
>w, writing programs in C++ right away

using this friendly guide

A Reference
for the.

Rest of Us!

compiler
and all code from the

book oh CD-ROM

Stephen Randy Davis
Author of MORE C++ For Dummies

C++ For Dummies® itth Edition

Declarations

II declaration of a simple type

[const] type objName [= expression]; // declaration of a class object

[const] type objName[(argument list)]; // if no arguments, then the

// default constructor is invoked

// declaration of a function

type fnNameC [argument list]); // if empty, the argument list is

// assumed to be void

Declarations have one of the following forms. The intrinsic types are

[<signed
|
unsigned >]char

[<signed
|
unsigned)] [<short

|
long>] int

float

doubl e

long double

Users may also define their own types using the class or struct keywords:

<struct
|
class> ClassName [: [public] BaseClass]

publ ic:

// public data members

type dataMemberName

;

// public member functions

type memberFuncti onName([arg list]) [{...}]

// const member function

type memberFuncti onNamet [arg list]) const [(...I

// virtual member functions

virtual type memberFuncti onName([arg list]) [{..

// pure virtual member functions

virtual type memberFuncti onName([arg list]) = 0;

protected:

// repeat for any protected members};

For Dummies: Bestseilinq Book Series for Beqinners

C++ For dummies® 4th Edition /^J

Here, in a nutshell, are a few rules to live by. I've used the following contractions in these rules:

[feature] feature is optional

<featurel
|
feature2> either featurel or else feature2

. . . unspecified number of statements or expressions

Expressions

Expressions have both a value and a type. Expressions take one of the following forms:

objName // for a simple object

operator expression // for unary operators

exprl operator expr2 // for binary operators

exprl ? expr2 : expr3 // for the ternary operator

funcNameC [argument list]); // for function calls

Operators

Operator Cardinality Associativity

Highest precedence ()[]->. left to right

!- + -++--&*(cast)sizeof unary left to right

*/% binary left to right

+ - binary left to right

« » binary left to right

<<=>>= binary left to right

==!= binary left to right

& binary left to right

A binary left to right

1 binary left to right

&& binary left to right

II binary left to right

? : ternary right to left

= *=/=%= += -= &= A = 1= «= »= binary right to left

Lowest precedence binary left to right

Copyright © 2000 Stephen R Davis

"^Mt All rights reserved.

•2^^ Cheat Sheet $2 95 value Item 0746-X.

rlllll^l) Annus" For more information about Hungry Minds.

call 1-800-762-2974

For Dummies: Bestsetting Book Series for Beginners

BESTSELLING

BOOK SERIES

Are you intimidated and confused by computers? Do you find

that traditional manuals are overloaded with technical details

you'll never use? Do your friends and family always call you to

fix simple problems on their PCs? Then the For Dummies
'

computer book series from Hungry Minds, Inc. is for you.

For Dummies books are written for those frustrated computer users who know they

aren't really dumb but find that PC hardware, software, and indeed the unique vocabulary of

computing make them feel helpless. For Dummies books use a lighthearted approach,

a down-to-earth style, and even cartoons and humorous icons to dispel computer novices'

fears and build their confidence. Lighthearted but not lightweight these books are a perfect

survival guide for anyone forced to use a computer.

"I like my copyso much I told

friends; now they bought copies.

— Irene C, Orwell, Ohio

'Thanks, I needed this book. Now I

can sleep at night"

— Robin F., British Columbia, Canada

"Quick, concise, nontechnical,

and humorous."

— JayA, Elburn, Illinois

Already, millions of satisfied readers agree. They have

made For Dummies books the #1 introductory level

computer book series and have written asking for more.

So, if you're looking for the most fun and easy way to

learn about computers, look to For Dummies books to

give you a helping hand.

Hungry Minds-

1/01

Digitized by the Internet Archive

in 2012

http://archive.org/details/cfordummies00davi_1

C++
FOR

DUMHIE5
Hth EDITION

by Stephen R. Davis

Hungry Minds-

Best-Selling Books • Digital Downloads • e-Books • Answer Networks • e-Newsletters • Branded Web Sites • e-Learning

New York, NY Cleveland, OH Indianapolis, IN

C++ For Dummies', 4th Edition

Published by
Hungry Minds, Inc.

909 Third Avenue
New York, NY 10022

www .hung ryminds. com

www. dummies .com

Copyright © 2000 Stephen R. Davis. All rights reserved. No part of this book, including interior design, cover design, and
icons, may be reproduced or transmitted in any form, by any means (electronic, photocopying, recording, or otherwise)
without the prior written permission of the publisher.

Library of Congress Control Number: 00-102505

ISBN: 0-7645-0746-X

Printed in the United States of America

10 9 8

4B/TQ/QR/QS/IN

Distributed in the United States by Hungry Minds. Inc.

Distributed by CDG Books Canada Inc. for Canada: by Transworld Publishers Limited in the United Kingdom: by IDG
Norge Books for Norway; by IDG Sweden Books for Sweden; by IDG Books Australia Publishing Corporation Pty. Ltd.

for Australia and New Zealand; by TransQuest Publishers Pte Ltd. for Singapore, Malaysia. Thailand. Indonesia, and
Hong Kong; by Gotop Information Inc. for Taiwan; by ICG Muse, Inc. for Japan: by Intersoft for South Africa: by Eyrolles

for France: by International Thomson Publishing for Germany, Austria and Switzerland: by Distribuidora Cuspide for

Argentina; by LR International for Brazil; by Galileo Libros for Chile; by Ediciones ZETA S.C.R. Ltda. for Peru: by
WS Computer Publishing Corporation. Inc.. for the Philippines; by Contemporanea de Ediciones for Venezuela: by
Express Computer Distributors for the Caribbean and West Indies; by Micronesia Media Distributor. Inc. for Micronesia:

by Chips Computadoras S.A. de C.V. for Mexico; by Editorial Norma de Panama S.A. for Panama; by American Bookshops
for Finland.

For general information on Hungry Minds' products and services please contact our Customer Care Department within

the U.S. at 800-762-2974, outside the U.S. at 317-572-3993 or fax 317-572^002.

For sales inquiries and reseller information, including discounts, premium and bulk quantity sales, and foreign-language

translations, please contact our Customer Care Department at 800-434-3422. fax 317-572^4002. or write to Hungry Minds.

Inc., Attn: Customer Care Department, 10475 Crosspoint Boulevard, Indianapolis, IN 46256.

For information on licensing foreign or domestic rights, please contact our Sub-Rights Customer Care Department at

212-884-5000.

For information on using Hungry Minds' products and services in the classroom or for ordering examination copies,

please contact our Educational Sales Department at 800-434-2086 or fax 317-572^4005.

For press review copies, author interviews, or other publicitv information, please contact our Public Relations

Department at 317-572-3168 or fax 317-572-4168.

For authorization to photocopy items for corporate, personal, or educational use. please contact Copyright Clearance

Center, 222 Rosewood Drive, Danvers, MA 01923, or fax 978-750-4470.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY : THE PUBLISHER AND AITHOR HA\T USED THEIR BEST EFFORTS IN

PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT
TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH
EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE CREATED OR
EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ACCURACY AND COMPLETENESS OF
THE INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT GUARANTEED OR WARRANTED
TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES CONTAINED HERON MAY NOT BE SUIT-

ABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE I I Mil 1 FOR ANY LOSS OF PROFIT
OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL. INCIDENTAL CONSEQUENTIAL.
OR OTHER DAMAGES.

Trademarks: For Dummies. Dummies Man, A Reference for the Rest of Us!, The Dummies Way. Dummies Daily, and related

trade dress are registered trademarks or trademarks oi Hungry Minds. Inc. in the United States and other countries, and
may not be used without written permission. All other trademarks are the property ol their respective owners. Hungry
Minds. Inc. is not associated with any product or vendor mentioned in this book.

Hungry Minds-
is a trademark of Hungry Minds, Inc.

About the Author
Stephen R. Davis (Dallas, TX) and his family have written numerous books
including C++ For Dummies, More C++ For Dummies and Windows 95
Programming For Dummies. Stephen works for Valtech, a PC training and
mentoring company.

Dedication
To my friends and family who help me to be the best Dummy I can be.

Author's Acknowledgments
I find it very strange that only a single name appears on the cover of any
book, but especially a book like this. In reality, many people contribute to the

creation of a For Dummies book. From the beginning, editorial manager Mary
Corder and editorial agent Claudette Moore were involved in guiding and
molding the book's content. During development, I found myself hip-deep in

edits, corrections, and suggestions from project editors Kelly Ewing and
Colleen Williams (third edition), and Susan Pink (first and second editions);

and technical reviewers Jeff Bankston (third edition), Garrett Pease (second
edition), and Greg Guntle (first edition) — this book would have been a

poorer work but for their involvement. And nothing would have made it into

print without the aid of the person who coordinated the first and second edi-

tions of the project, Suzanne Thomas. Nevertheless, one name does appear
on the cover and that name must take responsibility for any inaccuracies in

the text.

I also have to thank my wife, Jenny, and son, Kinsey, for their patience and
devotion. I hope we manage to strike a reasonable balance.

Finally, a summary of the animal activity around my house. For those of you
who have not read any of my other books, I should warn you that this has

become a regular feature of my For Dummies books.

My two dogs, Scooter and Trude, continue to do well although Trude is all

but blind now. Our two mini-Rex rabbits, Beavis and Butt-head, passed on to

the big meadow in the sky after living in our front yard for almost a year and
a half. We acquired two cats, Bob and Marly (both female, by the way),

during the writing of MORE C++ For Dummies. Marly died of kitty leukemia,

but Bob and the family have carried on.

A friend of my sister-in-law was secretly harboring a pot-bellied pig named
Penny in her (the friend's, not Penny's) apartment last winter. Due to some
sort of piggy indiscretions, the cover was blown and the apartment manager
threatened Penny with bodily harm (apparently he didn't keep kosher). We
were forced to spirit Penny away in the back of my Explorer under the cover

of darkness. Penny arrived safely at her new quarters (outside this time),

where she continues to thrive.

If you would like to contact me concerning C++ programming, pot-bellied

pigs, semi-blind dogs, or free-roaming rabbits, feel free to drop me a line at

srdavis@ACM.org.

Publisher's Acknowledgments

We're proud of this book; please send us your comments through our Online Registration Form
located at www. dummies .com.

Some of the people who helped bring this book to market include the following:

ProductionAcquisitions, Editorial, and
Media Development

Project Editor Jade L. Williams

(Previous Edition: Colleen Williams, Kelly EwingJ

Acquisitions Editor Sherri Morningstar

Copy Editor Christine Berman

Proof Editor Teresa Artman

Technical Editor Namir Shammas

Permissions Editor Carmen Krikorian

Associate Media Development Specialist:

Megan Decraene

Editorial Manager Kyle Looper

Media Development Manager
Heather Heath Dismore

Editorial Assistant: Sarah Shupert

Project Coordinator Maridee Ennis

Layout and Graphics: Beth Brooks.

Tracy K. Oliver, Brent Savage,

Jacque Schneider, Janet Seib,

Brian Torwelle

Proofreaders: Laura Albert, Corey Bowen.

Susan Moritz, York Production

Services, Inc.

Indexer York Production Services, Inc.

Special Help
Amanda M. Foxworth

General and Administrative

Hungry Minds Technology Publishing Group: Richard Swadley, Vice President and Executive

Group Publisher; Bob Ipsen, Vice President and Group Publisher; Joseph Wikert. Vice President

and Publisher; Barry Pruett, Vice President and Publisher: Mary Bednarek. Editorial Director;

Mary C. Corder, Editorial Director; Andy Cummings. Editorial Director

Hungry Minds Manufacturing: Ivor Parker, Vice President, Manufacturing

Hungry Minds Marketing: John Helmus, Assistant Vice President. Director of Marketing

Hungry Minds Production for Branded Press: Debbie Stailey, Production Director

Hungry Minds Sales: Michael Violano. Vice President, International Sales and Sub Rights

Contents at a Glance
••

Introduction . /

Part I: Introducing C++ Programming , 9
Chapter 1: Writing Your First C++ Program 11

Chapter 2: Declaring Variables Constantly 25

Chapter 3: Performing Mathematical Operations 35

Chapter 4: Performing Logical Operations 43

Chapter 5: Controlling Program Flow 57

Part II: Becoming a Functional Programmer7/

Chapter 6: Creating Functions 73

Chapter 7: Storing Sequences in Arrays 85

Chapter 8: Taking a First Look at C++ Pointers 99

Chapter 9: Taking a Second Look at C++ Pointers 11

1

Chapter 10: Remaining Functional Features 125

Chapter 11: Debugging C++ 135

Part III: Programming With Class 159
Chapter 12: Examining Object-Oriented Programming 161

Chapter 13: Adding Class to C++ 165

Chapter 14: Making Classes Work 173

Chapter 15: Creating Pointers to Objects 187

Chapter 16: Protecting Members: Do Not Disturb 205

Chapter 17: Building and Tearing Down Objects: The Constructor

and Destructor 213

Chapter 18: Making Constructive Arguments 223

Chapter 19: Copying the Copy Copy Copy Constructor 241

Chapter 20: Static Members: Can Fabric Softener Help? 253

Part IV: Class Inheritance 271
Chapter 21: Inheriting a Class 273

Chapter 22: Examining Virtual Member Functions: Are They for Real? 281

Chapter 23: Factoring Classes 295

Part V: Optional Features 319
Chapter 24: Overloading Operators 321

Chapter 25: Overloading the Assignment Operator 337

Chapter 26: Using Stream I/O 345

Chapter 27: Handling Errors— Exceptions 361

Chapter 28: Inheriting Multiple Inheritance 369

Part V\: The Part of Tens 38

1

Chapter 29: Ten Ways to Avoid Adding Bugs to Your Program 383

Chapter 30: The Ten Most Important Microsoft Visual C++ Compiler Settings 389

Appendix A: About the CbROM 399

Appendix B: Glossary 603

Index 607

Hungry Minds EndMser License Agreement 626

GNU General Public License 628

Cartoons at a Glance
By Rich Tennant The 5th Wave By RichTennanl

fl»eFjL. v»vire tus aes eetn uxr» up w nfao id sh-
TE-ST POCSIX OXUMSra) SOtTKWE FPDOUCTS 4LU.L WEEK M>

I US Rjf 4 FISW."

page 159

'SO I SAID " VWftER
' WAI7ER HERE'S A BUS IN MV SOUP!' /W H?

SAYS, ' SORRY, 3R WE CKCF USED TO PPCORAM COMPUTERS' tinttm
HAHA THINK VOU* TOM. tou<"

p<?#e 71

The 5th Ware By Rich Tennani The 5th Wave By Rich Tennani

WA.NW HAD THE DIS1INCT FeEiJNG HER HUSBWS NEW
SOFTWARE FR03WM WAS AMXT TO 36GOME INTERACTIVE

p«0C 9
page 381

The 5th Wave By RichTennanl The Sth Wave By RichTennanl

page 271 page 319

fiw: 978-546-7747

Email: richtennant@the5thwave.com
WorldWide Web: www.the5thwave.com

Table of Contents
•••a

Introduction /

What's in This Book 1

What's on the CD 2

What Is C++? 2

Conventions Used in This Book 3

What You're Not to Read 3

Foolish Assumptions 4

How This Book Is Organized 4

At the end of each part 5

Part I: Introducing C++ Programming 5

Part II: Becoming a Functional Programmer 5

Part III: Programming with Class 6

Part IV: Class Inheritance 6

Part V: Optional Features 6

Part VI: The Part of Tens 6

Icons Used in This Book 7

Where to Go from Here 7

Part I: Introducing C++ Programming 9

Chapter 1: Writing Your First C++ Program 11

Grasping C++ Concepts 12

What's a program? 12

How do I program? 13

Installing GNU C++ 14

Creating Your First C++ Program 14

Entering the C++ code 14

Building your program 16

Executing Your Program 18

GNU is guh-not Windows 19

GNU C++ help 19

Reviewing the Annotated Program 19

Examining the framework for all C++ programs 20

Clarifying source code with comments 20

Basing programs on C++ statements 21

Writing declarations 21

Generating output 22

Calculating Expressions 22

Storing the results of expression 23

Examining the remainder of Conversion 23

%>((/ C++ For Dummies, 4th Edition

Chapter 2: Declaring Variables Constantly 25

Declaring Variables 26

Declaring Different Types of Variables 26

Reviewing the limitations of integers in C++ 27

Solving the truncation problem 28

Examining the limitations of floating point 29

Declaring Variable Types 30

Types of constants 31

Special characters 32

Mixed Mode Expressions 33

Chapter 3: Performing Mathematical Operations 35

Performing Simple Binary Arithmetic 36

Decomposing Expressions 37

Determining the Order of Operations 38

Performing Unary Operations 39

Using Assignment Operators 40

Chapter 4: Performing Logical Operations 43

Why Mess with Logical Operations? 43

Using the Simple Logical Operators 44

Be careful performing logical operations on
floating point variables 45

Expressing Binary Numbers 47

The decimal number system 48

Other number systems 48

The binary number system 48

Performing Bitwise Logical Operations 50

The single bit operators 51

Using the bitwise operators 51

A simple test 52

Why define such a crazy operator? 54

Chapter 5: Controlling Program Flow 57

Controlling Program Flow with the Branch Commands 57

Executing Loops in a Program 59

Looping while a condition is true 59

Using the autoincrement/autodecrement feature 61

Using the for loop 62

Avoiding the dreaded infinite loop 65

Applying special loop controls 65

Nesting Control Commands 67

Switching to A Different Subject? 69

Table of Contents JW

Part //: Becoming a Functional Programmer 71

Chapter 6: Creating Functions 73

Writing and Using a Function 74

Understanding the Details of Functions 76

Understanding Simple functions 77

Understanding functions with arguments 77

Overloading Function Names 80

Denning Function Prototypes 82

Variable Storage Types 84

Chapter 7: Storing Sequences in Arrays 85

Considering the Need for Arrays 85

Using an array 87

Initializing an array 89

Accessing too far into an array 90

Using arrays? 91

Denning and using arrays of arrays 91

Using Arrays of Characters 92

Manipulating Strings 94

Writing our own concatenate function 94

Reviewing the C++ string handling functions 96

Handling wide characters 97

Avoiding Obsolescent Output Functions 98

Chapter 8: Taking a First Look at C++ Pointers 99

What's in an Address? 99

Using Pointer Variables 101

Comparing pointers and houses 102

Using different types of pointers 103

Passing Pointers to Functions 105

Passing by value 105

Passing pointer values 106

Passing by reference 107

Making Use of a Block of Memory Called the Heap 107

Limiting scope 108

Examining the scope problem 109

Providing a solution using the heap 110

Chapter 9: Taking a Second Look at C++ Pointers 111

Defining Operations on Pointer Variables Ill

Re-examining arrays in light of pointer variables 112

Applying operators to the address of an array 114

Expanding pointer operations to a string 115

Applying operators to pointer types other than char 119

Contrasting a pointer with an array 119

XVl C++ ^or Dummies, 4th Edition

Declaring and Using Arrays of Pointers 121

Utilizing arrays of character strings 122

Accessing the arguments to mainQ 123

Chapter 10: Remaining Functional Features 125

Breaking Programs Apart? 125

Looking at a Large Program 126

Examining the Divided FunctionDemo Program 127

Separating off the sumSequence() module 128

Generating the remnant MainFunction.cpp module 130

Creating the project file 131

Creating a project file under GNU C++ 131

Creating a project file under Visual C++ 132

Including the #include Directive 133

Using the Standard C++ Library 134

Chapter 11: Debugging C++ 135

Identifying Types of Errors 135

Choosing the WRITE Technique for the Problem 136

Catching bug #1 137

Catching bug #2 140

Calling for the Debugger 143

Defining the debugger 144

Deciding which debugger to use 144

Running a test program 145

Single-stepping through a program 147

Single-stepping into a function 148

Using breakpoints 149

Viewing and modifying variables 150

Budget 1 Program 153

Part III: Programming u/ith Class 159

Chapter 12: Examining Object-Oriented Programming 161

Abstracting Microwave Ovens 161

Preparing functional nachos 162

Preparing object-oriented nachos 163

Classifying Microwave Ovens 163

Why Classify? 164

Chapter 13: Adding Class to C++ 165

Introducing the Class 165

The format of a Class 166

Accessing the members of a Class 167

Example program 168

Table of Contents

Chapter 14: Making Classes Work 173

Activating Our Objects 174

Simulating real world objects 174

Why bother with member functions? 175

Adding a Member Function 175

Creating a member function 176

Naming class members 177

Calling a Member Function 177

Accessing a member function 178

Accessing other members from a member function 179

Scope Resolution (And I Don't Mean How Well Your
Microscope Works) 180

Denning a Member Function in the Class 182

Keeping a Member Function After Class 184

Overloading Member Functions 185

Chapter 15: Creating Pointers to Objects 187

Defining Arrays of and Pointers to Simple Things 187

Declaring Arrays of Objects 188

Declaring Pointers to Objects 189

Dereferencing an object pointer 190

Shooting arrow pointers 191

Passing Objects to Functions 191

Calling a function with an object value 191

Calling a function with an object pointer 192

Why pass pointers to functions when you can pass

the object itself? 193

Calling a function by using the reference operator 196

Returning to the Heap 196

Linking up with Linked Lists 197

The array data structure 197

The linked list 198

Performing other operations on a linked list 199

Properties of linked lists 201

Hooking Up with a LinkedListData Program 201

Chapter 16: Protecting Members: Do Not Disturb 205

Protecting Members 205

Why you need protected members 205

Discovering how protected members work 206

Making an Argument for Using Protected Members 208

Protecting the internal state of the class 208

Using a class with a limited interface 209

Giving Non-Member Functions Access to Protected Members 209

Why do I need friends? (I am a rock, I am an island) 209

JCtflii C++ For Dummies, 4th Edition

Chapter 17: Building and Tearing Down Objects:

The Constructor and Destructor 213

Creating Objects 213

Using Constructors 214

Explaining the need for constructors 214

Making constructors work 216

Understanding the Destructor 220

Why you need the destructor 220

Working with destructors 220

Chapter 18: Making Constructive Arguments 223

Outfitting Constructors with Arguments 223

Justifying constructors 224

Using a constructor? 224

Overloading the Constructor (Is That Like Placing Too
Many Demands on the Carpenter?) 227

Defaulting Default Constructors 229

Constructing Class Members 231

Constructing the Order of Construction 236

Local objects construct in order 236

Static objects construct only once 236

All global objects construct before main() 237

Global objects construct in no particular order 238

Members construct in the order in which they are declared 239

Destructors destruct in the reverse order

of the constructors 240

Chapter 19: Copying the Copy Copy Copy Constructor 241

Copying an Object 241

Why do I need it? 241

Using the copy constructor 242

The Automatic Copy Constructor 244

Creating Shallow Copies versus Deep Copies 246

It's a Long Way to Temporaries 249

Chapter 20: Static Members: Can Fabric Softener Help? 253

Defining a Static Member 253

Why do I need them? 253

Using static members 254

Referencing static data members 255

Uses for static data members 257

Declaring Static Member Functions 257

A Budget with Class— BUDGET2.CPP 261

Table of Contents

Part IV: Class Inheritance 271

Chapter 21: Inheriting a Class 273

Do I Need Inheritance? 274
How Does a Class Inherit? 276

Constructing a Subclass 278

Having a HAS_A Relationship 279

Chapter 22: Examining Virtual Member Functions:

Are They for Real? 281

Why Do I Need Polymorphism? 284

How Does Polymorphism Work? 286

Making Nachos the Polymorphic Way 288

When Is a Virtual Function Not? 290

Considering Virtual Considerations 293

Chapter 23: Factoring Classes 295

Factoring 296

Implementing Abstract Classes 300

Describing the abstract class concept 302

Making an honest class out of an abstract class 303

Passing abstract classes 305

Declaring pure virtual functions — is it really necessary? 306

Trying to Rationalize My Budget: BUDGET3.CPP 308

Part V: Optional features 319

Chapter 24: Overloading Operators 321

Overloading Operators — Can't We Live Together in Harmony? 322

How Does an Operator Function and a Function Operate? 323

Taking a More Detailed Look 326

Considering the operator+Q case 326

Considering the operator++() case 328

Coding Operators as Member Functions 329

Suffering through Yet Another Overloading Irritation 331

Overloading Operators Using Implicit Conversion 332

Promoting user denned objects 333

Denning a Cast Operator 334

Defining the rules for implicit conversions 335

YY C++ For Dummies, 4th Edition

Chapter 25: Overloading the Assignment Operator 337

Overloading the Assignment Operator Is Critical 337

Finding Out How to Overload the Assignment Operator 338

Creating shallow copies is a deep problem 340

Going to C++ member-by-member 341

Returning from over-C's assignments 342

Providing member protection 342

Chapter 26: Using Stream I/O 345

Diving into Stream I/O 345

Examining the fstream Subclasses 348

Using the strstream Subclasses 351

Manipulating Manipulators 353

Writing Custom Inserters 356

Generating Smart Inserters 359

Chapter 27: Handling Errors— Exceptions 361

Justifying a New Error Mechanism? 362

Examining the Exception Mechanism 364

What Kinds of Things Can I Throw? 366

Chapter 28: Inheriting Multiple Inheritance 369

Describing the Multiple Inheritance Mechanism 369

Straightening Out Inheritance Ambiguities 371

Adding Virtual Inheritance 372

Constructing the Objects of Multiple Inheritance 377

Voicing a Contrary Opinion 377

Part VI: The Part of Tens 381

Chapter 29: Ten Ways to Avoid Adding Bugs to Your Program 383

Enabling All Warnings and Error Messages 383

Insisting on Clean Compiles 384

Adopting a Clear and Consistent Coding Style 384

Limiting the Visibility 385

Commenting Your Code While You Write It 386

Single-Stepping Every Path at Least Once 387

Avoid Overloading Operators 387

Heap Handling 388

Using Exceptions to Handle Errors 388

Avoiding Multiple Inheritance 388

Table of Contents xxi

Chapter 30: The Ten Most Important Microsoft

Visual C++ Compiler Settings 389

Generating a Command Line Program 390

Changing Project Settings 390

Choosing General Settings 391

Selecting Settings for Debug 392

Choosing General Options for C/C++ 393

Controlling C++ Language Settings 394

Choosing Code Generation Settings 395

Customizing with the Code Generation Window 396

Controlling Compile Optimizations 396

Selecting Precompiled Headers 397

Appendix A: About the Cb-ROM 399
System Requirements 399

Using the CD with Microsoft Windows 399

What You'll Find 400

If You've Got Problems (Of the CD Kind) 401

Appendix 8: Glossary 403

Index 407

Hungry Minds End-User License Agreement 426

GNU General Public License 428

XXii C++ For Dummies
<
4th Edition

Introduction

About This Book
Welcome to C+ + For Dummies, 4th Edition. Think of this book as C++: Reader's

Digest Edition, bringing you everything you need to know without the boring

stuff.

What's in This Book
C++ For Dummies is an introduction to the C++ language.

C++ For Dummies starts from the ground floor: It doesn't assume that you
have any knowledge of programming (this is different from previous editions,

which assumed a prior knowledge of C).

Unlike other C++ programming books, C++ For Dummies considers the "why"
just as important as the "how." The features of C++ are like pieces of a jigsaw

puzzle. Rather than just present the features, I think it's important that you
understand how they fit together.

If you don't understand why a particular feature is in the language, you won't

truly understand how it works. After you finish this book, you'll be able to

write a reasonable C++ program, and, just as important, you'll understand

why and how it works.

C++ For Dummies doesn't cover Windows programming. Finding out how to

program Windows in C++ is really a two-step process. First, you need to master

C++. That accomplished, you can move on to Windows. And for that, you could

do worse than (watch out for shameless plugs) Windows 98 Programming For

Dummies (of course, published by IDG Books Worldwide, Inc.).

C++ For Dummies, 4th Edition

What's on the CO
The CD-ROM included with C+ + For Dummies contains the source code to the

examples in this book. This can spare you considerable typing.

The CD-ROM also contains the GNU C++ development environment.

Your computer can't execute a C++ program directly (not even a Pentium III).

You first need to run your C++ programs through a C++ development environ-

ment, which spits out an executable program. (Don't worry, this procedure is

explained in Chapter 1.) The GNU C++ contained on the enclosed CD-ROM is

just such an environment.

GNU C++ is not some reduced capability, time-limited shareware package.

The enclosed GNU C++ is a fully functional, American National Standards

Institute (ANSI) standard compliant development tool. GNU C++ can generate

the same programs that the big boy can.

Of course, the examples contained in C++ For Dummies are compatible with

GNU C++. The examples are just as compatible with any other standard ANSI

C++ environment— feel free to use your favorite C++ tool, such as Microsoft

Visual C++ — to build the programs in this book.

What Is C++)
C + + is an object-oriented, low-level ANSI and ISO standard programming lan-

guage. Object-oriented means that C++ supports programming styles that sim-

plify the building of large-scale, extensible programs. As a low-level language.

C++ can generate very efficient, very fast programs. The ANSI and

International Standards Organization (ISO) certifications make C++ a portable

language. C++ programs are compatible with almost all modern development

environments.

C++, as the name implies, is the next generation of the C programming lan-

guage: the result of adding New Age academic computer linguistic thinking to

that old workhorse C. Anything C can do. C++ can do, too. C++ can even do it

the same way. But C++ is more than just C with a new coat of paint slapped

on. The extensions to C++ are significant and require some thought and some
getting used to, but the results are worth it.

The experienced C programmer will find C + + both exciting and frustrating.

Just like a German reading Dutch — there's enough similarity that the C pro-

grammer can almost make sense out of a C++ program but just enough differ-

ence that it isn't quite possible. This book will help you get from C to C++ as

painlessly as possible; however, C++ For Dummies. 4th Edition, doesn't

assume that the reader knows anything about C language.

Introduction

Contentions Used in This Book
When I describe a message or information that you see on screen, it appears
like this:

Hi momi

In addition, code listings appear as follows:

// some program
void main()

}

If you are entering these programs by hand, you must enter the text exactly

as shown with one exception: The number of spaces is not critical, so don't

worry if you enter one too many or one too few spaces.

Words that are not really English words but are computer words, such as

commands or function names, appear 1 i ke this. Function names are

always followed by an open and closed parenthesis like

my Favor iteFunction().

Sometimes the book directs you to use specific keyboard commands to get

things done. For example, when the text instructs you to press Ctrl+C, it

means that you should hold down the Ctrl key while pressing the C key, and
then release both together. Don't type the plus sign.

Sometimes I'll tell you to use a menu command, like this:

File^Open

This line means to use the keyboard or mouse to open the File menu and

then choose the Qpen command. (The underlined letters are the keyboard

hot keys, which let you use the menus without reaching for your mouse. To

use them, first press the Alt key. In the preceding example, you would press

and release the Alt key, press and release the F key, and then press and

release the O key.)

What 1/ou're Not to Read
C++ is a big pill to swallow. There are the easy parts and the not-so-easy

parts. To keep from swamping you with information that you may not be

interested in at the moment, technical stuff is flagged with a special icon. (See

the section "Icons Used in This Book.")

C++ For Dummies, 4th Edition

In addition, certain background information is stuck into sidebars. If you feel

the onset of information overload, feel free to skip these sections during the

first reading. (Remember to read them sometime, though. In C++, what you
don't know will hurt you— eventually.)

Foolish Assumptions
C++ For Dummies, 4th Edition, makes no assumptions about the reader's pro-

gramming experience, or lack thereof. Of course, it would help if you had
turned a computer on before, but it's not an absolute necessity.

Previous versions of C++ For Dummies assumed that you already know at

least some C. The feeling was that the C++ student should learn C first.

Assuming a background in C turned out to be a mistake. First of all, many of

the principles of C++ are fundamentally different than those behind C. even
though the syntax looks deceptively similar. In addition, most students of C++
today are programming newcomers rather than C retreads.

This fourth edition of C++ For Dummies begins with basic programming con-

cepts. The book works its way through simple syntax into the care and feed-

ing of basic programs right into object-oriented concepts. The reader who
has digested the entire contents of the book should have no trouble impress-

ing his friends and acquaintances at parties.

Hoti This Book Is Organized
Each new feature is introduced by answering the following three questions:

j> What is this new feature?

i> Why was it introduced into the language?

v How does it work?

Small pieces of code are sprinkled liberally throughout the chapters. Each

demonstrates some newly introduced feature or highlights some brilliant

point I'm making. These snippets may not be complete and certainly don't do
anything meaningful.

Note: Due to the margins of the book, very long lines of code continue to a

second line. This arrow appears at the end of those lines of code to remind

you to keep on typing— don't press the Enter key yet! I have tried diligently

to keep these run-on coding sentences to a minimum (even if I don't do the

same in my English sentences).

Introduction

At The End of Each Part

.

«

In addition, a series of BUDGET programs appears at the end of Parts II, III,

and IV. These programs are large enough that you can see a "real" program in

action.

I think it's important to see the features of C++ working together in a com-
plete program. I get distracted, however, when I'm forced to wade through

many different example programs. I spend more time figuring out what each
program does than understanding the language features it contains. In addi-

tion, I have difficulty comparing them because they don't do the same thing.

I use one simple example program, BUDGET. This program starts life as a

simple, functionally oriented program. Subsequent versions incorporate the

features presented in each new part.

By the time you reach the end of the book, BUDGET has blossomed into a

complete C++ debutante ready for the object-oriented cotillion. Some may
find this a ghastly waste of time. (If so, just skip it and keep it to yourself— I

convinced my editor that it was a really neat idea.) However, I hope that as

you see BUDGET evolve, you'll see how the features of C++ work together.

Part I: Introducing C++ Programming
Part I starts you on your journey. You begin by examining what it means to

write a computer program. From there, you step through the syntax of the

language (the meaning of the C++ commands).

Part II: Becoming a Functional

Programmer
In this part, you expand upon your newly gained knowledge of the basic com-

mands of C++ by adding the capability to bundle sections of C++ code into

modules and reusing these modules in programs.

In this section, I also introduce that most dreaded of all topics, the C+ +

pointer. If you don't know what that means, don't worry— you'll find out

soon enough.

6 C++ For Dummies, 4th Edition

Part III: Programming With Class

The plot thickens in this part. Part III begins the discussion of object-oriented

programming. Object-oriented programming is really the reason for the exis-

tence of C++. Take the 00 features out of C++ and you're left with its prede-

cessor language, C. I discuss things such as classes, constructors,

destructors, and making nachos (I'm not kidding, by the way). Don't worry if

you don't know what these concepts are (except for nachos— if you don't

know what nachos are, we're in big trouble).

Part IV: Class Inheritance

Inheritance is where object-oriented programming really comes into its own.

Understanding this most important concept is the key to effective C++ pro-

gramming and the goal of Part IV. There's no going back now — after you've

completed this part, you can call yourself an Object-Oriented Programmer.

First Class.

Part V: Optional features
By the time you get to Part V, you know all you need to program effectively in

C++. I touch on remaining, optional issues. You may want to hold off reading

these chapters until you stop feeling lightheaded from information overload.

Part VI: The Part of Tens

What For Dummies book would be complete without The Part of Tens? in the

first chapter in Part VI, you find out the best ways to avoid introducing bugs

into your programs.

Have you noticed how many different compiler options there are these days?

How do I know whether I want my v_table pointer to follow my member
pointer? And what's the alternative to fast floating point'

1 Slow floating point?

I guide you through these options, pointing out those that are important and

those that are better left alone.

Icons Used in This Book

Introduction

This is technical stuff that you can skip on the first reading.

Tips highlight a point that can save you a lot of time and effort.

«sJ*!5?

Alerts you to examples and software that appear in this book's CD-ROM.

Remember this. It's important.

«flH6/

Remember this, too. This one can sneak up on you when you least expect it

and generate one of those really hard-to-find bugs.

Where to Go from Here
Finding out about a programming language is not a spectator sport. I'll try to

make it as painless as possible, but you have to power up the ol' PC and get

down to some serious programming. Limber up the fingers, break the spine

on the book so that it lies flat next to the keyboard (and so that you can't

take it back to the bookstore), and dive in.

8 C++ For Dummies, 4th Edition

Parti

Introducing C++

Programming

The 5th Wave ByRichTennant

ONE [AY IT REALLY MIT BERTHA OUST MOW OB6E55ED HER HUSBAND
HAD EHDME WITH HIS COMPUTER.

In this part . .

.

M^oth the newest, hottest flight simulator and the sim-

^^plest yet most powerful accounting programs use the

same basic building blocks. In this part, you discover the

basic features you need to write your killer application.

Chapter 1

Writing Your First C++ Program

In This Chapter

Finding out about C++

Installing the GNU C++ program from the enclosed CD-ROM

Creating your first C++ program

Executing your program

kay, so here we are. No one here but just you and me. Nothing left to do
but to get started. First, let's begin with a few fundamental concepts.

A computer is this amazingly fast but incredibly stupid machine. A computer
can do anything you tell it (within reason) but it does exactly what it's told —
nothing more and nothing less.

Perhaps unfortunately for us, computers don't understand any reasonable

human language — they don't speak English either. Okay, I know what you're

going to say: "I've seen computers that could understand English." What you
really saw was a computer executing a program that could meaningfully

understand English. (I'm still a little unclear on this computer-understanding-

language concept, but then I don't know that my son understands my advice,

either, so I'll let it slide.)

Computers understand a language variously known as computer language or

machine language. It's possible but extremely difficult for humans to speak

machine language. Therefore, computers and humans have agreed to sort of

meet in the middle using intermediate languages such as C++. Humans can

speak C++ (sort of) and C++ is converted into machine language for the com-

puter to understand.

12 Part I: Introducing C++ Programming

Grasping C++ Concepts
In the early seventies, a consortium of really clever people worked on a com-
puter system called Multix. The goal of Multix was to provide inexpensive

computer access in all houses to graphics, e-mail, stock data, and pornogra-

phy (okay, I slipped in the pornography part). Of course, this was a com-
pletely crazy idea and the entire concept failed.

A small team of engineers working for Bell Labs decided to save some portion

of Multix in a very small, lightweight operating system that they dubbed Unix

(Un-ix, Mult-ix, get it?).

Unfortunately for these engineers, they didn't have one large machine but a

number of smaller machines each from a different manufacturer. The stan-

dard development tricks of the day were all machine dependent — they

would have to rewrite the same program for each of the available machines.

