:
To Do This Type This
Print file 1p textfile
Print file on a named printer 1p -dprinter textfile
Cancel! a print job cancel requestid
Check the printer queue Tpstat -a all

On Linux or BSD UNIX:
To Do This Type This
Print file lpr textfile

Print file on a named printer lpr -Pprinter
textfile

Cancel a print job lprm jobnumber
Check the printer queue 1pq -a

Your version of UNIX (see Chapter 2):
Q BSD Q SystemV Q Linux

(NetBSD, FreeBSD, OpenBSD, and BSD/OS are all BSD.
Solaris 1, 0SF/1, and AlX are similar to BSD. Solaris 2 is
similar to System V.)

Your UNIX shell (see Chapter 2):

Q Bourne shell Q Cshell
Q Korn shell QO BASH shell

Lost and found

To find out where you are, type pwd.
To find out who you logged in as, type who am L.
To find a file if you remember its name, type

find . -name filename -print

To find a file if you know that it contains the word
dummies, type

"llNlX@ For Dummies®, 4th Edition

General stuff

Log in before you use UNIX.
Remember your username
and password.

When you see a prompt
(usually $ or %), you can
type a UNIX command.

To back up and correct
typos, try pressing Back-
space, Delete, 7 (Shift+3), or
Ctrl+H.

To cancel what you have
typed and try again, try
pressing Ctrl+U or @
(Shift+2).

Type a space between the
command name and any
other information on the
same line.

When you're typing com-
mands, use the correct
capitalization; UNIX
distinguishes between
CAPITAL and small letters.

When you have typed the
command, press Enter (or
Return).

When you log in, the
working directory is your
home directory.

To log out, type exit or press
Ctrl+D.

Don’t turn off your terminal
until you have logged out.

Don’t turn off workstations
or PCs.

Copyright © 1998 Hungry Minds, Inc.

grep "dummies” * ’ All rights reserved.
Cheat Sheet $2.95 value. Item 0419-3.

Hungry Minds~ or more information about Hungry Minds, Inc.
call 1-800-762-2974.

For Dummies*: Bestselling Book Sevies for Beginners

Hungry Minds, the Hungry Minds logo, For Dummies, the For Dummies Bestselling Book Series logo and all related trade dress are trademarks or registered trademarks of

Hungry Minds, inc. All other trademarks are the property of their respective owners.

2 - UNIX® For Dummies®, 4th Edition

BESTSELLING
BOOK SERIES

Quick list of commands

To Do This Type or Press This

Cancel a command Ctrl+U, Ctrl+X, or @

Change the working directory to /usr cd/ usr

Change the working directory back to your home directory cd

Copy a file cp oldfile newfile

Copy a file to another directory cp oldfile dirname

Copy a bunch of files to another directory cp budget* dirname

Copy all the files in this directory and in all its subdirectories cp -r * newdir

Erase afile rm junkfile

Rename a file mv oldname newname

Move a file to another directory mv oldfile dirname

List filenames 1s

List filenames with sizes and dates 1s -1

List hidden files too 1s -al

List files and pause when screen is full 1s | more

Look at a text file cat Jetter

Look at a long text file more letter

Make a new link (name) for a file In oldname newname

Make new links (names) for files in a directory In dirname/* newdir

Combine two files cat filel file2 >
newfile

Compare two files diff filel file2

Look at the manual page for the 1s command man 1s | more

Change your password passwd

Filenames and pathnames

Capital and small letters are different in filenames. A pathname is the path in which you {or UNIX)
can find a file or directory. The root (main)

Filenames can contain letters, numbers, periods, directory of the disk is called /.

and underscores (_). Stay away from other

punctuation. Slashes are special (see the last A pathname consists of directory names

paragraph in this box). separated by slashes (/). If a pathname starts
with a slash (/), it begins at the root directory. If

Filenames shouldn’t contain spaces. a pathname doesn't start with a slash, it begins
at the working directory.

The ? wildcard stands for a single characterin a
filename. The * wildcard stands for a bunch of
characters in a filename. An * by itself stands for
all files in the working directory.

For Dummies®: Bestselling Book Series for Beginners

™

g

References for the
Rest of Us!"

Are you intimidated and confused by computers? Do you find

BESTSELLING that traditional manuals are overloaded with technical details
you'll never use? Do your friends and family always call you to

fix simple problems on their PCs? Then the For Dummies®
BOOK SERIES computer book series from Hungry Minds, Inc. is for you.

For Dummies books are written for those frustrated computer users who know they

aren’t really dumb but find that PC hardware, software, and indeed the unique vacabulary of
computing make them feel helpless. For Dummies books use a lighthearted approach,

a down-to-earth style, and even cartoons and humorous icons to dispel computer novices’
fears and build their confidence. Lighthearted but not lightweight, these books are a perfect

survival guide for anyone forced to use a computer.

“I like my copy so much I told
friends; now they bought copies.”

—Irene C., Orwell, Ohio

“Thanks, | needed this book. Now |
can sleep at night.”

— Robin F, British Columbia, Canada

“Quick, concise, nontechnical,
and humorous.”

—Jay A, Elburn, lllinois

made For Dummies books the #1 introductory level

Already, millions of satisfied readers agree. They have

1/01

computer book series and have written asking for more.

So, if you're looking for the most fun and easy way to
learn ahout computers, fook to For Dummies books to
give you a helping hand.

Hungry Minds-~

UNIX® For Dummies? 4th Edition

Published by

Hungry Minds, Inc.

909 Third Avenue

New York, NY 10022

www. hungryminds.com

www . dummies.com (Dummies Press Web site)

Copyright © 1998 Hungry Minds, Inc. All rights reserved. No part of this book, including interior design, cover
design, and icons, may be reproduced or transmitted in any form, by any means (electronic, photocopying,
recording, or otherwise) without the prior written permission of the publisher.

Library ot Congress Catalog Card No.: 98-87434

ISBN: 0-7645-0419-3

Printed in the United States of America

1098

40/SU/QV/QR/IN

Distributed in the United States by Hungry Minds, Inc.

Distributed by CDG Books Canada Inc. for Canada; by Transworld Publishers Limited in the United Kingdom; by
IDG Norge Books for Norway; by IDG Sweden Books for Sweden; by IDG Books Australia Publishing Corporation
Pty. Ltd. for Australia and New Zealand; by TransQuest Publishers Pte Ltd. {or Singapore, Malaysia, Thailand,
Indonesia, and Hong Kong; by Gotop Information Inc. for Taiwan; by ICG Muse, Inc. for Japan; by Intersoft for South
Africa; by Eyrolles for France; by International Thomson Publishing for Germany, Austria and Switzerland; by
Distribuidora Cuspide for Argentina; by LR International for Brazil; by Galileo Libros for Chile; by Ediciones ZETA
S.C.R. Ltda. for Peru; by WS Computer Publishing Corporation, Inc., for the Philippines; by Contemporanea de
Ediciones for Venezuela; by Express Computer Distributors for the Caribbean and West Indies; by Micronesia
Media Distributor, Inc. for Micronesia; by Chips Computadoras S.A. de C.V. for Mexico; by Editorial Norma de
Panama S.A. for Panama; by American Bookshops for Finland.

For general information on Hungry Minds’ products and services please contact our Customer Care Department
within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

For sales inquiries and reseller information, including discounts, premium and bulk quantity sales, and foreign-
language translations, please contact our Customer Care Department at 800-434-3422, fax 317-572-4002, or write to
Hungry Minds, Inc., Attn: Customer Care Department, 10475 Crosspoint Boulevard, Indianapolis, IN 46256.

For information on licensing foreign or domestic rights, please contact our Sub-Rights Customer Care Department
at 212-884-5000.

For authorization to photocopy items for corporate, personal, or educational use, please contact Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, or fax 978-750-4470.

For information on using Hungry Minds’ products and services in the classroom or for ordering examination
copies, please contact our Educational Sales Department at 800-434-2086 or fax 317-572-4005.

For press review copies, author interviews, or other publicity information, please contact our Public Relations
department at 317-572-3168 or fax 317-572-4168.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS OR WARRAN-
TIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFI-
CALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO
WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE
ACCURACY AND COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN
ARE NOT GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER NOR
AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT
NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES. FULFILLMENT OF EACH
COUPON OFFER IS THE RESPONSIBILITY OF THE OFFEROR.

Trademarks: For Dummies, Dummies Man, A Reference for the Rest of Us!, The Dummies Way, Dummies Daily, and
related trade dress are registered trademarks or trademarks of Hungry Minds, Inc. in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their
respective owners. Hungry Minds, Inc. is not associated with any product or vendor mentioned in this book. UNIX
is a registered trademark licenced exclusively through X/Open Company Ltd.

Hungry Minds~ is a trademark of Hungry Minds, Inc.

About the Authors

Margaret Levine Young and John R. Levine were members of a computer
club in high school — before high school students, or even high schools,
had computers. They came in contact with Theodor H. Nelson, the author
of Computer Lib and the inventor of hypertext, who fostered the idea that
computers should not be taken seriously and that everyone can and should
understand and use computers.

Margy has been using small computers since the 1970s. She graduated from
UNIX on a PDP/11 to Apple DOS on an Apple Il to MS-DOS and UNIX on a
variety of machines. She has done all kinds of jobs that involve explaining to
people that computers aren’t as mysterious as they may think, including
managing the use of PCs at Columbia Pictures, teaching scientists and
engineers what computers are good for, and writing computer manuals and
books, including Dummies 101: The Internet For Windows 95 and Dummies
101: Netscape Navigator (with Hy Bender), Dummies 101: WordPerfect 7 For
Windows 95 and Dummies 101: WordPerfect 6.1 For Windows (with Alison
Barrows), Dummies 101: Access 97 For Windows and Dummies 101: Access For
Windows 95 (with Rodney Lowe), The Internet For Windows For Dummies
Starter Kit, MORE Internet For Dummies, WordPerfect For Windows For Dummies
(with David C. Kay), The Internet For Dummies Quick Reference, Understanding
Javelin PLUS, and The Complete Guide to PC-File. She has a degree in com-
puter science from Yale University.

John wrote his first program on an IBM 1130 (a computer roughly as power-
ful as your typical modern digital wristwatch, only harder to use) in 1967.
His first exposure to UNIX was while hanging out with friends in Princeton in
1974. He became an official system administrator of a networked computer
at Yale in 1975. He started working part-time for Interactive Systems, the
first commercial UNIX company, in 1977 and has been in and out of the
computer and network biz ever since. He put his company on Usenet so long
ago that it appears in a 1982 Byte magazine article, which included a map of
Usenet sites. He used to spend most of his time writing software, but now he
mostly writes books (including Internet SECRETS (with Carol Baroudi), The
Internet For Dummies (also with Carol Baroudi), The Internet For Dummies
Quick Reference, and MORE Internet For Dummies, (all published by IDG
Books Worldwide, Inc.) because it’s more fun. He also teaches some com-
puter courses, publishes and edits an incredibly technoid magazine called
The Journal of C Language Translation, and moderates a Usenet newsgroup.
He holds a B.A. and a Ph.D. in computer science from Yale University, but
please don’t hold that against him.

Dedication

John and Margy both dedicate this book to their dad, wherever he is. When
last sighted, he was traveling somewhere in Turkey, tasting wine, unless he
was at the beach in the United States — he’s a man who knows how to live!

Authors’ Acknowledgments

First and foremost, the authors would like to thank Jonathan Weinert for
doing most of the work of updating this book to a fourth edition. Jonathan
provided his invaluable knowledge of UNIX and the Internet, along with his
Dummies-compatible twisted sense of humor, and not a moment too late
because we had just about run out of jokes.

The authors thank Antonia Saxon, Jordan Young, Sara Willow Levine Saxon,
Meg Young, and Zac Young for putting up with us while we updated this
book. Thanks also go to our Internet providers: Finger Lakes Technologies
Group and the Trumansburg Home Telephone Company (Trumansburg,
New York), the Shoreham Telephone Company (Shoreham, Vermont), and
SoVerNet (Bellows Falls, Vermont).

Rebecca Whitney did her usual terrific job of shepherding the text from our
hazy scribblings (electronically speaking) to a printed book with her usual
blend of patience and midnight wit, despite the best efforts of her telephone
company to consign her to a permanent offline existence. She got lots of
help, of course, from all the folks listed on the other side of this page.

Publisher’s Acknowledgments

We're proud of this book; please register your comments through our Online Registration
Form located at www.dummies.com.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Production

Media Devel t
St Project Coordinator: E. Shawn Aylsworth

Project Editor: Rebecca Whitney Layout and Graphics: Lou Boudreau,

Acquisitions Manager: Michael Kelly Angela F. Hunckler, Drew R. Moore,

Technical Editor: Tara L. Jennings Brent Savage, Rashell Smith, Kate Snell

Proofreaders: Kelli Botta, Rachel Garvey,
Nancy Price, Ethel M. Winslow,
Editorial Assistant: Paul E. Kuzmic Janet M. Withers

Editorial Manager: Mary C. Corder

Indexer: Sherry Massey

General and Administrative

Hungry Minds, Inc.: John Kilcullen, CEO; Bill Barry, President and COO; John Ball, Executive VP,
Operations & Administration; John Harris, CFO

Hungry Minds Technology Publishing Group: Richard Swadley, Senior Vice President and
Publisher; Mary Bednarek, Vice President and Publisher, Networking and Certification;
Walter R. Bruce I, Vice President and Publisher, General User and Design Professional;
Joseph Wikert, Vice President and Publisher, Programming; Mary C. Corder, Editorial Director,
Branded Technology Editorial; Andy Cummings, Publishing Director, General User and Design
Professional; Barry Pruett, Publishing Director, Visual

Hungry Minds Manufacturing: Ivor Parker, Vice President, Manufacturing
Hungry Minds Marketing: John Helmus, Assistant Vice President, Director of Marketing
Hungry Minds Production for Branded Press: Debbie Stailey, Production Director

Hungry Minds Sales: Roland Elgey, Senior Vice President, Sales and Marketing; Michael Violano,
Vice President, International Sales and Sub Rights

*

The publisher would like to give special thanks to Patrick J. McGovern,
without whom this book would not have been possible.

*

Contents at a Glance

2P OO OODOLOOROEOS O DS

JNEFOAUCEION ooeaeeeeeeeeeeeeeeeneeaenensencassasasassasassasassasaaeas |

Part I: In the Beginningccccueeeeeeeeeeneencncceccoceacee 1

Chapter 1: Log Me In, UNIX! ...c..ccccooiniiiniiniiininiiiiieicieectinestccee et 9
Chapter 2: What Is UNIX, ARYWaY? ...c.ccoooiiiriiiiiiiiiiieniiiiin et nennens 17
Chapter 3: A Few Lines on LiNUXccccocvvininiiiiininininiiicccc e 31
Part 11: Some Basic Stuffccueeeeeeeeeeiiicciccacicaccanacaaacee 35
Chapter 4: Opening Windows on UNIXc..ccccociniiininiiiiniininiinii e 37
Chapter 5: Files for Fun and Profitc.cccoeooivniincnniiiiiiiiiiiines 65
Chapter 6: Directories for Fun and Profitccccooovnnniiiiii 77
Chapter 7: The Shell GAIMEc.cooiviiiieiiirieiieieiet ettt et st e esenseneenenes 87
Chapter 8: Where’s That File?ccooiiivieriiniiiieieicrieeteteseeieteteteteie e 101
Chapter 9: Printing (The Gutenberg Thing)ccccccoiiiiiiiiiiiiiniieccce 113
Part 111: Getting Things Donecccceeeeeeeececcecaaaaee 125
Chapter 10: Writing Deathless Prose........c.ccooiiriiiiiieiienieeeieeeesieesenecesieeieseseenae 127
Chapter 11: Umpteen Useful UNIX Utilitiescooovvreveeniiiiiiienniiiiiieeniiiiieeecieeeiecneees 151
Chapter 12: Installing Software Can Be TricKyccoceoieiiiiininiiniiiiiniiiieicniieeene 159
Chapter 13: Juggling a Bunch of Programsccccecieoeeiiniinniniinienenienienieeicienae 173
Chapter 14: Taming LINUXccooiiiiiiiiiiiei ettt es e eseees 183
Part IU: UNIX and the Net...............ccccceeeeeececiccccacaaaee. 189
Chapter 15: Your Computer Is Not AIONEcccoiieiiiiieniiiiiiinenienteseneeeeeieseeeeenae 191
Chapter 16: Across a Crowded NetWorkcccoviiviiiiiininiiniiiinienenecesesicsiesiesaens 199
Chapter 17: Automating Your Office GOSSIPcccoceeeririererieniinieieniesiiiesieiesiesieeee s 209
Chapter 18: Web Surfing for UNIX USEIScccvveeirienieiiieiieienienieneieieeseeessesaesssesnsenns 233
Chapter 19: Turbocharge Your Newsreadingcccoceeeerenerenirienieenreesieeereneenennes 257
Chapter 20: Grabbing Files from the Netcccocivviiviiiiiiiniiiiiiiineeieeeinieeeeieevene 283
Chapter 21: Now Serving the INternetccocevieiieieeiiiciiieeeececieee e eee e ens 297
part U: He{p!‘...I.II(.I...II‘II..I.IIIII.I.I.l‘......--lI.I.I.I‘I.I.I.II 305
Chapter 22: Disaster REli€fcc.coveveiiiiieiiiiinecie et eeesteeeve e sseensesneesaessasnnes 307
Chapter 23: The Case of the Missing Filesccccocooienivniiinnininiiecenecccreneenes 311
Chapter 24: Some Programs Just Won't Di€c.cccoevveeiiieneenieenrieieereerreneesneeseens 323

Chapter 25: “My Computer Hates Me”cc...ooevvviiiivieeirienienreenenieeseeseessessnesanenee 329

Cartoons at a Glance

By Rich Tennant

By Rich Tennant

WL HOT P!
, FINALLY-A FAULT
] The 5th Waye

Cartoon Information:

Fax: 978-546-7747
E-Mail: richtennant@the5thwave.com
World Wide Web: www . theS5thwave.com

Table of Contents

[BB I B BN B BE BN B OB BN BN BN BR BY BN BK BN BN BN BN I B B BN BK AN BK BX N B 2N BN BF BE BE BN BX BN 3R AR BRI BN K N

JREOAUCEIONeeeeeeeaeeeeeeeeaeeaeneaceacasaasasassasaceasaseacasanease]

ADOUL ThiS BOOKoeiieiiiieiieeeeeete ettt ceva e e s bb e e esve s asabaaesssaeecnnes 1
Conventions Used in This BOOKccooviiiiiiiiiiiieiiieeccereee et eeenneen 2
Foolish ASSUMPLIONSc..ccuiviiiiiiiiiiiiiiieicteieiee ettt ettt seeseee 2
How This BoOk Is Organizedcocccevevereniriincncenneiiniiieieninietieienesesinens 2
Part [: In the BEGINNINgccccoeiviivieiiiniiicirieneeienteetenteesrenseasvessessensons 3
Part II: Some Basic Stuffoooviiiiiiiiiiiiiieee et sie e e 3
Part III: Getting Things DONEcccccoveeveniineeieneeneeenienreneennesseessesseesnens 3
Part IV: UNIX and the Netoooiiiiiiiieeeeee e eeee 3
Part Vi HEIP! ...ttt tesieee e estesnaenessnassaesae s banssesaennasneas 5
Part V1I: The Part of TENScccovieviieiiiiiieenieiiecieecitesveesveesneeseneesraensseens 4
Icons Used in ThiS BOOKc..ooivieiiiiiiiiiiiiiieiieeeiecneie e ceneeseresssneennsesnnesssasennes 4
Where to GO from HETEoouviviiiciiiiiciiiieciecircereerieesetaeenaresstesssaesnssessaeenes 4

Part I: In the Beginninguuuuueeeeeeeeeeeeeeeeeeeeeeeee

Chapter 1: Log Me In, UNIX! ... ssssessnsnaes 9
Turning Your Computer On and Off............c.cocoviiiiiiniinienineceeieeieneeeeeseeenns 9
A dumb terminalcooeeeiviiiviiniiiieiiceeeeee et as 10
The PC masquerade ball ..o 10

If a train stops at a train station, what happens
at @ WOTKSTAtiON?oooiiiiiieieeeeceeeee et vn e 11
X marks the terminalcccoooiiiiiiinioniiiieceeee e e 12
Hey, UNIX! T Want t0 LOZ IN...cccooiiiiiiiiiiiiiiieiceceene et neve e 13
DIFECE QCCESS ...onvviiiiiirieiieceee ettt et eteste e caeeee et e eaeesneeaeeensentesanesne 13
Y0, UNIX! — NOt-SO-AIr€CE ACCESS .eeeeeeeeeeeeeeeeeeeeeeeeeeesereeseenssseneneens 13
Logging In: U(NIX) Can Call M€ Alcc.coooieiiiieiiiiieieeceeee s 14
PasSWOrd SIMATEScccvevieruirieiirieiiitieeetet ettt e s eseereesereeneenesnseneeneeaeenes 15
CHa0, UNIXI ...ttt ctieee ettt et et e sa s ess st essersessenseneeneesesreesseneesseses 16
Chapter 2: What Is UNIX, Anyway?.........ccccovnrenrenenenressssessesssssssessenens 17
Why Do We Ask Such Dumb QuUeStions?cccoveeivveveecoveeiieveeieeieeeennns 17
May a thousand UNIXes flowWer.............coovevieviiviiicieieiccieeeeeeeee e 17

What's GINU? ..ot tttee et tse et esesesenes 21

XU[UNIX For Dummies, 4th Edition

HOW Can YOU TEII? ...cocvoiiiiiiiieitiineseieniecteeseecniteceeesneeenresennessuesenessnnesnuconne 22

CrackingithelfSiellf 5% S5 ol . BN 0. 0 N BN oo e s 22

The Bourne and Bourne Again shellsccccccceviniinininnnnnncncinennn 23

The Korn-on-the-cob shellcccoiiiiiiiniiiiieieieceeeieee 24

She SEllS € ShellScciiiiiiiriiieiiisieiieene et cte et esnraesaeens 24

Are Any Good Programs ON?cccccoeieiviiiienieiniiiiiiinieiieicies s 25

Finally! You're Ready t0 WOrKcccceceeivirinienininiinniniiniiieencnieiieneneenees 26

We could tell you the password, but then we’d have to kill you...... 26

What's MY file?coeieieiei st sresese et 27

QO PSR 28

Play it again, SAmMcccoeovervieeiieieciiiiiiiictcriieie s 28
Everything you wanted to know about typing commands —

but were afraid t0 asK........coceovevinciiiiiiiieicini 29

Chapter 3: A Few Lines on LinuX ... 3

Out of the Frozen NOrthccccocecciviiiiininiinniniiiiiici e, 31

What's Old, What's NEWcovoiiiiii ittt et e cittesateesaaesasaesaessaonneeas 33

WHRETE'S LINMUX? ...ocetieiieeieieeietieiese st st it sbe st essecoteoneeseeobtesnesmtestesmtestssanesnenn 34

Part 11: Sonte Basic Stuffccccoueeeeecaaaceeeeccaacnneceaccaaee 39

Chapter 4: Opening Windows on UNIX ... 37

UNIX GetS AL GUIoveeeieieriieieieniieiieie e seencet et ies et steesastosesessestonesaeneseenssnncs 37

X marks the WinAOWccceeiviiinenenciiiiiicnciii e 38

“I'm not just a server — I'm also a client!”...........c.cccooniiiinninnn, 39

JUSE MY JOOK ..ottt s e 40

Makeup artists for your windows.......c..cccceeeiiviivniiiiiiiiinininnin. 40

A field guide to window Managerscccccccccvviiiicinienieiisnininns 41
Considerably more than you want to know about

window managers, toolkits, and X..........cccocecviiviniiniiniiniins 42

Opening a NeW WINAOWc....cccceeiiiniiiiiiiniiiiiiiciicssins e esesessenens 45

[con do this with @ PICturec.cococeivininiiiiiie e 48

Window wrangling a la Motif............c.cocoiiiiiie, 48

Switching and layering your Windowscccoooveiiiiiiinencieinnnn. 49

“Where, oh, where has my window gone?”ccccooeeiniiiinnnnnn 50

Stashing your WindOWScccccecceuiviniiinieniiininiiniieeieeneeeieieens 50

Curiouser and curiouser: Changing window sizes........................ 50

Getting rid of WINAOWS ..o 51

Motif widgets on paradec.cceveeeveviiieniniininiininiie e 52

IMEIUS ..eviviiiniieieeeienieneeieeeeuesieesutssaesaeosaesseensessesssessessnsssnesssesessssssesses 52

RAIO DULEOIIS .ottt e e eere e erreeevveesbesesaesbaassaansneennnens 53

Table of Contents X'(/i i

TOZEIE DULLONS ...ttt ettt eae e 54

SCAleS OF SHACRTS ..ottt sresae v veenes 54

OPLION IMEMUS ...vvvireienrriieieierertetensentesetereeesesseseesenteseseeseesesseniseoressens 54

TEXE DOXES ..cvviieeieiiiiciiiiiteeie et eieceree et e s steesreesseneseneeebasssetesoreesneasannes 55
Scrollable lists and scroll barsc.cccccvcieiiieiniininiiieicennienecace. 55
PUSHDULEONS ..ovoiiiieiiieeitet ettt eee 56

CDE: A Desktop for All SEASONSccceviieriereenienieniereenseressnesoeensesseseessessesenes 56
Desktop, here we CoOme!cc.ooiiiiriiiiiniiiiiniiiiinieiecieicie e 58
Front and CENTErccooiiiieiiininiiiiciiiciccicctcne ettt 58
TOOIS YOU CAM USE ...cviuiriiiiiiiiiiiiiiiiiiiiiec et ererir s e s enesnene 59
Filing WithOUL tEArSccevieiviiiiiriiiieniecienriee et eeeteceeeseneneeeeeeaeenenne 60
WHhat’s UP, AOC? ...viviiiieiiriiiiiienrienreereneesieestesriesaesinesneestecrneneesneesnessecs 62
HAaVE it YOUT WAY .eeovtiiiriieniieiieiectieiie ettt ettt st e e enaeemeenneene 63
Desktop, there We go!.....ccccocviiiiiniiiiiiiiiiiiiieciecictentcseeeeeeeeeneene 64
Terminal HAPPENINGScccveivieiieiieiiiiiieceeieerenieenieereessesssessnesieesiessaessesssessns 64
CHCK, CHCK oottt ettt eeire e eenvae s enbeseessraesentsessnnesennnneeas 64

One last stupid Xterm trickccoccoevveiiiviiiiineeeecr s 64
Chapter 5: Files for Fun and Profit..........ocevceeiveecccccsnnesneeseseninns 65
What Files DO YOU Have?ccccoceiiiiiiiiiniiiiieicietcict ettt e 65
Let’s see the nitty-gritty detailscccoceeveriiniiiniiiinniinceicccee e 66
Making files come out of hiding..........cccoevieveeieereeiiiiiie e 67
ROGEL, T COPY ittt csre et cae e asesibeesaeessbassssesnsaessassssasnsnaens 67
A good way to 10Se SOME WOIKccceoviiiiniiieiiiiiiiecieienreiesieiennenes 68
What's iN @ DAIME?cc.oouieiiiiieiiiieee ittt enienbessestesaesiessensessensensenes 68
Nuking Files Back to the Stone Agecccooieiieieiiereeeeeeeeeeee e 69
Big, Dig troUDIEocveiiiieiiieee e a e sae e 69
GOOd NOUSEKEEPINIGcvovvvireieerierieiiniereiereinesestessessesessesasessessessessenses 70
What’s in a Name (RePIiS€)ccuevveiiiiriiiiiiieiiiieniiiareienienseciestesresiessenseeses 70
Looking at the Guts 0f @ Fileccccveeiiiiiiiieieiieciecece e enes 71
Is This a Printout] See before Me?cccociiviiiiiiniinieniiniieiereieneniesiennens 72
WHO G0ES TREKE?oooiviiiiiiiriiieieteieicerieietesteteue ettt sa s esas e aesessesaasan 72
Rock groups, pop groups, and UNIX groups..........cccceeeeevevienienienneeennen 73
That’s MINE!ccoooiiiiiiiinieete ittt eesereess et ess e teeaessebesaeers 73

Who can do What? ..ot 73
Permissions by NUMDErccoocviiiiiiiiiiiiceccc e 74

If Mom says N0, 80 ask Dadcccoueivvinneniienieicereeeeeseeee e 75
FINAING @ NE@W OWIEY ..ottt ere et 76

File seeks new group; can sing, dance, and do tricksccccevenen.. 76

x(/iii UNIX For Dummies, 4th Edition

Chapter 6: Directories for Fun and Profitcoovvevvvivnsnnnnnienennee. 1
Good News for Windows and DOS USEISc..ccceceeeereeeiciirueinrininseineeene. 77
What IS @ DIFECLOTY? c.oviuieeeiieiinieinieiieteirteniete sttt e sne s eaeas 78
Divide and CONQUETo..eocvereeiieeiiiiiietiiieteireeieeee ettt s saes e ssae e srens 79

Paths t0 POWET ..c.oviiiiiiiiiiiciiieiticiicstentete s ens e 79
Family MAttErS «..ccooiiieiiciieiice ettt erctneoteseneassesaess e saens 80
Names for dir€CtOriesccceveeiiiioiniininieiieciei e 81
There’s No Place Like HOMEc.ccoiiiiiiiiiniee et saesen 81
I've been working in the direCtoryccocveeevvivieinininiininiiiiiin, 81

[want to o home!ccooiiiiiininiiiiiicie e 83

PR TRE W DS i &) ROV ssaseadsnocacnosomsoasoedSiBeoodio oo deacn oo 83
MaKing dir€CtOTIESocvvveeveruireiiiiiiieiticiiiee st 83

Dot and dot Otcueveveieieireeeiee et et s 84
Performing neat directory operations......c....c.ceceveeivivinencinicncinnnnn. 85
Transplanting filescccoveiereninenineniieeriiciicicee e 85
Amputating unnecessary directoriesiiiiiininennn. 85
Renaming a direCtory ... 86

Chapter 7: The Shell Game ...t 87

This Output Is Going to Havana: Redirection ... 87
Grabbing OULPULcceevivieiireeeieeeteietiteeetetiteretetesirisaeestsss e sresserenees 88
Redirecting iNPULcccooiiveiiiiinieientcie et 89

Gurgle, Gurgle: Running Data Through Pipesc.ccooeviiiiiiiiiiiiiinnn, 89
Gimme just a little at @ time ... 90
The cat and the fiddle . . . er, filecoooiiiiiiiieec e 90
Slermbing, SEIH @ ceosmouismomoocomeomeomammmpuemmeeemsEmmEO IR RIEIRITPIITTI0I0] 90
Can we get that 0N PAPEr?cccevicieiviniriiiincii e 93

Wild and Crazy WildCardscocooeuirieieiericieenieneiecieieneinsenesnesssesesaesesneas 93
Pick a letter, any letterccoevviiviiiiiiiiiicee e 93
SHars () i SHOUIP EHES sasoonomoaoo0m0000850000005000505003003000000030003500000000I0IT 94
Are kings or deuces Wild?cccccevvevivininiiiiiiiiii e 94
Wildcards for DOS USEFSccccovvieuiiioiiiiieciiiiniiicniiirie et ere e easenas 94

History Repeats ItSEIfcoooiviiiiiiiiiiiiicicieiccccciee e 95
A ligi@rg in e MEY @ff € cooccsouommmsasemmpnsaons o oommIssamRomas 96
BASHing through commandsccccccoevieeieniiniinienniieeeereeeaens 97
A Korn-ucopia of commands..........ccocovviiiiivieniininiiiieie e 98

Do I Have To Type the Same Things Every Time I Log In?cccccoovvinieennn. 98

Terminal OPHIONScveeeieeieieieieineeie ettt sr e s sassasasssebsasenes 100

Table of Contents

Chapter 8: Where's That File? ..., 101
The SArch IS OM......cccooiiiieiiieniietceee ettt e 101
Peering into every direCtoryc.ccoevereninininieniniiiiniienneneeenenees 102
“Hey,] know the filename!”c..ccccoccoenininiiniiiinininiins 102
“I know where to search (sort of)"ccocoiiviiinininiin, 103
“At least | know part of the filename”c.cccocoiiiiiiininiin, 104
Remote SEArChEScooviiiiiriiiiiinie i 104
It’s what’s inside that countsc..cccocvvvviiiiiiiiiiiiiii 105
What to Do with Files After You Find Themccccccocevinnninn, 107
A File By Any Other Nameccccccccuevevineneniniiniiiniiencnceesie s 108
How can you be in two places at once when
you're not anywhere at all? ... 109
How to play the lNKSc.cooeevverierireerieeiieniieiecieciicstenecniieiceiciesaene 109
How to delete JinKSc.eoveveriiiiiiiiiiiiiiiiieiieciciiccccen 109
How to rename a linKcoccceoiiiiciiiiniiniininiiniiiiciiecicceeen 110
How to link a bunch of filescccceoovvviiiiniinniiiiiii 110
How to link across the great computer dividecccccccevenienniin. 111
How to make soft links (for users of Linux, UNIX BSD,
and SVR4 OnNLY) .ottt 111
How to use soft links (for users of Linux, UNIX BSD, and
SVRE ONLY) wceviiiiiiiiiiiiiiiieieiiiiteitce st 112
Chapter 9: Printing (The Gutenberg Thing)cccocoeconvnirrninininnnnnns 113
Printing Stuff: Daemons at Workc.ccccviiiinininininiiiiinnes 113
Printing in System Vc.cccciiiiniiriiiicentiteeneiee s 114
Printing in BSD and LiNUXccoociiiiiiiiienesieceee et 114
Finding Your PriNtOULccoooiiiirieiieececeeeieeneneee et site st eseeeeensesnesane e 114
Printers, printers, eVErywherecccooveiiiiiieennenciieeiiciieneeeeieenas 115
Calling all PHNEETS ..ooveoiiiiieiiieicctee ettt 115
“Help! I've Printed and It Won’t Shut Up!”........ccccecoviininnininiicincnneenes 117
Cancel the order, System Vcccoooiiiiiiiiiniiniiicieeeeeeeeeee 117
Some final words about stopping the printerc..c.ccccccceeennee. 119
Prettying Up Your Printouts.........ccooieieiiiioiieieiceeeeeee e 119
Titles and page numbers look so officialccooeeviieveniiiineenee. 119
Marginally YOUISccocoieiiimeriieiieeiciereeteteeteeesaesest e esessessessessessassasens 120
SeeinNg dOUDIEccooiiiiiiiiiceieeeee ettt e ebe e 121
One column can’t CONtain MEcouevierierineriinieienienteteienteseesieseeeeas 121
Troff, Nroff, Groff!ccooeiiiiiiiiii e 121
MaACIO MAMIA ...cveiiieiiereiiieteinierieteereestere st esestesessesantaseesessesesseneseennesesnene 122
Let’s SNEaK @ PEEK ...c.eieviiiiiiiiiiiieect ettt rae e 123

Printing, for the PostScript-Challengedc..cocovvieeniinevencciciencnnnnennes 123

xx UNIX For Dummies, 4th Edition

Part 111: Getting Things Donteccceeeeeeeceeceeeceeeeeee. 125

Chapter 10: Writing Deathless Prose ... 127
UNIX Has Its Way with WOTdScccccouvviiiiiiiininincnineinneeneiinesenieniensonee 127
Just the text, Ma’ammloooiiiiiiiiiiiice e 128

Text formatters aren’t really editors.........ccocvveivivniinievenenciicie e 128
Cuisinarts for text: Word proCessorsccocceeiieicverieeiieeceeniveeeieeeinens 129

vi and emacs and pico are your friendsccoceevvenirreriinveiinienne 130

Shy Vi, the Princess of Text EQIitOrScccocveieeenirieneneneneneeeenrneesrensenne 130
Editor 21a MOAEcooiiiiieiieecceeee ettt e sn e 131
Help! I need SOmMebody!.........cocoveeieiinieieiieceesr et st eveenaevanees 132

Easy text-entry techniques ..o 132

All kinds of ways to move the CUrSOorccocecivievenrincieneireenienenns 133
Giving your text @ MaKEOVETccoceeiiiriinieniiiieicncreeecerceeoreenesrennene 134
Removing unsightly text ..., 134
Nobody undoes it Detterccccoiiiiininiiiiniinieiieienieeneeeneerennes 134
Write me or save me — just don’t 10S€ Mecccveeevvvirvineirenveinnnnns 135
GOOA-DYE, Vi oottt et ese sttt esentnenens 135
[JUSTIOVE VT oottt ettt 136

A Novel Concept in Editing: emacs Makes Senseccocoveieiiciiiicciennee 136
A tale Of tWO EMACS tivieiiiriiiceiee ettt seeseae s cae e sesae e ene 137
Telling emacs wWhat 10 dO .cccceceeiiiiniiniiiiniiiiciiiccccece e 139
Another novel concept: Type to enter textcccovvviiininnn 139
Getting around iN EMACS ..oeeieveirciriirieree ettt eaee e escncs 139
Making changes in EMACS .c.ciririiieieiiniicieeicreincecenreisenereseseenns 140
Deleting stuff in EMACS c.ooviuiieiiieie et 140

Save that file before it’s too late!ccccoeveiiiiiiviniininenn, 141
Bidding emacs adi€Uooeevveeeeiieieneieniiiiieieenieteieieie e 141

A PEEK AL P CO tvioieeieiieiieiciesesteiretee et emeen b besaesaestentensententeneenesneobesaesues 142
YOU'TE MY EYPE .oovienienieiriviieteiieteniesieneesieientesrernesteneneesaesuesneseesessesmssassns 142

YOU IMOVE ITIE ..vieeinieinieiieneenteneeetiestesaaensessesasassesatesseesseessensesssessesneeasecns 143
VTR VDI INEID cccomsmormomoosmomeesamiamommmomeisaeiaiesomeaeemoaaeea o a0 143
Time for a Changecccccoviviiviiniiiiniiinceec e 144
Thanks for saving my fileccooeiiiiioiieeceecerceeeere s 144

I'M OULEA NETE ...cvvriiiiiiiiiieniece ettt stesetesiesreebesnessassaessansnsenee 144

Talk tO MI. €0 .oviiiiiiiniieiiniinie ettt 146
Hey, Wilbur, which command was that?...........ccccccvinvnninnnnn 147
Feeding text to0 MI. €d ..c.ccocovieiiiiiiinieniiiiiiiiiiieeccninee e 148
Getting Mr. ed to save your texXtcccccieierieniiiiieiieieceeese e 148
Show me the file, pleaseccoiciiiiiiiniiiiniiniiee e 149

A miserable way to editccccooviiiiiiiiniiii 149
101 | O B0 T T e et 149

TIME tO €0 OUL ..covvviiiiieieieieececiiee et e et te e seteeeesraseesaeaeasnaesssaaannneennn 150

Table of Contents

Chapter 11: Umpteen Useful UNIX Utilitiesc.cccccveevcnrcnnnncrcnenee 151
Comparing Apples and OYangescc.ccocvevereriereierierneriueneeiesesoseseeseennes 151
ASSOYTEA FIlES ..ottt et e e e sta e s aesnaeeeae s 152
Time Is Money — Steal Some Today!cccceeveeeierrieerierieriieneneeneecreesreseennes 154
Squashing Your FIles ... 155

Compress WithOut SEreSSccceiiiiiiiiiiniieitinieieeeeieeee e 155
Zippedy day-tahcccociiiiiieiiie e 156
What’s in That File?ccooviiriiieeieeceecteeeeet ettt e e neas 158

Chapter 12: Installing Software Can Be Trickycccccoeververreecnrenneens 159
The SOftWare SEOTKc.cccirieiiiiiiiiiiienecete ettt 159
YOU'VE DN DA oottt ettt see e e ettt a e n e reeanans 160
You Too Can Be a Script WIIterccoovvieiiiiciiiniiiiieciecnrccieesie e 161

How to Shell @ SCrIPL .oooviiiieiiii ittt eere e e e eeaeens 161
Getting your SCript t0 Playcccoovevivivieiiiniineririiiesiisieeesneeereneeneens 162
Running and rehashing your SCriptccccccovcevenenininiinciinneienennens 162
Borrowing Other People’s Programsc.ccocoeveviviniicininiienceeinneeinnennes 165
TRE IONZ WAY ..vticviiuiiiiiriuerieiienieneenreeaiereesesseessaerseisaessesssessasssesssensesses 165
TRE @ASIEY WAY ..iveiviiiiriiriieiiesiieireete et e steeteere e teeveeseesveessessseseessenanennas 166
DK7Y 60 BV oo oo s s a0 B o da00e0me e 166
Using @ shell SCHIPt ...cccuviiiiiiiiiiiiiiii e 167
Stealing Software from the Networkccccccoeveviiiiiiiiieniieieececececie e 168
TAT PIES .ooeeiniiiiieiitenteneeeteet et st eetee e s ete s e srae s e ta e beesbeestesaeenaeennenen 169
Revving up RPM ..ottt eveees 170
Sneaking Software through the Mailccccocooiioinieniiiniiiiiiiceeee 171
SNEAKY SNAT c..eiiuieiiiiieiiceeeeece ettt b e et eae e neas 171
Getting sneaky with uuencodec.cccoccoevmervniinniec 172
Making your own sneaky e-mailccccooeviiiininineniiiieieiee s 172

Chapter 13: Juggling a Bunch of Programs................cccccoeevvunrrecreccnnenne 173
So What Is @ Process, ANYWAY?cccocevurreeeiriereeieererenesesesesseseseessesesssennas 174
Any Processes in the HOUSE?ccocoiiiieieiiiciiceceeeeceeee e 175

Mind your ps (AN gS) «..cccoceieerieriiieiieieicricnereeee e st ereere s erenns 175

TG LITTIIBE (D5 o0mmmmmmommmmmom e om0 e 0 A e o) 176
Fancier ps (and QS) ..cceeieeerineeeieieieeieicresieree vt ens e ere s 176
Berkeley ps (@nd gS) «.cceeeeieeietirieiiiciieteeetenrenet e eere s ens 178
Starting Background ProCeSSEescocooueirviviiiiviienieieeeriieeeeieeeeeeesce e 179
The Magic Of JOD CONIOLc.ooiviiiiiiieiiciicietee ettt e eteeeesaeseeane 180
Take this Job andcccoioiiieiieieiecceecccee s 180

... stick it in the background.............cooooviiioiiiiiiiiniiiecren, 181

... run it in a window in the foregroundcc.ccccceoeninininnn. 181

SROVE It ...ttt et 181

xxi

xxii UNIX For Dummies, 4th Edition

Chapter 14: TamMing LiNUX ..o 183
Congratulations! You're a System Administrator!cccceeeceevvcniinnnnn. 183
The root of all UNIXcccccoiiiniiiniininiiniieeeieente et cneteneiene e enenes 184

AddING @ USET ..ottt ettt seenene 184

How do I turn this thing off?ccccoeceiiniiniininininececeeceeee, 185

A Pride of LINUXEScooeviieeiiriiiiiiiiciieicteieciteie ettt enne s st 186
“ITINEEA HEIP! ..oeeecetitnitiiiinentcneieietesesiesessesaessconestssissnssesnesntnes 187

Part IV: UNIX and the Net............cccuuceueueeeneecieeaaceeee. 189

Chapter 15: Your Computer Is Not Aloneocrccienieicninisnnns 191
Finding Out Who's on Your COMPULETccccoeruieiienieieiireeienieinenninisninens 192
Finding Out Who'’s on Other COmpuUters..........ccoceeevvivivvencvinninniiceeeeene, 193
Chatting with Other People on Your Computercccocceceueevinninrninnns 195

I'm talking — where are you?cccccovinnivnninninnieniennieinns 197
Can We TalK?oocieiiioieiiiieeee et 197
Chatting with faraway folks........cccccocevieiiiniinininninecne 198

Chapter 16: Across a Crowded Networkcconvvmecvcicnnncnncnncnnee 199
On a Computer Far, Far AWaycccccceoiiiiiininiiiniiinee e 199
Telnet It LIKE IE IS ..coiiiieiieiiereeciceiectieccereecrtctene et n 200
3270: The Attack of the IBM Terminalsccccocooveviiiiiiiiiinininiiiiicne, 202
riogin: The Lazy Man’s Remote Loginccccoccoevinninninniniinciinnniennnn, 202

Escaping from rT0Ogim .o 203
Username matching for r1ogin .. 203
rsh: One Command at @ TIMEcccoevereriiriineineeiiiieieee e 205
rcp: Blatting Files across the Network..........ococeveviiiinniiiiniiins 205
NFS: You'll Never Find Your Stuffcccocooiiininininiiiiiiciciien, 207
WRAE's INFS? ..ottt et 207
Where are those files, anyway?c..ccciveiviiniiiniiniiininiieieeine 208

Chapter 17: Automating Your Office GoSSipcc.oocrvvurenimncnrerrcencenenns 209
What You Need in Order to Use E-Mail..........cccoccoviiinnniniininnniiins 209
A e SIS T Y ST e 210

Sending mail to people on your COMPpPUterccccoevivieniiiinnennens 210
Sending mail to people on other computersc.coccoeeviieinennnn 211
Sending mail to people “out there” ..., 211
IS dead, JIIMl covcouieiiceiiece et ceerr e e cee e e s evnt e bae s s raaesmseeesemeecennne 212
Sending Stuff Other Than TeXtccccceviiiinieniiiiniiieniiiineeeereise s 213
Exchanging Gossip by Using Pine ..., 214

INtO the POStDOX ..ccviviiiiiriieiirieiiriircne e 215

Table of Contents yoxfff

I'm pining for some mailccooevveriieiieiniininiiiiiiiciinieicecene 216

Send this file t00ccccoveiiiiiiiiniiiiriieic e 217
Creating your own address booKccccovuvvevieiiiniienienienieneninenienns 217
SAVING MESSAGES ..ovveveririerrereeireinressrenteerseereesestesstesseesaesaesassesssessaensesne 218
Looking in @ fOldercoveevirieieenrerncniiieciiieeccneeeseeeeecreneeeeeenneennens 218
Exchanging Gossip by Using €Tcccccociiviiinieniiniininiiniieinenieeecie e 219
Compose yourselfcocccoiiviiiiiiniiiiniiiiirececee e 220
Headers UP!ooiiiiriiiie et eresrese e et esit et esaesbaen st e ssaessesinens 220

YOU SENA IME ..coviniieiiinieiiieniieiirrineereesneeeeesnessecssecssossessecssuessassesssesssassnes 221
Getting a read on your mMail........c.cccoceeieerveevenienenneeneeneeseneerneereineens 222
Putting your mail in foldersc.c.ocoooiiiiininiiie 223
Saving your mail in text filescccccoveviricniiniiiinccicneneeeceecie e 223
Printing your Mailcocoveiiiiniiniiiiiiieneeeitrienreceieeesencesneeseeesneenen 224
Attaching stuff by USing € 1Mcoceviiniiiiiriiiirienieieceee e eneeeenes 224
Dealing with uuencoded stuffcccovvevieriiiniiniininenrcreee s 226
Exchanging Gossip by Using Ma il ..c.cooviiiiiiiiiieiiiiiiieieeeeiiecsinecinieseneeevneennnes 226
Take @ 1LYcoueviiiiiiiiiiic et 226
What’s in my mailbDOX?ccoveiiriniiniirieiiiiienetcstest e s eesnesveseesesaens 227
Ordering Ma i1 @roUNdcc.ooccvverrereneeseriseennessessesessessonsessessasassassaens 228
Reading Ma i1 MESSAZEScocuevuiiriiniininienienieieceeie st seenienieesieenaesanas 228
Saving your letters for POSteritycc.ccccoevivenvecnnninveniinienrencreniens 229

Run that by me againc.cccocoviiiininiiniiincninecencee e 229

BYE, MATT ceoirierieieteiestctentereesiecreesressueseeesaeeneesuaessasssesssessenssnssnsssennns 229

It Slices, It Dices — It’S NEtSCAPEccevveerervieienrenienienieneeresessensessessessennanses 229
Mail bonding with Navigator 3.0........ccccccccevverviiniiiniiininenirenreeesenes 230

Mail bonding with Communicator 4.0cocceevvevverienienierenrnennernene 231
Chapter 18: Web Surfing for UNIX USersccoveureveuverernnrenrennerenenns 233
WRat's @ BIOWSEI? ...c.oiuiiiiiiiiiietecteseteseetest et e svesrsne s st e s s s e n e seeee 233
ADay on the LYNX ...cccooiiiiiiiiiiieiit ettt er e tenns 234
Coming and GOINGccovrueriiirriereeieieieeetiietesteteseseesesaesessesaesessesesaens 235
ANatomy Of @ PAZE ...oocveeieieeiiiieieceeecteeee ettt et ens 235
Skating the Webcccocoiiiiiniiimeiiceeeecee e 236
Handling 10ong PAgesc.cceviiviiviiiiiiiiiieieiee et evesre s 238
Getting RElD c..o.eoviiriiciiee et 239
Where have I Deen?cccccoviviinniinniniiiecieereeeeteeeee et 239
Going right t0 @ URL ...ccooviiiiiciiiccceeeceeeeceee e 241
Printing or saving good Stuff...........ccccocveviiiiiiiiiiiiiiceeeeeeeeee 241

Fake WED PABEScccuiiiiiiiiiiiiicieicticece ettt ees 241
News Of the WeIrdc.cccoeviereriiieieniiieieeicicceereee e 242
Downloading files via LYNXccccooeeveiieiiiiiiiirieeiieiieceer e eeeeeveneeieenas 243

Lynx can act like telNet 00cocvevivvereierieeeereeecreereereereereerereineneens 245

xxi(/ UNIX For Dummies, 4th Edition

Remembering the good partscccccevveviivnienienenenneeneeieeneeseenene 246
Controlling YOUr LYNX ..c..ccccvtiniirieneninniiniinieneiiiiieienessiesiesmieneennenne 246
PrODIEMIS .oveieiteeiiiiiit ettt sttt e s 248
Browsing with Pictures: NetScapec.cccoeviiiiiiiiniiiniiiiieiceciiens 248
(Don’t bother) configuring Netscapeccccoovvveeniinieiccceinieinennnn 249
STAFTING I UP weeovieieciiieeiee ettt et b crnesnesenesnesaseanesnes 249
LEAVIIIG ..coovviuvirveneeicreoeiuecrersueonsesnossassnsosessnesessstsseosussessassssssssssessssssessasn 249
Jumping around the Webcccoiviiiiiiii et 250
Finding other Web pagesccccvcuvieienrniieiiininieececicecieneecnnen 251
Printing, saving, or copying good stuffc.ccccevvrieeicrinniccnieennn. 252
Remembering g00d placesccoccveiniiiniiniiinniniinicciines 253
Searching for iNfOcoiviierieiieirerieneneieee et cseenesseneenne 254
Files on the Web ...c..coooiiiiiiiiicccciteccce e 254
Telnetting with NetSCaPEecceoeviieiieiiiieeiinieniereinene et 255
Chapter 19: Turbocharge Your Newsreadingcc.coecnvenvcuncernnnnns 257
How to Read So Much Electronic Gossip That You
Have No Time Left t0 WOrkcccccccovvviviieniiniiiiniiiiniiniciececiiiecene 258
HOW DO TREAA [17? .ottt ccaene 259
R I R - e oesaseaeszaneseen 259
Remember your first time?........c.cooeieiiiiininniiiii 260
After the first timec.ooveieiieiie et eeens 260
Choosing Newsgroups to Read........ccccocveveviininiiininniiinininieineniinniiiicinns 261
ComMANING TN ettt sttt eas et bens s b b as 262
Picking Up the Threadsc.ccvcviiiiieiiiiiiieniiine et 262
Reading the NEWScccooiiviniiiiiiieiniicccieccteen s 264
FIle It, PIEASE ..uvivivviiiitiiiecitiieetetecetee e et e ceereeeceneaeesveesesssaesessaessssessaanssssesennes 266
When Is an Article Not Really an Article?ccoccvveviviiniiiinnnnnnnnininns 267
Dealing with Articles That Demand a Response ..o, 269
Responding privately by e-mailcccccccceeevnninininiiinnenne, 270
Possibly making a fool of yourselfocooenenininiiiinniinnn. 271
Being Originalc..cieieuieieueieietceieieeiecee ettt en et reas st enesaonesa s 272
Fiddling with Your NewSgroupscccccecevinininniiiiniiiiiiiiiresnennennenns 273
Remembering where you've been and what you've done 273
Reading the best ones first.......c.ccccoceriiiiniiinnneniiiiniini e, 274
Killing Articles That Displease YOu.......ccccocoviivinininiinniniinneneiiineeee 275
What's @ Kill flle?ccocooeiiiniiiniiiiiiiiciccccctee et ereneens 275
License t0 Killcccoiieireeicioniiciiiieiniinineeeiesseeiesesuensesssessesssesanansancs 276
NAITOWING YOUT VIEWcuvimiiiiirrvereeeiiieeieereimiesisiesnetesassnisesanssesessessanens 277
Editing the Kill filecccuiviieneirceeciccescninnn e 277

New hope for the dead.......cccccooeevriiiiiiniiniiininicce s 278

Table of Contents xxu

ST 1231 (] e o oxmoommonmacs o oo O O O 278
ChOOSING NEWSZIOUPS ..cvvverveeienrenveneeeriereeseesseessassacssessuassasssessaessasssosnes 279
Choosing and reading articlesccccoceviiiiiioininnninenneniienes 279
Getting uuencoded and shar files out of articlesccccueneene. 280
LEAVINIZ TN 1ottt ettt ettt sae e e asaeesnesnnenannes 280

Using Graphical NeWSreaderscccccoirieiiiieiiiniiiinieniencnienieeeiesneeenees 280
Newsreading with Collabracc.cccooeiviiiinnninnineneecenene 281

Chapter 20: Grabbing Files from the Net.............cccoonrnririnenne. 283

You're a Copying MaChiNe.........cc.ccueeiierieieneiniieiesieesiineeseeseeneeaessnesseesesnes 284
Getting CONNECTEococvveieeriieierreeieeteniereeeeesreeseesseesseessesseessesssenseas 284
Getting YOUr fil€ccoviiriiriiiie ittt e et enaenaes 284
GELHING OUL 1veeovreiieieieeieeceeeseeeretrseeesaeeeaessaeesaresssaeeseessneenseessseesnsenssesns 285

Files With FINESSEccoiiiiiiiiiiiiiiiiictrete ettt er e e saesre e ren 285
When is a file not @ file?c.cocoiiiiiiiiiii e 285
How to foul up your files in FTPcc.ccccocoiiiiiinininiiinrieneeeeennns 286
The directory thicketc.ocooviiiiiiie e 287
What’s that name again?..........ccoccevevieiviirieeniereereereeeeeeeereesaesaeeneas 288
Here’s a file in yOUr €Y€.......cccouiiiiiiienineiiciie e eee e 290

INO NAIMES, PIEASEooeeeveiieeeeeeeeeeeeeeeeeee e eeeneeeesaeeeesneteeenaseesnneeeenas 291
Hello, aNONYMOUS!cc.ccccviieirinirinreriseneeeiesresseeeesseseseseeaesasssesnens 291

Great Stuff On FTP ..ot 293
A word from those etiquette ladies againcccccoceveevevveveervennens 293

The FTP Hit Paradeccccooooiiiiniiiiiiiiince et sae e 294
UUNET ...oooiiiiititeenereeteirieetetsresterest e faeuestentesenseseosesaosanassessesansesansenasnen 294
SIMTEL ..ottt sttt ettt sae s sesaesassessanenas 294
WUARCHIVEcioiiiiiiiinitrtntienieteieesteteiesse et s esasse e sse e saesaesensasenns 295
RTFM L.ttt vt e e s st s et a s ess e s e ae s e aasaennenne 295
INTERNIC ...ttt ettt ettt et ese e ese s ese s asseseneanas 295
INSENET ...ciiter ettt ettt et ae st ebe st ss et ss e b saaesasseneenas 296
The list Of lISES ..eeuviiiiiiiiiicie et 296

Chapter 21: Now Serving the Internet.............cccooveeecenrnncnsernneensiesnnns 297

The Internet, at YOUr SErvVICecccecuiverurieiienieiereieetieieeeneerereeresseessesesens 298

Serving YOUISelfccccooiiriiioiiiioiinciiirese ettt esebessesesessssrenenens 299

GettING SEIVEdcouiviieiiiiiiiciivirinieiierieteretste et et e st tesssasesessseteseasesesesens 300

WeD Servers GalOreccoooieiiiiiiniiicecieeeeeeceeesreresreeere s s s srensenenes 301
APache i KiNGcccoicviriiiirininiiiinieiesceis it ereress e ese e s s eas 301
Netscape is a many-splendored thingc.cccccooevvvenrevirevenneeerennne. 302
A Web site named “hooh00”cccoereiriineieiiceceeee e 302
A CUP Of JAVA .ottt s 302

Daemons RUN AMOKc.cooiiiiiiiiiciiiciciesie ittt et 302

xx(/i UNIX For Dummies, 4th Edition

Part U: Help!uueeeeeeeeeieeeeeiineeeececccissnenseseeeesanasss 305

Chapter 22: Disaster Relief.........cconnrnnnnccncnnennnssececeessesesens 307
“My Computer Won’t Turn ON”coioinininiiinieiececnrenneneiereesassesienses 307
“My Mouse Is Acting GLtChY”c..coeviieienenieiinirieenieeineneste et eeeene s 308
“The Network IS GONE”c.ccoooveiviirireiiierinieneneeeieiee e e e eressessessensens 308
“These Aren’t My Files!”ccoiimmiie et 309
e G X on SN s I et s S0 S0 309
“It’s NOt LiSTENING!”ceiiiiiiiiiiiiritetcte ettt e et saesr e st esaannens 309
“LTGIVE UP” eeviiieiieninteienient ettt et st st euesbesaasebas e sesbetenbesansesansosansenansesansenasnns 310

Chapter 23: The Case of the Missing Filesc.ccccooverncneurcssesnennenns N
How You ClODDer Filesc.ccuiueiiiiiiiiiiieciceee et 311

Clobbering files With Pccccieiiiiiiiiiiniiiiiienenese e esreeseeane 311
Clobbering files with cp, mv, and Tnccccoceeveniiiiinienninieneecceeees 313
Creaming files by using redir€ctioncc..cccoceevererveveneenieciiriereeennens 313
Wrecking files with text editorsoccovevverierinecreneninirieieneeeeenenees 314
Ways to Try to Get Files BaCKcceovioiioieiiiieiicieecieese e enas 314
Copies, COpies, EVEIYWHETIEccceeviiiiiriiieenieeriecienrieneeeenneernenseeneenes 315
Call in the backup SQUAadcccccvvirerineiineninteiciercsrereereaerereevens 315
Thank goodness it’s backed up!cccccceovinviiiiinininiinniinieecenne 318
Three Ways Not t0 LOSE FIlesc.cccciiiieiiiniinieniniiieeiiieiieneieneessesiesseesenns 319
Are you sure you wanna clobber this one?ccccoovevvvrneneniiennne 320
Idiotproofing save files ... 320
Don’t write on that!.......cc.cccoiiiniiiiiiininncceecinen 321

Chapter 24: Some Programs Just Won't Diecococorcrenncvncencnnees 323
Why Killing Is Sometimes Justifiedcccoevninninninniniinicnencncnean 323
What Process? (REPIISE) ..cooieivierieiiiiiiiieieiieieisiee et seeveae s eeae 324
Fifty Ways to Kill Your Processccocoieiiiiiiiiinicieienciccceeeceeeeie 324
Dirty Deeds, Done Dirt Cheapc.cccoieviiiiiiiniiiniiiiniiiiineiineniecenieneaine 325
When X GOoes Badccecvvverviniieeinininreniciciienieneestcieieeeeeseereenessesneseeones 327

Chapter 25: “My Computer Hates Me"ccoovrercrcnrencencrncerenennes 329

Arg list 0O JONG c...oiiiiniiiiiiiniiiniiiiniiiiiiicictiecteseete ettt saeninenieaies 330
BYOKEN PIPE ..veeviriieiintieieeientieienteineeeeseessessasssessassssssesssessassasssessassnenns 331
CaNNOt ACCESS ..c.eeecvievierieneenteseirresiesesssenssensessasssessasssessasssssssassassassaasss 331
Cross-device lNKc.coccoiriiiiiininiiieniiecietcieeenccecreere e 331
DeviCe OF reSOUICE DUSY ...ccceviiuiiiiiiietiiiienienieenecerecstereeeceneeaeneenenne 331
Different file SYSTEMccccceeveeiiriiirieeececereteee e seveeesiestessenseseesens 332
FIle @XISES 1viviiiiieiieiiintinienecieneiteeeetee e sreestestesnaeete st s snesesseesuessesnnenne 332

File table OVErflOWccvoviiiiiiiiciiiciieeee e eveeearaevaens 332

Table of Contents XX'(/'I.I‘

File 100 1arge ...coevveviieiieiiriiiiiciciceetctcie ettt 332
[llegal OPLIONevueeuiiiiriiciiniieiiii it 333
Insufficient argumMeEntscccccocveeienieriienieniniieeicieni e 334
J/O ITOY oiiiriieeeniieiieeieceteeiiteceee s taeettetessteensteesaeeesee e bt e e s e eneeeemseeeneeen 334
IS @ AIFECTOTY ..voviiiiiiee ettt 334
LOGIN INCOITECE c.veuviieuireierenirtiietenteeieteieeneseesetenteteeseseenennenenseneeneneanensenes 335
INO ITIOYE PIOCESSES ...oecveviareieioresreesaesensenseneeneestesentensessessesesuessessesseesene 335
No process can be foundccoeeeeveevieniiiiiiinncenenicieeieseeeenne e 335
No space left on deviCe........coceeeiiiiiiniiniiiiieiccce e, 335
No such file or directoryccoccooeveevinvicnieiniiiiiiiiieiiciceee, 336
INO SUCH PrOCESS ..oiiviiiniiiieiiiticicicniict ettt st 336
INOt @ ITECLOTY .onveeeiiiieeireiietieneerte et eae s ene et et ceteeneeeneesbeesaesbeeneennes 337
Permission deniedcocoooeiiiiriinieniieniieeec e 337
RE @YTOFiiiiiivinnienieensemssonuesntastissnaetosteseessesatesatesasentesesaneastesatesatanassnses 338
Read-only file SYStemccocceeiiieiimeinieiinicciceecccceececcee e 338
Too Many lINKScooceioiiiiiiiiei e 338
USQGE .vevveeeerierieriteeririeestteeeeteitetesstenatesseaeeseeesessanesstesbensssntessnssnesssesssos 339
444 mode? (or some other three-digit number) ...l 339

Part Vl: The Part of Tens.........cccccuueeeeeeeeeeeeeeeeeeeeeeeeees 341

Chapter 26: Ten Common Mistakes ... 343
Believing That It Will Be EQSYccceeoeviiiiiiiieieiieeeeeeceete oo 343
Mistyping COMMANGScccovvervieeiirieieeietieieeneesteesteereseessaassessasseessesssesseense 344
To Press Enter, or Not to Press Entercccoooevvviiieiinenieneiecneeseeeen, 344
Working in the Wrong DIreCtoryccccoveevievienieiiiniiinieiieneeseecieseenaeenens 345
Not Keeping Backup COPIEScc.ccoveveerieeeieirierieeeeeeeeceeirieeeneeseesnesneenneens 345
Not Keeping Files Organizedcccooiiiieiiinieieieeeeeeceee e 345
Turning Off Your COMPULETcccoeieiriiiiiiiienceiet et aeee e aenes 346
Writing Your Password on a Sticky Notec.ccccooviiiiininienieiiceceeceeene 346
Sending Angry Electronic Mail (Flaming)cccocovivieinienininierenenieeeenene 346

Chapter 27: Ten Times More Information than

You Want about UNIX...........orirererereseescsessesessss s s ssessessssessens 347
Let’s Hear It from the man......cccoooiiiiiiiiiicceeceeee e 347

Reading manual PAZEScc.coceeirimieeiinieniieeeiiee et seeeneeseenes 349
Printing manual Pagescccocoviiiiiniiiiniecc e 350
Finding the manual page you wantccccoovevveeiiiiierienenieeiennennen 350
It’s a bird, it’s a plane, it’s XMan!cccooieieieieeieneceeeceeer e 351
Scanning the NETWOIKSccovviviiiiiiiiieiiiieee et eteessessseseesseesannans 351
Your basic UNIX NEWScoiviiiiiiiicieiieeeceie e ciiene e aeeneebeevesieoneeen 352
JUSE fOr LINUX .ccoiiiiiiiiniiiiiniiiiciicenienceiiseesieeiesiesresssesiaeseesneeonesnnennens 353

ON thE WED ..ottt ettt e e anaenns 354

Introduction

P O O 5 050 4O OSSO T OO ORSHOOENOIGSROIESENIESEISIESES

Welcome to UNIX For Dummies, 4th Edition! Although lots of good
books about UNIX are out there, most of them assume that you have
a degree in computer science, would love to learn every strange and useless
command UNIX has to offer (and there are plenty), and enjoy memorizing
unpronounceable commands and options. This book is different.

Instead, this book describes what you really do with UNIX — how to get
started, what commands you really need, and when to give up and go for
help. And we describe it all in plain, ordinary English.

About This Book

This book is designed to be used when you can’t figure out what to do next.
We don’t flatter ourselves that you are interested enough in UNIX to sit
down and read the whole thing. When you run into a problem using UNIX (“I
thought I typed a command that would copy a file, but it didn’t respond with
any message . . ."), just dip into the book long enough to solve your problem.

We have included sections about these kinds of things:

% v Typing commands

{ v~ Copying, renaming, or deleting files

f‘” v Printing files

§ v+ Finding where your file went

. 1 Using the Internet from UNIX

' »” Connecting and communicating with people on other computers

In this fourth edition, we've beefed up the information about Linux, a new,
widely used version of UNIX, and about the Internet, to which many UNIX

computers are connected, including a new chapter on how to host an
Internet site from your very own computer.

2 UNIX For Dummies, 4th Edition

Conventions Used in This Book

Use this book as a reference. (Or use it as a decorative paperweight —
whatever works for you.) Look up your topic or command in the table of
contents or the index; they refer to the part of the book in which we de-
scribe what to do and perhaps define a few terms, if absolutely necessary.

When you have to type something, it appears in the book like this:
cryptic UNIX command to type

Type it just as it appears. Use the same capitalization we do — UNIX cares
deeply about CAPITAL and small letters. Then press the Enter or Return key
(we call it Enter throughout this book). The book tells you what should
happen when you give each command and what your options are. Some-
times part of the command is in italics; the italicized stuff is a sample name,
and you have to substitute the actual name of the file, computer, or person
affected. '

Chapter 25 lists error messages you may run into, and Chapter 26 lists
common user mistakes. You may want to peruse the latter to avoid these
mistakes before they happen.

Foolish Assumptions

In writing this book, we have assumed these things about you:

'+ You have a UNIX computer or terminal.
+* You want to get some work done on it.

v Someone has set it up so that, if you turn it on (in many cases, it’s left
on all the time), you are talking to UNIX.

+* You are not interested in becoming the world’s next great UNIX expert.

How This Book Is Organized

This book has six parts. The parts stand on their own — you can begin
reading wherever you want. This section lists the parts of the book and what
they contain.

Introduction

Part I: In the Beginning

This part tells you how to get started with UNIX, including figuring out
which kind of UNIX you’re using. (You need to know this information later
because commands can differ from one type of UNIX to another.) You learn
how to log in, type UNIX commands, and ask for help. For Linux users, we
include a short chapter on what’s it’s all about, why Linux is cool, and how
to get more information about Linux.

Part 11: Some Basic Stuff

Like most computer systems, UNIX stores information in files. This part
explains how to deal with files — creating, copying, and getting rid of them.
It also talks about directories so that you can keep your files organized,
finding files that have somehow gone astray, and printing files on paper.

Part 11]: Getting Things Done

This part talks about getting some work done in UNIX. It gives step-by-step
instructions for using the most common text editors to create and change
text files, running several programs at the same time (to get confused
several times as fast), and making your Linux system behave, and it gives
you directions for a bunch of other useful UNIX commands.

Part IU: UNIX and the Net

Most UNIX systems are connected to networks, and many are connected to
the biggest network of them all: the Internet. This part prepares you for the
world of communications, including instructions for sending and receiving
electronic mail, transferring files over the network, logging in to other
computers over the Internet, and surfing on the World Wide Web. For those
of you with some intestinal fortitude, we include a new chapter on how to
have your Internet site running on your very own UNIX computer.

Part U: Help!

If disaster strikes, check this part of the book. It includes information about
what to do if something bad happens, what to do about backups, and what
to do when you see common UNIX error messages.

UNIX For Dummies, 4th Edition

Part Vl: The Part of Tens

This part is a random assortment of other tidbits about UNIX, including
common mistakes and how to get online help — all organized into two
convenient ten-item lists, sort of.

lcons Used in This Book

L STy,

& &

Some particularly nerdy, technoid information is coming up, which you can
skip (although, of course, we think that it’s all interesting).

A nifty little shortcut or time-saver is explained, or you get a piece of
information you can’t afford to be without.

Yarrghhh! Don’t let this happen to you!

Information that applies only if your computer is on a network. If it isn’t, you
can skip to the next section.

Something presented in an earlier section of the book or something you
need to remember to do.

The friendly penguin alerts you to information specifically about Linux (see
Chapter 3 to find out what Linux is).

Where to Go from Here

That’s all you need to know to get started. Whenever you hit a snag in UNIX,
just look up the problem in the table of contents or index of this book. You
will have the problem solved in a flash — or you will know to find some
expert help.

Part|
In the Beginning

The 5th Wave By Rich Tennant

In this part . . .

ikes! You have to learn how to use UNIX! Does this
mean that you're about to get inducted, kicking and
screaming, into a fraternity of hard-bitten, humorless
nerds with a religious dedication to a 25-year-old operat-
ing system from the phone company? Well, yes and no.
We hope that we're not humorless.

If you're like most UNIX users, a zealot stopped at your
desk, connected your terminal or workstation, gave you
five minutes of incomprehensible advice, demonstrated a
few bizarre games (like roaches that hide behind the
work on your screen), and disappeared. Now you're on
your own.

Don’t worry. This part of the book explains the absolute
minimum you need to know to get your UNIX system’s
attention, persuade it that you are allowed to use it, and
maybe even accomplish something useful.

Chapter 1

Log Me In, UNIX!

> & 0 &) € & S 0 0 0 5 000 OGN BODP OO OHHONOSCGENOEODOSI S

In This Chapter

» Turning your computer on and getting its attention

» Persuading your computer to let you use it
» Using usernames, passwords, and all that
» Logging out when you finish

800808 OGO O8O O T OO GGG O O8O OEHONODOSOSTOBESEENENOGS

f you read the exciting introduction to this book, you know that we make
some Foolish Assumptions about you, the reader. Among other things, we
foolishly assume that someone else has installed and set up UNIX for you so

that all you have to do is turn your computer on and tell UNIX that you're
there.

If you don’t have UNIX already set up on a computer, the best thing you can
do for yourself is find a local UNIX guru or system administrator who is
willing to get you up and running. Unless you really know what you’re doing,
installing and setting up UNIX can be painful, frustrating, and time-consuming.
We recommend that you find something more enjoyable to do, such as
cleaning out the grease trap under your kitchen sink or performing urgent
home surgery on yourself. (You can learn how to administer a UNIX system
with some patience and perseverance, but explaining how is way beyond the
scope of this book because each version of UNIX has its own procedures.)

Turning Your Computer On and Off

If you think that turning your computer on and off is easy, you may be
wrong. Because UNIX runs on so many almost-but-not-quite-compatible
computers — all of which work somewhat differently — you first must figure
out which kind of UNIX computer you have before you can turn it on.

10

Partl: In the Beginning

A dumb terminal

The simplest way to hook up to a UNIX system is with what’s known
(sneeringly) as a dumb terminal. You can identify a dumb terminal by a
complete absence of mice and floppy disks and all that other stuff that
causes confusion in a more advanced computer. Much can be said for dumb
terminals: They’re simple and reliable. With UNIX, you can do hundreds, if
not thousands, of things wrong to totally scramble a more advanced ma-
chine; these same boo-boos make no difference to a dumb terminal.

Turning on a dumb terminal is easy. You find the power switch (probably on
the back) and flip it on. Because the terminal has no pesky disks and stuff,
you can turn it on or off whenever you want and not break anything. People
make long, sort of theological arguments about whether to leave the picture
tube on all the time. Personally, we turn off our terminals overnight and
don’t worry about them at other times.

After you turn on the terminal, you use it to communicate with the computer
that is running UNIX. If the terminal is wired directly to the computer, UNIX
asks you to log in before you can do anything else (see the section “Hey, UNIX!
I Want to Log In,” later in this chapter). If not, you may have to perform some
additional steps to call the computer or otherwise connect to it.

The PC masquerade ball

Because PCs are so cheap these days, they're commonly pressed into duty
as terminals. You run a terminal emulator program on a PC, and suddenly the
mild-mannered PC turns into a super UNIX terminal. (Truthfully, it’s more
the other way around: You make a perfectly good PC that can run Leisure
Suit Larry and other business productivity-type applications that act like a
dumb terminal that can’t do much of anything on its own.)

When you finish with UNIX, you leave the terminal emulator, usually by
pressing Ctrl+X or some equally arcane combination of keys. (Consult your
local guru: No standardization exists.) Like Cinderella at the stroke of
midnight, the terminal-emulating PC turns back into a real PC. To turn it off,
you wait for the PC’s disks to stop running (carefully scrutinize the front
panel until all the little red or green lights go out) and then reach around
and turn off the big red switch. If you don’t wait for the lights to go out,
you're liable to lose some files.

If you have a network installed, which these days has become so cheap that
nearly everyone does, your PC running Windows may have a network con-
nection to your UNIX system. Windows 98, Windows 95, Windows NT, and
the MacOS (the Macintosh operating system) have the network stuff built in;
on Windows 3.1, however, you have to add extra network software with
names such as Trumpet or Chameleon.

Chapter 1: Log Me In, UNIX!

What you were hoping we wouldn't tell you: The
difference hetween a PC and a workstation

First, you have to understand that this isn't a
technical question — it's a theological ques-
tion. Back in the olden days (about 1980), tell-
ing the difference was easy. A workstation
had a large graphical screen — at least, large
by the standards of those days — 1,000K of
memory, a fast processor chip, and a network
connection, and it cost about $10,000. A PC
had a lousy little screen, 64K of memory, a
slow processor chip, and a floppy or two, and
it cost more like $4,000.

These days, your typical $1,200 PC has a nice
screen (much nicer than what the workstation
used to have) 16,000K of memory, a fast
Pentium processor, a big disk, speakers, and a
network connection. That’s much better than
what people used to call a workstation. Does
that make a PC a workstation? Oh, no. Modern
workstations have even better screens, buck-
ets of memory, a turbocharged processor
chip— you get the idea. What's the difference?

Maybe it's the software that people use: Most
workstations are designed to run UNIX {or, in

a few cases, proprietary systems similar in
power to UNIX), whereas PCs run DOS or
Windows or Macintosh software. Wait —
some perfectly good versions of UNIX run on
PC hardware, and Windows NT runs on many
boxes that everyone agrees are workstations.
Now what? You can get into esoteric argu-
ments about the speed of the connection be-
tween the guts of the computer on one hand
and the disks, screens, and networks on the
other hand and argue that workstations have
faster connections than PCs, but some ex-
amples don't fit there, either.

Asfaraswe cantell, if a computeris designed
to run DOS or Windows or the MacQS, it's a
PC. If it's designedto run UNIX, it’s a worksta-
tion. If this distinction sounds feeble and arbi-
trary to you, you understand perfectly. Here at
UNIX For Dummies Central, we have a couple
of large PCs running UNIX (which makes
them look, to our eyes, just like workstations)
and a couple of other, smaller ones running
Windows. Works fine for us.

If you do have a network connection, you can use a program called telnet

(described in Chapter 16) to connect to your UNIX system. After telnet is
running and connected to your UNIX system, within your telnet program’s

window you get a faithful re-creation of a 1970s dumb terminal and you can

proceed to log in, as described in the next section.

If a train stops at a train station,
what happens at a workstation?

A workstation is a computer with a big screen, a mouse, and a keyboard. You
may say, “l have a PC with a big screen, a mouse, and a keyboard. Is it really

a workstation?” Although UNIX zealots get into long arguments over this
question, for our purposes, we say that it is.

11

12

Part[: In the Beginning

WING/

Turning on a workstation is easy enough: You reach around the back and
turn on the switch. Cryptic things that appear on-screen tell you that UNIX
is going through the long and not-at-all-interesting process of starting up.
Starting up can take anywhere from ten seconds to ten minutes, depending
on the version of UNIX, number of disks, phase of the moon, and so on.
Sooner or later, UNIX demands that you log in. To find out how, skip to the
section “Logging In: U(NIX) Can Call Me Al,” later in this chapter.

Turning off a workstation is a more difficult problem. Workstations are
jealous of their prerogatives and do punish you if you don’t turn them off in
exactly the right way. Their favorite punishment is to throw away all the files
related to whatever you were just working on. The exact procedure varies
from one model of workstation to another, so you have to ask a local guru
for advice. Typically, you enter a command along these lines:

shutdown +3

This command tells the workstation to shut down (in three minutes, in this
example). With some versions of UNIX, that command would be too easy.
The version we use most often uses this command:

halt
If you use Linux, type this command to shut down the system right away:
shutdown now

The workstation then takes awhile to put a program to bed or whatever else
it does to make it feel important because it knows that you're waiting there,
tapping your feet. Eventually, the workstation tells you that it’s finished. At
that point, turn it off right away, before it gets any more smart ideas.

An approved method for avoiding the hassle of remembering how to turn off
your workstation is never to shut off your computer (although you can turn
off the monitor). That’s what we do.

X marks the terminal

An X terminal is similar to an extremely stripped-down workstation that can
run only one program — the one that makes X Windows work. (See Chapter 4
to find out what X Windows are — or don't. It’s all the same to us.) Turning
an X terminal on and off is pretty much like turning a regular dumb terminal
on and off. Because the X terminal doesn’t run programs, turning it off
doesn’t cause the horrible problems that turning off a workstation can
cause.

Chapter 1: Log Me In,UNIX!] 3

Hey, UNIX! | Want to Log In

A\

Whether you use a terminal or a workstation, you have to get the attention
of UNIX. You can tell when you have its attention because it demands that
you identify yourself by logging in. If you use a workstation, whenever UNIX
has finished loading itself, it is immediately ready for you to log in (skip
ahead to the section “Logging In: U(NIX) Can Call Me Al”). You terminal
users (X or otherwise), however, may not be as lucky.

Direct access

If you're lucky, your terminal is attached directly to the main computer, so it
immediately displays a friendly invitation to start working, something like
this:

ttyS034 login:

Well, maybe the invitation isn’t that friendly. By the way, the ttyS034 is the
name UNIX gives to your terminal. Why doesn’t it use something easier to
remember, like Fred or Muffy? Beats us!

This catchy phrase tells you that you have UNIX’s attention and that it is all
ears (metaphorically speaking) and waiting for you to log in. You can skip
the next section and go directly to “Logging In: U(NIX) Can Call Me Al.”

If your UNIX system displays a terminal name, make a note of it. You don’t
care what your terminal’s name is, but, if something gets screwed up and
you have to ask an expert for help, we can promise you that the first thing
the guru will ask is, “What’s your terminal name?” If you don’t know, the
guru may make a variety of nerd-type disparaging comments. But, if you can
say, “A-OK, Roger. That’s terminal tty125,” your guru will assume that you
are a with-it kind of user and may even try to help you. (Even if her name
isn’t Roger.)

Vo, UNIX! — not-so-direct access

If you're using a PC with a modem, you probably have to tell the modem to
call the UNIX system. Although all terminal emulators have a way to make
the call with two or three keystrokes, all these ways are different, of course.
(Are you surprised?) You have to ask your local guru for info.

After your terminal is attached to the computer, turned on, and otherwise
completely ready to do some work, UNIX, as often as not, doesn’t admit that
you're there. It says nothing and seems to ignore you. In this way, UNIX
resembles a recalcitrant child — firm but kind discipline is needed here.

’ 4 Part I: In the Beginning

The most common ways to get UNIX’s attention are

1 Press the Return or Enter key. (We call it the Enter key in this book, if
you don’t mind.) Try it two or three times if it doesn’t work the first
time. If you're feeling grouchy, try it 20 or 30 times and use a catchy
cha-cha or conga rhythm. It doesn’t hurt anything and is an excellent
way to relieve stress.

v Try other attention-getting keystrokes. Ctrl+C (hold down the Ctrl key,
sometimes labeled Control, and press C) is a good one. So is Ctrl+Z.
Repeat to taste.

v 1f you're attached to UNIX through a modem, you may have to do some
speed matching (described in a minute): Press the Break key a few
times. If you're using a terminal emulator, the Break key may be dis-
guised as Alt+B or some other hard-to-find combination. Ask your guru.

Two modems can talk to each other in about 17,000 different ways, and they
have easy-to-remember names, such as B212, V.32, and V.32bis. (Bis is
French for “and a half.” Really.) After you call the UNIX system’s modem with
your modem, the two modems know perfectly well which way they’re
communicating, although UNIX sometimes doesn’t know. Every modem
made since about 1983 announces the method it’s using when it makes the
connection. Because the corresponding piece of UNIX code dates from
about 1975, though, UNIX ignores the modem’s announcement and guesses,
probably incorrectly, at what’s being used.

If you see something like ~xxx~~r . !" on-screen, you need to try speed
matching. Every time you press Break (or the terminal emulator’s version of
Break), UNIX makes a different guess at the way its modem is working. If
UNIX guesses correctly, you see the login prompt; if UNIX guesses incor-
rectly, you see another bunch of ~xxx~~~@(r)!" or you see nothing. If UNIX
guesses incorrectly, press Break again. If you overshoot and keep Breaking
past your matched speed, keep going and it’ll come around again.

After a while, you learn exactly how many Returns, Enters, Breaks, and
whatnots your terminal needs in order to get UNIX’s attention. It becomes
second nature to type them, and you don’t even notice what a nerd you look
like while you do it. You have no way around that last part, unfortunately.

Logging In: U (NIX) Can Call Me Al

Every UNIX user has a username and password. Your system administrator
assigns you a username and a password. Although you can and should
change your password from time to time, you're stuck with your username.

Chapter 1: Log Me In, UNIX! ’5

Before you can start work, you must prove your bona fides by logging in; that
is, by typing your username and password. How hard can it be to type two
words? Really, now. The problem is this: Because of a peculiarity of human
brain wiring, you will find that you can’t enter your username and password
without making a typing mistake. It doesn’t matter whether your username is
al — you will type A1, 1a, a; L, and every other possible combination.

s UNIX always considers upper- and lowercase letters to be different: If your
username (sometimes also called your login name) is egbert, you must type
it exactly that way. Don’t type Egbert, EGBERT, or anything else. Yes, we
know that your name is Egbert and not egbert, but your computer doesn’t
know that. UNIX usernames almost always are written entirely in lowercase.
Pretend that you're a disciple of e. e. cummings.

When you type your username and password and make a mistake, you may
be tempted to press Backspace to clear your mistake. If only life were that
easy. Guess how you clear typing errors when you type your username and
password? You press the # key, of course! (We're sure that it made sense in
1975.) Some — but not all — versions of UNIX have changed so that you can
use Backspace or Delete; you may have to experiment. If you want UNIX to
ignore everything you have typed, press @, unless your version of UNIX has
changed the command key to Ctrl+U (for untype, presumably — doubleplus-
ungood). So, Egbert (as you typed your username), you may have typed
something like this:

ttyS034 login: EgiHegberqitt
Finish entering your username by pressing Enter or Return.

After you type your username, UNIX asks you to enter your password, which
you type the same way and end by pressing Enter (or Return, but we call it
Enter). Because your password is secret, it doesn’t appear on-screen as you
type it. How can you tell whether you’ve typed it correctly? You can't! If
UNIX agrees that you've typed your username and password acceptably, it
displays a variety of uninteresting legal notices and a message from your
system administrator (usually deiete some files, the disk is full)
and passes you on to the shell, which you learn about in Chapter 2.

If UNIX did not like either your username or your password, UNIX says
Login incorrect and tells you to start over with your username.

Password Smarts

Like every UNIX user, you should have a password. You can get along
without a password only under these circumstances:

10

Part I: In the Beginning

Ciao,

F v~ You keep the computer in a locked, windowless room to which you
have the only key, and it’s not connected to any network.

+* You don’t mind whether unruly 14-year-olds borrow your account and
randomly insert dirty knock-knock jokes in the report you're supposed
to give to your boss tomorrow.

The choice of your password deserves some thought. You want something
easy for you to remember but difficult for other people to guess. Here are
some bad choices for passwords: single letters or digits, your name, the
name of your spouse or significant other, your kid’s name, your cat’s name,
or anything fewer than eight characters. (Bad guys can try every possible
seven-letter password in less than a day.)

Good choices include such things as your college roommate’s name mis-
spelled and backward. Throw in a digit or two or some punctuation, and
capitalize a few letters to add confusion, so that you end up with something
like yelLLas12. Another good idea is to use a pair of words, like fat ; Head.

You can change your password whenever you're logged in, by using the
passwd program. It asks you to enter your old password to prove that you're
still who you were when you logged in (computers are notoriously skepti-
cal). Then the passwd program asks you to enter your new password twice,
to make sure that you type it, if not correctly, at least consistently. None of
the three passwords you type appears on-screen, of course. We tell you how
to run the passwd program in Chapter 2.

Some system administrators do something called password aging; this
strategy makes you change your password every once in awhile. Some
administrators put rules in the passwd program that try to enforce which
passwords are permissible, and some even assign passwords chosen
randomly. The latter idea is terrible because the only way you can remem-
ber a password you didn’t choose is to write it on a Post-It note and stick it
on your terminal, which defeats the purpose of having passwords.

In any event, be sure that no one other than you knows your password. Change
your password whenever you think that someone else may know it. Because
UNIX stores passwords in a scrambled form, even the system administrator
can’t find out what yours is. If you forget your password, the administrator
can give you a new one, but she can’t tell you what your old one was.

UNIX!

Logging out is easy — at least compared to logging in. You usually can type
logout. Depending on which shell you're using (a wart we worry about in
Chapter 2), you may have to type exit instead. In many cases, you can press
Ctrl+D to log out.

Chapter 2

What Is UNIX, Anyway?

S 2 b a s e ot s sessaas
8 & r § w

In This Chapter
» Why you care: A little boring UNIX history
How to tell which version of UNIX you have
How to use the UNIX shell
Shell traps and pitfalls

. @ P P PPy

Tlis entire chapter tells you how to figure out which kind of UNIX system
you have gotten involved with. If you really don’t think that you care,
skip this chapter. As you read the rest of this book and run into places
where you need to know which kind of UNIX or shell you are using, you can
always come back here.

Why Do We Ask Such Dumb Questions?

“What is UNIX?” UNIX is UNIX, right? Not entirely. UNIX has been evolving
feverishly for close to 30 years, sort of like bacteria in a cesspool — only not
as attractive. As a result, many different varieties of UNIX have existed along
the way. Although they all share numerous characteristics, they differ (we
bet that this doesn’t surprise you) just enough that even experienced users
are tripped up by the differences between versions.

May a thousand UNIXes flower

Indulge us while we tell a historical parable. Imagine that UNIX is a kind of
automobile rather than a computer system. In the early days, every UNIX
system was distributed with a complete set of source code and development
tools. If UNIX had been a car, this distribution method would have been the
same as every car’s being supplied with a complete set of blueprints,
wrenches, arc-welders, and other car-building tools. Now imagine that
nearly all these cars were sold to engineering schools. You may expect that
the students would get to work on their cars and that soon no two cars
would be the same. That’s pretty much what happened to UNIX.

7 8 Part I: In the Beginning

NOX

Bell Labs released the earliest editions of UNIX only to colleges and universi-
ties. (Because Bell Labs was The Phone Company at that time, it wasn’t
supposed to be in the software business.) From that seed, a variety of
more-or-less scruffy mutants sprang up, and different people modified and
extended different versions of UNIX.

Although about 75 percent of the important stuff is the same on all UNIX
systems, it helps to know which kind of UNIX you’'re using, for two reasons.
First, you can tell which of several alternatives applies to you. Second, you
can impress your friends by saying things like “HP-UX is a pretty good
implementation of BSD, although it’s not as featureful as SunOS.” It doesn’t
matter whether you know what it means — your friends will be amazed and
speechless.

Throughout this book, we note when a command or feature being discussed
differs among the major versions of UNIX. When we talk about the popular
new Linux system, you see our cute Linux icon in the margin. We don’t waste
your time with a family tree of UNIX systems. The following sections de-
scribe the most common kinds.

The two main versions of UNIX are BSD UNIX and System V. Although they
differ in lots of little ways, the easiest way to tell which one you're using is
to see how you print something. If the printing command is 1p, you have
System V; if it’s 1pr, you have BSD. (If the command is print, you cannot be
using UNIX; nothing in UNIX is that easy.)

Here are the major types of UNIX you're likely to run into:

' +” Berkeley UNIX: One of the schools that received an early copy of UNIX
was the University of California at Berkeley. Because no student’s
career was complete without adding a small feature to Berkeley UNIX,
you can still see on every part of BSD UNIX the greasy fingerprints of a
generation of students, particularly a guy named Bill, about whom you
hear more later.

i

&

The Berkeley people made official Berkeley Software Distributions of
their code (named BSD UNIX) and gave numbers to its versions. The
most widely used versions of BSD UNIX are Versions 4.3 and 4.4.
Berkeley graduates fanned out across the country, working for and
even starting new companies that sell descendants of BSD UNIX,
I including Sun Microsystems (which markets SunOS and Solaris),
Hewlett-Packard (HP-UX), Digital Equipment (Ultrix), and 1BM (AIX).
Most workstations run some version of BSD UNIX.

v~ Post-Berkeley BSDs: Shortly before 4.4BSD came out, the folks at
Berkeley realized that they had made so many changes to BSD over the
years that practically none of the original Bell Labs code was left.
Several groups quickly rewrote the missing 1 percent, adapted the BSD
code for 386 and newer PC-compatible machines, and made all the code

L o L - TN ol

Chapter 2: What Is UNIX, Anyway? ’ 9

available over the Internet. Three projects (called FreeBSD, OpenBSD,

_ and NetBSD) continued to improve and update the freely available BSD,
¢ and a company called Berkeley Software Design offers a commercially
supported version of BSD/OS.

o

v+ System V: Meanwhile, back at The Phone Company, legions of program-
i mers were making different changes to UNIX. They gave their versions
of UNIX Roman numerals — which are classier than plain ol’ digits.
Their current version of UNIX is known as System V. The many subver-
sions of System V are known as System V Release 1 (SVR1) and SVR2,
SVR3, and SVR4. Most nonworkstation versions of UNIX are based on
System V or, occasionally, its predecessor, System III. (What happened
to System IV? Not ready for prime time, we guess.)

T W

ST

Sun Microsystems, from the BSD camp, and AT&T, of the System V
camp, decided to bury the hatchet and combine all the features of BSD
and System V into the final incarnation of System V, SVR4. SVR4 has so
many goodies that it’s only slightly smaller than a blimp. If your system
runs SVR4 or its descendants, you have to pay attention to our hints
about both BSD and System V. The last version of SVR4 was SVR4.4.
(Where do they get these numbers?) System V was eventually sold to
Novell (the NetWare people), which retitled it UNIXWare. Novell eventu-
ally sold it to a Microsoft affiliate called the Santa Cruz Operation
(better known as SCO), which retitled it UnixWare (don’t ask).

R R

S

e

RS

S

Helpful advice to Sun users: Although Sun changed the name of its
software from SunOS to Solaris, it didn’t change the way the software
worked (at least in Solaris 1.0, which is still a BSD-flavored UNIX). If you
use Solaris 1.0, follow the instructions for BSD UNIX. Because Solaris 2.0
is based on SVR4, however, you have to worry about both BSD and
System V. Is this stuff clear? We're still confused about it.

+* OSF/1: When System V and BSD UNIX merged to form SVR4, many UNIX
vendors were concerned that, with only one version of UNIX, the
market confusion would be insufficient. They started the Open Software
Foundation, which makes yet another kind of UNIX: OSF/1. Although
OSF/1 is mostly BSD, it is also a goulash of some System V and many
other miscellaneous eyes of newts and toes of frogs.

N\

OSF/1 has largely disappeared; if you use OSF/1, however, pay attention
to the BSD advice in this book, and you should be okay.

v~ Linux: Without a doubt, the most surprising UNIX development in
recent years has been the appearance — seemingly from nowhere (but
actually from Finland) — of Linux, a rather nice, freely available version
of UNIX. Linux is such a big deal that we devote an entire chapter to it
(the next one, in fact). Chapter 14 also has stuff about Linux for those
brave souls who run their own Linux systems.

Linux resembles SVR4 as much as it resembles any other version of
UNIX.

T N S T e R e e e = L P e)

20

Part I: In the Beginning

Why you should fight rather than switch

The question “Which is better: UNIX or
Windows NT?” has sparked a religious war
between UNIX crusaders and the high priests
of marketing at Microsoft Corporation.
Microsoft would have you believe that NT, its
industrial-strength version of Windows, is a
snazzy new alternative to UNIX, a tired old
system that wore out its welcome in the last
days of disco. According to Microsoft, UNIX
is expensive and impossible to use without a
degree in computer science. NT is cheaper
and easier to use, and, because it's a
Microsoft product, it's just plain better. So
you should junk your UNIX computers and re-
place them with NT servers and werkstations
right now, before it's too late! (If we were
cynical, we would point out that Microsoft has
no UNIX version of its own to sell. But we're
not cynical. Are we?)

In spite of rather extravagant Microsoft
claims of NT superiarity, the evidence is de-
cidedly mixed. Although many businesses
seem to have made the switch from UNIX to
NT successfully, they're usually on the small- to
medium-size end of the spectrum. If you have
to support a large company that depends on
an extensive network to handle high
volumes of traffic and to serve critical appli-
cations and information, you're much better
off sticking with UNIX.

In case your system administrator is consider-
ing making an ill-advised switch from UNIX
servers to NT servers, here are a few points
you should try to work in during your next
conversation at the company water cooler.

NT servers tend to go down — step working
properly for ane reason or another — fairly
regularly. UNIX servers, on the other hand,
tend to work perfectly for months on end. Run-
ning your company’s phone sales department
on an NT server means running the risk of

cutting off all your callers until you can get
your server to reboot, or recover from one of
its little episodes.

According to various independent reports,
more NT security bugs (problems with the way
the system behaves) than UNIX bugs get re-
ported every week. NT simply doesn't have
the built-in security and permissions features
that UNIX has always had.

As far as processing power goes, NT can't
hold a candle to UNIX. NT servers now have a
four-pracessor limit, although UNIX machines
can handle many, many more. UNIX can
handle larger files, and its architecture pro-
vides as much as 4 billion times more data
space than NT (yup, we said billion). In prac-
tice, this statement means that you have to
replace each of your UNIX machines with mul-
tiple NT machines to maintain the same
amount of computing power.

Which brings us to the question of cost. Al-
though individual NT servers may be cheaper
than individual UNIX servers, the apparent
price advantages quickly evaporate when you
consider the number of servers you need and
the cost of administering and maintaining
them, not to mention hidden costs from server
downtime and data loss.

We could go on (and if you want to meet us
over a couple of beers, we certainly will). Suf-
fice it to say that the Microsoft rumors about
the imminent death of UNIX have been greatly
exaggerated.

Oh, and by the way, UNIX stills leads the way
when it comes to serving Web sites. The Apache
server, which we discuss in Chapter 21, is
still the most widely used Web server in the
world today. And it doesn’t cost much. In fact,
it's free.

Chapter 2: What Is UNIX, Anyway? 2 ’

| ¥ XENIX: A few older versions of UNIX just won'’t die. The most notable
L version is XENIX, originally from Microsoft Corporation and later sold
' by the aforementioned SCO. XENIX is considered hopelessly obsolete. It
| occupies much less disk space than do more modern versions of UNIX,
and it runs much faster. (To be fair, it’s missing some of the more
modern versions’ zoomy features, although you’re not likely to notice.)
Because XENIX is based on one of the ancestors of System V, most
System V advice applies to XENIX. SCO has now moved most of its
XENIX customers to UnixWare, which is based on System V.

What's GNU?

No tour of UNIX versions is complete without a visit to the Free Software
Foundation, in Cambridge, Massachusetts (not to be confused with the OSF,
Open Software Foundation, which is about six blocks down the street). The
FSF was founded by a brilliant but quirky programmer named Richard
Stallman, who came from MIT, where people wrote lots and lots of software
and gave it all away. He firmly (some would say fanatically) believes that all
software should be free, and he set up the FSF to produce lots of high-
quality free software, culminating in a complete, free version of UNIX.
Despite quite a bit of initial skepticism, the FSF has raised enough money
and been given and lent enough equipment to do just that. The FSF’s project
GNU (for GNU’s Not UNIX) has so far produced versions of most of the UNIX
user-level software. The best known and most widely used pieces are the
text editor GNU Emacs (which we discuss in Chapter 10), most of the other
basic UNIX utilities, and the GNU C compiler (GCC), which is now used on all
the free versions of UNIX, including Linux, as well as on a few commercial
ones.

The GNU crowd continues to work on new stuff, including its piéce de
résistance, the GNU Hurd, a complete working version of the guts of the UNIX
system. Early on, fans of free software awaited the GNU Hurd with great
eagerness; now that Linux and the freely available BSD versions have
arrived, however, their eagerness has abated somewhat. Hurd or no Hurd,
GNU Emacs, GCC, and the GNU utilities are here to stay.

What the FSF means by “free” software is a little different from what you may
expect: It means freely available, not necessarily available for free. It means
that if you can find someone willing to pay you a million bucks for some
GNU software, that’s perfectly okay. That person, and anyone else to whom
you give or sell GNU software, however, must be free to give or sell it, in
turn, to other people without restriction. The intention is that people can
make money by supporting and customizing software, not by hoarding it.
Although opinions vary about the long-term practicality of this plan, for now
the FSF surely has written some popular software, and at least one company,
Cygnus Support, makes a good business supporting it.

22

Part I: In the Beginning

How Can Vou Tell?

NOX

E\3

When you log in to your UNIX system, a variety of copyright notices usually
flash by, with an identification of the type of UNIX you are accessing. Care-
fully scrutinize the information on-screen, and you may be able to tell which
version you have.

Another approach is to type the command uname and press Enter. Some-
times this command displays the name of your computer (such as aardvark
or acctgl). Sometimes, however, the command displays the version of UNIX
you are running. On Linux systems, it says Linux.

If you can’t tell which UNIX version you have, break down, grovel, and ask
your local UNIX expert. When you figure out which type of UNIX you are
running, write it down on the Cheat Sheet in the front of this book. You
never know when you may need to know this stuff.

If you're using a dumb terminal or an X terminal (or a PC acting like a dumb
terminal or connected to your UNIX system by means of a network), the
type of UNIX you're using depends on the maker of the main computer
you're attached to — not on the maker of the terminal. You generally see the
identification of the main computer in a message it sends to the terminal
just before or just after you log in.

Cracking the Shell

Now that you have figured out which general variety of UNIX you have, you
must figure out one other vital consideration: which shell you're using.
Although you may say, “I don’t want to use any shell; [just want to get some
work done,” the shell is the only way to get to where you want to be.

The guts of UNIX are buried deep in the bowels of the computer. The guts don’t
deign to deal with such insignificant details as determining what users may
want to do. That nasty business is delegated to a category of programs known
as shells. A shell is a program that waits for you to type a command and then
executes it. From the UNIX point of view, a shell is nothing special, other than
the first program UNIX runs after you log in. Because you can designate any
old program to run when you log in, any fool can write a shell — indeed, many
have done so. About a dozen UNIX shells are floating around, all slightly
incompatible with each other (you probably guessed that).

Fortunately, all the popular shells fall into two groups: the Bourne (or Korn
or BASH) shell and the C shell. If you can figure out which of the two categories
your shell is in, you can get some work done. (You're getting close!)

Chapter 2: What Is UNIX, Anyway?

You can disregard this discussion
about the true nature of shells

What UNIX calls a shell, many other people —
especially DOS users — call a command pro-
cessor. What DOS users call a shell is a fancy
graphical program that is supposed to make
the computer easier to use by displaying cute
little icons for programs and files and other
such user-friendly goodies.

Because the people who wrote UNIX didn‘t go
for all this wimpy, fru-fru, hand-holding stuff,

you could type zq to run a program called zq.
{These guys were notoriously lazy typists.) Al-
though user-friendly shells are available for
UNIX, they're not widely used, and we don't
mention them again in this book.

If a Windows or Macintash fanatic says rude
things about the UNIX shell, you can respond
that, although UNIX may be somewhat chal-
lenging to use, as a UNIX user, at least you're

23

their idea of a shell was a program in which not a wimp.

You can easily tell which kind of shell you’re using. If UNIX displays a $ after
you log in, you have a Bourne-style shell; if UNIX displays a %, you're using
the C shell. Traditionally, System V systems use the Bourne shell, and BSD
systems use the C shell. These days, however, because all versions of UNIX
come with both shells, you get whichever one your system administrator
likes better. Preferences in command languages are similar to preferences in
underwear: People like what they like, so you get what you get, although
these days most of the people we know like BASH, a souped-up Bourne-style

WX shell.
)
Linux systems usually come with the BASH shell, a Bourne-style shell.
After you have determined whether you have a Bourne-style shell ($) or a C
shell (%), note this fact on your Cheat Sheet in the front of this book.
A\\J

If you use a GUI (see Chapter 4), you see windows and icons, not a boring
little UNIX prompt, after you log in. You still need to use a UNIX shell from
time to time, however, usually to perform housekeeping tasks.

The Bourne and Bourne Again shells

The most widely used UNIX shell is the Bourne shell, named after Steve
Bourne, who originally wrote it. The Bourne shell is on all UNIX systems. It
prompts you with $, after which you type a command and press Enter. Like
all UNIX programs, the Bourne shell itself is a program, and its program
name is sh. Clever, eh?

24

Part I: In the Beginning

A few alternative versions of the original Bourne shell exist, most notably
the Bourne Again shell (or BASH, whose program name is bash) from the
GNU crowd. This version of the Bourne shell is used in many places because
of its price — it’s free. Some people claim that it’s still overpriced, but we
don’t get into that. BASH is enough like the original Bourne shell that
anything we say about the Bourne shell applies also to BASH. The most
notable advantage of BASH is that it has “command editing,” a fancy way of
saying that you can press the arrow keys on your keyboard to correct your
commands as you're typing them, just as you can with DOS (oops, better not
say that when any UNIX fans are listening).