Instead, these engineers invented a small, powerful language, named C.

C was indeed a powerful language, and it caught on like wildfire. However,

new programming techniques were devised (most notably object-oriented

programming) that left the C programming language behind. Not to be out-

done, the engineering community added these new features to the C lan-

guage, and the result was called C++.

The C++ language consists of:

v A vocabulary of commands that humans can understand and that can be

converted into machine language fairly easily

and

is* A language structure (or grammar) that allows humans to combine these

C++ commands into a program that actually does something (well,

maybe does something)

Note: The vocabulary is often known as the semantics, while the grammar is

the syntax.

What's a program)

A C++ program is a text file containing a sequence of C++ commands put

together according to the laws of C++ grammar. This text file is known as the

source file (probably because it's the source of all frustration). A C++ source

file carries the extension .CPP just as a Microsoft Word file ends in .DOC or an

MS-DOS batch file ends in .BAT The concept extension .CPP is just a conven-

tion, but it's used almost exclusively in the PC world.

Chapter 1 : Writing Your First C++ Program /J

The point of programming is to write a sequence of C++ commands that can
be converted into a machine language program that does whatever it is that

we want done. Such machine executable programs carry the extension .EXE.

The act of creating an executable program from a C++ program is called com-
piling (or building— there is a difference, but it's small).

That sounds easy enough — what's the big deal? Keep going.

jfrj^*

•JUNG/

HovO do I program)

To write a program, you need two things: an editor to build your .CPP source

file with and a program that converts your source file into a machine exe-

cutable .EXE file to carry out your commands. The tool that does the conver-

sion is known as a compiler.

Nowadays, tool developers generally combine the compiler with an editor

into a single work-environment package. After entering your program, you
need only click a button to create the executable file.

The most popular of all C++ environments is Microsoft's Visual C++.. All of the

programs in this book compile and execute with Visual C++; however, many
of you may not already own Visual C++ and at $250 bucks a pop, street price,

this may be a problem.

Fortunately, there are public domain C++ environments— the most popular

of which is GNU C++. The most recent version of GNU C++ environment is

included on CD-ROM enclosed at the back of this book. (You can download

the absolute most recent version off the Web at www. del orie. com/djgpp,

if you prefer.)

You can download public domain programs from the Internet. Some of these

programs are not free— you are either encouraged to or required to pay

some usually small fee. You do not have to pay to use GNU C++.

GNU is pronounced "guh - new." GNU stands for the circular definition "GNU
is Not UNIX." This joke goes way back to the early days of C++ — just accept

it as is. GNU is a series of tools built by the Free Software Foundation.

GNU C++ is not some bug-ridden, limited edition C++ compiler from some fly-

by-night group of developers. GNU C++ is a full-fledged C++ environment. GNU
C++ supports the entire C++ language and executes all of the programs in this

book (and all other C++ book).

GNU C++ is not a Windows development package for the Windows environ-

ment. You'll have to break open the wallet and go for a commercial package

like Visual C++.

/ if Part I: Introducing C++ Programming

Follow the steps in the next section to install GNU C++ and build your first

C++ program. This program's task is to convert a temperature entered by the

user in degrees Celsius into degrees Fahrenheit.

Installing GNU C++
C++ For Dummies, 4th Edition, comes with a public domain GNU C++ develop-

ment environment, which can be used to compile and test each of the pro-

grams in this book. You do not need to install GNU C++ if you prefer to use a

C++ package that you already own, such as Visual C++. The following steps

guide you through the installation of the GNU C++ compiler.

To install the items from the CD to your hard drive, follow these steps.

1. Insert the CD into your computer's CD-ROM drive.

Give your computer a moment to take a look at the CD.

2. When the light on your CD-ROM drive goes out, double-click the My
Computer icon. (It's probably in the top-left corner of your desktop.)

The My Computer window opens showing all the drives attached to your

computer, the Control Panel, and a couple other handy things.

3. Double-click the icon for your CD-ROM drive.

Another window opens, showing you all the folders and files on the CD.

4. Double-click the file called License.txt.

This file contains the license that you agree to by using the CD. When
you are finished reading the license, close the program.

5. Double-click the file called Readme.txt.

This file contains the most up-to-date information about the code.

Creating l/our First C++ Program
In this section, you create your first C++ program. You first enter the C++

code into a file called CONVERT.CPP, and then convert the C++ code into an

executable program.

Entering the C++ code

The first step to creating any C++ program is to enter C++ instructions using a

text editor. The heart of the GNU C++ package is a utility known as rhide. At its

Chapter 1: Writing Your First C++ Program

core, rhide is an editor that links the other facilities of GNU C++ into an inte-

grated package. You use rhide to create Convert, cpp later in this chapter.

1. Open an MS-DOS window by clicking the MS-DOS icon under the
Programs menu.

GNU C++ is a command line utility. You will always start rhide from an
MSDOS prompt.

2. Create the directory c : \CPP_FD\Chap01 (assuming that your main
drive is drive Q.

You can use whatever directory name you like, but it's a lot easier to manipu-
late MS-DOS directory names that don't contain any spaces. It's easier yet to

use directory names that are eight characters or fewer in length, but even I

have to draw the line somewhere.

Within ChapOl, enter the command rhide at the MS-DOS prompt.

Create an empty file by entering New under the File menu. A blank window
opens. Enter the following program exactly as written.

Don't worry too much about indentation or spacing— it isn't critical whether
a given line is indented two or three spaces, or whether there are one or two
spaces between two words. C++ is case sensitive, however, so you need to

make sure everything is lowercase.

The rhide interface

The rhide interface looks fundamentally differ-

ent than a Windows-oriented program.

Windows programs "paint" their output to the

screen. This gives Windows programs a more

refined appearance.

By comparison, the rhide interface is based on

characters, rhide uses a number of blocking

characters available in the PC arsenal to simu-

late a Windows interface— simulate is a strong

word here. This gives rhide a less than elegant

appearance. For example, rhide doesn't support

resizing the window away from the 80x25 char-

acter display which is the standard for MS-DOS
programs, rhide does support most of the fea-

tures you're used to— drop-down menus, mul-

tiple windows, mouse interface, and speed

keys, for example.

For those of you old enough to remember, the

rhide interface looks virtually identical to the

interface of the now-defunct Borland suite of

programming tools.

16 Part I: Introducing C++ Programming

You can cheat and copy the Conversion.cpp file contained on the enclosed

CD-ROM in directory \programs\Chap01.

//

// Program to convert temperature from Celsius degree
// units into Fahrenheit degree units:
// Fahrenheit = Celsius * (212 - 32)/100 + 32

//

^include <stdio.h>
^include <iostream.h>

int mainUnt nNumberofArgs , char* pszArgs[])
{

// enter the temperature in Celsius
int Celsius;
cout << "Enter the temperature in Celsius:";
cin >> celsius;

// calculate conversion factor for Celsius
// to Fahrenheit
int factor;
factor = 212 - 32;

// use conversion factor to convert Celsius
// into Fahrenheit values
int fahrenheit;
fahrenheit = factor * celsius/100 + 32;

// output the results
cout << "Fahrenheit value is:";
cout << fahrenheit;

return 0;

After you enter the code shown, choose Save As under the File menu to save

the file under the name Conversion.cpp.

I know that it may not seem all that exciting, but you've just created your first

C++ program!

Building your program

After you've saved your Conversion.cpp C++ source file to disk, it's time to

generate the executable machine instructions.

To build your Conversion.cpp program, select the Make option under the

Compile menu, or simply click F9. rhide opens a small window at the bottom

of the window to display the progress of the build process. If all goes well,

the message Creating Conversion.exe is followed by no errors.

Chapter 1 : Writing Your First C++ Program / /

GNU C++ installation errors

A number of common errors might happen

during the installation process to spoil your out-

of-the-box programming experience. The two

most common error messages don't become

obvious until you try to compile your program.

The message Bad command or file name

means that MS-DOS can't find gcc.exe, the GNU
C++ compiler. Either you didn't install GNU C++

properly or your path doesn't include

c:\djgpp\bin where gcc.exe resides. Try

reinstalling GNU C++ and make sure that the com-

mand SET PATH=c:\djgpp\bin;%PATH%
is in your autoexec.bat file. Reboot

Themessagegcc.exe: Conversion.cpp:
No such file or directory (ENOENT)

indicates that gcc doesn't know that you're using

long file names (as opposed to old MS-DOS 8.3

file names). To correct this problem, edit the file

c: \djgpp\djgpp.env.Setthe LFN property

toY.

One final warning, GNU C++ doesn't understand

file names containing spaces no matter what

the value of the long-file-name flag.

GNU C++ generates an error message if it finds any type of error in your C++

program. Coding errors are about as common as snow in Alaska. You'll

undoubtedly encounter numerous warnings and error messages, probably

even when entering the simple Conversion.cpp. To demonstrate the error

reporting process, let's change Line 14 from ci n >> eel si us ; to cin >>>

eel si us

;

This seems like an innocent enough offense— forgivable to you and me per-

haps, but not to C++, rhide generates the following messages during the build

process:

Compiling: Conversion.cpp
In function 'int maind'nt, char **)*:

Conversion. cpp(14) Error: parse error before '

There were some errors

This error indicates that GNU C++ can't understand what the ">>>"on Line 14

means.

The term parse means to convert the C++ commands into something that the

machine code generation part of the process can work with.

Edit the file and remove the extra '>' to fix the problem. Press F9 to build

Conversion.exe successfully.

18 Part I: Introducing C++ Programming

Why is C++ so picky?

C++ was able to determine without a doubt that

I had screwed up in the previous example.

However, if GNU C++ can figure out what I did

wrong, then why doesn't it just fix the problem

and go on?

The answer is simple but profound. GNU C++

thinks that I mistyped the '"»" symbol but it

may be mistaken. What could have been a

mistyped command may actually be some other,

completely unrelated error. Had the compiler

wouldsimply corrected the problem, GNU C-t

have masked the real problem.

Finding an error buried in a program that builds

without error is difficult and time consuming. It's

far better to let the compiler find the error if at all

possible. Generating a compiler error is a waste

of the computer's time — forcing me to find a

mistake that GNU C++ could have caught is a

waste of my time. Guess which one I vote for?

Executing \lour Program
It's now come time to execute your new creation . . . that is. to run your pro-

gram. You will run the CONVERT.EXE program file and provide it input to see

how well it works.

To execute the Conversion program, click the Run item of the Run menu or

press Ctrl+F9.

A window opens immediately, requesting a temperature in Celsius. Enter a

known temperature, such as 100 degrees. After you press Enter, the program

returns with the equivalent temperature of 212 degrees Fahrenheit. However,

because rhide closes the window as soon as the program terminates, you do
not have time to see the output before the window closes. Rhide opens an

alert box with the message that the program terminated with an error code of

zero. Despite the name "error code." a zero means that no error actually

occurred.

To see the output from the now-terminated program, click the User Screen

menu item in the Windows menu or press Alt+5. This window displays the

current MS-DOS window. In this window, you see the last 25 lines of output of

the program, including the calculated Fahrenheit temperature.

Congratulations! You just entered, built, and executed your first program by

using GNU C++.

Chapter 1 : Writing Your First C++ Program / y

GNU is quh-not Windows
Notice that GNU C++ is not intended for developing Windows programs. In

theory, you could write a Windows application by using GNU C++, but it

wouldn't be easy without the help provided by external library such as those

that come with Visual C++.

Windows programs have a very visually oriented, windows based output.

Convesion.exe is a 32-bit program that executes under Windows, but it's not a

"Windows" program in the visual sense.

If you don't know what 32-bit program means, don't worry about it. As I said

earlier, this book isn't about writing Windows programs. The C++ programs
you write in this book have a command line interface executing within an

"MS-DOS box."

Budding Windows programmers shouldn't despair— you didn't waste your

money. Learning C++ is a prerequisite to writing Windows programs.

GNU C++ help

GNU C++ provides a help system through the rhide user interface. Place your

cursor on a construct that you don't understand and press Fl. A window
pops up. Alternatively, choose Help< Index to display a list of help topics.

Click on a topic of interest to display help.

The help that GNU C++ provides isn't nearly as comprehensive as the help

you get from other tools, such as Microsoft Visual C++. For example, place

the cursor on the 'int' statement and press Fl. A window appears describing

the editor — not exactly what I was looking for. The help provided by GNU
C++ tends to center on library functions and compiler options. Fortunately,

after you master the C++ language itself, GNU C++ help is satisfactory for

most applications.

Reviewing the Annotated Program
Entering in someone else's program isn't very exciting. You can recognize a few

features of Conversion.cpp even at this early date. We can review the

Conversion program looking for the elements that are common to all programs.

20 Part I: Introducing C++ Programming

Examining the framework
(or all C++ programs

Every C++ program you write for this book uses the same basic framework:

// this is some comment that the computer ignores
//include <stdio.h>
//include <i ostream. h>

int mainUnt nNumberofArgs , char* pzArgs[])
{

...your code goes here...
return 0;

}

Without going into all the boring details, execution begins with the code con-

tained in the open and closed braces.

Clarifying source code u/ith comments
The first few lines in Conversion.cpp appear to be freeform text. Either this

code was meant for human eyes or GNU C++ is a lot smarter than I give it

credit for. These first six lines are known as comments. Comments are the

programmer's explanation of what he or she is doing or thinking when writ-

ing a particular code segment. The compiler ignores comments.

A C++ comment begins with a double slash (/ /) and ends with a newline. You
can put any character you want in a comment. A comment may be as long as

you want, but it's customary to keep comments to 80 characters so that com-
ments fit on your computer screen.

A newline was known as a carriage return back in the days of typewriters—
back when the act of entering characters into a machine was called typing and

not keyboarding. A newline is the character that terminates a command line.

C++ allows a second form of comment in which everything appearing after a

/* and before a */ is ignored; however, this form of comment isn't normally

used in C++ anymore.

It may seem odd to have a command in C++ (or any other programming lan-

guage) that's specifically ignored by the computer. However, all computer lan-

guages have some version of the comment. It's critical that the programmer
explains what was going through her mind when she wrote the code. A pro-

grammer's thoughts may not be obvious to the next guy who picks up her

program to use it or modify it. In fact, the programmer herself may forget

what her program meant if she looks at it months later.

Chapter 1: Writing Your First C++ Program 2 7

Basing programs on C++ statements

All C++ programs are based upon what are known as C++ statements. This

section reviews the statements that make up the program framework used by
the Convert program.

A statement is a single set of commands. All statements other than comments
end with a semicolon (There's a reason that comments don't end with a semi-

colon but it's obscure. To my mind, comments should end in a semicolon as

well, for consistency's sake if nothing else.)

Program execution begins with the first C++ statement after the open brace

and continues through the listing, one statement at a time.

As you look through the program, you can see that spaces, tabs, and new
lines appear throughout the program. In fact, I place a newline after every

statement in this program. These characters are collectively known as white

space because you can't see them on the monitor.

You may add white space anywhere you like in your program to enhance

readability except in the middle of a word.

Although C++ may ignore white space, it doesn't ignore case. The variable

fullspeed and the variable FullSpeed have nothing to do with each other.

While the command i nt may be understood completely, C++ has no idea

what INT means.

Writing declarations

The line i nt nCelsius;isa declaration statement. A declaration is a state-

ment that defines a variable. A variable is a "holding tank" for a value of some
type. A variable contains a value, such as a number or a character. (1 explain

what nCel si us is in Chapter 5.)

The term variable stems from algebra formulae of the following type:

x = 10

y = 3 * x

In the second expression, y is set equal to 3 times x, but what is x? The vari-

able x acts as a holding tank for a value. In this case, the value of x is 10, but

we could have just as well set the value of x to 20 or 30 or -1. The second for-

mula makes sense no matter what the value of x.

In algebra you're allowed to begin with a statement, such as x = 10. In C++,

the programmer must first define the variable x before she can use it.

22 Part I: Introducing C++ Programming

In C++, a variable has a type and a name. The variable defined on Line 1 1 is

called celsius. celsius is declared to hold an integer. (Why they couldn't

have just said integer instead of int, I'll never know. It's just one of those

things that you learn to live with.)

The name of a variable has no particular significance to C+. A variable must
begin with the letters A through Z or a through z. All subsequent characters

must be a letter, a digit through 9 or an underscore (_). Variable names can
be as long as you want to make them.

It's convention that variable names begin with a lowercase letter. Each new
word within a variable begins with a capital letter, as in my Van' a bl e.

Try to make variable names short but descriptive. Avoid names such as x

because x has no meaning. A variable name such as 1 engthOf LineSegment
is much more descriptive.

Generating output

The lines beginning with cout and ci n are known as input/output

statements, often contracted to I/O statements. (Like all engineers, program-

mers love contractions and acronyms.)

The first I/O statement says output the phrase Enter the temperature in Celsius

to cout (pronounced "see-out"), cout is the name of the standard C++ output

device. In this case, the standard C++ output device is your monitor.

The next line is exactly the opposite. This says extract a value from the C++

input device and store it into the integer variable eel si us. The C++ input

device is normally the keyboard. This is the C++ analogue to the algebra for-

mula x = 10 mentioned above. For the remainder of the program, the value of

celsius is whatever the user enters here.

Calculating Expressions

All but the most basic programs perform calculations of one type or another.

In C++ an expression is a statement that performs a calculation. Said another

way, an expression is a statement that has a value. An operator is a command
that generates a value.

Chapter 1 : Writing Your First C++ Program 23

For example, in the Conversion example program, the two lines marked as a

"calculation expression," the program declares a variable factor and assigns it

the value resulting from a calculation. This command calculates the differ-

ence of 212 and 32. In this example, the operator is the minus sign "-" while

the expression is "212-32."

Storing the results of expression

The spoken language can be very ambiguous. The term equals is one of those

ambiguities. The word equals can mean that two things have the same value

as in "5 cents equals a nickel." Equals can also imply assignment as in math
when you say that "y equals 3 times x."

To avoid ambiguity, C++ programmers call "=" the assignment operator. The
assignment operator says store the results of the expression on the right of

the "=" into the variable to the left. Programmers say that "factor is assigned

the value 212-32."

Examining the remainder of Conversion

The second expression in Conversion.cpp presents a slightly more compli-

cated expression than the first. This expression uses the same mathematical

symbols: "*" for multiplication, "/" f°r division and, "+" for addition. In this

case, however, the calculation is performed on variables and not simply

constants.

The value contained in the variable factor (calculated immediately prior, by

the way) is multiplied by the value contained in nCel si us (which was input

from the keyboard). The result is divided by 100 and summed with 32. The
result of the total expression is assigned to the integer variable fahrenheit.

The final two commands output the string "Fahrenheit value is:" to the display

followed by the value of f a h r e n h e i t

.

2 if
Part I: Introducing C++ Programming

Chapter 2

Declaring Variables Constantly

In This Chapter

: Declaring variables

* Declaring different types of variables

v Using floating point variables

> Declaring and using other variable types

rhe most fundamental of all concepts in C++ is the variable. A variable is

like a small box. You can store things in the box for later use, in particular

numbers. The concept of a variable is borrowed from mathematics. A state-

ment like:

x = 1

stores the value 1 into the variable x. From that point forward the mathemati-

cian can use the variable x in place of the constant 1 — until she changes the

value of x to something else.

Variables work the same way in C++. You can make the assignment:

X = 1;

From that point forward in the program until the value of x is changed any
references to x are the same as referencing 1. We say that the value of x is 1.

Unfortunately, C++ has a few more concerns about variables than the mathe-

matician does. This chapter deals with the care and feeding of variables in C++.

26 Part I: Introducing C++ Programming

Declaring Variables

C+ + saves numeric values in small storage boxes known as variables.

Mathematicians throw variables around with abandon. A mathematician

might write down something like the following:

(x + 2) = y / 2

x + 4 = y
solve for x and y

The reader realizes that the mathematician has introduced the variables x
and y without explicitly being told. C++ isn't that smart (I told you that com-
puters are stupid).

You have to announce each variable to C++ before you can use it. You have to

say:

i n t x ;

x = 10;

int y;

y = 5;

This declares that there is a variable x and that it is of type int. (Variable

types are discussed in the next section.) You can declare variables (almost)

anywhere you want to in your program as long as you declare the variable

before you use it.

Declaring Different Types of Variables

You probably think of a variable in mathematics as just an amorphous box
capable of holding whatever you might choose to store in it. You might easily

write something like the following:

x = 1:

x - 2.3
x = "this is a sentence"
x = Texas

C++ is not that flexible. (On the other hand, C++ can do things that you can't

do, such as add a million numbers or so in a second, so don't get too uppity.)

To C+ +
, there are different types of variables just as there are different types

of storage bins. Some storage bins are so small that they can only handle a

single number. It takes a larger bin to handle a sentence. Of course, no bin is

large enough to hold Texas (maybe Massachusetts, but not Texas).

Chapter 2: Declaring Variables Constantly 2 /

You have to tell C++ what size bin you need before you can use a C++ vari-

able. In addition, different types of variables have different properties. So far,

you have only seen the int type of variable.

int x;

x = 1;

The variable type int is the C++ equivalent of an integer. (An integer is a

number that has no fractional part. Integers are also known as counting num-
bers or whole numbers.)

Integers are great for most calculations. You can make it up through most (if

not all) of grade school with integers. It isn't until 6th grade or so that they

start mucking up the waters with fractions. The same is true in C++. Over 90

percent of all variables in C++ are declared to be of type int.

Unfortunately, i nt variables don't always work properly in a program. If you
worked through the temperature conversion program in Chapter 1, it isn't

obvious, but the program has a problem — it can only handle integer temper-

atures. That is, the conversion program can only handle whole numbers that

don't have a fractional part. This limitation of only using integers is not a

problem for daily use because it isn't likely that someone (except a meteorol-

ogist) would get all excited about entering a fractional temperature, such as

10.5°. A worse problem is that the conversion program lops off the fractional

portion of temperatures that it calculates without complaint. This can result

in Minnesota getting the credit (again) for having the record low temperature,

even though North Dakota beat them out by half a degree just because of an

error caused by ignoring the fractional part of a number.

Reviewing the {imitations

of integers in C++
The i nt variable type is the C++ version of an integer, i nt variables suffer

the same limitations as their counting integer equivalents in math do.

Integer round off

Consider the problem of calculating the average of three numbers. Given

three int variables — nVal uel, nVal ue2, and nVal ue3 — an equation for

calculating the average is

(nValuel + nValue2 + nValue3) / 3

Because all three values are integers, the sum is assumed an integer. Given

the values 1, 2,and 2, the sum is 5. Five divided by 3 is 1# ,or 1.666. Given that

all three variables nValuel,nValue2, and nVal ue3 are integers, the sum is

28 P art ,: Introducing C++ Programming

also assumed to be an integer. Unlike people (who are reasonable), comput-
ers (which are not always reasonable) force the quotient to be an integer by
forcing 1.666 into 1.

Lopping off the fractional part of a number is called truncation, or rounding

off. For many applications, truncation isn't a big deal. In fact, some might go
so far as to consider it reasonable (not mathematicians or bookies, of

course). However, integer truncation in computer programs can be much
worse. Consider the following equivalent formulation:

nValuel/3 + nVa1ue2/3 + nValue3/3

Plugging in the same 1, 2, and 2 values, you get a result of 0. To see how this

can occur, consider that]A truncates to 0, % truncates to 0, and H truncates to

0. The sum of 0, 0, and is zero. (Sort of like that old song: "Nothing from
nothing leaves nothing, ya gotta be something. .

.") You can see that integer

truncation can be completely unacceptable.

Limited range

A second problem with the i nt variable type is its limited range. A normal

i nt variable can store a maximum value of 2,147,483,647 and a minimum
value of -2,147,483,648 — more or less, plus 2 billion to minus 2 billion, for a

total range of 4 billion.

Solvinq the truncation problem

The limitations of i nt variables can be unacceptable in some applications.

Fortunately, C++ understands decimal numbers. A decimal number can have

a nonzero fractional part. (Mathematicians also call these real numbers.}

Decimal numbers avoid many of the limitations of i nt type integers. Notice

that a decimal number "can have" a nonzero fractional part. In C++ the

number 1.0 is just as much a decimal number as 1.5. The equivalent integer is

written simply as 1.

C++ refers to decimal numbers as floating-point numbers or simply floats.

The term floating point stems from the fact that the decimal point is allowed

to float back and forth as necessary to express the value. Floating-point vari-

ables are declared in the same way as i nt variables:

float fValuel:

From this point forward the variable fVal uel is declared to be a float. Once
declared, you cannot change the type of a variable. fVal uel is now a f 1 oat

and will be a f 1 oat for the remainder of its natural instructions. To see how

Chapter 2: Declaring Variables Constantly 2y

floating-point numbers fix the truncation problem inherent with integers, con-
vert all the i nt variables to f 1 oat:

^tco

+ 0.666...

1/3 + 2/3 + 2/3

is equivalent to

0.333... + 0.666.

which equals

1.666...

The programs IntAverage and Fl oatAverage are available on the enclosed
CD to demonstrate this averaging example.

Examining the (imitations of floating point

While floating point variables can solve many calculation problems such as

truncation, they have a number of limitations themselves. These problems
are sort of the reverse of those associated with integer variables, f 1 oat vari-

ables cannot be used as counting numbers, they are more difficult for the

computer, and they also suffer from round-off error (though not nearly to the

same degree as i nt variables).

Counting

You cannot use floating-point variables in applications where counting is

important. This includes C++ constructs, which requires counting ability. C+ +

can't verify which whole number value is meant by a given floating-point

number.

For example, it's clear that 1.0 is 1. But what about 0.9 or 1.1? Should these

also be considered as 1? C++ simply avoids the problem by insisting on using

i nt values when counting is involved.

Calculation speed

Historically, a computer processor can process integer arithmetic quicker

than floating-point arithmetic. Thus, while a processor can add 1,000 integer

numbers in a given amount of time, the same processor can perform only 200

floating-point calculations.

Calculation speed is becoming less of a problem as microprocessors increase

in ability. Most modern processors contain special calculation circuitry for

performing floating-point calculations almost as fast as integer calculations.

3v Part ' : Introducing C++ Programming

Loss of accuracy

Floating-point variables cannot solve all computational problems. Floating-

point variables have a limited precision of about 6 digits — an extra-economy
size, double-strength version of float can handle some 15 significant digits

with room left over for lunch.

To evaluate the problem, consider that % is expressed as 0.333 ... in a contin-

uing sequence. The concept of an infinite series makes sense in math, but not

to a computer. The computer has a finite accuracy. Average 1, 2, and 2 and
you get 1.666667.

C++ can correct for many forms of round off error. For example, in output.

C++ can determine that instead of 0.999999, that the user really meant 1. In

other cases, even C++ cannot correct for round-off error.

£tABE/?

Not so limited range

The float data type also has a limited range though the range of a f 1 oat is

much larger than that of an integer. The maximum value for an i nt is a skosh

more than 2 billion. The maximum value of afloat variable is roughly 10 to

the 38th power. That's 1 followed by 38 zeroes.

Only the first 6 digits have any meaning as the remaining 32 digits suffer from

floating-point round-off error. Thus, a floating-point variable can hold the

value 123,000,000 without round-off error but not 123,456,789.

Declaring Variable types
You have seen that variables must be declared and that they must be

assigned a type. C++ provides a number of different variable types. See Table

2-1 for a list of variables, their advantages and limitations.

Table 2-1 C++ Variables

Variable Example Purpose

i nt 1 A simple counting number, either

positive or negative.

float 1.0F A real number.

double 1.0 A larger version of f 1 oat that takes

more memory but has more accuracy

and greater range.

Chapter 2: Declaring Variables Constantly j /

Variable Example Purpose

char c A single char variable stores a single

alphabetic or digital character. Not

suitable for arithmetic.

string "this is a string" A string of characters forming a sen-

tence or phrase.

1 ong 10L A potentially larger version of i nt.

There is no difference between 1 ong

and i nt with GNU C++ and Microsoft

Visual C++.

The following statement declares a variable 1 Va ri abl e as type long and sets

it equal to the value 1 , while dVariableisa double set to the value 1 .0.

// declare a variable and set it to 1

long lVariable;
lVariable = 1;

// declare a variable of type double and set it to 1.0

double dVariable;
dVariable = 1.0;

You can declare a variable and initialize it in the same statement:

int nVariable = 1

;

//

//

declare a variable and
initialize it to 1

jfr\NG/

The only benefit to initializing a variable in the declaration is that it saves

typing; however, such declarations are common.

A cha r variable can hold a single character, whereas a string holds a string of

characters. Thus, a is the character a, whereas a is a string containing just

the letter a. (String is not actually a variable type but for most purposes you

can treat it as such. Chapter 9 describes strings in detail.)

The character a and the string a are not the same thing. If an application

requires a string, you cannot provide a character, even if the string contains

only the single character.

Types of constants

A constant is an explicit number or character (such as 1, 0.5, or 'c').

Constants have a type just like variables. In an expression such as n = 1

;

the constant 1 is an i nt. To make 1 a 1 ong integer, write the statement as

32 Part l: Introducing C++ Programming

n = 1 L ; . The analogy is as follows: 1 represents a single ball in the bed of a

pickup truck, while 1L is a single ball in a dump truck. The ball is the same,

but the capacity of its container is much larger.

Following the int to long comparison, 1.0 represents the value 1, but in a

floating-point container. Notice, however, that the default for floating point

constants is doubl e. Thus, 1.0 is a doubl e number and not a f 1 oat.

Special characters

You can store any printable character you want in achar or string vari-

able. You can also store a set of non-printable characters that is used as char-

acter constants. See Table 2-2 for a description of these important

nonprintable characters.

Table 2-2 Special Characters

Character Constant Action

\n new line

\t tab

\0 null

\\ backslash

You have already seen the newline character at the end of strings. This char-

acter breaks a string up onto separate lines. However, a newline may appear

anywhere within a string. For example,

"This i s line 1 \

n

This i s line 2"

appear* ; on the output as:

This
This

is

is

line 1

line 2

Similarly, the \t tab character moves output to the next tab position. This

position can vary, depending on the type of computer you are using to run

the program. Because the backslash character is used to signify special char-

acters, a character pair for the backslash itself is required. The character \\

represents the backslash.

Chapter 2: Declaring Variables Constantly y^

C++ collision with MS-DOS file names
MS-DOS uses the backslash character to sep-

arate folder names in the path to a file. Thus,

root\f ol derAXf i 1 e represents File within

FolderA which is a subdirectory of Root.

Unfortunately, MS-DOS's use of backslash con-

flicts with the use of backslash to indicate an

escape character in C++. The character \\ is a

backslash in C++. The MS-DOS path

root\fol derA\f i 1 e is represented in C++

string as rootWfolderAWfi le.

Mixed Mode Expressions

C++ allows you to mix variable types in a single expression. That is, you are

allowed to add an integer with a double. The following expression where
nVal uel is an int is allowed:

// in the foil owing ex pression the va 1 ue of nVal uel

// is converte d into a double before per forming the
// assignment
int nValuel = 1

nVa luel + 1.0;

An expression in which the two operands are not the same type is called a

mixed mode expression. Mixed mode expressions generate a value whose
type is equal to the more capable of the two operands. In this case, nVal uel

is converted to a doubl e before the calculation proceeds. Similarly, an

expression of one type may be assigned to a variable of a different type as in

the following statement:

// in the following assignment, the whole
// number part of fVariable is stored into nVariable
float fVariable = 1.0;
int nVariable;
nVariable = fVariable;

You can loose precision or range if the variable on the left-hand side of the

assignment is smaller. In the previous example, you must truncate the value

of f Van' abl e before storing in nVari abl e.

j£f Part I: Introducing C++ Programming

Naming conventions

You may have noticed that the name of each

variable begins with a special character that

seems to have nothing to do with the name.

These special characters are shown in the fol-

lowing table. You can immediately recognize

dVari able as a variable of type double by

using this convention.

These leading characters help the programmer

keep track of the variable type. Thus, you can

immediately identify the following as a mixed

mode assignment of a 1 ong variable to an int

variable.

nVariable = lVariable;

Although this book uses some special charac-

ters in variable names, these characters have

no significance to C++. You can use the letter

q to signify int, if you desire. I used this

first-letter-naming convention in this chapter to

simplify the discussion; however, many pro-

grammers use this naming scheme all the time.

Character Type

n int

1 long

f float

d double

c character

sz string

Converting a larger size value into a smaller type is called demotion, while

converting values in the opposite direction is known as promotion.

Programmers say that the value of int variable nVariablel is promoted to a

doubl e as in the following:

int nVariablel = 1;

double dVariable = nVariablel;

Mixed mode expressions are not a good idea. Avoid forcing C+ + to do your
conversions for you.

Chapter 3

Performing Mathematical

Operations

In This Chapter

Defining mathematical operators in C++

> Using the C++ mathematical operators

Identifying expressions

Increasing clarity with special mathematical operators

J\ mathematician uses more than just the variables described in Chapter 2.

¥ \ A mathematician must do something with those variables: She can add
them together, subtract them, multiply them, an almost endless list of other

operations.

C++ offers the same set of basic operations: C++ programs can multiply, add,

divide, and so forth. Programs have to be able to perform these operations in

order to get anything done. What good is an insurance program if it can't cal-

culate how much you're supposed to (over) pay?

C++ operations look like the arithmetic operations you would perform on a

piece of paper, except for the fact that variables must be declared before they

can be used (as detailed in Chapter 2):

int varl

;

int var2 = 1

;

varl = 2 * var2;

Two variables, varl and var2, are declared. var2 is initialized to 1. varl is

assigned the value resulting from the calculation 2 times the value of va r2.

This chapter describes the complete set of C++ mathematical operators.

3v Part ' : Introducing C++ Programming

Performing Simple Binary Arithmetic
A binary operator is one that has two arguments. If you can say v a rl op var2,

then op must be a binary operator. The most common binary operators are the

simple operations you performed in grade school. The binary operators are

flagged in Table 3-1.

Table 3-1 Mathematical Operators in Order of Precedence

Precedence Operator Meaning

1 + (unary) Effectively does

nothing

1 -(unary) Returns the nega-

tive of its argument

2 ++ (unary) Increment

2 -(unary) Decrement

3 * (binary) Multiplication

3 /(binary) Division

3 % (binary) Module

4 + (binary) Addition

4 -(binary) Subtraction

5 =, *=,%=,+= ,-= (special) Assignment types

Multiplication, division, modulus, addition, and subtraction are the operators

used to perform arithmetic. In practice, they work just like the familiar arith-

metic operations as well:

float var = 133 / 12;

Each of these binary operators has the conventional meaning that you stud-

ied in grammar school with one exception. You may not have encountered

modulus in your studies.

The modulus operator (%) is similar to the remainder after division. For exam-

ple, 4 goes into 15 three times with a remainder of 3. Expressed in C + + terms.

15 modulus 4 is 3.

int var = 15 % 4; // var is initialized to 3

Chapter 3: Performing Mathematical Operations y /

Because programmers are always trying to impress nonprogrammers with

the simplest things, C++ programmers define modulus as follows:

IntValue % IntDivisor

is equal to

IntValue - (IntValue / IntDivisor) * IntDivisor

Try this out on this example:

15 % 4 is equal to 15 - (15/4) * 4

15 - 3 * 4

15 - 12

3

Modulus is not defined for floating point variable because it depends on the

round-off error inherent in integers. (I discuss round-off errors in Chapter 2.)

Decomposing Expressions

The most common type of statement in C++ is the expression. An expression

is a C++ statement with a value. All expressions also have a type such as i nt,

doubl e, char, and so on. A statement involving any of the mathematical

operators is an expression since all these operators return a value. For exam-

ple, 1 + 2 is an expression whose value is 3 and type is int. (Remember that

constants without decimal points are i nts.)

Expressions can be complex or extremely simple. In fact, the statement 1 is

an expression because it has a value (1) and a type (i nt). There are five

expressions in the following statement:

The expressions are:

An unusual aspect of C++ is that an expression is a complete statement. Thus,

the following is a legal C++ statement:

1;

All expressions have a type. The type of the expression 1 is int.

38 Part I: Introducing C++ Programming

betermininq the Order of Operations
All operators perform some defined function. In addition, all operators have a

precedence. The precedence of the operator determines the order in which
the expressions are evaluated. This solves the following problem:

int var = 2 * 3 + 1;

If the addition is performed before the multiplication then the value of the

expression is 2 times 4 or 8. If the multiplication is performed first, the value

is 6 + 1 or 7.

The precedence of the operators determines who goes first. Table 3-1 shows
that multiplication has higher precedence than addition, so the result is 7.

(The concept of precedence is also present in arithmetic. C++ adheres to the

common arithmetic precedence.)

So what happens when we use two operators of the same precedence in the

same expression?

int var = 8 / 4 / 2;

Is this 8 divided by 2 or 4, or is it 2 divided by 2 or 1? When operators of the

same precedence appear in the same expression, they are evaluated from left

to right (this is also the same common rule applied in arithmetic). Thus, the

answer is 8 divided by 4, which is 2 divided by 2 (which is 1).

The expression

x / 100 + 32

divides x by 100 before adding 32. But what if the programmer wanted to

divide x by 100 plus 32? The programmer can bundle expressions together

using parentheses as follows:

x/(100 + 32)

This has the same effect as dividing x by 132.

The original expression

x / 100 + 32

is identical to the expression

(x/100) + 32

Chapter 3: Performing Mathematical Operations y y

Why did C++ bundle the expressions the way it did? In a given expression,

C++ performs multiplication and division before addition or subtraction.

Multiplication and division have higher precedence than addition and
subtraction.

In summary: Precedence refers to the order in which operators are evaluated.

An operator with higher precedence is executed first. You can override the

precedence of an operator by using parentheses.

Performing Unary Operations
Arithmetic binary operators, those operators that take two arguments, are

familiar. You've probably been doing binary operations since the first grade

in school. Unary operators are those operators that take a single argument:

for example, -a. Many of these operations are not so well known.

The unary mathematical operators are +, -, ++ and— . Thus:

int varl = 10;

int var2 = -varl;

The latter expression uses the unary operator — to calculate the value neg-

ative 10.

The minus operator changes the sign of its argument. Positive numbers be-

come negative and vice versa. The plus operator does not change the sign of

its argument. Effectively, the plus operator has no effect at all.