The Korn-on-the-cob shell

After the Bourne shell was in common use for a couple of years, it became
apparent to many people that the shell was so simple and coherent that
one person could understand all its features and use them all effectively.
Fortunately, this shameful situation was remedied by a guy named Dave
Korn, who added about a thousand new features to the Bourne shell and
ended up with the Korn shell (called ksh). Because most of the new features
are of interest only to people who write shell scripts (sequences of shell
commands saved in a file), you can consider the Korn shell the same as the
Bourne shell. Most versions of the Korn shell also have command editing.

She sells C shells

No, the C shell wasn’t written by someone named C. It was written by Bill,
the guy we mentioned earlier. (He sells C shells by the C shore? Probably.)
We would discuss our opinion of the C shell at length, except that Bill is 6'4",
in excellent physical shape, and knows where we live. The C shell’s program
name is csh.

The most notable difference between the C shell and the other leading shell
brands is that the C shell has many more magic characters (characters that
do something special when you type them). Fortunately, unless you use a
number of commands with names like ed ! 3x, these characters aren’t a
problem.

Many versions of the C shell exist; most of them differ in which bugs are
fixed and which are still there. You may run into a program called tcsh, a
slightly extended C shell with command editing.

Chapter 2: What Is UNIX, Anyway?

Who says the C shell isn’t user-friendly?

If you use the C shell, be aware that some
punctuation characters do special and fairly
useful things.

An exclamation point (!) tells the C shell to do
a command again. Two of them { !!) means to
repeat the last command you typed. One of
them followed by the first few characters of a
command means to repeat the last command
that started with those characters. For ex-
ample, to repeat the last cp command you

gave, type
lcp
This command is great for lazy typists.

You can also use carets (*) to tell the C shell to
repeat a command with some change. If you
type this line:

~old”*new

the C shell repeats the last command, substi-
tuting “new” for “old” wherever it appears in
what you typed. You can use slashes (/) in a
similar way, although carets are easier to use.
The C shell also uses colons (:) to perform
truly confusing editing of previous commands,
which we don’t get into.

In Chapter 7, the section about history's re-
peating itself tells you more about reissuing
shell commands.

25

Are Any Good Programs On?

You may be wondering why we refer sometimes to commands and some-
times to programs. What'’s the difference?

A command is something you type that tells UNIX (or actually the shell)
what to do. A program is a file that contains executable code. The confusion
comes because in UNIX, to run a program, you just type its name. (In old-
fashioned operating systems, you usually typed something like RUN
BUDGET_ANALYSIS to run a program called BUDGET_ANALYSIS.)

When you type a command, such as 1s or cp or emacs (a text editor we talk
about in Chapter 10), the shell looks at it carefully. The shell knows how to
do a few commands all by itself, including cd and exit. If the command isn’t
one that the shell can do by itself, the shell looks around for a program
stored in a file by the same name.

DOS users may recognize the way this process works — commands DOS can
do itself are called internal commands, and commands that require running
another program are called external commands. Internal commands are also
called built-in commands.

26 Partl: Inthe Beginning

Finally! You've Ready to Work

We wrap up this chapter with a little advice about hand-to-hand combat
with the shell. You can give many commands to your shell. Every shell has
about a dozen built-in commands, most of which aren’t very useful on a
day-to-day basis. All the other commands are the names of other programs.
The fact that every UNIX system has hundreds of programs lying around
translates into hundreds of possible shell commands.

One nice thing about UNIX shells is that, within a given shell, the way you
type commands is completely consistent. If you want to edit a file called
my-calendar, for example, and use an editor called e, you type this line:

$ e my-calendar

As always, press Enter at the end of the line to tell the shell you have
finished. The shell runs the e editor, which does whatever it does. When you
finish, you return to the shell, where you can issue another command.

Whenever you see a UNIX prompt (either $ or %), a shell is running, waiting
to do your bidding. Throughout this book, we usually refer to the entire
package — UNIX plus shell — as UNIX. We say, “Use the 1s command to get
UNIX to display a list of files” rather than “Use the 1s command to get the
shell to get UNIX to display a list of files.” Okay?

Now you know which kind of UNIX you are using, which shell you are using,
and why you care. Let’s look at a few UNIX (or shell) commands you can use
to begin getting something done.

We could tell you the password,
but then we’d have to kill you

When you logged in, you probably hated your password because someone
else picked it. Hating your password is a good reason to change it. Another
reason you may want to change it is that, to get this far, you enlisted the aid
of some sort of expert and had to reveal your password. This section shows
how to change your password: Use the passwd command.

This stuff is easy. Just type this line:

passwd

Chapter 2: What Is UNIX, Anyway?

\\3

Ending command lines without hard feelings

Remember to end every command line by With a few programs, notably the text editors
pressing Enter. UNIX is pretty dumb; in most vi,pico,and emacs,youdon'tneedto press
cases, your pressing Enter is the only way Enter anywhere; we point out those excep-
UNIX can tell that you have finished doing tions. Everywhere else, remember to press the
something. Enter key at the end of every line.

WNG/
&

As always, press Enter after typing the command. The passwd command
asks you to type your current password to make sure that you are really
you. (1f it didn’t check, whenever you wandered off to get some more coffee,
someone could sneak over to your desk and change your password. Not
good.) Type your current password and press Enter. The password doesn’t
appear on-screen as you type, in case someone is looking over your shoulder.

Then passwd asks for your new password. (Chapter 1 has lots of sage advice
about how to choose a password.) You have to type the new password twice
so that passwd is sure that you typed it correctly. Assuming that you type
the new password twice in the same way, passwd changes your password.
The next time you log in, you are expected to know it.

If you forget your password, you have no way to retrieve it; not even your
system administrator can tell you what it is. The administrator can assign
you a new one, though, and you can change it again, preferably to something
more memorable than the one you forgot.

What's my file?

This section discusses a command you use frequently: the 1s command,
which lists your files. Chapters 5 and 6 talk more about files, directories, and
other stuff 1s helps you with; for now, here’s 1s Lesson 1. Type the following
line (we're not telling you to press Enter anymore because we know that you
have the hang of it):

1s

The 1s command lists the names of the files in the current directory.
(Chapter 6 talks about directories.)

27

28

NING/
S

Part |: In the Beginning

Don't turn off the computer if you make a typo!

To repeat something we have hinted at: if you
make a mistake and all is not going well, do
not turn off the computer, unplug it, or other-
wise get unnecessarily rough. Although PC
users get used to just turning the darned thing
off if things aren't going well, UNIX computers
don’t respond well to this approach.

Instead, suggest politely to UNIX that it stop
doing whatever it is you don't like. To stop a

command, press Ctrl+C, or, on some systems,
the Break key or the Del key.

If the situation is out of control, UNIX is run-
ning a program you don’t want, and you can't
getitto stop, you can use some Advanced and
Obscure Techniques to wrestle extremely re-
calcitrant programs into line. See Chapter 24 if
you're desperate.

Oops!

If you are a world-class typist, you can skip this section. If you make thou-
sands of typos a day, as we do, pay close attention. If you type something
wrong, you can probably press the Backspace key to back up and retype it.
If that doesn’t work, though, all is not lost. Try the Delete key, the # key
(Shift+3), or Ctrl+H. One of these combinations should work to back you up.

To give up and start the entire line over again (not usually necessary with
nice, short commands, such as 15), press Ctrl+U. If that doesn’t work, press

the @ key (Shift+2).

Play it again, Sam

Sometimes, you may want to issue the same command again (because it
was so much fun the first time). If you use the C shell, type this line:

If you use the BASH shell, press the up-arrow key to see the last command

you typed and then press Enter.

In the Korn shell, you can type this line to reissue a command:

r

If you use the Bourne shell, you're out of luck and must type your command

again.

Chapter 2: What Is UNIX, Anyway?

The UNIX cast of special characters

One of the more exciting aspects of typing
shell commands is that many characters are
special. They have special meanings to UNIX;
the next few chapters discuss some of them.
Special characters include the ones in this

you must quote them. You quote something by
putting quotation marks around it. Suppose
that you have a file called c* {not a greatidea,
but sometimes you get these things by mis-
take). You can edit it by typing

29

list: e "exm
<> - You can use either single or double quotation
(O I oA marks, as long as you're consistent. You can
L1 # | & even quote single quotation marks with double

quotation marks and quote double guotation
marks with single quotation marks. Is that
clear? Never mind.

c) 9 7=

Spaces also are considered special because
they separate words in a command. i you
want to put special characters in a command,

Everything you wanted to know
about typing commands —
but were afraid to ask

This list shows a wrap-up of what to do when UNIX displays a prompt
(either $ or %) and you want to type a command:

¥ 1~ As you type, the cursor moves along to indicate where you are. The
cursor looks like an underline or a box.

v If you make a typing mistake, press Backspace (or try Delete, #, or
Ctrl+H).

| ~ To cancel the entire command before you press Enter, press Ctrl+U (or
| try @).

v+ When you finish typing a command, press Enter. (If you don’t, UNIX —
| and you — will wait forever.)

. v~ If you issue a command that UNIX (actually, the shell) doesn’t know,
you see a message like this:

blurfle: Command not found.

30 Part I: In the Beginning

This message means that you typed the command wrong, you typed a
command that UNIX doesn’t know (maybe a DOS command crept in), or
someone hasn’t told UNIX the right places to look for programs.

1+~ Don't stick extra spaces in the middle of commands, as in pass wd.
Type the command exactly as we show it. On the other hand, do type a
space after the name of the command but before any additional infor-
mation you have to type on the line (read more about that subject in
Chapter 5). Also, do not capitalize except where you know that the
command has a capital letter.

!+ You know that a command resembles a sentence, but you don’t end it
with a period. UNIX doesn't like the period, and UNIX is extremely
4 unforgiving.

Chapter 3
A Few Lines on Linux

LB B BN B BE BE BE RN BN BE B BN OB B BE BN BX BN BE OBE BE OBE BN OBE B BE BE BN N BE OBE BN

a

In This Chapter
p What is Linux?
» Why should you care?

® 0008 OO B OE OSSO S OO TOE OO0 OB SO OOS OO SES O 09 4 ¢ L X I N O

Linux is the hottest thing to arrive in UNIX-land in years: a wildly popular,
completely free version of UNIX. It is (quite deliberately) similar to
other versions of UNIX; for the most part, then, everything in this book that
applies to other versions of UNIX also applies to Linux.

0\\\))(

Out of the Frozen North

In 1992, a guy in Finland named Linus Torvalds took a then-popular, small,
educational version of UNIX called Minix, decided it wasn’t quite what he
wanted, and proceeded to rewrite and extend it so that it was more to his
taste. Lots of enthusiastic programmers have started projects like that, but
to everyone’s astonishment, Linus actually finished his. By mid-1993, his
system had long since left its Minix roots and was becoming a genuinely
usable version of UNIX. Linus’s system was picked up with great enthusiasm
by programmers, and later by users, all over the Internet. It spread like
crazy, to become the fastest-growing part of UNIX-dom.

Linux is popular for three reasons:

[+~ It works well, even on a small, cheap PC. A 386 PC with 4 MB of random-

3 access memory (RAM) and a 40MB hard disk can run Linux — barely.

. (John bought a computer like that for less than $500, new, from a dealer
who had ordered more than he needed.) On a top-of-the-line Pentium
PC, its performance approaches that of a full-blown traditional UNIX
workstation.

v~ Lots of enthusiastic people are working on Linux, with wonderful new
features and additions available every day. Many of them even work.

v It’s free!

32

Part I: In the Beginning

The many developers of Linux proudly describe it as a “hacker’s system,”
one written by and for enthusiastic programmers. (This classic meaning of
hacker should not be confused with the other, media-debased “computer
vandal” definition.) These programmers keep up the development of Linux
at a brisk pace, and a new “development” version is made available on the

Internet every few days. Every once in awhile, the developers decide that
they have gotten enough bugs out of their recent developments, and they
release a “stable” version, which stays constant for months rather than

days. Most normal people use the stable version rather than a development

version. Using a development version of Linux is sort of like living in a house

inhabited by a large family of carpenters and architects: Every morning
when you wake up, the house is a little different. Maybe you have a new
turret, or some walls have moved. Or perhaps someone has temporarily
removed the floor under your bed. (Oops — sorry about that.)

Linux started life as the operating system of choice for students and other
cheapskates, er, users who wanted a UNIX system of their own but couldn’t
afford a traditional UNIX workstation. As Linux has matured into a stable,
reliable UNIX system, this base has expanded to include companies and
institutions that could afford traditional UNIX workstations, but found that

How free is free?

Linux is free software. In the UNIX software
biz, “free” has a concrete meaning that is dif-
ferent from public domain and different from
shareware.

Linux is made available under the GNU Gen-
eral Public License (GPL), Version 2, the same
license the Free Software Foundation uses for
most of its programs. The license has seven
pages of legalese, much of which is about
where copyright notices have to appear and
stuff like that, but the basic plan is simple. [n
short, it says:

+* You can copy and distribute Linux and other
GPL software, and you can charge for it.

v But, anyone to whom you distribute it has
the right to give copies away for free.

v And, you mustinclude the source code (or
make it available for no more than a repro-
duction fee) in the distribution.

The idea is that people are permitted, even
encouraged, to distribute copies of GPL soft-
ware and to sell maintenance service, as long
as the software itself remains freely available.

Don't confuse free software with shareware,
which is software for which you are supposed
to pay the original author if you use it, or with
public domain software, with which you can
do anything you want.

Although the GPL was subject to considerable
debate and a fair amount of ridicule when it
first came out in about 1990, it has worked
pretty much the way its authors intended: GPL
software (including Linux) is widely available,
and people do indeed constantly work on and
improve it.

Chapter 3: A Few Lines on Linux

Linux enabled them to add PC-based workstations at a fraction of the cost.
In fact, Linux is now estimated to have more than 6 million users, making it
the third most popular operating system in the world (behind Windows and
the Macintosh operating system).

What's Old, What's New

The original guts of Linux were written from scratch by Linus Torvalds and
have since been greatly changed and extended by other people. He based
Linux more or less on System V (on descriptions of System V; there’s no code
from System V). Most programs that people actually use (the shells and
other commands) come from the GNU project, which modeled most of them
after the Berkeley UNIX versions, so most of the commands are BSD-ish.
Because the networking programs are adapted from the Berkeley ones, they
also are all BSD-ish.

Technically speaking, Linux refers only to the operating system “kernel.”
When most people refer to a Linux system, though, they usually mean the
whole package: operating system plus the GNU programs that come with it.
Like all UNIX systems, Linux systems can run various shells, editors, and
other software. Most versions of Linux use BASH as the default shell be-
cause it’s also new and snazzy.

Keep in mind that because Linux is a moving target, with frequent improve-
ments to the programs, the version of Linux you use is probably not exactly
the same as the version described in any book, including this one. At the
time we wrote this edition of this book, the latest stable version of Linux
was 2.0.34, but even if you have a more recent version, the basic structure is
the same.

Alook at the various Web sites and Usenet newsgroups dedicated to Linux
show a veritable flurry of Linux-related activity. New programs, extensions,
and enhancements for Linux appear daily, it seems. Red Hat Linux, for exam-
ple, now offers a range of snazzy new products, including a secure Web
server, a Microsoft Office-like suite of desktop tools called ApplixWare, and a
fully graphical integrated desktop (see Chapter 4 for details about UNIX
desktops).

If you still have any doubt about whether Linux has arrived, consider this:
Red Hat has teamed up with the NASA Goddard Space Flight Center to create
something called Extreme Linux, which lets you set up computer clusters —
many computers acting like one enormous supercomputer — using parallel
processing. You can get the source code, operating system, and manage-
ment tools for about 30 bucks.

33

34

Part I: In the Beginning

You say to-may-to, | say tomahto

A frequent concern of newcomers to Linux is
how to pronounce it correctly, in order not to
sound uninformed. It's simple: However you
pronounce it is wrong — or right, depending
on your audience. Among English speakers in
the United States, at least, opinions seem to
be divided about evenly between “Line-ucks”
and “Linn-ucks.”

The name Linux is derived from the first name
of its creator, Linus Torvalds. The “Line-ucks”
group holds that the pronunciation is based on
the usual English pronunciation of Linus. Linus
Torvalds himself, though, a Swedish-speaking

Finn, has helpfully provided an audio file on
the Internet in which he provides the definitive
answer in both English and Swedish. (You can
find the files at the URL http://
sunsite.unc.edu/LDP/1inks.html,
way down at the end of the page. See
Chapter 18 to find out what a URL is.) In the
file, he says, “Hello, this is Lee-noos Torvalds,
and I pronounce Lee-nooks as Lee-nooks.” It's
up to you whether you want to say “Linux”
with a Swedish accent, but to our ears his
reading sounds much closer to the Anglicized
“Linn-ucks,” so that's what we use.

e\\3

In Chapter 14, we talk about the latest releases of the most popular versions
of Linux. In Chapter 27, we describe a number of ways you can get additional

information about Linux, including reading one of a number of Usenet news-
groups about Linux or subscribing to a Linux magazine.

Where’s Linux?

Linux development happens mostly on the Internet, and if you have an

WING/

Internet connection, you can download the entire system at no charge. You do

need either a fast connection or great patience because the system takes up
about 50 disks full of data. A typical 14.4 Kbps online connection would take

about 15 hours to download Linux. Quite a few bulletin-board systems around

the world make Linux code available. A more practical approach is to buy or
borrow a CD-ROM version of Linux, which you can install in an hour or so.

Sounds great, doesn’t it? You can install a version of UNIX on your very own

computer! Keep in mind one tiny little snag, however: That makes you the
system administrator. You have to learn how to create user accounts, deal
with disks that fill up, and install and configure software. It’s not impossible
(far from it — John has done it for years), hut you have much to learn.

The details of installing and setting up Linux are way beyond the scope of
this book. In Chapter 14, we barely touch on a few basics of administering a
Linux system. For more details, take a look at LINUX For Dummies, by Craig
Witherspoon, Coletta Witherspoon, and Jon Hall; LINUX Secrets, 2nd Edition
by Naba Barkakati (both published by IDG Books Worldwide, Inc.); and
Running Linux, by Welsh and Kaufman (O’Reilly & Associates).

Partll
Some Basic Stuff

The 5th Wave By Rich Tennant

ORYETENNANT—

“WELL THIS 1S SURE TURNED OUT TO BE A MICKEY MOUSE. SYSTEM "

In this part . . .

uNlX, like other computer systems, keeps your
information in things called files. When you work

with UNIX, you frequently need to make new files, rename
files, make copies of particularly interesting files, get rid
of files that have outlived their usefulness, find a file you
have temporarily mislaid, or print what’s in a file.

This part of the book also talks about graphical user
interfaces (GUIs), which let you use a mouse to point at
things on-screen. Most people find using GUIs a big im-
provement over typing commands, but you have to know
what to point at and click on. You’re about to find out!

s ®

In This Chapter

Chapter 4

Opening Windows on UNIX

[28 X 3N B I BE BN N

» What's a GUI — and should you care?

. 4

n
¥
B

~ How to tell which type of windows you have

Window-wrangling skills, Motif and otherwise

How to get in and out of windows

How to make UNIX look and act a whole heck of a lot like Those Other Famous
Operating Systems

.o

(L 2 B 2N B BN BN BE BN B BK BN BN B BN AR BN BR BN BN X IR BN BN BN BN BN AR BN BE BN BE AN IR BN B N

T) answer your first question, GUI stands for graphical user interface and
really is pronounced “gooey.” We prefer the term WIMP, which stands for
windows, icons, and mouse pointing, but for some reason the term never
caught on. Fast-track executives would rather be gooey than wimps, we
suppose.

A GUI'is a combination of a graphics screen (one that can show pictures in
addition to text), a mouse (or something like it), and a system that divides
the screen into several windows that can show different things at the same
time. All GUIs work in more or less the same way because they're all based
on the same original work done at Xerox about 20 years ago. The details
differ enough, though, to make you want to tear your hair out.

UNIX Gets All GUI

The earliest UNIX systems didn’t have fancy, screen-oriented windowing
systems. They didn't have screens at all, in fact — they used loud, rattling
terminals that printed on actual paper. (The historically minded can find
these types of terminals in the Computer Museum in Boston and the
Smithsonian Institution in Washington, D.C. Yes, really.) As the years went
by, UNIX appeared on computers that did have screens (most notably Sun
workstations), and various windowing systems appeared.

38

Part lI: Some Basic Stuff

One thing about the UNIX community you've probably come to appreciate
by now is that you can’t get everyone to agree on anything, except of course
that UNIX is better than every other kind of system and that anyone who
thinks otherwise is silly. So, not surprisingly, a variety of incompatible
windowing systems arose, each different from the other in various, not
particularly interesting, ways. Nearly all the windowing systems were
proprietary (they belonged to one system vendor or another), and, of
course, no vendor would dream of admitting that someone else’s window
system was better than theirs.

X marks the window

Universities also had a bunch of window system projects. One of the more
successful was the X Window project at MIT (alleged to be a successor to
the W Window project at Stanford — as far as we know, no one created a V
Window project). The X Window system had many virtues, not the least of
which were that it worked adequately well and it was available for free to
anyone who wanted it. So X became the window system everyone used.

Almost all UNIX systems that have any sort of GUI now use one based on the
X Window system (frequently abbreviated to just “X Windows,” which has
been known to drive UNIX purists crazy because it sounds too much like
that other famous operating system from Redmond, Washington). Old Sun
workstations used systems named SunView or NeWS; NeXT machines use
NeXTStep (are tHoSE wOrDS cAPiTaLlzed corREctlY?); other than those
exceptions, however, you almost certainly get X Windows.

X (which is an even shorter abbreviation for X Window system) has many
advantages as a windowing system:

»~ It runs on all sorts of computers, not just those that run UNIX.

v~ It is policy independent: A program can make the screen look any way it
wants; the screen is not constrained to a single style, as it is on the
Macintosh or with Microsoft Windows. (As you may imagine, this
capability is not an unmitigated blessing. Read more about this subject
in the section “Just my look,” later in this chapter.)

I v~ It uses a networked client-server architecture (love those buzzwords).
You can run X on one computer, and the programs that display stuff on-
screen can be on entirely different computers connected by a network.

v MIT gives it away.
You can imagine which of these important advantages is the one that really

made all the computer makers choose X. Even though MIT gives away the
base version of X, unless you happen to be using the exact same kind of

Chapter 4: Opening Windows on UNIX 3 9

computer the guys at MIT use (or you feel like compiling and debugging a
gazillion lines of C code), you don't get it for free. You must buy a version
tailored for the particular kind of screen and adapter on your computer. An
exception is XFree86, a free version of X used by PC-based UNIX systems,
such as Linux, which is described in Chapter 3.

How your screen looks depends on which GUI you use. The first part of this
chapter talks about things that are the same for all GUIs. Later, we talk about
how to tell which GUI you are using and how to do things that work differ-
ently for each GUI.

“Pm not just a server —
Vm also a client!”

X was designed from the beginning to work with computer networks. It
makes a clear distinction between the server program, which handles the
screen, keyboard, and mouse, and the client program, which does the actual
computing. Although the two programs are running more often than not on
the same computer, they don’t have to be. (Readers who saw John on The
Internet Show on public TV a few years ago may recall one demonstration of
an online subway map of Paris. That was an X application, with the X server
running on a PC in the TV studio in Texas and the client program on a
computer in France, connected by way of the Internet.)

The networkability (is that a word?) of X is most useful in two ways. One
way is that you can be sitting at an X workstation attached to a local net-
work and have windows attached to client programs running on computers
all over the network, often on computers considerably more powerful than
yours. The other way is that you can be using an X terminal, which is a
specialized computer with a screen, a keyboard, a mouse, and network
connections that runs only a single program, an X server. The idea of an X
terminal is that because it’s considerably cheaper than a workstation, you
can have a few workstations or larger computers with a flock of inexpensive
X terminals attached and get nearly workstation performance for the X
terminal users, and at a considerably lower price.

X terminals should be a passing fad because these days a standard PC that
runs UNIX, including an X server program, costs about the same as an X
terminal and offers more flexibility. (For this same reason, we don’t think
much of “network computers.”) Fortunately, because X terminals and
workstations running an X server look and work almost exactly the same, we
don’t belabor the difference any longer.

40

Part ll: Some Basic Stuff

Just my look

Most windowing systems on most kinds of computers make programs use a
consistent style. All Macintosh programs, for example, look pretty much the
same: They all use the same menu, the same little window when you want to
select a file, and similar windows to turn options on and off. One Microsoft
Windows program looks much like all the others: They all use similar sets of
windows.

Do all X Windows programs have a consistent look? Of course not — that
would be too easy. This situation is what the X crowd means by policy
independence: X is utterly agnostic about what windows should look like on-
screen, how keystrokes and mouse clicks should be interpreted, and pretty
much anything else that affects a user. This lack of policy was part of the
original appeal of X because no matter which window system you were used
to, you could make X look just like that system. The good news is that X
offers great flexibility. The bad news is that the word inconsistent barely
scratches the surface of what you run into.

Makeup artists for your windows

One of the ways in which X avoids having any policy built in is that it foists
much of the general window-management jobs onto a program called a
window manager. (Catchy name, huh?) The window manager handles jobs
such as creating borders around each application’s main windows; control-
ling how you move, resize, switch among, and iconify windows; and most of
the other tasks that aren’t part of any particular application. It’s possible to
run X without any window manager, although it’s rather unpleasant because,
without one, you have no way to do some things, such as move a window.

We've got something in common

A few companies doing UNIX apparently de-
cided that they had gone too far in the
customizability department, so they got to-
gether with the Open Software Foundation to
create something called the Common Open
Software Environment, which describes how
to build UNIX programs so that they all act and
look something like each other (or at least like
they come from the same planet). In 1995, this
group came out with the Common Desktop
Environment, or CDE, which is a UNIX
windowing system that bears more than a

passing resemblance to the Macintosh and
(Microsoft) Windows desktops. Surprisingly,
CDE is beginning to catch on, especially
among Microsoft Windows and Macintosh us-
ers who are new to UNIX or who need to use
both Windows or Macs alongside their UNIX
workstations.

CDE does much more than manage your UNIX
windows. We talk about CDE in the section
“CDE: A Desktop for All Seasons,” later in this
chapter.

Chapter 4: Opening Windows on UNIX

e]
Figure 4-1:
A typical
Motif
window.

. 3= ___

]
Figure 4-2:
A typical
OpenLook
window.
]

A field guide to window managers

A bunch of competing window “looks” are on the UNIX market. To tell which
one you're stuck with, er, have the pleasure to use, look at the border
around the windows on your screen. If they have 3-D-style borders with
sharp corners, as shown in Figure 4-1, you're using the Motif Window
Manager (MWM); its free lookalike counterpart, FVWM; or DTWM, the
Desktop Window Manager that comes with the Common Desktop Environ-
ment (CDE). If the borders have rounded corners, as shown in Figure 4-2,
you're using OpenLook. If they have a thin border around the sides and
bottom and top borders like those shown in Figure 4-3, you're using a
program called TWM, which comes with the base version of X and is still
sometimes used because it is simple and small.

program, use the commands

xgrabsc -Z >outfile.pzl
puzzle —-picture outfile.pzl

To have xgrabsc sleep for three seconds before rubber—
banding, display processing information, and have the result
displayed with xwud,

xgrabsc -Wus3 | xwud
ieccittypl: johnld>xgrabsc -W > muwnud
ieccittypl: johnl>xuwud nwmwd
usage: Zusr/bin/X11/xwud [-in <file>] [-noclick]l [-geometry <{geom>] [-display <d
isplay>]
[-newl [~std <maptyped] [-raul] [~vis <vis-type-or-id>]
[~helpl [-rv] [-plane <number>] [-fg <color>] [-bg <color>]
iecc:ttypl: johnld>xwud —in nunwd .
iecc:i:ttypl: johnld)txgrab
xgrabsc -W > mumwd
iecc:ttypl: johnld t*xw
xwud —in mwnwd
ieccittypl: johnl)txg
xgrabsc -U > mwmud

" Snapshot V3
Load..) Save.) Print v) !
Snap Type: Window vi_r n

Snap Delay:,_o_J_z_'iﬂ 16 | seconds

« Beep During Countdown
_| Hide Window During Capture

Snap} View)

, SELECT-Position Rectangle. ADJUST-Snap Image. MENU-Cancel,

41

42

Part lI: Some Basic Stuff

e e ey
Figure 4-3:
A typical
TWM
window.
]

B xpcterm I]

iecc:ttypl: johnlduho -a

o system boot Dec 12 12:32

o run—level 2 Dec 12 12:32 2 (] S
becheckre o Dec 12 12:33 0:28 S id=bchk term=0 exit=7?
bre g Dec 12 12:33 0:20 1S id= bre term=8 exit=0
brc g Dec 12 12:33 ©:20 19 id= nt term=8 exit=0
rc2 9 Dec 12 12:49 0:28 23 id= r2 term=B8 exit=0
root console Dec 29 20:16 0:01 17956
sleep c Dec 12 12:49 8:20 138 id= wt term=8 exit=0
Johnl vte1 Dec 21 15:19 ©:81 5938
LOGIN vtB2 Dec 29 20:16 20:48 17955
LOGIN ttydl Dec 38 16:24 0:52 2827 492-3863
faxserve o Dec 26 11:45 ©:20 24871 id= F2
Johnl ttyp2 Dec 38 17:16 4 3053 id= p2 term=112 exit=2
Johnl ttypl Dec 30 16:55 3 3854
Jjohnl ttypd Dec 30 16:55 0:15 3055
Johnl ttyp3 Dec 30 16:56 0:28 3886 id= p3 term=112 exit=2
Johnl ttyp4d Dec 30 16:12 1:04 19342 id= p4 term=112 exit=2
Johnl ttypS Dec 23 18:41 old 11186 id= pS term=112 exit=2
LOGIN . Dec 1S5 15:28 0:28 25517
LOGIN . Dec 15 15:38 ©:20 25532
LOGIN ttyd2 Dec 17 1B:55 old 6561 id= 02 term=15 exit-0
iecc:ttypl: john
iecc:ttypl: johnld>xgrabsc -W > tumwd
=

The Open Software Foundation, the same people who provide the OSF/1
version of UNIX, created Motif, based on some work done by their members
Hewlett-Packard and Digital Equipment. Motif is much more complete than
its competition (it has a provision for handling languages other than English,
for example), and because DEC made it cheap for software vendors to use, it
has become the primary X Window manager now in use.

People using the Common Desktop Environment (CDE) get the Desktop
Window Manager, or DTWM. CDE comes with all kinds of nifty and zoomy
programs, although underneath the glitz it’s just a version of Motif, so it
looks pretty much the same.

Lots of other window managers exist; the ones in this section are the most
common ones. After several years of window system warfare, Motif and its
clone FVWM have emerged as the clear favorite window systems, so that’s
what we concentrate on here.

Considerably more than you want to know
about window managers, toolkits, and X

If you're dying to know more about how the X Window system works, strap
on your safety belts because we get a little technical. If you're dying to know
how to use your window manager and couldn’t care less about how it works,
skip down to the section “Stupid Window Manager Tricks.” If you're sticking
with us, just don’t say that we didn’t warn you.

Chapter 4: Opening Windows on UNIX

Déja vu déja vu

Readers familiar with Microsoft Windows 95
or Windows NT may find the Motif window
manager to be strangely familiar. Its windows
don't look all that much like Windows win-
dows, although the mouse and keyboard tech-
niques are extremely similar. That turns out to
be no coincidence, Because Hewlett-Packard
has a superduper application environment it
sells for both Windows and X, it deliberately
made its X package (from which much of Motif
is derived) as similar to Windows as possible.

For users who switch back and forth between
Windows and Motif (we authors, for example),
this capability is a blessing because the mouse
moves and keystrokes our fingers have memo-
rized for one system work by and large in the
same way in the other. This practically
unprecedented level of compatibility exists
between UNIX and something else, so we
figure that, deep down, it must have been an
oversight.

The X Window system divides the work of controlling what’s on-screen
among three separate kinds of programs:

I v~ X server: Draws pictures on-screen and reads user input from the
. keyboard and mouse

s

v Window manager: Controls where windows appear on-screen, draws
borders around windows, and handles basic window operations, such
as moving windows, shrinking windows to an icon (a little box repre-
senting that window), and expanding icons to windows

ST

% v~ Clients: Programs that do some real work

For any particular screen, there’s one X server, usually (but not always) one
window manager, and a bunch of clients. Every client communicates with
the server to tell it what to draw and to find out what you did; the server
communicates with the window manager when the user asks for a window-
management operation, such as changing the size of a window. Although the
server, window manager, and clients usually run on the same computer, X
Windows enables them to exist on separate machines connected by a
network. It is not unusual to have a setup in which the server runs on an X
terminal, the window manager runs on a nearby workstation, and the clients
are on various machines scattered around the network.

The window manager is usually (except on a few X terminals) a regular UNIX
program. You can stop one window manager and start another if you decide
that you don’t like the way your windows look. Client programs can ask the
X server to ask the window manager to do some specialized operations. A
terminal program, for example, can ask the window manager to enable a
user to change the size of the window only to a size that is a whole number

43

Part II: Some Basic Stuff

FVWM: The chameleon of window managers

Because Motif isn't free, it isnt included with
most Linux systems. (Nothing would prevent
you from running Motif under Linux, but most
people aren't prepared to pay more for a win-
dow manager than they paid for the whole
operating system and its included software.)
Instead, with Linux, you usually find the win-
dow manager called FVYWM.

The origins of the name FVWM are forever
lost in the mists of history. The VIWM part
stands for virtual window manager. The Fpart
is a mystery, though. Fine and feeble are two
frequently offered possibilities.

The “virtual” part of this window manager is
one of FVYWM's best-loved features. Rather
than have just a single desktop, you can have
any number of virtual desktops, each with its
own independent set of windows open. Be-
cause each desktop is the size of the screen,
this feature enables you to think of your screen
as a porthole looking at part of a much larger
screen behind it.

FVWM usually displays a little map of all the
virtual desktops at your disposal; Most sys-
tems have either four or nine, although theo-
retically you can have as many or as few as
you want. You move around among all your
desktops by pressing the Ctrl key and then the

arrow key for the direction of the next desktop
according to the little map. Is your desktop
getting too crowded with windows? No need
to close some of them; just pop on over to
another desktop. You can have dozens of pro-
grams open without getting too crowded;
never has slowing your systemto a crawl been
easier!

FVWM is almost infinitely configurable. You
can make it look like practically anything,
although its default look is nearly identical
to Motif. A version of FVWM known as
FVWMS5 looks remarkably similar to — you
guessed it — Windows 95. (Whether this is
A Good Thing is a favorite point of religious
arguments among many Linux users.) Not
only do its window borders mimic those in
Windows 95, but it also even features a Start
button with pull-up menus. FVYWM35 is found
by default on recent releases of Red Hat Linux
(discussed in Chapter 14). Another popular
mutation of FVYWM is called AfterStep, which
looks just like the NeXTStep window system.

FVWM has become enormously popular, not
only on Linux but also on other free UNIX ver-
sions. You can even find it on some large com-
mercial systems.

of lines of text. (This kind of communication starts to resemble that in the
ancient Roman Empire, in which proconsuls could officially speak only to
procurators, who could speak to senators, and so on. Computers are like
that.) If no window manager exists, no window-management operations are

available.

Writing an X program is a great deal of work. To make life easier for pro-
grammers, a programmer can build on toolkits of program code that are
already written. MIT sends out X Toolkit (immediately called Xt by the usual
lazy typists). This toolkit provides a set of basic window functions that most

Chapter 4: Opening Windows on UNIX

programs use. Starting with Xt, different people have produced libraries of
widgets, or screen elements a program can use. A menu or a file-selection
panel is a widget, for example. The Motif widget set is for programs that
want to look like Motif. Although the Athena widgets from MIT’s Project
Athena aren’t particularly attractive, many programs use them because
(where have we heard this before?) they're available for free. You can also
find other toolkits for other, less commonly used window systems.

What all this means is that any particular X client uses one of the widget
sets to control what that client’s window looks like. A program that uses the
Motif toolkit, for example, is a Motif program. Because clients are separate
from window managers, however, the Motif window manager (named mwm —
the lazy typists strike again) can be running and draw a Motif border around
the windows of clients using other toolkits.

Because of the constant danger that GUI systems could begin to make sense
to users, UNIX people have learned to obfuscate things by using “Motif” to
refer to both the Motif window manager and the Motif toolkit, which are, of
course, completely separate entities. When people refer to “Motif,” there-
fore, they may be referring to the window manager or maybe to the toolkit.
Or both. Often it’s difficult to tell. This confusion is all just part of the proud
legacy of UNIX evolution.

One school of thought says that we all would be better off if X Windows had
picked a window style and stuck with it so that we would have a single
window manager and a single set of widgets — as every other window
system does — although it’s much too late now for that.

Opening a new window

When you run a new X program, generally speaking, it opens a new window.
In some cases, you want to tell a program that’s already running to open
another window (another file for a word processor, for example), although
the way you do that is specific to each program. You have to read the
manual (gasp!) for the program.

You usually have at least one terminal window running. A terminal window
isn’t as sinister as it sounds: It’s a window that acts like a terminal. The
usual program is called xterm; it acts much like a DEC VT100 terminal. Most
systems also have a modified terminal program that acts like the computer
maker’s favorite terminal. Hewlett-Packard systems have hpterm, for
example, which acts like an HP terminal, and some PC UNIX systems have
xpcterm, which acts like a PC console. For most purposes, all these terminal
programs act the same. They start up by running a UNIX shell, and you type
commands just as we describe in this book.

b5

46 Part Il: Some Basic Stuff

How do | start Motif, anyway?

You may think that this question would be a
simple one to answer, but, because UNIX is
involved, it's not. The short answer is “Run
mwm” (the Motif Window Manager), although
that technique is not useful because you have
to run mwm at the right time and place.

If you're lucky, your system manager will have
set up everything for you automatically. If
you're on an X terminal or a workstation run-
ning xdm (the X Display Manager), X is already
running when you sit down and waits for you
to enter your username and password, and
Motif starts as soon as you log in.

The next best thing is that you're at a worksta-
tion that has been set up to run X after you log
in so that X and Motif start automatically when
you log in.

Failing that, you have to start X and Motif your-
self after you log in to UNIX. The two most
common start-up commands are startx and
xinit.f you're not sure which one to use, try
them and see what happens. What should
happen is that your screen goes kerflooie! for
a few seconds when it switches from old,
dumb, terminal mode to new, cool, graphical X
mode; a few windows appear, running xterm
(the dumb terminal emulator that runs under
X); and Motif starts and draws attractive bor-
ders around all the windows.

If none of those things works, we've run out of
ideas, and you have to ask your local expert
how to start X and Motif on your computer or X
terminal.

You can use one of two ways to start a new program that opens a new
window: the GUl-oriented, user-friendly way and the easy way.

Follow these steps for the GUl-oriented, user-friendly way:

1. Move the cursor so that it’s not in any of your current windows.

2. Click the Menu mouse button.

This button is the last one (the rightmost button unless you have a left-

handed mouse) in OpenLook and the first button otherwise.

3. Drag the mouse up and down the menu that pops up until you find

the program you want.

4. Let go of the button.

Sometimes you have nested menus: When you pick an item from the
first menu, a second menu pops up, and you must pick an item there

too.

The easy way to start a program has only one step:

1. Go to a terminal window and type the name of the program you want

to run.

Chapter 4: Opening Windows on UNIX

About your mouse

Your mouse (or mouse-like thing) has some
buttons on it. Take a moment to count the but-
tons. Finished counting? (How long could it
have taken?) We hope that you found three
buttons. If you found only two buttons, you
have a problem because most X programs
were written with three-button mice in mind

and don’t work well with two-button mice.
Some X servers can be configured to enable
you to get to all the X features by using only
two buttons, although it'’s much easier to get a
three-button mouse. We've found some per-
fectly usable ones at our local computer store
for $10 or less.

b7

This approach is the same one you use to run any other program or to give a
command. To display another terminal window, type xterm or the name of
the terminal program you use.

Then you have the issue of where on-screen the new window appears. Some
programs and window managers have strong opinions of their own, and the
new window appears wherever the program or window manager thinks that
it should. With other, less opinionated programs, you make the call: A
ghostly window that appears floats near the middle of the screen. You move
the ghost around with the mouse and click when the window is where you
want it. At that point, the ghost materializes into the regular window. This
latter scheme is usually more convenient because the locations the opinion-
ated programs choose for window placement are rarely where you want
them. Beware of one thing, though, while the ghost is on-screen: All other
windows are frozen. If you leave the ghost on-screen for a long time (while
you're at lunch or overnight), all the others can become rather constipated
waiting for the screen to unfreeze so that they can update their windows. If
you're using Motif, your local guru can switch your system between opinion-
ated mode and floating-ghost mode.

Some systems have desktop manager programs (unrelated to window
manager programs) that attempt to make handling programs and files easier.
Desktop managers have sets of icons you click to start common programs.
They enable you to click filenames to edit the file, for example — sort of like
the Macintosh Desktop. Opinions vary on how useful these desktop manag-
ers are. We haven’t been crazy about them, although it’s worth trying them
for a few minutes because some people find them much easier to use than
menus and shell commands.

48 Part ll: Some Basic Stuff

p——w— |
Figure 4-4:
Icons are
windows in
a miniature
disquise.
[l . o 1]

lcon do this with a picture

GUIs are crazy about pictures (they're graphical, after all), especially cute,
little ones. The cutest, littlest ones you run into are called icons. An icon is a
little picture in a little box on-screen that represents a window. When you
tell X Windows to “iconify” a window, the window disappears and an icon
remains. When you double-click (or single-click if you’re not using Motif) the
icon, the window comes back just as it was before. Being able to reduce
windows to icons enables you to shove programs out of the way and not
lose what you were doing — one of the best things about window systems.
Figure 4-4 shows a pair of icons, one for an e-mail program and one for a
terminal program. If new mail arrives, the little flag on the mail icon flips up,
which is almost useful enough to make up for its X-treme cuteness.

HRIL

&N A

Window wrangling a la Motif

Motif (or, more particularly, the Motif window manager) draws a border
around every window on your screen, as shown in Figure 4-5. The border
gives you considerable control over the window, enabling you to move it,
hide it, change its size, and perform other tasks.

The borders of some windows are missing some or all of the buttons we
discuss in this section. That’s because not all windows allow all functions. If
the button’s not there, you can’t do what it would have done anyway.

You frequently will find that you don't like the way the windows on your
screen are arranged. You can do lots of things to alleviate this problem and
simultaneously waste lots of time. We have found that, by giving your
dedicated attention to window management, you can spend the entire day at
the computer apparently working but not accomplishing anything. Because
a little rearrangement is inevitable, the following sections are thumbnail
sketches of what you can do and how to do it with Motif:

I ~ Change the layering. Change which windows are in front of other
windows, much like shuffling the papers in the pile on your desk.

© Unless you're a masochist, you want the active window (the window
you're using) to be the one in front.

Chapter 4: Opening Windows on UNIX b 9

Window menu Title area

— Maximize

— Border

L |
Figure 4-5:
A typical
Motif
window.

{17 o ————

I v Move windows around the screen. This process is even more similar
§ to shuffling the papers on your desk.

v Turn windows into icons and vice versa.

1 Change the size of windows. Create larger areas for long files you're
editing, for example.

Switching and layering your windows

Suppose that you have two or three windows on-screen. How do you tell
UNIX which window you want to use? The answer is (wait, no — how did
you know that this answer was coming?) it depends. In line with the standard
X rule of never making up its mind about anything, you can switch windows
in two different ways:

1 Click-to-type, or explicit focus: Move the mouse cursor to the window
you want to use, and click the mouse in it somewhere. The window
moves to the front (any overlapping windows drop behind it so that
you can see the entire window).

” Move-to-type, or pointer focus: Move the mouse cursor into the
window you want to use. Even though the window may be partially
obscured by other windows, it becomes active. You can tell when a
window is active because the border around it changes color. Click the
window’s title bar if you want to move it to the front. Motif also enables
you to move a window up front like this: Move the cursor into the
window, hold down the Alt or Meta key, and press F1.

50

Part ll: Some Basic Stuff

A\

If you have to “click to type” and hate it — or don’t and really want to — a
guru skilled in the ways of X (naturally called an X-pert) can change some
parameters and turn “click to type” on or off. We recommend that you live
with whatever you have. So many changeable parameters are available that,
after you begin fiddling with them, it can become X-asperating to figure out
X-actly how your X-pert left them, and you will utter an X-cess of X-pletives.

You can tell which is the active window because the Motif window manager
changes the color of its border to a distinctive darker color. The Motif
standard window-switching rule is click-to-type.

“Where, oh, where has my window gone?”

In Motif, you put the cursor on the title bar, press the first mouse button,
and drag the window to where you want it (you move the window as you
hold down the mouse button). This action also brings the window to the
front because you use the same button to do that.

You can move windows so that they are partially off the edge of the screen,
sort of like pushing papers to the side of your desk so that they hang over
the edge (except that windows are less likely to fall on the floor). This capa-
bility is sometimes useful if the interesting stuff in the window is all at the
top or all on one side.

Stashing your windows

The title bar of the window has on it little buttons you can click. Near the
right of the title bar is a little box that contains a small dot; when you click
it, you iconify the window; that is, the window turns into an icon.

To get the window back, double-click the icon with the first mouse button.

Icons normally appear in the lower-left corner of the screen, although you
can move them around by dragging the icon around with the mouse. After
you’ve moved an icon, if you restore the window and then re-iconify it, the
icon reappears where you left it. You can lay out the icons to your taste by
iconifying every window on-screen, moving the icons to tasteful positions,
and then restoring the ones you want to use.

Curiouser and curiouser: Changing window sizes

The last little bit of window magic involves changing window sizes. Motif
has gone to a great deal of trouble to let you change the size of your win-
dows, which tells us that they gave up trying to make them the right size in
the first place. Oh, well. Little “grab bars” are in each corner of most win-
dows. (The few windows you can’t resize don’t have grab bars.) You move
the cursor to one of the grab bars, click the first mouse button, drag the
corner to where you want it (make the window larger or smaller), and
release the button. Then do it again two or three times because you never

Chapter 4: Opening Windows on UNIX 5 7

WING/

get it right on the first try. Motif also has grab bars (thin, gray borders) on
the top, bottom, and sides of every window, which enable you to change the
height of a window without changing the width or vice versa.

Some programs have strong feelings about how big their windows should
be. In some cases, they don’t let you shrink the window to less than a
minimum size. In other cases, you can’t change the size. For these programs,
attempts to resize just don’t work. You can click and drag the borders all
you want, but nothing moves.

Motif has a shortcut to enable you to expand a window to fill the entire
screen. Click the little box-in-a-box at the right end of the title bar. If you do
the same thing again, the window shrinks back to normal size.

In practice, we rarely blow up windows to full-screen size because few UNIX
programs take advantage of the entire screen. The full-screen option was
much more important when screens were smaller.

Getting vid of windows

Your screen often becomes cluttered with windows you no longer need. You
already know how to turn them into icons to get most of the screen space
back, but sometimes you just want to make the program go away.

Remember that, if 57 different programs are running, even if most of them
are snoozing behind their icons, it can put enough of a load on your com-
puter to slow down the ones you want to use.

Most programs have a natural way to exit. In terminal windows, you log out
from the shell by typing exit or logout in the terminal window. Real windows-
oriented programs usually have menus of their own with a Quit or Exit option
that cleans up and makes the program stop. Because some programs just
won'’t die, however, you have to take drastic measures.

In Motif, click the little bar in the box at the left end of the title bar; a menu
of window operations pops up, as shown in Figure 4-6. The Restore, Move,
Size, Minimize, and Maximize choices are equivalent to the border-clicking
techniques we just discussed. (Minimize is Motif-ese for “iconify.”) The two
remaining options can be useful, though. The Lower option pushes the
window behind all the rest so that it doesn’t obscure any other windows.
That option is useful when you want to work on something else for a while.
Close closes the window and usually also ends the program that started it.
This option can be handy for programs that get stuck or don’t have any
normal way to exit.

52

Part ll: Some Basic Stuff

i
Figure 4-6:
The Motif
window
menu.

E\\3

NG/
vQ‘“‘ 2
&

Motif offers a set of keyboard equivalents for mouse-haters. To display the
window menu, press Shift+Esc or Alt+spacebar. Then either press the cursor
keys and Enter to choose one of the entries, or press the underlined letter
for the entry you want. For Move and Size, you press the cursor keys to
move or resize the window and then press Enter when you’re finished.

You can also use the Alt+key equivalents on the menu, such as Alt+F9 for
Minimize. If your keyboard has two Alt keys (as most PC keyboards do), you
may find that the two Alt keys work differently. Individual programs recog-
nize the left Alt key on our system, and the Motif Window Manager recog-
nizes the right Alt key.

Motif uses confusing and inconsistent names in the window-operations
menu. Close destroys the window and the program, and Minimize turns the
window into an icon.

Motif widgets on parade

The Motif toolkit is a set of programming tools with prewritten bits of
program that programmers can use to build their Motif applications. That
information wouldn’t be very interesting except that the bits of program it
includes are the ones that draw stuff on-screen. These so-called widgets
include the usual things that windowing programs use, such as menus,
pushbuttons, text boxes, and scroll bars. Motif widgets have become a de
facto standard for X programs and have sprouted up in seemingly every
application written for X Windows. Even programs that use something other
than Motif widgets often make them look just like Motif programs, with the
dull gray menus and buttons UNIX users have gotten used to.

This section quickly describes the most common widgets. Because they’re
all designed to be easy to use, you can easily — even without reading the
instructions — guess how they work.

Menus

Figure 4-7 shows the main window from the MotifBurger sample application
that comes with Motif, with one of its pull-down menus selected. You make
choices from a Motif menu in an obvious way: Click the place you want on

Chapter 4: Opening Windows on UNIX

Figure 4-7:
An
application

menu. §

the menu bar at the top of the application’s window. If the menu has sub-
entries (as most do), the next-level menu drops down. Click the entry you
want.

You can also drive Motif applications from the keyboard. To choose a menu
entry, hold down Alt (the left Alt key if you have two) and press the under-
lined letter in the menu entry. If submenus are available, press the up- and
down-arrow keys to move to the entry you want, and then press Enter to
select or Esc to ignore.

Occasionally, you see a couple of other minor variants of menus. Tear-off
menus are similar to pull-down menus except that they have a dotted line
across the top when you pull them down. If you click the dotted line and
drag the menu to a convenient place, it stays there indefinitely so that you
can use it whenever you want. We don't find this feature useful because it
clutters the screen. (The old Motif archrival OpenLook had tear-off-like
menus called pushpins, and Open Look proponents trumpeted them as a major
advantage. Motif probably added them as much to shut up the competition
as because anyone really wanted them.) Sometimes, pop-up menus also
appear when you press the right mouse button, the way the root menu
appears when you click outside any window. Pop-up windows work just like
pull-down windows after they've popped up.

Radio buttons

Figure 4-8 shows a window from the MotifBurger sample application. This
window is somewhat awfully designed because it’s full of way too many
different kinds of widgets. It was intended as a demonstration of the various
kinds of widgets, however, which it does just fine.

Beginning at the left side of the figure, the first type of widget you encounter
is the radio button. The Hamburgers Rare/Medium/Well Done box is called a
radio button box because it sort of resembles the buttons on a car radio.
You can click any one of the buttons to select it, and you can select only one
radio button in a group.

53

54

Part II: Some Basic Stuff

Figure 4-8:
A bunch of
widgets.

Dismiss

You can recognize radio buttons because they’re shaped like little diamonds.

You're supposed to be able to select radio buttons by holding down the Alt
key and pressing the underlined letter, although in our experience, that
doesn’t always work. Use your mouse to be sure.

Toggle buttons

The list of hamburger condiments, from Ketchup to Mayonnaise, shown in
Figure 4-8 are toggle buttons. When you click one, it turns on if it was off, and
it turns off if it was on — sort of like a toggle switch. Unlike radio buttons,
any or all of the toggle buttons in a group can be selected at a time.

You can recognize toggle buttons because they’re little squares.

Scales or sliders

The hamburger Quantity indicator shown in Figure 4-8 is a scale. You can
move it up or down with the mouse to control how many hamburgers to
order. Although this scale looks silly, in some cases scales are just what you
want (the volume control on a sound application, for example).

Scales can be laid out either up and down or left and right. They work the
same either way.

Option menus

The fries Size control shown in Figure 4-8 is an option menu. When you click
it, the complete set of options appears, as shown in Figure 4-9. Move the
cursor to the one you want and click. The menu shrinks back down and
displays the selected option.

3

Chapter 4: Opening Windows on UNIX

L
Figure 4-9:

How many |
fries would |

you like
with that?

Text boxes

The little Quantity box shown under Fries in Figure 4-8 is a text box. Click the
cursor there, and then type the number of orders of fries you want. The
usual text-editing characters, such as arrow keys and Backspace, work.

This text box is the smallest one we’ve ever seen. (Hey, it’s just a sample
application.) Most text boxes are large enough that the editing keys are
useful. Many text windows also have scroll bars, which we discuss in the
following section.

Secrollable lists and scroll bars

In Figure 4-8, the list of drinks starting with Apple Juice is a scrollable list.

You can move the list up and down in its window by clicking the scroll bar to
the right of the window. The little arrows move the list up and down a small,
fixed amount. You can also drag the block between the arrows up and down

to move the list directly.

How do | leave Motif, anyway?

This question is only slightly less complicated
than the one about starting Motif. As usual,
you are the victim of a blizzard of options. Here
are some likely possibilities:

1~ Logout by leaving the Motif Window Man-
ager. In this case, move the mouse cursor
outside any windows, click and hold the
right mouse button to display the Motif
root menu, slide the cursor down to Quit,
and release the button. Motif displays an
incredulous little box asking whether you
really want to leave mwm. Click OK.

v+~ Log out by closing the main xterm win-
dow. The trick is to figure out which win-
dow is the main one. If one of them is

labeled Login or Console, that's it. Switch
to that window by moving the mouse to
that window and clicking the left mouse
button. Then type ex it to the shell in that
window.

When X and Motif exit, the screen usually
kerflooies! again when it goes back to dumb
terminal mode. (If your system uses the X Dis-
play Manager, your system may immediately
go back to the login screen, in which case
you're finished.) If you end up back at a shell
prompt in dumb terminal mode, you then have
to exit from that, too, by typing exit to that
shell.

55

56 Part Il: Some Basic Stuff

After you've found the item you want, click it to select and highlight it.
(We've selected Apple Juice, although our favorite is Grape Juice because it
gives us the classic cool, purple mustache.)

Pushbuttons

The other controls shown in Figure 4-8 are pushbuttons. They come in two
varieties: buttons with text and buttons with drawings. The two arrows for
the drinks quantity are buttons with drawings. The Apply, Dismiss, and
Reset buttons at the bottom of the window are buttons with text.

They all work in the same way. To select the button and do whatever the
button does, click it.

CDE: A Desktop for All Seasons

If you've ever used a Macintosh or one of those other Windows computers,
then you know what a desktop is. When you start up a computer with the
Macintosh or Windows OS installed on it, slick-looking graphics and mouse-
clickable icons and menus take over your entire computer screen, giving
you a common workspace for all your programs and windows. That’s the
desktop.

The desktop gives you a slew of ways to keep track of your files and get your
work done efficiently and painlessly. You can open multiple windows and
switch between them with the click of a mouse button. You can do spiffy
stuff such as drag and drop to share files and information among your
programs. Graphical tools that come with the desktop give you views into
the operating system, your files, and your network (if you're on one).
Additional graphical tools let you do neat stuff, such as send and receive
mail, manage print jobs, and change the way your desktop looks.

Although window managers (such as Motif) have been around for quite
some time, real integrated desktops like the ones built into Windows and
the MacOS are just beginning to catch on in the UNIX world. Now you can
choose from a whole crop of UNIX desktops. (See the sidebar “A desktop by
any other name,” later in this chapter, for an overview.) The most widely
used UNIX desktops seem to be those based on something called the Common
Desktop Environment, or CDE. CDE is the result of an unprecedented outbreak
of cooperation among a number of UNIX vendors — including Hewlett-Packard,
IBM, Novell, and SunSoft — and the Open Software Foundation (the same
people who brought you Motif, remember?).

CDE desktops are not quite as simple, of course, as their Windows and
MacOS counterparts. The Mac and Windows desktops are developed and
sold only by Apple and Microsoft, respectively. Each company that sells CDE

along with UNIX, on the other hand, offers a slightly different version of CDE

Chapter 4: Opening Windows on UNIX

developed exclusively for its own version of UNIX. Unlike the Mac and
Windows desktops, which are built in to the operating system and appear
whenever you start up your computer (like it or not), CDE desktops are
optional. You don’t have to use CDE to use UNIX, and you (or, more likely,

your system administrator) can decide whether to have CDE start up when

you log in.

A desktop by any other name

Integrated desktops for UNIX are beginning to
catch on, in part because they make it fairly
easy for Windows and Macintosh users to get
their bearings in the sometimes forbidding
world of UNIX. UNIX, Windows, and Mac com-
puters often happily coexist on the same net-
work, and it's a big advantage to be able to do
things in similar ways no matter which operat-
ing system you happen to be using. Another
reason for the surge in the purchase of UNIX
desktops is the migration of thousands of dis-
gruntled Windows users to Linux, the Young
Turk of the UNIX world (it's described in Chap-
ter 3). Integrated desktops ease the shift by
letting Windows defectors apply their well-
honed techniques and habits to Linux.

CDE desktops come along with the new re-
leases of many of the major versions of UNIX,
such as Solaris and HP-UX. Some companies
that don’t sell their own versions of UNIX have
also developed their own versions of CDE.
TriTeal sells the TriTeal Enhanced Desktop (af-
fectionately known as TED) for Red Hat Linux
5.1. X Inside sells a version of CDE that works
with both Linux and FreeBSD. Hummingbird
Software offers a CDE emulator for both
Windows 95 and Windows NT named Exceed.

Other, non-CDE desktops for UNIX are out
there, too:

v The K Desktop Environment, or KDE, runs
on Linux, Solaris, FreeBSD, IRIX, and HP-UX.
You can download KDE for free under the

terms of the GNU software guidelines,
from ftp://ftp.kde.org. (The K, by
the way, just stands for K.)

v+ HP-VUE (Visual User Environment) is an
alternative to CDE for HP-UX, complete
with its own window manager (VUEWM)
and distinctive GUI "look.” Why does
Hewlett-Packard feel the need to offer
both VUE and CDE desktops with HP-UX?
The best answer, as far as we can tell, is
“Because it can.”

+ Red Hat Linux comes with a bunch of desk-
tops, all built on some version of FYWM,
for the ultimate in GUI confusion. Depend-
ing on which version of Linux you have,
you may have a desktop (or desktops)
named TheNextLevel, Anotherlevel,
Afterstep (for a NextStep look and feel),
FVWM 95 (for a Windows 95 loak and feel),
or Lesstif WM.

v The Caldera Linux distribution includes its
own desktop, named the Desktop by some
immortal wag in the Caldera marketing
department.

Others — many others — are available, you
may be sure. Luckily for us mere mortals, all
desktops have the same purpose and pretty
much the same sets of tools and utilities.
Which desktop you end up with is likely deter-
mined as much by personal preference as by
which flavor of UNIX you happen to be using.

57

58

Part ll: Some Basic Stuff

To enhance the confusion to acceptable UNIX-like levels, CDE is infinitely
customizable by system administrators and UNIX hackers. You can make far-
reaching changes to CDE by switching the CDE default window manager
from DTWM to FVWM, for example. You can tell CDE to launch various
programs automatically when you log in. You can change the way the
keyboard behaves — and so on and so on, ad nauseum.

The good news is that the similarities among versions of CDE far outnumber
the differences; after all, it’s supposed to be a common desktop environment.
In practice, and discounting any bizarre modifications an overzealous UNIX
system administrator may have made, using one version of CDE is very
much like using another.

The following sections give you some idea of how to use the Common
Desktop Environment. In the interest of keeping things as simple as possible,
we don’t worry about which version of CDE you’re using, and we figure that
you'll make whatever adjustments are necessary to account for the idiosyn-
crasies of your configuration.

Desktop, here we come!

Bringing up the desktop is much like starting Motif, a subject we cover in
the sidebar “How do I start Motif, anyway?” earlier in this chapter. If you're
lucky, your system administrator has set up your computer so that the CDE
comes up when you turn on your computer or log in. If not, you have to
refer to your local UNIX guru or system documentation to find out which
command to run in which directory.

No matter what the start-up details are, the desktop heralds its imminent
appearance by making your computer screen flicker like Dr. Frankenstein’s
laboratory on a stormy night and then replacing whatever your screen was
displaying with a drab gray background, on top of which appear various
tools, toolbars, icons, and programs, depending on how your desktop is
configured. You usually see a version of the FrontPanel across the bottom
of your computer screen.

Front and center

The FrontPanel is similar to the control center for the desktop. Actually, it’s
more like the dashboard of a fancy car, which puts all the car’s doohickeys
and thingums within easy reach of the driver. As with all the elements of the
desktop, you can customize the FrontPanel. Figure 4-10 shows a typical set
of FrontPanel icons, buttons, and other clickable thingies.

Chapter 4: Opening Windows on UNIX

—]
Figure 4-10;
The
FrontPanel.
jea=]

= | 2= gy 7| = S R
ST ey i i ANy o B
U E R L ceemcesmao = = 0§

At the center of the FrontPanel are four buttons, named One, Two, Three,
and Four. These buttons let you manage as many as four workspaces. The
idea is that the desktop is in reality four times as large as your computer
screen; in other words, your computer screen shows only one-quarter of
your desktop at a time. Each quarter is a workspace. You can have different
icons, program windows, and whatnot set up in each workspace, all of which
stay put and reappear just as you left them every time you return to the
workspace. For example, you may dedicate one workspace to managing your
UNIX environment, one workspace to dealing with all your communications
(e-mail, FTP, networking), one workspace to your favorite games, and one
workspace to doing work (such as writing the definitive guide to peas and
how to eat them). Rename the workspace buttons Looks, Comms, Games,
and Peas so that you can remember which workspace is which, and then
switch among your workspaces by clicking the buttons. (We recommend
switching from Games to Peas whenever your boss comes around the
corner.)

Tools you can use

The icons to the left and right of the workspace buttons give you mouse-
click access to a typical set of CDE tools. Reading from left to right in Figure
4-10, you see icons for Clock, Group Calendar Manager, File Manager, Termi-
nal Emulator, Mail Tool, Print Manager, Style Manager, Applications Manager,
Help Viewer, and Trash.

You can open each tool or tool set by double-clicking its icon in the
FrontPanel. If the icon has a little upward-pointing triangle above it, you can
click the triangle to pop up a menu of choices (the menu slides out from
behind the FrontPanel like a window shade being drawn upward). Drag to
the choice you want, and then release the mouse button to select it. You can
close a pop-up (or slide-up) menu by clicking the square in the upper-left
corner of the menu and choosing Close or by clicking the triangle again (it
turned into a downward-pointing triangle while you weren’t looking). The
menu demurely slides down behind the FrontPanel until it disappears.
Figure 4-11 shows the menu that appears when you click the triangle above
the Applications Manager icon.

59

60

Part II: Some Basic Stuff

Figure 4-11:
Just

popped in
to see what
condition
my
condition
was in.

P e |

2iCacions
3 {ESKLIA IR 22
@i‘e:ia ton Loatrols

o

H{ {niormat iog

e |
{

7 1 4 =
i

All the standard UNIX utilities and programs described in Part III of this
book (such as find, diff, ed, vi, and emacs) get zoomy new graphical
versions in the CDE, many of which are easier to use than their command-
line equivalents (easier, that is, if you're used to using a mouse to do your
computing). In fact, CDE desktops come with so many tools and utilities that
it would take an entire book just to describe them all.

Filing without tears

The File Manager looks like the window shown in Figure 4-12, which appears
when you double-click the File Manager icon on the FrontPanel.

The CDE File Manager is much like the MacOS Finder or Windows Explorer.
You can use the CDE File Manager to browse through your files, launch
programs, and, as its name implies, manage your files (open, copy, move, or
delete them or have them over for dinner). The File Manager shows some
kind of icon for each directory and file on your computer. Directory icons
look like file folders; file icons look different depending on which type of file
it is. Figure 4-12 shows icons for seven text files, which look like pieces of
paper with writing on them (clever, no?). The icon with the runner on it
launches a program (in this case, a program named Source Safe 5.0).

The “..(go up)” icon lets you travel up the directory tree toward the root
directory. The series of folder icons at the top of the window shows your
current location (and hence the directory that contains all the stuff you now
see in the File Manager) relative to the root directory. You can jump to any
directory in the branch of the tree you're on by clicking one of these folders.

Chapter 4: Opening Windows on UNIX

File Selected VYieuw

]'JJ._'J

_1

usr

|
Figure 4-12: AN i
Show me iﬁl il
me files L 1y
some files, newercshre, txt i_gu'rce Safe 5,07 UNTITLED o
man! ||’ S—)
————r 50 Items 31 Hidden

~_export home tarascxo . >
/export/houe/ta*ascxo I e SN
=
i 1 1 1
+.{go up) bin CAPSTEST INFO
Hail WPExtractShell

Pictograms (little pictures) on the folders tell you something about the
directory’s permissions; for example, a folder showing a pencil with a line
through it means that you don’t have write permission in that directory.

You can move files and directories from one location to another by dragging
and dropping their icons. Being able to drag and drop in the File Manager
means that you can do all kinds of cool and unexpected things. For example,
you can drag a text file to the icon for the emacs editor to automatically
launch emacs and open the text file you dragged. You can add icons to the
FrontPanel by dragging them from the File Manager and dropping them on

the FrontPanel’s icon areas.

We don't want to give the impression that the
CDE brings only cosmetic enhancements to
your UNIX system. The CDE does some heavy
lifting, too. Among other features too numer-
ous to mention, the CDE gives you easy and
consistent network access, a standard way of

Not just another'pretty face

printing from any application, session man-
agement, advanced collaboration tools such
as e-mail clients and group scheduling utili-
ties, GUI toolkits, and all kinds of full-fledged
application development tools.

01

62 Part ll: Some Basic Stuff

Figure 4-13:
The Help
Viewer tells
you all
about itself.
L |

What's up, doc?

One of the most convenient, friendly, and ultimately un-UNIX-like features of
the CDE is its Help Viewer. The Viewer, as shown in Figure 4-13, is a graphical
help- and documentation-viewing program with full-fledged searching and
printing capabilities. You can view all the man pages (the online documenta-
tion, as described in detail in Chapter 27) for your version of UNIX in a
pleasant, readable format (a giant leap for UNIX-kind, as you know if you've
ever tried to make extensive use of traditional UNIX man pages) and journey
hither and yon by means of an expandable and collapsible outline. The
Viewer can even handle context-sensitive help (in other words, make a game
attempt to guess exactly what information you need at any given moment so
that you don’t have to go hunting for it).

File Edit Search HNavigate ﬁelpl

Volume: Help - Top Level

Welcome to Help Manager, | akioack
C Desktop Envi Historg::_j
Overview and Basic Desktop Skills ‘

Index,..
Top Level |
Wi At SRl o

Welecome to Help Manager

!
Each of the titles listed below represents a product family that has installed and |
registered its online help. Each title (and icon) is a hyperlink that lists the help within the
faraily.

- To display & list of the help available for a product family, choose its dtle

(underlined text) oricon.
- Within a product family, find the help you want to view, then choose its title.
- If you need help while using help windows, press F1.

Common Desktop Environment

e Overview and Basic Desktop Skills * Using Help * Audio * File
M Manager * File Properties * Front Panel * Application Manager * Print

Manager * Style Manager * Mailer * Image Viewer * Text Editor *
L====.' Calendar Manager * Icon Editor * Terminal Emulator * Create Action *
Login Manager and Environment Variables

Overview and Basic Desktop Skills

Overview and Basic Desktop Skills for the Common Desktop
Environment.

fashionable

Have it your way

Chapter 4: Opening Windows on UNIX

Customize, customize, customize! One of the joys of using the CDE is your
ability to change the way your desktop looks and behaves by using the Style
Manager (as shown in Figure 4-14). Use up all that pesky extra time by
changing the colors of various window elements and text; choosing pretty
backdrops to replace your desktop’s monotonous gray background; adding
pizzazz and generally making your desktop unusable by choosing decorative
fonts, reconfiguring your keyboard, changing what the various buttons on
your mouse do; and making a thousand other cunning modifications to your
computing environment. Go ahead — indulge yourself. You haven't lived
until you've spent an entire afternoon designing a desktop scheme that
expresses your innermost desires (especially when you should have been

doing something else).

Figure 4-14:
The Style

Manager,
for a

W)
1]

Jaticdpnn

desktop.

Talkin’ trash

The Trash tool is a great boon to UNIX users
susceptible to blowing away important files
with unforgiving UNIX commands such as rm.
When you issue the rm command or one of its
brethren, the files you deleted are gone, plain
and simple. When you're using the File Man-
ager on the desktop, on the other hand, files
you delete get put in a virtual trash barrel,
where they hang around until you tell UNIX to
get rid of them. If you delete a file by mistake,
you can bring the file back to life by following
these steps:

1. Double-click the Trash tool icon (the last
icon on the right end of the FrontPanel, as
shown in Figure 4-10).

2. Root arcund in the trash until you find the
file.

3. Drag the file from the trash and drop it
back into an appropriate location in the
File Manager.

Remember to empty the trash every now and
again, or else you eventually run out of disk
space.

64

Part 1l: Some Basic Stuff

Desktop, there we go!

The easiest way to get yourself out of the desktop is to click the Exit
thingum near the workspace buttons on the FrontPanel, which drops you
unceremoniously into good old traditional UNIX character mode.

Terminal Happenings

Even though X Windows enables you to run all the coolest, awesomest,
newest, most graphicalest programs, guess which program people use the
most? It’s called xterm, and all it does is act like the kind of VT100 dumb
terminal that window systems are supposed to save us from. Such are the
ways of progress.

Click, click

One place where xterm acts a little better than the dumb terminal it pur-

ports to emulate is in mouse handling. You can select text with the mouse
and then paste the selected text into either the same or a different xterm

window.

To select some text, move the mouse to the beginning of the text, press
down the first (left) mouse button, and move the mouse to the end of the
text. As you move the mouse, the selected text changes color. When you’ve
selected it all, let go of the mouse button. Normally, xterm selects text
character-by-character; if you double-click rather than just press the mouse
button, however, it selects by word, and if you triple-click, it selects by line.
Users who don’t believe in walking and chewing gum at the same time have
an alternative way to select text: Move to the beginning of the selection,
click the left button, and then move to the end of the selection and click the
right button.

Either way, after you've selected the text, move the mouse to the window
where you want to paste it and click the middle button. If, after you've
selected the text, a program erases the window, you can’t see the selection
anymore although it’s still there and you can still paste it.

One last stupid xterm trick

If the text in your xterm window is insufficiently or excessively legible, you
can make the type larger or smaller. Hold down the Ctrl key and press the
right mouse button to display the xterm VT Fonts menu, from which you
can select font sizes ranging from Unreadable to Huge.

Chapter 5
Files for Fun and Profit

BN B BE B AR B B RE B B OBE BE OBE BE BE AR B AR AR IR BN B BE BN BN BN B IR IR IR BE B N B R B N AN J

In This Chapter

» Listing information about files

Showing who has permission to use files

» Duplicating a file

Erasing a file

- Renaming a file

- Looking at what’s in a file

» Printing a text file

Giving a file to someone else

LK B 2 BN BN BE 3R BN AR BN B O B BN BE AR B B IR B AR B BN IR BN B N B BN IR B R R R AR IR B B BN N IR N A J

A file is a bunch of information stored together, such as a letter to your
mom or a database of customer invoices. Every file has a name. You
end up with tons of them.

This chapter explains how to work with files, including getting rid of the
ones you no longer want.

As a reminder, you must log in (as described in Chapter 1) before you can do
any of the nifty things we talk about in this chapter. When you see the UNIX
prompt (% or $), you're ready to rock and roll.

What Files Do You Have?

To see a list of your files (actually, a list of the files in the working directory,
which Chapter 6 covers), type Is and press Enter. (This is positively the last
time we nag you to press Enter.)

This command stands for list, but could the lazy typists who wrote UNIX
have used the other two letters? No-0-0-0-0. This command lists all the files

66

¥

Part ll: Some Basic Stuff

in your working directory. (Chapter 6 discusses directories and how to make

lots of them.) The 1s command just shows the names of the files in alpha-

betical order, like this:

bin/ budget-97 budget-98 budget-99 daveg draft

jordan Mail/ meg

news.junk zac

In some Linux systems, if the directory contains subdirectories, the

subdirectory names appear in a different color if your screen handles
colors, which is very handy. In BSD UNIX, subdirectory names also have a
slash after them. (Chapter 6 talks about subdirectories, if you’re wondering

what we're talking about.)

Let’s see the nitty-gritty details

For more information about your files, use the -1 option (long form listing):

1s -1

That’s a small letter el, by the way, not a number one. This option tells 1s to
display tons of information about your files. Each line looks like this:

-rw-r--r-- 1 johnl users

250 Apr

6 09:57 junk3

To switch or not to switch?

Lots of UNIX commands have options. (They
are also called switches because you switch
the options on and off by typing or not typing
them when you type the command. True geeks
callthem flags.) Options make commands both
more versatile and more confusing. Probably
the most widely used option is the -1 option
for the 1s command, which tells 1s to display
lots of information about each file. When you
type a command with one or more options,
keep this list of rules handy:

1 Leave a space after the command name
(the command 15, for example) and be-
fore the option (the -1 part).

+* Type a hyphen as the first character of the
option (-1, for example).

v Type a space after the option if you want
to type more information on the command
line after the option.

v If you want to include more than one op-
tion, type another space, another hyphen,
and the next option. You can usually string
multiple options together after one hy-
phen; for example, -al means that you
want option a and option 1.

Chapter 5: Files for Fun and Profit 6 7

Later in this chapter, in the section “Who can do what?” we explain all the
information in this listing. For now, just notice that the right-hand part of the
line shows the size of the file (250 characters, in this example), the date and
time the file was last modified, and the filename.

Matking files come out of hiding

You may have more files in your directory than you think. UNIX enables you
to make things called hidden files, which are just like regular files except that
they don’t appear in normal 15 listings. It's easy to make a hidden file — just
start its filename with a period.

You can see your hidden files by typing
1s -a

To see all the information about your hidden files, type
1s -al

This command combines the -a and -1 options so that you see the long
version of the complete listing of files. You could get the same thing by

typing
1s -a -1

but that would require typing an extra character and an extra space, an
anathema to lazy UNIX typists.

Roger, 1 Copy

You can make an exact duplicate of a file. To do it, you must know the name
of the file you want to copy, and you must create a new name to give to the
copy. If a file contains your January budget (called budget . jan, for ex-
ample) and you want to make a copy of it to use for the February budget
(to be called budget. feb, for example), type this line:

cp. budget.jan budget.feb

The lazy typists strike again. Be sure to leave spaces after the cp. command
and between the existing and new filenames. This command doesn’t change
the existing file (budget . jan); it just creates a new file with a new name and
with the same contents.

68 Part ll: Some Basic Stuff

A good way to lose some work

What if a file named budget . feb already exists? Tough cookies! UNIX blows
it away and replaces it with a copy of budget. jan. It truly is an excellent
idea to use the 1s command first to make sure that you don’t already have a
file with the new name you have chosen.

In Linux and UNIX System V Release 4, you can use the -i switch to ask cp
to inform you whether a file with the new name already exists. If it does, the
-1 switch asks you whether to proceed. If you have this version of UNIX,
type cp -i rather than just cp to use this nifty little feature.

If all goes well and cp works correctly, it doesn’t show you any message.
Blessed silence on the part of UNIX usually means that all is well. You should
use the 1s command to check that the new file really does exist, just in case.

What’s in a name?

When you create a file, you give it a name. UNIX has rules about what makes

a good filename:

1~ Filenames can be pretty long; they’re not limited to eight characters

and a three-character extension, like some operating systems we could

name. In older versions of UNIX, the limit is 14 characters for a

. filename; newer versions have a huge limit — in the hundreds of

- characters — so you can call a file Some_notes_I_plan_to_get
around_to_typing_up_eventually_if_I Tive that_long.

. v Don’t use weird characters that mean something special to UNIX or
4 some shell you may encounter. Stay away from these characters when
. you name files:
& dwd Vo
2 e
L1 # | &
() $ 7 ~

Stick mainly to letters and numbers.

-+~ Don’t put spaces in a filename. Although some programs let you put

“ them in, spaces cause nothing but trouble because other programs
simply cannot believe that a filename may contain a space. Don’t
borrow trouble. Most UNIX people use periods to string together words
to make filenames, such as budget. jan.98 or pumpkin.soup. Under-
scores work too.

+»* UNIX considers uppercase and lowercase letters to be completely
different. Budget, budget, BUDGET, and BuDgEt are all different
filenames.

[N S L B ROt

Chapter 5: Files for Fun and Profit 9

Nuking Files Back to the Stone Age

\NG/
Qg\\\

You can also get rid of files by using the command the lazy typists call rm.
To erase (delete, remove — it’s all the same thing) a file, type

rm budget.feb

If all goes well, UNIX reports nothing and you see another prompt. Use 15 to
see whether the rm command worked and the file is gone.

Watch out! Under most circumstances, you have no way to get a file back
after you delete it.

To be safe, you can use the -1 option to ask rm to ask you to confirm
deletion of the file. This is a particularly good idea if you use wildcards to
delete a group of files all at one time (see Chapter 7 for more info about
wildcards). For example, if you type

rm -1 last-years-budget
UNIX asks:
rm: remove 'last-years-budget'

Press Y to delete the file or N to leave it alone.

Big, big trouble

If you delete something really, really important and you will be called on to
perform ritual seppuku if you can’t get it back, don’t give up hope. Your
local UNIX guru should make things called backups on some regular basis.
Backups contain copies of some or all of the files on the UNIX system. Your
files may be among those on the backup. Go to the guru on bended knee and
ask whether the file can be restored. If the file wasn’t backed up recently,
you may get an older version of it, but hey — it’s better than the alternative.

Even before you get yourself into this kind of pickle, you may want to ask
your UNIX expert to confirm that regular backups are made. Make sure that
your important files are included in the backups. If no one is making regular
backups, panic! This is not a safe situation. You had better talk to your
system administrator about getting a tape backup system.

70

Part ll: Some Basic Stuff

\\3

Good housekeeping

You should get rid of files you no longer use, for several reasons:

+» Having all kinds of files lying around becomes confusing, and it’s
difficult to remember which ones are important.

§
I 1~ Useless files take up disk space. Whoever is in charge of your UNIX
g system probably will bother you regularly to “take out the garbage,”
! thatis, to get rid of unnecessary files and free up some disk space.

On the other hand, making extra copies of files can be a good idea. If you
have been working on a report for three weeks, making an extra copy every
day or so isn’t a bad idea. That way, if you make some revisions that, in
hindsight, were stupid, you can always go back to a previous revision.

What's in a Name (Reprise)

Having given a file a name, you may want to change it later. Maybe you
spelled it wrong in the first place. In any case, you can rename a file by using
the mv (lazy typist-ese for move) command.

Suppose that you made a file called bugdet.march. Oops — dratted
fingers. . . . Type the following line to correct the error in the filename:

mv bugdet.march budget.march

After mv, you type the current name of the file and then the name you want
to change it to. Note that it can be harder to retype the same typo than to
type the name correctly!

Because you can’t have two files with the same name in the same directory,
if a file already has the name you want to use, mv thoughtfully blows away
the existing file (probably not what you want to do). Type carefully. Linux and
SVR4 users canuse mv -i (like cp -1) to prevent inadvertent file clobbering.

Want to hide a file so that it doesn’t appear in your directory listing? Use a
period (.) as the first letter of the filename. To see all your files, including
hidden files, type

1s -al

Chapter 5: Files for Fun and Profit

Looking at the Guts of a File

Although you have been slicing and dicing files for a while now, you still
haven’t seen what'’s inside one. Two basic types of files exist:

v Files which contain text that UNIX can display nicely on-screen
v Files which contain special codes that look like monkeys have been at

the keyboard when you display the files on-screen

The first type of files are called text files. The second type is composed of
spreadsheset files, database files, program files, and just about everything
else. Text editors make text files, as do a few other programs.

To display a text file, type this line:
cat eggplant.recipe

If you want to see the guts of a file that isn’t named eggplant. recipe,
substitute your file’s name. The cat stands for catalog, or maybe catenate —
who knows? We're surprised that the lazy typists didn’t call it something like
g.If you try to use cat with a file that doesn’t contain text, your screen
looks like a truck ran over it — but you won’t hurt anything. Sometimes the
garbage in the file can put your terminal in a strange mode in which charac-
ters you type don’t appear or appear as strange Greek squiggles. See
Chapter 22 to learn how to “un-strange” your terminal.

If the file is long, the listing goes whizzing by. (You learn how to look at the
file one screen at a time in Chapter 7.) To see just the first few lines of the
file, you can type this line:

head eggplant.recipe

Most versions of the head command display the first ten lines.

You can ask UNIX to guess at what’s in a file, by using the fi1e command. If
you type

file filename

(replacing f71ename with the name of the file you're wondering about),
UNIX takes a guess at what'’s in the file, by looking at it. It says something
like this:

letter.to.jordan: ascii text

or this:

unix4d: directory

/1

72 Part Il: Some Basic Stuff

Is This a Printout | See before Me?

-

If a file looks okay on-screen when you use the cat command, try printing
the file. If you use UNIX System V, type this line to print your famous egg-
plant dish:

1p eggplant.recipe
If you use BSD UNIX or Linux, type

1pr eggplant.recipe
Assuming that you have a printer that’s hooked up, turned on, and has

paper and that your username is set up to use it, the eggplant.recipe file
prints. If it doesn’t, see Chapter 9 to straighten things out.

Who Goes There?

Unlike some operating systems we could name (such as . . . oh, Microsoft
Windows, f’rinstance), UNIX was designed from the beginning to be used by
more than one person. Like all multiuser systems, UNIX keeps track of who
owns what file and who can do what with each file. Permissions attached to
each file and directory determine who can use them.

Permissions come in three types:

'+~ Read permission: Enables you to look at a file or directory. You can use
cat or a text editor to see what’s in a file that has read permission. You
also can copy this type of file. Read permission for a directory enables
you to list the directory’s contents.

1 Write permission: Enables you to make changes to a file. Even if you
can write (change) a file, you can’t necessarily delete it or rename it; for
those actions, you must be able to write in the directory in which the
file resides. If you have write permission in a directory, you can create
new files in the directory and delete files from it.

+ Execute permission: Enables you to run the program contained in the
file. The program can be a real program or a shell script. If the file
doesn’t contain a program, execute permission doesn’t do you much
good and can provoke the shell to complain bitterly as it tries (from its
rather dim point of view) to make sense of your file. For a directory,
execute permission enables you to open files in the directory and use
cd to get to the directory to make it your working directory.

Chapter 5: Files for Fun and Profit

Rock groups, pop groups,
and UNIX groups

Every UNIX user is a member of a group. When the system administrator
created your username, she assigned you to a group. To see which group
you're in, type id.

id
You see something like this:

uid=113(margy) gid=102(guest) groups=102(quest),101(book), 103(cheese)

Groups usually indicate the kind of work you do. UNIX uses groups to give a
bunch of people (the accounting department, for example) the same permis-
sions to use a set of files. All the people who work on a particular project are
usually in the same group so that they can look at and perhaps change each
other’s files.

In Linux and BSD, you can be in several groups at a time, which is handy if
you're working on several projects. To find out what groups you're in, type
groups.

That’s mine!

Every file and directory has an owner and a group owner. The owner is
usually the person who made the file or directory, although the owner can
sometimes change the ownership of the file to someone else. The group
owner is usually the group to which the owner belongs, although the owner
can change a file’s group owner to another group.

If you use Linux or System V, you can change who owns a file with the chown
command (described later in this chapter).

Who can do what?

To see who can do what to a file, use the 1s command with the -1 option.
Type this line:

1s -1 myfile

You see something like this:

-rw-r--r-- 1 margy staff 335 Jan 22 13:23 myfile

/3

74 Part Il: Some Basic Stuff

If you don’t specify a filename (in this case, myfile), UNIX lists all the files
in the directory, which is often more useful. For every file, this listing shows
all the following information:

1 v Whether it’s a file, symbolic link, or directory. The first character in the
line is a hyphen (-) if it’s a file, an [if it’s a symbolic link, and a d if it's a
directory.

¢ 1+ Whether the owner can read, write, or execute it (as shown by the next

It three characters, 2 through 4, on the line). The first character is an r if
the owner has read permission or a hyphen (-) if not. The second
character is a w if the owner has write permission or a hyphen () if not.
The third character is an x (or sometimes an s) if the owner has execute
permission or a hyphen (-) if not.

| ¥ Whether the members of the group owner can read, write, or execute
the file or directory (as indicated by the next three characters, 5
through 7). An r, w, or x appears if that permission is granted; a
hyphen (-) appears if that permission is not granted.

!+~ Whether everyone else can read, write, or execute the file or directory
(as indicated by the next three characters, 8 through 10). Anr, w, or x
appears if that permission is granted; a hyphen (-) appears if that
permission is not granted.

-+ The link count, that is, how many links (names) this file has. For
directories, this number is the number of subdirectories the directory
contains plus 2 (don’t ask).

. v The owner of the file or directory.
¢+ The group to which the file or directory belongs (group owner).
; +* The size of the file in bytes (characters).

| +” The date and time the file was last modified.
i

{ 1 The filename — at last!

Permissions by number

It’s not too difficult to figure out which permissions a file has by looking at
the collection of rs, ws, and xs in the file listing. Sometimes permissions are
written another way, however: with numbers. Only UNIX programmers could
have thought of this method. (It’s an example of lazy typists at their finest.)
Numbered permissions are sometimes called absolute permissions (perhaps
because they are absolutely impossible to remember).

When permissions are expressed as a number, it’s a 3-digit number. The first
digit is the owner’s permissions, the second digit is the group’s permissions,
and the third digit is everyone else’s permissions. Every digit is a number
from 0 to 7. Table 5-1 lists what the digits mean.

Chapter 5: Files for Fun and Profit /5

Table 5-1 Absolute Permissions Decoded
Digit Permissions

0 None

1 Execute only

2 Write only

3 Write and execute

4 Read only

5 Read and execute

6 Read and write

7 Read, write, and execute

If Mom says no, go ask Dad

If you own a file or directory, you can change its permissions. You use the
chmod (for change mode) command to do it. You tell chmod the name of the
file or directory to change and the new permissions you want the file to
have for yourself (the owner), your group, and everyone else. You can either
type the numerical absolute permissions (such as 440) or use letters.

To use letters to type the new permissions, you use a cryptic collection of
letters and symbols that consists of the following:

! v~ Whose permissions you are changing: u for user (the file’s owner), g for
| the group, o for other (everyone else), or a for all three.

|~ Ifthe permission should be + (on, yes, okay) or - (off, no, don’t let
* them).

1 The type of permission you're dealing with: r for read, w for write, and x
for execute.

Type the following line, for example, to allow everyone to read a file called
announcements:

chmod at+r announcements

This line says that the user or owner, the group, and everyone else can read
the file. To not let anyone except the user or owner change the file, type

chmod go-w announcements

76

Part ll: Some Basic Stuff

\\\\X

\\3

You can also use numeric (absolute) permissions with chmod. To let the user
or owner and associated group read or change the file, type

chmod 660 announcements

This line sets the owner permission to 6 (read and write), the group permis-
sion to 6 too, and everyone else’s permission to 0 (can’t do anything).

You can change the permissions for a directory in exactly the same way you
do for a file. Keep in mind that read, write, and execute mean somewhat
different things for a directory.

Finding a new owner

When someone gives you a file, he usually copies it to your home directory.
As far as UNIX is concerned, the person who copied the file is still the file’s
owner. In Linux and System V, you can change the ownership of a file you
own by using the chown command.

You tell chown the new owner for the file and the filename or filenames
whose ownership you are changing, as shown in this example:

chown john chapteré6

This command changes the ownership of the file named chapter6 to john.
Keep in mind that only you can give away files you own; if you put a file in
someone else’s directory, it’s polite to chown the file to that user.

Another way to change the owner of a file is to make a copy of the file.
Suppose that Fred puts a file in your home directory and he still owns it. You
can’t use chown to change the ownership because only the owner can do
that (you have a chicken-before-the-egg problem here). You can get owner-
ship of a file if you copy the file. When you copy a file, you own the new
copy. Then delete the original.

File seeks new group; can sing,
dance, and do tricks

If you own a file or directory, you can change the group that can access it.

The chgrp command enables you to change the name of the group associ-
ated with the file, as shown in this example:

chgrp acctg biiling.list

This command changes the group associated with the file bi1ling.1ist to
the group called acctg.

Chapter 6
Directories for Fun and Profit

OO 8PS 0D O S S OO S OO OO S8 OO ODEOEOPOSYODOOOO OSSOSO O

In This Chapter

p Defining a directory

p» Getting to the right directory

p Defining a home directory

p Making a new directory

p Erasing a directory

p- Renaming a directory

» Moving a file from one directory to another
p- Organizing your files

p» A map of UNIX

LI BK IR IR K BN AR BN R JR BN B B IR O BE AR BN AR R B AL IR B B B R IR BN IR 2 AR B R B A B A BB R IR A R R 2R N J

Fles are great — they're where you store all your important information,
as well as where UNIX itself and all your programs are stored. UNIX
systems have, in fact, tens of thousands of files, even before you create a
single one. Imagine typing your 1s command and getting a list of 10,000
filenames. Not pretty (or fast).

To avoid this situation, UNIX has things called directories, which enable you
to divide your files into groups. This chapter explains how to organize your
UNIX files into directories and how to find things after you have done so.

Good News for Windows and DOS Users

We have good news about UNIX for you experienced Windows and DOS
users. It works almost exactly the same as Windows and DOS do when it
comes to directories and files. Actually, it’s the other way around: A guy
named Mark added directories to DOS back in 1982 and ripped off, er,
emulated the way UNIX did things — with a few confusing changes, of
course.

/8

Part II: Some Basic Stuff

Briefly, Windows and DOS users should know the following information
about UNIX directories:

v+ All those backslashes (\) you learned to type in Windows and DOS
turn into regular slashes (/) in UNIX. No one knows why Mark decided
that DOS slashes should lean backward. We're sure that he had a very
good reason, of course — maybe the / key on his keyboard was broken.

v+ The UNIX cd (change directory) command works (more or less) like the
DOS CD command; remember not to capitalize it in UNIX.

v+ The UNIX command for making a directory is mkdir rather than the
DOS MD command. To remove a directory in UNIX, you use the rmdir
command rather than the DOS RD command. (Where were the lazy
typists when we needed them?) These two commands also work (more
or less) like the DOS versions. Don’t capitalize these commands, either.

v As always, UNIX believes that uppercase and lowercase letters have
nothing to do with each other. Because the two types of letters are
completely different, be sure to use the correct capitalization when you
type directory names and filenames.

v~ If you really like DOS commands and want to make UNIX understand
them, you can make shell scripts (the UNIX equivalent of DOS batch
files) that enable you to type DIR or COPY, for example, while you're
using UNIX. (Chapter 12 tells you how to make shell scripts.) Or, if you
absolutely fall in love with UNIX commands — and who doesn’t! — you
can make DOS batch files on your PC so that you can type such immor-
tal character combinations as 1s and cp while you're using it.

If you understand directories and paths intuitively from your vast experi-
ence with PCs, skip to the sidebar “Getting the big picture,” later in this
chapter.

What Is a Directory?

A directory, for the rest of you people, is a group of files or a work area.
(Windows 98, Windows 95, and Macintosh users may recognize it as a
folder.) You give a directory a name, such as Budget or Letters or Games or
Harold. You can put in a directory as many files as you want.

The good thing about directories (also sometimes called subdirectories, for
no good reason) is that you can use them to keep together groups of related
files. If you make a directory for all your budget files, those files are the only
ones you see while you're working in that directory. Directories make it easy
to concentrate on what you're doing so that you're not distracted by the
zillions of other files on the disk.

Chapter 6: Directories for Fun and Profit

You can make directories, move files into them, rename directories, and get
rid of them. This chapter describes the commands that perform each of
these stunts.

Divide and Conquer

[ELL S
Figure 6-1:
A tree-
structured
directory.
|]

Interestingly, a directory can contain other directories. You may have a
directory called Budget, for example, for your departmental budget. The
Budget directory may contain several other directories (also called sub-
directories) such as Year1998, Year1999, and Estimates. If a directory
contains so many files that you can’t find things, you should create some
subdirectories to divide things up.

Files and directories are stored on disks. Every disk has a main directory
that contains everything on the disk. This directory is called the root
directory. The designers of UNIX were thinking of trees here, not turnips.
They imagined an upside-down tree with the root at the top and the
branches reaching downward, as shown in Figure 6-1. This arrange-
ment of directories is called a tree-structured directory.

(The root directory)
L

[|
Budget Recipes
|
pumpkin.soup

Year 1999 Year 1998

I tiramisu
freds.99.estimate

sues.99.estimate

Strangely, you don’t type root when you're talking about the root directory.
Rather, you press /. Just like that: A single slash means “root” in UNIX-ese.

Paths to power

Unfortunately, UNIX never shows you the directory structure as a nice
picture, as shown in Figure 6-1. That would be too easy. Rather, to tell UNIX
which file you want to use, you type its pathname. The pathname is the step-
by-step map UNIX follows to get to a file, starting at the root. The pathname
for the file named freds.99.estimate in Figure 6-1, for example, contains
these steps:

79

Part Il: Some Basic Stuff

/ The root, where you start.

Budget

The name of the first directory you move to on

your way to the file.

/ Confusingly, this slash doesn’t refer to another
root; it’s just the character used to separate
one name from the next in a pathname.

Yearl1999

The next directory on your way to the file.

/ Another separator character.

freds.99.estimate

The filename you want.

When you type this pathname, you string it all together, with no spaces:

/Budget/Yearl999(freds.99.est1’mate

Luckily, you don’t often have to type big, long pathnames like this one; it’s
devilishly hard to get all that right on the first try!

Family matters

You can also think of the tree structure of directories as a family tree. In this
way of thinking, the Year1999 directory is a child of the Budget directory,
and the Budget directory is the parent of the Year1999 directory. You see

these terms sometimes if you read more about UNIX.

Getting the big picture

If you have a UNIX workstation that's all your
own, most or all of the files on its hard disk are
yours. If you have a terminal and share a UNIX
computer with others, the computer’s hard
disk has files that belong to all the users. As
you can imagine, we are talking about oodles
of files. To keep the files — and users! —
organized, UNIX has lots of different
directories.

UNIX has lots of directories for the UNIX pro-
gram files themselves, program files for other

programs, and other stuff you definitely are
not interested in. The files that belong to users
(such as yourself) usually are stored in one
area. A directory called /usr (or sometimes
/home) contains one subdirectory for every
user. If your username is zacyoung, for ex-
ample, the /usr directory contains a sub-
directory called zacyoung, which contains
your files.

Chapter 6: Directories for Fun and Profit 8 7

Names for directories

P Choose names for directories in the same way as you choose names for files:
Avoid funky characters and spaces, and don’t make the name so long that
you never type it correctly, for example. Some people capitalize the first
letter of directory names so that they can tell what’s a directory and what’s
a file. When you type 15 to list the contents of a directory, the command
lists both filenames and the names of subdirectories. When you use capitali-
zation to distinguish between directory names and filenames, you can
quickly tell which are which.

There’s No Place Like Home

Every user has a home directory (sweet, isn’t it?) in which you store your
personal stuff, mail, and so on. When you log in, UNIX starts you working in
your home directory, where you work until you move somewhere else. Your
home directory is your subdirectory in the /usr (or /home) directory, so
Zac Young'’s home directory is /usr/zacyoung. (Although Zac is only three
years old, we're sure that he’ll need a home directory shortly.)

Because most UNIX systems involve lots of people sharing disk space and
files, UNIX has a security system to prevent people from reading each
other’s private mail or blowing away each other’s work (accidentally, of
course). Chapter 5 talks about the security system. In your home directory,
you usually have the right to create, edit, and delete all the files and sub-
directories. You can’t do that in someone else’s home directory unless the
directory’s owner gives you permission.

I've been working in the director
q Yy

Whenever you use UNIX, the directory you are working in is the working
directory. Some people call it the current directory, which also makes sense.

When you first log in, your home directory is your working directory.
Although you start in your home directory, you can move around. If you
move to the /Budget directory, for example, the /Budget directory be-
comes the working directory. (Your home directory is still your home
directory — it never moves.)

If you forget where you are in the directory structure, you can ask UNIX.
Type pwd to ask UNIX where you are. That’s short for print working direc-
tory. UNIX doesn’t print the information on paper; it just displays it on-
screen. You see something like this:

/Budget/Year1999

82

Part II: Some Basic Stuff

When you use the 1s command (or most other UNIX commands), UNIX
assumes that you want to work with just the files in the working directory.
The s command lists just the files in the working directory unless you tell
it to look somewhere else.

To move to another directory to do some work (if you're tired of working
on the budget and want to get back to that recipe for pumpkin soup, for
example), you can change directories. To move from anywhere in the
/Budget directory to the /Recipes directory, type this line:

cd /Recipes

Remember that cd is the change directory command. After the cd (and a
space), you type the directory you want to go to. You can tell UNIX exactly
which directory you want in two ways:

I v~ Type a full pathname, or absolute pathname (the pathname starting at
g the root, as you did earlier). In the /Recipes example, the slash at the
; beginning of the pathname indicates that the pathname starts at the

| root.

é v Type a relative pathname (the pathname starting from where you are

, now).

This stuff is confusing, we know, but UNIX has to know exactly which direc-
tory you want before it makes the move. Because the disk can have more than
one directory called Recipes, UNIX has to know which one you want. When
you type a full pathname starting at the root directory, the pathname starts
with a /. When you type a relative pathname starting at the working direc-
tory, the pathname doesn’t start with a /. That’s how UNIX (and you) can
tell which kind of path it is.

If you are in the /Budget directory (on the /Budget branch of the directory
tree) and want to go to the Year1999 subdirectory (a branchlet off the main
/Budget branch), for example, just type cd Year1999. To go to a different
branch or to move upward toward the root, you must type the slashes. To
move from the /Budget/Year1999 branchlet back to the main /Budget
branch, type c¢d /Budget. For example, to move from the /Budget branch to
the /Recipes branch, type cd /Recipes.

If you try to move to a directory that doesn’t exist or if you incorrectly type
the directory name or pathname, UNIX says:

Dudegt: No such file or directory

(or whatever directory name you typed).

Chapter 6: Directories for Fun and Profit 83

| want to go home!

If you move to another directory (/0z, for example) and want to get back to
your home directory (/Kansas, that is), you can do so as easily as clicking
the heels of your ruby slippers three times. (Or were they glass slippers?)
Just type c¢d. When you don’t tell UNIX where you want to go, it assumes
that you want to go home.

Putting Your Ducks in a Row

As with everything else in life (if we may be so bold as to suggest it), it pays
to be organized when you're naming files and putting them in directories. If
you don’t have at least a little organization, you will never find anything.
Think about which types of files you will make and use. (Word-processing
files? Spreadsheet files?) Then make a directory for every type of file or for
every project you're working on. This section shows you how.

Making directories

Before you create a directory, be sure that you put it in the right place.
Remember that you type pwd to display your working directory (the current
directory).

The most likely place to create a subdirectory is in your home directory. If
you're not there already, type cd to go back home.

When you create a directory, you give it a name. To create a directory called
Temp to hold temporary files, type mkdir Temp.

Most people have a directory called Temp to hold files temporarily. These
files can be the ones you need to keep just long enough to print, to copy to a
floppy disk or tape, or whatever. Anyway, you have one now, too. To confirm
that the Temp directory is there, type this line:

1s

You can even go in there and look around by typing the following (and
pressing Enter after typing the first line):

cd Temp
ilis

When you create a directory, it starts out empty (it contains no files).

84 Part ll: Some Basic Stuff

E\\3

Most people have directories with names something like these examples:

Mail: For electronic mail (see Chapter 17).
Docs: For miscellaneous documents, memos, and letters.

Temp: For files you don’t plan to keep. Use Temp to store files you plan
to throw away soon. If you put them in some other directory and don’t
erase them when you finish with them, you may forget what they are
and be reluctant to delete them later. Directories commonly fill up with
junk in this way. Make it a rule that any files left in the Temp directory
are considered deletable.

bin: For programs that you use but that aren’t stored in a central place.
Your system administrator may have already made you your own bin
directory. (See Chapter 12 for information about the bin directory and
making your own programs.)

You can also make one or more directories to contain actual work.

Dot and dot dot

UNIX has two funny pseudo-directory names you can use — especially with
the cd and 1s commands. One is . (a single dot), which stands for the cur-
rent directory. You type the following line, for example, to tell UNIX to list
the files in the current directory:

Ts .

This command is pointless, of course, because typing the following line does
exactly the same thing:

1s

Okay, forget about . (the single dot). But . . (the double dot, or dot dot) can
be useful. It stands for the parent directory of the working directory. The
parent directory is the one of which the working directory is a subdirectory.
The parent is one level up the tree from where you are now. If you're in the
directory /usr/home/zacyoung/Budget, for example, the .. (dot dot, or
parent) directory is /usr/home/zacyoung.

If you type the following line, you see a list of the files in the parent direc-
tory of where you are now. This command can save you from some serious
typing (and the associated errors):

1s ..

Chapter 6: Directories for Fun and Profit 85

Performing neat directory operations

After you have some directories, you may want to change their names or get
rid of them. You also may want to move a file from one directory to another.
This section shows you how to try that first.

Transplanting files

Chapter 5 describes the use of the mv command to rename a file. You can
use the same command to move files from one directory to another. To get
the mv command to move files rather than just rename them, you tell it the
name of the file you want to move and the name of the path where you want
to put the file.