The ++ and the— operators might be new to you. These operators increment

and decrement their arguments by one. The increment and decrement opera-

tors are limited to non-floating point variables. The value of var after execut-

ing the following expression is 11.

int var = 10; // initalize var
var++; // now increment it

// value of var is now 11

The increment and decrement operators are peculiar in that both come in

two flavors: a prefix version and a postfix version. Consider the increment

operator (the decrement is exactly analogous).

Suppose that the variable n has the value 5. Both ++n and n++ increment n to

the value 6. The difference between the two is that the value of ++n in an ex-

pression is 6 while the value of n++ is 5. This is demonstrated in the following

example:

If (/ Part I: Introducing C++ Programming

// decl
int n 1

,

are
n2

tr

, r

iree

i3;

i i nte ger • variabl es

II

nl

n2

the val
= 5;
= ++nl;

we of both nl and n2 is 6

II

nl

n3

the
= 5;

= nl

val ue of nl is 6 but the val ue of n3 is 5

Thus, n2 is given the value of nl after nl has been incremented using the pre-

increment operator, while n3 gets the value of nl before it is incremented

using the post-increment operator.

Using Assignment Operators

The assignment operators are binary operators that change the value of their

left argument. The simple assignment operator, the =
, is an absolute neces-

sity in any programming language. This operator stores the value of the right-

hand argument into the left argument. However, the other assignment

operators appear to be someone's whim.

The creators of C++ noticed that assignments often follow the form:

variable = variable # constant

where # is some binary operator. Thus, to increment an integer operator by

two, the programmer might write:

nVariable = nVariable + 2;

This says "add two to the value of nVariable and store the results back into

nVariable."

It is common to see the same variable on both the right and left side of an

assignment.

Because the same variable appears on both sides of the = sign, they decided to

add the operator to the assignment operator. All of the binary operators have

an assignment version. Thus, the assignment above could have been written:

nVariable += 2:

Once again this says "add 2 to the value of nVariable."

Chapter 3: Performing Mathematical Operations [l /

Why define a separate increment operator?

The authors of C++ noted that programmers add

1 more than any other constant. As a conve-

nience factor, a special add 1 instruction was
added to the language.

In addition, most computer processors have an

increment instruction that is faster than the

addition instruction. When C++ was created

with microprocessors being what they were,

saving a few instructions was a big deal.

Other than assignment itself, these assignment operators are not used that

often. In certain cases, they can actually make the resulting program easier

to read.

If2 Part ' : Introducing C++ Programming

Chapter 4

Performing Logical Operations

In This Chapter

& Using sometimes illogical logical operators

^ Defining logical variables

is- Operating with bitwise logical operators logically a bit at a time

The most common statement in C++ is the expression. Most expressions

involve the arithmetic operators such as addition (+), subtraction (-) and
multiplication (*). This chapter describes these types of expressions.

There is a whole other class of operators known as the logical operators. By
comparison with the arithmetic operators, most people don't think about

operations.

It isn't that people don't deal with logical operations. People compute AND
and OR constantly. I won't eat cereal without cereal AND milk AND sugar

(lots of sugar). I'll have a bourbon OR scotch. People use logical operations

all the time, it's just that they don't write them down or think of them in that

light.

Logical operators fall into two types. The AND and OR operators are what I

will call simple logical operators. There is a second type of operator, the bit-

wise operator, which is unique to the computer world. This type of operator

looks at each of the bits that make up the computer's internal representation

of a number.

U/hy Mess With Logical Operations)
If I could get through this much of my life without worrying about logical

operations, then why start now? C++ programs have to make decisions. A
program that can't make decisions is of limited use. The Conversion program

(see Chapter 1) is about as complex you can get without some type of decision-

making. Do this if the input variable is negative, do this if it's positive. Making

decisions requires the use of logical operators.

if if Part I: Introducing C++ Programming

Using the Simple Logical Operators
C++ programs must be able to make decisions. The Convert program from

Chapter 1 that did nothing more than convert one temperature from

Fahrenheit to Celsius was particularly unexciting because it did not make any
decisions based on the input. C++ programs use the logical operators to

make these decisions.

The simple logical operators, shown in Table 4-1, evaluate to true or false.

Table 4-1 Simple Operators Representing Daily Logic

Operator Meaning

== Equality; true if the left-hand argument has the same value

as the right

!=l Inequality; opposite of equality

>,< Greater than, less than; true if the left-hand argument is

greater than/less than the right-hand argument

>=, <= Greater than or equal to, less than or equal to; true if

either > or == is true/< or == is true

&& AND; true if both the left-and right-hand arguments are

true

OR; true if either the left-or the right-hand arguments are

true

! NOT; true if its argument is false

SftNG/

The first six entries in Table 4-1 are comparison operators. The equality oper-

ator is used to compare two numbers. For example, the following is true if the

value of n is and is false otherwise.

n == 0;

Don't confuse the equality operator == with the assignment operator =. Not

only is this a common mistake, but it's a mistake that the C++ compiler gener-

ally cannot catch — that makes it more than twice as bad.

0; // programmer meant to say n

Chapter 4: Performing Logical Operations £fy

The greater than (>) and less than (<) operators are similarly common in

everyday life. The following expression logical comparison is true:

i n t n 1 = 1

;

int n2 = 2;

nl < n2

It's easy to forget which is greater than and which is less than. Just remember
that the operator is true if the arrow points to the smaller of the two.

You may think that nl is greater than or less than n2; however, this ignores

the possibility that nl and n2 are equal. The greater than or equal to opera-

tor (>=) and less than or equal to operator (<=) are similar to the less than

and greater than operators except that they include equality whereas the

other operators do not.

The & (AND) and
| |

(OR) are equally common. These operators are typically

combined with the other logic operators:

// true if n2 is greater than nl but smaller than nV3
(nl < n2)& & (n2 < n3);

Just as an aside, you can define the greater than or equal to operator as

follows:

nl <= n2 is the same as (nl < n2) || (nl == n2)

Be careful performing logical operations

on floating point Variables

Real numbers are those numbers that can have a fractional part. Because of

this, real numbers cannot be counting numbers. That is, you can say the first

(1st), second (2nd), third, fourth, etc. because the relationship of 1, 2, and 3

are known exactly. It does not make sense to speak of the 4.5th number in a

sequence. (This brings to mind the number between the fourth and fifth, but

it has no real meaning).

Similarly the C++ type float, which is the C++ representation, is not a counting

number. Even worse, unlike a real number, a floating number does not have

an infinite number of digits beyond the decimal point. Because of this, you
must be careful when using the comparison operators on floating-point num-
bers. Consider the following example:

float fl = 10.0;
float f2 - f1 / 3;

fl == (f2 * 3.0); // dre these two equal?

if %) Part I: Introducing C++ Programming

The comparison in the preceding example is not necessarily true. A floating-

point variable cannot hold an unlimited number of significant digits. Thus, f 2

is not equal to 3 and a third, but 3.3333. Unlike the mathematical concept, the

number of threes after the decimal point is finite. After multiplying 3.3333 by

3, you are more likely to get 9.9999 than 10. Such small differences may be
unnoticeable to a person but not to the computer. Equality means exactly

that, exact equality.

Modern processors are very sophisticated in performing such calculations.

The processor may, in fact, accommodate the round-off error, but from C++,

you can't tell exactly what the processor will do.

Problems can arise even in a straightforward calculation, such as the following:

0;

float fl = 10.0;
float f2 = 100. /10
fl == f2; // are these two equal?

Theoretically, f 1 and f 2 should be equal (refer to Chapter 3 if you don't

remember the modulus operator). There doesn't appear to be any problem
with round off; however, you can't be sure — you have no idea how the com-
puter represents floating numbers internally. To flatly claim that 100 percent.

10 has no round-off error makes assumptions about the CPU internals.

The safer comparison is as follows:

float fl - 10.0;
float f2 = fl / 3;

float f3 = f2 * 3.0;
(fl - f3) < 0.0001 && (f3 - fl) < 0.0001;

This comparison is true if f 1 and f 3 are within some delta of each other,

which should be true even accounting for some small round-off error.

Short circuits and C++
The& & and

| |

perform what is called short circuit evaluation. Consider the

following:

conditionl && condition2

If cond i t i on 1 is not true, then the result is not true no matter what the value

of condi tion2 (for example., condi tion2 could be true or false without

changing the result). Similarly in the following:

conditionl || condition2

Chapter 4: Performing Logical Operations [1 /

»A\NG/

If condi ti onl is true, then the result is true no matter what the value of

condi ti on2.

To save time, C++ evaluates condi ti onl first. C++ does not evaluate

condi ti on2 if condi ti onl is false in the case of & & or condi ti onl is true

in the case of
|

|

.

Logical Variable types

If > is an operator, then a comparison such as a > 10 must be an expression.

Clearly, the result of such an expression must be either TRUE or FALSE.

You may have noticed already that there was no Boolean variable type men-
tioned in our discussion of variable types back in Chapter 2. That is, there is

no variable type that can have the value TRUE or FALSE. Then what is the

type of an expression such as a > 10?

C++ uses the type i nt to store Boolean values. The value is taken to be

FALSE. Any value other than zero is TRUE. An expression such as a > 10

evaluates to (FALSE) or 1 (TRUE).

Microsoft Visual Basic also uses an integer to hold TRUE and FALSE values;

however, in Visual Basic, a comparison operation returns either a (FALSE)

ora-1 (TRUE).

The new ANSI C++ standard does define a type bool to handle Boolean vari-

ables; however, it is not supported in the GNU C++, which comes on the

enclosed CD-ROM.

Expressing Binary Numbers

^%-

C++ variables are stored internally as so-called binary numbers. Binary num-
bers are stored as a sequence of 1 and values known as bits. Most of the

time, you don't really need to deal with numbers at the bit level; however,

there are occassions when doing so is convenient. C++ provides a set of oper-

ators for this purpose.

Because it is not often that you have to deal with C + + variables at the bit

level, the remainder of this chapter should be considered a Techie section.

The so-called bitwise logical operators operate on their arguments at the bit

level. To understand how they work, let's first examine how computers store

variables.

Z}q Part I: Introducing C++ Programming

The decimal number system

The numbers that we are familiar with are known as decimal numbers
because they are based on the number 10. In general, the programmer
expresses C++ variables as decimal numbers. Thus, you would say that the

value of var is 123, for example.

A number such as 123 refers to 1 * 100 + 2 * 10 + 3 * 1. Each of these

base numbers — 100, 10, and 1 — are powers of 10.

123 = 1 * 100 + 2 * 10 + 3 * 1

Expressed in a slightly different but equivalent way:

123 = 1 * 10
2
+ 2 * 10, + 3 * 10

Remember that any number to the zero power is 1.

Other number systems

The use of a base number of 10 for our counting system stems in all probabil-

ity from the fact that humans have 10 fingers, the original counting tools. The
alternative would have been base 20.

If our numbering scheme had been invented by dogs, it might well be based

on the numeral eight (one digit of each paw is out of sight on the back part of

the leg). Such an octal system would have worked just as well:

123
10

= 1 * 8
Z + 7 * 8

1 + 3 * 8A° = 173 8

The small 10 and 8 here refer to the numbering system, 10 for decimal (base

10) and 8 for octal (base 8). A counting system may use any positive base.

The binary number system

Computers have essentially two fingers. (Maybe that's why computers are so

stupid: without an opposable thumb, they can't grasp anything. And then

again, maybe not.) Computers prefer counting using base 2. The number
123

10 would be expressed as:

Chapter 4: Performing Logical Operations [ly

It is always convention to express binary numbers by using 4, 8, 32, or 32

binary digits even if the leading digits are zero. This is also because of the

way computers are built internally.

Because the term digit refers to a multiple of ten, a binary digit is called a bit.

The terms stem from binary digit. 8 bits make up a byte. A word is usually

either two or four bytes.

With such a small base, it is necessary to use a large number of bits to

express numbers. It is inconvenient to use an expression such as 01 11 101

1

2

to express such a mundane value as 123
10

. Programmers prefer to express

numbers by units of bytes, or four bits.

A single four-bit digit is essentially base 16 beause four bits can express up

any value from to 15. Base 16 is known as the hexadecimal counting system.

Hexadecimal is often contracted to simply, hex.

Hexadecimal uses the same digits for the numbers through 9. For the digits

between 9 and 16, hexadecimal uses the first six letters of the alphabet: A for

10, B for 11, etc. Thus, 123
10
becomes 7B

16
.

123 = 7 * 16
1 + B (i .e. 11) * 16

c = 7B 16

Because programmers prefer to express numbers in 4, 8, 32, or 64 bits, they

similarly prefer to express hexadecimal numbers in 1, 2, 4, or 8 hexadecimal

digits even when the leading digits are 0.

Finally, it is inconvenient to express a hexadecimal number such as 7B
16
using

a subscript because terminals don't support subscripts. Even on a word
processor such as the one I am using now, it is inconvenient to change fonts to

and from subscript mode just to type two digits. Therefore, programmers use

the convention of beginning a hexadecimal number with a Ox (the reason for

such a strange conviction goes back to the early days of C). Thus, 7B becomes

0x7B. Using this convention, 0x7B is equal to 123 while 0x123 is equal to 291.)

Once I learned this, those computer nerds had a hard time losing me at dinner

parties (until they start bring out that .net nonsense, anyway).

All of the mathematical operators can be performed on hexadecimal numbers

in the same way that they are applied to decimal numbers. The reason that

we can not perform a multiplication such as OxC * OxE in our head has more

to do with the multiplication tables we learned in school than on any limita-

tion in the number system.

y(/ Part I: Introducing C++ Programming

Roman numeral expressions

It is interesting to note that some numbering

systems do hinder computations. The Roman
numeral system greatly hindered the develop-

ment of math.

Adding two Roman numerals isn't too difficult:

XIX + XXVI = XLV

Think this one out:

a) IX + VI: The I after the V cancels out the I

before the X so the result is V carry the X.

b) X + XX: Plus the carry X is XXXX, which is

expressed as XL.

Subtraction is only slightly more difficult

However, multiplying to Roman numerals

requires a Bachelors degree in Mathematics.

(You end up with rules like X promotes the digits

on the right by 1 letter so that X IV becomes XL)

Division required a PhD and higher operations

such as integration would have been completely

impossible.

Performing Bitwise Logical Operations
All C++ numbers can be expressed in binary form. Binary numbers use only

the digits 1 and to represent a value. The following Table 4-2 defines the set

of operations that work on numbers one bit at a time; hence the term bitwise

operators.

Table 4-2 Bitwise Operators

Operator Function

~ NOT: Toggle each bit from 1 to and from to 1

& AND: Each bit of the left-hand argument with

that on the right

1 OR

A XOR

Bitwise operations can potentially store a lot of information in a small amount
of memory. There are a lot of traits in the world that have only two (or. at most,

four) possibilities — that are either this way or that way. You are either married

or you're not (you might be divorced but you are still not currently married).

You are either male or female (at least that's what my driver's license says). In

C++, you can store each of these traits in a single bit — in this way. you can

pack 32 separate properties into a single int, a 32-to-l savings.

In addition, bit operations can be extremely fast. There is no performance

penalty paid for that 32-to-l savings.

Chapter 4: Performing Logical Operations y /

The single bit operators

The bitwise operators (AND (&), OR (I) and NOT (-)) perform logic opera-

tions on single bits. If you consider to be false and 1 to be true (it doesn't

have to be this way, but that is the common convention), then you can say

things like the following for the NOT operator:

NOT 1 (true) is (false)
NOT (false) is 1 (true)

Similarly, the AND operator is defined as following:

1 (true) AND 1 (true) is 1 (true)
1 (true) AND (false) is (false)

Similarly for the OR operator:

1 (true) OR (false) is 1 (true)
(false) OR (false) is (false)

The definition of the truth table for the AND and OR operators appear in the

following table.

One other logical operation that is not so commonly used in day-to-day living

is the or else operator commonly contracted to XOR. XOR is true if either

argument is true but not if both are true. The truth table for XOR is shown in

Table 4-3.

Table 4-3 Truth Table for the XOR Operator

XOR /

1 i

1

Armed with these single bit operators, we can take on the C++ bitwise logical

operations.

Usinq the bitwise operators

The bitwise operators operate on each bit separately.

The bitwise operators are used much like any other binary arithmetic opera-

tor. The NOT operator is the easiest to understand. To NOT a number is to

NOT each bit that makes up that number:

y 2 Part I: Introducing C++ Programming

-0110, (0x6)
100f

2
(0x9)

Thus we say that -0x6 equals 0x9.

The following calculation demonstrates the & operator:

0110
2

0011,

Beginning with the most significant bit, AND is 0. In the next bit, 1 AND
is 0. In bit 3, 1 AND 1 is 1. In the least significant bit, AND 1 is 0.

The same calculation can be performed in hexadecimal by first converting

the number in binary, performing the operation and then converting the

result back.

In shorthand, we say that 0x6 & 0x3 equals 0x2.

(Try this test: was is 0x6 I 0x3? Get this and you'll be in Seventh Heaven. Fail

and you're taking the first in the Seven Steps to Hell. I was able to get this in

just a little before eight minutes.)

A simple test

The following program serves as an example of the bitwise operators in

action. The program initializes two variables and outputs the result of

ANDing, ORing, and XORing them.

// 1SitTest - initialize two variables and output the
// results of appllying the ~•,&

,
, |

and A

// operations
#include <stdio.h>
#include <iostream.h>

int
i

main(int nArg, char* pszArgs[])
\

// set output format to hexadecima 1

cout .setf (ios : :hex. ios: : :hex) ;

// ini ti al i ze two ar guments

Chapter 4: Performing Logical Operations jj

int nArgl;
nArgl = 0x1234;

int nArg2;
nArg2 = OxOOff;

// now perform each operatior) ir turn
// first the unary NOT operai.or
cout << "Argl = Ox" << nArgl << "\n";
cout << "Arg2 = Ox" << nArg2 << "\n";
cout << "-nArgl = Ox" << -nArgl << "\n";
cout << "~nArg2 - Ox" << ~nArg2 << "\n";

// now the binary operators
cout << "nArgl & nArg2 = Ox"

<< (nArgl & nArg2)
<< "\n";

cout << "nArgl nArg2 = Ox"
<< (nArgl nArg2)
<< "\n";

cout << "nArgl A nArg2 = Ox"
<< (nArgl A nArg2)
<< "\n";

return 0;

}

The first of statement in our program (the one right after the main keyword)
that appears as cout.setfMos: :hex); sets the output format from the

default decimal to hexadecimal (you'll have to trust me that it works for

now).

The remainder of the program is straightforward. The program reads nArgl

and nArg2 from the keyboard and then outputs all combinations of bitwise

calculations.

H\NG/

Executing the program on the values 0x1234 and xOOff using the Visual

C++environment results in the following output:

The GNU C++ compiler does not handle hexadecimal input or output. The
preceding results are only achievable with Visual C++.

j£f Part I: Introducing C++ Programming

*J*BE*

Hexadecimal numbers appear with a preceding Ox.

Why define such a crazy operator}

The purpose for most operators is clear. No one would quarrel with the need

for the plus or minus operators. The use for the < or > operators is clear. It

may not be so clear to the beginner when and why one would use the bitwise

operators.

The AND operator is often used to mask out information. For example, sup-

pose that we wanted to extract the least significant hex digit from a four-digit

number:

0x1234

OxOOOF

0001 0010 0011 0100

0000 0000 0000 1111
0000 0000 0000 0100 -> 0x0004

Another use is that of setting and extracting individual bits.

Suppose that you were using a single byte to store information about a

person in a database that you were building. The most significant bit might

be set to 1 if the person is male, the next set to 1 if a programmer, the next set

to 1 if the person is handsome, and the least significant bit set to 1 if the

person has a dog. See the following Table 4-4.

Table 4-4 Sample Bits and Settings

Bit Meaning

1->male

1 1->programmer

2 l->Vulcan

3 1->owns a dog

This byte is encoded for each database and stored along with name. Social

Security number, and any number of other illegal information.

Chapter 4: Performing Logical Operations Jy

A human (that is, non-Vulcan), male programmer who owns a dog would be

coded as 1 101
2

. If you want to test all records in the records, searching for

human programmers who don't own dogs irrespective of gender and whether
or not they owned a dog, we would use the following comparison:

(databaseVa' 1 ue & 0x0110) =- 0x0100
A A A -> =

1 =
not
is

Vulcan
a programmer

• -> no interest
A -> interested

In this case, the 0110 value is known as a mask because it masks away bit

properties of no interest.

56 Part I: Introducing C++ Programming

Chapter 5

Controlling Program Flow

In This Chapter

Controlling the flow through the program

Executing a group of statements repetitively

Avoiding infinite loops

The simple programs that appear in Chapters 1 through 4 process a fixed

number of inputs, output the result of that calculation, and quit.

However, these programs lack any form of flow control. They can not make
tests of any sort. Computer programs are all about making decisions. If the

user presses a key, the computer responds to the command.

For example, if the user presses Ctrl + C, the computer copies the currently

selected area to the Clipboard. If the user moves the mouse, the pointer

moves on the screen. If the user clicks the right mouse button with the

Windows key depressed, the computer crashes. The list goes on and on.

Programs that don't make decisions are necessarily pretty boring.

Flow control commands allow the program to decide what action to take

based on the results of the C++ logical operations performed (see Chapter 4).

There are basically three types of flow control statements: the branch, the

loop, and the switch.

Controttinq Program Ftou/ urith the

Branch Commands
The simplest form of flow control is the branch statement. This instruction

allows the program to decide which of two paths to take through C++ instruc-

tions based on the results on a logical expression (see Chapter 4 for a

description of logical expressions).

jq Part I: Introducing C++ Programming

In C++, the branch statement is implemented using the i f statement:

if (m > n)

1

// Path 1

// ...instructions to be executed if

// m is greater than n

i

el se

// Path 2

// ...instructions to be executed
}

if not

First, the logical expression m > n is evaluated. If the result of the expression

is true, then control passes down the path marked Path 1 in the previous

snippet. If the expression is not true, control passes to Path 2. The else

clause is optional. If it is not present, then C++ acts as if it is present but

empty.

Actually, the braces are optional if there is only one statement to execute as

part of the i f . However, it is very easy to make a mistake that the C++ com-
piler can't catch without the braces as a guide marker. It is always much safer

to include the braces. If your friends try to entice you into not using braces,

just say no.

The following program demonstrates the i f statement:

// BranchDemo - input two numbers. Go down one path of the
// program if the first argument is greater than
// the first or the other path if not
^include <stdio.h>
//include <iostream.h>

int main(int arg. char* pszArgsd)
(

// input the first argument...
int argl;
cout << "Enter argl :

"

;

cin >> argl;

// . . .and the second
int arg2;
cout << "Enter arg2: "

;

cin >> arg2;

// now decide what to do:
if (argl > arg2)

cout << "argument 1 is greater than argument 2\n";3 3 3

Chapter 5: Controlling Program Flow jy

el se

cout << "argument 1 is not greater than argument
2\n":

return 0;

}

Here the program reads two integers from the keyboard and compares them.

If the expression "argl is greater than arg2" is true, then control flows to the

output statement cout << "argument 1 is greater than argument 2".

If argl is not greater than arg2, control flows to the else clause where the

statement cout << "argument 1 is not greater than argument 2\n"

is executed.

Executing Loops in a Program
Branch statements allow you to control the flow of a program's execution

from one path of a program or another. This is a big improvement but still not

enough to write full strength programs.

Consider the problem of updating the computer display. On the typical PC dis-

play one thousand pixels are drawn to update the entire display. A program
outfit without the ability to execute the same code repetitively would need to

include the same set of instructions over and over one thousand times.

What we really need is a way for the computer to execute the same (short)

sequence of instructions one thousand times. Executing the same command
multiple times requires looping statements.

Looping While a condition is true

The simplest form of looping statement is the whi 1 e loop. The whi 1 e

appears as follows:

whi 1 e(condi ti on)

(

// ...repeatedly executed as long as condition is true

}

The condition is tested. This condition could be if var > 10 or if varl
== va r2 or anything else you might think of. If it is true, then the statements

within the braces are executed. Upon encountering the closed brace, control

60 Part I: Introducing C++ Programming

returns to the beginning and the process starts over. The effect is that the

C++ code within the braces is executed repeatedly as long as the condition is

true. (Kind of like how I get to walk around the yard with my dog until she . . .

well, until we're done.)

If the condition were true the first time, then what would make it be false in

the future? Consider the following example program:

// WhileDemo - input a loop count. Loop while
// outputting astring arg number of times.
^include <stdio.h>
^include <iostream.h>

int maind'nt arg, char* pszArgs[])
(

// input the loop count
int loopCount;
cout << "Enter loopCount: "

;

cin >> loopCount;

// now loop that many times
while (loopCount > 0)

{

loopCount = loopCount - 1;

cout << "Only " << loopCount << " loops to go\n";

}

return 0;

1

WhileDemo begins by retrieving a loop count from the user, which it stores in

the variable 1 oopCount. The program then executes awhile loop. The
whi 1 e first tests 1 oopCount. If 1 oopCount is greater than zero the program
enters the body of the loop (the body is the code between the braces) where
it decrements 1 oopCount by 1 and outputs the result to the display. The pro-

gram then returns to the top of the loop to test whether 1 oopCount is still

positive.

When executed, the program WhileDemo outputs the results shown below.

Here you can see that I entered a loop count of 5. The result is that the pro-

gram loops 5 times, each time outputting a count down.

Only 4 loops to go
Only 3 loops to go
Only 2 loops to go
Only 1 loops to go
Only loops to go

If the user enters a negative loop count, the program skips the loop entirely.

Because the condition is never true, control never enters the loop. In addi-

tion, if the user enters a very large number, the program loops for a long time

before completing.

Chapter 5: Controlling Program Flow (f /

jJ^NG'

A separate, less frequently used version of the while loop known as the

do. . . whi 1 e appears identical except that the condition isn't tested until the

bottom of the loop:

do

// . . .the inside of the
} while (condition);

1 oop

Because the condition isn't tested until the end, the body of the do

.

is always executed at least once.

whi le

The condition is only checked at the beginning of the while loop or at the

end of the do . . . whi 1 e loop. Even if the condition ceases to be true some
time during the execution of the loop, control does not exit the loop until the

condition is retested.

Usinq the autoincrement/autodecrement

feature

Programmers very often use the autoincrement ++ or the autodecrement - -

operators with loops that count something. Notice from the following snippet

extracted from the Whi 1 eDemo example, that the program decrements the

loop count by using the assignment and subtraction statements

// now loop that many times
while (loopCount > 0)

}

loopCount = loopCount - 1;

cout << "Only " << loopCount << " loops to go\n";

A more compact version would have been to use autodecrement feature:

while (loopCount > 0)

}

loopCount-- ;

cout << "Only " << loopCount << " loops to go\n";

The logic in this version is the same as the original. The only difference is the

way that loopCount is decremented.

Because the autodecrement both decrements its argument and returns its

value, the decrement operation can actually be combined with the whi 1 e

loop. In particular, the following version is the smallest loop yet.

62 Part I: Introducing C++ Programming

sJ*86*

while UoopCount-- > 0)

{

cout << "Only " << loopCount << " loops to go\n";
1

Believe it or not, the 1 oopcount- > is the version that most C++ pro-

grammers would use. It's not that C++ programmers like being cute —
although they do. You will find the more compact version using the autoin-

crement or autodecrement feature embedded in the logical comparison
easier to read as you gain experience.

Both 1 oopCount-- and --1 oopCount expressions decrement 1 oopCount;

however, the former returns the value of 1 oopCount before being decre-

mented and the latter after.

How often should the autodecrement version of Whi 1 eDemo execute when the

user enters a loop count of 1? If you use the predecrement version, the value

of - -
1 oopCount is and the body of the loop is never entered. With the post-

decrement version, the value of 1 oopCount- - is 1 and control enters the

loop.

You might be fooled into thinking that the version of the program with the

autodecrement command executes faster since it contains fewer statements.

This is not the case, however. Modern compilers are pretty good at getting

the number of machine language instructions down to a minimum no matter

which of the above decrement instructions you use.

Usinq the for loop

A second form of loop is the for loop. The for loop is preferred over the

more basic while loop because it is generally easier to read — there is really

no other advantage.

The for loop has the following format:

for (initialization; conditional; increment)
(

// . . .body of the Iood

Execution of the for loop begins with the initialization clause.

The initialization clause got its name because this is normally where counting

variables are initialized. The initialization clause is only executed once when
the for loop is first encountered.

Chapter 5: Controlling Program Flow \)^

Execution continues with the conditional clause. In similar fashion to the

while loop, the for loop continues to execute as long as the conditional

clause is true.

After completing execution of the code in the body of the loop, control

passes to the increment clause before returning to check the conditional,

thereby repeating the process. The increment clause normally houses the

autoincrement or autodecrement statements used to update the counting

variables.

The whi 1 e equivalent to the for loop is:

initial ization;
while(conditional)

{

{

// . . .body of the loop

}

increment

;

}

All three clauses are optional. If the initialization or increment clauses are

missing, C++ ignores them. If the conditional clause is missing, C++ performs

the for loop forever (or until something else passes control outside of the

loop).

The for loop is better understood by example. The following ForDemo pro-

gram is nothing more than the Whi 1 eDemo converted to use the for loop

construct.

// ForDemo - input a loop count. Loop while
// outputting astring arg number of times.
^include <stdio.h>
^include <iostream.h>

int main(int arg, char* pszArgs[])

I

// input the loop count
int loopCount;
cout << "Enter loopCount: ";

cin >> loopCount;

// count up to the loop count limit
for (; loopCount > 0;

)

{

loopCount = loopCount - 1;

cout << "Only " << loopCount << " loops to go\n";

}

return 0;

Ql) Part I: Introducing C++ Programming

This modified version of Whi 1 eDemo loops the same as it did before.

However, rather than modify the value of 1 oopCount, this ForDemo version

uses a counter variable.

Control begins by declaring a variable and initializing it to the value con-

tained in 1 oopCount. It then checks the variable i to make sure that it is posi-

tive. If so, the program executes the output statement decrements i and
starts over.

The for loop is also convenient when you need to count from up to the loop

count value rather than from the loop count down to 0. This is implemented

by a simple change to the for loop:

// ForDemo - input a loop count. Loop while
// outputting astring arg number of times.
^include <stdio.h>
#include <iostream.h>

int mainUnt arg, char* pszArgs[])
{

// input the loop count
int loopCount;
cout << "Enter loopCount: ";

cin >> loopCount;

// count up to the loop count limit
for (int i = 1; i <= loopCount; i++)

(

cout << "We've finished " << i << " loops\n";
1

return 0;

}

Rather than begin with the loop count, this version of ForDemo starts with 1

and loops up to the value entered by the user. The use of the variable i for

for loop increments is historical (stemming from the early days of the FOR-

TRAN programming language).

When declared within the initialization portion of the for loop, the index

variable is only known within the for loop itself. Nerdy C++ programmers say

that the scope of the variable is the for loop. In the example above, the vari-

able i is not accessible from the return statement since that statement is not

within the loop. Not all compilers stick to this rule, however. You will need to

test your own C++ compiler to see which way it works.

You might be tempted to ask, "If there is a whi 1 e equivalent to the for com-
mand, while mess with the for loop?" (Go ahead . . . ask it.) By forcing the ini-

tialization, test, and increment features of any loop into fixed locations and
format, the for loop is considerably easier to understand.

Chapter 5: Controlling Program Flow

AtJoidinq the dreaded infinite loop

An infinite loop is an execution path that continues forever. An infinite loop
occurs any time the condition, which would otherwise terminate the loop,

cannot occur— usually due to some coding error.

Consider the following minor variation of the earlier loop:

while (loopCount > 0)

{

cout << "Only " << loopCount << " loops to go\n";

The programmer forgot to decrement the variable loopCountasin the loop

example below. The result would be a loop counter that never changed. The
test condition would either be always false or always true. The program exe-

cutes in a never ending or infinite loop.

I realize that nothing's infinite. Eventually the power will fail, the computer
will break, Microsoft will go bankrupt, and dogs will sleep with cats. . . . Either

the loop will stop executing or you won't care anymore.

You can create an infinite loop in many more ways than shown here, most of

which are much more difficult to spot than this one.

Applying special loop controls

C++ defines two special flow control commands known as break and
conti nue. It can happen that the condition for terminating the loop occurs nei-

ther at the beginning nor at the end of the loop but in the middle. Consider the

following program that accumulated number of values entered by the user. The
loop terminates when the user enters a negative number.

The challenge with this problem is that the program can't exit the loop until the

user has entered a value, but must exit before the value is added to the sum.

For these cases, C++ defines the break command. When encountered, the

break causes control to exit the current loop immediately. Control passes

from the break statement to the statement immediately following the closed

brace.

The format of the break commands is as follows:

whi le(condition) // break works equally well in for loop

{

if (some other condition)

66 Part I: Introducing C++ Programming

{

break;
>

// exit the loop

t

} // control passes here when the
// program encounters the break

Armed with this new break command, my solution to the accumulator prob-

lem appears as the program BreakDemo.

// BreakDemo - input a series of numbers.
// Continue to accumulate the sum
// of these numbers until the user
// enters a 0.

#include <stdio.h>
^include <iostream.h>

int mainCint arg, char* pszArgsH)
{

// input the loop count
int accumulator = 0;

cout << "This program sums values entered"
<< "by the user\n";

cout << "Terminate the loop by entering "

<< "a negative number\n";

// loop "forever"
for(;;)

{

// fetch another number
int value = 0;

cout << "Enter next number: ";

cin >> value;

// if it's negative. .

.

if (value < 0)

{

// . . .then exit
break;

// ...otherwise add the number to the
// accumulator
accumulator = accumulator + value;

// now that we've exited the loop
// output the accumulated result
cout << "\nThe total is

"

<< accumulator
<< "\n";

return 0;

Chapter 5: Controlling Program Flow \) /

After explaining the rules to the user (entering a negative number to termi-

nate, etc.), the program enters what looks like an infinite for loop. Once
within the loop, BreakDemo retrieves a number from the keyboard. Only after

the program has read a number can it test to see if the number read matches
the exit criteria. If the input number is negative, control passes to the break
causing the program to exit the loop. If the input number is not negative con-

trol skips over the break command to the expression that sums the new
value into the accumulator. Once the program exits the loop, it outputs the

accumulated value and exits.

When performing an operation on a variable repeatedly in a loop, make sure

that the variable is initialized properly before entering the loop. In this case,

the program zeros accumul ator before entering the loop where val ue is

added to it.

The continue command is used less frequently. When the program encoun-

ters the conti nue command, it immediately passes back to the top of the

loop. The remainder of the statements in the loop are ignored for the current

iteration. The following example snippet ignores negative numbers that the

user might input:

while(l)
t

// input a value
cout . << "Input a value:";
cin >> inputVal ;

// i f the value is negative...
if (inputVal < 0)

i

// ...output an error message...
cout << "Negative numbers are not allowe\n";

// ...and go back to the top of the loop

}

conti nue;

// .

)

..process input like normal

Nesting Control Commands
Return to our PC screen repaint problem. Surely a loop structure of some

type is used to write each pixel from left to right on a single line (do Hebrew

displays scan from right to left?) What about repeatedly repainting each scan

line from top to bottom? (Do PC screens in Australia scan from the bottom to

the top?) For this, you need to include the left-to-right scan loop within the

top-to-bottom scan line.

68 Part I: Introducing C++ Programming

A loop command within another loop is known as a nested loop. As an exam-

ple, you can modify the BreakDemo program into a program that accumu-
lates any number of sequences. In this NestedDemo program, the inner loop

sums numbers entered from the keyboard until the user enters a negative

number. The outer loop continues accumulating sequences until the sum is 0.

// NestedDemo - input a series of numbers.
// Continue to accumulate the sum
// of these numbers until the user
// enters a 0. Repeat the process
// until the sum is 0.

^include <stdio.h>
^include <iostream.h>

int main(int arg, char* pszArgs[])
{

// the outer loop
cout << "This program sums multiple series\n"

<< "of numbers. Terminate each sequence\n"
<< "by entering a negative number. \n"
<< "Terminate the series by entering two\n"
<< "negative numbers in a row\n";

// continue to accumulate sequences
int accumulator:
do

// start entering the next sequence
// of numbers
accumulator = 0;

cout << "\nEnter next sequence\n";

// loop forever
for(;;)
{

// fetch another number
int value = 0;

cout << "Enter next number: ";

cin >> value;

// if it's negative. . .

if (value < 0)

{

// . . .then exit
break;

// ...otherwise add the number to the
// accumulator
accumulator = accumulator + value:

// output the accumulated result..

Chapter 5: Controlling Program Flow (?y

cou t « "\nThe total is
"

<< accumulator
<< "\n";

// . . .and start over with a new sec[uence
II if the accumulated sequence was not zero

} while (accumulator != 0)

;

cout << "Program terminating\n"
return 0;

Switching to A Different Subject?
One last control statement is useful in a limited number of cases. The switch

statement resembles a compound if statement by including a number of dif-

ferent possibilities rather than a single test:

swi tch(expression)
{

case cl:

// go here if the expression == cl

break;
case c2:

// go here if expression == c2
break;

el se

// go here if there is no match
}

The value of expression must be an integer (i nt, 1 ong , or char). The case

values cl, c2, and c3 must be constants. When the swi tch statement is

encountered, the expression is evaluated and compared to the various case

constants. Control branches to the case that matches. If none of the cases

match, control passes to the else clause.

Consider the following example code snippet:

cout << "E nter a 1. 2 or 3:";

cin >> ch oice;

switch(choice)
i

i

case 1:

// do "1"
p rocessing

break;

case 2:

// do "2"
p roce ssing

/ (/ Part I: Introducing C++ Programming

bS»NG/

break;

case 3:

// do "3" processing

default:
cout << "You didn't enter a 1,

}

2 or 3\n";

Once again, the switch statement has an equivalent, in this case the com-
pound i f statement; however, when there are more than two or three cases,

the swi tch structure is much easier to understand.

The brea k statements are necessary to exit the swi tch command. Without the

break statements, control falls through from one case to the next.

Part II

Becoming a

Functional

Programmer

The 5th Wave By RichTennant

"SO I S4ID,' MITER 1

W4I7ER! THERE'S/ BUG IN MV SOUP.'' /UJP UE
S4Y5,

'
SORRY, 5/R,W CHEF USED ID PROGRAM COMPUTERS' AHHmm

MAMA TWNK YOU.' TMAJK KXJ/"

In this part

.