If you want, you can rename the file at the same time you move it, but
let’s keep things (comparatively) simple. Suppose that you put the file
allens.99.estimates into the /Budget/Year1998 directory rather than
in /Budget/Year1999. The easiest way to move it is to go first to the
directory in which it is located. In this example, you type this line:

cd /Budget/Year1998

Use 15 to make sure that the file is in the current directory. After you are
sure that the file is there, you can move it to the directory you want by
typing this line:

mv allens.99.estimates /Budget/Yearl999

Be sure to type one space after mv and one space between the name of the
file and the place you want to move it to. If you use 1s again, you discover
that the file is no longer in the working directory (Year1998). You should
change to the directory to which you moved the file and use 1s to make
sure that the file is there. Make one typing mistake in a mv command, and
you can move a valuable file to some unexpected place.

Amputating unnecessary directories

You can use the rmdir command to remove a directory, but what about the
files in the directory? Are they left hanging in the air with the ground blown
out from under them? Nope; you must either get rid of the files in the
directory (delete them) or move them elsewhere before you can hack away
at the directory.

To erase a directory, follow these steps:

1. Use the rm command to delete any files you don’t want to keep.

(See Chapter 5 for the gory details of using this command.)

86

Part II: Some Basic Stuff

2. If you want to keep any of the files, move them to somewhere else by
using the mv command (as explained in the preceding section).

3. Move to some other directory when the directory you want to delete
is empty.

UNIX doesn’t let you delete the working directory. The easiest thing to
do is to move to the working directory’s parent directory:

cd ..
4. Remove the directory by typing this line:
rmdir 01dStuff

Replace 01dStuf f with the name of the directory you want to ax.

5. Use 1s to confirm that the directory is gone.

You can delete a directory and all the files in it or even a directory and all
the subdirectories and files in them, but this process is dangerous stuff. You
usually are better off sifting through the files and deleting or moving them in
smaller groups. If you're interested in a really dangerous command, which
we shouldn’t even be telling you about, you can type rm -r to remove a
directory and all its files and subdirectories in one fell swoop.

Renaming a directory

If you have used DOS, you will be thrilled to learn that in UNIX you can
rename a directory after you create it. (DOS doesn’t let you do that, at least
not in early versions.) Again, the mv command comes to the rescue.

To rename a directory, you tell mv the current directory name and the new
directory name. Go to the parent directory of the directory you want to
rename, and then use the mv command. To rename the /Budget directory
/Finance, for example, go to the / directory (type ed /) and then type this
line:

mv Budget Finance

Make sure first that a directory with that name isn’t already there. If it is,
UNIX moves the first-named directory to become a subdirectory of the
existing directory. In other words, if a /Finance directory is already there,
/Budget moves to become /Finance/Budget. That could be handy, if that’s
what you have in mind. Then again, it could drive you out of your mind if
that’s not what you expect.

Chapter 7

The Shell Game

P O D 8 0 0 ¢ O © VB OO L OO0 PO PSS EONOH O

In This Chapter

» Using redirection

p Viewing a file one screen at a time

p Printing the output of any command

p» Working with groups of files

p Avoiding retyping commands, especially after typos
» Getting set up each time you log in

p Setting your terminal options

® O T QP OO OODEORNEHOORONEOOONOIESPOIOOSOIE

f you've read the preceding chapters in this book, you know how to work
with files and how to type some commands to UNIX (you type them to
the shell, as you know, but let’s not get bogged down in that here). UNIX has
a clever way to increase the power of its commands: redirection. This chapter
shows you how to use redirection and how to use wildcards to work with

groups of files.

This Output Is Going to Havana:
Redirection

When you use a UNIX command like 15, the result (or outpuf) of the com-
mand is displayed on-screen. The standard place, in fact, for the output of
most UNIX commands is the screen. The output even has a name: standard
output. As you can imagine, you also have standard input, usually via the
keyboard. You type a command; if it needs more input, you type that, too.
The result is output displayed on-screen — all very natural.

You can pervert this natural order by redirecting the input or output of a
program. A better word is hijacking. You say to UNIX, “Don’t display this
output on-screen — instead, put it somewhere else.” Or, “The input for this
program is not coming from the keyboard this time — look for it somewhere
else.”

88 Partii: some Basic Stuff

a3

The “somewhere else” can be any of these sources:

+~ A file: You can store the output of 1s (your directory listing) in a file,
for example.

v+ The printer: It’s useful only for output. Getting input from a printer is a
losing battle.

v Another program: This one gets really interesting, when you take the
output from one program and feed it to another program!

Bunches of UNIX programs are designed primarily to use input from a
source other than the keyboard and to output stuff to someplace other than
the screen. These kinds of programs are called filters. Readers old enough to
remember what cigarettes are may recall that the advanced ones had a filter
between the cigarette and your mouth to make the smoke smoother, mel-
lower, and more sophisticated. UNIX filters work in much the same way,
except that they usually aren’t made of asbestos.

The only exception to this redirection business is with programs, such as
text editors and spreadsheets, that take over the entire screen. Although
you can redirect their output to the printer, for example, you won'’t like the
results (nor will your coworkers, as they wait for a pile of your garbage
pages to come out of the printer). Full-screen programs write all sorts of
special glop (they give instructions) to the screen to control where stuff is
displayed and what color to use, for example. These instructions don’t work
on the printer because printers use their own, different kind of glop. The
short form of this tip is that redirection and editors don’t mix.

Grabbing output

So how do you use this neat redirection stuff, you ask? Naturally, UNIX
does it with funny characters. The two characters < and > are used for
redirecting input and output to and from files and to the printer. You use
another character (|)to redirect the output of one program to the input of
another program.

To redirect (or snag, in technical parlance) the output of a command, use >.
Think of this symbol as a tiny funnel into which the output is pouring (hey,
we use any gimmick we can to remember which funny character is which).
To make a file called 1ist.of.files that contains your directory listing, for
example, type this line:

Is > list.of.files

UNIX creates a new file, called 1ist.of.files in this case, and puts the
output of the 1s command into it.

Chapter 7: The Shell Game 89

If Tist.of.files already exists, UNIX blows away the old version of the
file. If you don’t want to erase the existing file, you can tell UNIX to add this
new information to the end of it (append the new information to the existing
information). To do it, type this line:

1s > list.of.files

The double >> symbol makes the command append the output of 1s to the
list.of.files file, if it already exists. If 1ist.of.files doesn’t exist
already, 1s creates it.

Some (but not all, of course) versions of the C shell check to see whether
the file already exists and refuse to let you wreck an existing file with
redirection. To overwrite the file if your C shell works this way, use rm to
get rid of the old version. The command that tells the C shell not to clobber
an existing file when you’re creating a new file from redirection is set
noclobber. To turn this protection off, you can use the unset noclobber
command. We recommend turning on noclobber every time you run UNIX
(or get a UNIX wizard to help you make this command execute automagically
every time UNIX starts up).

Redirecting input

Redirecting input is useful less often than redirecting output, and we can’t
think of a single, simple example in which you would want to use it. Suffice it
to say that you redirect input just like you redirect output except that you
use the < character rather than the > character.

Gurgle, Gurgle: Running
Data Through Pipes

The process of redirecting the output of one program so that it becomes the
input of another program can be quite useful. This process is the electronic
equivalent of whisper-down-the-lane, with each program passing information
to the next program and doing something to what's being whispered.

To play whisper-down-the-lane with UNIX, you use a pipe. The symbol for a
pipe is a vertical bar (|). Search your keyboard for this character. It’s often
on the same key with \ (the backslash). Sometimes the key shows the vertical
bar with a gap in the middle, although the gap doesn’t matter. If you type
two commands separated by a |, you tell UNIX to use the output of the first
command as input for the second command.

90

Part ll: Some Basic Stuff

E\\3

Gimme just a little at a time

When you have many files in a directory, the output of the 1s command can
go whizzing by too fast to read, which makes it impossible to see the files at
the beginning of the list before they disappear off the top of the screen. A
UNIX program called more solves this problem. The more program displays
on-screen the input you give it, and it pauses as soon as it fills the screen
and waits for you to press a key to continue. To display your list of files one
screenful at a time, type this line:

Is | more

This line tells the 1s command to send the file listing to the more command.
The more command then displays the listing. You can think of the informa-
tion from the 1s command gurgling down through the little pipe to the more
command (we think of it this way).

The cat and the fiddle . . . er, file

As explained in Chapter 5, you can use the cat command to display the
contents of a text file. If the text file is too long to fit on-screen, however, the
beginning of the file disappears too fast to see. You can display a long file
on-screen one screenful at a time in these two ways:

v Redirect the output of the cat command to more by typing this line
(assuming, of course, that the file is called really.Tong.file):

cat really.long.file | more

v Just use the more command by typing this line:

more really.long.file

If you use the more command without a pipe (without the |), more takes the
file you suggest and displays it on-screen a page at a time.

Sorting, sort of

A program called sort sorts a file line-by-line in alphabetical order. The
program alphabetizes all the lines according to the beginning of each line.
Each line in the file is unaffected; just the order of the lines changes.

Chapter 7: The Shell Game 9 ’

Suppose that you have a file called honors.students, which looks like this:

Meg Young
Shelly Horwitz
Neil Guertin
Stuart Guertin
Sarah Saxon
Zac Young
Gillian Guertin
Tucker Myhre
Andrew Guertin
Megan Riley
Chloe Myhre

To sort it line by line into alphabetical order, type this line:
sort honors.students

The result looks like this:

Andrew Guertin
Chloe Myhre
Gillian Guertin
Meg Young
Megan Riley
Neil Guertin
Sarah Saxon
Shelly Horwitz
Stuart Guertin
Tucker Myhre
Zac Young

The list appears on-screen, however, and nowhere else. If you want to save
the sorted list, type

sort honors.students > students.sorted
You can also sort the output of a command:

Is | sort
Because 1s displays filenames in alphabetical order anyway, of course, this
example doesn’t do you much good. If you want the filenames in reverse
alphabetical order, however (we're stretching for an example here), you can
use the -r option with the sort command:

1s | sort -r
If you're sorting numbers, be sure to tell UNIX. Otherwise, it sorts the
numbers alphabetically (the sort of imbecilic and useless trick only a

computer would do). To sort numbers, use the -n option:

sort -n order.numbers

92 Partil: Some Basic Stuff

Suppose that your file of honors students contains total test scores:

10000 Meg Young

8000 Shelly Horwitz
7000 Neil Guertin
5000 Stuart Guertin
9000 Sarah Saxon
5000 Zac Young

8000 Gillian Guertin
7000 Tucker Myhre
11000 Andrew Guertin
6000 Megan Riley
7000 Chloe Myhre

When you alphabetize things as letters, not as numbers, a 1 comes before
an 8 no matter what, even if it’s the first letter of 10. When you alphabetize
things as numbers, 10 comes after 8, not before it. If you sort this file as
letters, with this command:

sort honors.students
you get

10000 Meg Young
11000 Andrew Guertin
5000 Stuart Guertin
5000 Zac Young

6000 Megan Riley
7000 Chloe Myhre
7000 Neil Guertin
7000 Tucker Myhre
8000 Gillian Guertin
8000 Shelly Horwitz
9000 Sarah Saxon

This output does not show the bonus amounts in any useful order. If you
sort the file as numbers, with this command:

sort -n honors.students

you get this more useful listing:

5000 Stuart Guertin
5000 Zac Young

6000 Megan Riley
7000 Chloe Myhre
7000 Neil Guertin
7000 Tucker Myhre
8000 Gillian Guertin
8000 Shelly Horwitz
9000 Sarah Saxon
10000 Meg Young
11000 Andrew Guertin

If the file contains letters, not numbers, the -n option has no effect.

Chapter 7: The Shell Game ~ § 3

Can we get that on paper?

Being able to print the output of a command is terrifically useful when you
want to send to a printer something that normally appears on-screen. To
print a listing of your files, for example, type this line:

Is | 1p
Q‘\“X
Users of Linux and BSD UNIX use the 1pr command rather than 1p. (Chapter 9

explains other stuff about printing.)

You can use more than one pipe if you want to be advanced. To print a
listing of your files in reverse order, for example, you can use this convo-
luted command:

Is | sort -r | 1p

Wild and Crazy Wildcards

When you type a command, you may want to include the names of a bunch
of files on the command line. UNIX makes the typing of multiple filenames
somewhat easier (as though we should be grateful) by providing wildcards.
Wildcards are the two special characters (still more of them to remember!)
that have a special meaning in filenames:

? Means “any single letter”

* Means “anything at all”

Pick a letter, any letter

You can use one or more ? wildcards in a filename. Each ? stands for exactly
one character — no more, no less. To list all your files that have two-letter
names, for example, you can type this line:

1s 22

The command 1s budget?? lists all filenames that start with budget and
have two — and only two — characters after budget, like budget98 and
budget99; the combination doesn’t match budgetl or budget.draft or
Budget98 (because of the uppercase B).

94

Part ll: Some Basic Stuff

Stars (***) in your eyes

The * wildcard stands for any number of characters. To list all your files
that have names starting with a ¢, for example, type

1s c*

This specification matches files named customer.letter, c3, and just plain
c. The specification budget . * matches budget.1999 and budget.draft,
but not draft.budget. The name *.draft matches budget.draft and
window.draft, but not draft.horse or plain draft. By itself, the filename
* matches everything (watch out when you let the asterisk go solo!).

Are kings or deuces wild?

Unlike some other kinds of operating systems (we don’t name any, although
one system’s initials are DOS), UNIX handles the ? and * wildcards in the
same way for every command. You don’t have to memorize which com-
mands can handle wildcards and which ones cannot. In UNIX, they all can
handle wildcards.

Wildcards commonly are used with the 1s, cp, rm, and mv commands. For
example, to copy all the files from the current directory to the temp direc-
tory, you can type

cp * temp

Wildcards for DOS users

Although UNIX wildcards look just like DOS wildcards and they work in
almost the same way, they have a few differences:

1 Because UNIX filenames don’t have the three-letter extensions that DOS
filenames use, don’t use * . * to match all files in a directory. That trick
matches only files that have a dot in their names. A simple * does the trick.

+* In DOS, you cannot put letters after the * wildcard — DOS ignores the
letters following the asterisk. In DOS, d*mb is the same as d*, for
example. It’'s dumb, we know. The good news is that UNIX is not so
dumb. In UNIX, d*mb works just the way you want it to.

Chapter 7: The Shell Game

Look before you delete!

The combination of wildcards and the rm com-
mand is deadly. Use wildcards with care when
you delete files. You should look first at the list
of files you're deleting to make sure that it's
what you had in mind. Before you type the
following command, for example, to delete a
bunch of files:

rm *.97

type this line and look at the resulting list of
files:

1s *.97

You may see in that list of . 97 files something
worth keeping that you forgot about.

The most deadly typo of all is this one (do not
type this line!):

rm * .97

Notice the space between the * wildcard and
the . 97. Although you may have thought that
you were deleting all files ending with .97,
UNIX thinks that you have typed two filenames
to delete:

* This “filename” deletes all the files in the
directory.

.97 This filename deletes a file named .97
{yes, filenames can start with a period). By
the time UNIX tries to delete this (nonex-
istent) file, it has, of course, already de-
leted all the files in the directory!

You end up with an empty directory and lots of
missing files. Watch out when you use rm and
* together!

History Repeats Itself

We make fun of the C shell often (and rightly so), but when Bill wrote it, he

added a lovely feature called history. BASH does history too, even more
nicely than the C shell. And the Korn shell has a way to do history that is

clunky but serviceable.

The history command enables you to issue UNIX commands again without

having to retype them, a big plus in our book. Bourne shell users may as

well skip the rest of this chapter because it will just make you jealous (or it’ll

make you bite the bullet and switch to the BASH shell, by typing bash).

Here’s how history works. The shell stores in a history list a list of the
commands you’ve given. Then you can use the list to repeat commands

exactly as you typed them the first time or edit previously used commands

so that you can give a similar command.

95

96

Part ll: Some Basic Stuff

History in the key of C

In the C shell, you can type !! and press Enter to repeat the last command
you typed. The shell displays the command and then executes it.

You can also rerun the last command line that begins with a particular
bunch of letters. If you type

1find

the C shell repeats the last command line that began with the text find. You
don’t have to type an entire command. If you type

1fi

it looks for the last command you typed that started with fi, which may be a
find command or file command.

To see the history list, type history. You see a list like this:

20:26 s
20:26 s -1
20:26 1s -al

20:26 history
20:26 cat junk3
20:26 cat .term
20:26 history
20:27 history

00~ O U1 B LN

This example shows the commands you have just typed, in the order you
typed them. Because the list is numbered, you can refer to the commands
by number. After the number comes the time you gave the command (if you
care), followed by the command you typed.

If you want to repeat a command, you can type ! followed by the number of
the command. For example, if you type

13
the C shell repeats command number 3 on the list (in this case, 1s -al).

You can also repeat a command with a modification. Suppose that you just
typed this command:

find . -name budget.98 -print

Chapter 7: The Shell Game

Now you want to give the same find command, but this time you're looking
for a file named budget . 99. Rather than tediously, arduously retype the
line, character by character and keystroke by keystroke, worrying anxiously
about a possible typo with every key you press, you can tell the C shell to
repeat the last command, substituting 99 for 98. The command is

~98799

You type a caret ("), the old text, another caret, and the text to substitute.
Voila! The C shell displays the new command and then executes it.

BASHing through commands

BASH can do all the cool history tricks the C shell can, with some addi-
tional acrobatics. When BASH displays your history list, it usually stores the
last 500 commands you typed, so the list can be huge. To see it a page at a
time, type this command:

history | more
To see the last nine commands on the history list, type
history 9

Here comes the neat part — you can press the arrow keys to flip back
through your commands. When you press the up-arrow key (or Ctrl+P, for
previous), BASH shows you the previous command from the history list. You
can press Enter to execute the command. You can keep pressing the up-
arrow key (or Ctrl+P) until you get to the command you want. If you go past
it, you can move back down your history list by pressing the down-arrow
key (or Ctri+N, for next).

This feature is downright useful and typo-saving! DOS 6.2 has it too, of
course, but who'’s counting?

After you have displayed on the command line a command from your
history list, you can edit the command before you press Enter to execute it.
Press the left- and right-arrow keys (or Ctrl+B and Ctrl+F, for backward and
forward) to move the cursor. When you type characters, BASH inserts them
on the command line where the cursor is.

The folks at the Free Software Foundation who wrote BASH are big emacs
fans (as are we) because you can use most emacs editing commands to edit
the command on the command line. For example, pressing Ctrl+A moves
your cursor to the beginning of the line, Ctrl+E moves it to the end of the

97

98

Part II: Some Basic Stuff

line, Esc+F moves it forward by a word, and Ctrl+K deletes everything to the
right of the cursor. If you, for some reason, prefer vi to emacs, press
Esc+Enter, and BASH changes to a vi-like editor, where you search for
history commands by pressing Ctrl+R and Ctrl+S.

Enough about BASH and history. You get the general idea!

A Korn-ucopia of commands

We don’t use the Korn shell much because we’ve become rather fond of
BASH, but the Korn shell can do history, too. The history command lists
your history list, as does the more cryptic fc -1 command. To repeat the
last command, just press r and then Enter. That’s it — just r. To repeat the
last cat command, type this line:

r cat
To repeat the last command and replace 98 with 99, type
r 98=99
The Korn shell enables you to edit your previous commands in all kinds of

fancy ways, although it’s confusing to do, so we suggest that you switch to
the BASH shell if you long to edit and reissue commands.

Do | Have To Type the Same Things
Every Time | Log In?

Most users find that, every time they log in, they type the same commands
to set up the computer the way they like it. You may typically change to
your favorite directory, for example, and then change the terminal settings
(see the following section), check your mail, or do any of a dozen other
things.

The Bourne, Korn, and BASH shells look in your home directory for a file
called .profile when you log in. If the .profile file exists, UNIX executes
the commands in that file. The C shell has two corresponding files: . Togin
(which it runs when you log in) and . cshrc (which it runs every time you
start a new C shell, either at login time or when you type csh).

Your system administrator probably gave you a standard .profile or
.1ogin file when your account first was set up. Messing with stuff that’s
already there is definitely not a good idea. You may end up unable to log in

Chapter 7: The Shell Game

a\J

and then have to crawl to your system administrator and beg for help. So
don’t say that we didn’t warn you.

The standard .profile, .10gin, and .cshrc files vary considerably (why
do we even finish this sentence — you know what we’re going to say) from
one system to another, depending on the tastes of the system administrator.
These files usually perform these tasks:

I »” Sets up the search path the shell uses to look for commands
»* Arranges to notify you when you have new mail

v+ (Sometimes) changes the shell prompt from the usual $ or % to some-
thing more informative

If you always type the same commands when you log in, adding new com-
mands at the end of .profile or .10gin is fairly safe. If you do most of
your work in the directory bigproject, for example, you may add the
following three lines to the end of the file your shell uses to start up your
UNIX session (.profile or .cshrc):

#f change to bigproject, added 3/98
cd bigproject
echo Now in directory bigproject.

The first line is a comment the computer ignores but is useful for humans
trying to figure out who changed what. Any line that starts with a pound
sign (#f) is a comment. The second line is a regular cd command. The third
line is an echo command that displays a note on-screen to remind you of the
directory you're in.

If you use the C shell, a frequently useful command to put in . 10gin is this
one:

set ignoreeof

If you press Ctrl+D in the shell, the shell normally assumes that you're
finished for the day and logs you out — in keeping with the traditional UNIX
“you asked for it, you got it” philosophy. Many people think that you should
be more explicit about your intention to log out and use ignoreeof to tell
the shell to ignore Ctrl+D (the following section tells you what eof has to do
with Ctrl+D) and log out only when you type exit or logout.

99

’ 00 Part Il: Some Basic Stuff

Terminal Options

Q\QN- N TU&

About 14 zillion different settings are associated with each terminal or
pseudo-terminal attached to a UNIX system, any of which you can change
with the stty command. More than 13 zillion of the 14 zillion shouldn’t be
messed with, or else your terminal vanishes in a puff of smoke (as far as
UNIX is concerned) and you have to log in all over again or even get your
system administrator to undo the damage. You can, however, safely change
a few things.

All the special characters that control the terminal, such as Backspace and
Ctrl+Z, are changeable. People often find that they prefer characters other
than the defaults, for any of several reasons: They became accustomed to
something else on another system, the placement of the keys on the key-
board makes some choices more natural than others, or their terminal
emulator is dumb about switching Backspace and Delete. The special
characters that control the keyboard are described in Table 7-1.

Table 7-1 Terminal-Control Characters

Name Typical Character = Meaning

erase Ctrl+H Erases (backspaces over) the preceding
character

ki1l Ctrl+U Discards the line typed so far

eof Ctrl+D Marks the end of input to a program

swtch Ctrl+Z Pauses the current program (see Chapter 13)

intr Ctrl+C Interrupts or kills whichever program is running

quit Ctrl+\ Kills the program and writes a core file

To tell stty to change any of these control characters, you give it the name
of the special character to change and the character you want to use. If, as
is common, you want to use a control character, you can type a caret (* —
the thing above the 6 on the key in the row of keys across the top of the
keyboard) followed by the plain character, both enclosed in quotation marks.
As a special case, *? represents the Del or Delete key. The Tab key is repre-
sented as " 1. The Backspace key is usually *H. To make the Delete key the
erase character and Ctrl+X the ki 11 character, for example, type this line:

stty erase "A?' kill '~X'

All these stty commands usually go in the .Togin or .profile file so that
the terminal is set up the way you want every time you log in.

Chapter 8

Where's That File?

[2 3K B BN BN N J) O © O O 9 O 0 O 0 0 00 OO OO OGO OO SO0 OGO ¢

In This Chapter

p- Using the find program to find a file when you know the filename

» Telling find where to look

» Looking for a file when you know only part of the filename

» Using the grep program to find a file when you know what’s in it

» Looking for files on other computers on your network

» Looking for a directory

» Knowing what to do with the files you find

» Doing something else while the computer searches for your file

p Sharing files by using the 1n command so that files appear in more than one directory

900000 0CE T OO 0OEO0T0C0C00OCOBO0006C0600060O0COGEOROSISOESESE

Doncha love to set up lots of different directories so that you can
organize your files by topic, program, date, or whatever suits you? We
do. After you have files in all those directories, however, you can also easily
lose them. Is that budget memo in your Budget directory, your Memos
directory, your ToDo directory, Fred’s Budget.Stuff directory, or some-
where else?

Two programs can help you find files: find and grep. Alternatively, you can
use the 1n command to create links to your files so that a file can appear in
several directories at a time and you have that many more opportunities to
find it.

The Search Is On

UNIX systems have lots of files. Lots and lots. Tens of thousands, to be more
specific. So where’s the memo you wrote last week?

’ 02 Part Il: Some Basic Stuff

Peering into every directory

The first approach to finding a lost file is to use the brute-force method.
Starting in your home directory, use 1s to search through each of your
directories. In every directory, type this line:

1s important.file

Replace important. file with the name of the file you're looking for. If the
file is in the current directory, 1s lists it. If the file isn’t there, 1s complains
that it can’t find the file. This approach can take awhile if you have a large
number of directories. An additional drawback is that you won'’t find the
missing file if it has wandered off to someone else’s directory.

If you know — or think that you know — that your file is nearby, you can
use * (asterisk) wildcards in directory names. (Wildcards are covered in
Chapter 7. They enable you to work with lots of files or directories at one
time.) To find important.file in any of the subdirectories in the working

directory, type this line:

1s */important.file

This technique doesn’t work if you have directories within directories: It

looks only one level down.

“Hey, | know the filename!”

With luck, you know the name of the file you have lost. If so, you can use the
find program to find it. When you use find, you tell it the name of the file
and the place to start looking. The find program looks in the directory you
indicate and in all that directory’s subdirectories.

Links to shadow files

You may run into a situation in which a file
seems to be in several directories at one time
(Twilight Zone music here, please). DOS users
know that this situation is patently absurd.
Mac users ought to be thinking of aliases here;
Windows users ought to be thinking of short-
cuts. UNIX has its own way of letting you keep
a file in several places at the same time. To
avoid excessive clarity, the file can even have
several different names. Seriously, it can be

mighty useful for a file to be in, for example,
the home directories of several people at one
time so that they all can easily share it.

To achieve this magical feat, you use /inks. We
discuss links in the section “A File By Any
Other Name,” later in this chapter. In the
meantime, don’t panic if you see a file lurking
around in one place when you're sure that it
belongs somewhere else.

1

Chapter 8: Where's That File 7 03

Suppose that you're working in your home directory. You think that a file
named tiramisu is in there somewhere. Type this line:

find . -name tiramisu -print
That is, you type these elements:

' v~ find (just like you see it here).
v A space.

v The directory in which you want the program to begin looking. If it’s the
working directory, you can type just a period (which means “right here”).

. Another space.

+» -name (to mean that you will specify a filename).
1+ Another space.

+* The name of the file you want to find (tiramisu, in this case).
" 1 Another space.

v -print to tell UNIX to print (on-screen) the full name, including the
directory name, to let you know where UNIX finds the file. If you omit
this step and find finds the file, it doesn’t tell you. (We know that this
situation is stupid, but computers are like that.) If you use UNIX SVR4
or Solaris, you notice that they fixed up the find command so that it
warns you rather than run the command pointlessly.

The find program uses a brute-force approach to locate your file. It checks
every file in all your directories. This process can take awhile. After find
finds the file, it prints the name and keeps going. If the program finds more
than one file with that name, find finds them and reports them all. After
find has printed a found file, you usually will want to stop the program
(unless you think that it will find more than one match). You stop find by
pressing Ctrl+C or Delete.

If the find command doesn’t work and you think that the file may be in
some other user’s directory, type the same find command and replace the

. (dot) with a / (slash). This version tells find to start looking in the root
directory and to search every directory on the disk. As you can imagine, this
process can take some time, so try other things first.

“I know where to search (sort of)”

Rather than use a period to tell find to begin looking in the working direc-
tory, you can use a pathname. You can type this line, for example:

find /usr/margy -name tiramisu -print

7 04 Part II: Some Basic Stuff

A\

NORK

&

This command searches Margy’s home directory and all its subdirectories.
(Her home directory name may be something different; see Chapter 6 to find
out about home directories.) To search the entire disk, use the slash (/) to
represent the root of the directory tree:

find / -name tiramisu -print

If your disk is large and full of files, a search from the root directory down
can take a long time — as long as half an hour on a very large and busy
system.

You can even type several directories. To search both Margy’s and John’s
home directories for files named white.chocolate.mousse, for example,
type this line:

find /usr/margy /usr/johnl -name white.chocolate.mousse -print

If you use the BASH or C shell, rather than type the home directory name,
you can type a tilde (~) and the username; the shell puts in the correct
directory name for you:

find ~margy ~johnl -name white.chocolate.mousse -print

“At least | know part of the filename”

You can use wildcard characters in the filename if you know only part of the
filename. (Remember the * and ? characters that act as “jokers” in file-
names?) Use ? to stand for any single character; use * to stand for any
bunch of characters. There’s a trick to this, however: If you use * or ? in the
filename, you have to put quotation marks around the filename to keep the
shell from thinking that you want it to find matching names in only the
current directory.

You can search the entire disk for files that start with budget, for example,
by typing

find / -name "budget*" -print

If you leave out the quotation marks, the search may look like it worked,
although find probably hasn’t done the job correctly.

Remote searches

If your system uses NFS (Network File System, as described in Chapter 16),
some or all of the directories and files on your machine may really be on
other computers. The find command doesn’t care where files are and

Chapter 8: Where's That File I 05

cheerfully searches its way into any directory it can get to. Because getting
to files over a network is about half as fast as getting to files stored locally,

telling find to look through a large number of files stored on a network can
take a long time. Consider having a long lunch while find does its thing.

Suppose that you're looking for Dave’s famous stuffed-squid recipe. The
obvious way to look for it is with this line:

find ~dave -name stuffed-squid -print

If you know that Dave’s files are stored on machine xuxa, however, this
command can be much faster:

rsh xuxa "find ~dave -name stuffed-squid -print”

See Chapter 16 for details about the rsh command.

It’s what’s inside that counts

“Hmm . . .I don’t remember what the file is called, but I'm looking for a
letter I wrote to Tonia, so it should contain her mailing address in the
heading. That’s 1471 Arcadia. How do I find it?”

This situation is made for grep — a great program with a terrible name. It
stands for, if you can believe it, global regular expression and print, or some
such thing. The grep command looks inside files and searches for a series of
characters. Every time it finds a line that contains the specified characters,
it displays the line on-screen. If it’s looking in more than one file, grep also
tells you the name of the file in which the characters occur. You control
which files it looks in and which characters it looks for.

Three grep programs exist: grep, egrep, and fgrep. They are similar, so we
talk just about grep. (Fgrep is faster but more limited, and egrep is more
powerful and more confusing.)

To look in all the files in the working directory (but not in its subdirectories)
for the characters 1471 Arcadia, type this line:

grep "1471 Arcadia" *
That is, type these elements:

1 grep (just as you see it here).
»” A space.

1+ The series of characters to look for (also called the search string). If the
string consists of several words, enclose it in quotation marks so that
grep doesn’t get confused.

’ 06 Part Il: Some Basic Stuff

§ »~ Aspace.

¢ v The names of the files to look in. If you type * here, grep looks in all the
§ files in the current directory.

The grep program responds with a list of the lines in which it found the
search string:

ts.doc: 1471 Arcadia Lane
tonia.letter: 1471 Arcadia La.

The program lists the name of the file and then the entire line in which it
found the search string.

You can do lots of things with grep other than look for files. In fact, we
could write entire (small) books about using grep. For our purposes,
however, here are some useful options you can use when you use grep to
look for files.

If you want to see just the filenames and you don’t want grep to show you
the lines it found, use the -1 (for list) option. (That’s a small letter /, not a
number 1.) Suppose that you type this line:

grep -1 "1471 Arcadia" *

The grep program responds with just a list of filenames:

ts.doc
tonia.letter

It may be a good idea to tell grep not to worry about uppercase and lower-
case letters. If you use the -1 (for ignore case) option, grep doesn’t distin-
guish between uppercase and lowercase letters, as shown in this example:

grep -i DOS *

With this command, grep, which is extremely literal-minded, finds both
references to DOS and some “false hits”:

fruit.study: salads; in Brazil, avocados are used in desserts.
chapter.26: DOS vs. UNIX
chapter.30: Dos and Don'ts

Finally, if you don’t know the exact characters that occur in the file, you can
use grep’s flexible and highly powerful (that is, cryptic and totally confus-
ing) expression-recognition capabilities, known in nerdspeak as regular
expressions. The grep program has its own set of wildcard characters, sort
of but not much like the ones the shell uses to enable you to specify all
kinds of amazing search strings. If you're a programmer, this feature can be
useful because you frequently need to find occurrences of rather strange-
looking stuff.

Chapter 8: Where's That File

Directory assistance

You can look for lost directories in addition to This command searches the entire disk for
lost files. Give the find command the option directories that begin with Budget.
-type d:

find / -name "Budget*" -type d
-print

The reason we mention this subject is that grep’s wildcard characters
include most punctuation characters — namely:

*[]I\$

If you include any of these characters in a search string, grep doesn’t do
what you expect. To type any of these characters in a search string, precede
them with a backslash (\). To search for files containing C.LLA., for example,
type this line:

grep "C\.I\.A\." *

The period (.) is grep’s wildcard character, like the question mark (?) in the
shell. In this example, if you don’t precede the periods with backslashes,
grep would match not only C.1.A. but also CHIFAS (a Peruvian dialect
word meaning “Chinese restaurants,” in case you were wondering) and lots
of other things. Don’t press your luck — use the backslashes with punctua-
tion marks to be safe.

What to Do with Files
After You Find Them

After you find the file or files you were looking for, you can do more than
just look at their names. If you want, you can tell the find command to do
something with every file it finds.

Rather than end the find command with the -print option, you can use
the -exec option. It tells find to execute a UNIX shell command every time
it finds a file. The following command, for example, tells the find command
to look for files with names beginning with report:

find . -name "report*" -exec lpr {} ;"

107

1 08 Part Il: Some Basic Stuff

NG/
&

Every time the command finds that type of file, it runs the 1pr program and
substitutes the name of the file for the {}. (You type two curly braces,
which was some nerd’s idea of a convenient placeholder.) The semicolon
indicates the end of the UNIX shell command. (You have to put quotation
marks around the semicolon, or else the shell hijacks it and thinks that you
want to begin a new shell command. If that didn’t make sense, take our word
for it and remember to put quotation marks around the semicolon when you
use find.) Every time find finds a filename beginning with report, this
command prints the file it found.

You can use almost any UNIX command with the -exec option, so, after you
have found your files, you can print, move, erase, or copy them as a group.
A slight variation is to use - ok rather than -exec. The - ok option does the
same thing except that, before it executes each command, find prints the
command it’s about to run, followed by a question mark, and waits for you
to agree that that would be a good thing to do. Press Y if you want to do it,
and press N if you want it to skip that particular command.

By using find and -exec rm, you can delete many unwanted files in a hurry.
If you make the smallest mistake, however, you can delete many important
and useful files equally as quickly. We don’t recommend that you use find
and rm together. If you insist, however, please use -ok to limit the damage.

A File By Any Other Name

Sometimes, it’s nice for a file to be in more than one place (that budget file
we keep mentioning, for example). If you were working on it with someone
else, it would be nice if the file could be in both your home directory and
your coworker’s home directory so that neither of you would have to use
the cd command to get to it. :

A nice feature of UNIX (and you thought there weren’t any!) is that this
situation is possible — even easy to set up. A single file can have more than
one name, and the names can be in different directories.

Suppose that two authors are working on a book together (a totally hypo-
thetical example). The chapters of the book are in John’s directory: /usr/

john1/book. What about Margy? It’s annoying to have to type the following
line every time work on the book begins:

cd /usr/johnl/book

Instead, it would be nice if the files could also be in /usr/margy/book.

Chapter 8: Where's That File ’ 09

How can you be in two places at once
when you're not anywhere at all?

You allow a file to be in two places at a time by using the 1n (for link)
command. You tell 1n two things:

+# The current name of the file or files you want to create links to

v The new name

Let’s start with just one file. Margy wants to make a link to the file named
chapterlog (it contains the list of chapters). The file is in /usr/johnl/
book. In her book directory, Margy types this line:

In /usr/johnl/book/chapterlog booklog

UNIX says absolutely nothing; it just displays another prompt. (No news is
good news.) It just created a link, or new name, however, to the existing
chapterlog file. The file now appears also in /usr/margy/book as
booklog. You have only one file (UNIX doesn’t make a copy of the file or
anything tacky like that) with two names.

How to play the links

After you create a link by using 1n, the file has two names in two directories.
The names are equally valid. It isn’t as though the name /usr/johnl/book/
chapterlog is the “real” name and /usr/margy/book/booklog is an alias.
UNIX considers both names to be equally important links to the file.

How to delete links

To delete a link, you use the same rm command you use to delete a file. In
fact, rm always just deletes a link. It just so happens that, when no links to a
file exist, the file dries up and blows away. When you use rm on a file that
has just one name (link), the file is deleted. When you use rm on a file that
has more than one name (link), the command deletes the specified link
(name), and the file remains unchanged, along with any other links it may
have had.

’ ’ 0 Part Il: Some Basic Stuff

How to rename a link

You can use the old mv command to rename a link, too. If Margy decides that
it would be less confusing for the book-status file to have the same name in
both places (as it stands now;, it’s chapterlog to John and booklog to
Margy), she can type this line:

mv booklog chapterlog

You can even use the mv command to move the file to another directory.

How to link a bunch of files

You can also use 1n to link a bunch of files at the same time. In this case,
you tell 1n two things:

+* The bunch of files you want to link, probably using a wildcard character
such as chapter*. You also can type a series of filenames or a combina-
tion of names and patterns. (UNIX may be obscure, but it’s flexible.)

+* The name of the directory in which you want to put all the new links.

The 1n command uses the same names the files currently have when it
makes the new links. It just puts them in a different directory.

The chapterlog business in the preceding example, for example, works so
well that Margy decides to link to all the files in /usr/john1/book. To make
links in /usr/margy/book, she types this line:

In Jusr/johnl/book/* /usr/margy/book

This command tells UNIX to create links for all the files in /usr/johnl/book
and to put the new links in /usr/margy/book. Now every file that exists in
/usr/johnl/book also exists in /usr/margy/book. Margy uses the 1s
command to look at a file listing for her new book directory. It contains all
the book files. This arrangement makes working on the files much more
convenient.

\1

Lihking once and linking twice

Here's one caveat. The 1n command in the
example in this section links all the files that
exist at the time the command was given. If
you add new files to either /usr/margy/
book or /usr/johnl/book, the new files
are not automatically linked to the other direc-
tory. To fix this situation, you can type the same
1n command every few days (or whatever fre-
quency makes sense). The command tells you
that lots of files are already identical in the
two directories and makes links for the new
files.

If you have linked to someone else’s files, you
may have permission to read those files but not
to change or write to them. When you ask 1nto
make the new links, if it tries to replace a file
you couldn't write to, it says something like this:

In: chapterl3: 644 mode?

See Chapter 25 for the exact meaning of this
uniguely obscure message. Press Y if you want
to replace the file, which you probably do in
this case. Press N if you don't want to replace
the file.

WNORK

How to link across the
great computer divide

All this talk about links assumes that the files you're linking to are on the
same file system (that’s UNIX-speak for disk or disk partition). If your com-

Chapter 8: Where's That Ffle , ’ 7

puter has several hard disks or if you're on a network and use files on other
computers (through NFS or some other system, as explained in Chapter 16),
some of the files you work with may be on different file systems.

Here’s the bad news: The 1n command can’t create links to files on other file
systems. Bummer. We have good news for some readers, however: Linux,
BSD, and SVR4 systems (that is, any System V and older AT&T-ish systems)
have things called soft links, or symbolic links (symlinks, for short) that are
almost as good.

Soft links enable you to use two or more different names for the same file.

Unlike regular links (or hard links), however, soft links are just imitation
links. UNIX doesn’t consider them to be the file’s real name.

How to make soft links (for users of Linux,
UNIX BSD, and SUR4 only)

To make a soft link, add the -s option to the 1n command.

7 ’ 2 Part lI: Some Basic Stuff

Nx

A\

Suppose that you want a link in your home directory to the recipe.list
filein /usr/gita. In your home directory, you type this line:

In /usr/gita/recipe.list gitas.recipes

Rather than respond with serene silence, UNIX responds with this line:
In: different file system

Drat! Gita’s home directory is on a different file system from yours, perhaps
even on a different computer. So you make a soft link by sticking an -s into
the command:

In -s /usr/gita/recipe.list gitas.recipes

As usual, no news is good news; 1n says nothing if it worked. Now a file
called gitas.recipes seems to be in your home directory — all through
the magic of soft links. You still have only file, but there’s an extra link to it.

How to use soft links (for users of Linu,
UNIX BSD, and SUR4 only)

You can look at, copy, print, and rename a soft-linked file as usual. If you
have the proper permissions, you can edit it. If Gita deletes her file, though,
the file vanishes. Your soft link now links to an empty hole rather than to a
file, and you see an error message if you try to use the file. UNIX knows that
the soft link isn’t the file’s “real” name. When you see a soft link in a long Is
listing, UNIX gives the name of the soft link and also the name of the file it
refers to.

If you try to use a file and UNIX says that it isn’t there, check to see whether
it’s a dangling soft link (a link to a nonexistent file). Type 1s -1 to see
whether the file is a soft link. If it is, use another 1s -1 on the real filename
to make sure that the file really exists.

To get rid of a dangling soft link, use the rm command to delete it.

Chapter 9
Prmtmg (The Gutenberg Thmg)

[3 B K BN I B BN BN BN BN BN K J [N K B BE K BN B B 2N BK BN BN BN BN N ® 6 00 89 [] L K K BX BN BN

In This Chapter

» How to send stuff to the printer
» How to find the printer

p Stupid printing tricks

AR R E R R R EE EF FE EE EE EEEE W N N PSS SO LI ®

unless you happen to work in the paperless office of the future (reputed
to be down the hall from the paperless bathroom of the future), from
time to time you will want to print stuff. The good news is that it’s usually
easy to do so. The bad news is that nothing is as easy as it should be.

The major extra complication is that the way to print things is different on
UNIX BSD and System V systems. (Remember which one you have? Refer to
Chapter 2 if you don’t. You may have written it on the Cheat Sheet in the
front of this book.) We start by explaining how you print something already
in a file; then we go on to the fancy stuff.

Printing Stuff: Daemons at Work

From a human being’s point of view, printing stuff in UNIX is simplicity itself:
You use either the 1p command or the 1pr command, depending on your
flavor of UNIX.

From your computer’s point of view, this arrangement is, of course, way too
simple. To make things suitably complex, the print command doesn’t print the
file. What it does is leave a note for another program buried deep inside UNIX,
and this buried program prints your file. This buried program is called a
daemon (pronounced “demon”). The theory behind this arrangement is that a
bunch of people may want to use the printer, and it would be a pain if you had
to wait for the printer to be free. The print command puts your file on a list,
and the daemon runs down the list and does the printing so that you don’t
have to wait. The request ID is the name the print command gives to the note
it leaves for the daemon. You can ignore the request ID unless you change
your mind and decide that you don’t want to print that file after all.

’ ’4 Part Il: Some Basic Stuff

S

Printing in System U

If you use UNIX System V, you print stuff with the 1p command. If you have a
file named myletter, for example, you print it by typing this line:

1p myletter

UNIX responds with this important information:
request id is dj-2613 (1 file)

Usually, that’s all you need to do. UNIX responds to your request to print by
telling you the request ID of the print job, which you probably don’t care
about. Sometimes you want to pretty up the way the printout looks by
leaving wider margins; we talk about that subject later in this chapter.

Printing in BSD and Linux

If you use Linux or BSD UNIX, printing is just as easy as printing with System
V, except that you use the command 1pr rather than 1p. If you have a file
named myletter, for example, you print it by typing

Tpr myletter
Some systems, notably SVR4 and Solaris, have both the 1p and 1pr com-

mands. If you have these versions of UNIX, either command should work
equally well. Note that the 1pr command doesn’t report a request ID.

Finding Your Printout

8
&

WNORK

T‘{Lﬁ ,

As far as UNIX is concerned, its only job is to send your file to the printer.
Now the real work begins: finding your printout.

If your UNIX system is attached to a network, chances are that your printer
is attached to some other computer rather than to yours. You may have to
go looking for it to find your printouts.

You may have to ask people in nearby cubicles or stand still in the center of
the office and listen for the sound of printing (a gentle whir and click from
most laser printers). If all else fails, ask your system administrator. Because
your UNIX system may be capable of using more than one printer, your
system administrator may be the only person who can tell you which
printer your printout is on.

Chapter 9: Printing (The Gutenberg Thing)

Aha! There’s the printer! If you’re lucky, no one else has printed anything
recently, so the paper on top of the printer is all yours. More likely, lots of
people have printed stuff and a pile of paper is on top of the printer — only
some of which is yours.

Every printout should have in front of it a sheet that identifies the file that’s
printed, with the username, time, and other odds and ends that seemed
relevant to the person who configured the printer. It’s considered tacky to
root through the stack, pick out your own pages, and leave the rest in a
heap. Instead, separate the printouts and leave them on the table or in
printout racks (if available) with the usernames visible. With luck, others
will do the same for you. If you can’t find your printout on the printer,
maybe someone else has already separated and stacked the printouts. Or
maybe other users have decided that your printout looked more interesting
than theirs and took it off the printer to read it.

Printers, printers, everywhere

A reasonably large installation probably has several printers, either because
one printer can’t handle all the work or because the installation uses
different kinds of printers. When you use the 1p or 1pr command, UNIX
picks one printer as the default. If you use 1p, you use the -d option (that’s
a lowercase d — remember that UNIX cares about these things) to identify
the printer. To print your file on a printer named draft, for example, you

type
1p -ddraft myletter

If you use 1pr, the analogous option is -P (that’s an uppercase P), so the
command you type is

1pr -Pdraft myletter

In either case, don’t type a space between the -d or -P and the printer
name.

Calling all printers

The list of available printers depends entirely on the whims of the system
administrator. Typically, one day she gets tired of putting up with the slow,
illegible, or chronically broken previous printer, storms into the boss’s
office, gets the necessary signature, and buys the first printer available.
Sometimes the old printer is thrown away, sometimes not.

115

’ ’6 Part Il: Some Basic Stuff

A\

It’s generally not too difficult to get a list of printers known to the system. If
you use the 1p command to print, type this line to get a list of available

printers:

Ipstat -a all

This line means roughly, “Show me the status of all printers that are active.”
The 1pstat program lists the status of all available printers, one per line,

like this:

dj accepting requests since Thu Apr 25 13:43:50 1991

In this case, only one printer, whose name is dj, is available. The listing also
shows you the vital fact that it was installed on a Thursday afternoon in

April 1991. Whoopee.

If you use the 1pr command to print, try typing this line to get the same

information:

lpq -a

Woodsman, spare that file!

When you tell UNIX to print a file, the file
doesn't print immediately. UNIX makes a note
to print the file and remembers its filename.

What if you delete the file before UNIX has a
chance to printit? If you print with 1p, you get
a nasty message hecause UNIX can't find the
file. If you print with 1pr, the file is printed
normally because UNIX makes a copy of the
material to print.

To force 1p to copy the file, you use the <

command-line operator. To send a copy of the

file my f11e to the printer, for example, type
Tp < myfile

You can then delete or change myfile and
not affect the printout.

If you are printing a large file, 1pr can take a
long time to make the copy of the file (which it

doesn't really need to do because it's already
in a file in the first place, isn't it?). You can use
Ipr -s totell UNIX to print from the original
file to save time and disk space. If you use the
-5 option, be sure not to delete or change the
file until it's printed.
You can tell 1pr to delete the file when it has
finished printing it. This capability is some-
times useful when you made the file in the first
place only so that you could print it. Use the
- r option to remove the file after printing:
1pr -r myfile
For large files, you can use -r and -s
together:

lpr -s -r myfile

Chapter 9: Printing (The Gutenberg Thing)

The 1pg program responds with a similar list:

1p:

Rank Owner Job Files Total Size
1st johnl 7 longletter 4615 bytes
ps:

no entries

The 1pg command stands for something like /ine printer query, and -a
means all printers. In this case, two printers are available, named 1p and ps,
and something is printing on the first one.

Keep in mind that not every printer the 1pstat and 1pq commands report is
usable. System administrators frequently put in the table of printers some
test entries that don’t really represent printers you can use.

“Help! I've Printed and It
Won’t Shut Up!”

\NG/
s

The first time you print something large, you suddenly will realize that you
don’t really want to print the file because you have found a horrible mistake
on the first page. Fortunately, you can easily tell UNIX that you have
changed your mind.

If you tell UNIX to print a file that does not contain text, such as a file that
contains a program or a database, in most cases UNIX prints it anyway. In a
classic example of Murphy’s Law (anything that can go wrong will go
wrong), files like that tend to print about 12 random letters on each of 400
pages. Every page has just enough junk on it that you can’t use that piece of
paper again. As you may expect, people who print a large number of files
like that tend to become unpopular, particuiarly with coworkers whose
2-page memos are in line behind the 400 pages of junk.

Cancel the order, System U

If you used 1p to print the file in the first place, you use cancel (we don’t
know how that name slipped past the lazy typists) to cancel the print job.
You have to give the cancel command the request ID that 1p assigned to
the job. If you're lucky, the 1p command is still on-screen and you can see
the request ID. If that information has vanished from your screen, remain
calm. Remember that the 1pstat command lists all the requests waiting for
the printer. Type this command:

Tpstat

117

’ 7 8 Part Il: Some Basic Stuff

This command displays a list like the following:
dj-2620 johnl 34895 Dec 23 21:12 on dj

This list tells you that your request was named dj-2620, it was done on
behalf of a user named john1, the size of the file to be printed is 34895, and
the print command was given on December 23. You can cancel the request
with this command:

cancel dj-2620

UNIX responds with this line:
request "dj-2620" cancelled

UNIX has a surprisingly convenient (surprising for UNIX, anyway) shortcut
you can use. If you give the name of a printer, UNIX cancels whatever is
printing on that printer. If you remember that the local printer is named dj,
you can type the following line to cancel whatever dj is printing:

cancel dj
NOX PR ,
) If you made your printing mistake with the 1pr command, you use 1pq to

find out the request ID, which — to add confusion — is called a job number
here. Just type this command:

Tpq
UNIX responds with a list of print jobs:

Rank Quner Job Files Total Size
1st johnl 12 blurfle 34895 bytes

You need to note the job number (12, in this case). Use that number with the
1prm command, which, despite its name, removes the request to print
something and not the printer itself:

Tprm 12

The 1prm command usually reports something about “dequeued” lines; this
information is meant to be reassuring, although it’s not clear to whom. In
response to the 1prm 12 command, for example, UNIX displays this message:

dfB012iecc dequeued
cfA0l2iecc dequeued

Chapter 9: Printing (The Gutenberg Thing) 7 ’ 9

Some final words about
stopping the printer

Most printers have something called an internal buffer, which is where data
to be printed resides before the printer prints it. An internal buffer is good
and bad: It’s good because it keeps the printer from stopping and starting if
the computer is a little slow in passing your file to it. It’s bad because, after
data is in the buffer, the computer cannot get it back. So, even after you
cancel something you want to print, some of it may still be in the buffer: as
much as 2 pages of normal text or about 20 pages of the junk that results
from printing a nontext file.

You have no easy way to keep from printing the stuff in the printer buffer.
One really bad idea is to turn the printer off in the middle of a page: This
method tends to get the paper stuck and, on laser printers, lets loose a
bunch of black, smeary stuff that gets all over your hands and on the next
1,000 pages the printer prints. If you insist, press the printer’s Stop or Off-
line button and wait for the paper to stop moving. Then you can turn the
printer off relatively safely.

After your print request is canceled, the printer probably still has half a
page of your failed file waiting to print. You can eject that page by pressing a
button on the printer labeled something like Form Feed or Print/Check or
even Reset.

Prettying Up Your Printouts

If you send a file full of plain text to a printer, the result can look ugly: no
margins, titles, or anything else. You can use the pr command to make your
file look nicer. Use it only with plain text files, however, not with files full of
PostScript code, document files from your favorite word processor, or a
desktop publishing program.

Titles and page numbers look so official

The simplest thing you can do with the pr command is to add titles and
page numbers to your printout. By default, the title is the name of the file
and the date and time it was last changed. You can use a pipe (defined in
Chapter 7 as the vertical bar, |) to format with pr and print on a single line:

pr myfile | lpr

7 20 Part li: Some Basic Stuff

(Remember to use the 1p command rather than 1pr, if appropriate.) This
command tells the pr program to pretty up the file and pass the results to
the 1pr program.

You can set your own heading by using the -h option with the pr command:
pr -h "My Deepest Thoughts® myfile | 1pr

The pr command assumes that printer pages are 66 lines long. If that’s not
true for you, rather than the title’s appearing at the top of every page, it sort
of oozes down from page to page. You can override the length of the stan-
dard page with the -1 option. Suppose that the page length is 60 lines. You
type this line:

pr -1 60 myfile | 1pr

If you want to use pr and not have any heading at the top of the page, use
the -t option:

pr -t myfile | ipr

(This example doesn’t do anything interesting to my file. In the following
section, however, you see that it really is useful when you combine it with
the margins and stuff.)

Marginally yours

You may frequently put printouts in three-ring binders. Normally, because
printing starts very close to the left side of the page, the hole punch may
put holes in your text and make the page difficult to read — not to mention
make it look stupid. The -¢ option (that’s a lowercase letter o, not a zero, for
offset) pushes the stuff you print to the right, leaving a left margin. To leave
five spaces for a left margin, for example, type this command:

pr -o5 myfile | Tpr

Sometimes it’s nice to leave a wider margin at the bottom of the page. You
can do that by combining the -1 option (to set the page length, as described
in the preceding section) with the - f option that tells pr to use a special
form-feed character to make the printer start a new page now! (Normally, the
-1 option uses blank lines to space to the next page, like a typewriter.) Use
the following command if you're in this situation:

pr -05 -1 50 -f myfile | 1pr

This command tells UNIX to print just 50 lines per page, indented five
spaces. That amount of space in the margin should be enough for anyone.

Chapter 9: Printing (The Gutenberg Thing) ’2 ’

Seeing double

The -d option tells pr to double-space the printout. Type this command:
pr -d myfile | 1pr
This command also puts a title on every page. Use -d -t to avoid that:

pr -d -t myfile | lpr

One column can’t contain me

If the lines in your file are short, you can save paper by printing the file in
multiple columns. To print your file in two columns, for example, type

pr -2 myfile | 1pr

Astute readers probably can guess what the options -3, -4, and up to -9 do.
(If you're not feeling that astute today, these options specify the number of
columns you want.) Columns normally run down and then across the page,
as they do in newspapers. If your file contains a list of items, one per line,
and you want to print them in columns, you may want to change the order in
which the lines print. If you want to print items across the page and then
move down to the next line, and so on (which is nowhere near as cool), use
the -a option in addition to the -2 or -3 option.

Troff, Nroff, Groff!

No, it’s not a rabid dog. It’s a typesetting program. The troff program is the
“typesetter runoff’ that has been part of UNIX since the 1970s. The nroff
program is “new runoff’ (new as of about 1972), which formats documents
for simple printers without fancy fonts. The groff program is the GNU
(refer to Chapter 2) version of troff, which, like every GNU program, does
all the stuff the originals do and about 47 other things, too. Because groff
is free, whereas nroff and troff are subject to expensive licenses from
whoever owns the original UNIX licensing rights this year, groff is all you
see these days.

All the “roff” programs are batch formatters. In these programs, you type
your document with formatting codes into a text file and then run the text
file through groff, which produces a beautifully typeset version of your
document, give or take all your typos and coding errors. Then you fix the
document, re-grof f, and so on. These programs are the antithesis of
WYSIWYG (What You See Is What You Get) formatting.

’ 22 Part Il: Some Basic Stuff

People still use groff, partly because it’s free and partly because you can
do fancy stuff with highly structured documents that’s difficult or impos-
sible with WYSIWYG formatters. We don’t expect that you'll write a great
many groff documents yourself, but you’ll probably run into some on the
Internet or in software packages.

Macro mania

Formatting a document by using troff and its cousins requires rather low-
level detailed instructions using incomprehensible two-letter codes in the
documents — instructions so detailed that even UNIX weenies find them
tedious (and that’s saying a great deal). To relieve the tedium, most troff
documents take advantage of macro packages that define higher-level
instructions, which people use rather than the low-level stuff. (These macro
packages serve roughly the same function as style formats in Microsoft
Word.) The troff program has been around for more than 25 years, and
many macro packages have come and gone, although a few have stood the
test of time. Because all of them have been written by lazy typists, each has
a cryptic two-or three-letter name, all starting with -m, the flag code that
tells groff to use the macro package. Table 9-1 lists a few popular macro

packages.

Table 9-1 Macro Packages

Name Description Origin

-ms Manuscript macros Bell Labs

-mm Different manuscript macros Another part of Bell Labs

-me Eric's macros Somebody’s Ph.D. thesis at
Berkeley (must have been a
good thesis because he's
now the head of Novell)

-man Manual page macros Same as -ms

To tell groff to format a document with the -ms macros, for example, you
type

groff -ms filename

It’s difficult to tell a priori what macros were used in what document, unless
the author took pity and gave you a clue by naming the file mobydick.ms or
the like. Fortunately, the worst that happens if you use the wrong macro
package is that the document looks ugly. (It’s not totally illegible: The text
is still there, but it's formatted incorrectly.) You can try different macro

Chapter 9: Printing (The Gutenberg Thing) 7 23

packages and see which one works least badly. As a rule of thumb, docu-
ments from academia usually use the -me macro package, whereas those
from industry usually use -mm or -ms. Documents about the UNIX system
itself usually use -ms because ms was written by some of the same guys who
did the original UNIX work and pages from the online manual (what the man
command shows you) use -man.

Let’s sneak a peek

One of the nicest things about groff is that it's device independent, which
means that it can reformat your document for any of several output devices.
To format your document and display it on a normal, text-only terminal, use
the nroff command:

nroff -ms filename | more

(This command actually calls groff, but tells it to format for plain-text
output. Change the -ms to one of the other macro packages if necessary.)
The more command displays the result a screen at a time. Press the
spacebar to move from screen to screen, or press Q when you’ve seen
enough.

If you’re running X Windows, you can tell groff to display a page at a time,
beautifully typeset in an X window, by typing this command:

groff -TX75 -ms filename

In the window that groff creates, press the spacebar to move from screen
to screen or press Q when you've seen enough. If the type is too small to
read, use -TX100 rather than -TX75 to make the text bigger. (You can’t use
any other numbers; X comes with one set of fonts for 75 dot-per-inch
screens and another for 100 dot-per-inch screens, so that’s what groff
uses.)

Printing, for the PostScript-Challenged

Earlier in this chapter, we talk about PostScript, the fabulously complicated
printer language that enables you to print fabulously complex documents on
PostScript printers. But what if you don’t have a PostScript printer?

These days, the short answer is “Get one.” Although PostScript printers
used to cost much more than other kinds of printers, these days you can
buy a perfectly decent PostScript laser printer for less than $1,000. Nonethe-
less, lots of PostScript-free sites are still out there, where Ghostscript comes
to the rescue.

7 24 Part Il: Some Basic Stuff

A\

Ghostscript is a free, GNU version (see the section that talks about what
GNU is in Chapter 2) of PostScript, written by L. Peter Deutsch, a skillful
programmer from way back who surely should have been doing something
else when he wrote it. When Ghostscript runs, it reads its PostScript input
from either a file or the keyboard (not very useful unless you're trying to
learn PostScript) and produces its output on one of a zillion possible output
devices. If you want to see what the PostScript document looks like, you can
tell it to send its output to an X Windows system window. If you want to
print the document, you can send its output to your printer.

If you're lucky, your system manager will have installed Ghostscript so that
it’s semiautomatically called when you print a PostScript file. You typically
use the -v flag, something like this:

Ipr -v floogle.ps

Failing that, in order to run Ghostscript, you type its name (gs) and the
name of the PostScript file to display:

gs floogle.ps

If you just type that line, Ghostscript opens a new X window and displays
the first page of f1oogle.ps in that window — probably not what you want.
Press Ctrl+C once or twice to stop Ghostscript from displaying the page in a
window. To get Ghostscript to do something useful, you have to use
switches — lots and lots of switches:

gs -sDEVICE=deskjet -dNOPAUSE -sOutputFile=floogle.1j floogle.ps
quit.ps

What's going on here is that we’ve set the output device (DEVICE) to a
popular ink-jet printer. We tell it not to pause between pages, we tell it which
output file to create and which PostScript file to print, and then we give it
another file from the Ghostscript library (quit.ps). The quit.ps file
contains a one-line command which tells Ghostscript that it’s finished. You
can tailor this command as needed; run gs -h to see the available printers.

We expect that you find this subject a wee bit complicated. In practice,
unless your system manager has set up Ghostscript to run automatically,
your best bet is to find a local expert who can tell you the exact command to
use. Lacking an expert, you can still look at PostScript on-screen by using a
slick little program named Ghostview.

Part I
Getting Things
Done

The 5th Wave
CREATEINANT—

By Rich Tennant

WELL HOT DA
FINALLY-A FAULT

71 | TOLERANT PRETZEL
MAKER THAT RUNS
UNPER (UNIX /

In this part . . .

n the first two parts of this book, we talk about the
computer, files, mice, printers, and the shell — you
name it. But what about getting some real work done?

To do useful work, you need software. This part talks
about using text editors, word processors, e-mail pro-
grams, and other useful programs. We also talk a little
about installing software and (for you Linux users) doing
a tiny bit of system administration.

Chapter 10
Writing Deathless Prose

(I BE R B BN BE B BE BE AR BN BE IR BN N B BE B BN I JN

® ¢ 0 8 ¢ 0 9 ¢ P O ® ¢ 8 & ® & 0 00 GO0

In This Chapter

» What is a text editor?

» What is a text formatter?

p» What is a word processor?

» What is a desktop publishing program?

» How to use vi if you absolutely have to

» How to use emacs, which is not that bad, really
p» How to use pico, which works rather well

» How to use ed if you don’t have anything better

LK B BE BN BN B BN BN BN BE AR BN BN BE BE BN OBE B BE BE BN OBE B BE BE BN OBE BN BE BN BN BE BN OB BN OBE BN B OB BN BN BN B BN B NN BN

n the land of UNIX, many programs handle text. Where you come from,

you may be accustomed to the idea of using a word processor when you
want to type something and print it. Not in UNIX. It has four kinds of pro-
grams for this task, just to keep things interesting.

UNIX Has Its Way with Words

The four kinds of UNIX programs that handle text are

1 Text editors

v Text formatters

1+ Word processors

v Desktop publishing programs
Before describing the most commonly used text editors in gory detail, we
thought that you would want to know the differences among these four

kinds of programs, in case you plan to impersonate a geek at the next
meeting of your local UNIX users’ group.

’ 28 Part lll: Getting Things Done

Just the text, ma'am

A text editor enables you to

v* Create a file full of text
v Edit the text

You can print a file by using the 1p or 1pr programs, as described in Chapter 9,
although text editors can’t do boldface, headers or footers, italics, or all
that other fancy stuff you need in order to produce modern, overformatted,
professional-quality memos.

You may want to use a text editor to write letters and reports. You certainly
will use one to send electronic mail, as described in Chapter 17.

The most commonly used text editors in the land of UNIX are ed, vi, emacs,
and pico. We have strong opinions about these editors, which becomes
abundantly clear in the later sections in this chapter, where we tell you how
to use each of them.

Text formatters aren’t really editors

Text formatters are programs that read text files and create nice-looking
formatted output. You use a text editor to make a text file that contains
special little commands only the formatter understands; the . IT command,
for example, makes something italic. When you run the text formatter, it
reads the text file, reads the special little commands, and creates a format-
ted file you can then print. You use 1p or 1pr to print the output of the text
formatter.

The most common UNIX text formatter is TeX, pronounced “teccccch” (like
yeccccch), an arcane language popular among mathematicians and physi-
cists because of its capability to format large, complex equations, and
because it produces more aesthetically pleasing results than any of its
competitors. A companion program, LaTeX, is designed to make TeX easier
to use (relatively speaking, of course). (See the nearby sidebar, “Howdy,
TeX!” for more info about TeX and LaTeX and where to get them.)

Another common text formatter is troff. Some people use nroff (an older
version of troff), or groff, a newer GNU version of the program. With

luck, you never have to use any of them. If you’re luck has run out, you may
want to check out the section about troff, nroff, and groff in Chapter 9.

Howdy, TeX!

The popular TeX text formatter was created
by one Donald E. Knuth, way back in the late
1970s. According to Knuth himself, TeX is a
“typesetting system . . . intended for the cre-
ation of beautiful books — and especially for
books that contain a lot of mathematics.”

Like troff and its cousins nroff and
groff, TeX uses macros (prewritten bits of
formatting code) to shield you (theoretically)
from painful, low-level programming chores.
In practice, TeX is hard to handle because it
can do many, many things in a variety of ways,
all proudly anti-intuitive. For people over-
whelmed by the sheer complexity of TeX,
Knuth created something called plain TeX,
which is a slim and trim, stripped-down ver-
sion of TeX. Because TeX overwhelms almost
everyone, almost everyone uses plain TeX
rather than TeX itself.

Over the years, various intrepid UNIX hackers
have taken it upon themselves to write their
own sets of macros that work with TeX. The
best known is probably LaTeX (the La part
comes from the last name of its creator, Leslie

Lamport). To make a long story short, LaTeX
simplifies TeX by letting you describe the
structure of a document without making you
worry about the way the document looks {sort
of like using the built-in styles in a word pro-
cessor, such as Microsoft Word). Other macro
packages for TeX include Eplain, Lollipop,
pdfTeX (for creating books in Adobe Acrobat),
and HyperTeX (for creating hypertext docu-
ments, such as Web pages, with TeX).

Like many things UNIX, TeX and the TeX
source code and documentation are available
for free; you can download them from various
FTP and Web sites on the Internet. Also, you
can buy one of a number of commercial ver-
sions of TeX; you gettechnical support and, in
some cases, additional features in exchange
for your money.

The best source of information about TeX,
LaTeX, and related subjects is The TeX Users
Group home page on the World Wide Web
{at http://www.tug.org/) or one of the
many TeX Usenet newsgroups, such as
comp.text.tex.

Cuisinarts for text: Word processors

Word processors combine the capabilities of text editors and text formatters.
Most word processors are (or try to be) WYSIWYG (an acronym for What
You See Is What You Get), which enables you to see on-screen how the

document (that’s what they call their files) will look when you print them.

Chapter 10: Writing Deathless Prose 7 2 9

The most common word processor for UNIX is WordPerfect (available also
for PCs and Macintoshes). Most UNIX users think that word processors are
for wimps (what you see is all you've got) because they like the unintelligible
and unmemorable commands used by text formatters and prefer to imagine
what their text will look like when it is printed rather than be able to see it
on-screen. Text formatters can do more complex things than word proces-
sors can, such as format complicated mathematical expressions, lay out
multipage tables, and neatly organize sections and headers of huge, book-
length documents. But that’s probably not your problem.

730 Part l1l: Getting Things Done

Building the perfect word processor

By far the most popular word processing
program for UNIX is WordPerfect, from Core!
Corporation. The latest version is WordPerfect
7, which costs somewhere in the neighbor-
hood of $500. WordPerfect brings all the
features you expect from a graphical word
processing package to UNIX computers
running X Windows; you can also get a
comparable character-based version if your
UNIX terminal is graphics-impaired.

WordPerfect runs on just about every version
of UNIX available, including versions of Linux
later than Version 2.0.25. WordPerfect also has
various file-conversion utilities so thatyou can

share your documents with WordPerfect us-
ers running DOS and Windows. The marketing
buzzword for such ecumenical behavior is
cross-platform capability, and it's important
if you have, for example, UNIX users and
Windows users on the same network.

Along with all the usual ward processing bells
and whistles, WordPerfect 7 comes packaged
with Netscape Navigator, a few thousand clip
art images and photographs, and more than a
hundred fonts. Find out more about
WordPerfect on the World Wide Web, at
http://www.wordperfect.com/,orgive
Corel a call (in Ottawa), at 613-788-6000.

vi and emacs and pico are your friends

The rest of this chapter explains how to use each of the Big Three text
editors (vi, emacs, and pico), along with some words about how to use the
prehistoric but not yet extinct ed (who, as you will see, is not your friend).
Even if you use a word processor or desktop publishing program, you may
need to use a text editor to do some things, such as these tasks:

' v~ Write electronic mail (see Chapter 16).

1~ Create or edit text files called shell scripts, which enable you to create
your own UNIX commands (see Chapter 12).

1 Create or edit special text files that control the way your UNIX setup
works (see Chapter 7).

!+ Write C programs (just kidding!).

Shy Vi, the Princess of Text Editors

The vi text editor can claim a unique status among UNIX editors: Almost
every UNIX system in the universe has vi. This fact makes it a good editor
to know if you plan to be moving around from system to system, because
you can always count on it’s being there. Someone may have other reasons
for using vi, but ease of use is not foremost among them.

\\{

Chapter 10: Writing Deathless Prose

A\

To run v1i, type vi, a space, and the name of the file you want to edit, and
then press Enter.

If you get an error message when you try to run vi, talk to your system
administrator. If the screen looks weird, your terminal type may not be set
right — another reason to talk to your system administrator.

Editor a la mode

The most distinctive feature of vi (and the one that has spawned legions of
vi-haters, along with a few devotees) is that it is a modal editor. The vi
program is always waiting for one of two things: commands or text (also
known as input). When vi is waiting for a command, it is in command mode.
When it is waiting for text, it is in input mode. Normally, it is up to you to
figure out which mode vi is in at any particular moment — it doesn’t give
you a clue.

Most vi commands are one letter long. Some are lowercase letters, and
others are uppercase letters. When you type vi commands, be sure to use
the correct capitalization.

If you're in input mode and want to give a command, press the Esc key.

Whenever we tell you to type a command, it works only if you're in command
mode. If you're not sure which mode you're in, press Esc first. If you are
already in command mode, pressing Esc just makes vi beep.

To switch from command mode to input mode, you tell vi to add the text
after the character the cursor (the point at which you are working) is on
(by using the a command) or to insert the text before the current cursor

position (by using the i command).

Emergency exit from v i

To escape from v i, follow these steps: 2. Type the following line and press Enter:
1. Press Escape at least three times. :q!
The computer should beep. Now you are This line tells vi to quit and not save any

in command mode, for sure. changes.

131

732 Part lll: Getting Things Done

Help! | need somebody!

The guy who wrote vi (remember Bill, the grouchy guy who'’s 6'4" and in
excellent physical condition? — same guy) didn’t believe in help, so there
wasn’t any.

Fortunately, vi has been used in so many introductory computing courses
that Bill eventually relented and added “novice” mode. Rather than type vi
to run the editor, type vedit to get the same editor with some allegedly
helpful messages. In particular, whenever you’re in input mode rather than
command mode, vi displays, at the bottom of your screen, a message such
as INPUT MODE, APPEND MODE, CHANGE MODE, or OPEN MODE. All these
messages mean the same thing (except to Bill, evidently): Text you type
when these messages are visible is added to the file rather than interpreted
as commands.

Easy text-entry techniques

Let’s make a new file with some more deathless prose so that you can
practice entering text in vi. Run vi with a new filename:

vi madeline

To add text after the current position of the cursor, type the following (you
do not press Enter after a command):

a

We tell you in a minute how to move the cursor, when you have some text to
move around in. You can press a, for example, to add this text to the newly
created xanadu file:

In Xanadu did Kubla Khan
A stately pleasure-dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

To get back to command mode, press Esc. Press Esc whenever you finish
typing text so that you are ready to give the next command.

Other commands you can use to enter text include i to insert text before the
current cursor position, A to add the text at the end of the line the cursor is
on, and 0 to add the text on a new line before the current line.

Chapter 10: Writing Deathless Prose ’33

The vi program shows you a full-screen view of your file. If the file isn’t long
enough to fill the screen, vi shows tildes (~) on the blank lines beyond the
end of the file. Figure 10-1, for example, shows a text file called eating.peas
(created in a later discussion about ed) as it would appear in vi.

I eat my peas with honey,
L’ve done it all my life,
It makes the peas taste funny,
But it keeps them on my knife.

(= ey
Figure 10-1:
Tildes fill up
the blank
lines on the
vi screen.
[——]

T ¢ ¢ t t ¥ ®* t v ¥ t ¥ ¥ ¥ ¥T ¥ ® %

"eating.peas” 4 lines, 114 chars

The cursor appears at the beginning of the first line of the file.

All kinds of ways to move the cursor

You can use dozens of commands to move the cursor around in your file,
but you can get to where you want with just a few of them:

+* The arrow keys («, —, T, and |) usually do what you would expect:
They move the cursor in the indicated direction.

Sadly, on some terminals vi does not understand the arrow keys. If this
statement is true for you, press h to move left, j to move down, k to
move up, and 1 to move right. Bill chose these keys on the theory that,
because those keys are a touch typist’s home position for the fingers on
the right hand, you can save valuable milliseconds by not having to
move your fingers. Really. In some versions of vi, the arrow keys work
only in command mode; in other versions, they also work in input
mode.

v~ Enter or + moves the cursor to the beginning of the next line.

v The hyphen (-) moves the cursor to the beginning of the preceding
line.

134 Part lll: Getting Things Done

v G (the uppercase letter) moves the cursor to the end of the file.

v+ 1G moves the cursor to the beginning of the file. (That’s the number 1,
not the letter /. Why ask why?)

Giving your text a makeover

To modify the text you have typed, follow these steps:

1. Move the cursor to the beginning of the text you want to change.
2. To type over (on top of) the existing text, press R.

3. Type the new text. What you type replaces what is already there.
Press Esc when you finish replacing text.

4. To insert text in front of the current cursor position, press s.

5. Type the new text. What you type is inserted without replacing any
existing text. Press Esc when you finish inserting text.

Removing unsightly text

To delete text, follow these steps:

1. Move the cursor to the beginning of the text you want to delete.

2. To delete one character, press the letter x. To get rid of five charac-
ters, type xxxxx. You get the idea.

3. To delete text from the current cursor position to the end of the line,
press uppercase D.

4. To delete the entire line the cursor is on, type dd (the letter d twice).

Nobody undoes it better

Like many text editors, vi has a way to “undo” the most recent change or
deletion you made. Type the following to undo the change:

u

If you type the following line (in uppercase), vi undoes all changes to the
current line since you moved the cursor to that line:

U

Chapter 10: Writing Deathless Prose

Write me or save me — just don’t lose me

To save the updated file, type the following (be sure that you have pressed
Esc first so that you're in command mode):

W
That’s a colon and a w, and then press Enter. You should give this command

every few minutes, in case the confusing nature of vi commands makes you
delete something important by mistake.

Good-bye, vi
To leave vi, type
11
Be sure to press Esc a few times so that you're in command mode before

giving this command. To quit and not save the changes you have made, type
this line:

:q!

Then press Enter. This line means, “Leave vi and throw away my changes. |
know what I'm doing.”

Most other letters, numbers, and symbols are also vi commands, so watch
what you type when you’re in command mode. Table 10-1 lists the most
common commands you use with vi.

Table 10-1 Commands in vi
Command Description

Esc Return to command mode
Enter Move to beginning of next line
+ Move to beginning of next line

- Move to beginning of preceding line

a Add text after cursor
A Add text at end of current line
dd Delete entire current line

(continued)

135

736 Part lll: Getting Things Done

Table 10-1 (continued)

Command Description
D Delete from cursor to end of line
G Move (go) to end of file
1G Move to beginning of file
h Move ane space left
i Add text befare cursor
j Move down one line
k Move up one line
| Move right one space
0 Add text on new line before current line
:q! {followed by Enter) Quit vi, even if changes aren’t saved
R Replace text
Undo last change
u Undo changes to current line
X Delete one character

:w (followed by Enter)

Save (write) file

27

Quit vi and save changes

| just love vi!

If you just love vi and want to learn more about it, read Chapter 11 in MORE
UNIX For Dummies, which we wrote (published by IDG Books Worldwide,
Inc.). Or try emacs or pico, and see whether you still love vi.

A Novel Concept in Editing:
emacs Makes Sense

We don’t want to get your hopes up, but emacs is much easier to use than
vi. The reason is that it doesn’t have the mysterious modes that require
you to remember at every moment whether the program is expecting a
command or text.

Chapter 10: Writing Deathless Prose ’3 7

Figure 10-2:
The GNU
Emacs
display

in a text
console.
emacs
displays on
the status
line (at the
bottom) the
filename
and other
mysterious
information.
|

On the other hand, commands in emacs aren’t exactly intuitive. Still, we like
them better. In case you are wondering, the name emacs comes from editor
macros because the original version of emacs was written as an extension to
an early text editor called teco, an editor that makes ed (see the section
“Talk to Mr. ed,” at the end of this chapter) look like the winner of the Nobel
prize for user-friendliness. (Scary thought, isn’t it?)

To run emacs, type this line:
emacs eating.peas

You replace eating.peas with the name of the file you want, of course. If
the file you name doesn'’t exist, emacs creates it. Like vi, emacs displays a
full-screen view of your file, as shown in Figure 10-2. On the bottom line of
the screen is the status line, which tells you the name of the file you are
editing and other, less interesting information.

I eat my peas with honey,
I’ve done it all my life.
It makes the peas taste funny,
But it keeps them on the knife.

— eating.peas [Fundamental] 1007 x

A tale of two emacs

Unlike vi, emacs does not normally come with UNIX. Because most versions
of emacs are distributed for free, however, most systems have it or can get
it. By far the two most common versions of emacs are GNU Emacs and
XEmacs. Despite its name, XEmacs runs under both X Windows and text-
based consoles, and so does GNU Emacs. The basic commands are the same
for both versions, and the most obvious differences between the two are the
button bars and more sophisticated 3-D look to the windows in XEmacs.
(Compare the difference in Figures 10-3 and 10-4.) Other than that, it really
doesn’t matter which you use.

738 Part lll: Getting Things Done

Figure 10-3:
The GNU
Emacs
display in an
X window
includes
pull-down
menus for
common
commands,
including
save,
search,
undo, and
help.
T
[l L a——

Figure 10-4:
The
XEmacs
display
inan X
window
includes a
toolbar in
addition to
pull-down
menus and
a 3-D look
to the
interface.
=i

\\g

:: BuFers Files Tools Ezc Search Hep

I eat my peas with honey,
I’ve done it all my life.
It makes the peas taste funny,
But it keeps them on my knife.

eating .peas (Fundamental) ~—L5~~f1] ~————-]

.done

-—*%-Emacs ;
Auto-saving..

File Edit Apps Options Buffers Tools

QQQQQQQQQQ&JEQ&J@M

I eat my peas with honey,
I've done it all ny life
It makes the peas taste furny.
Eut it keeps them on my knife

T

(Fundamental) ---~All - |

--*4-XFmacs . eating. peas

To run XEmacs on the eating.peas file, type the command xemacs

eating.peas.

v~ If you get an error message when you try to run emacs, ask your system
administrator what’s up. The emacs program may have another name
on your system. If your system administrator says that you don't have

emacs, plead with him or her to get it.

v If emacs looks or acts weird (weirder than usual, that is), your terminal
type may not be set correctly. Again, ask your system administrator to

straighten it out.

Chapter 10: Writing Deathless Prose

More than just a text editor

The emacs program is a cornucopia of bells
and whistles, including two different mail
packages, a newsreader, a file manager, color
text highlighting, and countless other fun and
unnecessary features. These features make
emacs amuch larger package than any other
editor {it has been somewhat accurately

editor) and has been known to cause some
system administrators to balk atinstalling it on
their UNIX machines. For others, it's almost a
way of life, so whether you have access to
emacs may depend on how strangly your sys-
tem administrator feels about those types of
things.

139

called an operating system disguised as an

Telling emacs what to do

Rather than have two modes, as does vi, emacs treats normal letters, numbers,
and punctuation as text and sticks them in your file when you type them.
(Pretty advanced concept, huh?) Commands are usually given by pressing
combinations of the Ctrl (Control) key and a letter. You also give some
commands by pressing the Meta key and a letter.

On most computers, the Meta key is the Esc key. If your keyboard has an Alt
key, it may be the Meta key. Try Alt to see whether it works. If it doesn'’t, use
Esc. Unlike with Alt, if you use Esc, you must release the Esc key before you
type the subsequent letter (Esc, release+letter). In the following section, we
tell you to press Esc.

Another novel concept: Type to enter text

To enter text, just start typing! The text is inserted wherever your cursor is.

Getting around in emacs

To move the cursor around in your text, use these keys:

v Arrow keys usually move the cursor up, down, left, and right.

3 In a few situations, emacs doesn’t understand the arrow keys. If that’s
true for you, press Ctrl+B to move backward one character, Ctrl+F to
move forward one character, Ctrl+P to move to the preceding line, and
Ctrl+N to move to the next line. At least they tried to make them
mnemonic.

’4 0 Part lll: Getting Things Done

a\\3

v+ Ctrl+A moves to the beginning of the line.
v Cirl+E moves to the end of the line.

1 Esc+< (press Esc and then hold down Shift and press the comma key)
moves to the beginning of the file.

v Esc+> (press Esc and then hold down Shift and press the period key)
moves to the end of the file.

Making changes in emacs

Even though emacs is a better text editor, you still make typos, change your
mind, and think of brilliant improvements to your text. To change text,
follow these steps:

1. Move the cursor to the beginning of the text you want to change.

2. Type the new text. The text is inserted wherever the cursor is.

3. Delete any text you don’t want.

It’s that simple. No weird commands required.

Deleting stuff in emacs

emacs has several commands for deleting stuff:
v To delete the character the cursor is on, press Ctrl+D. Or, on many
terminals, press the Del key.

+# To delete text from the cursor to the end of the word (up to a space or
punctuation mark), press Esc and then D.

+* To delete from the cursor to the end of the line, press Ctrl+K.

Emergency exit from emacs

To stop using emacs, press Ctrl+X followed by Exit?” (Translation: “Do you really want to quit
Ctri+C. without saving your changes?”) Press Y for
yes or N for no, as appropriate. If you just want
to get out, press N to the “Do you want to
save” question or Y to the “Buffers not saved”
guestion.

This command doesn‘t save any changes you
made to the file in emacs. It just gets you out.
Some versions of emacs may ask whether
you want to save the file the editor was look-
ing at or say something like “Buffers not saved.

Chapter 10: Writing Deathless Prose ’4 ’

Save that file before it's too late!

To save the text in the file, press Ctrl+XS (press and hold down the Ctrl key,
press X and S, and then release the Ctrl key). You should save your work
every few minutes. Even though emacs isn’t as frustrating as vi (or ed, for
that matter), lots can still go wrong.

Bidding emacs adieu

When you finish editing and want to leave emacs, press Ctrl+XC (press and
hold down the Ctrl key, press X and C, and then release the Ctrl key). You
leave emacs and see the UNIX shell prompt.

If you didn’t save your work, emacs politely points out that your “buffers”
(the stuff you have been working on) aren’t saved and asks whether you
really want to exit. It suggests N as the safe default in case you want to
return to emacs to save the file. To leave without saving, press Y and then
Enter.

It takes many fewer emacs commands to make a file and type some stuff,
make a few changes, and then save the file and leave than it does with ed or
vi. The emacs program has tons of commands, most of which are utterly
useless. Table 10-2 lists the commonly used emacs commands.

Table 10-2 Commands in emacs
Command Description

Ctrl+A Move to the beginning of the line
Ctrl+B Move back one space

Ctrl+D Delete one character

Ctrl+E Move to the end of the line
Ctri+F Move forward one space

Ctrl+K Delete to the end of the line
Ctrl+N Move to the next line

Ctrl+P Move to the preceding line
Ctrl+XC Leave emacs

Ctrl+XS Save the file

Esc+< Move to the beginning of the file
Esc+> Move to the end of the file

Esc+D Delete to the end of the word

7 4 2 Part lll: Getting Things Done

Moving text in emacs

Although this subject is beyond the scope of
this quick introduction to emacs, we tell you
how to move text from one place to another in
a file. It turns out that when you press Ctrl+K to
kill the text from the cursor to the end of the
line, the killed information is stored in a tem-
porary place called the kill buffer. You can
copy the information from the kill buffer back

into your file by pressing Ctrl+Y {yank it back
into the file). To move some text, kill it with
Ctrl+K, move the cursor to the new location,
and press Ctrl+Y to insert the text where your
cursoris. (“Kill” and “yank” in emacs-ese cor-
respond to “cut” and “paste” in the regular
world.)

A Peek at pico

One other editor has become popular: pico. As the Pine mail program has
spread like wildfire, the editor that comes with it, pico, has taken off too.

pico is the easiest to use, if not the most powerful, of the four text editors we
describe in this chapter. It was written by folks at the University of Washington.

To run pico, type this command:
pico eating.peas

As usual, type the name of the file you want to edit rather than
eating.peas.If you type a filename that doesn’t exist, pico creates a file
with that name just for you.

Your system may not have pico — if not, ask your system administrator if
she can get it for you. Assure her that if she doesn’t, you'll pester her ten
times a day for the next year for help with ed or vi.

The pico screen looks like the one shown in Figure 10-5. Amazing — pico

shows you at the bottom of the screen a menu of the most commonly used
commands! What will they think of next?

You're my type

Typing text into a file by using pico is a breeze. Just type. That’s all. No
modes, commands, or anything strange.

Chapter 10: Writing Deathless Prose 743

UN PICO(tw) 2.5

pi cat my peas with honey,
I've dome it all my life.
It makes the peas taste funny,
But it keeps them on my knife.
[et E—
Figure 10-5:
The pico
editor is
easy to use,
with a small
menu at the
bottom of [Read 4 lines]
Get Help MU WriteQut M Read File B Prev Pg M8 Cut Text 8 Cur Pos
the screen. EEXM Justify Where is QI Next Pg UnCut Text To Spell
jcon —w—————)

You move me

If your cursor keys work in pico, great. If not, you can use Ctrl+F to move
forward one character, Ctrl+B to move back one character, Ctrl+N to move
to the next line, and Ctrl+P to move to the preceding line. The following keys
also move you around the screen:

v Ctrl+A moves to the beginning of the line.

v Ctrl+E moves to the end of the line.

v Ctrl+V moves forward one screenful of text (F8 does this too).

v+~ Ctrl+Y moves back one screenful of text (as does F7).

Vou're a big help

To get help with the pico commands, press Ctrl+G. If your keyboard has an
F1 key, that should work too. You see pages of helpful information about the
program. Press Ctrl+V to see more or Ctrl+X to return to pico.

’ 44 Part lll: Getting Things Done

Time for a change

It’s also easy to edit your text in pico. Whatever you type is inserted
wherever the cursor is. You can use these commands to edit stuff:

§ v~ Ctrl+D deletes the character the cursor is on.

L v Ctrls? (that’s Ctrl+Shift+6) marks the beginning of some text you want
to work with. You use this command to select a bunch of text to delete
or move.

v Ctrl+K (or F9) deletes (“cuts”) the text from the mark to the current
: cursor position. Blammo! — the text is gone and is stored in an invisible
holding tank somewhere.

v Cirl+U (or F10) “uncuts” or “pastes” the last text you cut, making it
3 reappear where the cursor is now.

Thanks for saving my file

To save the text in a file, press Ctrl+O (or press F3). pico asks for the
filename to write the text into, suggesting the filename you used when you
ran pico in the first place. You can change the name so that the text is
written to a new file or leave it as is, to update the existing file. When you
press Enter, pico writes the information into the file.

P'm outta here

When you have finished editing and want to leave pi co, just press Ctrl+X. If
you haven’t already saved your file, pico asks whether you really want to
leave, because leaving will lose any changes you made to the file since you
last saved it. Tell it that you do. Then you're out, and you see the shell
prompt.

pico doesn’t claim to be an editor with the power of emacs or vi. After all,
you can’t edit ten files at a time, read your mail, and rename files from pico.
Who cares? It’s a nice, easy program for editing text. Isn’t that what a text
editor is supposed to be?

Table 10-3 lists the top pico commands.

Editors galore: NEdit and jed

UNIX being UNIX, you could use many more
text editors in addition to the Big Three (and
reluctant Fourth) described in this chapter, in-
cluding such alien-sounding programs as sed,
perl, and awk. A few of them, including
NEdit and jed, have graphical user inter-
faces (GUls, remember?) that let you use your
mouse to get stuff done.

NEdit wraps all the fun and frolic of emacs
and pico plain-text editing in a Windows-
style GUI. Because NEdi t isrelatively easy to
use {you can select and drag-and-drop text
with your mouse; imagine that!), it has be-
come one of the most popular editors for UNIX
users blessed with some version of X. One of
Nedit's coolest features is “unlimited undo,”
which means that you can undo all your
actions right back to the beginning of your
NEdit session. Programmers like NEdit
because it's completely customizable and
because it has special features that make
editing files of various types of computer code
easier (features such as syntax highlighting
and parenthesis flashing and matching; if you
don't know what these are already, you
don't care — believe us). NEdi t, the latest

version of whichis 5.0.2, is free. You can down-
load versions and source code for just about
every flavor of UNIX via FTP from a number of
sites, including ftp://ftp.fnal.gov/
pub/nedit.

jed is named after its creator, John E. Davis
of MIT (so it's sometimes called JED). jed is
much like emacs, but it takes up much less
space on your computer. jed can do plain-
text editing, to be sure; it can also edit binary
files just like a decent word processor. In fact,
jed can do a reasonable imitation {emulation
is the technical term) of such editors as
emacs, WordStar, and Brief. Like NEdi t, jed
offers a slew of programming modes that help
make life a little less trying for programmers
trying to edit abstruse computer code in such
languages as C, C++, FORTRAN, HTML, and
TeX. jedis free; the latest version number is,
curiously, something like 0.98-7. According to
Mr. Davis, jed isn't up to Release 1.0 “be-
cause of lack of adequate documentation,”
which we're sure doesn’t scare you off one
bit. You can download jed from ftp://
space.mit.edu/pub/davis/jed,among
other FTP sites.

Table 10-3 Commands in pico
Command Description

Ctrl+A Move to the beginning of the line
Ctrl+B Mave back one character
Ctrl+D Delete one character

Ctrl+E Mave to the end of the line
Ctrl+F Move forward one character

Ctrl+G (or F1)

Get help (display online help information)

(continued)

Chapter 10: Writing Deathless Prose 7 45

’ 46 Part lll: Getting Things Done

Table 10-3 (continued)

Command Description

Ctrl+K (or F9) Kill (delete) selected text (text between the mark and
the cursor)

Ctrl+N Move to the next line

Ctrl+0 (or F3) Output (save) the file

Ctrl+P Move to the preceding line

Ctrl+U (or F10) Uncut (paste) the last text that was deleted by using
the Ctrl+K command

Ctrl+V (or F8) Move down one screenful of text

Ctrl+X (or F2) Exitfrom pico

Ctrl+Y (or F7) Move up one screenful of text

Ctrl+? (Ctrl+Shift+6) Mark the beginning of selected text

Talk to Mr. ed

<P

The vi editor may seem like a quaint throwback to prehistoric software, but
there was a time in the early days of UNIX when even vi didn’t exist. In the
pre-CRT era of Teletype terminals, line editors ruled, and the standard
among line editors was (and still is) ed. A line editor, such as ed, is one that
assigns line numbers to the lines in a file. Every time you do something, you
must tell ed which line or lines to do it to. If you have used the EDLIN
program in DOS, ed should look familiar. The ed program has been a part of
UNIX since the beginning of time. When you use it, you begin to appreciate
how far software design has progressed since 1969.

If there is any way — repeat — any way you can get another text editor to
use, do it. If you don’t think that ed can really be that bad, just peruse the
rest of this section and you will run screaming to your system administrator
for vi , pico, or emacs (preferably pico or emacs).

Some systems have a program called ex that is similar to but not quite as
horrible as ed. Try typing ex to see what happens.

Chapter 10: Writing Deathless Prose

A\

<\P

To run ed, type this line:
ed important.letter

(Type the name of your file rather than important. letter.) If no file has
the name you specify, ed makes one. UNIX responds to this command with a
number, which is the number of characters (letters, numbers, punctuation,
and spaces) in the file, just in case you're being paid to write by the letter.

If you receive an error message when you try to run ed, talk to your system
administrator. Congratulate her on getting rid of that Neanderthal text editor
and find out which text editor you can use.

Hey, Wilbur, which command was that?

All ed commands are one-letter long (such as h).

Remember not to capitalize ed commands unless we specifically say to. ed
commands are almost all lowercase letters.

Relatively recent versions of ed (since, oh, about 1983) have a P command
(that’s a capital P, one of the few uppercase commands) that turns on a
prompt. If you type P and press Enter, ed prompts you with an asterisk when
it’s in command mode and waiting for a command. Is that incredibly user-
friendly or what? This P command enables you to determine when you’re in
command mode! Must have snuck that one in when the lazy typists weren’t
looking.

If you’re in input mode and want to give a command, type this character:

That’s just a single period on a line by itself. Typing it switches ed to com-
mand mode.

In the remainder of this discussion about using ed, whenever we tell you to
type a command, it works only if you're in command mode. If you’re not
sure, type a period and press Enter first.

If you’re in command mode and want to type some text, you switch to text-
input mode. First, however, you must decide whether you’re going to append
(by using the a command) after the current line the lines of text you will
type or insert (by using the i command) before the current line. More about
the current line and the a and i commands in a minute.

147

’ 48 Part lll: Getting Things Done

MBER
@&
&

Feeding text to Mr. ed

Create a file and feed some text to it. Start the process by typing
ed eating.peas

You can name your file something other than eating. peas, if you want.
UNIX responds with a question mark, just to keep you on your toes. (This
time, the question mark tells you that ed just created a new file for you.)

To add (append) new lines of text to the end of the file — in this case, the
end of the file is the same as the beginning because the file is empty — type

a

UNIX responds by saying nothing, which is your indication that ed is now in
input mode and waiting for you to type some text. Type some pearls of
wisdom, like this:

I eat my peas with honey,
I've done it all my life.
It makes the peas taste funny,
but it keeps them on the knife.

When you finish typing text, type a period on a line by itself to switch ed
from input mode back to command mode. Not that ed gives you a hint that
this process is going on, unless you have used the P command to tell it to
prompt you.

The lines of text are now in your file. Now would be a good time to save the
file, just in case you kick your computer’s plug from the wall in your frustra-
tion at having to use such a brainless program.

Getting Mr. ed to save your text

The following command saves your text in a file with ed. If you're in input
mode, remember to type a period on a line by itself to switch to command
mode before giving this command:

w

That’s w for write. UNIX responds with the number of characters now in the
file. Be sure to give this command before leaving ed so that your deathless
prose is saved in the file; in this case, eating.peas (or whatever filename

you used when you ran ed).

Chapter 10: Writing Deathless Prose

Show me the file, please

Now that you have text in the file, how can you see it or change it? By using

the p (print) command. This command doesn’t print anything on the printer;

it just displays it on-screen — another example of superb software engineer-
ing. (Well, it printed on those old Teletypes.) If you type the p command by

itself, as follows, ed displays the current line:

p

In the case of the sample eating.peas file, the current line is the last line in
the file. You can also tell ed which lines to display by typing their line numbers.
To display lines 1 through 4, for example, type this line:

1,4p

You can also use the symbol $ to stand for the line number of the last line in
the file (in case you don’t know how many lines are in the file). The following
command always displays the entire file:

1,$p

A miserable way to edit

You can change the contents of a line of text with ed, although it involves
giving commands that look like this:

12,13s/wrong/right/

This command substitutes right for wrong in lines 12 through 13, inclusive.
Totally primitive and painful, isn’t it? For the amount of editing you probably
do in ed, it's almost easier to delete the line with the typo and insert a new
line. We recommend that you immediately ask your system administrator for
a better text editor.

Undo your thing, ed!

Wait — ed has one useful, humane command, after all! The u command
enables you to “undo” the last (and only the very last) change you made to
the file. If you delete a line by mistake with the d command, for example, you
can type this line to undo the deletion:

u

149

750 Part lll: Getting Things Done

MBER
‘g&
&

Be sure that you don’t make any other changes before using the u command.
It undoes only the last thing you did.

Time to ed out

When you finish making changes and you want to leave ed (or even if you're
not finished making changes and you want to leave ed anyway), type

q

If you're in input mode, first type a period on a line by itself to get into
command mode. Then press q to quit.

If you haven’t saved your work by using the w command, ed just doesn’t
quit. Instead, it displays a question mark to tell you that it was expecting a w
command first. To save your changes, type these two commands, pressing
Enter after each:

W
q

If you don’t want to save the changes to the file, press q again at the ques-
tion mark. This time, ed believes that you really want to leave and thus
exits. Not a moment too soon!

Chapter 11

Umpteen Useful UNIX Utilities

PP P VO OVOEOBDIOOIDOLOOIBIGOOGESESIADOLOEES

In This Chapter
» A grab bag of useful programs
» Sorting and comparing files
Stupid calendar tricks
» Squashing files to make them smaller
» Some other odds and ends

S O 0 0 0000 EOOCOODEGOOOB OO O000800000ODEESOCOSSOOEGBOIBSBOESO

n spite of the fact that we have been making fun of UNIX in this book, we

are well aware that UNIX actually has some fairly handy programs lying
around. In this chapter, we look briefly at some of them. All these programs
have a severe case of what is known as Feature Disease (closely related to
the greasy fingerprints mentioned in Chapter 2): They all are bristling with
features and options. Most of the features and options aren’t worth mention-
ing, however, so we don't.

Comparing Apples and Oranges

When you have used your UNIX machine for a while, you have piles of files
(say that six times quickly) lying around. Often, many of the files are dupli-
cates, or near duplicates, of each other. Two programs can help sort out this
mess: cmp and di ff.

The simplest comparison program is cmp; it just tells you whether two files
are the same or different. To use cmp to compare two files, type this line:

cmp onefile anotherfile

You replace onefile and anotherfile with the names of the files you want
to compare, of course. If the contents of the two files are the same, cmp
doesn’t say anything (in the finest UNIX tradition). If they're different, cmp
tells how far into the files it got before it found something different. You can
compare any two files, regardless of whether they contain text, programs,
databases, or whatever, because cmp cares only whether they're identical.

’52 Part lll: Getting Things Done

A considerably more sophisticated comparison program is di ff. This
program attempts to tell you not only whether two files are different but
also how different they are. The files must be plain text, not word processor
documents or anything else, or else di ff becomes horribly confused. Here’s
an example that uses two versions of a story one of us wrote. We compared
files tsel and tse2 by typing this command:

diff tsel tse2

Enter the name of the older file first and the name of the new, improved
second file. The di ff program responds:

45¢45
< steered back around, but the sheep screamed in panic and reared back.

> steered back around, but the goats screamed in panic and reared back.
46a47
> handlebars and landed safely in the snow.

The changes between tsel and tse? are that, in line 45, the sheep changed
to goats, and a new Line 47 was added after Line 46.

The diff program reports, in its first line of output (45¢45) that changes
(that’s what the ¢ stands for) have been made in lines 45 through 45 (that is,
just line 45). Then it displays the line in the first file, starting with a <, and
the line in the second file, starting with a >. We think of this as the diff way
of saying that you took out the lines starting with < and inserted the lines
starting with >. Then di ff reports that a new line is between lines 46 and 47
in the original file, and it shows the line that was inserted. It’s a great way of
seeing what changes have been made when you get a new revision of a
document you have written.

BSD versions of diff (including the version that usually runs under Linux)
can compare two directories to tell you which files are present in one and
not in the other and to show you the differences between files with corre-
sponding names in the two directories. Run diff and give it the names of
the two directories.

Assorted Files

Computers are good at putting stuff in order. Indeed, at one time a third of
all computer time was spent sorting. UNIX has a quite capable sorting
program, cleverly named sort, that you may remember meeting briefly in
Chapter 7. Here, we talk about some other ways to use the program.

The sort command sorts the lines of a file into alphabetical order. From the
sort point of view, a line is anything that ends with a carriage return (that
is, you pressed Enter). If you have a file containing a list, with one item per
line, this command alphabetizes the list.

Chapter 11: Umpteen Useful UNIX Utilities ’53

A\

The easiest way to use sort is to sort one file into another. In other words,
you tell sort to place the sorted version of the original file in another file.
This way, you don’t risk screwing up the original file if the sort runs amok.
To sort the original myfile into a second file named sortedfile, type this
command:

sort myfile > sortedfile

Although you can sort a file back into itself, you can’t do it in the obvious
way. The following line, for example, doesn’t work:

sort myfile > myfile

The problem with this command is that the UNIX shell clears out myfile
before the sort starts (with the result that, when sort tries to sort some-
thing, it finds that myf7 e is empty). You can use the -0 (for output) option
to tell sort where to put the results, like this:

sort myfile -o myfile

This command works because sort doesn’t start to write to the output file
until it has read all its input.

Normally, sort orders its results based on a strict comparison of the
internal ASCII codes the computer uses for storing text. The good news is
that this command sorts letters and digits in the correct way, although some
peculiarities exist: Normally, uppercase letters are sorted before lowercase
letters, so ZEBRA precedes aardvark. You can use the - f (for fold cases
together) option to sort regardless of uppercase and lowercase letters:

sort -f animals -o sortedanimals

Although we could have used the > redirection symbol in this example, with
sort, it’s safer to use -0. You can use several other options also to tell it to
sort:

-b Ignore spaces at the beginning of the line.

= Use dictionary order and ignore any punctuation. You usually use
this option with - f.

=M Sort based on the number at the beginning of the line. With this
option, 99 precedes 100 rather than follows it, as it does in usual
alphabetical order. (Yes, the normal thing the computer does is
pretty dumb. Are you surprised?)

-r Sort in the reverse order of whatever would have been done
otherwise. You can combine this option with any of the others.

’55 Part lll: Getting Things Done

We find sorting to be particularly useful in files in which every line starts
with a date, as shown in these examples:

0505 Tonia's birthday
1204 Meg's birthday
1102 Zac's birthday
0318 Sarah's birthday

We could type sort -n to sort this file by date. Notice that we wrote May 5
as 0505 (not 55, for example) so that a numeric sort would work.

You can do much more complex sorting and treat every line as a sequence
of “fields” that sort uses to decide the final sorted order. If you really need
to do this, talk to someone who knows something about sorting.

Time Is Money — Steal Some Today!

All UNIX systems have internal clocks. You can ask the system what the date
and time are with the date command:

date

UNIX responds with this information:
Thu Dec 3 15:43:50 EST 1998

Many options enable you to tailor the date format any way you want. Don’t
waste your time. UNIX has an idea about the time zone too, and it even does
daylight savings time automatically.