1
t's one thing to perform operations such as addition

<£ and multiplication — even when we're logical (AND.

OR, and the like). It's another thing to write real programs.

This section introduces the features necessary to make
this leap into programmerdom.

Chapter 6

Creating Functions

In This Chapter

«.• Writing functions

Passing data to functions

- Naming functions with different arguments

Creating function templates

• Determining variable storage class

m developers often need the ability to break programs up into smaller

•^chunks that are easier to develop. The programs developed in prior

chapters have been small enough that this subdivision was not necessary;

however, "real world" programs can be many of thousands (or millions!) of

lines long. Without this ability to divide up the program into parts, develop-

ing such large programs would quickly become impossible.

C++ allows programmers to divide their code up into chunks known as func-

tions. A function with a simple description and a well-defined interface to the

outside world can be written and debugged without worrying about the code
that surrounds it.

A good function can be described using a single sentence that contains a min-

imum number of ORs and ANDs. For example, the function sumSequence
accumulates a sequence of integer values entered by the user. This definition

is concise and clear.

This divide-and-conquer approach reduces the difficulty of creating a work-

ing program of significant size. This is a simple form of encapsulation— see

Chapter 12 for more details on encapsulation.

/If Part II: Becoming a Functional Programmer

U/ritinq and Using a function
Functions are best understood by example. This section starts with the exam-
ple program, FunctionDemo, which simplifies the NestDemo program I dis-

cussed in Chapter 5 by defining a function to contain part of the logic. This

section then explains how the function is defined and how it is invoked using

an example program FunctionDemo as a pattern both of the problem and the

solution.

NestDemo involves an inner loop, which accumulates a sequence of numbers
surrounded by an outer loop that repeats the process until the user quits.

Separating the two loops simplifies the program.

The following FunctionDemo program shows how NestDemo can be simpli-

fied by creating the function sumSequence().

Function names are normally written with a set of parentheses immediately

following the term.

// FunctionDemo - demonstrate the use of functions
// by breaking the inner loop of the
// NestedDemo program off into its own
// function

//include <stdio.h>
//include <iostream.h>

// sumSequence - add a sequence of numbers entered from
// the keyboard until the user enters a

// negative number.
// return - the summation of numbers entered
int sumSequence(void)

(

// loop forever
int accumulator = 0;

for(:;)

{

// fetch another number
int value = 0;

cout << "Enter next number: ";

cin >> value;

// if it's negative. .

.

if (value < 0)

I

// ...then exit from the loop
break;

// ...otherwise add the number to the
// accumulator

Chapter 6: Creating Functions /f)

accumulator accumulator value

// return the accumulated value
return accumulator;

int maind'nt arg, char* pszArgs[])
{

cout << "This program sums multiple series\n"
<< "of numbers. Terminate each sequence\n"
<< "by entering a negative number. \n"

<< "Terminate the series by entering two\n'
<< "negative numbers in a row\n";

// accumulate sequences of numbers...
int accumulatedValue;
do

{

// sum a sequence of numbers entered from
// the keyboard
cout << "\nEnter next sequence\n";
accumulatedValue = sumSequence()

;

// now output the accumulated result
cout << "\nThe total is

"

<< accumulatedValue
<< "\n";

// ...until the sum returned is

} while (accumulatedValue != 0);
cout << "Program terminati ng\n" ;

return 0;

Catting the function sumSequence ()

First, concentrate on the main program contained in the braces following

ma i n () . This section of code looks similar to NestDemo.

The main difference is the expression accumul atedVal ue =

sumSequence() ; appearing roughly in the middle of the main() section. The
sumSequence() calls a function called sumSequence() . A value returned by

the function is stored in the variable accumul atedVal ue . This value is sub-

sequently displayed. The main program continues to loop until the sum
returned by the inner function is zero, which indicates that the user has fin-

ished calculating sums.

To call a function means to begin executing the code contained in the func-

tion. After this code is finished, control returns to the statement immediately

following the function call.

/ %} Part II: Becoming a Functional Programmer

Defining the sumSetfuence () {unction

The statement int sumSequence(void) begins the definition of the

sumSequence() function. The block of code contained in the braces is the

function body. The function body of sumSequence() is identical to that found

in the inner loop of NestDemo.

So the declaration goes like this: The main program enters a loop that looks

like the outer loop in NestedDemo. In the middle of this loop where you

would have found an inner loop, all that is there is the call to

sumSequence(). When execution reaches this inner section, control passes

to the sumSequence() function, which accumulates a sum. This sum is

returned to the main body of code that continues with the remainder of the

outer loop.

Understanding the Details of Functions

Functions are so fundamental to the creating of C++ programs that under-

standing the details of defining, creating, and testing functions is critical.

With the example FunctionDemo program finished, here's a definition of

function.

A function is a logically separated block of C++ code. The function construct

has the following form:

<return type> name(<arguments to the function))

{

// ...

return <expression> ;

}

The arguments to a function are values that can be passed for the function to

use as input. The return value is a value that the function returns. For exam-

ple, in the call to the function square(10), the value 10 is an argument to the

function s q u a r e () . The returned value is 1 00.

Both the arguments and the return value are optional. If either is absent, the

keyword void is used instead. That is, if a function has a void argument list,

the function does not take any arguments when called (this was the case with

the FunctionDemo program). If the return type is void, the function does not

return a value to the caller.

In the example FunctionDemo program, the name of the function is

sumSequence(), the return type is i nt. and no arguments exist.

Chapter 6: Creating Functions / /

The default argument type to a function is void, meaning that it takes no
arguments. A function i nt fn(voi d) may be declared as i nt fn().

The function construct made it possible for me to write two distinct parts of

the FunctionDemo program separately. I concentrated on creating the sum of

a sequence of numbers when writing the sumSequenceC) function. I didn't

think about other code that may call the function.

Similarly when writing ma i n () , I concentrated on handling the summation
returned by sumSequenceC) while thinking only of what the function did—
not how it worked.

Understanding Simple functions

The simple function sumSequence() returns an integer value that it calcu-

lates. Functions may return any of the regular types of variables. For exam-
ple, a function might return adoubleorachar. (Jnt, double, and char are a

few of the variable types discussed in Chapter 5.)

If a function returns no value, the return type of the function is labeled void.

A function may be labeled by its return type. Thus, a function that returns an

i nt is often known as an i nteger f uncti on. A function that returns no
value is known as a void function.

For example, the following void function performs an operation, but returns

no value.

void echoSquare(

)

{

cout << "Enter a value:";
cin >> value;
cout << "\n The square is:" << value * value "\n";
return

;

Control begins at the open brace and continues through to the return state-

ment. The return statement in a void function is not followed by a value.

The return statement in a void function is optional. If not present, execution

returns to the calling function when control encounters the close brace.

Iq Part II: Becoming a Functional Programmer

Understanding functions tfith arguments

Simple functions are of limited use because the communication from such

functions is one-way— through the return value. Two-way communication is

through function arguments.

Functions u/ith arguments

A function argument is a variable whose value is passed to the calling function

during the call operation. The following example defines and uses a function

squa re () that returns the square of a double precision float passed to it:

// SquareDemo - demonstrate the use of a function
// which processes arguments

^include <stdio.h>
#include <iostream.h>

// square - returns the square of its argument
// doubleVar - the value to be squared
// returns - square of doubleVar
double square(doubl e doubleVar)
I

return doubleVar * doubleVar;

// sumSequence - add a sequence of numbers entered from
// the keyboard and squareduntil the

// user enters a negative number.
// return - the summation of the square
// of the numbers entered
int sumSequence(void)

I

// loop forever
int accumulator 0;

for(;;)

{

// fetch another number
double dValue = 0;

cout << "Enter next number: ":

cin >> dValue;

// if it's negative. . .

if (dValue < 0)

(

// ...then exit from the loop
break;

// ...otherwise calculate the square
int value = (int)square(dVal ue)

;

Chapter 6: Creating Functions (y

II now add the square to the
// accumulator
accumulator^ accumulator value;

// return the accumulated value
return accumulator;

}

int maindnt arg, char* pszArgs[])

{

cout << "This program sums multiple series\n"
<< "of numbers. Terminate each sequence\n"
<< "by entering a negative number. \n"

<< "Terminate the series by entering two\n'
<< "negative numbers in a row\n";

// Continue to accumulate numbers...
int accumul atedVal ue;

do

{

// sum a sequence of numbers entered from
// the keyboard
cout << "\nEnter next sequence\n";
accumul atedVal ue = sumSequence()

;

// now output the accumulated result
cout << "\nThe total is

"

<< accumul atedVal ue
<< "\n";

// ...until the sum returned is

) while (accumulatedVal ue != 0);
cout << "Program terminating\n" ;

return 0;

This is the same Functi onDemo() program, except that SquareDemo() adds
the square of the values entered. The function square() returns the value of

its one argument multiplied by itself. The change to the sumSequence() func-

tion is simple — rather than accumulate the value entered, the function now
accumulates the result returned from squareC).

Functions With multiple arguments

Functions may have multiple arguments that are separated by commas. Thus,

the following function returns the product of its two arguments:

int product(int argl, int arg2)

{

return argl * arg2;

}

q(J Part II: Becoming a Functional Programmer

Casting values

Line 38 of the SquareDemo program contains an

operator never before seen:

accumulator = accumulator +
(int)dValue;

The (int) in front of the dValue indicates that the

programmer wants to convert the dValue vari-

able from its current type, in this case double,

into an int before performing the addition.

A cast is an explicit conversion from one type to

another.

Any numeric type may be cast into any other

numeric type. Without such a cast, C++ would

have converted the types anyway, but would

have generated a warning just to make sure that

it's doing the correct conversion. The cast reas-

sures the compiler that this conversion is what's

wanted.

main () exposed

The "keyword" mai n() from our standard program template is nothing more
than a function — albeit a function with strange arguments — but a function

nonetheless.

When a program is built. C++ adds some boilerplate code that executes

before your program ever starts. This code sets up the environment in which

your program operates. For example, this boilerplate code opens the default

input and output channels.

After the environment has been established, the C++ boilerplate code calls

the function ma i n () , thereby beginning execution of your code. When your

program finishes, it exits from main(). This enables the C++ boilerplate to

clean up a few things before turning control over to the operating system that

kills the program.

Overloading Function Names
C++ allows the programmer to assign the same name to two or more func-

tions. This multiple use of names is known as overloading functions or simply

overloading.

In general, two functions in a single program cannot share the same name. If

they did, C + + would have no way to distinguish them.

However, the name of the function includes the number and type of its argu-

ments. (The name of the function does not include its return argument"!

Thus, the following are not the same functions:

Chapter 6: Creating Functions q /

void someFuncti on(void)

//perform some function

void someFunction(int n)

// ...perform some different function

void someFunction(doubl e d)

// ...perform some very different function

void someFuncti on(int nl, int n2)

//do something different yet

C++ still knows that the functions someFuncti on (void), someFuncti on (int),

someFuncti on(doubl e), and someFuncti on (int, int) are not the same.

Like so many things that deal with computers, this has an analogy in the

human world.

void as an argument type is optional. sumFunction(void) and

sumFunction() are the same function. A function has a shorthand name, such

as someFuncti on (), in same way that I have the shorthand name Stephen

(actually, my nickname is Randy, but work with me on this one). If there aren't

any other Stephens around, then people can talk about Stephen behind his

back. If, however, there are other Stephens, no matter how handsome they

might be, people have to use their full names— in my case, Stephen Davis. As
long as we use the entire name, no one gets confused — no matter how many
Stephens there might be. The full name for one of the someFuncti on s()is

someFuncti on (i nt). As long as this full name is unique, no confusion occurs.

The analogies between the computer world (where ever that is) and the

human world are hardly surprising because humans build computers. I

wonder if dogs had built computers, would the standard unit of memory be a

gnaw instead of a byte, or would requests group in packs instead of queues?

A typical application may appear as follows:

int

doub

intVariablel , intVariable2; // equivalent to

// int Variablel
// int Variable2

le doubleVariable;

// functions are distinguished by the type of
// the argument passed
someFunctionC)

;

// calls someFunctionC void)
someFunctionCintVariablel) ; // calls someFunctionC int)

someFunctionCdoubl eVari abl e) ; // calls someFunction(double)

q2 Part II: Becoming a Functional Programmer

tJVBE/f

someFunction(intVariablel , intVari able2) ; // calls
// someFunctiondnt, int)

// this works for constants as well
someFunction(l) ; // calls someFunctiondnt)
someFunction(1 .0) ; // calls someFunction(double)
someFunctiond , 2); // calls someFunctiondnt, int)

In each case, the type of the arguments matches the full name of the three

functions.

The return type is not part of the extended name (also known as the function

signature) of the function. The following two functions have the same name
and, thus, cannot be part of the same program:

int someFunction(i nt n); // full name of the function
// is someFunctiondnt)

double someFunctiondnt n); // same name

The following is acceptable:

int someFunctiondnt n);

double d = someFunctiondO) ; // promote returned value

The int returned by someFunction() is promoted into a double. Thus, the

following would be confusing:

int someFunctiondnt n);

double someFunctiondnt n);

double d = someFunctiondO) ;// promote returned int?
// or use returned double as is

C++ wouldn't know whether to use the value returned from the double ver-

sion of someFunction() or promote the value returned from int version.

Defining Function Prototypes
The programmer may provide the remainder of a C++ source file, or module,

the extended name (the name and functions) during the definition of the

function.

The target functions sumSequence() and square() appearing earlier in this

chapter were both defined in code that appeared before the actual call. This

doesn't have to be the case: A function may be defined anywhere in the

module. (A module is another name for a C++ source file.)

Chapter 6: Creating Functions qj

However, something has to tell mai n () the full name of the function before it

can be called. Consider the following code snippet:

int main(int argc, char* pArgs[])
{

someFuncd, 2);

}

int someFunc(doubl e argl, int arg2)

{

// . . .do something

The call to some Func () from within main() doesn't know the full name
of the function. It may surmise from the arguments that the name is

someFunc (int, int) and that its return type is void; however, as you can

see, this is incorrect.

I know, I know— C++ could be less lazy and look ahead to determine the full

name of someFunc ()s on its own, but it doesn't. Like my crummy car, I've

learned to live with it.

What is needed is some way to inform mai n() of the full name of someFuncC)

before it is used. What is needed is a before use function declaration. We
need some type of prototype.

A prototype declaration appears the same as a function with no body. In use,

a prototype declaration appears as follows:

int some Func (double , int)
int

{

i

mai n (int argc. :har* pArgs[])

some Func (1. 2);

int

{

1

some Func (double argl. int arg2)

// . ..do someth i ng

The prototype declaration tells the world (at least that part of the world

after the declaration), that the extended name for someFunc() is

someFunction(doubl e, int). The call in ma i n () now knows to cast the 1

to a double before making the call. In addition, ma i n () knows that the value

returned by someFunc () is an int.

A function call that returns a value is an expression. As with any other provide

expression, you are allowed to throw away the value returned by a function.

Oil Part II: Becoming a Functional Programmer _

Variable Storage types
Function variables are stored in three different places. Variables declared

within a function are said to be local. In the following example, the variable

1 ocal Vari abl e is local to the function fn():

int global Variable;
void fn(

)

{

int 1 ocal Vari abl e;

static int stati cVariable;

The variable localVariable doesn't exist until the function fn() is called.

1 ocal Vari able ceases to exist when the function returns. Upon return,

whatever value that is stored in 1 ocal Vari abl e is lost. In addition, only

fn() has access to 1 ocal Vari abl e — other functions cannot reach into the

function to access it.

By comparison, the variable gl obal Vari abl e exists as long as the program
is running. All functions have access to gl obal Vari abl e all of the time.

The static variable staticVariableis something of a mix between a local

and a global variable. The variable stati cVariable is created when execu-

tion first reaches the declaration (roughly, when the function fn (is called).

In addition, stati cVari abl e is only accessible within fn(). Unlike

1 ocal Vari abl e, however, stati cVariabl e continues to exist even after the

program returns from f n () . If f n () assigns a value to stati cVariable once,

it will still be there the next time that f n () is called.

In case anyone asks, there is a fourth type, auto, but today it has the same
meaning as 1 oca 1 . so just ignore them. It's just like I ignore the blue smoke
coming from my auto.

Chapter 7

Storing Sequences in Arrays

In This Chapter

Introducing the array data type

Using arrays

Initializing an array

Using the most common type of array— the character string

ZM n array is a sequence of variables that share the same name and are ref-

v \ erenced using an index. Arrays are useful little critters that allow you to

store a large number of values that are related in some way— for example,

the batting averages of all the players on the same team might be a good can-

didate for storage within an array. Arrays can be multidimensional, too,

allowing you, for example, to store an array of batting averages within an

array of months, which allows you to work with the batting averages of the

team as they occur by month. If you think about it long enough, you get a

headache.

In this chapter, you find out how to initialize and use arrays for fun and profit.

You also find out about an especially useful form of array, a string, which in

C++ is really just an array of type char.

Considering the Need for Arrays
Consider the following problem. You need a program that can read a

sequence of numbers from the keyboard. You'll use the now-standard rule

that a negative number terminates input. Once the numbers have been read

in, and only then, the program shall display them on the standard output

device.

86 Part II: Becoming a Functional Programmer

You can attempt to store numbers in a set of independent variables, as in:

You can see that this approach can't handle sequences involving more than

just a few numbers. Besides, it's ugly. What is needed is some type of struc-

ture that has a name like a variable but that can contain more than one vari-

able. This is the purpose of the array.

An array solves the problem of sequences nicely. For example, the following

snippet declares an array valueArray that has storage for up to 128 int

values. It then populates the array with numbers entered from the keyboard.

int val ue;

// declare an array capable of holding up to 128 ints
int val ueArray[128]

;

// define an index used to access subsequent members of

// of the array; don't exceed the 128 int limit
for
i

(int i = 0; i < 128; i++)

i

cin >> value;

// exit the loop when the user enters a negative
// number
if (value < 0)
i

i

break;
i

1

val ueArray[i] = value;

The second line of this snippet declares an array val ueArray. Array declara-

tions begin with the type of the array members: in this case, int. This is fol-

lowed by the name of the array. The last element of an array declaration is an

open and closed bracket containing the maximum number of elements that

the array can hold. In this code snippet, val ueArray can accommodate up to

128 integers.

This snippet reads a number from the keyboard and stores it into each subse-

quent member of the array val ueArray. An individual element of an array is

accessed by providing the name of the array followed by brackets containing

the index. The first integer in the array is val ueArray[0], the second is

val ueArray[l], and so on.

Chapter 7: Storing Sequences in Arrays q /

In use, val ueArray[i] represents the i'th element in the array. The index

variable i must be a counting variable — that is, i must be a char, an i nt, or

a 1 ong. If val ueArray is an array of i nts, then val ueArray [i] is an i nt.

Usinq an anay
The following program inputs a sequence of integer values from the keyboard

until the user enters a negative number. The program then displays the num-
bers input and reports their sum.

// ArrayDemo - demonstrate the use of arrays
// by reading a sequence of integers
// and then displaying them in order
^include <stdio.h>
#include <iostream.h>

// prototype declarations
int sumArrayO'nt integerArray[] , int sizeOfloatArray)

;

void displ ayArray(int integerArray[] , int sizeOfloatArray);

int main(int nArg, char* pszArgs[])

// input the loop count
int nAccumulator = 0;

cout << "This program sums values entered"
<< "by the user\n"

;

cout << "Terminate the loop by entering "

<< "a negative number\n";

// store numbers into an array
int inputValues[128];
int numberOfValues = 0;

for(; numberOfValues < 128; numberOfVal ues++)
1

// fetch another number
int integerValue;
cout << "Enter next number: ";

cin >> integerValue;

// if it's negative. .

.

if (integerValue < 0)

{

// . . .then exit
break;

// ... otherwise store the number
// into the storage array
inputVal ues[numberOfVal ues] = integerValue;

88 Part II: Becoming a Functional Programmer

// now output the values and the sum of the values
di spl ayAr r ay

(

input Val ues , numberOfVal ues)

;

cout << "The sum is
"

<< sumArray(inputVal ues , numberOfVal ues)
<< "\n";

return 0;

// displayArray - display the members of an

// array of length sizeOf 1 oatArray
void di spl ayArray(i nt integerArray[] , int sizeOfArray)

{

cout << "The value of the array is:\n";
for (int i = 0; i < sizeOfArray; i++)

{

cout.widthO)

;

cout << i << ": " << integerArray[i] << "\n";

cout << "\n"

;

I

// sumArray - return the sum of the members of an

// integer array
int sumArrayd'nt integerArray[] , int sizeOfArray)
{

int accumulator = 0;

for (int i = 0; i < sizeOfArray; i++)

{

accumulator += integerArray[i]

:

}

return accumulator;

The program ArrayDemo begins with a prototype declaration of the functions

sumArray() and di spl ayArray() that it will need later. The main body of

the program contains an input loop (boring). This time, however, the input

values are stored off in the array inputValues.

Input occurs within the initial for loop. The input value is first stored off into

the local variable i ntegerVal ue. If it is found to be negative, control exits

the loop through the break. If not, i ntegerVal ue is copied into the array.

The i nt variable numberOfVal ues is used as an index into the array

numberOfVal ues was initialized to up at the beginning of the for loop. The
index is incremented on each iteration of the loop. The test in the for loop

keeps the program from storing more than 128 entries because this is the size

of the array. (The program goes immediately to the output portion after 128

entries whether the user enters a negative number or not.)

Chapter 7: Storing Sequences in Arrays Qy

The array inputValues is declared as 128 integers long. If you're thinking

that this is enough, don't count on it. Writing more data than an array causes

your program to perform erratically and often to crash. No matter how large

you make the array, always put a check to make sure that you do not exceed

the limits of the array.

The main function ends by displaying the contents of the array and the sum.

The di spl ayArray () function contains the typical for loop used to traverse

an array. Each entry in the array is added to the variable accumul ator. The
si zeOfArray passed to the function indicates the number of values con-

tained in the array.

Notice yet again, that the index is initialized to and not to 1. In additions,

notice how the for loop terminates before i is equal to sizeOfArray. You
don't want to add all 128 elements of i ntegerArray to accumul ator — none
of the elements after the si zeOfArray element contains valid data.

Just to keep nonprogrammers guessing, the term iterate is used to mean tra-

verse through a set of objects such as an array. Programmers say that the

s umA rr ay () function iterates through the array. In a similar fashion, the

di spl ayArray() function iterates through i ntegerArray, displaying each

element.

Initializing an array

A local variable does not start life with a valid value, including 0. Said another

way, a local variable contains garbage until you actually store something into a

local variable. Locally declared arrays are the same— each element contains

garbage until you actually assign something to it. You should initialize local vari-

ables when you declare them. This rule is even more true for arrays. It is far too

easy to access uninitialized array elements thinking that they are valid values.

Fortunately, an array may be initialized at the time it is declared. The follow-

ing code snippets demonstrates how this is done:

float floatArray[5] = {0.0, 1.0, 2.0, 3.0, 4.0):

This initializes floatArray[0] toO, floatArray[l] to 1, floatArray[2] to

2 and so on.

The number of initialization constants can determine the size of the array.

For example, we could have determined that f 1 oatArray has 5 elements just

by counting the values within the braces. C++ can count as well (here's at

least one thing C++ can do for itself).

The following declaration is identical to the one above.

y Part II: Becoming a Functional Programmer

float floatArray[] = {0.0. 1.0, 2.0. 3.0, 4.0};

You may initialize all of the elements in an array to a common value by listing

only that value. For example, the following initializes all 25 locations in

fl oatArray to 1.0.

float floatArray[25] = {1.0};

Accessing too far into an array

Mathematicians start counting arrays with 1. The first member of a mathe-

matical array x is x (1) . Most program languages start with an offset of 1 as

well. C++ arrays begin counting at 0. The first member of a C++ array is

val ueArray[0].

Sometimes I wonder whether they shouldn't call it Contrarion++. In indexing,

a C++ array begins with 0; thus, the last element of a 128-integer array is

integerArray[127] and not integerArray [128].

Unfortunately for the programmer, C++ does not check to see whether the

index you are using is within the range of the array. C++ is perfectly happy
giving you access to i ntegerArray[200]. In fact, C++ will even let you

access integerArray[-15].

As an analogy, suppose that distances on a highway were measured by

equally spaced power line poles. (In Oklahoma this isn't too far from the

truth.) We'll call this unit of measure a pole length. The road to my house

begins at the turnoff from the main highway and continues to my house in a

straight line. The length of this road is exactly nine pole lengths. If we begin

numbering poles with the telephone pole at the highway, then the telephone

pole next to my house is pole number 10.

You can access any position along the road by counting poles from the high-

way. If you measure from the highway to the highway, you calculate a dis-

tance of pole lengths. The next discrete point is one pole length and so one

until you get to my house at nine pole-lengths distance.

You can measure a distance 20 pole lengths away from the highway. Of

course, this location is not on the road. (Remember that the road stops at

my house.) In fact, there's no telling what you might find there. You might be

on the next highway, you might be out in a field, you might even land in my
neighbor's living room (that might be fun). Examining that location is bad

enough, but storing something there could be a lot worse. Storing something

in a field is one thing, but plop something down in my neighbor's living room
and it's his. (I know because every time my newspaper misses my yard, it

ends up in my neighbor's living room.)

Chapter 7: Storing Sequences in Arrays y /

j\\NG/

By analogy, reading array [20] of a 10-element array returns a more or less

random value. Writing to a may [20] has unpredictable results. It may do
nothing, it may lead to erratic behavior, or it may crash the program.

The most common incorrect location to access is i ntegerArray [128].

While only one element beyond the end of the array, reading or writing this

location is just as dangerous as any other incorrect address.

Using arrays}

On the surface, the ArrayDemo program doesn't do anything more than our

earlier, non-array-based programs did. True, this version can replay its input

by displaying the set of input numbers before calculating their sum, but this

feature hardly seems earth shattering.

Yet, the ability to redisplay the input values hints at a significant advantage

to using arrays. Arrays allow the program to process a series of numbers
multiple times. The main program was able to pass the array of input values

to di spl ayArray() for display and then repass the same numbers to

sumArray() for addition.

befitting and using arrays of arrays

Arrays are adept at storing sequences of numbers. Some applications require

sequences of sequences. A classic example of this matrix configuration is the

spreadsheet. Laid out like a chessboard, each element in the spreadsheet has

both an x and a y offset.

C++ implements the matrix as follows:

int intMatrix[10][5];

This matrix is 10 elements in 1 dimension, and 5 in another, for a total of 50

elements. In other words, i ntMatri x is a 10-element array, each element of

which is a 5-i nt array. As you might expect, one corner of the matrix is in

i ntMatri x[0] [0] while the other corner is i ntMatri x[9] [4].

Whether you consider i ntMatri x to be ten elements long in the x dimension

and in the y dimension is a matter of taste. A matrix may be initialized in the

same way that an array is:

int intMatrix[2][3] 1. 2, 3 4, 5. 6;

This initializes the three-element array i ntMatri x[0] to 1, 2, and 3 and the

three-element array i ntMatri x[1] to 4, 5, and 6, respectively.

y£ Part II: Becoming a Functional Programmer

Using Arrays of Characters
The elements of an array are of any type. Arrays of floats, doubles, and longs

are all possible; however, arrays of characters have particular significance.

Human words and sentences can be expressed as an array of characters. An
array of characters containing my first name would appear as:

char sMyNameC] = {'S', '

t
'

, 'e', 'p', 'h', 'e', 'n'};

The following small program displays my name:

// CharDisplay - output a character array to
// standard output, the MS-DOS window
^include <stdio.h>
#include <iostream.h>

// prototype declarations
void di spl ayCharArray(char stri ngArray[] ,

int sizeOf 1 oatArray)

;

int maind'nt nArg, char* pszArgs[])
{

char charMyName[] = {'S', 't', 'e', 'p', 'h', 'e'. 'n'}:

di spl ayCharArray(charMyName, 7);
cout << "\n";
return 0;

1

// di spl ayCharArray - display an array of characters
// by outputing one character at

// a time
void di spl ayCharArray(char stri ngArray[]

,

int sizeOf loatArray)
f

for(int i = 0; i< si zeOfl oatArray ; i++)

{

cout << stringArray[i]

:

The program declares a fixed array of characters cha rMyName containing— you
guessed it— my name (what better name?). This array is passed to the function

di spl ayCharArray() along with its length. The di spl ayCharArray(

)

function is identical to the di spl ayArray () function in our earlier example
program except that this version displays chars instead of i nts.

Chapter 7: Storing Sequences in Arrays yj

£*BE0

This program works fine; however, it is inconvenient to pass the length of the

array around with the array itself. If we could come up with some rule, we
wouldn't need to pass the size of the array— we would know that the array

was complete when we encountered the special code character.

Let's use the code that marks the end of a character array.

The character whose value is is not the same thing as 0. The value of is

0x10. The character whose value is is often written as \0, whose value is

0x0, just to make it clear that this is a character.

The character \yis the character whose numeric value is y The character \0

is known as the null character. Using that rule, the previous small program
becomes:

// DisplayString - output a character array to
// standard output, the MS-DOS window
#include <stdio.h>
^include <iostream.h>

// prototype declarations
void di spl ayString(char stringArray[])

;

int main(int nArg, char* pszArgs[])
{

char charMyName[] =

('S' , 't' , 'e* ,
'p'

, 'h' , 'e' , 'n' , 0};
di spl ayString(charMy Name)

;

cout << "\n";
return 0;

// di spl ayString - display a character string
// one character at a time
void di splayString(char stringArray[]

)

{

for(int i = 0; stri ngArray[i] != 0; i++)
{

cout << stri ngArray[i]

;

}

)

The declaration of cha rMy Name declares the character array with the extra

null character \0 on the end. The displayString program iterates through

the character array until a null character is encountered.

The function di spl ay St ring () is simpler to use than its

di spl ayCha rArray () predecessor. It is no longer necessary to pass along

the length of the character array.

ylf Part II: Becoming a Functional Programmer

ctfBE/?

Further, di spl ayStri ng() works when the size of the character string is not

known at compile time. This case occurs more often than you might think

(see Chapter 9 for details).

This code of terminating a character array with a null is so convenient that it

is used throughout the C++ language. C++ even gives such an array a special

name.

A string is a null terminated character array.

C++ provides a more convenient means of initializing a string using double

quotes rather than the single quotes used for characters. The following is

exactly equivalent to Lines 11 and 12 in the previous example.

char szMyName[] = "Stephen";

The naming convention used here is exactly that, a convention. C++ does not

care. The prefix sz stands for zero-terminated string.

The string Stephen is eight characters long and not seven — the null charac-

ter after the n is assumed.

Manipulating Strings

The C++ programmer is often required to manipulate strings. C + + provides a

number of standard string-manipulation functions to make the job easier. Try

writing your own first to get an idea of how these functions work.

Writing our ou/n concatenate function

You can write your own example string manipulation function to concatenate

function by using array semantics and adding the test for a null at the end of

the array. Consider the following example:

// Concatenate - concatenate two strings
// with a " " in the middle
^include <stdio.h>
^include <iostream. h>

// the following include file is required for the
// str functions
^include <string.h x

// prototype declarations
void concatString(char szTarget[], char szSource[]):

Chapter 7: Storing Sequences in Arrays yy

int mainCint nArg, char* pszArgs[])
{

// read f i rst string. . .

char szStri ngl[256]

;

cout << "Enter string #1:";
cin.getl ine(szStringl , 128);

// ...now the second string...
char szString2[128];
cout << "Enter string #2:";
cin.getl i ne(szString2 , 128);

// ...concatenate a " - " onto the first...
concatString(szStringl ,

" - ");

// strcat(szStringl ,
" - ");

// ...now add the second string...
c on catString(szStringl, szString2);
// strcat(szStringl , szString2);

// ...and display the result
cout << "\n" << szStringl << "\n";

return 0;

}

// concatString - concatenate the szSource string
// onto the end of the szTarget strin<
void concatString(char szTarget[], char szSource[])
{

// find the end of the first string
nt targetlndex = 0;

while(szTarget[targetIndex])

targetlndex++;

// tack the second onto the end of the first
nt sourcelndex = 0;

while(szSource[sourceIndex])

szTarget[targetIndex] =

szSourceC sourcelndex];
targetlndex++;
sourceIndex++;

// tack on the terminating null

szTarget[target!ndex] = ' \0";

96 Part II: Becoming a Functional Programmer

rifrWG

The main function reads two strings using the getl i ne () function. The alter-

nate cout >> szStri ng reads up to the first space. Here, you want to read

until the Enter key.

Function mai n() concatenates the two strings using our concatStri ng(

)

function before outputting the result. The concatStri ng() concatenates the

second argument, szSource, onto the end of the first argument, szTarget. It

does this in several stages.

The first loop within concatStri ng() finds the end of the szTarget string.

concatStri ng() iterates through the string szTarget until targetlndex
references the null at the end of the string. At this point, targetlndex now
references the last character in the target string.

The loop whi 1 e(val ue == 0) is the same as whi 1 e(val ue) because value

is considered false if it's equal to and true otherwise. Also, this common
shorthand takes a little getting use to.

The second loop iterates through the szSource string, copying each element

from that string into szTarget starting with the first character in szSource
and the last character in szTarget. The loop stops when source Index refer-

ences the null character in szSource.

The concatStri ng() function tacks a final null character onto the resulting

target string before returning.

Don't forget to terminate the strings that you construct programmatically.

You will generally know that you forgot to terminate your string if the string

appears to contain garbage at the end when displayed or if the program
crashes inexplicably.

Make sure that the target array has enough room to handle the resulting

concatenated string. It is very tempting to write C++ statements such as the

following:

char dash[] = " -

concatString(dash szMyName)

;

This doesn't work because dash is provided just enough room to store four

characters. The function will undoubtedly overrun the end of the dash array.

Ret/ieiVinq the C++ string

handling functions

The C++ library provides a set of simple functions for manipulating strings.

Some of these functions are more complicated than they might appear to be.

Chapter 7: Storing Sequences in Arrays y /

You can write your own versions— it can even be instructional, as was the

case with the example of the concatenateQ function. Using these functions

can save you a lot of trouble and heartache, see Table 7-1.

Table 7-1 String-Handl ing Functions

Name Operation

int s t rl en(string) Returns the number of characters in

a string

void strcat(target , source) Concatenates the source string onto

the end of the target string

void strcpy(target , source) Copy a string into a buffer

int strstr Find the first occurrence of one

string in another

int strcmp(sourcel , source2) Compare two strings

int stricmp(sourcel , source2) Compare two strings without regard

to case

You need to add the statement #include <strings.h>to the beginning of any
program that uses the str . . . functions.

In the Concatenate program, the call to concatString() could have been

replaced with a call to the standard C++ strcatC) saving us the need to write

our own version:

cjABE/?

strcat(szStringl ,
" - ");

These functions may seem somewhat backwards to any reasonable individual

(this is an acid test for the reader). The second string is concatenated onto

the end of the first argument. Our own concatStr i ng() was written the

same way in order to mimic the C++ standard.

Handling uride characters

The standard C++ char type is an 8-bit field capable of representing the

values from to 255. There are 10 digits, as well as 26 lowercase letters plus

26 uppercase letters. Even if you add various umlaut and accented

characters, you still have more than enough range to represent the Roman
alphabet set and still have room left over for the Cyrillic alphabet.

yQ Part II: Becoming a Functional Programmer

Problems with the char type don't arise until you begin to include the orien-

tal character sets, in particular the Chinese and Japanese kanjis. There are lit-

erally thousands of these symbols— much more than the lowly eight-bit

character set.

C++ includes support for a newer character type called wcha r, or wide char-

acters. While this is not an intrinsic type like char, numerous C++ functions

treat it as if it were. For example, wstrstr () compares two wide character

sets. If you are writing international applications and need access to oriental

languages, you will need to use these wide character functions.

Because this is an added level of complexity, I don't speak any more of it in

this book.

Avoiding Obsolescent Output Functions

C++ provides a set of lower level input and output functions. The most useful

is the print f () output function. In it's most basic form, printf () outputs a

string to the default display.

pri ntf (

"Thi s string is output to display");

The pri ntf () function performs output using a set of embedded format con-

trol commands each of which begins with a % sign. For example, the follow-

ing prints out the value of an integer and a double variable.

i nt nlnt = 1;

double doubleVar = 3.5;
printf ("The int value is %i ; the float value is %f",

nlnt, doubleVar);

The integer value is inserted at the point of the %i, while the double appears

at the location of the %f:

The int value is 1; the float value is 3.5

The pri ntf () function is not as difficult to use as it appears once you get

used to its quirks. However, the stream version of output that the remainder

of this book uses is easier (and less likely to be used incorrectly, as we see in

later chapters — remember to always practice safe hex).

Chapter 8

Taking a First Look at C++ Pointers

In This Chapter

Addressing variables in memory

Declaring and using pointer variables

Recognizing the inherent dangers of pointers

Passing pointers to functions

Allocating objects off of the heap (whatever that is)

The C++ language is fairly conventional compared with other programming
languages. Some computer languages lack (i 1) logical operators (see

Chapter 4). C++ certainly presents its own unique syntax. C++ really sepa-

rates itself from the crowd in definition and use of pointer variables. Pointers

are variables that "point at" other variables. This is to say that pointer vari-

ables contain the addresses of locations in memory.

This chapter introduces the pointer variable type. It begins with some con-

cept definitions, flows through pointer syntax, and then introduces some of

the reasons for the pointer mania, which grips the C++ programming world.

What's in art Address)
Just as the saying goes, "Everyone has to be somewhere," every C++ variable

is stored somewhere in the computer's memory. Memory is broken into indi-

vidual bytes with each byte carrying its own address numbered 0, 1,2, and
so on.

A variable i ntRandy might be at address 0x100 while f 1 oatReader might be

over at location 0x180. (By convention, memory addresses are expressed in

hexadecimal.)

Just like a person, a variable takes a certain amount of room. Again, just like a

person, some variable types take up more room than others. (I'm not going

into whether I'm one of the large volume or small volume types.) The amount
of storage consumed by the different variable types appears in the following

table (these values are for Visual C++ 6 and GNU C++ executing on a Pentium
processor).