You can schedule things to be done later by using the at command. You say
something like this:

at 5:15pm Jul 4
sort -r myhugefile -o myhugefile.sort
pr -f -2 myhugefile.sort | 1p

Then you press Ctrl+D to indicate that you've finished giving commands.

You give the at command and specify a time and date. Then you enter the
commands you want to run at that date and time. Press Ctrl+D on a separate
line to tell UNIX that you're finished listing tasks. In this example, we sort a
huge file and then print it in two columns, all on the Fourth of July, when
presumably no one is around to complain that it’s taking too long. If you omit
the date, UNIX assumes that you mean today if the time you give is later than
the current time; otherwise, UNIX assumes that you mean tomorrow.

Chapter 11: Umpteen Useful UNIX Utilities] §§

Any output that normally would go to the terminal is sent back to you by
electronic mail, so you should at least skim Chapter 17 to find out how to
read your mail.

Squashing Your Files

One problem that is common to all UNIX systems — indeed, to nearly all
computer systems of any kind — is that you never have enough disk space.
UNIX comes with a couple of programs that can alleviate this problem:
compress and gzip. They change the data in a file into a more compact
form. Although you can’t do anything with the file in this compact form
except expand it back to its original format, for files you don't need to refer
to often, compressing can be a big space saver.

Compress without stress

You use compress and gzip in pretty much the same way. To compress a
file named confidential.doc, for example, type this line:

compress -v confidential.doc

The optional -v (for verbose) option merely tells UNIX to report how much
space it saved. If you use it, UNIX responds with this information:

confidential.doc: Compression: 49.79% — replaced with confidential.doc.Z

The compress program replaces the file with one that has the same name
with .7 added to it. The degree of compression depends on what’s in the
file, although 50 percent compression for text files is typical. For a few files,
the compression scheme doesn’t save any space, in which case compress is
polite enough not to make a . Z file.

To get the compressed file back to its original state, use uncompress:
uncompress confidential.doc.Z

This command gets rid of the file confidential.doc.Z and gets back
confidential.doc. You can also use zcat, a compressed-file version of the
cat program, which sends an uncompressed version of a compressed file to
the terminal, without storing the uncompressed version in a file. The com-
mand is rarely useful by itself but can be quite handy with programs such as
more or 1p. You use it this way:

zcat confidential.doc.Z | more

756 Part l1l: Getting Things Done

This command enables you to see one page at a time what'’s in the file.
Unlike uncompress, zcat does not get rid of the . Z file.

The GNU crowd weighed in with its own compress-like program named
gzip. It works the same way that compress does, but uses a different,
slightly better, compression scheme. The gz ip program is analogous to
compress. gunzip and gzcat uncompress stuff. Use them this way:

gzip -v confidential.doc
gunzip confidential.doc.gz
zcat confidential.doc.gz | more

Note that the files end with lowercase gz rather than uppercase Z.

\J . d

> Fortunately, gzip knows how to uncompress files produced by compress as

well as those produced by several other compression programs, so you can
use gunzip as your one-stop uncompression utility.

A similar but older program that uses a different compacting scheme is
pack. To use it, type this line:

pack confidential.doc

UNIX responds with this information:
/usr/bin/pack: confidential.doc: 37.1% Compression

You get packed files back with unpack. You can look at packed files with
pcat. Packed files end in .z (that’s a lowercase z). Like compress, pack
leaves the file untouched if packing doesn’t save any space.

Zippedy day-tah

WinZip and PKZIP are widely used compression programs among Windows
and DOS users to create ZIP files containing one or more files compressed
together. You may run into ZIP files if you get information from the Internet
or on a disk from a DOS or Windows system. Fortunately, a number of volun-
teers (led by a perfectly nice guy who goes by the enigmatic handle of Cave
Newt) have written free zipping and unzipping programs named zip and
unzip. They’re both available for free over the Internet.

To unzip a ZIP file, you use unzip:

unzip video-list.zip

Chapter 11: Umpteen Useful UNIX Utilities ’57

How does file compression work, anyway?

This discussion is pretty technical. Don't say
that we didn’t warn you.

The issue of optimal codes (codes that use the
least number of bits for a particular file — or
messagebecause at that time they were think-
ing in terms of radioteletypes) was a hot topic
in the late 1940s, challenging the deepest
thinkers in the field. In 1952, a student named
David Huffman published a paper that any
high-school student could understand show-
ing how to use simple arithmetic techniques
to construct optimal codes. Oops. Ever since
then, this kind of code has been known as
Huffman coding. For many years Huffman cod-
ing was the best available, and a UNIX pro-
gram named pack used it.

Normally, every character in a file is stored by
using 8 bits (binary digits, s and Os, the small-
est unit of data a computer can handle). Sup-
pose that a file contains 800 A's followed by
100 B's and 100 C’s. That's 1,000 characters, at
8 bits apiece, or 8,000 bits. For this particular
file, a compression program can use much
shorter codes. It can use a 1-bit code for A
and 2-bit codes for B and C. That makes the
total size 800 bits for the A's, and 200 bits
apiece forthe B's and the C's — a total of 1,200
bits rather than 8,000. The packed file is a little
larger than that {1,408 bits) because a table at
the front of the packed file indicates which
codes correspond to which letters.

The compress program uses a dictionary-
compression scheme, which is kind of back-
ward from Huffman coding. Rather than try to
find the shortest code for every letter, com-
press runs through the file trying to find
frequently occurring groups of letters it can
encode as a single dictionary entry, or token.
To compress the same file we packed in
the preceding paragraph, compress reads
letter-by-letter and notes that it has seen AA

more than once; then it notices that it has
seen AAAmore than once, and so on. It enters
longer and longer runs of A's into its dictionary
until it has runs of more than 300 A's, each
represented by a single dictionary entry and a
single token in the compressed file. When
compress runs into the B's and then the Css,
it does the same thing and also enters long
runs of B's and C’s in the dictionary.

Using a clever technique (at least, it's clever
to data-compression wonks), compress
doesn’t have to store the dictionary in the
compressed file because uncompress can
deduce from the sequence of tokens in the
compressed file the contents of the dictionary
that compress was building. As a result,
compress does a fantastic job on this file
and squashes it to a mere 640 bits from the
original 8,000.

Compression technigues are still a hot topic in
the computer biz, and many techniques have
been patented. The particular technique com-
press uses is known as LZW, after Lempel,
Ziv, and Welch, the three guys who thought of
it. Welch, who works for Unisys and made
some improvements to an earlier scheme de-
signed by Lempel and Ziv, has a patent on it.
It's such a cool technique, in fact, that two
other guys named Miller and Wegman, who
work for IBM, invented it at about the same
time, and they also have a patent on it. Be-
cause the patent office is not supposed to
granttwo patents on the same invention, some
people use this situation to suggest that
issuing patents on software isn‘t a good idea.
Fortunately, neither Unisys nor IBM has ever
objected to the compress program, so you
can go ahead and use it. gzip and zip use a
technigue that's somewhat similar to LZW but
not covered by patents.

’58 Part lll: Getting Things Done

The unzip command has a bunch of options, the most useful of which is -1,
which tells the program to list the contents of the ZIP file without extracting
any of the files. To find out what all the options are, run unzip with no
arguments. If you need to create a ZIP file, you can use the equally boringly
named zip program:

zip video-list *.txt

This command says to create a file named video-1ist.zip (it adds the
.z1p part if you don’t) containing all the files in the current directory whose
names end in . txt.

What's in That File?

Sometimes you have a bunch of files and no recollection of what they
contain. The file command can give you a hint. It looks at the files you
name on the command line and makes its best guess about what’s in the
files. To have file try to figure out what'’s in the files in the working direc-
tory, type this line:

file *
UNIX responds with this bunch of seemingly incomprehensible information:

sleuthl.doc: data

sieuthl.ms: [ntlroff, tbl, or egn input text
tsel: ascii text

tse2.Z: compressed file - with 16 bits

This mess says that file figured out that the sTeuthl.ms file is a text file
coded for input to the troff text formatter (those other programs are some
of troff’s helpers), that tsel contains text, and that tse2.Z is com-
pressed. (The “16 bits” stuff tells basically which version of compress was
used; it doesn’t really matter because current versions of compress can
read any compressed file.) The file program guesses “data” whenever it
has no idea what’s in a file. Because the first file, sleuthl.doc, was a
Microsoft Word document, something file doesn’t know about, it guesses
that it’s data.

Chapter 12
Installing Software Can Be Tricky

o rles O ey

In This Chapter
- Where software comes from (the software stork?)
Where to put software
How to write shell scripts, or files full of commands
How to write aliases for your favorite commands
How to grab software from the Internet
How to send programs by e-mail

How to uncompress, uudecode, and otherwise fool with files that contain programs

@ "N EEEEEEENEEEEE

f you are a Windows or Macintosh user, you probably are thinking: “I can
install new programs. What'’s the big deal? I just stick in a disk or a CD
and type INSTALL, right?” No. In UNIX, it’s not that simple, of course. You
face issues of paths, permissions, and other technical-type
stuff we have been protecting you from.

On the other hand, we’re not about to train you to be a system programmer.
Every user has a few favorite programs, and you wear out your welcome
quickly if you go off to your local wizard every time you want to use a new
program. Although installing new UNIX programs is much trickier than
installing PC or Mac programs, in many cases you can do it yourself.

The Software Stork

Interesting software comes from many places:

£ 1+~ Some other user on the same machine already has it for his or her own

" use and you want to use it too.
WORK
g:‘ +* Some other machine on the network has a program you want for

yourself. See Chapter 16 for the gory details of copying the program
from other machines on the network.

’ 60 Part lll: Getting Things Done

F » Someone sends you programs through e-mail. (Yes, it’s possible.)

v You create files that contain frequently used commands so that you
don’t have to type them repeatedly. In UNIX-speak, these files are
called shell scripts. In essence, you make your own multipurpose UNIX
commands.

First, we talk about where you should put your own software. Then we go
into more detail about the mechanics of putting it there.

VYou've bin had

Every UNIX user should have a bin directory. It’s just a directory named bin
in your home directory. If it’s not there, you can make it by going to your
home directory and typing this line:

mkdir bin

The thing that’s special about bin is that the shell looks for programs there.
Most system administrators automatically set up a bin directory for users.

If not, and you had to create it yourself, you may have to do some fiddling to
tell the shell to look for programs there. See the sidebar “Your search path,”

A\

later in this chapter, for the bad news.

To put programs in your bin directory, you just copy them there by using
the cp command. Alternatively, you can move them there by using the mv
command, a text editor, or any other way to create or move a file.

Why is it named bin?

Early on, bin was short for binary because
most programs that people put there were, in
fact, compiled binary code. In the late 1970s, a
famous professor of cognitive science at the
University of California published a paper titled
“The Trouble with UNIX,” in which he cam-
plained bitterly about how difficult it was to
use UNIX. One of the items on his list was that
bin was difficult to remember. One of the
UNIX guys at Bell Labs published a witty re-
buttal and pointed out that many of the alleg-
edly "more natural” command names the

professor suggested were merely the names
the computer system at his university used.
The UNIX guy reported that many Bell Labs
users thought that a bin was the obvious place
to stash their programs. So, it’s still a bin.

The famous professor, who's now a researcher
at Hewlett-Packard, has come around some-
what and is reputed to even use UNIX now
and then, although he probably shuts his of-
fice door so that no one can see.

Chapter 12: Installing Software Can Be Tricky 7 6 ’

VYou Too Can Be a Script Writer

You can make your own commands (shell scripts) and put them in your bin
directory. A shell script is a text file that contains a list of shell commands —
the same commands you type at the shell prompt. You can store a list of
commands as a shell script and run the commands any time by typing the
name of the shell script. This section tells you how.

How to shell a script

To create a shell script, use any text editor (refer to Chapter 10). Enter the
commands one per line, just as you would type them at the shell prompt.
Save the file in your bin directory.

Here’s an example — if you frequently search for files with names that begin
with budget, you probably are tired of typing this command over and over:

find . -name budget* -print

(Check out Chapter 8 to see how the find command works.) Instead, you
can put this command in a shell script and perhaps name the script
findbud. To do it, create a text file named findbud that contains just one
line: the command.

First you move to your bin directory because that’s where your programs
live:

cd bin
Then you use a text editor to create a text file containing the commands you

want in your script. In this example, we use ed, a creepy editor, but you can
use the editor of your choice instead. Type

ed findbud
UNIX responds with this line:
?findbud

or maybe

findbud: No such file or directory

’ 62 Part lll: Getting Things Done

Either way, you are editing the findbud file. Type this command:

a
This command tells ed to start appending text to the end of the findbud
file. (Remember that because you're using ed, you have to type weird
commands.)
Then type these two lines:

find . -name budget* -print
The dot on a line by itself tells ed to return to command mode. To save the
file, type

W

UNIX responds with the information that you have saved a file with 29 (or
so) characters:

29
Quit ed by typing this command:
q

You see the shell prompt again. Great! You've created a shell script!

Getting your script to play

Now you must tell UNIX that the text file you have created is executable —
that it's more than a mere text file. Type this line:

chmod +x findbud

This line marks the findbud file as executable (it’s a script the shell can
run).

Running and rehashing your script

To run the shell script, just type its name:

findbud

Chapter 12: Installing Software Can Be Tricky ,63

Voila! You have just created your own UNIX command! UNIX runs the f1ind
command to look for your budget files.

You're not quite finished, though. Observe what happens when you go to
another directory. Type the following two commands to go to your home
directory and give the findbud command there:

cd
findbud

UNIX may respond with this message:
findbud: Command not found.

If so, type this command to get UNIX to do what you want:
rehash
Now when you type findbud, it works.

What’s going on? Well, it’s Mr. too-smart-for-his-own-good Shell. Because
programs don’t appear and disappear very often, when the shell starts up, it
makes a list of all the commands it can access and where they are. Because
five or six command directories frequently exist, this process saves consid-
erable time (the alternative is to check every directory for every command
every time you type one). The rehash command tells UNIX to rebuild its list
(known in geekspeak as a hash table) because you have added a new com-
mand (the findbud file is really a command, remember?). If the command
still doesn’t work, you have to fiddle with your search path — not a pretty
job. See the following sidebar, “Your search path.”

Type rehash to tell the shell that you have added a new command and that
you want it to rebuild its list of available commands to include this one. If
you don’t give the rehash command and you change directories, you can’t
use the newly created shell script during this login session.

We could write an entire book about shell scripts (others have). In fact, we
wrote several chapters about them in MORE UNIX For Dummies (published
by IDG Books Worldwide, Inc.). The finer points naturally vary depending on
which shell you use, although this explanation gives you the general idea.
Shell scripts aren’t limited to one line: They can be as long as you want,
which is handy when you have a long list of commands you want to run
regularly.

’ 64 Part lll: Getting Things Done

Your search path

You can ignore this section unless you have
put a command in your bin directory and the
shell can‘tfind it. Still reading? Sorry to hear it.
The shell has a list of directories that contain
commands; this list is known as the search
path. On any sensible UNIX system, the bin
directory is already in your search path. If not,
you have to putitthere. You do it in two stages:
putting itin once and putting itin permanently.

To see what your current search path is, type
the following line if you’re using the C shell:
echo $path

If you have BASH or the Bourne or Korn shell,
type this line:

echo $PATH

Yes, one’s uppercase and one's lowercase.
Arrgh! The C shell responds with something
like this:
/bin /usr/bin /usr/ucb/
bin /usr/local/bin

BASH or the Bourne or Korn shell shows
something like this:

/bin:/usr/bin:/usr/uch/bin:/
usr/local/bin:.

What you have to do is add your bin directory
to the path.

If you use the C shell, type this magical incan-
tation:

set path=($path ~/bin)

That's a tilde {~) in the middle. This line tells
the C shell to set the path the same as the
current path ($path), plus the bin
subdirectory of your home directory (~).

If you use BASH or the Bourne or Korn sheli,
type this even more magical incantation:

PATH=$PATH: $HOME/
bin export PATH

Note that the second time you type PATH and
HOME in the first command, you include a dol-
lar sign ($) in front of them. This line tells the
Bourne or Korn shell to set the path the same
as the current path ($PATH), plus the bin
subdirectory of your home directory (SHOME).
Same song, different words.

Now you should be able to run your new script
regardless of which directory you're using.

This new, improved path lasts only until you
log out. To put your bin directory on the path
every time you log in, you must add the incan-
tation to the end of the shell script that runs
automatically whenever you log in. If you use
the C shell, add it to the . Togin file. If you
use the Bourne or Korn shell, add it to the
.profilefile.

Yes, these filenames begin with periods.
Filenames that start with periods usually don't
show up in file listings, which is why you
haven't noticed these files in your home direc-
tory. Type the following line to list all your files,
including these hidden ones:

1s -a
In principle, you only have to edit the file, go to
the end, and add the necessary lines. In prac-
tice, it's easy to screw up, so — unless you're

feeling particularly brave — you're probably
better off asking for expert assistance.

Chapter 12: Installing Software Can Be Tricky ’ 65

Don’t give me any arguments!

Shell scripts can be complete programs. Ev-
ery shell program has lots of swell program-
ming features you don't want to know about.
One is so useful, however, that we're going to
tell you anyway: Your shell scripts can use
information from the command line. That is,
if you type foogle dog pig, your script
named foogle can see that you ran it saying
dog and pig. The things on the line after the
name of the command are called arguments.
The word dog is the first argument, and pig is
the second one. In shell scripts, the first argu-
ment is named $1; the second, $2; and so on.
In shorthand, $* means “all the arguments.”

Suppose that you want to write a script named
2print that prints files in two-column for-
mat. (You do that by using the pr command,
described in Chapter 9.) Create a file named
2print that contains this line:

pr -f -2 $* | 1p
Then use the chmod and, if necessary, re-
hash commands to make 2print an execut-
able script. If you want to print several files,
one right after the next, in two-column format,
you can type this line:

2print onefile anotherfile
yetanotherfile

In reality, you are saying

pr -f -2 onefile anotherfile
yetanotherfile | 1p

This line prints all three files in two-column
format. (Note that you may need to use 1pr
rather than 1p in this shell script. Refer to
Chapter 9.)

Borrowing Other People’s Programs

Lots of times, someone else has a cool program you want to be able to use.
You have two approaches to getting what you want, and both are pretty
easy. Suppose that your friend Tracy has a program named pornotopia in
the bin directory. (No, we don’t know what it does, either.) How can you
run it?

The long way

If you use the C shell, you can run the program from Tracy’s directory by
typing this line:

~tracy/bin/pornotopia

’ 66 Part lll: Getting Things Done

If you use BASH or the Bourne or Korn shell, you can type this line:

/usr/tracy/bin/pornotopia

The easier way

Typing this long string of letters and symbols every time you want to run
the program is a pain. A better way is to put in your bin directory a link to
the cool program so that you can run it directly. (Links are described in
Chapter 8.) You use the 1n command to create a link, which makes the file
appear to be in your own bin directory too.

Try the direct approach. Move to your home directory and create a link:

cd
Tn ~tracy/bin/pornotopia bin/pornotopia

With any luck, this method works, creating a link from Tracy’s file to your
bin directory. Give or take a quick rehash, you're all set.

The 1n command doesn’t work, however, if you and Tracy have files on
different disks. (All this stuff is explained in Chapters 8 and 16.) In this case,
you may get this unhelpful message:

In: different file system

If you get this message, it’s time for Plan B. Most UNIX systems have sym-
bolic links that work across different disks (these links also are explained in
Chapter 8). Try this line:

Tn -s ~tracy/bin/pornotopia bin/pornotopia
If it works, it makes a symbolic link to the file you want. You're all set: The

link to pornotopia refers to Tracy’s version. After a rehash, you're ready
to go.

Using an alias

If you were named pornotopia, you probably would want an alias too.
Fortunately, the BASH, Korn, and C shells give you the ability to invent a
short name for a long command. (Bourne shell users, you're out of luck.
Skip to the next section.)

Time for Plan C. In the BASH and Korn shells, type

alias dobudget='/usr/tracy/bin/pornotopia’

Chapter 12: Installing Software Can Be Tricky ’6 7

This line tells the shell that, when you type dobudget, you really want to
run Tracy’s program. Heh, heh. To avoid inadvertent ease of use, the C
shell’'s alias command works in almost the same way, but it is punctuated
slightly differently:

alias dobudget '/usr/tracy/bin/pornotopia’

(In both cases, the single quotes are optional if the command doesn'’t contain
any spaces or special characters, although it never hurts to use them.)

You can define aliases for any frequently used one-line command. The alias
can contain spaces, pipes, and anything else you can type on a command
line. In BASH, for example, you can type

alias sortnprint="sort -r bigfile | pr -2 | lpr’
This line makes the new sortnprint command sort your bigfile in
reverse alphabetical order, format it in two columns with pr, and send the
result to the printer. Aliases can also be useful if you are subject (as we are)

to chronic miswiring of the nerves in your fingers. We always type mroe
when we mean more, and the following alias fixes it:

alias mroe=more

(That’s the BASH version; the C shell would have a space rather than an
equal sign between mroe and more.)

Aliases you type directly to the shell are lost when you log out. If you want
them to be available permanently, you must put the alias commands in

your .loginor .profile file, in the same way we mentioned earlier in this
chapter, in the “Your search path” sidebar.

Using a shell script

If this method doesn’t work either, try Plan D to use Tracy’s program: a one-
line shell script. Although we use the ed program because it’s easier to
show, you should use a real editor. Start by revving up ed:

ed bin/pornotopia
You get the following helpful response, or something like it:

?bin/pornotopia

Now tell ed to add some text to the file, by typing this command:

d

’ 68 Part lll: Getting Things Done

WNG/
&

You are now in append mode. Type the command line you want to include in
the shell script, followed by a dot (period) on a line by itself:

/usr/tracy/bin/pornotopia
The dot on a line by itself switches back to ed’s command mode. Then type
this command:

W

This command writes the new shell script file and prints the size of the file.
Then type the following to quit ed:

q
Type the next command to make your new shell script runnable:

chmod +x pornotopia
If necessary, give this command to tell UNIX to redo its hash table:

rehash
Now your script named pornotopia runs Tracy’s original program named
pornotopia. At least one of these three plans should work for any program
lying around anywhere on your system.
We don’t even discuss software copyrights, licenses, and ethics here, but, if

you use a copyrighted program, you should pay for it unless you like to
think of yourself as a thief.

Stealing Software from the Network

&

QNORK

If you are on the Internet, you can get zillions of programs that are free for
the taking. You can get copies of programs in the same way you get copies of
anything else on the Internet — by either using FTP or downloading files
from a Web browser, such as Netscape Communicator. See Chapter 18 for
the inside scoop on downloading files from the Internet.

On many UNIX systems, this process is the most common way to get new
software. Although most of it is shareware or freeware, even some commer-
cial outfits are now selling their programs to be downloaded from the
Internet.

Chapter 12: Installing Software Can Be Tricky

Tar pits

When you download UNIX software from the Internet, nine times out of ten
the filename ends in either . tar, .tar.Z,or .tar.gz. (We get to the most
common exception in the next section.) Named, oddly enough, {ar files, they
don’t have anything to do with black, goopy paving material; tar is short for
tape archive. You use this command for backing up (what used to be called
“archiving,” in the days when people went out of their way to make comput-
ers Look Important) UNIX systems to tape. (We discuss this use of tar in
Chapter 23.)

In this section, though, you’re seeing tar in its other role, where it moon-
lights as a software-packaging command. The people who distribute the
software use tar to glom into one big tar file all the files that make up the
software package (it can have anywhere from just a few to as many as
hundreds of files). This way, you have to download only one big file rather
than hundreds of little files. Because tar files are generally so big, the
software distributors then squish them even more, using either the com-
press command (which results in a file ending in .tar.Z) or the gzip
command (which results in a file ending in . tar.gz). Using compress used
to be the standard, but because gzip results in smaller files, it’s the com-
pression program most people use these days.

If you're familiar with the Microsoft Windows world, you may have come
across zip files, which end in . zip. These files are the Windows equivalent
of tar files, except that zip combines the glomming and squishing phases
into one command, an example of efficiency that true UNIX die-hards would
never stand for.

Suppose that you've found a really cool editor that you've decided you can’t
live without, and you’ve download the tar file. It probably looks something
horrendous, like really_cool_ed_unix_v.3.4pl6.tar.gz. To unpack
your newly acquired tar file, first you have to unsquish it. If the file ends in
.tar.Z, type this command:

uncompress rea]1y,coo'|__ed_unix_v.3.4p'!5.tar.Z
Otherwise, type this command:
gunzip really_cool_ed_unix_v.3.4pi5.tar.gz
Either way, you end up with a file named really_cool_ed_unix_

v.3.4pl6.tar. Notice that the .Z or . gz is gone? This file is much bigger
now that it's unsquished.

169

’ 70 Part lil: Getting Things Done

Now you have to untar the file (that’s really the way the UNIX gurus phrase
it). This step blows up your tar file into potentially hundreds of little files
and puts them into whatever your current directory is. Make sure that your
working directory is the directory where you really want all those files to be
rather than someplace where you’ll have to move them later. (Moving one
tar file where you want it is considerably easier than waiting until after
you've blown it up into multitudes of files.) Okay, ready? Type this command:

tar xvf really cool_ed unix_v.3.4pl5.tar

The x in xvf stands for extract, the v means verbose so that you can see all
the files being created, and fis for file and is followed by the name of the tar
file.

Don'’t get too excited yet, because you still have more to do. Included in the
bunch of files you've just created should be a file usually named README or
INSTALL. This file has the rest of the installation instructions specific to the
package you've just downloaded.

Revving up RPM

For years, the tar file method has been the only game in UNIX-land for
distributing software over the Internet. For UNIX administrators who are
accustomed to installing software packages, this method has worked just
fine. Among everyone else, though, a growing number of disgruntled users
have clamored for an easier way to install and maintain software. Their calls
were answered by Red Hat Linux, which came up with the Red Hat Package
Manager (RPM).

RPM is a software-management system that is a substitute for tar. Rather
than download a file ending in . tar.gz, you download one that ends in
.rpm. The RPM utility unpacks the file, puts all the resulting little files in
their correct places, and updates a database of installed software on the
computer. If you later want to install an upgrade, RPM remembers that an
older version is already installed and saves any existing configuration files
while upgrading the necessary files. This feature is enough to generate
grumbling from traditionalists about user-friendliness infiltrating UNIX.

An important caveat about RPM is that you can install software this way
only if you are the system administrator, which for most people happens
only if they have a PC running Linux, as described in Chapter 14. So far, its
use has been limited mainly to systems running Red Hat Linux, although the
use of RPM is not necessarily restricted to Linux, and we've heard of people
using it on other UNIX systems too.

Chapter 12: Installing Software Can Be Tricky ’ 7 ’

Sneaking Software through the Mail

You can disguise programs as mail messages so that you can mail them
around. This method is often the only way to do samizdat (underground, or
guerilla) software distribution when networks and system administrators
are uncooperative. Two methods are commonly used: shar messages and
uuencoded messages. This section gives you the lowdown on both methods.

Sneaky shar

For short programs and shell scripts, the usual way to send stuff is as a shar
message. A shar message is a shell script that, when you run it, re-creates
the files in question. (If you care, shar rhymes with cigar and is lazy-typist-
ese for shell archive.) Shar files are also a convenient way to mail groups of
text files as a unit.

Shar messages usually start with lines like this:

##1/bin/sh

This is a shell archive (produced by shar 3.49)

To extract the files from this archive, save it to a file, remove

#f everything above the "!/bin/sh" line above, and type "sh file_name".

i
made 01/05/1997 19:41 UTC by johnl@iecc
Source directory /usr/johnl/bin

Recovering the files is a three-step process:

1. Save the message in a separate file, named something like incoming-
shar. (See Chapter 17 for instructions.)

2. Use any text editor to delete all the lines from the beginning of the
file to the first line that starts with a #.

If you delete a few of the # lines, don’t worry: The shell ignores them
anyway.
3. Feed the edited file to the shell by typing this line:

sh incoming-shar

This command runs the script in the file and creates the program files or
whatever else is in the shar file. (Near the front of most shar messages is a
manifest that lists the files contained in the file.) When you see the UNIX
prompt, the command is finished. Delete the incoming-shar file and move
the files it created to the appropriate place, probably to your bin directory.

’ 72 Part Ill: Getting Things Done

Getting sneaky with uuencode

Shar files don’t work well for binary programs, so a widely adopted scheme
named uuencode disguises them as text. If you receive a file coded in
uuencode, the message looks something like this:

begin 775 pornotopia
M3I$$' 1C?7&RN: 4@" 0" ‘n!prvP$+-Dnsnpn#-9"#Xuouu|$u_nuu<
M#4"+G1E>‘O" '#O“”TH",PI_"#D“"""' Ilnnvu h(u nnYD

Recovering the binary file from the uuencode file is a two-step process:

1. Save the message in a file with a name along the lines of uu-
incoming.fs

Although UNIX doesn’t care what the file is named, choose a name that
makes it easy for you to remember that this file is the original
uuencoded file.

2. Feed the file to the uudecode program by typing this line:

uudecode uu-incoming

You don’t have to edit the encoded file to delete the first lines in the file
because uudecode ignores them for you. When you see the UNIX prompt, it
is finished. Then get rid of the uu-incoming file and move to the appropri-
ate place the binary file that is created.

Making your own sneaky e-mail

What if you want to send a program or other binary file by e-mail? You, too,
can create uuencoded files, just like the big guys. Not surprisingly, you use
the uuencode program. Just follow these steps to create uuencoded files:

1. Type this command:

uuencode pornotopia strange-program > temp

In this command, replace pornotopia with the file you want to
uuencode, strange-programwith the name you want the file to have
when it is uudecoded, and temp with any temporary filename (junk is
another perennial favorite). This command creates a uuencoded file
named temp that, when it’s uudecoded, creates a file named strange-
program with the same contents as your pornotopia file.

2. Include this uuencoded file at the end of an e-mail message.

The text of the message should say that the message contains a
uuencoded file and what the file is for. (See Chapter 17 to find out how
to send e-mail.)

Juggling a Bu

B EEEREEEREEEX)

Chapter 13
nch of Program

® 0 5 D6 &8 00 6 8 8 ® B A6 6

In This Chapter

p What processes are

» Where processes come from

» What a background program is

How to shuffle background programs around

» Hints about windows and background programs

TEERE K

S 6 6 B & O & 6 6066666 6ES

f you have a plain old terminal with no windowing system, you may be
envious of users with fancy window systems who can pop up a bunch of
windows and run umpteen programs at a time.

Don’t. Any UNIX system enables you to run as many programs simulta-
neously as you want. Nearly all the systems let you stop and restart pro-
grams and switch around among different programs whenever you want.

If you're used to an old-fashioned, one-program-at-a-time system, such as
DOS (without Windows) or the pre-System 7 Mac, you may not see the point
of doing several things at a time. Suppose, however, that you're doing
something that takes awhile and the computer can manage with little or no
supervision from you, such as copying a large file over a network (which can
take 10 or 15 minutes). You have no reason to sit and wait for that process
to finish — you can do something useful while the copy runs in the back-
ground.

Or, suppose that you're in the middle of a program and you want to do
something else: You're writing a memo in a text editor and need to check
some e-mail you received to make sure that you spelled someone’s name
right. One way to do that is to save the file, leave the editor, run the mail
program, leave the mail program, start the editor again, return to the same
place in the file, and pick up where you left off. What a pain. UNIX enables
you to stop the editor, run the mail program, and resume the editor exactly
where you left it. For that matter, you can run both the editor and the mail
program and flip between them as necessary.

7 74 Part lll: Getting Things Done

Lots of X Windows

If you're running Motif or any other X Window
graphical user interface (GUI), you've
probably already figured out how to run many
programs at a time: Open several xterm
windows and run a program in each one. You
create a new window by moving the mouse
outside of any window, holding down the left

New Window or something similar. If you're
running a version of CDE, running many pro-
grams at a time is even easier: Just double-
click the icon for each program you want to
run. That's it. You don’t even have to deal with
opening xterm windows. Read this chapter
anyway, however.

mouse button to get a menu and selecting

In the interest of fairness, we must point out that job control, the feature that
enables you to flip back and forth, was written by Bill, the same guy who
wrote the C shell, vi, and NFS (Network File System, described in Chapter
16). In contrast to our opinion of some of his other efforts, we think that job
control is pretty cool.

If you have a process that has run amok, see Chapter 24 to find out how to
kill it.

So What Is a Process, Anyway?

All the work UNIX does for you is done by UNIX processes. When you log in,
the shell is a process. When you run an editor, the editor is a process. Pretty
much any command you run is a process.

Processes called daemons lurk in the background and wait to do useful things
without manual intervention. When you use 1p or 1pr to print something,
for example, a daemon does the real work of sending the material to the printer.

Normally, all this process stuff happens automatically, and you don’t have to
pay much attention to it. Sometimes a program gets stuck, however, and you
can’t make it go away. If you use a personal computer running DOS or a
Macintosh, the usual response to a stuck program is to restart the computer.
When you run UNIX, resetting the computer is a little extreme for a single
stuck program. For one thing, other running programs and other people who
are logged in do not appreciate having their computer kicked out from
underneath them. Also, UNIX make take awhile to restart from a forced
reboot (our system takes about 20 minutes to check all the disks), and you
run the risk of losing files that were being updated.

Chapter 13: Juggling a Bunch of Programs

Why processes are not programs and vice versa

Although programs and processes are similar,
they're not the same. A process is, more or
less, a running program. Suppose that you're
using X Windows, have two windows on-
screen, and are running vi in both of them.
Although the same program is running in both
windows, they're different processes doing
different things (in this case, editing different
files).

To add to the confusion, some programs use
more than one process apiece. The terminal
program cu, for example, uses two processes:
one to copy what you type to the remote

computer and the other to copy stuff from the
remote computer back to your screen. Some-
times, “hidden” processes take place: Many
programs have a way you can execute any
UNIX command from inside the program. (In
vi and ed, for example, you type ! and the
command you want to run.) In addition to the
command, a shell process usually interprets
the command.

In most cases, it is easy enough to tell in a list
of processes which one is which because
each one is identified by the command that
started it.

175

Any Processes in the House?

The basic program you use to find out which processes are around is ps (for
process status). Although the details of ps (wait! — how did you know?)
vary somewhat from one version of UNIX to another, two main kinds of ps
exist: the System V kind and the BSD kind. (SVR4 uses the System V kind of
ps, even though SVR4 has a great deal of BSD mixed in. Linux uses a ps that
looks more or less like BSD.)

Mind your ps (and ¢s)

If you run plain ps, no matter which version of UNIX you have, you get a list
of the processes running from your terminal (or window, if you’re using X
Windows). The list looks something like this:

PID TTY TIME COMMAND
24812 ttyp0 0:01 -csh
25973 ttyp0 0:00 ps

The PID column gives the process identification, or process ID. To help keep
processes straight, UNIX assigns every process a unique number as an iden-
tifier. The numbers start at 1 and go up. When the PIDs become inconveniently
large (about 30,000 or so), UNIX starts over again at 1 and skips numbers
that are still in use. To get rid of a stuck process, you have to know its PID
to tell the system which process to destroy:.

] 76 Partini: Getting Things Done

S

The TTY column lists the terminal from which the process was started. In
this case, ttyp0 is the terminal, which happens to be pseudoterminal
number 0. (Because UNIX systems were written by and for nerds, they tend
to start counting at 0 rather than at 1.) UNIX uses a pseudoterminal when
you're logged in from a window on your screen or from a remote system
through a network rather than through a real, actual, drop-it-on-your-foot-
and-it-hurts terminal. For our purposes, all terminals act the same, whether
they're real, pseudo, or whatever.

The TIME column is the amount of time the computer has spent running this
program. (The time spent waiting for you to type something or waiting for
disks and printers and so forth doesn’t count.)

The COMMAND column shows, more or less, the name of the command that
started the process. If the process is the first one for a particular terminal or
pseudoterminal, the command name starts with a hyphen.

The Linux ps

The Linux ps command has one additional column:

PID TTY STAT TIME COMMAND
1797 pp5 S 0:00 -bash
1855 pp5 R 0:00 ps

The STAT column shows the status of the process. According to the man
page (online documentation) for the command, R means runnable, .S means
sleeping, D means uninterruptible sleep, 7' means stopped or traced, and Z
means a zombie process. Wow! For our purposes, R means that it’s a com-
mand you ran, and other stuff doesn’t matter much.

Fancier ps (and ¢s)

The System V version of ps has lots of options, most of which are useless.
One of the more useful is - f, which produces a “full” listing:

UIb PID PPID C STIME TTY TIME COMMAND

johnl 11764 3812 0 14:06:02 ttyp3 0:00 /usr/bin/emacs
johnl 11766 11764 0 14:06:05 ttyp3 0:00 /bin/sh -i
johnl 11769 11766 10 14:06:15 ttyp3 0:00 ps -f

johnl 3812 3804 0 Jan 18 ttyp3 0:04 -sh

(We did it from a different window, which you can tell because the PID of the
shell is different.)

This listing has a few more columns than does the basic ps listing, and a few
columns are different. The UID column is the username — just what it looks

Chapter 13: Juggling a Bunch of Programs

like. PPID is the parent PID, the PID of the process that started this one. We
had run emacs from the shell and then had told emacs to start another shell
to run a ps command.

The parent PIDs reflect the order in which the processes started each other:
The login shell process (number 3812) is the parent of emacs, which in turn
is the parent of the shell /bin/sh, which is the parent of ps. (We could
explain why the processes aren’t listed in order, but — trust us — you don’t
want to know.) All processes in a UNIX system are arranged in a genealogical
hierarchy based on which process started which. The grand ancestor of
them all is process number 1, which is named init. You can trace the
ancestry of any process back to init. “Hark! | am yclept Ps, son of Bourne
Shell, daughter of Emacs, son of Dash-shell (or is that Dashiell?), great-great-
grandson of the ancient and holy Init!”

The C column is a totally technoid number relating to how much the process
has been running lately. Ignore it. STIME is the start time, the time of day the
process began. If it began more than 24 hours ago, this column shows the
date. TTY is the name of the terminal the process is using. If you run a GUI,
such as X Windows, and you run the xterm program in a window (as we did
in this example), the entry for TTY doesn’t show the terminal you are using.
Instead, it lists the “pseudoterminal” assigned to the window (a useless
piece of information). Sometimes the TTY column shows a ?, which means
that the process is a daemon that doesn’t use a terminal.

The COMMAND column shows the full command that began this process,
including (in some cases) the full pathname of the program. (Because
standard system programs live in the directories /bin and /usr/bin, you
see them frequently in ps listings.)

If you're logged in on several terminals or in several windows, you may want
to see all your processes, not just the ones for the current terminal. With the
System V version of ps, you can ask to see all processes for a given user by
using this command:

ps -u tracy
This command lists all processes belonging to user tracy. You can ask to
see any user’s processes, not just your own. You can get a full listing for that
user too:

ps -fu tracy

System V has other, less useful switches for ps, notably - e, which shows
every process in the entire system.

177

7 78 Part lll: Getting Things Done

Berkeley ps (and qs)

The basic report from the BSD version of ps looks like this example:

PID TT STAT TIME COMMAND
7335 p4 S 0:00 -csh (csh)
7374 p4 R 0:00 ps

The PID, TIME, and COMMAND columns are the same as those you already
know about. (In the COMMAND column, the true name of the program is
listed in parentheses if a dash or something is in the regular name.) The TT
column lists a short form of the terminal name (pseudoterminal 4, in this
case). STAT lists the status of the process: R means that the process is
running right now; anything else means that it isn’t. Usually, you don’t care
unless you have a stuck process and you wonder whether it’s sitting there
waiting for you to type something (then its status is I or IW) or running off
into the woods (then its status is R).

Adding the -u switch gives a user-oriented report, although perhaps they
had a different kind of user than you and we in mind, as you may gather
from this example:

USER PID %CPU #MEM SZ RSS TT STAT START TIME COMMAND
johnl 7375 0.0 0.9 196 436 p4 R 14:59 0:00 ps -u
johnl 7335 0.0 0.6 196 316 p4 S 14:56 0:00 -tcsh (tcsh)

The %CPU and %MEM columns list the percentage of the available central
processor time and system memory the process has taken recently (these
numbers are usually close to 0). RSS is Resident Set Size, a measure of how
much memory the process is using right now, measured in thousands of
bytes (abbreviated as K). The ps command, for example, takes 436K bytes
(which is horrifying when you consider that the entire UNIX system used to
fit into 64K total bytes). The START column lists the time of day the process
began.

You can ask for a particular terminal’s process list by using the -t option, as
shown in this example:

ps -tp4

With the -t option, you have to use the same two-letter terminal abbrevia-
tion ps uses. Have fun guessing it. Try the two-letter abbreviations that
appear in the TT column of the ps listing.

The BSD version of ps has lots of other useless options, including -1 for a
long technoid listing; -a for all processes, not just yours; and - x to show
processes not using a terminal. You have no way to ask for all processes
belonging to a particular user.

Chapter 13: Juggling a Bunch of Programs 7 79

To see all the processes you started, type this incantation:
ps -aux | grep tracy

Replace Tracy’s name with your own username. This line redirects the
output of the ps command to the grep command (described in Chapter 8),
which throws away all the lines except those that contain your username.

Starting Background Processes

Starting a background command is simplicity itself. You can run any pro-
gram you want in the background: When you type the command, stick a
space and an ampersand (&) at the end of the line just before you press
Enter.

Suppose that you want to use troff to print a file (even though we warned
you not to use it). Because this process is bound to take a long time, for
example, typing the ampersand to run it in the background is wise:

troff a_really_large_file &

The shell starts the command and immediately comes back to ask you for
another command. It prints a number, which is the process ID (or PID)
assigned to the command you just started. (Some shells print a small
number, which they call the job number, and a larger number, which is the
PID.) If you know the PID, you can check up on your background program
with the ps command. If you get tired of waiting for the background process,
you can get rid of it with the ki11 command and the PID, as you see in
Chapter 24.

You can start as many programs simultaneously as you want in this way. In
practice, you rarely want more than three or four. Because only one com-
puter is switching back and forth among the various programs, the more
simultaneous things you do, the slower each one runs.

When your background program finishes, the C, Korn, BASH, and SVR4
Bourne shells tell you that it’s finished; older versions of the Bourne shell
say nothing.

’ 80 Part lll: Getting Things Done

The Magic of Job Control

Quite awhile ago (in about 1979), people (actually, our pal Bill) noticed that,
many times, you run a program, realize that it will take longer than you
thought, and decide that you want to switch it to a background program. At
the time, the only choices you had were to wait or to kill the program and
start it over by using an & to run it in the background. Job control enables
you to change your mind after you start a program.

The job-control business requires some cooperation from your shell. In SVR4,
all three shells handle job control. In some earlier versions of UNIX, only the C
shell, or sometimes the C shell and Korn shell, handled job control.

Suppose that you start a big, slow program by typing this line:
bigslowprogram somefile anotherfile

The program runs in the foreground because you didn’t use an ampersand
(&). Then you realize that you have better things to do than wait, so you press
Ctrl+Z. The shell should respond with the message Stopped. (If it doesn’t,
you don’t have a job-control shell. Sorry. Skip the rest of this chapter.) At this
point, your program is in limbo. You can do three things to it:

|~ Continue it in the foreground as though nothing had happened, by
typing fg (which stands for foreground).

v~ Stick it in the background by typing bg (for background), which makes
the program act as though you started it with an & in the first place.

v Kill it if you decide that you shouldn’t have run it. This method is
slightly more complicated. Details follow.

Take this job and . . .

UNIX calls every background program you start a job. A job can consist of
several processes (which, as you know, are running programs). To print a
list of all your files in all your directories with titles, for example, you can
type this line:

Is -1R | pr -h "My files" | 1p &

This command lists the files with 1s, adds titles with pr, and sends the mess
to the printer with 1p, all in the background. Although you use three differ-
ent programs and three separate processes, UNIX considers it one job
because each of the three programs needs the other two in order to get
work done.

Chapter 13: Juggling a Bunch of Programs

Every regular command (those you issue without an &) is also a job, al-
though, until you use Ctrl+Z to stop it, that’s not an interesting piece of
information. You can use the jobs command to see which jobs are active.
Here’s a typical response to the jobs command:

[1] - Stopped (signal) elm
[2] + Stopped vi somefile

This listing shows two jobs, both of which have been stopped with Ctrl+Z.
One is a copy of e1m, the mail-reading program; the other job is the vi
editor. (The difference between Stopped (signal) and plain Stopped is
interesting only to programmers, so we don’t discuss it much.) One job is
considered the current job — the one preceded by a plus sign (+); it’s the
one most recently started or stopped. All the rest are regular background
jobs, and they can be stopped or running.

... stick it in the background

You can tell any stopped job to continue in the background by using the bg
command. A plain bg continues the current job (the one marked by a plus
sign) in the background. To tell UNIX to continue some other job, you must
identify the job. You identify a job by typing a percent sign (%) followed by
either the job number reported by jobs or enough of the command to
uniquely identify it. In this case, the e1m job can be called %1, %2e1m, or %e
because no other job used a command starting with an e. As a special case,
%% refers to the current job. Although some other % combinations are
available, no one uses them. Typing bg %e, for example, continues the elm
job in the background.

.. tun it in a window in the foreground

To put a process in the foreground, where it runs normally and can use the
terminal, you use the fg command. Continuing a job in the foreground is so
common that you can use a shortcut: You just type the percent sign and the
job identifier. Typing %1 or %e, for example, continues the e1m job in the
foreground. Typing %v or %%, however, continues the vi editor in the
foreground.

. . shove it

To get rid of a stopped or background job, use the ki11 command with the
job identifier or (if it’s easier, for some reason) the PID. You can get rid of
the vi editor job by typing this line:

kill %v

181

’ 82 Part lll: Getting Things Done

Typically, you start a job, realize that it will take longer than you want to
wait, press Ctrl+Z to stop it, and then type bg to continue that process in the
background.

Alternatively, you interrupt a program by pressing Ctrl+Z, run a second
program, and, when the second program is finished, type fg or %% to
continue the original program.

You don’t often bring in the gangster ki11 to turn out the lights on a pro-
gram, although it’s nice to know that you have friends in the underworld
who can put a nasty program to sleep for good. Chapter 24 tatks more
about it.

What happens when two programs
try to use the terminal?

Suppose that a program running in the background tries to read some input
from your terminal. Severe confusion can result (and did, in pre-job-control
versions of UNIX) if both the background program and a foreground pro-
gram — or even worse, two or three background programs — try to read at
the same time. Which one gets the stuff you type? Early versions of UNIX did
the worst possible thing: A gremlin inside the computer flipped a coin to
decide who got each line of input. That was, to put it mildly, not satisfactory.

With the advent of job control, UNIX enforced a new rule: Background jobs
can’t read from the terminal. If one tries, it stops, much as though you had
pressed Ctrl+Z. Suppose that you try to run the ed editor in the background
by using this command:

ed some.file &
UNIX responds:

[1] + Stopped (tty input) ed
As soon as ed started and wanted to see whether you were typing anything
it should know about, the job stopped. You can continue ed as a foreground

program by typing fg or %% if you want to type something for ed. You can
kill it (which is all that ed deserves) by typing kill %%.

Chapter 14
Taming Linux

In This Chapter
- A few basics for the reluctant system administrator
How a Linux system is structured
Where to get help

eah, we know that it’s pronounced “linn-ux” or “leen-ux,” not “line-ux,”
but it still needs taming, and if you look around the office and find
nobody other than yourself to fix things, you're the Linux tamer.

Congratulations! You're a System
Administrator!

Using Linux is no different from using any other type of UNIX, as long as it’s
on someone else’s computer and they have set you up with an account.
When your computer is running Linux, however, and you are responsible for
maintaining it, things become much more complicated. Although we have no
way to teach all the complexities of UNIX system administration in a book
like this one, we can describe a few key points to get you started.

LINUX For Dummies, 2nd Edition, by Craig Witherspoon, Coletta Witherspoon,
and Jon Hall (published by IDG Books Worldwide, Inc.) is a great introduction
to Linux and Linux administration. Running Linux, by Welsh and Kaufman
(published by O’Reilly & Associates), has most of the information you need
to really administer a Linux system. Also, the World Wide Web is awash in
sites devoted to Linux. A good place to start is the Linux home page, at
http://www.Tlinux.org/. (See Chapter 18 for more information about the
World Wide Web if you're uncertain what it means.) Chapter 27 of this book
lists a number of other places to go Linux hunting on the World Wide Web.

’ 84 Part lll: Getting Things Done

The root of all UNIX

UNIX is a multiuser world: Lots of people can use the computer at the same
time, by connecting from remote locations. The first thing you need to know
about administering a Linux system is the difference between the user called
root and every other user. Root (also grandly called the superuser) is the
system administrator. This account has all the privileges to change things
on the system. If you want to add users, install some software, or even turn
off the computer, you must be logged in as root. If you're logged in as
someone other than root and you try to do anything related to system
administration, your computer responds with a barrage of “permission
denied” messages. It's nothing personal. It’s just the computer’s way of
telling you that in a multiuser environment, it doesn’t want just anyone
messing around with it — only the one person it trusts, which is root.

“Fine,” you say. “I'll just log in as root all the time and not have to worry
about running into those pesky permission problems.” Bad idea! Using the
root account to do non-system-administration tasks is dangerous because
sometime — eventually, when you least expect it — you type a command
you really didn’t want to — oh, say, deleting all the files on the hard disk (it
happens more frequently than you may think). If you're logged in as some-
one other than root, the computer replies with a simple “permission
denied.” If you're root, though, the damage is done, and UNIX does not have
an “undelete” command! Remember that permissions are your friends!

Adding a user

Assuming that you’re convinced about not logging in as root unless you
really must, you have to add a user account for yourself (or for others) to
use for everyday tasks. Suppose that you want to create the username
“bobbyjoe” for yourself. To add this user, log in as root (because adding
users is one of those special, privileged tasks that only root can perform)
and type the command adduser bobbyjoe. The computer creates the new
user and then, if you're lucky, reminds you to set the password for the new
user. Whether or not the computer reminds you, you have to add the
password by typing passwd bobbyjoe. Then enter the password when the
computer asks for it. It asks you to enter it twice, just to make sure that you
typed it correctly.

With some versions of Linux, your computer gives you remedial password
advice if it thinks that you need it. If you create a user named noah and then
try to add the password ark, your computer may say BAD PASSWORD: It's
WAY too short.If you try to fake the computer out by adding the password
arkarkark, it may say BAD PASSWORD: it does not contain enough
DIFFERENT characters. If you're not sure what constitutes a good pass-
word, go back and read the section in Chapter 1 about password smarts. As
a system administrator, you're responsible for the security of the system, so
don’t say that you haven’t been warned.

How do | turn this thing off?

UNIX is very sensitive to impolite treatment on the part of the operator. If
you just log out and turn off the machine with the power switch, UNIX
reminds you of this rude treatment with a flood of error messages when you
next restart the computer. To turn the machine off, you first must execute
the shutdown command. While logged in as root, enter the command
shutdown now to turn the machine off gracefully. If other users are logged
in and you want to give them some warning, you can type the number of
minutes until shutdown: shutdown +10, for example, waits ten minutes
before shutting down and warns any users who are logged in. To reboot the
computer, shutdown -r now (-r for reboot) shuts down the machine and
then restarts it. Some Linux systems also let the “three-finger salute”
(Ctrl+Alt+Del, familiar to DOS and Windows users) serve as a shortcut for

shutdown -r now.