7 00 Part " : Becoming a Functional Programmer

Table 8-1 Variables and Storage Space

Variable Type Memory Consumed [Bytes]

int 4

long 4

float 4

double 8

Consider the following Layout test program that demonstrates the layout of

variables in memory. (Ignore the new & operator— let's just say for now that

&n returns the address of the variable n.)

// Layout - this program tries to give the
// reader an ideei of the layout of

// local memory in her compiler
#include <stdio.h>
^include <iostream.h>

int maindnt intArgc, char* pszArgs[])

i

i nt ml

;

int n;

1 ong 1 ;

float f;

double d;

int m2;

// set output to hex mode
cout.setf (ios : :hex)

;

// output the address of each variable
// in order to get an idea of the size
// of each variable
cout << "--- = Ox" << (long)&ml << "\n"

cout << "&n = Ox" << (long)&n << "\n"
cout << "&1 = Ox" << (long)&l << "\n"

cout << "&f = Ox" << (long)&f << "\n"

cout << "&d = Ox" << (long)&d << "\n"

cout << "--- = Ox" << (long)&m2 << "\n"

return 0;

)

Don't worry if the values you see when running this program are different.

Your program is storing its variables in a different memory range, which is

expected. The relationship between the locations is the prime importance.

Chapter 8: Taking a First Look at C++ Pointers / {/ /

From the comparison of locations, we can also infer that the size of n is four

bytes (0x65fdf4 - 0x65fdf0), the size of the long 1 is also four bytes (0x65fdf0

0x65fdec), and so forth.

GNU C++ and Visual C++ choose the same variable layout.

Using Pointer Variables

A pointer variable is a variable that contains an address, usually the address

of another variable. See Table 8-2 for an example.

Table 8-2 Pointer Operators

Operator Meaning

& (unary) The address of

* (unary) (in an expression) The thing pointed at by

(in a declaration) Pointer to

You can see the use of these new operators in the following example:

void fn(

)

(

int intVar;
int* pintVar;

pintVar = &intVar; // pintVar now points to intVar
*pintVar - 10; // stores 10 into int location

// pointed at by pintVar
}

The function fn() begins with the declaration of intVar. The next statement

declares the variable pintVar to be a variable of type pointer to an i n t . (By
the way, pi ntVar is pronounced pee-int-Var, not pint-Var.)

Pointer variables are declared like normal variables except for the addition of

the unary * character. This * character can appear anywhere between the

base type name — in this case int — , and the variable name; however, it is

becoming increasingly common to add the * to the end of the variable type.

The * character is called the asterisk character (that's logical enough), but

because asterisk is hard to say, many programmers have come to call it the

splat character. Thus, they would say splat pintVar.

/ 1/2 Part II: Becoming a Functional Programmer

Many programmers adopt a naming convention in which the first character

of the variable name indicates the type of the variable, such as n for i nt, d

for doubl e, and so on. A further aspect of this naming convention is to place

a p on the beginning of a pointer variable name.

In an expression, the unary operator & means the address of. Thus, we would
read the first assignment as store the address of i ntVar in pintVar.

To make this more concrete, let's assume that the memory for function f n (

)

starts at location 0x100. In addition, we'll assume that i ntVa r is at address

0x102 and that pi ntVar is at 0x106. The layout here is simpler than the

actual results from the Layout program; however, the concepts are identical.

The first assignment stores the value of & i ntVa r (0x102) in the pointer vari-

able pi ntVa r. The second assignment in the small program snippet says

store 10 in the location pointed at by pi ntVar. The value 10 is stored in the

address contained in pi ntVar, which is 0x102 (the address of intVar).

Comparing pointers and houses

A pointer is much like a house address. Your house has a unique address.

Each byte in memory has an address that is unique. A house address is made
up of both numbers and letters. For example, my address is 123 Main Street

(of course, it isn't— I lied — I don't want stalkers, unless, of course, they

were female stalkers). An address in memory is just a series of numbers (like

123456). For reasons of convenience, computer addresses are generally writ-

ten in hexadecimal, but that's immaterial.

You can store a couch in the house at 123 Main Street — you can store a

number in the byte located at 0x123456. Alternatively, you can take a piece of

paper and write down an address — I don't know, say, 123 Main Street. You
can now store a couch at the house with the address written down on the

piece of paper. In fact, this is the way delivery people work— their job is to

deliver a couch to the address written down on the shipping orders whether

it's 123 Main Street or not. (I'm not maligning delivery people — they have

brains — it's just that this is more or less the way things work.)

In C++, this is written (loosely speaking):

House myHouse;
House* houseAddress

;

houseAddress = &myHouse;
*houseAddress = couch;

In humanspeak. you would say myHouse is a House. houseAddress is the

address of a House . Assign the address of myHouse to the House pointer.

houseAddress. Now store a couch at the house located at the address stored

in houseAddress.

Chapter 8: Taking a First Look at C++ Pointers / [)y

Having said all that, let's look at the i nt and int* version of that:

int mylnt;
int* intAddress;
intAddress = &mylnt;
*intAddress = 10;

That is, mylnt is an i nt. i ntAddress is a pointer to an i nt. Assign the

address of mylnt into the pointer i ntAddress. Finally, assign 10 to the i nt

pointed at by i ntAddress.

Using different types of pointers

Every expression has a type as well as a value. The type of the expression

i ntVar expression is pointer to an integer, written as i nt*. Comparing this

with the declaration of pi ntVar, you see that the types match exactly:

int* pintVar = &intVar; // both sides of the assignment are
// of type int*

Similarly, because pi ntVar is of type i nt*, the type of *pi ntVar is i nt.

*pintVar = 10; // both sides of the assignment are
// of type int

The type of the thing pointed to by pi ntVa r is i nt . This is equivalent to

saying that if houseAddress is the address of a house, then the thing pointed

at by houseAddress must be a house. Amazing, but true.

Pointers to other types of variables are expressed the same way:

double doubleVar;
double* pdoubleVar = &doubleVar;
*pdoubleVar = 10.0;

A pointer on a Pentium class machine takes four bytes no matter what it

points to. That is, an address on a Pentium is four bytes long, period.

Matching pointer types is extremely important. Consider what might happen
if the following were allowed:

int n 1

;

int* pintVar;
pintVar = &nl;
*pintVar = 100.0;

The second assignment attempts to store the eight-byte double value

100.0 into the four-byte space allocated for n 1 . Actually, this isn't as bad as it

7 \)lX Part " : Becoming a Functional Programmer

looks — C++ is smart enough to demote the constant 100.0 to an i nt before

making the assignment.

It is possible to cast one type of variable into another:

int i V a r

;

double dVar = 10.0;
i Var = (i nt)dVar ;

Similarly, it is possible to cast one pointer type into another.

int* piVar;
double dVar = 10.0;
double* pdVar;
piVar = (int*)pdVar ;

Consider, however, what catastrophes can arise if this type of casting about

of pointers were to get loose. Save a variable into an area of the wrong size

and nearby variables can be wiped out. This is demonstrated graphically in

the following LayoutError program.

// LayoutError - demonstrate th<3 results of
II a messing up a pointer usage
#incl ude <stdio. h>

#incl ude <i ostream h>

i nt
i

ma i n (int intArgc, char* pszArgs [])

i

i nt upper = 0;

int n 0;

int lower = 0;

// output the values of the three variables before...
cout << "upper = " << upper << "\n";
cout << "n = " << n << "\n":
cout << "lower = " << lower << "\n":

// now store a double into the space
// al located for an int
cout << "\nPenForming assigiiment of double\n"

;

doubl e* pD = (double*)&n;
*pD 13.0:

// display the resul ts

cout << "uppe * = " << upper << "\n" ;

cout << "n = " ^< n << "\n":

cout << "lower = " << lower << "\n":

1

return 0;

Chapter 8: Taking a First Look at C++ Pointers

The first three lines in ma i n () declare three integers in the normal fashion.

The assumption made here is that these three variables are laid out next to

each other.

The next three executable lines output the value of the three variables. Not

surprisingly, all three variables display as 0. The assignment *pD = 13.0;

stores the double value 13.0 into the integer variable n. The three output

statements display the values of all three variables after the assignment.

After assigning the double value 13.0 into the integer variable n, n itself is not

modified at all; however, the nearby variable upper is filled with a garbage

value. This is not good.

The house equivalent goes something like this:

House* houseAddress = &
" 1 2 3 Main Street";

Hotel* hotel Address

;

hotelAddress = (Hotel*)houseAddress

;

*hotelAddress = TheRitz;

houseAddress is initialized to point to my house. The variable

hotel Address is a pointer to a hotel. Now, the house address is cast into the

address of a hotel and saved off. Finally, The Ritz is plopped down on top of

my house. Because The Ritz is a lot bigger than my house (Okay, slightly

bigger than my house), it isn't surprising that TheRitz wipes out my neigh-

bors' houses as well.

The type of the pointer saves the programmer from stuffing an object into a

space that is too big or too small. The assignment *pintVar = 100.0; actu-

ally causes no problem — because C++ knows that pi ntVar points to an i nt,

C++ knows to demote the 100.0 into an i nt before making the assignment.

Passing Pointers to Functions
One of the uses of pointer variables is in passing arguments to functions. To
understand why this is important, you need to understand how arguments

are passed to a function.

Passing by Value

You may have noticed that it is not normally possible to change the value of a

variable passed to a function from within the function. Consider the following

example code segment:

106 Part II: Becoming a Functional Programmer

voi d fn(int intArg)
i

}

intArg =

// value
10;

of intArg at this P'Dint is ,0

voi d parent(void)

t

}

i nt n 1 =

fn(nl);
// value

0;

of nl at this poirit is

Here the pa rent () function initializes the integer variable n 1 to zero. The
value of nl is then passed to f n (). Upon entering the function, i ntArg is

equal to 10, the value passed, f n () changes the value of i ntArg before

returning to pa rent (). Perhaps surprisingly, upon returning to pa rent (),

the value of n 1 is still 0.

The reason is that C++ doesn't pass a variable to a function. Instead. C+^

passes the value contained in the variable at the time of the call. That is. the

expression is evaluated, even if it just a variable name, and the result is passed.

It is easy for a speaker to get lazy and say something like, "Pass the variable x

to the function f n ()
." This really means to pass the value of the expression x.

Passing pointer Values

Like any other intrinsic type, a pointer may be passed as an argument to a

function:

void fn(int*
<

pintAi~g)

t

*pintArg =

}

10;

void parents
i

/oid)

t

i n t n =

fn(&i);

}

//

//

this
now

pa:

the
sses
val

tr

ue

ie i

of

idd

n

ress of i

is 10

In this case, the address of n is passed to the function f n {) rather than the

value of n. The significance of this difference is apparent when you consider

the assignment within fn().

Chapter 8: Taking a First Look at C++ Pointers

Suppose n is located at address 0x102. Rather than the value 10, the call

f n(&n) passes the value 0x102. Within fn(), the assignment *pi ntArg = 10

stores the value 10 into the i nt variable located at location 0x102, thereby

overwriting the value 0. Upon returning to pa rent (), the value of n is 10

because n is just another name for 0x102.

Passing by reference

C++ provides a shorthand for the above— a shorthand that doesn't involve

the hassle of dealing with pointers yourself. In the following example, the

variable n is passed by reference.

In passed by reference, the parent function passes a reference to the variable

rather than the value. Reference is another word for address.

void fn(int& i ntArg)
{

i ntArg = 10;

void parent(void)
{

i nt n = 0;

fn(n)

}

// here the value of n is 10

In this case, a reference to n is passed to f n () rather than the value. The
f n () function stores the value 10 into i nt location referenced by i ntArg.

Notice that reference is not an actual type. Thus, the function's full name is

fn(int) and not fn(int&).

Making Use of a Block of Memory
Catted the Heap

The heap is an amorphous block of memory that your program can access as

necessary. This section describes why it exists and how to use it.

Just as it is possible to pass a pointer to a function, it is also possible for a

function to return a pointer. A function that returns the address of a doubl e

would be declared as follows:

double* fn(void) ;

108 Part II: Becoming a Functional Programmer

However, one must be very careful when returning a pointer. In order to

understand the dangers, you must know something about variable scope.

(No, I don't mean a variable zoom rifle scope.)

Limiting scope

C++ variables have a property in addition to their value and type known
as scope. Scope is the range over which a variable is defined (and not a

mouthwash!).

Consider the following code snippet:

// the following variable is accessible to
// all functions and defined as long as the
// program is running(gl obal scope)
int intGl obal

;

// the following variable intChild is accessible
// only to the function and is defined only
// as long as C++ is executing childO or a

// function which child() calls (function scope)
void child(void)
{

int intChild;

// the following variable intParent has function
// scope
void parent(void)
{

int intParent = 0;

fn();

int intLater = 0;

intParent = intLater;

int main(int nArgs, char* pArgs[])
{

parent()

:

Execution begins with ma i n () . The function ma i n(] immediately invokes

pa rent(). The first thing that the processor sees in pa rent v is the declara-

tion of i ntParent. At that point, i ntParent goes into scope — that is.

i ntParent is defined and available for the remainder of the function

parent().

The second statement in parent!) is the call to child(). Once again, the

function chi 1 dO declares a local variable, this time i ntChi 1 d. The variable

Chapter 8: Taking a First Look at C++ Pointers / (/y

i ntChi 1 d is within the scope of chi 1 d(). Technically intParent is not

within the scope ofchildObecause childO doesn't have access to

intParent; however, the variable intParent continues to exist.

When chi 1 d () exits, the variable i ntChi 1 d goes out of scope. Not only is

i ntChi 1 d no longer accessible, but it no longer even exists. (The memory
occupied by i ntChi 1 d is returned to the general pool to be used for other

things.)

As p a r e n t () continues executing, the variable i n t L a t e r goes into scope at

the declaration. At the point that pa rent () returns to mai n(), both

intParent and i n t L a t e r go out of scope. The programmer may declare a

variable outside of any function. This type of variable, known as a global vari-

able, remains in scope for the duration of the program.

Because i ntGl oba 1 is declared globally in this example, it is available to all

three functions and remains available for the life of the program.

Examining the scope problem

The following code segment compiles without error but does not work:

double* child(void)
{

double dLocal Variable;
return &dLocal Variable;

}

void parent(void)
{

double* pdLocal ;

pdLocal = child()

;

*pdLocal - 1.0;

The problem with this function is that dLocal Vari abl e is defined only

within the scope of the function f n () . Thus, by the time that the memory
address of d L o c a 1 V a r i a b 1 e is returned from chi 1 d () , it refers to a variable

that no longer exists. The memory that dLocal Variable formerly occupied

is probably being used for something else.

This is a very common error because it can creep up in a number of different

ways. Unfortunately, this error does not cause the program to instantly stop.

In fact, the program may work perfectly well most of the time— as long as

the memory formerly occupied bydLocalVariableis not reused immedi-
ately, the program continues to work. Such intermittent problems are the

most difficult to solve.

/ / (/ Part II: Becoming a Functional Programmer

Providing a solution usinq the heap
The scope problem originated from the fact that C++ returned the locally

defined memory before the programmer was ready. What is needed is a block

of memory controlled by the programmer. She can allocate the memory and
put it back when she wants to — not because C++ thinks it a good idea. Such

a block of memory is called the heap.

Heap memory is allocated using the new command followed by the type of

object to allocate. For example, the following allocates a doubl e variable off

the heap.

doub le* chi ld(void)

double* pdLocal Variabl e == new double;
return pdLocal Vari abl e

;

Although the variable pdLocal Variable goes out of scope when the func-

tion chi 1 d () returns, the memory to which pdLocal Vari abl e refers does

not. A memory location returned by new does not go out of scope until it is

explicitly returned to the heap using the del ete command:

void parent(void)
{

// chi 1 d () returns the address of a block
// of heap memory
double* pdMyDouble = childO;

// store a value there
*pdMyDouble =1.1;

// ...

// now return the memory to the heap
delete pdMyDouble;
pdMyDouble = 0;

// ...

Here the pointer returned by chi 1 d() is used to store a double value. Once
the function is finished with the memory location, it is returned to the heap.

The function parent() sets the pointer to zero once the heap memory has

been returned — this is not a requirement, but a very good idea. If the pro-

grammer mistakenly attempts to store something in * pdMyDoubl e after the

del ete, the program will crash immediately.

A program that crashes immediately upon encountering an error is much
easier to fix that one that is intermittent in its behavior.

Chapter 9

Taking a Second Look

at C++ Pointers

In This Chapter

Introducing mathematical operations on character pointers

Examining the relationship between pointers and arrays

Applying this relationship to increase program performance

Extending pointer operations to different pointer types

Explaining the arguments to mainQ in our C++ program template

C++
allows the programmer to operate on pointer variables much as she

would on simple types of variables. (The concept of pointer variables is

introduced in Chapter 8.) Applying operations on pointers has some pro-

found implications that will be presented in this chapter.

Defining Operations on Pointer Variables

Some of the same operators discussed in Chapter 3 may be applied to pointer

types. This section examines the implications of this both to pointers and to

the array types (arrays are presented in Chapter 7). Table 9-1 lists the three

fundamental operations that are defined on pointers.

Table 9-1 The Three Operations Defined on Pointer Types

Operation Result Meaning

pointer + offset pointer Calculate the address of the

object integer entries from

poi nter

(continued)

112 Part II: Becoming a Functional Programmer

Table 9-1 (continued)

Operation Result Meaning

pointer - offset pointer The opposite of addition

pointer2 - pointerl offset Calculate the number of

entries between poi nter2
and pointerl

Here of f set is of type int. (Although not listed in Table 9-1. operators closely

related to addition and subtraction, such as ++ and += are also defined.)

The real estate memory model (used so effectively in Chapter 8. if I don't say

so myself) is useful to explain how mathematical operations on pointers

work. Consider a city block in which all houses are numbered sequentially.

The house next to 123 Main Street would have the address 124 Main Street

(or 122 if you go backward, like the left-handed and the British).

Now it's pretty clear that the house four houses down from 123 Main Street

must be 127 Main Street; thus, it would be called 123 Main + 4 = 127

Ma i n. Similarly, if I were to say how many houses are there from 123 Main to

127 Main, the answer would be four — 127 Main - 123 Main = 4. Just as

an aside, a house is zero houses from itself: 123 Main - 123 Main = 0.

Re-examining arrays in light

of pointer Variables

Let's consider the strange and mysterious world of arrays. Once again, my
neighborhood comes to mind. An array is just like my city block. Each ele-

ment of the array corresponds to a house on that block. Here, however, the

array elements are measured by the number of houses from the beginning of

the block (the street corner). The house right on the corner is houses from

the corner, the house next to it is 1 house from the corner, etc. Thus,

ci tyBl ock[0] is the first house on the block, etc.

Now consider an array of 32 one-byte characters called charArray. If the first

byte of this array were stored at address Oxl 10, then the array would extend

over the range 0x110 through 0xl2f. While charArray [0] is located at address

0x110, charArray [1] is at 0x111, charArray [2] at 0x112 and so forth.

Make the next step to a pointer ptr variable. After executing the expression:

ptr = &charArray[0]

:

the pointer ptr contains the address 0x110. Addition of an integer offset to a

pointer is defined such that the relationships shown in Table 9-2 are true.

Chapter 9: Taking a Second Look at C++ Pointers / /3

Table 9-2 also demonstrates why adding an offset n to ptr calculates the

address of the nth element in charArray.

Table 9-2 Adding Offsets

Offset Result Corresponds to

+ 0x110 charArray[0]

+ 1 0x111 charArray[1]

+ 2 0x112 charArray[2]

+ n 0x110+ n charArray[n]

rfftNfi

The addition of an offset to a pointer is similar to applying an index to an array.

Thus, given that:

char* ptr = &charArray[0] ;

then

*(ptr + n) corresponds with charArray[n]

Because * has higher precedence than addition, * ptr + n adds n to the

character that ptr points to. The parentheses are needed to force the addi-

tion to occur before the indirection. The expression *(ptr + n) retrieves

the character pointed at by the pointer ptr plus the offset n.

In fact, the correspondence between the two forms of expression is so strong

that C++ considers array[n] nothing more than a simplified version of *(ptr

+ n) where ptr points to the first element in array.

array[n] — C++ interprets as -> *(&array[0] + n)

In order to complete the association, C++ takes a second short cut. Given

char charArray[20] ;

then

charArray is defined as &charArray[0]

;

That is, the name of an array without any subscript present is the address of

the array itself. Thus, we can further simplify the association to

array[n] --> C++ interprets as --> *(array +• n)

Ill} Part II: Becoming a Functional Programmer

Applying operators to the

address of an array

The correspondence between indexing an array and pointer arithmetic is a

useful concept. (If it weren't a powerful concept, would I have brought it up?

Okay, you got me on that one, but it's powerful none the less.)

For example, a di spl ayArray() function used to display the contents of an

array of integers could be written as follows:

// di spl ayArray - di sp lay the members of an

// arra;/ of length nSize
voi d di spl ayArray (i nt intArray[]

,

int nSize)
i

cout <<
'

'The val ue of the arr ay is:\n";

for(i nt r) ; n < nSize; n++)

i

cout << tl <<
"

:
" << intA rray[n] << "\n";

}

1

cout <<
'\n"

This version uses the array operations with which you are familiar. A pointer

version of the same appears as follows:

// displayArray - display the members of an

// array of length nSize
void displayArray(int intArray[], int nSize)

{

cout << "The value of the array is:\n";

int* pArray = intArray;
fordnt n; n < nSize; n++, pArray++)
{

cout << n << ": " << *pArray << "\n";

I

cout << "\n";

The new di spl ayArray () begins by creating a pointer to an integer pArray

that points at the first element of i ntArray.

The p in the variable name indicates that the variable is a pointer.

The function then loops through each element of the array. On each loop,

di spl ayArray() outputs the current integer, that is, the integer pointed at

by pArray before incrementing the pointer to the next entry in intArray.

Chapter 9: Taking a Second Look at C++ Pointers / / f)

You may think that such a conversion is silly; however, the pointer version of

di spl ayArray () is more common that the array version. For some reason,

C++ programmers avoid the use of arrays.

The use of pointers to access arrays is nowhere more common than in the

accessing of character arrays.

Expanding pointer operations to a string

A string is simply a character array whose last character is a null. C++ uses

the null character at the end to serve as a terminator. This null terminated

array serves as a quasi-variable type of its own. (See Chapter 7 for an expla-

nation of string arrays.) Often C++ programmers use character pointers to

manipulate such strings. The following code examples compare this tech-

nique to the earlier technique of indexing in the array.

fctfBE/?

Contrasting pointer-based tiith array-based string manipulation

Character pointers enjoy the same relationship with a character array that any
other pointer and array share. However, the fact that strings end in a terminat-

ing null makes them especially amenable to pointer-based manipulation.

The concatStri ng() function in Chapter 7 concatenated two character

string arrays. The prototype for this function was declared as follows:

void concatString(char szTarget[], char szSource[]);

The prototype declaration describes the type of arguments, which the function

accepts, as well as the return type. This declaration appears the same as a

function definition with no function body.

In order to find the null at the end of the szTarget array, the concatStri ng()

function iterated through szTarget string using the following whi 1 e loop:

void concatString(char szTarget[], char szSource[])
{

// find the end of the first string
int intTargetlndex = 0;

whi le(szTarget [intTargetlndex])

}

//

intTargetIndex++;

/ / %) Part II: Becoming a Functional Programmer

fctfBE/?

Using the relationship between pointers and arrays, concatString() could

have been prototyped as follows:

void concatString(char* pszTarget, char* pszSource);

The sz refers to a string of characters that ends in a zero (null).

The pointer version ofconcatStringO contained in the program
ConcatenatePtr is written:

voi
i

d concatString(char* ps zTarget , char* pszSource)
i

// find the end of the fi rst string
whi

{

1

1 e(*pszTarget)

pszTarget-H-;

//

The whi 1 e loop in the array version of concatStri ng() looped until

szTarget[intTarget Index] was equal to zero. This version iterates

through the array by incrementing pszTa rget on each pass through the

loop until the character pointed at by pszTarget is null.

The expression ptr++ is a shortcut for ptr = ptr + 1.

Upon exiting the whi 1 e loop, pszTarget points to the null character at the

end of the szTarget string. It is no longer correct to say the array pointed at

by pszTarget since pszTarget no longer points to the beginning of the

array.

Completing the concatStrina () example

The following displays the complete ConcatenatePtr program:

// ConcatenatePtr - concatenate two strings
// with a " - " in the middle
// using pointer arithmetic
// rather than array subscripts
#include <stdio.h>
^include <iostream.h>

void concatString(char* pszTarget, char* pszSource);

int maind'nt nArg. char* pszArgs[])
{

// read f i rst string. .

.

char szStringl[256] :

cout << "Enter string #1:";
cin.getl ine(szStringl , 128):

Chapter 9: Taking a Second Look at C++ Pointers 7 7/

// ...now the second string...
char szString2[128];
cout << "Enter string #2:";
cin.getl ine(szString2 , 128);

// ...concatenate a " - " onto the first.
concatString(szStringl .

" - ");

// ...now add the second string...
concatString(szStringl , szString2)

;

// ...and display the result
cout << "\n" << szStringl << "\n";

return 0;

)

// concatString - concatenate* pszSource onto the
// end of* pszTarget
void concatString(char* pszTarget, char* pszSource:
{

// find the end of the first string
whi 1 e(*pszTarget)
{

pszTarget++;

// tack the second onto the end of the first
// (copy the null at the end of the source array
// as well - this terminates the concatenated
// array)
while(*pszTarget-H- = *pszSource++)

The ma i n () portion of the program does not differ from its array based

cousin. The concatStri ng() function is significantly different, however.

As noted, the equivalent declaration of concatStri ng() is now based on
char* type pointers. In addition, the initial whi 1 e() loop within

concatStri ng() searches for the terminating null at the end of the

pszTarget array.

The extremely compact loop that follows copies the pszSource array onto

theendofthepszTarget array. The w h i 1 e () clause does all the work, exe-

cutes as follows:

1. Fetch the character pointed at by pszSource.

2. Increment pszSource to the next character.

118 Part II: Becoming a Functional Programmer

3. Save the character in the character position pointed at by pszTarget.

4. Increment pszTarget to the next character.

5. Execute the body of the loop if the character is not null.

After executing the empty body of the while loop, control passes back up to

the whi 1 e() clause itself. This loop is repeated until the character copied to*

pszTarget is the null character.

Justifying pointer-based string manipulation

The sometimes-cryptic nature of pointer-based manipulation of character

strings might lead the reader to wonder, "Why?" That is, what advantage

does the char* pointer version of concatStri ng() have over the easier to

read index version?

The pointer version of concatenate () is much more common in C++ pro-

grams that the array version.

The answer is partially historic and partially human nature. When C, the

progenitor to C++, was invented, compilers were pretty simplistic. These
compilers could not perform the complicated optimizations that modern
compilers can. As complicated as it might appear to the human reader, a

statement such as Line 48 can be converted into an amazingly small number
of machine level instructions even by a stupid compiler.

Older computer processors were not very fast by today's standards. In the

old days of C, saving a few computer instructions was a big deal. This gave C
a big advantage over other languages of the day, notably Fortran, which did

not offer pointer arithmetic.

In addition to the efficiency factor, programmers like to generate clever pro-

gram statements to combat what can be a repetitively boring job. Once C+ +

programmers learn how to write compact and cryptic but efficient state-

ments, there is no getting them back to searching arrays with indices.

Do not generate complex C++ expressions in order to create a more efficient

program. There is no obvious relationship between the number of C++ state-

ments and the number of machine instructions generated. Compare the fol-

lowing two sets of expressions:

// this expression. .

.

*pszArrayl++ = ' \0'

;

// ...and this expression might generate the same
// amount of machine code
*pszArray2 = '\0'

;

pszArray2 = pszArray2 + 1:

Chapter 9: Taking a Second Look at C++ Pointers j I y

In the old days, when compilers were simpler, the first version might have
generated fewer instructions but the code generated should be identical

using today's optimizing compilers.

Applying operators to pointer

types other than char

It is not too hard to convince yourself that szTarget + n points to szTarget
[n] when szTarget is an array of chars. After all, a char occupies a single

byte. If szTarget were stored at 0x100, then the sixth element is located at

0x105.

It is not so obvious that pointer addition works in exactly the same way for

an i nt array because an i nt takes four bytes for each cha r's one byte. If the

first element in i ntArray were located at 0x100, then the sixth element

would be located at X114 (0x100 + (5 * 4) = 0x114).

Fortunately for us, array + n points at array[n] no matter how large a single

element of array might be. C++ takes care of the element size for us.

Once again our dusty old house analogy works here as well. (I mean dusty

analogy, not dusty houses.) The third house down from 123 Main is 126 Main,

no matter how large the houses might be.

Contrasting a pointer vOith an array

There are some differences between the address of an array and a pointer.

For one, the array allocates space for the data while the pointer does not:

void arrayVsPointer()

{

// allocate storage for 128 characters
char charArray[128] ;

// allocate space for a pointer but not for
// the thing pointed at

char* pArray;

Here charArray occupies 128 characters. pArray occupies only four bytes,

the amount of storage required by a pointer.

The following function does not work:

void arrayVsPoi nter()

120 Part II: Becoming a Functional Programmer

// this works fine
char charArray[128]

;

charArray[10] = '0'

;

*(charArray + 10) = '0'

// this does not work
char* pArray;
pArray[10] = '0'

;

*(pArray + 10) = '0'

;

The expressions charArray [10] and *(charArray + 1) are equivalent

and legal. The two expressions involving pArray don't make sense. While

they are both legal to C++, the uninitialized pointer pArray contains some
random value. pArray has not been initialized to point to an array such as

charArray so that both pArray[10] and the equivalent *(pArray + 10)

reference garbage.

The mistake of referencing memory with an uninitialized pointer variable is

generally caught by the CPU when the program executes, resulting in the

dreaded segment violation error that you see from time to time issuing from

your favorite applications under your favorite, or not so favorite, operating

system.

A second difference between a pointer and the address of an array is the fact

charArray is a constant while pArray is not. Thus, the following for loop

used to initialize the array charArray does not work:

void arrayVsPointer()

{

char charArray[10]

;

for (int i =0; i < 10; i++)

{

*charArray = '\0'; // this makes sense...
charArray++; // ...this does not

The expression charArray++ makes no more sense than 10++. The following

version is correct:

void arrayVsPointer()

{

char charArray[10]

;

char* pArray = charArray:
for (int i =0; i < 10: i++)

{

*pArray - '\0'; // this works great
pArray++;

Chapter 9: Taking a Second Look at C++ Pointers #27

Declaring and Using Arrays of Pointers

If pointers can point to arrays, then it seems only fitting that the reverse

should be true. Arrays of pointers are a type of array of particular interest.

Just as arrays may contain other data types, an array may contain pointers.

The following declares an array of pointers to i nts.

int* pIntsCIO] ;

Given the above declaration, pnlnt[0] is a pointer to an int value. Thus, the

following is true:

void fn(

)

{

int n 1

;

int* plnts[3]

;

plnts[0] = &nl;
*plnts[0] = 1;

}

or

void fn(

)

{

int nl, n 2 , n3;

int* plnts[3] =

for (int i = 0;

{

*plnts[i] =

}

}

{&nl,&n2,&n3};
i < 3; i++)

0;

or even

void fn()

{

int* plnts[3] =

for (int i = 0;

{

*plnts[i] =

{ (new int)

,

(new int)

,

(new int) }

;

i < 3; i++)

0;

The latter declares three i nt objects off the heap.

The most common use for arrays of pointers is to create arrays of character

strings. The following two examples show why arrays of character strings are

useful.

/ ££ Part II: Becoming a Functional Programmer

&m

Utilizing arrays of character strings

If C++ supports arrays of pointers, then arrays of pointers to arrays must be

possible. You could take this recursion as far as you want ("arrays of pointers

to arrays of pointers to. . . "). A case of particular interest is an array of point-

ers to character strings. (Remember that a string is nothing more than a spe-

cial type of character array.)

Suppose I need a function that returns the name of the month corresponding

to an integer argument passed it. For example, if the program is beyond the

value 1, it responds by returning a pointer to the string January. The month
is assumed to be invalid as are any numbers greater than 12.

1 could write the function as follows:

// int2month() - return the name of the month
char* int2month(int nMonth)
i
i

char* pszReturnVal ue;

swi tch(nMonth)
t

case 1: pszReturnVal ue = "January" ;

break;
case 2: pszReturnVal ue = "February"

;

break
;

case 3: pszReturnValue = "March" ;

break;
// ... and so forth. .

.

default: pszReturnValue =

i

= "invalid";

return pszReturnValue;
}

The swi tch () control command is like a sequence of i f statements.

A more elegant solution uses the integer value for the month as an index into

an array of pointers to the names of the months. In use, this appears as follows:

// int2month() - return the name of the month
char* int2month(int nMonth)
{

// first check for a value out of range
if (nMonth < 1

|

| nMonth > 12)

(

return "invalid";

// nMonth is valid - return the name of the month

Chapter 9: Taking a Second Look at C++ Pointers / £j

char* pszMonths[] = {"invalid",
"January" ,

"February" ,

"March" ,

"Apri 1

"

,

"May",
"June"

.

"July",
"August"

,

"September"
"October"

,

"November"

,

"December"

}

return pszMonths[nMonth]

;

Here i nt2month() first checks to make sure that nMonth is a number
between 1 and 12, inclusive (the defaul t clause of the switch statement

handled that for us in the previous example). If nMonth is valid, the function

uses it as an offset into an array containing the names of the months.

Accessing the arguments to main ()

First argument to mainQ is an array of pointers to strings. These strings con-

tain the arguments to the program itself. The arguments to a program are the

strings that appear with the program name when you launch it. For example,

suppose I entered the following command at the MS-DOS prompt:

MyProgram file.txt /w

MS-DOS executes the program contained in the file MyProgram. exe , passing

it the arguments file, txt , and /w. Switch arguments beginning with a slash

(/) or a dash (-) are treated like any other — it is left up to the program to

interpret them. However, arguments beginning with <, >, >>, or I I have spe-

cial interest to MS-DOS and Unix and are not passed as arguments to the pro-

gram.

The use of the term arguments is a little confusing. The arguments to a pro-

gram and the arguments to a C++ function follow a different syntax but the

meaning is the same.

The variable pszArgs passed to mai n() is an array of pointers to the argu-

ments to the program while nArg is the number of arguments.

Consider the following simple program:

// PrintArgs - write the arguments to the program
// to the standard output

/ 2u Part II: Becoming a Functional Programmer

^include <stdio.h>
^include <iostream.h>

int main(int nArg, char* pszArgs[])
{

// print a warning banner
cout << "The arguments to " << pszArgs[0] << "\n"

// now write out the remaining arguments
for (int i = 1; i < nArg; i++)

{

cout << i << ":" << pszArgs[l] << "\n";

// that's it

cout << "That's it\n";
return 0;

As always, the function ma i n () accepts two arguments. The first argument is

an int that I have been calling nArgs. This variable is the number of argu-

ments passed to the program. The second argument is an array of pointers of

type char* which I have been calling pszArgs. Each one of these char* ele-

ments points to an argument passed to the program.

If I executed the Pri ntArgs program as follows:

PrintArgs argl arg2 arg3 /w

from the command line of an MS-DOS window nArgs would be 5 (one for each

argument). The first argument is the name of the program itself. Thus.

pszArgs[0] points to PrintArgs. The remaining elements in pszArgs point to

the program arguments. The element pszArgs [1] points to argl.

pszArgs [2] to arg2, for example. Because MS-DOS does not place any signifi-

cance on /w, this string is also passed as an argument to be processed by the

program.

Chapter 10

Remaining Functional Features

In This Chapter

Separating programs into multiple modules

Adding files to a project

Using the #include directive

Other preprocessor commands

71^ any programs are small enough that they can fit comfortably in a

V 1 single .cpp source file. For most "industrial strength" programs, this

would be a severe limitation. This chapter examines how to break up a pro-

gram into multiple .cpp files, each of which can be written, examined, and
compiled on its own.

Breaking Programs Apart)
The programmer can break a single program into separate source files gener-

ally known as modules. These modules are compiled separately and then

combined during the build process to generate a single program.

The process of combining separately compiled modules into a single exe-

cutable is called linking.

Breaking programs into smaller, more manageable pieces has several advan-

tages. First, breaking a program into modules reduces the compile time. Both

GNU C++ and Visual C++ take but seconds to gobble up the small programs

that appear in this book and spit out an executable program. Very large pro-

grams can take quite some time to build. I've worked on projects that took

most of the night to rebuild.

Rebuilding an entire program every time even a single function changes is an

awful waste. It's much better to recompile a single module (which may contain

more than just the one function, but not that many more).

126 Part II: Becoming a Functional Programmer

Second, it's easier to comprehend and, therefore, easier to write and debug a

program that consists of a number of well-thought-out modules, each of

which represents a logical grouping of functions. A large, single source

module full of all the functions that a program might use quickly becomes
hard to keep straight ("hard to get your arms around," so to speak).

Finally comes reuse. A module full of common routines that have been sepa-

rated from the main application may find application in future programs.

Looking at a Large Program
I can't really include a large program in a book like this . . . well. I could, but

there wouldn't be enough room left in the book for my dry and subtle yet

humorous wit. (Maybe I should have just put in the large program and left it

at that.) The FunctionDemo program from Chapter 6 will serve as an example

large program.

The module FunctionDemo.cpp appears as follows:

// FunctionDemo - demonstrate the use of functions
// by breaking the inner loop of the
// NestedDemo program off into its own
// function

#include <stdio.h>
^include <iostream.h>

// sumSequence - add a sequence of numbers entered from
// the keyboard until the user enters a

// negative number.
// return - the summation of numbers entered
int sumSequence(void)

(

// loop forever
int nAccumulator = 0;

for(;;)

{

// fetch another number
int n Value = 0;

cout << "Enter next number: "

:

cin >> nValue;

// if it's negative. .

.

if (nValue < 0)

// ...then exit from the loop
break:

I

Chapter 10: Remaining Functional Features 12/

II ...otherwise add the number to the
// accumulator
nAccumulator = nAccumulator + nValue;

// return the accumulated value
return nAccumulator;

int main(int nArg, char* pszArgs[])
{

cout << "This program sums multiple series\n"
<< "of numbers. Terminate each sequence\n"
<< "by entering a negative number. \n"

<< "Terminate the series by entering two\n"
<< "negative numbers in a row\n";

// accumulate sequences of numbers...
int nAccumul atedVal ue;

do

{

// sum a sequence of numbers entered from
// the keyboard

cout << "\nEnter next sequence\n";
nAccumul atedVal ue = sumSequence()

;

// now output the accumulated result
cout << "\nThe total is

"

<< nAccumul atedVal ue
<< "\n";

// ...until the sum returned is

) while (nAccumul atedVal ue != 0);

cout << "Program termi nating\n" ;

return 0;

As with many other programs in this book, FunctionDemo adds a sequence of

numbers that the user types. It differs from some of its brethren in that

main() calls a function sumSequence() to actually perform the work of

adding up the sequence of numbers entered.

Examining the bitfided

Functionbemo Program
The module FunctionDemo.cpp is logically divided into two functions that

perform different roles. The function ma i n () prompts the user with an entire

paragraph before entering into a loop that accumulates and outputs the sum

/ 28 Part " : Becoming a Functional Programmer

of a sequence of numbers. The function sumSequence() sums the sequence

of numbers and returns their sum.

The program could be divided along these lines: the module that actually

accumulates sums of numbers and that which uses this function to add a

sequence of numbers input from the keyboard and output this information to

the user.

To demonstrate the point, I break the following version of the FunctionDemo
program into two parts: the first containing the function sumSequence(), and
the second containing the function ma i n ()

.

The example program here is pretty small. Although the sumSequence(

)

function may be worth separating for use in the future, you certainly wouldn't

break FunctionDemo into two parts in order to reduce compile time or

reduce complexity. This example merely demonstrates the mechanics of

dividing a program into multiple modules.

Separating off the sumSequence module

The sumSequence() function is easily separable from the rest of the

FunctionDemo module. The following SeparateModule.cpp file contains the

sumSequence() function in a single, standalone module:

// Separ'ateModule - demonstrate how prog rams can be

II broken into multiple modiiles to

II make them easier to write ! and test;
II this module contains the function
II that main() calls

#incl ude ; <stdio.h>
#incl ude i <iostream.h>

II sumSeiquence - add a sequence of numbe rs entered from
II the keyboard until the user enters a

II negative number.
II return - the summation of numbers entered
i nt sum5iequence(ostream& out, istream& in)

1

// 1 oop forever
i nt nAccumulator = 0;

for(: :)

{

// fetch another number
int nValue = 0:

out << "Enter next number
in > nValue;

// if it's negative. .

.

.
-.

Chapter 10: Remaining Functional Features 12y

if (nValue < 0)
i

t

// ...then exit from the loop

}

break;

// ...otherwise add the number to the
// accumul ator
nAccumul ator = nAccumulator + nVa'

}

ue;

// return the accumulated value

}

return nAccumul ator

;

The framework for SeparateModule.cpp is the same as the one I use for all of

the programs (maybe SeparateModule isn't all that separate). The only real

difference is the absence of a ma i n () function. If you tried to build this

module, it would compile fine, but it would generate a "can't find no ma i n (

)

function" error during the final build phase.

The final phase of the build process is known as the link phase because this

is where the different modules are linked together into one executable.

The function sumSequence() appears almost the same as it did in the

FunctionDemo program from Chapter 9 with one difference. The older version

input its data from cin and output to cout. We want sumSequence() to be as

generic as possible. Rather than input from a fixed object, this version accepts

input from an input object and outputs to the output object passed to it.

The c i n object you've seen up to now is a type of istream but so are input

files other than standard input. By specifying a generic i stream object that

the calling function provides, this version of sumSequence() can be used to

read other types of input including external files. The same flexibility is true

of the ostream object as well. See Chapter 26 for a more detailed discussion.

It may seem like unnecessary confusion to pass the input and output objects

to sumSequence().

Don't forget, eschew obfuscation!

You should go out of your way to write functions as flexible as possible if you
think that you may be reusing them in future programs.

/ 3v Part " : Becoming a Functional Programmer

Generating the remnant MainFunction.cpp

module

With sumSequence() safely stored off in a separate module, MainModule.cpp
is left with only the main() function:

// MainModule - demonstrate how programs can be
// broken into multiple modules to make
// them easier to write and test;
// this module contains the main() function

^include <stdio.h>
#include <iostream.h>

// provide prototypes for external functions
int sumSequence(ostream& out, istream& in);

int main(int nArg, char* pszArgs[])
{

cout << "This program sums multiple series\n"
<< "of numbers. Terminate each sequence\n"
<< "by entering a negative number. \n"

<< "Terminate the series by entering two\n"
<< "negative numbers in a row\n";

// accumulate sequences of numbers...
int nAccumulatedVal ue;

do

{

// sum a sequence of numbers entered from
// the keyboard
cout << "\nEnter next sequence\n";
nAccumul atedVal ue = sumSequence(cout, cin);

// now output the accumulated result
cout << "\nThe total is

"

<< nAccumulatedValue
<< "\n";

// ...until the sum returned is

} while (nAccumulatedValue != 0):
cout << "Program terminating\n" ;

return 0;

Other than the absence of the sumSequence() function, the only difference is

the addition of the function prototype.

int sumSequence(ostream& out, istream& in);

Chapter 10: Remaining Functional Features #3 /

Chapter 6 describes the function prototype.

Without the presence of the actual function, the programmer must include a

prototype to describe the interface to sumSequence().

Creating the project fite

You can now open the two source files SeparateModule.cpp and
MainModule.cpp in the rhide editor. With both files open, click the Make
command from the Compile menu (or press F9). rhide compiles both files and
links them into a single program which is gives the unlikely name of aout.exe.

(You can rename it to whatever you want later.)

Creating a project file under GNU C++
The approach of keeping all relevant modules open in the rhide editor has

one advantage: It's very easy. This can be a disadvantage, however, if the

number of modules that make up the program is large.

A more flexible approach is to create a file that tells rhide which files to link

together to build the program. Such a file is called the project file.

Follow these steps to create a project file under rhide:

1. Close any open files and then choose Projects Open Project.

2. Type Separate for the project name (the name isn't actually impor-
tant — you can choose any name you want).

A project window with the single entry <empty> opens along the bottom
of the display.

3. Choose Projects Add Item.

A window opens, showing you the files in the current directory.

4. Click the file MainModule.cpp to open it.

Repeat for SeparateModule.cpp.

5. Click Cancel to close the add window. This completes the creation of

the Project Separate.

6. Select Make under the Compile menu to create the program
Separate.exe.

Another advantage to project files is that they give rhide a place to store off

properties about the program, rhide project files don't include a lot of infor-

mation, however, Visual C++ stores a lot of information.

#32 Part " : Becoming a Functional Programmer

Creating a project file under Visual C++
You may be using your own Visual C++ environment to build the programs in

this book. Here are the steps for creating a Visual C++ project file:

1. Choose File 1" Close Workspace to close any project files you opened
previously. (A workspace is the Microsoft name for a collection of

project files.)

2. Open the MainModule.cpp source file and click the compile button.

(Notice that I did not say "the make button.")

If you do accidentally click Make, it won't hurt anything but the program
won't link properly.

3. Visual C++ now asks you whether you want to create a Project file.

This is because Visual C++ cannot operate on a C++ file without a pro-

ject file of some type. Click Yes.

You now have a project file containing the single source file

SeparateModule.cpp.

4. If it's not already opened, open the Workspace window and select

Workspace under View.

You should see a window open up with two tabs at the bottom: one
marked Class View and the other marked File View. These two tabs pro-

vide two different ways of looking at the contents of the project. The file

view lists the .CPP modules which make up the program.

5. Switch to the File view by clicking on the tab marked FileView within

the Project window.

6. Right-click on MainModule files. A drop-down window appears.

This drop-down lists the files that make up the MainModule project.

Right now MaiModule.cpp is the only file list.

7. Select Add Files to Project. An "Open File" menu appears.

This menu is similar to that which appears when you open a file in

Microsoft Word.

8. From the menu, open the SeparateModule.cpp source file to add the

file to the project.

Both MainModule.cpp and SeparateModule.cpp should now appear in

the list of functions that make up the project.

9. Click Build to build the program with the new project.

Chapter 10: Remaining Functional Features /33

\ndudinq the ^include Directive

MainModule had to include a prototype for the sumSequence() function in

order to let ma i n () know how to call it. Unfortunately, it's all too easy to

make a mistake when including such a prototype. Worse yet, what if multiple

modules use sumSequence()? The programmer needs to enter a prototype

declaration into each of the using modules. And what if the various proto-

types disagree, probably due to some careless error?

C++ provides a mechanism to handle such a situation. The programmer can

create a single file that can be "included" into other files at compile time.

Include files work as follows:

1. Create a file SeparateModule.h containing the prototype declaration for

sumSequenceO- It's a convention that the name of an include file end
in .h:

// SeparateModule.h - include the prototype declarations
// for functions contained within
// SeparateModule.cpp
int sumSequence(ostream& out, istream& in);

2. Edit MainModule.cpp to include SeparateModule.h in place of the proto-

type declaration. (This file is included on the enclosed CD-ROM as

MainModulelnclude.cpp.)

// MainModule- demonstrate how programs can be
// broken into multiple modules to make
// them easier to write and test;
// this module contains the main() function

//include <stdio.h>
//include <iostream.h>

// include external prototypes and declarations
//include "SeparateModule.h"

int main(int nArg, char* pszArgs[])

The ^include directive tells C++ to insert the contents of the file

SeparateModule.h into the file being compiled. Thus, what the compiler sees

after the insertion is identical to what it saw before.

The directive ttinclude must start in column one.

Including the same .h file more than once in the same module can happen
more often that you would think. One include includes another that includes

a third and a fourth and before you know it, you've included the same file.

/j 11 Part II: Becoming a Functional Programmer

This is not a problem as long as the .h file includes only #defines and function

prototypes. It is considered bad form for an include file to define a global

variable or contain the implementation of a function.

You can avoid the multiple include problem by using another pound com-
mand called #ifdef. This command says include the remainder of the com-
mands up to an #endif, if the following #define has been defined.

(Alternatively, #ifndef is the inverse operations: if NOT def.)

II Mylnc:1 ude. h

II check; to see if some #def '

i n e h a 5 i al ready bisen

II defined if not then this is the first time that
II thi s include file has been encountered during
II compi 1 at ion
#ifndef MyModul e_h

// now clefine MyModu'le_ h to signal that we've been by

II this way before
#def i ne MyModul e_h

// now iiut whatever you want in your include file

II cl ose i the #ifndef at the end of the file
#endif

These checks are performed during the compilation of the module and not

during the execution of the program.

Usinq the Standard C++ Library

Now you can see why I include the directives ^include <stdio. h> and ^include

<iostream.h> in my programs. These include files contain the definitions for

functions that I've been using, such as cin>.

Notice that the standard C++ defined .h files are included using the <> brack-

ets while locally defined .h files are defined using the quote commands. The
only difference between the two is that C++ looks for files contained in quotes

starting with the "current" directory (the directory containing the project

file) while C++ begins the search for bracketed files in the C + + include file

directories. Either way, the programmer controls the directories searched via

project file settings.

Chapter 11

Debugging C++

In This Chapter

Differentiating the types of errors

Understanding "crash messages"

Choosing the write statement debugging technique

Mastering the debugger tool

I #ou may have noticed that your programs often don't work the first time.

Jr In fact, I have seldom, if ever, written a nontrivial C++ program that

didn't have some type of error the first time I tried to execute it.

That leaves you with two alternatives: You can abandon a program that has

an error or find and fix the error. This chapter assumes you'll use the latter

approach: In this chapter, you find out how to track down and eradicate soft-

ware bugs.

Identifying Types of Errors

Two types of errors exist — those that the C++ compiler can catch on its own
and those that the compiler can't catch. Errors that C++ can catch are known
as compile-time errors. Compile-time errors are relatively easy to fix because
the compiler generally points you to the problem. Sometimes the description

of the problem isn't quite correct (it's easy to confuse a compiler) but after

you learn the quirks of your own C++ environment, understanding its com-
plaints isn't too difficult.

Errors that C++ can't catch show up as you try to execute the program. These
are known as run-time errors. Run-time errors are harder to find than compile-

time errors because you have no hint of what's gone wrong except for what-

ever errant output the program might generate. "Errant" is the key word here.

/3v Part " : Becoming a Functional Programmer

You can use two different techniques for finding bugs. You can add output

statements at key points. You can get an idea of what's gone wrong with your

program as these different output statements are executed. A second
approach is to use a separate program called a debugger. A debugger enables

you to control your program as it executes.

Both of these debugging techniques are covered in this chapter.

Choosing the WRITE Technique

for the Problem
Adding output statements to the C++ source code to find out what's going on

within the program is known as using the WRITE statement approach. It

gained this name back in the days of early programs, which were written in

FORTRAN. Fortran's output is through its WRITE command.

The following "buggy" program shows how the WRITE approach works.

The following program is supposed to read a series of numbers from the key-

board and return their average. Unfortunately, the program contains two
errors, one that makes the program crash and one that causes the program

to generate incorrect results.

// ErrorProgram - this program averages a series
// of numbers, except that it contains
// at least one fatal bug
#incl ud e <stdio.h>
#incl ud e <iostream.h>

int main(int argc, char* pszArgs[])
i

t

cou t << "This program is designed to crash!\n":

// accumulate input numbers until the
// user enters a negative number, then
// return the average
i nt nSum;
for (int nNums =

; ;

)

(

// enter another number to add
i nt nVal ue ;

cout << "\nEnter another number:":
cin >> nValue:

// if the input number is negative...
if (nValue < 0)

(

Chapter 11: Debugging C++ #3/

}

// ...then output the average
cout << "\nAverage is:

"

<< nSum/nNums
<< "\n"

;

break;

// not negative, add the value to

// the accumulator
nSum += nVal ue;

return 0;

}

After entering this program, build the executable ErrorProgram.exe file

(press F9). (This version of the program appears on the enclosed CD-ROM as

ErrorProgram 1 cpp.)

Figure 11-1:

The initial

version of

ErrorProgram

terminates

suddenly

instead of

generating

the expected

output

[
; Finished - ErrorProgram --II

1 - ^ :::i| II I^aI
This pro^r

Entrr anot

Enter anot

Enter anot

Enter anot
[mt IM du

li«is&M b

eax=QOIIa72

an is designed to crash!

her nunber:1

her n««ber:2

her n«*aber:3

h«r »ur»ber:-1
r to signal SldrPl
V Zero at eip = (10OOHOS, x87 status = (!llO(l

ha eb«:il008«42a ecx = (IOOa72ba rdx. OUUOIMIIO o . = 0U000OS<. edi
a8 esp = «0Da72>8 pro 9ran=C : \DUrtM I F S\ CIlHP 1 1 UMiOIIP" 1 . E8E
a7 base=842ac00l linit - If »23f tf

IIOI)272c8

Is: .elOO
Mi sel=0«
Is: scl^OC
4»: -ri HU
«: sel=oo
App stack:

Call tram

af base=8<>2acl0f linit-f f>23f f

f

af base=8«2ac000 linit-f f>23f f

f

87 basr=OI0082a> llr.it OIlDOf Iff
hf baseOOOOBIDl linit-IOIlff f

f

af base=8*2acl«» limt=f f»23f t f

[U0na72c8..0BI)272cl) Excepln stack: 1000271a'.. .00029211.]

traceback EITs:
•S
ha

BxOOODK
OxOUOOeh

Execute the program by double-clicking the program name from Windows
Explorer. Enter the values of 1, 2, and 3 followed by -1 to terminate input.

However, instead of producing the much-anticipated value of 2 (even I can

calculate the average of 1, 2, and 3), the program terminates with the not-

very-friendly error message shown in Figure 11-1.

Catching bug # 7

The error message shown in Figure 1 1-1 seems rather imposing. The fact is

that most of the information provided in this message is useless to us. (This

extra information probably not useful to anyone.) However, the second line

gives us one very useful piece of information: "Division by zero at. . .

."

Apparently someone divided some number by zero (pretty astute, huh?).

/3O P art " : Becoming a Functional Programmer

This isn't always so straightforward. For example, suppose that the program
lost its way and began executing instructions that aren't part of the program?
(That happens a lot more often than you think.) The CPU may just happen to

execute a divide instruction, thereby generating a divide by zero error mes-

sage, and thereby masking the source of the problem. (An errant program is

like a train that's jumped the track— the program doesn't stop executing

until it hits something really big.)

A program "losing its way" is so common that it has names: "jumping into

space" or "driving into the weeds." Both of these phrases generate descriptive

images.

NextExecute the program from within the environment — sometimes environ-

ments such as Visual C++ and GNU C++ can make some sense out of some of

those error numbers.

The examples shown here are from GNU G
C++ is very similar.

however, the output from Visual

From within rhi de , load the program, rebuild it, and execute it by using the

Run command (Ctrl+F9). Again, enter the same 1, 2. 3, and -1 values, and
again the program crashes (at least something is predictable).

One of the first things you need to do when tracking down a problem is find

the set of operations that causes the program to fail every time. By reproduc-

ing the problem, you know not only how to recreate it for debug purposes,

but you also know when it's fixed.

rhi de opens a window containing the message "Program exit code 255

(Oxff)", as shown in Figure 11-2. 1 may not know much (this is true, by the

way, I don't know much), but the normal, "no error" return code is 0. The fact

that the return code isn't zero means that something went wrong: however,

the actual value Oxff doesn't do much for me.

Figure 11-2:

The return

code of OxFF

indicates

that the pro-

gram exited

abnormally,

but it doesn't

indicate

why.

J RHIOE Version 1.4 . No project

-H ill lei El &\B\ A|

Chapter 11: Debugging C++ 1Jy

Click the OK button, rhi de opens two windows in addition to the source

code window.

You may not see all three windows because one window may be covering one
of the others. Cycle through the available windows by pressing the F6 key.

In Window 3, you see the same error message that you saw when executing

the previous program, but what's this behind curtain number 2? Window 2

appears in Figure 1 1-3.

Figure 11-3:

rhide is able

to calculate

the location

of the

failure.

'3 RHIDE Version 1.4 -No project

~B i::i| |bi m &\b\ a|
lie Ida Se«rc» Han Coup i If De»uj Pro ject Upturns UiaOus Help i1M/33M

~1T$&&.\ - this p
of niinbi-rs, except that it conla

[// at least one fatal bug
[sinclude <stdio.h>
I
a include <iostream.h>

., ...ainCint argc, char* pszArgs[])
I

cout « "This program is designed to crash!

W

late input numbers until the
// user enters a negative nunber, then
// return the average
int nSum; *

ErrerrV»«ra*i.epp<?t) in ftsactiea i

in function _crl1_startep*17*i

WW!" P.' ffBfffR ? " WgJ.ff.fT. ff
1 MD

The "Call frame traceback" sounds like a telephone wiretap and in a way it is.

A traceback lists the address of each function that was called backward up
to the very first function. In this case, you can see that something called

crtl_startup (how's that for a descriptive name?) called main().The

error actually occurred on Line 28 of the source file ErrorProgram.cpp within

function ma i n (). That's progress.

It turns out that Line 28 appears as follows:

cout << "\nAverage // 1 i ne 26

<< nSum/nNums // 1 i ne 27
<< "\n"; // line 28

I don't see a division on Line 28 at all. What's going on here?

C++ considers all of the expressions up to a semicolon to be a single com-
mand line. In this case, Lines 26 through 28 are all part of the same command
line that terminates on Line 28. Thus, anything that happened on Line 26, 27,

or 28 would be considered Line 28.

Armed with that knowledge, you know that the error actually occurred

during the division on Line 27.

lifU Part II: Becoming a Functional Programmer

I know that at the time of the division, nNums must have been equal to zero.

nNums is supposed to be a count of the number of values entered. I can see

where nNums is initialized to 0, but where is it incremented? It isn't, and this

is the bug. Clearly nNums should have been incremented during each loop of

the input section. I edit the for loop as follows:

for (int nNums = 0; ;nNums++)

Catching buq #2
You have now found bug #1. Now execute the program using the same 1, 2, 3,

-1 input that crashed the program earlier. This time, the program doesn't

crash and it returns a return code of 0, but the program doesn't work either.

The output shown below is ridiculous:

This program is designed to crash!

Enter another number:l

Enter another number:2

Enter another number:3

Enter another number:-!

Average is: -286331151
Press any key to continue

How can C++ tie an error message
back to the source code?

The information I received when executing the

program directly from Windows or from an

MS-DOS window wasn't very informative. By

comparison, both Visual C++ and rhide are

able to direct me to the line from whence the

problem originated. How did they do that?

C++ has two modes when building a program. By

default, C++ builds the program in what is called

debug mode. In debug mode, C++ adds line-

number information that maps the lines of C++

code to the corresponding lines of machine

code. For example, this map might say that line

200 of machine code in the executable code was

created from the C++ source code on Line 16.

When the divide-by-zero error occurred, C++

was able to track the machine code address

returned by MS-DOS to the source line number

using this debug information.

As you may imagine, this debug information

takes a lot of space. Before a program is

"shipped," the program tells rhide to generate

an executable without debug information.

Chapter 11: Debugging C++ I if]

Apparently, either nSum or nNums (or both) isn't being calculated properly. To
get any further, you need to know the value of these variables. In fact, it

would help if you knew the value of nVal ue as well, because nVal ue is used

to calculate nSum.

To learn the values of the nSum, nNums , and nVal ue, modify the for loop as

follows (this version of the program appears on the CD-ROM as

ErrorProgram2.cpp):

for

I

(int nNums = 0; ;nNums++)

// enter another number to add
int nValue;
cout << "\nEnter another number
cin >> nValue;

.".

// if the input number is negative...
if (nValue < 0)
i

(

// ...then output the avera ge

cout << "\nAverage is:
"

<< nSum/nNums
<< "\n";

break;

i
)

// output critical information
cout << "nSum = " << nSum << "\n";
cout << "nNums= " << nNums << "\n";
cout << "nValue= "<< nValue << "\n";
cout << "\n"

;

// not negative, add the value to
// the accumulator

}

nSum += nValue;

Notice the addition of the output statements to display nSum, nNums, and
nVal ue on each iteration through the loop.

The result of executing the program with the now standard 1, 2, 3, and -1

input is shown below. Even on the first loop, the value of nSum is unreason-

able. In fact, at this point during the first loop, the program has yet to add a

new value to nSum. You would think that the value of n Sum should be 0.

This program is designed to crash!

Enter another number:l
nSum = -858993460
nNums=
nValue= 1

I Cf2 P art " : Becoming a Functional Programmer

Enter another number:2
nSum = -858993459
nNums= 1

nValue= 2

Enter another number:3
nSum = -858993457
nNums= 2

nValue= 3

Enter another number:

On careful examination of the program, n Sum is declared but it isn't initialized

to anything. The solution is to change the declaration of n Sum to the following:

i nt nSum = 0;

Note: Until a variable has been initialized, the value of that variable is inde-

terminate.

Once you have convinced yourself that you have found the problem, "clean

up" the program as follows (this version is ErrorProgram3.cpp on the

enclosed CD-ROM):

// ErrorProgram - this program averages a series
// of numbers
// (This version has been fixed.)
#include <stdio.h>
^include <iostream.h>

int maind'nt argc, char* pszArgs[])
{

cout << "This program works!\n";

// accumulate input numbers until the
// user enters a negative number, then
// return the average
int nSum = 0;

for (int nNums = 0; ;nNums++)
1

// enter another number to add
int nValue;
cout << "\nEnter another number:":
cin >> nValue;

// if the input number is negative..
if (nValue < 0)

// ...then output the average
cout <\ "\nAverage is: " << nSum/nNums « "\n

break:

Chapter 11: Debugging C++ 1Uj

II not negative, add the value to
// the accumulator
nSum += nValue;

}

return 0;

}

I rebuild the program and retest with the 1, 2, 3, and -1 sequence. This time I

see the expected average value of 2:

This program works!

Enter another number

:

:1

Enter another number::2

Enter another number::3

Enter another number::-l

Average is: 2

After testing the program with a number of other inputs, I convince myself

that the program is now executing properly.

Caltinq for the bebuqqev
For small programs, the WRITE technique works reasonably well. Adding state-

ments is simple enough and the programs rebuild quickly so the cycle time is

short enough. Problems with this approach don't really become obvious until

the size of the program grows beyond the simple programs you've seen so far.

In larger programs, the programmer often doesn't generally know where to

begin adding output statements. The constant cycle of adding write state-

ments, executing the program, adding write statements, and on and on

becomes tedious. Further, in order to change an output statement, the pro-

grammer must rebuild the entire program. For a large program, this rebuild

time can itself be significant. (I have been on programs that took most of the

night to rebuild.)

Finally, finding pointer problems with the WRITE approach is almost impossi-

ble. A pointer written to the display in hex means nothing and as soon as you
attempt to dereference the pointer, the program blows.

A second, more sophisticated technique is based on a separate utility known
as a debugger. This approach avoids the disadvantages of the write statement

approach. Unfortunately, however, this approach involves learning to use a

new tool, the debugger.

i l}£) Part " : Becoming a Functional Programmer

Defining the debugger

A debugger is actually a tool built into the rhi de and Microsoft Visual C++
environments (the debuggers are different between the two but work on the

same principle).

The programmer controls the debugger through commands in the same way
that the programmer might use the Edit commands when using the editor or

the different build commands when creating the executable. These com-
mands are available through menu items or by using hot keys.

The debugger allows the programmer to control the execution of her pro-

gram. She can execute one step in the program at a time, she can stop the

program at any point, and she can examine the value of variables.

To appreciate the power of the debugger you need to see it in action. This

section introduces you to the use of the debugger by fixing a small program.

(I use the rhi de debugger, but Visual C++ can use your debugger by using

the corresponding commands.)

Deciding u/hich debugger to use

Unlike the C++ language, which is standardized across manufacturers, each

debugger has its own command set. Fortunately, most debuggers offer the

same basic commands. The commands you need are available in both the

ubiquitous Microsoft Visual C++and the GNU C++rhi de environments. In

addition, both debuggers offer access to debugger commands by using either

menu items or the function keys. Table 11-1 lists the command hot keys you
use in both environments.

Throughout the rest of this chapter, I refer to the debug commands by name.

Table 11-1 lists the corresponding keystrokes you use in your environment.

Table 11-1 Debugger Commands for Microsoft

Visual C++ and GNU rhide

Command Visual C++ GNU C++ (rhide)

Build Shift+F8 F9

Step in Fll F7

Step over F10 F8

Viewvariable menu only Cti+F4

Set breakpoint F9 Ctl+F8

Chapter 11: Debugging C++ 1 iff)

Command Visual C++ GNU C++ (rhide)

Add watch menu only Ctl+F7

Go F5 Ctl+F9

View User S creen Click on Program Window Alt+F5

Program i-eset Shift+F5 Ctl+F2

Running a test program
The best way to learn how to fix a program using the debugger is to go

through the steps to fix a buggy program. The following program has several

problems that need to be discovered and fixed. This version is found on the

CD-ROM as Concatenatel.cpp.

// Concatenate - concatenate two strings
// with a " - " in the middle
// (this version crashes)
//include <stdio.h>
//include <iostream.h>

void concatString(char szTarget[], char szSource[]);

int main(int nArg, char* pszArgs[])
(

cout << "This program concatenates two strings\n";
cout << "(This version crashes .)\n\n" ;

// read fi rst string. .

.

char szStringl[256] ;

cout << "Enter string #1
:

"

;

cin.getl i ne(szStri ngl , 128);

// ...now the second string...
char szString2[128];
cout << "Enter string #2:";
cin.getl ine(szString2, 128);

// ...concatenate a " - " onto the first...
concatString(szStri ngl , " - ");

// ...now add the second string...
concatString(szStringl, szString2);

// ...and display the result
cout << "\n" << szStringl << "\n";

return 0;

fifO Part " : Becoming a Functional Programmer

// concatString - concatenate the string szSource

// to the end of szTarget
void concatStri ng(char szTarget[], char szSource[])
{

int nTargetlndex;
int nSourcelndex;

// find the end of the first string
whi 1 e(szTarget[++nTarget Index]

)

// tack the second to the end of the first
whi le(szSource[n Source Index])
{

szTarget[nTargetIndex] =

s z Sou r ce[n Source I ndex]

;

nTargetIndex++;
nSource!ndex++;

Build the program uneventfully. Execute the program. When it asks for string

#1, enter this is a string. For string #2, enter THIS IS A STRING (you can use

any two phrases that you want).

Rather than generate the proper output, the program terminates with the

cursed Oxff return code. Click OK (I don't actually have any other choice). In

an attempt to offer some solace, the debugger opens the Message Window
containing the following:

Call frame traceback:
Concatenate. cpp(49) in function concatString__FPcT0
Concatenate. cpp(28) in function main
in function crtl_startup+174

From this you can see that the error occurred on or about Line 49 of the

module Concatenate.cpp, which is within the function concatStri ng().

concateStri ng() was called from Line 28 within the function mai n().

Finally, ma i n () was invoked from some stupid function that we don't know
anything about.

Line 49 appears as follows:

whi le(szTarget[++nTargetIndex])

while Line 28 contains the function call:

concatString(szStri ngl .
" ");

Chapter 11: Debugging C++

Nothing appears to be wrong with the statement on Line 49 or the call on
Line 28. You will need to use the rhi de debugger.

Note: Actually, you may already see the problem based on the information

that rhi de provided, but work with me here.

Sinqle-steppinq through a program

The best first step when tracking down a program problem is to use a debugger

feature known as single stepping. From within rhi de, execute Program Reset.

Note: In Table 11-1 you can see that this is Ctrl+F2 within rhi de and Shift+F5

within Visual C++, but I'm not going to give you hints anymore. For each

debugger command, refer to Table 1 1-1. In addition, remember that each of

these debugger commands is available from drop-down menu options.

The Program Reset command makes sure that everything within the debug-

ger is reset back to the beginning in case you had been in the middle of

debugging something already. It's always a good idea to reset the debugger

before beginning.

Execute the Step Over command to begin debugging the program, rhi de

opens an MS-DOS window as if it were about to execute the program; how-
ever, the debugger immediately switches back the program edit window with

the first executable line of the program highlighted.

An executable statement is a statement other than a declaration or a comment.
An executable statement is one that generates machine code when compiled.

The debugger has actually executed the program up to the first line of the

ma i n () function and then snatched control. The debugger is waiting for you
to decide what to do next.

Execute Step Over again — rhide repeats the process of displaying the user

screen for just a second and returning to the edit window. This time the second

line is highlighted. Click on View User Screen and you should see the output

This program concatenates two strings

from the previous C++ command line.

Execute through the program until it crashes by repeatedly executing Step

Over. This should reveal a lot about what went wrong. Executing a program
one line at a time is known as single-stepping the program.

When you try to Step Over the cin.getline() command, the debugger

doesn't take control back from the MS-DOS window as it normally would.

Instead, the program appears to be frozen at the prompt to enter the first string.

/ [lQ Part II: Becoming a Functional Programmer

The reason for this apparent program crash is that the debugger doesn't take

control back from the program until the C++ statement finishes executing—
the statement containing the call to get! i ne() cannot finish until you enter

a string of text from the keyboard.

Enter this is a string and press Enter. The rhi de debugger stops the program
at the next statement, the cout << "Enter string #2". Enter the single

step command again and enter the second line of text in response to the

second call to getl i ne().

If the debugger seems to halt without returning when single-stepping through

a program, your program is waiting for something to happen. Most likely, the

program is waiting for input, either from you or from an external device.

Eventually you will single-step down to the call toconcatString(),as
shown in Figure 11-4. When you try to Step Over the call, however, the

program crashes as before.

Figure 11-4:

Something

in the

concat-

StringO

function

causes the

program

to crash.

;RHIDE Version 1.4 - No project

' 3 i."i| |a| E3| e\B\ A|
File Edit Scarcb Bcia Cri^TI. Dele, FV.iect Gptioos Ui.dMs

les/chapli/Concatenatf

11191, szString2);

reir

Mtea nil 'X (ait

This doesn't tell reveal any more that the previous crash. What is needed is

the ability to execute into the function rather than simply "stepping over" it.

Single-stepping into a {unction

A debugger allows the programmer to step into a function one instruction at

a time. You will need this feature in order to ferret out the first bug in the test

program.

You will need to start over. Execute Program Reset command in order to reset

the debugger to the beginning of the program.

Chapter 11: Debugging C++ 11}$

Single-step through the program using the Step Over command until you reach

the call toconcatStringO. This time rather than step over the call, use the

Step In command to move into the function. Immediately, the pointer moves to

the first executable line in concatStri ng() as shown in Figure 11-5.

Figure 11-5:

The Step In

command

moves

control to

the first

executable

line in

concat-

StringO.

; RHIDE Version 1.4 - No project JsE
~B D| --Iftl Bl tflBl A|

; >ile fcdit Search H«« Coppile Llebuq Project Patios Umdotw H

int nTarget Index;
int nSourcelndex;

'// find the end »f the f irst s'

)

/.' tick the second to the end of the first

There's no difference between the Step Over and Step In commands when not

executing a function call.

If you Step In to a function unintentionally, the debugger may ask you for the

source code to some file that you've never heard of before. The function is

probably within a library module. Execute the Cancel command to view a list-

ing of machine instructions that aren't very useful even to the most hardened
techies. To return to sanity, open the edit window, set a break point as

described in the next section to the statement after the call, and execute the

Go command.

Now use the Step Over command to execute the first statement in the func-

tion. The rhi de debugger responds by reporting the same fatal error mes-

sage as before.

Now you know for sure that something about the while loop is not correct

and that executing it even the first time crashes the program. To find out

what it is, you will need to stop the program right before it executes the

offending line and take a look around.

Using breakpoints

Single-stepping a program is fine when you are just "sniffing around;" how-
ever, you can use a debugger command known as the breakpoint when you
already know where you want to go.

/ y Part II: Becoming a Functional Programmer

To see this in action, execute the Program Reset command to move the

debugger back to the beginning of the program. You could single-step back
through the program to the whi 1 e loop as you did before. With a large pro-

gram, this could get laborious. You can employ the breakpoint shortcut

instead. Place the cursor on the whi 1 e statement and execute the Set break-

point command. The editor highlights the statement, as shown in Figure 11-6.

Figure 11-6:

rhide

highlights a

breakpoint

by turning

the line red.

BSD
!

--. A nl |e| m s-lBl At
E File Ldit Search Baa tensile Vesaa Frejecl Batieas Biadtvs lela 58V33M

// CftncatS
It
•aid conca
t

iat nT

(ring - coRGjttnate the string szSearce

l-l J-,

!• tke red *f s2T*r *jet

tStringUaar szT«r<jet[], ch

ar«jet Index;

ar szSavrce[])

iat aSoarceladei;

// tack ibe seceatf t» the ead *f lae first

_ : *,:/" aanm m̂,̂ ,#l!^^f^ l̂mml'11̂ 1•aWlaaatlaBaalVaaaTIBiMHI

no errers
Crcdtisq: Ceecoteatte.CKe

F2 Saae F3 Bprri F5 laort Ft Heat H1I-.F9 Ceapile Fill Heaa ilt*X IJml

A breakpoint enables the program to execute normally up to the point where
you want to take control A breakpoint tells the debugger to halt on that state-

ment if control ever passes its way. Breakpoints are useful either when you
know where to stop or when you want the program to execute normally until

it's time to stop.

With the breakpoint set. execute the Go command. The program appears to

execute normally up to the point of the while call. At that point, the program

obediently hands the torch back to the debugger.

Now that you're here, you still probably don't know what's wrong.

Viewing and modifying Variables

There isn't much point in executing the whi 1 e statement again— you know
that it will crash. You need more information about what the program is

doing to determine why it crashed. For example, you might like to see the

value of nTa rget I ndex immediately prior to the execution of the while loop.

Chapter 11: Debugging C++

Figure 11-7:

A debugger

allows the

programmer

to view and

modify

program

variables.

l-ln|x|

First, double-click the variable name nTa r get I ndex. Next, execute the View
Variable command. A window appears with the name nTa rget Index in the

upper field. Click Eval to find the current value of the variable. The results,

shown in Figure 11-7, are obviously nonsensical.

Looking back at the C++ code, you will see that the program does not initial-

ize either the nTargetlndexornSourcelndex variables. To test this theory,

enter a in the New Value window and click Change. Repeat the process for

nSourcelndex. Close the window and click Step Over to continue executing.

With the index variables initialized, single-step into the while loop. The pro-

gram does not crash. Each Step Over or Step In command executes one itera-

tion of the whi 1 e loop. Because the cursor ends up right where it started,

there appears to be no change; however, after one loop, nTargetlndex has

incremented to 1.

It's too much work to reevaluate nTa rget I ndex on each iteration. Double-

click nTargetlndex and execute the Add Watch command. A window
appears with the variable nTa rget Index and the value 1 to the right. Execute

Step In a few more times. nTargetlndex increments on each iteration

through the loop. After several iterations, control eventually passes outside

of the loop.

Set a breakpoint on the closing brace of the concatString function and exe-

cute Go. The program stops immediately prior to returning from the function.

To check the string generated, double-click s zTa rget string and execute

View Variable. The results shown in Figure 1 1-8 are unexpected.

/ f)2 Part " : Becoming a Functional Programmer

Figure 11-8:

Even after

solving the

initial prob-

lem, the

target string

resulting

from con-

catenation

isn't correct.

;RHIDE Version 1.4 - Ho project BB
i

--> zi a| lai m tsJsJaJ
if lilt Kit Searcli In Compile Uttal Prejtct S1H/33H

1 // concat!

===== c./autmit

tring - concatenate 1

to the end of
he st

szU
ring sz
rget

catenate. cop -

Source

ourcefl)

1= 1 J=H

_

1 void conca tStringtchar szTargel [1, char szS

wftil?

M Efelp

pressin

esilt

ew value

^^^j J***H^m £"C«^

The 0xa73a8 is the address of the string in memory. This information can be

useful when tracking pointers. For example, this information would be

extremely helpful in debugging a linked-list application. It's of little use here.

The expected string "this is a string" is there, but it's immediately followed by

a string of garbage. Apparently the target string is not being terminated after

the source string has been appended onto the end.

Modifying a string after the terminating null or forgetting to terminate a

string with a nul 1 are by far the two most common string-related errors.