Windows users of the world, unite!

Users who bring experience with other flavors
of UNIX to their first encounters with Linux will
probably find it relatively easy to get Linux up
and running. The large (and growing) commu-
nity of Windows users who want to add or
switch to Linux will likely encounter some
fairly rough sledding.

One of the great things about Linux is that it
can run on PCs with Intel chips in them. Dis-
gruntled Windows users can therefore switch
to Linux without having to buy a new com-
puter. Windows users who are still sufficiently
gruntled can check out Linux by installing it,
cheek by jowl, on the same computer with
Windows (as long as it has enough free disk
space, of course).

All well and good, in theory. In practice, how-
ever, you can get yourself into trouble with
startling efficiency. Even if it's going to coexist
on your computer with Windows, Linux needs
its own separate file system, which in turn
needs its own separate area of your
computer’s disk. These separate areas are

called partitions, or drives, and you have to
have at least two partitions, one for Windows
and one for Linux, to get Windows and Linux to
live together in peace and harmony.

If you have only one big drive or partition on
your computer, you have to create a second
partition before you can even begin installing
Linux. To do so, you have to run a DOS utility
named fdisk on your computer. The trouble
with fdi sk isthatif you make one false move,
everything that’s already on your computer
gets wiped out, no questions asked. If you
already have Windows installed on your
computer, do yourself a favor and back up
your system before even thinking about using
fdisk. Then carefully follow whatever in-
structions you have for setting up a computer
that can run both Windows and Linux (known
as a dual-boot system). LINUX For Dummies,
2nd Edition (mentioned earlier in this chapter),
for example, describes the whole process in
gory detail.

Chapter 14: Taming Linux 785

’ 86 Part lll: Getting Things Done

A Pride of Linuxes

Complete Linux systems are packaged into “distributions,” which describe
not how Linux is distributed but rather how the operating system and the
GNU programs are bundled. A few distributions are in common use:
Slackware, Red Hat, Caldera, and Debian. All are available for free via the
Internet or for a small charge on CD-ROM. As a user, it doesn’t matter which
distribution you use because they all behave in much the same way. As a
system administrator, though, you should consider the important differ-
ences the distributions have among them.

Slackware, the oldest of the three, has been around since the beginning of
Linux. It is the most “traditional” distribution (traditional in the UNIX sense,
as in not particularly user-friendly) and has little in the way of utilities to
facilitate the management of a Linux system. For this reason, it tends to be
favored by those who have been around UNIX systems for a while.

Red Hat Linux is the most popular distribution. It features plenty of tools to
make the life of a system administrator easier, most notably the Red Hat
Package Manager (RPM), which eases the installation, upgrade, and dele-
tion of software packages, and even the operating system itself. Recently,
Red Hat began adding all sorts of extras to its CD distribution. For about
$50, you can get the Netscape Communicator Web browser, the latest
version of the WordPerfect word processing package, and a whole stack of
graphical applications known as ApplixWare.

The Debian and Caldera OpenLinux distributions, like Red Hat, also provide
interfaces that ease the task of a system administrator. Although these
distributions are not now as popular as Slackware or Red Hat, their popular-
ity is growing quickly. OpenLinux, probably because of its aggressive
marketing campaign, is beginning to give Red Hat a run for its money.

Linux goes commercial

The freely available, “alternative” image of Linux distribution in addition to the free ver-

Linux discouraged commercial enterprises
from adopting Linux in its early days. Under-
standably, many companies did not want to
deal with an operating system that did not
have a corporate entity standing behind it, no
matter how reliable or trouble-free the prod-
uct. To fill this need, a number of companies
have stepped in to provide commercial sup-
port for Linux. Red Hat Software, Inc., for ex-
ample, provides a commercial version of its

sion. Organizations that purchase the com-
mercial Red Hat distribution can therefare turn
to Red Hat for support rather than (or in addi-
tion to) Usenet. Caldera, Inc., also provides
support for commercial users. Purchasers of
the Caldera OpenLinux package get user sup-
port from Caldera as well as for some addi-
tional commercial software packages that
Caldera includes.

Chapter 14: Taming Linux ’8 7

If you enjoy editing lots of configuration files and moving them around “by
hand,” the old-fashioned way (believe it or not, some people like to do it
that way), you should go with Slackware. Everyone else will find life easier
with Red Hat, Debian, or Caldera.

Many other Linux distributions are out there, of course, so you may want to
do a little more investigating before deciding on a package:

} v DLX Linux and hal91 Floppy Linux: For PC users without much free
' space, these packages offer distributions that fit on a single floppy disk.

+» Linux Pro: On the other end of the spectrum, it comes complete with
seven CDs and a 1,600-page encyclopedia of reference information.

¢ v~ LinuxPPC: It’s specifically designed to run on PowerPCs.

. v~ LinuxWare: LinuxWare targets the Windows audience by enabling users
to start the installation from within Windows 95.

+ S.u.S.E. Linux: Comes with all kinds of preconfigured software pack-
ages, X servers, and graphical utilities for novice users.

“I Need Help!”

What happens when you have a problem with Linux? (It has been known to
happen.) If you’'ve shelled out for a commercially distributed CD version,
you get possibly a few months of free support if the company has the where-
withal to offer it. Otherwise, no technical-support hotline exists to call when
things go wrong.

A huge base of Linux users around the world does exist, though, most of
whom have access to the Internet. Usenet is the best place to find help with
Linux, as described in Chapter 19. For someone accustomed to calling a
commercial entity on the phone for tech support, the idea of posting
questions on Usenet may seem foreign, even hopelessly naive. Questions are
generally read by so many thousands of people, though, that the odds are
overwhelming that someone familiar with your problem will read the
question and respond, usually within a day or so. (In fact, many people
claim that Usenet-based support is faster and more reliable than some
technical-support hotlines!) The Linux community as a group still maintains
an attitude of “we’re all in this together,” and the Usenet support system has
mostly worked. The Linux groups, which tend to be some of the most active
computer groups on all of Usenet, are listed at the end of Chapter 27.

Part IV

UNIX and the Net

The 5th Wave By Rich Tennant

ORI BNNANT

Now take yourtime and see
if you canl identify the person
Who attacked yoU on e mail.

By

In this part . . .

ost computers that run UNIX are connected to

other computers. Many are parts of office-wide
networks, many have telephone connections to UNIX
systems in other places, some are connected to comput-
ers running operating systems other than UNIX, and an
increasing number are connected to the biggest network
of all: the Internet.

This part of the book reveals how to use your UNIX
system to send and receive e-mail, browse the World
Wide Web, read articles in Usenet newsgroups, transfer
files, and log in to other computers over the Internet. We
even tell you a few things about how to set up your own
Internet site so that you can make files and Web pages on
your own computer available to your cohorts in cyberspace.

Chapter 15
Your Computer Is Not Alone

In This Chapter
» Discovering who else is using your computer by using the finger command

» Fingering people who use other computers on the Internet

» Communicating with other user computers by using the write and talk commands

p- Talking to everyone at the same time

D O 0 & 0 0 O O O OO G PO PO OO S OO OGP ST OO G ¢ ’ 0 8 6 8 08 &6 88 0 6 @

From the beginning, UNIX was designed as a multiuser system. In the
early years of UNIX computing, it was considered greedy to keep to
yourself an entire PDP-11/45 (a 1972 vintage minicomputer about the speed
of a PC AT but the size of a trash compactor). It was also kind of expensive.
These days, the cost argument is much less compelling — unless your
computer is a Cray supercomputer or the like — although UNIX remains
multiuser partly because it always was and partly because multiuser
systems make it easier to share programs and data.

Even if you have your own workstation but are attached to a network, your
machine is potentially multiuser because other people can log in to your
machine over the net, as we technoids call a network. (On the other hand,
you can log in to their machines too. See Chapter 16 for details.)

Don’t confuse net — any network of computers — with the Net, which is
what we technoids call the Internet. In this day and age, all anyone ever
talks about is the Internet. If your computer is attached to the Internet, you
can talk to literally millions of computers.

In this chapter, you see how you can nose around and find out who’s on
your system and on other systems to which you’re connected. For the most
part, we talk about the net — the computer network to which your machine
is attached. If we mean the Net (also known as the Internet), we say so. After
you find out who's out there, you can look into getting in touch with them.

W

If you are the only person who ever uses your computer and you don’t have
a network or a phone line (your computer is all alone in the world), skip this
chapter — in fact, skip this entire part of the book.

7 92 Part IV: UNIX and the Net

Finding Out Who's on Your Computer

You can use two main commands to find out who’s using your machine: who
and finger. The simple way to use either one is just to type who.

The typical response is something like this:

root console Dec 29 20:16
johnl vt0l Dec 21 15:19
johnl ttyp2 Jan 6 16:36
johnl ttypl Jan 6 17:20
johnl ttyp0 Jan 6 16:36

You see the user, terminal, and login time. User john1 is logged in four times
because he has a bunch of X terminal windows, each of which counts as a
login session. Although the exact output from who varies from one version of
UNIX to another, it always contains at least this much. You can also type who
am 1, and UNIX prints just the line for the terminal (or terminal window) in
which you typed the command. (A similar UNIX command, whoami, prints
only the name of the user logged in at the prompt where you typed the
command.)

A considerably more informative program is finger because it produces a
more useful report than who does:

Login Name TTY Idle When Office
root 0000-Admin(0000) co 1:11 Tue 20:16

johnl John R. Levine vt 1:11 Mon 15:19 x3712
johnl John R. Levine vt 1:35 Tue 16:47 x3712
johnl John R. Levine p2 1:11 Wed 16:36 x3712
johnl John R. Levine pl Wed 17:20 x3712
johni John R. Levine p0 Wed 16:36 x3712

Although finger reports the same stuff as who does, it also looks up the
user’s real name (if it’s in the user password file) and tells you how long the
terminal has been idle (how long it has been since the user last typed
something). If the system administrator has entered the information, finger
also usually shows an office phone number, room number, or other handy
info about where the user works.

You can also use finger to ask about a specific user, and UNIX looks up
some extra info about that user. In this example, we used it to look up one of
the authors of this book:

finger johnl
UNIX returned this information:

Login name: johnl In real life: John R. Levine
Directory: /usr/johnl Shell: /bin/sh
On since Dec 21 15:19:45 on vt0l 1 hour 27 minutes Idle Time

Chapter 15: Your Computer Is Not Alone

Project: Working on "UNIX for Dummies, 4th Ed."
Plan:
Write many books, become famous.

The Project and Plan lines are merely the contents of files called .project
and .plan in the login directory. (Yes, the filenames start with periods.) It
has become customary to put a clever remark in your .plan file, but please
don’t overdo it. If the user is logged in on more than one terminal or termi-
nal window, finger gives a full report for each terminal. The finger johnl
command we gave reported five times, in fact — one for each login — but
we edited it to save paper.

Finding Out Who's on Other Computers

\
&

NORK

i)

If your machine is on a network, you can use rwho and finger to find out
about other machines. You type the system name you want to check up on
after an @ (at sign.) (Chapter 16 has more information about system names.)
We can check a nearby system, as shown in this example:

finger @gurus.com

The spdcc. com machine turns out to be not very busy:

[gurus.com]

Login Name TTY Idle When Office
uucp Uucp Daemon 02 Wed 20:13
johnl John R. Levine 03 Wed 20:44 Rm 418
dyer Steve Dyer p0 1 Wed 08:13

You can also ask about an individual by putting that user’s name in front of
the @:

finger johnl@gurus.com

This command gives the same sort of report as a local finger does:

[gurus.com]

Login name: johnl In real life: John R. Levine
Directory: /var/users/johnl Shell: /bin/csh

On since Jan 6 9:22:45 on tty0?2 2 minutes Idle Time
Plan:

no plan

If you're on the Internet, you can — in principle — finger any machine on the
Internet. Because no rule says that machines must answer when you call,
however, in many cases you get a “connection refused” response or even no
response.

193

194 Partiv: UNIX and the Net

The UNIX/Windows accords

Sometimes UNIX computers are on networks
with computers running other operating sys-
tems, such as Windows 98, Windows 95, or
Windows NT. So how do you get your UNIX
and Windows computers to communicate with
each other?

When computers want to speak to one an-
other, they can’t just chuck data at one an-
otherindiscriminately. They have to use what's
known in computerese as protocols. Proto-
cols are sets of rules by which computers ex-
change data and commands. If two computers
know the same protocols, they can talk turkey,
evenif one of those computers is running UNIX
and the other is running Windows.

Computers use all kinds of protocols to com-
municate. On a network, clients connect to
servers by using protocols such as TCP/IP
{Transmission Control Protocol/Internet Pro-
tocol) and IPX {Internetwork Packet
eXchange). Computers connected by way of
the Internet exchange files by using protacols
such as FTP (File Transfer Protocol) and HTTP
(HyperText Transfer Protocol).

The particular protocol of interest here is the
Server Message Block, or SMB, protocol.
SMB has been around in one incarnation or
another since 1987, when Microsoft and Intel
({the chip maker) first defined it. Because it
helped to invent SMB, Microsoft includes an
SMB clientin all its versions of Windows. Any
server that can talk SMB, therefore, can do
business with a Windows computer, so the
Windows computers can use disks and print-
ers on the server just like on a Windows NT
server, for example.

Enter Andrew Tridgell, a UNIX hacker from
Canberra, Australia, with a firm grasp of the
obvious. He wrote a suite of programs collec-
tively named Samba, which turns almost any
version of UNIX you care to mention into an

SMB server. Samba lets UNIX and Windows
computers do snazzy, friendly stuff, such as
access one another's files and share printers.
In typical UNIX style, dozens of programmers
from around the world have contributed to
Samba over the years, and it's distributed for
free under the infamous GNU public software
guidelines.

SMB is a request-response protocol, in which
a client makes requests of the server, and the
server responds. Because nothing is ever as
easy at is seems where computers are con-
cerned, a client has to make several requests
of a server before anything useful happens.
First, the client has to ask the server which
dialect of SMB it wants to speak (yup, dialect,
just like in real life). Then the client has to
get down on bended knee and politely
request access to the server by giving the
server a username and password. If the server
grants the client an audience, the client can
start petitioning the server with a series of
requests — for example, to locate, open, and
print a particular file.

The latest version of Samba is 1.9.1.7 or higher.
You can download it from the main Samba site,
maintained by the Department of Computer
Science at Australian National University, on
the Webathttp://samba.anu.edu.au/
samba, or via various FTP sites suchas ftp://
ftp.micro.caltech.edu/pub/samba.
{If you don’t know what these curious strings
of seeming gobbledygook mean, read the
“URL!" sidebar in Chapter 18.) Although
Samba is free, Andrew Tridgell does appreci-
ate it if you give him pizza. The Samba FAQs
(Frequently Asked Questions) at http://
www.samba.bst.tj/samba/docs/faq/
sambafaq.html give you detailed instruc-
tions on how to do so even when “the pizza
donor is twenty thousand kilometres away.”
No, we're not making this up.

Chapter 15: Your Computer Is Not Alone 7 95

Some systems, particularly main network machines at universities, have set
up finger to return user-directory information. Suppose that you ask who's
at MIT:

finger @mit.edu

You get an introduction to the MIT online directory:

[mit.edul
Student data loaded as of Dec 15, Staff data loaded as of Dec 19. Notify the
Registrar or Personnel as appropriate to change your information.

Our on-line help system describes

How to change data, how the directory works, where to get more info.

For a listing of help topics, enter finger help@mit.edu. Try finger

help_about@mit.edu to read about how the directory works. Please see
help_url@mit.edu for questions about the new URL field.

You can try to finger a particular individual at MIT too:
finger chomsky@mit.edu

Now you can see the public data about that individual:

[mit.edu]
. There was 1 match to your request. name: Chomsky, Noam A
email: CHOMSKY@MIT.EDU
phone: (617) 555-7819
address: 777-219
department: Linguistics & Philos
title: Linguistics, Institute Professor
alias: N-chomsky

You can engage in wholesale nosiness by using rwho. This command attempts
to compile a list of all the people using all the machines on the local network.

Chatting with Other People
on Your Computer

After you have figured out who is on your computer, you may want to send
them a message. Message sending has two general schools. The first is the
real-time school, in which the message appears on the other user’s screen
while you wait, presumably because it's an extremely urgent message. The
write and talk commands enable you to do that. Excessive use of real-time
messages is a good way to make enemies quickly, however, because you
interrupt people’s work all over the place. Be sparing in your blather.

The second school is electronic mail, or e-mail, in which you send a message
the other user looks at when it’s convenient. E-mail is a large topic in its own
right, so we save that for Chapter 17.

196 Partiv:uniX and the Net

\\1

Real-time terminal communication has been likened to talking to someone
on the moon because it's so slow: It’s limited by the speed at which people
type. Here on Earth, because most of us have telephones, the most sensible
thing to do is to send a one-line message asking the other user to call you on
the phone.

The simpler real-time communications command is wri te. If someone
writes to you, you see something like this on your screen:

Message from johnl on iecc (ttypl) [Wed Jan 6 20:28:42] ...
Time for pizza. Please call me at extension 8649
<EOT>

Usually the message appears in the middle of an editor session and
scrambles the file on your screen. You will be relieved to know that the
scrambling is limited to the screen — the editor has no idea that someone is
writing to you. The file is okay.

In either vi or emacs, you can tell the editor to redraw what’s supposed to
be on-screen by pressing Ctrl+L (if you're in input mode in vi, press Esc
first).

To write to a user, use the write command and give the name of the user to
whom you want to talk:

write dguertin

After you press Enter, write tells you absolutely nothing, which means that
it is waiting for your message. Type the message, which can be as many
lines long as you want. When you are finished, press Ctrl+D (the general
end-of-input character) or the interrupt character, usually Ctrl+C or Delete.
Because the write command copies every line to the other user’s screen as
you press Enter, reading a long message sent by way of the write command
is sort of like reading a poem on old Burma-Shave signs as you drive by
each one.

You want to send an important message, for example, to your friend Dave,
so you type these lines:

write dguertin
Yo, Dave, turn on your radio. WBUR is rebroadcasting
Terry Gross's interview with Nancy Reagan!

You press Enter at the end of each line. After the last line, you press Ctrl+D.

Chapter 15: Your Computer Is Not Alone 7 9 7

I'm talking — where are you?

Sometimes write tells you that the user is logged in on several logical
terminals:

dguertin is logged on more than one place.
You are connected to "vt01".

Other locations are:

ttypl

ttyp0

ttyp2

The write command is pretty dumb. If the person you are writing to is
logged in on more than one terminal — or, more typically, is using many
windows in X — wri te picks one of them at random and writes there. You
can be virtually certain that the window or terminal write chooses is not
the one the user is viewing at the time. To maximize the chances of the
user’s seeing your message, use the finger command to figure out which
terminal is most active (the one with the lowest idle time) and write to that
window. Remember the results of the finger command, for example, from a
few pages back:

Login Name TTY Idle When Office
root 0000-Admin(0000) co 1:11 Tue 20:16
dguertin David S. Guertin vt 1:11 Mon 15:19
dguertin David S. Guertin vt 1:35 Tue 16:47
dguertin David S. Guertin p2 1:11 Wed 16:36
dguertin David S. Guertin pl Wed 17:20
dguertin David S. Guertin p0 Wed 16:36

The best candidates to send a message to are ttypl and ttyp0. (The
finger command cuts the tty from terminal names.)

To write to a specific terminal, give write the terminal name after the
username:

write dguertin ttypl
If you are writing back to a user who just wrote to you, you should use the

terminal name that was sent in his write message (in this case, it was also
ttypl).

Can we talk?

You can have a somewhat spiffier conversation with the talk command,
which allows simultaneous two-way typing. You use it the same way you use
write: by giving a username and, optionally, a terminal name:

talk margy

]98 Partiv: UNIX and the Net

3

The other user sees something like this:

Message from Talk_Daemon@iecc at 20:47 ...
talk: connection requested by johnl@IECC
talk: respond with: talk johnl@IECC

If someone tries to talk to you and you're interested in responding, type the
talk command it suggests. If you're in the middle of a text editor or other
program, you must exit to the shell first.

Chatting with faraway folks

The talk command is designed to “talk” to users on other computers. If the
other computer is a long way away, typing rather than talking over the
telephone can make sense. As the Internet stretches around the world, you
may find yourself exchanging messages with someone for whom English is
not a native language. In that case, typing can be faster than trying to
understand someone with a strong accent across a noisy phone connection.

Computers have names, too, which are usually called machine names (read
more about this subject in Chapter 16). To talk to someone on another
computer, give talk the username and machine name:

talk zac@greattapes.com

After you're connected, talk works just like talking to a local user, except
that sometimes it can take several seconds for characters to get from one
machine to another on an intercontinental link.

If you want to talk to a number of other people, maybe thousands and
thousands of them, you can use a system called Internet Relay Chat (IRC).
We don’t have room to describe it in this book, but you can read about it at
our Web site (if you don’t know how to find it, see Chapter 18):

http://net.gurus.com/irc

Chapter 16
Across a Crowded Network

© © & 6 &6 08 @ S8 e 8 0 B & o B & & & e 60 606868

In This Chapter
- How to log in to other computers
» Computers to check out on the network
» How to tell whether your files are on a different computer

f your computer is on a network, sooner or later you have to use
computers other than your own. Although you can do lots and lots of
things over a network, the two most widespread activities are remote login
and file transfer. If your computer is on a LAN (Local Area Network), you

can probably use files directly that are located on other computers.

On a Computer Far, Far Away

Many UNIX systems are attached to the Big Mazooma of networks, the
Internet, which hooks together several million computers around the world.
Because most of the UNIX network software was originally written at Berke-
ley specifically for use on the Internet, all the commands discussed in this
chapter work just fine on the Internet. The only difference you may notice is
that although you can refer to computers on your own network with simple
names, such as pumpkin, in order to talk to computers on the Internet, you
have to give their true names, which can be long and tedious, such as
ifecc.cambridge.ma.us (a name our computer used to have.)

Remote login is no more than logging in to some other computer from your
own. While you're logged in to the other computer, whatever you type is
passed to the other computer; whatever responses the other computer
makes are passed back to you. In the great UNIX tradition of never leaving
well enough alone, two slightly different remote-login programs exist:
telnet and rlogin. A variant of r1ogin called rsh enables you to give
commands one at a time on other computers.

A file transfer copies files from one system to another. You can copy files
from other systems to your system and from your system to others. Two
different file-transfer programs exist (how did you know that?): ftp and rcp.
We talk about ftp in Chapter 18.

200 PartIV: UNIX and the Net

A\

Telnet It Like It Is

Telnetting (in English, you can “verb” any word you want) involves no more
than typing telnet and the name of the computer you want to log in to:

telnet pumpkin

UNIX tells you that it is making the connection and then gives the usual login
prompt:

Trying...

Connected to pumpkin.bigcorp.com.
Escape character is '*]1".

SunQS UNIX (pumpkin.bigcorp.com)
login:

At the login prompt, you type your username and then your password. After
the other computer connects, you log in exactly as though you were sitting
at the other computer. In the following example, we typed john1 as our
username and then gave our secret password:

login: johnl

Password:

Last login: Thu Jan 7 23:03:58 from squash

Sun0S Release 4.1.2 (PUMPKIN) #3: Fri Oct 16 00:20:44 EDT
1992 Please confirm (or change) your terminal type.

TERM = (ansi)

If the other computer asks you what type of terminal you're using, give the
answer appropriate to the terminal you're using. (If you're using an X
terminal window, it’s xterm. Try VT-100, ANSI, or TTY if you're using a dumb
terminal or PC.)

The normal way to leave telnet is to log out from the other computer:

lTogout

What telnet is really useful for

We mostly use telnet to check our mail while your home computer to check your mail and
we're out of town. If you have access to a otherwise put your digital life in order. it's the
computer at a friend's home or office or you next best thing to being there.

wander by a cybercafé, you can telnet back to

\\1

Chapter 16: Across a Crowded Network 2 0 7

UNIX gives you the following message to tell you that the other computer
has hung up the phone, so to speak:

Bye Bye

Connection closed by foreign host.

Sometimes the other computer is recalcitrant and doesn’t want to let you
go. Remember that you're in control. To force your way out, you first must
get the attention of the telnet program by pressing Ctrl+] (that’s a right
square bracket). A few versions of telnet use a different escape character
to get telnet’s attention. (It tells you which character when you first
connect to the other system.) After you get telnet’s attention, type quit to
tell telnet to wrap things up and return to the shell:

Ctrl-1]
telnet> quit

Terminal type tedium

If you use a full-screen program, such as the
UNIX text editors emacs and vi or the mail
programs e 1m and Pine, you have to set your
terminal type. This prablem shouldn't exist in
the first place, but it does, so you have to deal
with it.

The problem is that about a dozen different
conventions exist for screen controls such as
clear screen and move to position (x,y). The
program you're using on the remote host has
to use the same convention yourterminal does
(if you're using a terminal) or that your local
terminal program does (if you're on a PC or a
workstation).

If the conventions are not the same, you get
garbage ({funky-looking characters) on-screen
when you try to use a full-screen program. In
most cases, the remote system asks you which
terminal type to use. The trick is knowing the
right answer. Here are a few hints to help you
find out:

v If you're using the X Window system, with
or without Motif, the answer is more likely
to be VT-100, a popular terminal from the

1970s that became a de facto standard.
You may also try xterm, the name of the
standard X program that does terminal
emulation.

v+~ |fyou're using a PC and an emulation pro-
gram, the best answer is usually ANSI be-
cause most PC terminal programs use
ANSI terminal conventions. {ANS/ stands
for the American National Standards In-
stitute. One of its several thousand stan-
dards defines a set of terminal-control
conventions that MS-DOS PCs — which
otherwise wouldn’t know an ANSI stan-
dard if they tripped over one — invariably
use.)

v+ Inplaces where a greatdeal of IBM equip-
ment is used, the terminal type may be
3101, an early IBM terminal that was also
popular.

The ANSI and VT-100 conventions are not
much different from each other, so if you use
one and your screen is only somewhat
screwed up, try the other.

2()2 PartIV: UNIX and the Net

3270: The Attack of the 1BM Terminals

All the terminals discussed earlier in this chapter that are handled by
telnet are basically souped-up Teletypes, with data passed character by
character between the terminal and the host. This kind of terminal interac-
tion can be called Teletype-ish.

IBM developed an entirely different model for its 3270-series display termi-
nals. The principle is that the computer’s in charge. The model works more
like filling in paper forms. The computer draws what it wants on-screen,
marks which parts of the screen users can type on, and then unlocks the
keyboard so that users can fill in whichever blanks they want. Whenever a
user presses Enter, the terminal locks the keyboard, transmits the changed
parts of the screen to the computer, and awaits additional instructions from
headquarters.

To be fair, this method is a perfectly reasonable way to build terminals
intended for dedicated data-entry and data-retrieval applications. The
terminal on the desks at your bank or the electric company are probably
3270s — or more likely these days, cheap PCs emulating 3270s. Because the
3270 terminal protocol squeezes a great deal more on a phone line than
Teletype-ish, it’s quite common to have all the 3270s in an office sharing the
same single phone line, with reasonable performance.

The Internet is a big place, and plenty of IBM mainframes run applications
on the Internet. Some of them are quite useful. Most large library catalogs,
for example, speak 3270-ish. Usually, if you telnet to a system that wants a
3270, it converts from the Teletype-ish that telnet speaks to 3270-ish so
that you can use it anyway. Some 3270 systems speak only 3270-ish, how-
ever, and if you telnet to them, they connect and disconnect without saying
anything in between.

A variant of telnet that speaks 3270-ish is called ;n3270. If a system keeps
disconnecting, try typing the command tn3270 instead. (Large amounts of
UPPERCASE LETTERS and references to the IBM operating systems VM or
MVS are also tipoffs that you're talking to a 3270.) Even if a 3270 system
allows regular telnet, you get a snappier response if you use tn3270
instead.

r1ogin: The Lazy Man’s Remote Login

The telnet command is general. You can use it to log in to all sorts of
machines — whether or not they're running UNIX. If you want to log in to
another UNIX system, the r10gin command is usually more convenient

Chapter 16: Across a Crowded Network 203

because it automates more of the process. You use r1ogin in much the
same way you use telnet:

rlogin pumpkin
UNIX responds:

Last login: Fri Jan 8 14:30:28 from squash

Sun0S Release 4.1.2 (PUMPKIN) #3: Fri Oct 16 00:20:44 EDT
Please confirm (or change) your terminal type.

TERM = (ansi)

Hey! It didn’t ask for the username or password. What happened? You
frequently have a setup in which a bunch of machines use the same set of
usernames. A database called NIS helps keep all the names consistent
across all the machines.) In that case, after you log in to one machine, all the
others can safely assume that, if you log in to one of them, you will use the
same username to log in to others.

The r1ogin command also passes along the type of terminal you're using so
that even if the other system asks you to enter your terminal type, it always
guesses correctly if you don’t tell it explicitly.

If the remote system doesn’t recognize your username, it asks you to type a
username and password, just like telnet does.

Escaping from r1ogin

One place where rlogin is quite different from telnet is in how you escape
from a recalcitrant remote system: You type ~. (a tilde followed by a period)
on a line by itself. What you have to press is Enter (or Return), tilde, period,
Enter.

Username matching for r1ogin

This section is pretty nerdy. If you work in an office with a bunch of worksta-
tions, you can assume that they all generally share usernames and skip this
section.

Two files control r1ogin’s assumption that you want to use the same
username when you’re logging in to other machines. The first is called
/etc/hosts.equiv. On every machine, this file lists all the other machines
it can “trust” to have matching usernames. If you look at the file and find
lines with + and @ signs, they mean that NIS is providing its own list of
trustworthy machines (generally, all the machines in the department or in
the entire company).

20/ PartIv: UNIX and the Net

Individual users may have accounts on machines outside the local group or
department. If you are in this situation, you can have your own file called
.rhosts, which is sort of a private trusted-machine list. . rhosts has a list
of machine names, one per line. If you use riogin from any of those ma-
chines, r1ogin forgoes asking for your name and password. If you have
different usernames on different machines, edit the file and put the appro-
priate username after the machine name, as shown in this example:

pumpkin
squash
gerbil steph

Translation: You have accounts on pumpkin and squash with the same
username as on the machine you're using now. You also have an account on
gerbil, but your username there is steph.

When you have a different username on the system you're logging in to, you
have to use -1 to tell r1ogin the name to use. Suppose that you want to log
in to prune where your login name is sd1:

rlogin prune -1 sdi

Notice that the system name comes first. If you have a .rhosts file on
prune that lists both the machine from which you are logging in and your
username on that machine, it doesn’t ask you for a password.

Dialing out

Another command that acts sort of like
telnet is cu (for call UNIX). It activates a
simple “terminal emulator” program that calls
out over the phone. Despite its name, cu can
call any system that has a modem compatible
with the one on your computer. The program is
useful for calling online services like MCI Mail
and CompuServe.

Your system administrator has to set up the list
of system names and phone numbers that cu

uses. After they are set up, you call out by
simply typing this line:

cu systemname
You escape from cu and hang up the phone in
the same way you escape from riogin: by

typing ~. (a tilde followed by a period on a line
by themselves).

Chapter 16: Across a Crowded Network 2 0 5

rsh: One Command at a Time

A\

rcp

Sometimes r1ogin is overkill for what you want to do — you just want to
run one command at a time. In this type of situation, the rsh command (for
remote shell) does the trick:

rsh pumpkin 1pq

You give rsh the name of the system you want to use and the command you
want to run on that system. This example runs the command 1pg on system
pumpkin (remember that 1pq asks what’s waiting for the printer on pumpkin).

The rsh command uses the same username strategy ri0ogin does, so if you
can use r1ogin to access a system and not give a username or a password,
you can use rsh also. Because rsh doesn’t handle the terminal very cleverly,
however, you can’t use full-screen commands like vi and emacs. You can use
ed, however. Wow.

An old program, also called rsh, sometimes conflicts with the rsh we talk
about here. The old rsh is the restricted shell: a version of the Bourne shell
that is of no use to you. If you type rsh pumpkin and UNIX responds by
displaying pumpkin: pumpkin: cannot open or displays a $ and sits
there, you have the old rsh. If UNIX displayed the $, type exit to make it go
away. If you have the old rsh, what we call rsh is probably called remsh or
rshell, so try those names instead.

Blatting Files across the Network

Although telnet and r1ogin may be the next best thing to being there,
sometimes there’s no place like your home machine. If you want to use files
that are on another machine, rcp is often the easiest thing to do. (You can
also use ftp to blat files across the network, but because that’s a larger
topic, we give it all of Chapter 18.)

The idea behind rcp is that it works just like cp (the standard copy com-
mand) — except that it also works on remote files that you own or that

you at least have access to. To refer to a file on another machine, type the
machine name and a colon before the filename. To copy a file named mydata
from the machine named pumpkin and call it pumpkindata, you type

rcp pumpkin:mydata pumpkindata

To copy it the other way (from a file called pumpkindata on your machine
to afile called mydata on a machine called pumpkin), you type this line:

rcp pumpkindata pumpkin:mydata

206 PartIv: UNIX and the Net

\\3

The rcp program uses the same username rules as do r1ogin and rsh. If
your username on the other system is different from that on your own
system, type the username and an @ sign before the machine name:

rcp steph@pumpkin:mydata pumpkindata

If you want to copy files in another user’s directory (tracy, for example) on
the other system, place the user’s name after a ~ (a tilde) before the
filename. Suppose that you need one of Tracy’s files:

rcp pumpkin:~tracy/somefile tracyfile

To copy an entire directory at a time, you can use the -r (for recursive) flag
to tell rcp to copy the entire contents of a directory:

rcp -r pumpkin:projectdir .

This command says to copy the directory projectdir on machine pumpkin
into the current directory (the period is the nickname for the current
directory) on the local machine.

You can combine all this notation in an illegible festival of punctuation:
rcp -r steph@umpkin:~tracy/projectdir tracy-project

Translation: “Go to machine pumpkin, where my username is steph, and get
from user tracy a directory called projectdir and copy it to a directory
on this machine called tracy-project.” Whew!

In the finest UNIX tradition, rcp is extremely taciturn: It says nothing unless
something goes wrong. If you are copying a large number of files over a net-
work, it can take awhile (a couple of minutes), so you may have to be more
patient than usual while waiting for it to do its work. rcp is done when you
see the UNIX prompt.

If you copied stuff to another machine and want to see whether it worked,
use rsh to give an 1s command afterward to see which files are on the other
machine:

rcp -r projectdir pumpkin:squashproject
rsh pumpkin 1s -1 squashproject

Although rcp is reliable (if it didn’t complain, the copy almost certainly
worked), it never hurts to be sure.

Chapter 16: Across a Crowded Network 2 0 7

NFES: You'll Never Find Your Stuff

If your computer is on a LAN, the computer is probably set up to share files
with other computers. Quite a few different schemes enable computers to
use files on other machines. These schemes are named mostly with TLAs
(Three Letter Acronyms) such as AFS, RFS, and NFS. This chapter talks
mostly about NFS (you’ll never find your stuff) because that’s the most
commonly used scheme, even though it works, in many ways, the worst. If
you didn’t like the C shell or the vi editor, you won’t like NFS either; it also
was written by Bill, the big guy with the strong opinions.

What's NFS?

The NFS (Network File System) program enables you to treat files on
another computer in more or less the same way you treat files on your own
computer.

You may want to use NFS for several reasons:

1 Often you have a bunch of similar computers scattered around, all
running more or less the same programs. Rather than load every
program on every computer, the system administrator loads one copy
of everything on one computer (the server) so that all the other
computers (the clients) can share the programs.

1 Centralizing the files on a server makes backup and administration
easier. It’s much easier to administer one disk of 4,000 megabytes than
to administer 10 disks of 400 megabytes apiece. It’s also easier to back
up everything because everything is all in one place rather than spread
around on a dozen machines.

R 0 R T ST

v Another use of NFS is to make a bunch of workstations function as a
shared time-sharing system. It is reasonably straightforward to set up a
bunch of workstations so that you can sit down at any one of them, log
in, and use the same set of files regardless of where on the network
they physically reside. This capability is a great convenience. Also, by
using programs such as telnet (discussed earlier in this chapter), you
can log in to another machine on the network and work from that
machine (which is handy if the other machine is faster than yours or
has some special feature you want to use).

v In heterogeneous networks, NFS is a fancy term for networks with
different kinds of computers. NFS is available for all sorts of comput-
ers, from PCs to mainframes. A version of NFS is commonly run on PCs
to enable PC users to use files physically located on UNIX or other
systems.

G DL 5 O R e i P O R

208 PartIv: UNIX and the Net

Where are those files, anyway?

NFS works by mounting remote directories. Mounting means pretending that a
directory on another disk or even on another computer is actually part of the
directory system on your disk. Files that are stored in lots of different places
can then appear to be nicely organized into one tree-structure directory.

Whenever UNIX sees the name of a directory — /stars/elvis, for exam-
ple — it checks to see whether any names in the directory are mount points,
which are directories in which one disk is logically attached to another.

Your system may have the directory /stars mounted from some other
machine, for example, and then the directory elvis and all the files in it
reside on the other machine.

The easiest way to tell which files are where is with the df (Disk Free space)
command. It prints the amount of free space on every disk and tells you
where the disks are. Here’s a typical piece of df output:

Filesystem kbytes used avail capacity Mounted on
/dev/sd0a 30383 6587 20758 24% /
/dev/sd0g 157658 124254 17639 88% /usr
/dev/sd0Oh 364378 261795 66146 80% /home
/dev/sd3a 15671 1030 13074 7% /tmp
/dev/sd3g 1175742 758508 299660 72% /mnt
server-sys:/usr/spool/mail

300481 190865 79567 71% /var/spool/mail
server-sys:/usr/1ib/news

300481 190865 79567 71% Jusr/1lib/news
server-sys:/usr/spool/news

298068 243877 24384 91% /var/spool/news

In this example, the directory / resides on a local disk (a disk on your own
computer) named /dev/sd0Oa; /usr resides on /dev/sd0g; /home resides
on /dev/sd0h; and so on. (We don’t go into the subject of disk names other
than to say that anything in /dev is on the local machine.) The directory
/var/spool/mail is really the directory /usr/spool/mail on machine
server-sys, /usr/lib/news is really /usr/1ib/news on machine
server-sys, and so on.

Some of the local directory names are the same as the remote machine’s
directory names — and some aren’t. This situation can and often does cause
considerable confusion; unfortunately, it’s usually unavoidable. A system
administrator with any sense at least mounts each directory with a consis-
tent name wherever it's mounted so that /var/documents/bigproject is
the same no matter which computer you're working on.

Chapter 17
Automating Your Office Gossm

C BK B BN B BN B BE BN BE JN BX BX BE B BN IR BE BE R BN BE B BN BE BN NN OBE BE 3R BE BN NN ONE N B RN N BN NN OB W NN)
In This Chapter

» What is e-mail?
p What are e-mail addresses?

» Where is your mailbox?

» How to use the Pine program

p» How to use the e1m program

p How to use the mail program

» How to use Netscape to read your mail
p How to organize your mail into neat piles

S 000500 BEHOPOOCO S OSSO0 S OB EDOSOOOEDPODS OO SOGOSETST

Eectronic mail (or e-mail) is the high-tech way to automate interoffice
chatter, gossip, and innuendo. Using e-mail, you can quickly and effi-
ciently circulate memos and other written information to your coworkers,
including directions to the beer bash this Saturday and the latest bad jokes.
You can even send and receive e-mail from people outside your organization,
if you and they use networked computers.

If your organization uses e-mail, you probably already have some. In fact,
vitally important but unread mail may be waiting in your mailbox at this very
moment. Probably not, but who knows? You can tell whether unread messages
are in your mailbox because UNIX displays this message when you log in:

You have mail.

What You Need in Order to Use E-Mail

Any UNIX system handles e-mail for users on that system. To exchange e-
mail with the outside world, your computer must be on a network — or at
least have a phone line and a modem. You definitely don’t want to know how
to set up a mail network or make connections to other computers — if your
computer doesn’t already have e-mail on it, it’s time to talk to a UNIX wizard.

2710 Partiv:UNIX and the Net

In the great tradition of UNIX standardization, it has about 14 different mail-
sending-and-receiving programs. (Fortunately, they all can exchange mail
with each other.) To find out whether your computer can do e-mail, try using
the simple mail program to see whether you have any mail waiting. Just
type this line:

mail

UNIX says No mail if no mail is waiting or blats a copy of the first unread
message to your screen. In the latter case, if you don’t want to read your
mail right now, press x (for exit) and press Enter to get out. We talk more
about reading your mail later in this chapter.

To receive mail, you need a mailbox. (Not one of those tasteful roadside
mailboxes, in this case. It’s an invisible mailbox made up entirely of elec-
tronic data.) Your system administrator can make (or already has made) one
for you if your organization uses e-mail. The mailbox comes in the form of a
file named something like /var/mail/yourusername. It contains your
unread mail and any mail you choose to leave lying around. You may also
have a directory named mail or Mail (some systems capitalize it, some
don’t — sigh) in your home directory that you can use to sort your mail into
piles and keep it for historical reference.

To read the mail in your mailbox and send mail, you use a program such as
mail or e1m or Pine. If you use Motif or CDE, you can use a fancy X Windows
mail program, such as exmh.

Addressing the Mail

E-mail, like regular mail (usually referred to by e-mail advocates as snail mail)
needs an address, usually called a net address or e-mail address. To send mail
to a person, you send it to his or her username (refer to Chapter 1 for infor-
mation about logging in with a username). If the other user uses a different
computer than the one you use, the mail system has to know which com-
puter the other person is on — and the address becomes more complicated.

Sending mail to people on your computer

For people who use the same computer you do (you both use terminals
connected to the same computer running UNIX), the mail address is just
their username. If you enter georgew for your username, that’s your mail
address too. Make sure that you don’t use uppercase letters in the mail
address unless the username also does.

Chapter 17: Automating Your Office Gossip 2 7 ’

Sending mail to people on other computers

You can send mail to people who use other computers if your computer is
connected to their computer on a network. For people who use other comput-
ers, you send mail by telling the mail system which computer they use.

Computers have names too, you know. They sometimes have boring names
that indicate what they are used for, such as marketing or corpacctg.
Sometimes all the computers in an organization are named according to a
more interesting scheme, such as naming them all after fish, spices, or
cartoon characters. It’s traditional in UNIX networks to give the computers
tasteful yet memorable names. One company we worked for had computers
named haddock, cod, and f1ounder. Another company used basil, chervil,
dill, fennel, and ginger. At Internet for Dummies Central, they’re named
chico, astrud, xuxa, tom, and ivan, after some of our favorite Brazilian
singers.

When you're writing to someone on another computer on your network,
include the computer name in the mail address by using an at sign (@) to
indicate where they are “at.” If your friend Nancy, for example, has the
username nancyb and uses a computer named ginger, her mail address is
nancyb@ginger.

A skillful system administrator can automatically note which computer
each user in an organization uses. With luck, you can merely send mail by
username, and the system automagically figures out which computer to
send it to. :

3 If you have trouble with addresses, the easiest way to send a message to
someone is to wait until that someone sends a message to you and then
reply to it. All mail programs have a command (usually r) that replies to the
message you just read. Messages almost always have return addresses, and
the r command enables you to send a message without typing an address.

Sending mail to people “out there”

If your computer network has phone connections to the outside world, you
can probably also send mail to people out in the wide world of The Internet:
the invisible network of UNIX and other computers that extends worldwide.
Check with your system administrator or other e-mail users to find out

whether your organization is “on the Net” (connected to the outside world).

To correspond with people on the outside, you need an Internet address for
the person you want to send mail to. After you have the address, type it
exactly the way she wrote it. Internet addresses tend to look like this:

ellenz@persimmon.greattapes.com

2 ’ 2 Part IV: UNIX and the Net

W\

The part in front of the @ is the person’s username. The rest of the address
is the name of the computer and other information about where the com-
puter is, usually the name of the company. The computer name, company
name, and so on are connected by periods. The last three letters frequently
tell you what kind of organization it is: com is for companies, for example,
and edu is for educational institutions. Sometimes the parts of the address
spell out the city, state, and country where the computer is located. It’s all
very well organized, really.

If your computer is on the Internet, you can also exchange mail with users
of commercial services, such as CompuServe and America Online (AOL).
For details, see the following sidebar, “Sending mail to people who use
online services.”

When you’re typing Internet addresses, keep these points in mind:

v+~ Be sure that you don’t type any spaces in the middle of the address.
Don’t use spaces in usernames or computer names or on either side of
the @ or a period.

v Don’t capitalize anything unnecessarily. Check the capitalization of the
person’s username and computer name. Most addresses are composed
entirely of small letters.

v Don'’t forget the periods that separate the parts of an Internet address.

If your computer is on the Internet and you want to try out network mail,
send a message to the authors of this book, at unix4@gurus.com, and tell
us what you think of the book. Our computer sends you an automatic reply,
and we read your message, too. (If you can get that address right, you're
already halfway to being a mail wizard.)

It's dead, Jim

If you get an address wrong, you usually get the message back within a few
minutes (for mail on your own computer or your own network) or a few
days (for mail that has bounced around the Internet). The dead letter usually
has all kinds of cryptic automated error messages in it, but the gist is clear:
The message wasn’t delivered. Check the address and try again. Generally,
the safest way to address a message is to reply to someone else’s message.

Chapter 17: Automating Your Office Gossip 2 ’3

Sending mail to people who use online services

You can send mail to people who don't use
UNIX computers. By using the Internet, you
can usually send mail to anyone who uses
CompuServe, AOL, and other services.

To send mail to a CompuServe user, do the
following:

v+~ Find out his or her CompuServe user 1D. It
is a nine- or ten-digit number with a
comma somewhere in the middle, such as
71234,5678. Most CompuServe user IDs
begin with a 7, for reasons we don't claim
to understand — probably because of its
mystical significance.

1 For purposes of sending mail from UNIX,
replace the comma in the CompuServe
user 1D with a period, as in 71234.5678.
Because Internet addresses aren't al-
lowed to contain commas, you have to
make this change.

v Tack @compuserve.com to the end of
the number and, voila!l — you have the
person’s Internet address, as in this example:

71234 .5678@compuserve.com

Some CompuServe users have signed up for
usernames so that you can write to them at
JoeBlow@compuserve.com.

To send mail to an America Online (AOL) user,
you do more or less the same thing as for a
CompuServe user:

v+~ Find out the AOL screen name, such as
Steve Case.

v~ Take out any spaces and tack @ao1 . com
to the end of the number. Voila! — you
have the person’s Internet address, as
shown here:

stevecase@aol.com

For users of Prodigy Classic, use the Prodigy
username followed by @prodigy.com:

XYZ666Q@prodigy.com

For users of Prodigy Internet, use the Prodigy
username fallowed by @prodigy.net:

furdle@prodigy.net

Sending Stuff Other Than Text

These days, e-mail is getting to be such a widespread practice that you may
want to send things other than plain old short text messages. For example,
we e-mailed most of the chapters in this book as Microsoft Word documents
to our long-suffering editor. Most mail programs now have commands for
attaching files to e-mail messages, or at least including text files in messages.

If you want to send a text file by e-mail, just include the text file as part of
your message. Note, however, that UNIX e-mail was designed for sending
text, not for sending programs, graphics, or formatted word processing files.

214 Partiv:UNIX and the Net

a\\J

Luckily, several ways of cheating have been developed so that the e-mail
system doesn’t realize that e-mail messages actually contain stuff other than
text. The two most widely used methods are

v+ Uuencoding: This method involves using a uuencoding program to
convert the file to text and a uudecoding program to convert the text
back to the original file. We described uuencoding in Chapter 12, in the
section about getting sneaky with uuencode.

v+ MIME (Multipurpose Internet Mail Extensions): This method is much
easier to use than uuencoding because many newer mail programs
handle it automatically.

When we describe mail programs, we tell you whether they work with
MIME. All UNIX mail programs work with uuencoding because you have to
do the work.

Before sending a file by using a uuencoded or MIME attachment, you may
want to send a plain old nonattached e-mail message to the intended
recipient, asking whether he can handle uuencoding or MIME.

Exchanging Gossip by Using Pine

Pine was originally a cut-down version of e 1m (which we describe next, for
pineless users) intended for novice users, which makes it even easier to use
than e1m. Now it’s become much more powerful than e1m ever was. It has
lots of nice menus to remind you of what to do next, and it even uses pico, a
simple editor, for composing mail.

To run Pine, just type pine. You see a display like the one shown in Figure 17-1.

If you're using UNIX by way of a communications program, watch out for
which terminal you're emulating. Pine works fine if your program emulates a
VT100 terminal, but not so well if it emulates an ANSI terminal. You can
usually change which terminal your program emulates.

The figure shows Pine’s main menu, with a list of its favorite commands. Like
elm, Pine uses one-letter commands. Note that one of the commands is
highlighted — you can also choose commands by pressing the up- and
down-arrow keys to move the highlight and then pressing Enter.

Chapter 17: Automating Your Office Gossip 2 75

Figure 17-1:
Pine's
menu,
listing

the most
popular
commands.
[, L L

e\\3

PINE 3.89 HAIN MENU Folder: INBOX 0O Messages
? HELP - Get help using Pine
© COMPOSE HESSAGE - Compose and send a message
s FOLDER INDEX - Uiew messages in current folder
L FOLDER LIST - Select a folder to view
A ADORESS BOOK - Update address book
S SETUP - Configure or update Pine
Q QuUIT - Exit the Pine program
Copyright 1989-1993. PINE is a trademark of the University of Hashington.
[Folder “INBOX" opened with 0 messages]
Help d PrevCmd i Relfotes
OTHER ChOS [l [ListFldrs) [HextCnd { KBlock

This list shows the commands you’re most likely to use:

| v~ Press i to see a list of your messages.
f‘;f »” Press q to exit from Pine.

. v~ Press ? for lots of helpful online help.

Into the postbox

To use Pine to send mail, press c. Pine runs pico, a nice, simple editor we
describe in more detail in Chapter 10. Rather than start with a blank file, you
see the headers, ready for you to fill in: To, Cc, Attchmnt (for attaching files
to a message — skip that one for now), and Subject. Use pico to type the
header information and the text of your message. Then press Cirl+X to leave
pico. Pine sends the message and displays the main menu again.

If you decide not to send the message after all, you can press Ctrl+C to
cancel it.

This list shows you some cool things you can do while you're writing your
message:

§ v~ For lots of helpful information about how to use Pine, you can press
Ctrl+G. Pine has complete online help.

»” You can even check the spelling of your message — just press Ctrl+T.
~ Pine checks all the words in your message against its dictionary and
highlights each word it can’t find.

2716 PartIv: UNIX and the Net

I'm pining for some mail

To read your mail, press i to see the index of messages, as shown in Figure
17-2. The messages are numbered, with codes (N for new messages you
haven't read, D for messages you have deleted, and A for messages you have
answered) in the left margin. One of the messages is highlighted.

PINE 3.89 FOLDER INDEX Folder: INBOX Message | of 3 NEW

+ N1 Apr B Marqy Levins Young (695) How about lunch?
+ N2 HApr 6 To: John R Levine (474) Trying out some softuware!
+ N3 Apr 6 Margy Levine Young (710) It’s budget time again...
T
Figure 17-2:
A list
of your
messages,
in Pine. [Help @ Hain Me<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>