You now know two errors — it would be prudent to go ahead and fix these

errors in the source code before you forget them. Press Program Reset and

fix the concatStri ng() function. The updated concatStri ng() function

appears as follows:

void concatString(char szTarget[], char szSource[])
{

int nTargetlndex = 0:

int nSourcelndex = 0:

// find the end of the first string
whi le(szTarget [nTargetlndex])
f

nTargetlndex-t-t-;

// tack the second onto the end of the first
while(szSource[nSourceIndex])
{

szTarget[nTargetIndex] =

sz Source [nSourcelndex]

:

nTargetIndex++:

Chapter 11: Debugging C++ 133

nSourceIndex++;

// terminate the string properly
szTarget[nTargetIndex] = '\0';

}

Just because you've fixed one problem does not mean thatthere aren't more
bugs. You should start the debug process again. Set a watch on szTarget
and nTargetlndex while executing the second loop. The source string

appears to be copied to the end of the target string properly.

You really need to execute this one yourself. It's the only way you can get a

feel for how neat it is to watch one string grow while the other string shrinks

on each iteration through the loop.

Convinced that all seems to be working well, clear any breakpoints left, and
execute Go to allow the program to continue to completion. The following

output seems correct:

This program concatenates two strings
(This version works .

;

1

Enter string #l:this i s a string
Enter string #2:THIS IS A STRING

this is a string - THIS IS ; A STRING

Congratulations! You're now a debugging expert.

Budget 1 Program
The chapters that make up Part I and II provide you the programming infor-

mation necessary to write your own non-trivial programs. The following pro-

gram, BUDGET'is just such a program.

In actual fact, BUDGET appears multiple times in this book. Each version uses

the features introduced in earlier chapters. In this way, you can see the pro-

gram advance in capability by incorporating more advanced features. This

version uses the functional (that is, function-based) programming techniques

of Parts I and II.

The BUDGET program is a simple bank account register program. Here's what
it does:

Iu*
Gives the user the ability to create one or more bank accounts.

i> Assigns an account number to each account.

/yu Part II: Becoming a Functional Programmer

Iu*
Begins accepting transactions, consisting of deposits and withdrawals,

v* After the user chooses to exit, the program displays the ending balance

of all accounts and the total of all accounts.

This program mimics a few bank rules concerning transactions (we will add
more rules as the program develops):

I»>

Never let the balance become negative. (Your bank may be friendly, but 1

bet it's not that friendly.)

*> Never charge for making a deposit.

The following budget program is explained below:

// BUDGET1.CPP - A "functional" Budget program
#include <iostream.h>
^include <stdio.h>

// the maximum number of accounts you can have
const int maxAccounts = 10;

// data describes accounts
unsigned account Number [maxAccounts]

;

double bal ance[maxAccounts]

:

// prototype declarations
void process(unsigned& accountNumber

,

double& balance);
void ini t(unsigned& accountNumber,

double& balance);

// main - accumulate the initial input and output totals
int maindnt nArg, char* pszArgs[])
{

// loop until someone enters
int noAccounts = 0; // the number of accounts

// don't create more accounts than we have room for

while (noAccounts < maxAccounts)
{

char transactionType;
cout << "Enter C to continue or X to terminate:";
cin >> transactionType;

// quit if the user enters an X; otherwise...
if (transactionType == "x" ||

transactionType == "X")

1

break:

Chapter 11: Debugging C++ 135

II if the user enters a C...
if (transact! onType == 'c'

|

transactionType == 'C')

{

// ...then initialize a new account...
init(account Number [noAccounts]

,

bal ance[noAccounts])

;

// ...and input transaction information
process (accountNumber[noAccounts]

,

bal a nee [noAccounts])

;

// move the index over to the next account
noAccounts++;

I

)

// now present totals
// first for each account
double total = 0;

cout << "Account i nformation: \n"

;

for (int i = 0; i < noAccounts; i++)

{

cout << "Balance for account "

<< accountNumber[i

]

<< " = "

<< balanced"]
<< "\n";

// accumulate the total for all accounts
total += balanced'];

// now display the accumulated value
cout << "Balance for all accounts = '

<< total
<< "\n";

return 0;

// init - initialize an account by reading
// in the account number and zeroing out the
// balance
void ini t(unsigned& accountNumber

,

double& balance)
{

cout << "Enter account number:";
cin >> accountNumber;
balance =0.0;

}

75 ^ art " : Becoming a Functional Programmei

// process - update the account balance by entering
// the transactions from the user
void process(unsigned& accountNumber,

double& balance)
{

cout << "Enter positive number for deposit, \n"

<< "negative for withdrawal ,\n"

:

double transaction;
do

{

cout << ":";

cin >> transaction;

// is it a deposit?
if (transaction > 0)

{

balance += transaction;

// how about withdrawal?
if (transaction < 0)

{

// withdrawal
transaction = -transaction;
if (balance < transaction)
{

cout << "Insufficient funds: balance
<< balance
<< ", check

"

<< transaction
<< "\n";

}

el se

{

balance -= transaction;

) while (transaction != 0);

}

Chapter 1 1 : Debugging C++ /J /

To demonstrate the program in action, I entered the following sequence

(output from the program in normal font, my input in bold):

Enter
Enter
Enter
negati
:200
:-100
:-200
Insuff
:0

Enter
Enter
Enter
negati
200
-50
-50
-50

Enter
Accoun
Balanc
Balanc
Balanc

C to continue or X to terminates
account number:1234
positive number for deposit,
ve for withdrawal ,

icient funds: balance 100, check 200

C to continue or X to terminates
account number:2345
positive number for deposit,
ve for withdrawal ,

C to continue or X to terminates
t information:
e for account 1234 = 100
e for account 2345 = 50

e for all accounts 150

Coding styles

You may notice that I try to be consistent in my
indentation and in my naming of variables.

We humans have a limited amount of CPU power

between our ears. We need to direct our CPU
power toward getting programs working, not

toward figuring out simple stuff like indentation.

This makes it important that you be consistent in

how you name variables, where you place open

and close braces, and so on. This is called your

coding style. Once you have developed a style,

stick to it— after a while, your coding style will

become second nature. You'll find that you can

code your programs with less time and read your

programs with less effort.

When working on a project with several pro-

grammers, it's just as important that you all use

the same style to avoid a Tower of Babel effect

with conflicting and confusing styles. In addition,

I strongly suggest that you enable every error

and warning message that your compiler can

produce. Even if you decide that a particular

warning is not a problem, why would you want

it suppressed? You can always ignore it. More

often than not, even a warning represents a

potential problem or programming style that

needs to be corrected.

Some people don't like the compiler finding their

slip-ups because they think it's embarrassing and

they think that correcting things to get rid of the

warnings wastes time. Just think how embar-

rassing and time-consuming it is to painstakingly

search for a bug only to find that it's a problem

your compiler told you about hours ago.

/5o Part " : Becoming a Functional Programmer

Here's how the BUDGET1.C program works. Two arrays are created, one to

contain account numbers and the other their balances. These two arrays are

kept in synch, that is, balancefn] contains the balance of the account

accountNumberfnJ no matter what the value of n. Due to the limitations of a

fixed length array, the program can only accommodate MAXACCOUNTS
number of bank accounts.

The main program is divided in two sections: the accumulation section,

where the deposits and withdrawals are accumulated into accounts, and the

display section. The accumulation section first enters a loop in which the

accounts are handled separately. First, the program prompts the user for a C
for continue or X for exit. If the user enters an X, the program breaks from the

loop and enters the second section of mainQ.

The program exits the loop after MAXACCOUNTS number of accounts has

been created, whether the user enters an X or not.

Notice that the program checks for both 'X' and 'x'. While C++ considers case

to be important, people generally don't.

If the user enters C, control passes to the initQ function which enters the

account number information (creates an account) followed by the process()

function which enters the transaction data into the account.

The arguments to initQ and processQ have been declared referential so that

the functions can modify their values in the calling function as well.

Otherwise, the new data might be lost when the function exits.

Once the program exits the account creation section, it enters the output

second. Here, mainQ cycles through each account outputting the balance in

each. The program ends with the total balance of all accounts.

The initQ function creates a new account by prompting the user, inputting

the account number and zeroing out the balance.

It is important to always create an element in a legal state. An initial balance

of makes sense - an initial balance containing random garbage does not.

The process(
') function enters a loop inputting transaction information.

Positive values are taken to be deposits while negative values withdrawals.

An entry of zero is assumed to be the last transaction for a given account.

The program is using an otherwise nonsensical value as a flag. This technique

is common but not generally a good idea. I use the technique here only

because it minimizes the size of the program.

Although other (even better) ways exist to implement this program, it serves

nicely as the basis for our investigations. As you progress in your knowledge

of C++, you will see this program morph into a full-blown, object-oriented C+ +

program.

Part III

Programming

with Class

The 5th Wave BvRichTennantm^^^wwwr

' &REFUL, SUMWJCe, THIS CN£'5 0EEN UXKEO UP AMP FORCED TO 9EM-
TE5T POORLY DOCUMENTED SOFTWARE PROOUCTS AUH WEEK ^NP

HE'S 1TCMIMQ FOR A FI6W."
'

In this part . .

.

7he feature that differentiates C++ from other languages

is C++'s support for object-oriented programming.

Object-oriented is about the most hyped term in the com-
puter world (okay, maybe .com has it beat). Computer
languages, editors, and databases all claim to be object-

oriented, sometimes with justification but most of the

time without.

What is it about being object-oriented that makes it so

desired around the world? Read on to find out.

Chapter 12

Examining Object-Oriented

Programming

In This Chapter

Making nachos

Reviewing of object-oriented programming

Introduction to abstraction and classification

Discovering why object-oriented programming is important

My hat. exactly, is object-oriented programming? Object-oriented pro-

gramming, or OOP as those in the know prefer to call it, relies on two
principles you learned before you ever got out of Pampers: abstraction and
classification. To explain, let me tell you a little story.

Abstracting MicroiVaVe Otfens

Sometimes when my son and I are watching football, I whip up a terribly

unhealthy batch of nachos. I dump some chips on a plate, throw on some
beans, cheese, and lots of jalapenos, and nuke the whole mess in the

microwave oven for five minutes.

To use my microwave, I open the door, throw the stuff in, and punch a few

buttons on the front. After a few minutes, the nachos are done. (I try not to

stand in front of the microwave while it's working lest my eyes start glowing

in the dark.)

Now think for a minute about all the things I don't do to use my microwave:

|i> 1 don't rewire or change anything inside the microwave to get it to work.

The microwave has an interface — the front panel with all the buttons

and the little time display— that lets me do everything I need.

162 Part III: Programming with Class

$.tfBE#

u* I don't have to reprogram the software used to drive the little processor

inside my microwave, even if I cooked a different dish the last time I

used the microwave.

j> I don't look inside my microwave's case.

v* Even if I were a microwave designer and knew all about the inner work-

ings of a microwave, including its software, I would still use it to heat my
nachos without thinking about all that stuff.

These are not profound observations. You can deal with so much stress in

your life. To reduce the number of things that you deal with, you work at a

certain level of detail. In object-oriented (00) computerese, the level of detail

at which you are working is called the level of abstraction. To introduce

another 00 term while I have the chance, I abstract away the details of the

microwave's innards.

When I'm working on nachos, I view my microwave oven as a box. (As I'm

trying to knock out a snack, I can't worry about the innards of the microwave
oven and still follow the Cowboys on the tube.) As long as I use the

microwave only through its interface (the keypad), there should be nothing I

can do to cause the microwave to enter an inconsistent state and crash or,

worse, turn my nachos into a blackened, flaming mass.

Preparing functional nachos

Suppose I were to ask my son to write an algorithm for how Dad makes
nachos. After he understood what I wanted, he would probably write "open a

can of beans, grate some cheese, cut the jalapehos," and so on. When it came
to the part about microwaving the concoction, he would write something like

"cook in the microwave for five minutes" (on a good day).

That description is straightforward and complete. But it's not the way a func-

tional programmer would code a program to make nachos. Functional pro-

grammers live in a world devoid of objects such as microwave ovens and
other appliances. They tend to worry about flow charts with their myriad

functional paths. In a functional solution to the nachos problem, the flow of

control would pass through my finger to the front panel and then to the inter-

nals of the microwave. Pretty soon, flow would be wiggling around through

complex logic paths about how long to turn on the microwave tube and
whether to sound the "come and get it" tone.

In a world like this, it's difficult to think in terms of levels of abstraction. There

are no objects, no abstractions behind which to hide inherent complexity.

Chapter 12: Examining Object-Oriented Programming / \)jy

Preparing object-oriented nachos

In an object-oriented approach to making nachos, I would first identify the

types of objects in the problem: chips, beans, cheese, and an oven. Then I

would begin the task of modeling these objects in software, without regard to

the details of how they will be used in the final program.

While I am doing this, I'm said to be working (and thinking) at the level of the

basic objects. I need to think about making a useful oven, but I don't have to

think about the logical process of making nachos yet. After all, the microwave
designers didn't think about the specific problem of my making a snack.

Rather, they set about the problem of designing and building a useful

microwave.

After the objects I need have been successfully coded and tested, I can

ratchet up to the next level of abstraction. I can start thinking at the nacho-

making level, rather than the microwave-making level. At this point, I can

pretty much translate my son's instructions directly into C++ code.

Classifying Micrortai/e Otfens

cJ*BE*

Critical to the concept of abstraction is that of classification. If I were to ask

my son, "What's a microwave?" he would probably say, "It's an oven that. . .

."

If I then asked, "What's an oven?" he might reply, "It's a kitchen appliance

that. ..." (If I then asked, "What's a kitchen appliance?" he would probably

say, "Why are you asking so many stupid questions?")

The answers my son gave in my example questioning stem from his under-

standing of our particular microwave as an example of the type of things

called microwave ovens. In addition, my son sees microwave ovens as just a

special type of oven, which itself is just a special type of kitchen appliance.

In object-oriented computerese, my microwave is an instanceoi the class

microwave. The class microwave is a subclass of the class oven, and the

class oven is a subclass of the class kitchen appliances.

Humans classify. Everything about our world is ordered into taxonomies. We
do this to reduce the number of things we have to remember. Take, for exam-

ple, the first time you saw an SUV. The advertisement probably called the

SUV "revolutionary, the likes of which have never been seen." But you and I

know that that just isn't so. I like the looks of some SUVs (others need to go

back to take another crack at it), but hey, an SUV is a car. As such, it shares

all of (or at least most of) the properties of other cars. It has a steering

wheel, seats, a motor, brakes, and so on. I bet I could even drive one without

reading the user's manual first.

/ \)[l Part III: Programming with Class

I don't have to clutter my limited storage with all the things that an SUV has

in common with other cars. All I have to remember is "an SUV is a car that . .

."

and tack on those few things that are unique to an SUV (like the price tag). I

can go further. Cars are a subclass of wheeled vehicles along with other mem-
bers, such as trucks and pickups. Maybe wheeled vehicles are a subclass of

vehicles, which include boats and planes. And on and on and on.

Why Classify)

Why do we classify? It sounds like a lot of trouble. Besides, people have been

using the functional approach for so long, why change now?

It may seem easier to design and build a microwave oven specifically for this

one problem, rather than build a separate, more generic oven object.

Suppose, for example, that I want to build a microwave to cook nachos and
nachos only. There would be no need to put a front panel on it. other than a

START button. I always cook nachos the same amount of time. I could dis-

pense with all that DEFROST and TEMP COOK nonsense. It only needs to hold

one flat little plate. Three cubic feet of space would be wasted on nachos.

For that matter, I can dispense with the concept of "microwave oven" alto-

gether. All I really need is the guts of the oven. Then, in the recipe. I put the

instructions to make it work: "Put nachos in the box. Connect the red wire to

the black wire. Bring the radar tube up to about 3,000 volts. Notice a slight

hum. Try not to stand too close if you intend to have children." Stuff like that.

But the functional approach has some problems:

v* Too complex. I don't want the details of oven building mixed into the

details of nacho building. If I can't define the objects and pull them out

of the morass of details to deal with separately. I must deal with all the

complexities of the problem at the same time.

v* Not flexible. Someday I may need to replace the microwave oven with

some other type of oven. I should be able to do so as long as its inter-

face is the same. Without being clearly delineated and developed sepa-

rately, it becomes impossible to cleanly remove an object type and
replace it with another.

i> Not reusable. Ovens are used to make lots of different dishes. I don't

want to create a new oven every time I encounter a new recipe. Having
solved a problem once, it would be nice to be able to reuse the solution

in future programs.

Chapter 13

Adding Class to C++

In This Chapter

Grouping data into classes

Declaring and defining class members

Accessing class members

^/rograms often deal with groups of data: a person's name, rank, and serial

w number, stuff like that. Any one of these values is not sufficient to

describe a person — only in the aggregate do the values make any sense. A
simple structure such as an array is great for holding stand-alone values;

however, it doesn't work very well for data groups. This makes good ol'

arrays inadequate for storing complex data (such as personal credit records

that the Web companies maintain so they can loose them to hackers).

For reasons that will become clear shortly, I'll call such a grouping of data an

object. A microwave oven is an object. You are an object (me, I'm not so sure

about). Your name, rank, and credit card number in a database is an object.

Introducing the Class

What we need is a structure that can hold all of the different types of data

necessary to describe a single object. In our simple example, a single object

would hold both the first name and last name along with the credit card

number.

C++ calls the structure that combines multiples pieces of data into a single

object a Class.

166 Part III: Programming with Class

The format of a Class

A class used to describe a name and credit card grouping might appear as

follows:

// the dataset class
class NameDataSet
{

publ i c

:

char firstName[128];
char lastName [128];
int creditCard;

// a single instance of a dataset
NameDataSet nds;

A class definition starts with the keyword class followed by the name of the

class and an open-closed brace pair.

The alternative keyword struct may be used. The keywords struct and
class are completely identical except that the public declaration is assumed
in the struct.

The statement after the open brace is the keyword publ i c. (Hold off asking

about the meaning of the publ i c keyword. I'll make its meaning public a little

later. Later chapters describe options to publ i c, such as pri vate. Thus, the

public must stay private until I can make the private public.)

Following the public keyword are the entries it takes to describe the object.

The NameDataSet class contains the first and last name entries along with

the credit card number. As you would expect the first and last names are

both character arrays — the credit card number is shown here as a simple

integer ("the better to steal you with, my dear").

A class declaration includes the data necessary to describe a single object.

The last line of the snippet declares the variable nds to be a single entry of

class NameDataSet. Thus, nds might be an entry that describes a single

person.

We say that nds is an instance of the class NameDataSet. You instantiate the

class NameDataSet to create nds. Finally, we say that fi rstName and the

others are members or properties of the class. We say a whole lot of silly

things.

Chapter 13: Adding Class to C++ 107

Accessing the members of a Class

The following syntax is used to access the property of a particular object:

NameDataSet nds;
nds.creditCard = 10;

cin >> nds . f

i

rstName;
cin >> nds .

1

astName;

Here, nds is an instance of the class NameDataSet (for example, a particular

NameDataSet object). The integer nds . credi tCard is a property of the nds

object. The type of nds .credi tCard is i nt while that of nds . f i rstName is

char[] .

Okay, that's computerspeak. What has actually happened here? The program
snippet declares an object nds , which it will use to describe a customer. For

some reason, the program assigns the person the credit card numberlO
(obviously bogus but it's not like I'm going to include one of my credit card

numbers).

Next, the program reads the person's first and last names from the default

input.

From now on, the program can refer to the single object nds without dealing

with the separate parts (the first name, last name, and credit card number)
until it needs to.

int getData(NameDataSet& nds)

1

cout << "\nEnter first name:";
cin >> nds.fi rstName;

if (stricmp(nds.f i rstName, "exit") == 0)

{

return 0;

)

cout << "Enter last name:";
cin >> nds .

1

astName;

cout << "Enter credit card number:";
cin >> nds.creditCard;

return 1;

108 Part III: Programming with Class

// displayData - output the index'th data set
void di spl ayData(NameDataSet& nds)

{

cout << nds . f

i

rstName
<< " "

<< nds . 1 astName
<< "/"

<< nds

.

credi tCard
<< "\n";

int maind'nt nArg, char* pszArgs[])
I

const int MAX = 25;
// allocate 25 name data sets
NameDataSet nds[MAX];

// load first names, last names and social
// security numbers
cout << "Read name/credit card information^"

<< "Enter 'exit' for first name to exit\n"
int index = 0;

while (getData(nds[indexj) && index < MAX)

{

index++;

cout << "\nEntn'es:\n"

;

for (int i = 0; i < index; i++)

{

di spl ayData(nds[i])

;

>

return 0;

Example program

The following program demonstrates the NameDataSet class:

// DataSet - store associated data in

// an array of objects
^include <stdio.h>
^include <iostream.h>
^/include <string.h>

// NameDataSet - stores name and credit card
// information
class NameDataSet

Chapter 13: Adding Class to C++ 169

publ ic:

char firstName[128];
char lastName [128];
int credi tCard;

// getData - read a name and credit card
// number; return if no more to

// read
int getData(NameDataSet& nds)

{

cout << "XnEnter first name:";
cin >> nds . fi rstName;

if ((strcmp(nds .fi rstName, "exit") == 0)

II

(strcmp(nds.fi rstName, "EXIT") == 0))

{

return 0;

cout << "Enter last name:";
cin >> nds .lastName;

cout << "Enter credit card number
cin >> nds .credi tCard ;

return 1;

// displayData - output the index'th data set
void displayData(NameDataSet& nds)

{

cout << nds .fi rstName
<< "

"

<< nds. lastName
<< "/"

<< nds .creditCard
<< "\n";

}

int main(int nArg, char* pszArgs[])
{

// allocate 25 name data sets
NameDataSet nds[25];

/ /(/ Part III: Programming with Class

// 1 oad first names, 1 ast names and social
// security numbers
cout << "Read name/credit card information^"

<< "Enter 'exit'
1

for first name to exit\n" ;

i nt index = 0;

whi 1

i

e (getData(nds[index])

)

)

index++;

cout << "\nEntries : \n"

;

for
i

(int i = 0; i < index; 1++)

i

i

di spl ayData(nds["i]);

return 0;

}

The mai n() function allocates 25 objects of class NameDataSet. main(),

prompts the user as to what is expected of her, and then enters a loop in

which entries are read from the keyboard using the function getData () . The
loop terminates when either getData () returns a (FALSE) or when the

maximum number of objects (25) have been created. The same objects read

are next passed to di spl ayData (NameDataSet) for display.

The getData () function accepts a NameDataSet object as its input argu-

ment which it assigns the name nds.

Ignore the ampersand for now— I explain it in Chapter 15.

getData () then reads a string from standard input into the entry

f i rstName. If the stri cmp() function can find no difference between the

name entered and "exit," the function returns a to ma i n () indicating that

it's time to quit. (The function stricmpO compares two strings without

regards to their case. This function considers "exit" and "EXIT" plus any
other combination of upper- and lowercase letters to be identical.) Otherwise

the function pushes on reading the last name and the credit card number into

the object nds.

The di spl ayData () function outputs each of the members of the

NameDataSet object nds separated by delimiters.

Chapter 13: Adding Class to C++ 171

A simple run of this program appears as follows:

Read name/credit card information
Enter 'exit' for first name to exit

Enter first name:Stephen
Enter last name:Davis
Enter credit card number : 123456
Enter first name:Marshal 1

Enter last name:Smith
Enter credit card number : 567890

Enter first name:exit

Entries:
Stephen Davis/123456
Marshall Smith/567890
Press any key to continue

The program begins with an explanatory banner. I enter my own glorious

name at the first prompt (I'm modest that way). Because the name entered

does not rhyme with "exit," the program continues and I add a last name and
a pretend credit card number. On the next pass, I tack onto that the name
Marshall Smith and his real credit card number (have fun, Marshall). On the

final path, I enter "exit" which terminated the input loop. The program does

nothing more than spit the same names I just entered back at me.

/ /2 Part l" : Programming with Class

Chapter 14

Making Classes Work

In This Chapter

Adding active properties to the class

Declaring and defining a member function

Accessing class member functions

Overloading member functions

^Programmers use classes to group related data elements into a single

V object. The following Savi ngs class, associates an account balance with

a unique account number:

class Savings
f

publ ic:

unsigned accountNumber ;

float balance;

Every instance of Savi ngs contains the same two data elements:

void fn(void)
{

Savings a:

Savings b;

a . accountNumber = 1; // this is not the same as..
b. accountNumber = 2; // ...this one

The variable a . accountNumber is different from the variable

b . accountNumber. Just as the balance in my bank account is different from

the balance in yours, even though they're both called balance (or, in the case

of my account, lack of balance).

/ / If Part III: Programming with Class

Activating Our Objects

We use classes to simulate real world objects. The closer C++ objects are to

the real world, the easier it is to deal with them in programs. This sounds
simple enough. However, the Savings class doesn't do a very good job of

simulating a savings account.

Simuiatinq real-rtortd objects

Real-world objects certainly have data-type properties such as account num-
bers and balances. This makes the Savings class a good starting point for

describing a real object. But real-world objects can also do things. Ovens
cook. Savings accounts accumulate interest, CDs charge a substantial penalty

for early withdrawal— stuff like that.

Functional programs "do things" via functions. A C++ program might call

strcmp() to compare two strings or get Li ne() to input a string of charac-

ters. In fact, Chapter 26 explains that even stream I/O (ci n >> and cout <<)

are a special form of function call.

The Savings class needs active properties of its own:

class Savings
{

public:
unsigned accountNumber

;

float balance;
unsigned deposi t(unsigned amount)
{

balance += amount;
return balance;

In addition to the account number and balance, this version of Savings
includes a function deposi t(). This gives Savi ngs the ability to control its

own future. A class Mi crowaveOven has a function cook(), the class

Savi ngs has a function accumul atelnteresU) , and the class CD has a

function penal izeFor Early Wi thdrawal ().

Functions defined in a class are called member functions.

Chapter 14: Making Classes Work / /y

Why bother utith member functions)

Why should we bother with member functions? What's wrong with the good
ol' days:

class Savings
{

publ ic:

unsigned accountNumber

;

float balance;
};

unsigned deposi t(Savings& s, unsigned amount)
{

s. balance += amount;
return balance;

}

Ignore the ampersand for now— I explain it in Chapter 15.

Here deposi t() implements the "deposit into savings account" function.

This "support function" solution relies on an outside function, d e p o s i t () , to

implement an activity which accounts do but Savi ngs lacks. This gets the

job done, but it does so by breaking our object-oriented rules.

The microwave oven has internal components which it "knows" how to use

to cook, defrost, and burn to a crisp. Class data members are similar to the

parts of a microwave— the member functions of class perform cook-like

functions.

When I make nachos, I don't have to start hooking up the internal compo-
nents of the oven in a certain way to make it work. I want my classes to work
the same way. I want them to know how to manipulate their internals without

outside intervention. Member functions of Savi ngs such as deposi t() can

be written as external functions. I can put all of the functions necessary to

make a savings account work in one place. Microwave ovens can be made to

work by soldering and cutting wires. I don't want my classes or my
microwave ovens to work that way. I want a Savi ngs class that 1 can use in

my banking program without considering how it might work on the inside.

Adding a Member Function
There are two aspects to adding a member function to a class: creating the

member function and naming it (sounds silly, doesn't it?).

176 Part III: Programming with Class

Creating a member (unction

To demonstrate member functions, start by defining a class Student. One
possible representation of such a class follows:

class Student
{

publ ic:

int semesterHours

;

float gpa;

// add a completed course to the record
float addCourseC int hours, float grade)
{

// calculate the sum of all courses times
// the average grade
float weightedGPA;
weightedGPA = semesterHours * gpa;

// now add in the new course
semesterHours += hours;
weightedGPA += grade * hours;
gpa = weightedGPA / semesterHours;

// return the new gpa
return gpa;

}

};

The function addCourse(int, float) is called a member function of the

class Student. In principle, it's a property of the class like the data members
semesterHours and gpa.

There isn't a name for functions or data that are not members of a class, but

I'll refer to them as non-members.

For historical reasons, member functions are also called methods. This term
has an obtuse meaning in other object-oriented languages, but no meaning in

C++. Nevertheless, it has gained some popularity in 00 circles because it's

easier to say than "member function." (The fact that it sounds more impres-

sive probably doesn't hurt either.) So, if your friends start spouting off at a

dinner party about "methods of the class," just replace methods with

member functions and reparse anything they say. Because the term method
has little relevance to C+ + , I won't use it here.

Chapter 14: Making Classes Work 7 / /

Naming class members
A member function is a lot like a member of a family. The full name of the

function addCourse(i nt , fl oat) is Student : :addCourse(i nt , float)

just as my full name is Stephen Davis. The short name of the function is

addCoursed'nt, float) just as my short name is Stephen. The class name
at the beginning of the full name indicates that the function is a member of

the class Student. (The :; between the class name and the function name is

simply a separator.) The name Davis on the end of my name indicates that I

am a member of the Davis family.

Another name for a "full name" is extended name.

You can define anaddCoursednt, float) function that has nothing to do
with Student — there are Stephens out there who have nothing to do with

my family. (1 mean this literally: I know several Stephens who want nothing to

do with my family.)

You could have a function Teacher : : addCourse(i nt , f 1 oat) or even

Gol f : : addCourse(). A function addCourse(i nt , float) without any class

name is just a plain ol' conventional non-member function.

Callinq a Member Function
Before you look at how to call a member function, remember how to access a

data member:

class Student
{

publ ic:

int semesterHours;
float gpa

;

Student s;

void fn(void)
{

// access data members of s

s. semesterHours = 10;

s.gpa = 3.0;

/ / q Part III: Programming with Class

Notice that you have to specify an object along with the member name. In

other words, the following makes no sense:

Student s;

void fn(void)
i

// neith<sr of these is legal

semesterlHours = 10; // memb<5r ()f what object of what
// class?

Student: :semesterHours == 10; // okay, I know the class
// but I still d on't know

}

// the object

Accessing a member (unction

Remember that member functions function like data members functionally

This appears as follows:

The syntax for calling a member function looks like a cross between the

syntax for accessing a data member and that used for calling function. The
right side of the dot looks like a conventional function call but an object is on
the left of the dot.

Just as the phrase "half fast" makes sense if you sound it out: "s is the object

on which addCourse() operates" or, said another way, s is the student to

which the course is to be added. You can't fetch the number of semester
hours without knowing from which student — you can't add a student to a

course without knowing which student to add.

Calling a member function without an object makes no more sense than refer-

encing a data member without an object.

Chapter 14: Making Classes Work

Accessing other members
from a member (unction

I can see it clearly: You repeat to yourself, "Accessing a member without an

object makes no sense. Accessing a member without an object. Accessing. . .

."

Just about the time you've accepted this, you look at the member function

Student : : addCourse() and Wham.'lt hits you: addCourse() accesses other

class members without reference to an object. Just like the TV show: "How
do they do that?"

Okay, which is it, can you or can't you? Believe me, you can't. When you ref-

erence a member of Student from addCourse(), that reference is against the

Student object with which the call to addCourse() was made. Huh? Go back

to the example:

^include "student. h"

float Student :: addCourse(i nt hours, float grade)
{

float weightedGPA;
weightedGPA = semesterHours * gpa ;

// now add in the new course
semesterHours += hours;
weightedGPA += hours * grade;
gpa = weightedGPA / semesterHours;
return gpa;

}

int maindnt argcs, char* pArgs[])
{

Student s;

Student t;

s.addCourseO, 4.0); // here's an A+
t.addCourseO, 2.5); // give this guy a C

return 0;

cjABE*

When addCourse() is invoked with the object s, all of the otherwise unquali-

fied member references in addCourse() refer tos as well. Thus, the refer-

ence to semesterHours in addCourse() refers to s . semesterHours, and gpa

refers to s . gpa. But in the next line of main (), when addCourse() is invoked

with the Student t, these same references are to t . semesterHours and
t .gpa instead.

The object with which the member function was invoked is the "current"

object, and all unqualified references to class members refer to this object.

Put another way, unqualified references to class members made from a

member function are always against the current object.

/ &(/ Part III: Programming with Class

<£^S?

Naming the current object

How does the member function know what the

current object is? It's not magic — the address

of the object is passed to the member function

as an implicit and hidden first argument. In other

words, the following conversion is taking place:

s . addCourseO, 2.5) is like
Student : : addCourse(&s , 3,

2.5)

(Note that you can't actually use the syntax on

the right; this is just the way that C++ sees it.)

Inside the function, this implicit pointer to the

current object has a name, in case you need to

refer to it. It is called this, as in "Which object?

This object." Get it? The type of "this" is always

a pointer to an object of the appropriate class.

Anytime a member function refers to another

member of the same class without providing an

object explicitly, C++ assumes "this." You also

can refer to this explicitly, if you like. You could

have written Student:addCourse() as follows:

float Student: :addCourse(int
hours, float grade)

{

float weightedGPA;

weightedGPA = this-
>semesterHours * this->gpa;

// now add in the new course

this->semesterHours += hours;

weightedGPA += hours * grade;

this->gpa = weightedGPA /

this->semesterHours ;

return this->gpa;

)

The effect is the same whether you explicitly

include "this," as in the preceding example, or

leave it implicit, as you did before.

Scope Resolution (And I bon't Mean
Hort Well \!our Microscope Works)

The .. in between a member and its class name is called the scope resolution

operator because it indicates the scope to which class a member belongs.

The class name before the colon is like the family last name while the func-

tion name after the colons is like the first name — the order is similar to an

oriental name, family name first.

You can use the . operator to describe a non-member function by using a null

class name. The non-member function addCourse. for example, can be

referred to as .vaddCourse(int. f 1 oat), if you prefer. This is like a function

without a home.

Chapter 14: Making Classes Work I 8 1

Normally the :; operator is optional, but there are a few occasions when this

is not so. For example:

// addCourse - combine the hours and grade into
// a weighted grade
float addCourseC int hours, float grade)

{

return hours * grade;

class Student
{

publ ic:

int semesterHours

;

float gpa ;

// add a completed course to the record
float addCourse(int hours, float grade)
{

// call some external function to calculate the
// weighted grade
float weightedGPA = addCourse(semesterHours , gpa);

// now add in the new course
semesterHours += hours;

// use the same function to calculate the weighted
// grade of this new course
weightedGPA += addCourse(hours , grade);
gpa = weightedGPA / semesterHours;

// return the new gpa
return gpa;

$$m

Here, I want the member function Student : : addCourseC) to call the non-

member function ..addCourseC). Without the v operator, however, a call to

addCourse() from Student refers to Student: :addCourse().

One member function can use the short name when referring to another

member. The class name is understood.

Not indicating the class name in this case results in the function calling itself,

generally not a good thing. Adding the v operator to the front directs the call

to the global version, as desired:

j$2 Part III: Programming with Class

class Student
{

publ ic:

int semesterHours

;

float gpa;

// add a completed course to the record
float addCourse(int hours, float grade)

{

// call some external function to calculate the
// weighted grade
float weightedGPA =

:

:

addCourse(semesterHours , gpa);

// now add in the new course
semesterHours += hours;

// use the same function to calculate the weighted
// grade of this new course
weightedGPA += :: addCourse(hours , grade);
gpa = weightedGPA / semesterHours;

// return the new gpa
return gpa;

}

};

This is just like when 1 call out Stephen in my own home, everyone assumes

that I mean me— they default the Davis onto my name. If I mean some other

Stephen out there outside of my family, I need to say "Stephen Smith" or

"Stephen Jones" or whatever. That's what the scope resolution operator

does.

The extended name of a function includes its arguments. Now we've added

the class name to which the function belongs.

Defining a Member Function in the Class

A member function can be defined either in the class or separately. When
defined in the class definition, the function looks like the following in

student . h:

class Student
{

publ ic:

int semesterHours;
float gpa;

// add a completed course to the record
float addCourseUnt hours, float grade)

Chapter 14: Making Classes Work / q j>

{

// calculate the sum of all courses times
// the average grade
float weightedGPA;
weightedGPA = semesterHours * gpa;

// now add in the new course
semesterHours += hours;
weightedGPA += grade * hours;
gpa = weightedGPA / semesterHours;

// return the new gpa
return gpa;

Using an include like this is pretty slick:

// MyProgram - mess around with students and courses
#include "Student. h"

#include "Course. h"

void updateRecord(Student s. Course c)

{

// add the effects of taking the course to the student
s .addCourse(c. hours , c. grade);

Mining member functions

Member functions defined in the class default

to inline (unless they have been specifically out-

lined by a compiler switch or because they con-

tain a loop). Mostly, this is because a member
function defined in the class is usually very

small, and small functions are prime candidates

for inlining.

The content of an inline function is inserted

wherever it is invoked. An inline function exe-

cutes faster because the processor doesn't

have to jump over to where the function is

defined — inline functions take up more

memory because they get copied into every call

rather than being defined just once.

There is another good, but more technical,

reason to inline member functions defined

within a class. Remember that C structures are

normally defined in include files, which are then

included in the .C source files that need them.

Such include files should not contain data or

functions because these files are compiled mul-

tiple times. Including an inline function is okay,

however, because it (like a macro) expands in

place in the source file. The same applies to C++

classes. By defaulting member functions

defined in classes inline, the preceding problem

is avoided.

/ o£ji Part III: Programming with Class

This is cool because my function updateRecord() can concentrate on the

act of updating students' records without worrying about the details of stu-

dents or courses. The details of these classes have been neatly tucked away
in their own include files.

Keeping a Member Function after Class

For larger functions, putting the code directly in the class definition can lead

to some very large, unwieldy class definitions. To prevent this, C++ lets you
define member functions outside the class.

When written outside the class declaration, the Student example looks like

the following:

class Student
{

public:
int semesterHours

;

float gpa;

// add a completed course to the record
float addCourse(i nt hours, float grade);

1:

// Student: :addCourse - add a completed course to a

// Student's record
float Student: :addCourse(i nt hours, float grade)

{

float weightedGPA;
weightedGPA = semesterHours * gpa;

// now add in the new course
semesterHours += hours;
weightedGPA + = grade * hours;
gpa = weightedGPA / semesterHours;
return gpa;

This class declaration contains nothing more than a prototype declaration

for the function addCourseO. The function definition appears separately.

The member function prototype declaration in the structure is analogous to

any other prototype declaration and, like all prototype declarations, is

required.

Chapter 14: Making Classes Work

In this example, the class Student and the function Student : : addCourse()

are defined as if they were in the same file. This is possible, but not very

common. Generally, the Student class is defined in a descriptively named
include file, such as Student. h — can't get more descriptive than that. The
function is then written in some separate source file Student. cpp or the like.

ebX-STop The file Student.cpp must be included in your project along with your own
^ *^* f files. Student.cpp is compiled separately and the resulting obj file is linked

into your program during the build process. See Chapter 6 for details on how
this is done.

Overloading Member Functions
Member functions can be overloaded in the same way that conventional func-

tions are overloaded (see Chapter 6 if you don't remember what that means).

Remember, however, that the class name is part of the extended name. Thus,

the following functions are all legal:

class Student

(

pub! ic:

// grade - return the current grade point average
float grade()

;

// grade - set the grade and return previous value
float grade(float newGPA);
// ...data members and other stuff...

};

class Slope
{

publ ic:

// grade -- return the percentage grade of the slope
float grade()

;

// ...stuff goes here too...
};

// grade - return the letter equivalent of a numerical grade
char grade(float value);

int main(int argcs, char* pArgs[])
{

Student s;

s.grade(3.5) ; // Student: :grade(f loat)
float v = s.gradeO; // Student: :grade(

)

char c = grade(v); // : :grade(float)

Slope o;

float m = o.gradeO; // SI ope: :grade(

)

return 0;

I

186 Part III: Programming with Class

Each call made from ma i n () is noted in the comments with the extended

name of the function called.

When calling overloaded functions, not only the arguments of the function

but also the type of the object (if any) with which the function is invoked are

used to disambiguate the call. (The term disambiguate is object-oriented talk

for "decide at compile time which overloaded function to call.")

In the example, the first two calls to the member functions

Student: :grade(float) and Student: :grade() are differentiated by their

argument lists and the type of the object used. The call to s . grade () calls

Student : : grade () because s is of type Student.

The third call has no object, so it unambiguously denotes the non-member
function : : grade(f 1 oat).

The final call is made with an object of type Slope, it must refer to the

member function SI ope : : grade().

Chapter 15

Creating Pointers to Objects

In This Chapter

Examining the object of arrays of objects

Getting a few pointers on object pointers

Strong typing— getting picky about our pointers

Navigating through lists of objects

C+
+ programmers are forever generating arrays of things. Arrays of i nts,

arrays of floats, why not arrays of students? Students stand in line all

the time — a lot more than they care to. The concept of Student objects all

lined up quietly awaiting their name to jump into service is just too attractive

to pass up.

Defining Arrays of and Pointers

to Simple Things

An array is a sequence of identical objects much like the identical houses on
a street that make up one of those starter neighborhoods. Each element in

the array carries an index, which corresponds to the number of elements

from the beginning of the array— the first element in the array carries an

offset of 0.

C++ arrays are declared by using the bracket symbols containing the number
of elements in the array:

int array[10]; // declare an array of 10 elements

/ qq Part III: Programming with Class

The individual elements of the array may be accessed by counting the

number of houses from the corner:

cjABEfl

arravTOl = 10:

array[9] = 20;

// assian 10 to the first element
// assign 20 to the last element

The program first assigns the value 10 to the first element in the array— the

house zero houses from the house on the corner. The program then assigns

20 to the last element in the array— the ninth house from the intersection.

Always remember that C++ indices start at and go through the size of the

array minus 1.

To take the house analogy one step further, the array name represents the

name of the street, and the house number in that street represents the array

index. Similarly, variables can be identified by their unique address in com-
puter memory. These addresses may be calculated and stored for later use.

int v a r i a b 1 e; II dec lare an int object
int* pVaria ble =& variable; // store its address

// in pVariable
*pVariable =10; II assi gn 10 into the int

// pointed at by pVaria ble

The pointer pVa ri abl e is declared to contain the address of variable. The
assignment stores 10 into the int pointed at by p Van' abl e.

If we apply the house analogy one more time (I promise):

U* variable is a house

u* pVariable is like a piece of paper containing the address of the house

j>* the final assignment delivers the message 10 to the house whose
address is written on pVariable just like a postman might (except unlike

my postman, computers don't deliver mail to the wrong address)

Chapter 7 goes into the care and feeding of arrays of simple (intrinsic) vari-

ables while Chapters 8 and 9 describe simple pointers in detail.

Declaring Arrays of Objects
Arrays of objects work the same as arrays of simple variables. Take for exam-

ple the following:

Chapter 15: Creating Pointers to Objects / q y

class Student
{

publ ic:

int semesterHours

;

float gpa;
float addCourse(i nt hours, float grade);

void someFn(

)

{

// declare an array of 10 students
Student s[10];

// assign the 5th student a gpa of 5.0 (lucky guy!

s[4].gpa = 5.0;

// add another course to the 5th student;
// this time he failed - serves him right
s[4].addCourse(3, 0.0);

Here s is an array of Student objects. s[4] refers to the 5th Student object in

the array. By extension, s[4].gpa refers to the GPA of the 5th student. Further,

s[4].addCourse() adds a course the 5th student object.

Declaring Pointers to Objects
Pointers to objects work like pointers to simple types:

^include <stdio.h>
#include <iostream.h>

class Student

publ ic:

int semesterHours;
float gpa;
float addCourse(int hours, float grade)

{

return 0.0

};

int mainCint argc, char* pArgs[])
{

// create a Student object
Student s;

7 yv Part " l: Programming with Class

// now create a pointer to a Student object
Student* pS;

// make the Student pointer point to our Student object
pS =& s;

return 0;

}

The type of pS is "pointer to a Student object" also written Student*.

Dereferencing an object pointer

By analogy with pointers to simple variables, you might think that the follow-

ing refers to the GPA of our student 5:

int maind'n
i

t argc. char* pArgs;[])
i

// the fo

Student s

Student*

1 1 owing

pS =& s;

is incorrec

// create

:t

a pointer to s

// access
// (this
*pS.gpa =

the gpc

doesn ' t

3.5;

i member of
work)

the object P<3 1 n ted at by PS

return 0;

}

As the comments indicate, this doesn't work. The problem is that the dot

operator "." is evaluated before the pointer "*".

Note: The * operator is often referred to as the "splat" operator— not a pop-

ular term with insects.

C++ programmers use parentheses to override the order in which operations

are performed. For example, the parentheses force addition to be performed

before multiplication in the following expression:

int i = 2 * (1 + 3); // addition performed
// before multiplication

Parentheses have the same effect when applied to pointer variables:

Chapter 15: Creating Pointers to Objects

int maindnt argc, char* pArgj;[])
(

Student s;

Student* pS = &s; // create a pointer 'to s

// access the
// (this work;
(*pS).gpa = 3.

gpa
i as

,5;

member of
expected)

the object P<minted at by pS

return 0;

}

The *pS evaluates to the pointers object pointed at by pS. The ".gpa" refers

to the gpa member of that object.

Shooting arrow pointers

Using the splat operator together with parentheses works just fine for deref-

erencing pointers to objects; however, even the most hardened techies would
admit that this syntax is a bit tortured.

C++ offers a more convenient operator for accessing members of an object to

avoid clumsy object pointer expressions. The -> operator is defined as follows:

ps->gpa is equivalent to (*pS). gpa

The arrow operator is used almost exclusively since it is easier to read; how-
ever, the two forms are completely equivalent.

Passing Objects to Functions
Passing pointers to functions is just one of the ways to entertain yourself

with pointer variables.

Calling a (unction With an object Value

As you know, C++ passes arguments to functions by value by default. (See

Chapter 6 if you didn't know that.) Complex, user-defined class objects are

passed by value as well:

Iy2 Part III: Programming with Class

^include "Student. h"

// pass a Student object by value
void someFn(Student valS)
{

cout << "GPA = " << valS.gpa << "\n"

int mainCint argcs, char* pArgs[])
{

Student s;

s. semesterHours = 10;

s.gpa =3.0;

// the following creates a copy of s for someFnO
someFn(s)

;

return 0;

/
^BE/?

The function ma i n () creates an object s and then passes s to the function

someFn().

It is not the object s itself that is passed, but a copy of s.

The object val S in someFn() begins life as an exact copy of the variable 5 in

mai n(). Any change to val S made within someFn() has no effect on s back

inmainO.

Catling a function u/ith an object pointer

The C++ programmer can also pass the address of an object rather than the

object itself:

^include <stdio.h>
//include <iostream.h>

class Student
{

publ ic:

int semesterHours:
float gpa;
float addCourse(int hours, float grade) {return 0.0:1;

Chapter 15: Creating Pointers to Objects / yy

void someFn(Student* pS)

{

pS->semesterHours = 10;

pS->gpa = 3.0;
pS->addCourse(3, 4.0); // call the member function

int main(int argc, char* pArgs[])
{

Student s;

// pass the address of s to someFnC)
someFn(&s)

;

// pass the value of the pointer pS
Student* pS;

pS =& s;

someFn(pS)

;

return 0;

The type of the argument to s ome Fn () is a pointer to a Student rather than a

Student object itself. This is reflected in the way that the program calls

someFn(), passing the address of s rather than the value of s. The fact that

the pS argument is a pointer affects the way that someFn () accesses the

members of the object— someFn () must use the arrow syntax for derefer-

encing pointer the pS pointer.

Conceptually, this is akin to writing down the address of the house s on the

piece of paper pS and then passing a copy of that address to someFn ().

Why pass pointers to {unctions when you
can pass the object itself?

It's really cool that you can pass the address of an object as well as the object

itself, but why bother? There are a number of reasons, but two jump out

right away.

First, passing a pointer allows a function to modify the object passed to it.

Consider the following variation of the earlier snippet:

#include <stdio.h>
^include <iostream.h>

7 y if Part III: Programming with Class

class Student
{

publ i c

:

int semesterHours

;

float gpa;
float addCoursednt hours, float grade) { return 0.0;

void someFn(Student copyS)
{

copyS. semesterHours = 10;

copyS.gpa = 3.0;
copyS.addCourse(3, 4.0); // call the member function

int maindnt argc, char* pArgs[])
(

Student s;

s .gpa = 0.0;

// display the value of s.gpa before calling someFnO
cout << "The value of s.gpa = " << s.gpa << "\n";

// pass the address of the existing object
cout << "Calling someFn(Student)\n"

;

someFn(s)

;

// the value of s.gpa is now 3.0
cout << "The value of s.gpa = " << s.gpa << "\n";
return 0;

This example passes a copy of the object s to someFn () rather than the

address of the existing object. The someFn () modifies the object passed to

it; the problem is that its version of the Student object copyS is a copy of

the original s. Thus, any changes made in someFn () are not retained back

in mai n().

The output from the "pass copy of object" version of the program is as follows:

The Vd 1 ue of s gpa =

Call i mg someFn (Student)
The Vd 1 ue of s .gpa =

Press iany key to continue

Redefining someFn () to accept a pointer to the original object solves the

problem:

Chapter 15: Creating Pointers to Objects / yy

//include <stdio.h>
//include <iostream.h>

class Student
{

public:
int semesterHours

;

float gpa;
float addCoursednt hours, float grade) { return 0.0:

void someFn(Student* pS)

{

pS->semesterHours = 10;

pS->gpa = 3.0;
pS->addCourse(3, 4.0); // call the member function

int maindnt argc, char* pArgs[])
{

Student s;

s.gpa =0.0;

// display the value of s.gpa before calling someFn()
cout << "The value of s.gpa = " << s.gpa << "\n";

// pass the address of the existing object
cout << "Calling someFn(Student*)\n" ;

someFn(&s) ;

// the value of s.gpa is now 3.0
cout << "The value of s.gpa = " << s.gpa << "\n";
return 0;

}

This call to someFnf) passes the address of the existing object s rather than

construct a new one.

You might say that C++ passes a copy of the address of an existing object

rather than a copy of the object.

The output from this version of the program appears as follows:

The value of s.gpa =

Calling someFn(Student*)
The value of s.gpa = 3

Press any key to continue

/ y %} Part III: Programming with Class

Catting a (unction by using

the reference operator

The reference operator described in Chapter 9 works for user-defined

objects as well:

^include "Student.
h"

// same as before, but this time using references
void someFn(Student& refS)

{

refS. semester-Hours = 10;

refS.gpa = 3.0;
refS.addCourseO, 4.0); // call the member function

}

Student s;

int maind'nt argcs, char* pArgs[])
{

someFn(s)

;

return 0;

In this example, C++ passes a reference to s rather than a copy. Changes
made in s ome Fn () are retained in ma i n ()

.

What's actually happening here is that C++ keeps track of the address of s

passed to someFn (). C++ derefences the pointer on its own as necessary.

Returning to the Heap
The problems that exist for simple types of pointers plague class object

pointers as well. In particular, you must make sure that the pointer you're

using actually points to a valid object. For example, don't return a reference

to an object defined local to the function:

Chapter 15: Creating Pointers to Objects

Upon return from myFunc(), the mc object goes out of scope. The pointer

returned by my Fun c() is not valid in the calling function.

Allocating the object off of the heap solves the problem:

MyClass* myFunc(

)

{

MyClass* pMC = new MyClass;
return pMC;

}

The heap is used to allocate objects in a number of different situations.

Linking up u/ith Linked Lists

The second most common structure after thearray is the linked list. It is not

necessary to declare the size of a linked list at compile times — linked lists

can shrink and grow as necessary. The cost of such flexibility is access — it is

much more difficult to access individual elements in a linked list.

The array data structure

As a container of objects, the array has a number of advantages including the

ability to access a particular entry quickly and efficiently:

MyClass mc[100]; // allocate room for 100 entries
mc[n]; // access the n+l'th ms entry

Weigh against that a number of disadvantages.

Arrays are of fixed length. You can calculate the number of array entries to

allocate at run time, but once created, the size of the array can't be changed:

voi
i

d fn(int nSize)
i

// allocate an arrc

// MyClass objects
MyClass* pMC = new

iy to

MyCl,

hold n

ass[n]

:

number of

//

//

size of the
be changed

arrciy i s now fixed and cannot

)

//

7 yO Part '" : Programming with Class

In addition, each entry in the array must be of exactly the same type. It is not

possible to mix objects of class My CI ass and YourClass in the same array.

Finally, it is difficult to add an object into the middle of an array. To add or

remove an object, the program must copy each of the adjoining elements up
or down in order to make or remove a gap. (Image inserting a house in the

middle of a block of existing houses and you get the idea.)

There are alternatives to arrays tat do not suffer from these limitations. The
most well-known of these is the linked list.

The linked list

The linked list uses the same principle as the holding hands to cross the

street exercise when you were a child. Each object contains a link to the next

object in the chain. The teacher, otherwise known as the head pointer, points

to the first element in the list.

Not every class can be used to create a linked list. A linkable class is declared

as follows:

class Li nkableCl ass

{

publ ic:

LinkableCl ass* pNext;

// other members of the class

The key is the pNext pointer to an object of class Li nkabl e. At first blush,

this seems odd indeed — a class contains a pointer to itself? Actually, this

says that the class Linkable contains a pointer to another object also of

class Li nkabl e.
'

The pNext pointer is similar to the appendage used to form those chains of

children. The list of children consists of a number of objects, all of type child

Each child points to another child.

The head pointer is simply a pointer of type Li nkabl eCl ass*: To keep tor-

turing the child chain analogy, the teacher points to an object of class child.

(It's interesting to note that the teacher is not a child— the head pointer is

not of type Li nkabl eCl ass.)

LinkableClass* pHead = (Li nkabl eCl ass*)0:

Chapter 15: Creating Pointers to Objects

Always initialize any pointer to 0. Zero, generally known as null when used in

the context of pointers, is universally known as the "non-pointer." In any
case, referring to address always causes the program to halt immediately.

The cast from the intOto LinkableClass*is not necessary. C++ under-

stands to be of all types, sort of the "universal pointer." However, I find it a

good practice.

To see how linked lists work in practice, consider the following simple func-

tion, which adds the argument passed it to the beginning of the list:

void addHeaddinkableClass* pLC)

{

pLC->pNext = pHead;
pHead = pLC;

Performing other operations

on a (inked list

Adding an object to the head of a list is the simplest of the operations on a

linked list. Adding an element to the end of the list is a bit trickier:

void addTai 1

(

Linkabl eCl ass* pLC)

{

// start with a pointer to the beginning
// of the 1 inked 1 ist
LinkableClass* pCurrent = pHead;

// iterate through the list until we find
// the last object in the list - this will
// be the one with the null next pointer
whi le(pCurrent->pNext != (Linkabl eCl ass*)0)
(

// move pCurrent over to the next entry
pCurrent = pCurrent->pNext ;

// now make that object point to LC

pCurrent->pNext = pLC;

// make sure that LC's next pointer is null

// thereby marking it as the last element in

// the list
pLC->pNext = (LinkableClass*)0;

2(/(/ Part III: Programming with Class

The addTai 1 () function begins by iterating through the loop looking for the

entry who's pNext pointer is null— this is the last entry in the list. With that

in hand, addTai 1 () links the *pLC object onto the end.

(Actually, as written addTai 1 () has a bug. A special test must be added for

pHead itself being null indicating that the list was previously empty.)

A remove () function is similar. This function removes the specified object

from the list and returns a 1 if successful or a if not.

int remove(Linkabl eCl ass* pLC)
r

t

Li rikableClass* pCurrent = pHead;

// if the list is empty, then obviously
// we couldn't find *pLC in the list
if (pCurrent ==

(Linkabl eCl ass*)0)
i

)

return 0;

// iterate through the loop looking for the
// specified entry rather than the end of

// the list
whi
i

1 e(pCurrent->pNext)

1

// if the next entry is the *pLC object...
if (pLC == pCurrent->pNext)
i

(

// ...then point the current entry at

// the next entry instead
pCurrent->pNext = pLC->pNext;

// not absolutely necessary, but remove
// the next object from *pLC so as not

// to get confused
pLC->pNext = (LinkableClass*)0:
return 1;

)

1

return 0;

}

The remove () function first checks to make sure that the list is not empty. If

it is, remove () returns a fail indicator because obviously the *pLC object is

not present if the list is empty. If the list is not empty, remove () iterates

through each member until it finds the object which points to *pLC. If it finds

that object, removeC) moves the pCurrent>pNext pointer around *pLC.

Chapter 15: Creating Pointers to Objects

Properties of linked lists

Linked lists are everything that arrays are not. Linked lists can expand and
contract at will as entries are added and removed. Inserting an object in the

middle of a linked list is quick and simple— existing members do not need to

be copied about. Similarly, sorting elements in a linked list is much quicker

than the same process on the elements of an array.

On the negative side of the ledger, finding a member in a linked list is not

nearly as quick as referencing an element in an array. Array elements are

directly accessible via the index— no similar feature is available for the linked

list. Programs must search sometimes the entire list to find any given entry.

Hooking Up With a LinkedListData

Program
The LinkedListData program shown here implements a linked list of objects

containing students' name and social security number.

// LinkedListData - store name data in

// a linked list of objects
//include <stdio.h>
//include <iostream.h>
//include <string.h>

// NameDataSet - stores name and social security
// information
class NameDataSet
{

pub! ic:

char szFi rstName[128]

;

char szLastName [128]

;

int nSoci al Security ;

!

// the link to the next entry in the list
NameDataSet* pNext;

// the pointer to the first entry
// in the list
NameDataSet* pHead = 0;

// addTail - add a new member to the linked list

202 Part III: Programming with Class

void addTail (NameDataSet* pNDS)
{

// make sure that our list pointer is NULL
// since we are now the last element in the list
pNDS->pNext = 0;

// if the list is empty,
// then just point the head pointer to the
// current entry and quit
if (pHead == 0)

(

pHead = pNDS;
return

;

// otherwise find the last element in the list
NameDataSet* pCurrent = pHead;
while(pCurrent->pNext)
{

pCurrent = pCurrent->pNext

;

}

// now add the current entry onto the end of that
pCurrent->pNext = pNDS;

// getData - read a name and social security
// number; return null if no more to
// read
NameDataSet* getDataO
{

// get a new entry to fill

NameDataSet* pNDS = new NameDataSet;

// read the first name
cout << "\nEnter first name:";
cin >> pNDS->szFi rstName;

// if the name entered is 'exit'
if ((stricmp(pNDS>szFi rstName. 'exit"

)

0))

// ...delete the still empty object.,
delete pNDS;

// ...return a null to terminate input
return 0;

// read the remaining members
cout << "Enter last name:":
cin >> pNDS->szLastName:

Chapter 15: Creating Pointers to Objects 203

cout << "Enter social security number:";
cin >> pNDS->nSocialSecuri ty

;

// zero the pointer to the next entry
pNDS->pNext = 0;

// return the address of the object created
return pNDS;

// displayData - output the index'th data set
void displayData(NameDataSet* pNDS)

{

cout << pNDS->szFi rstName
<< " "

<< pNDS->szLastName
« "/"

<< pNDS->nSocial Security
<< "\n";

int main(int argc, char* pArgs[])
{

cout << "Read name/social security information^'
<< "Enter 'exit' for first name to exit\n";

// create (another) NameDataSet object
NameDataSet* pNDS;
while (pNDS = getData())

{

// add it onto the end of the list of

// NameDataSet objects
addTail(pNDS);

I

// to display the objects, iterate through the
// list (stop when the next address is NULL)

cout << "Entries:\n" ;

pNDS = pHead;
while(pNDS)
{

// display current entry
displayData(pNDS);

// get the next entry
pNDS - pNDS->pNext;

}

return 0;

20 if
Part '" : Programming with Class

Although somewhat lengthy, the LinkedListData program is relatively simple.

The mai n() function begins by calling getData() to fetch another

NameDataSet entry from the user. If the user enters "exit," then getData (

)

returns a null, mai n() calls addTai 1 () to add the entry returned from

getData () to the end of the linked list.

When there are no more NameDataSet objects forthcoming from the user,

mai n() iterates through the list, displaying each using the di spl ayData(

)

function.

The getData () function first allocates an empty NameDataSet object from

the heap. getData () continues by reading the first name of the entry to add.

If the user enters a first name of "exit" or "EXIT," the function deletes the

object and returns a null to the caller. getData () continues by reading the

last name and social security number. Finally, getData () zeroes out the

pNext pointer before returning.

Never leave link pointers uninitialized. Use the old programmer's wives' tale:

"Zero them out when in doubt." (Wives of old programmers say that.)

The addTai 1 () function appearing here is similar to the addTai 1 () function

demonstrated earlier in the chapter. Unlike that earlier version, this

addTai 1 () checks to see if the list is empty before starting. If pHead is null,

then addTai 1 () points it at the current entry and terminates.

The di spl ayData () function is a pointer based version of the earlier

di spl ayData () functions.

Chapter 16

Protecting Members:

Do Not Disturb

In This Chapter

Declaring members protected

Accessing protected members from within the class

Accessing protected members from outside the class

Chapter 13 introduced the concept of the class. That chapter described

the public keyword as if it were part of the class declaration— just

something that you do. In this chapter, you find out about an alternative to

public.

Protecting Members
The members of a class can be marked protected, which makes them inac-

cessible outside the class. The alternative is to make the members public.

Public members are accessible to all.

Why you need protected members
To understand the role of protected, think about the goals of object-oriented

programming:

i* Protect the internals of the class from outside functions. Suppose, for

example, that you have a plan to build a software microwave (or what-

ever), provide it with a simple interface to the outside world, and then

put a box around it to keep others from messing with the insides. The
protected keyword is that box.

206 Part III: Programming with Class

u* Make the class responsible for maintaining its internal state. It's not fair

to ask the class to be responsible if others can reach in and manipulate

its internals (any more than it's fair to ask a microwave designer to be

responsible for the consequences of my mucking with a microwave's

internal wiring).

u* Limit the interface of the class to the outside world. It's easier to learn and

use a class that has a limited interface (the public members). Protected

members are hidden from the user and need not be learned. The interface

becomes the class; this is called abstraction (see Chapter 8).

i> Reduce the level of interconnection between the class and other code.

By limiting interconnection, you can more easily replace one class with

another, or use the class in other programs.

Now I know what you functional types out there are saying: "You don't need

some fancy feature to do all that. Just make a rule that says certain members
are publicly accessible and others are not."

Although that is true in theory, it doesn't work. People start out with all kinds

of good intentions, but as long as the language doesn't at least discourage

direct access of protected members, these good intentions get crushed under

the pressure to get the product out the door.

Discovering hou/ protected members u/ork

Adding the keyword publ i c to a class makes subsequent members public,

which means that they are accessible by non-member functions. Adding the

keyword protected makes subsequent members of the class protected,

which means they are not accessible by non-members of the class. You can

switch between public and protected as often as you like.

Suppose you have a class named Student. In this example, the following

capabilities are all that a fully functional, upstanding Student needs (notice

the absence of spendMoney() and dri nkBeer() — this is a highly stylized

student):

addCourse (inthours, float grade)— addacourse

grade() — return the current grade point average

hours () — return the number of hours earned toward graduation

The remaining members of Student can be declared protected to keep other

functions' prying expressions out of Student's business.

Chapter 16: Protecting Members: Do Not Disturb 20 7

class Student
(

publ ic:

// grade - return the current grade point average
f 1 oat grade(

)

{

return gpa;

}

// hours - return the number of semester hours
int hours(

)

{

return semesterHours

;

}

// addCourse - add another course to the student's record
float addCourse(int hours, float grade);

// the following members are off-limits to others
protected:
int semesterHours; // hours earned toward graduation
float gpa; // grade point average

};

Now the members semester hours and gpa are accessible only to other

members of Student. Thus, the following doesn't work:

Student s;

int mainCint argcs, char* pArgs[])
{

// raise my grade (don't make it too high; otherwise, no
// one would bel ieve it)

s.gpa = 3.5; // <- generates compiler error
float gpa = s.gradeO; // <- this public function reads

// a copy of the value, but you can't
// change it from here

return 0;

The application's attempt to change the value of gpa is flagged with a

compiler error.

It's considered good form not to rely on the default and specify either public

or private at the beginning of the class. Most of the time, people start with

the public members, because these make up the interface of the class.

Protected members are saved until later.

2(/0 Part '" : Programming with Class

Class members can be protected from access by non-member functions also

by declaring them private. In fact, private is the default for classes (that is,

classes start out in private mode). The difference between protected and pri-

vate first becomes apparent in the presence of inheritance, which is covered

in Chapter 21.

Making an Argument for Using

Protected Members
Now that you know a little more about how to use protected members in an

actual class, I replay the arguments for using protected members.

Protecting the internal state of the class

Making the gpa member protected precludes the application from setting the

grade point average to some arbitrary value. The application can add

courses, but it can't change the grade point average.

If the application has a legitimate need to set the grade point average directly,

the class can provide a member function for that purpose, as follows:

class Student
{

publ ic:

// same as before
fl oat grade()

{

return gpa;

}

// here we allow the grade to be changed
float grade(float newGPA)
{

float oldGPA = gpa;
// only if the new value is valid
if (newGPA > 0& & newGPA <= 4.0)

{

gpa = newGPA;
1

return oldGPA;
I

// ...other stuff is the same including the data members:
protected:
int semester-Hours; // hours earned toward graduation
float gpa;

Chapter 16: Protecting Members: Do Not Disturb

The addition of the member function grade (float allows the application to

set the gpa). Notice, however, that the class still hasn't given up control com-
pletely. The application can't set gpa to any old value; only a gpa in the legal

range of values (from through 4.0) is accepted.

Thus, Student has provided access to an internal data member without abdi-

cating its responsibility to make sure that the internal state of the class is valid.

Usinq a class With a limited interface

A class provides a limited interface. To use a class, all you need (or want) to

know are its public members, what they do, and what their arguments are.

This can drastically reduce the number of things you need to learn— and
remember— to use the class.

As conditions change or as bugs are found, you want to be able to change the

internal workings of a class. When you have hidden the internal workings of

the class, changes to those details are less likely to require changes in the

external application code.

Gii/ing Non-Member Functions

Access to Protected Members
Occasionally, you want a non-member function to have access to the pro-

tected members of a class. You can do this by naming that function a friend

of the class using the keyword friend.

Why do I need friends? (I am
a rock, I am an island)

Sometimes an external function requires direct access to a data member.
Without some type of friend mechanism, the programmer would be forced to

declare the member public. This would give everyone else access to the one

function as well.

It's like having a neighbor check on your house during your vacation. Giving

non-family members the key to your house is not normally a good idea, but it

beats the alternative of leaving the house unlocked.

210 Part "' : Programming with Class

The friend declaration appears in the class that contains the protected

member. The friend declaration is like a prototype declaration in that it

includes the extended name and the return type. In the following example,

the function initial i z e () can now access anything it wants in Student:

class Student
{

friend void i ni tial ize(Student*)

;

public:
// same public members as before...

protected:
int semesterHours ; // hours earned toward graduation
float gpa

;

};

// the following function is a friend of Student
// so it can access the protected members
void initial ize(Student *pS)

{

pS->gpa = 0; // this is now legal...
pS->semesterHours = 0; // ...when it wasn't before

A single function can be declared to be a friend of two classes at the same
time. Although this can be convenient, it tends to bind the two classes

together. This binding of classes is normally considered bad because it

makes one class dependent on the other. If the two classes naturally belong

together, however, it's not all bad. For example:

class Student: // forward declaration
class Teacher
{

friend void regi stration()

;

protected:
int noStudents;
Student *pl_ist[100]

;

publ ic:

void assignGrades()

;

};

class Student
{

friend void regi stration()

;

publ ic:

// same public members as before...
protected:
Teacher *pT;
int semesterHours; // hours earned toward graduation
float gpa:

Chapter 16: Protecting Members: Do Not Disturb 211

In this example, the regi strati on() function can reach into both the

Student and Teacher classes to tie them together at registration time, with-

out being a member function of either one.

Notice that the first line in the example declares the class Student but none
of its members. Remember, this is called a forward declaration and just

defines the name of the class so that other classes, such as Teacher, can refer

to it. Forward references are necessary when two classes refer to each other.

A member function of one class may be declared a friend of another class.

For example:

class Teacher
{

// ...other members as well...
publ ic:

void assignGrades()

;

};

class Student
{

friend void Teacher :: assignGrades()

;

publ ic:

// same public members as before...
protected:
int semesterHours; // hours earned toward graduation
float gpa;

I;

void Teacher

:

:assignGrades()

{

// can access protected members of Teacher from here

}

Unlike in the non-member example, the member function assignGrades(

must be declared before the class Student can declare it to be a friend.

An entire class can be named a friend of another. This has the effect of

making every member function of the class a friend. For example:

class Student: // forward declaration
class Teacher
{

protected:
int noStudents;
Student *pList[100];

publ ic:

void assignGrades()

;

);

class Student

212 Part l" : Programming with Class

Now any member function of Teacher has access to the protected members
of Student. Declaring one class a friend of the other inseparably binds the

two classes together.

Chapter 17

Building and Tearing Down

Objects: The Constructor

and Destructor

In This Chapter

Creating and destroying objects

Declaring constructors and destructors

Invoking constructors and destructors

m Objects in programs are built and scrapped just like objects in the real

^S world. If the class is to be responsible for its well-being, it must have
some control over this process. As luck would have it (I suppose some pre-

planning was involved as well), C++ provides just the right mechanism. But

first, a discussion of what it means to create an object.

Creating Objects
Some people get a little sloppy in using the terms class and object. What's the

difference? What's the relationship?

I can create a class Dog that describes the relevant properties of man's best

friend. At my house, we have two dogs. Thus, my class Dog has two
instances, Trudie and Scooter (well, I think there are two instances — I

haven't seen Scooter in a few days).

2 1 If Part "' : Programming with Class

riftBEft

dftBEff

A c/ass describes a type of thing. An object is an instance of a class. The class

is Dog, and the objects are Trudie and Scooter. Each dog has a separate

object, but there is only one class Dog, no matter how many dogs I may have.

Objects are created and destroyed, but classes simply exist. My pets Trudie

and Scooter come and go, but the class Dog (evolution aside) is perpetual.

Different types of objects are created at different times. Global objects are

created when the program first begins execution. Local objects are created

when the program encounters their declaration.

A global object is one that is declared outside of any function. A local object

is one that is declared within a function and is, therefore, local to the func-

tion. In the following example, the variable me is global and the variable noMe
is local to the function pi ckOne():

int me;
void pickOne()

{

int noMe;

**3^
Under C rules, global objects are initialized to all zeros. Objects declared

local to a function have no particular initial value. This is generally not

acceptable to classes.

C++ allows the class to define a special member function that is invoked auto-

matically when an object of that class is created. This member function,

called the constructor, must initialize the object to some valid initial state. In

addition, the class may define a destructor to handle the destruction of the

object. These two functions are the topics of this chapter.

Usinq Constructors

The constructor is a member function that is called automatically when an

object of a certain class is created. Its primary job is to initialize the object to

a legal initial value for the class.

Explaining the need for constructors

You could initialize an object as part of the declaration — that's the way the

C programmer would do it. For example:

Chapter 17: Building and Tearing Down Objects: The Constructor and Destructor 215

struct Student
{

int semesterHours

;

float gpa;

};

void fn(

)

{

Student s = {0, 0};

// ...function continues.

This doesn't work for a true C++ class because the application doesn't have

access to the protected members of the class. The following snippet is invalid:

class Student
f

publ ic:

// . . .publ ic members. .

.

protected:
int semesterHours;
float gpa;

};

void fn(

)

f

Student s = {0, 0}; // illegal; data members not
// accessible

// ...function continues...

In this example, the non-member f n () can't write to the protected members
semesterHours and gpa.

You could outfit the class with an initialization function that the application

calls as soon as the object is created. Because this initialization function is a

member of the class, it would have access to the protected members. This

solution appears as follows:

class Student

publ ic:

void i n i t ()

{

semesterHours = 0;

gpa = 0.0;

// ...other public members...
protected: int semesterHours
float gpa;

};

void fn(

)

216 Part III: Programming with Class

Student s; // create the object...
s.initO; // ...then initialize it

// ...function continues...

The only problem with this solution is that it abrogates the responsibility of

the class to look after its own data members. In other words, the class must
rely on the application to call the i ni t () function. If it does not, the object is

full of garbage and who knows what might happen.

What is needed is a way to take the responsibility for calling the i ni t() func-

tion away from the application code and give it to the compiler. Every time an

object is created, the compiler can insert a call to the special i ni t function

to initialize it. That's a constructor!

Making constructors rtork

The constructor is a special member function that's called automatically

when an object is created. It carries the same name as the class. That way.

the compiler knows which member function is the constructor. (The design-

ers of C++ could have made up a different rule, such as: "The constructor

must be called i ni t ()
."

It wouldn't have made any difference, as long as the

compiler could recognize the constructor.) In addition, the constructor has

no return type since it is called automatically (if the constructor did return

something there would be no place to put it).

With a constructor, the class Student appears as follows:

^include <iostream.h>
class Student
{

publ ic:

Student(

)

{

cout << "constructing student\n";
semesterHours = 0;

gpa = 0.0;
I

// ...other public members...
protected:
int semesterHours;
float gpa;

I:

void fn(

)

{

Student s; // create the object and initialize it

// ...function continues...

Chapter 17: Building and Tearing Down Objects: The Constructor and Destructor 217

At the point of the declaration of s, the compiler inserts a call to the con-

structor Student: :Student().

This simple constructor was written as an inline member function.

Constructors can be written also as outline functions. For example:

#include <iostream.h>

class Student
{

publ ic:

StudentC)

;

// ...other public members...
protected:
int semesterHours

;

float gpa;

};

Student: :Student(

)

{

cout << "constructing student\n";
semesterHours = 0:

gpa = 0.0;
}

void fn(

)

{

Student s; // create the object and initialize it

// ...function continues...
1

int maind'nt argcs, char* pArgs[])
{

fn();
return 0;

)

I added a small ma i n () function here so that you can execute this program.

You really should single-step this simple program in your debugger before

going any further.

Explanations for the care and feeding of the GNU C++ debugger are contained

in Chapter 29.

As you single-step through this example, control eventually comes to rest at

the Student s declaration. Select Step Into or Trace one more time and con-

trol magically jumps to Student: : StudentC). (If you are using the inline

version, be sure to compile with the "Outline inline functions" compiler

switch enabled; otherwise the entire constructor is executed as a single

statement, and you won't notice the call.) Continue single-stepping through

the constructor. When the function has finished, control returns to the state-

ment after the declaration.

218 Part '" : Programming with Class

Multiple objects can be declared on a single line. Rerun the single-step exper-

iment with f n () declared as follows:

void fn(

)

{

Student s[5]; // create an array of objects
// ...function continues...

You should see the constructor invoked five times, one time for each element

in the array.

The output statement has been added so that you can see output to the

screen whenever the constructor is invoked in case you can't get the

debugger to work (or you just don't want to bother). The effect is not as

dramatic, but it is convincing.

The constructor can be invoked only automatically. It can't be called like a

normal member function. That is, you can't use something like the following

to reinitialize a Student object:

void fn()

St udent s; // initialize the 1 object
// . . .other stuff
s.

}

Student()

;

; // reini ti al ize it; this doesn 't work

The constructor has no return type, not even void.

If a class contains a data member that is an object of another class, the con-

structor for that class is called automatically as well. Consider the following

example. Output statements have been added so that you can see the order

in which the objects are invoked.

#include <i ostream.h>
class Student
I

publ ic:

Student(

)

(

cout << "constructing student\n";
semesterHours - 0;

gpa = 0.0:

I

// ...other public members...
protected:
int semesterHours;

Chapter 17: Building and Tearing Down Objects: The Constructor and Destructor 2 1 y

float gpa;

};

class Teacher
{

publ ic:

Teacher(

)

{

cout << "constructing teacher\n";
I

(;

class TutorPair
{

publ ic:

TutorPai r(

)

{

cout << "constructing tutor pair\n'
noMeetings = 0;

}

protected:
Student student;
Teacher teacher;
int noMeetings;

};

int main(int argcs, char* pArgs[])
f

TutorPair tp;

cout << "back in main\n";
return 0;

Executing this program generates the following output:

constructing student
constructing teacher
constructing tutor pair
back in main

Creating the object tp in main invokes the constructor for TutorPai r auto-

matically. Before control passes into the body of the TutorPai r constructor,

however, the constructors for the two-member objects student and teacher
are invoked.

The constructor for Student is called first because it is declared first. Then
the constructor for Teacher is called. After these objects have been con-

structed, control returns to the open brace and the constructor for

TutorPai r is allowed to construct the remainder of the object.

220 Part III: Programming with Class

It would not do for Tutor Pa i r to be responsible for initializing student and
teacher. Each class is responsible for initializing its own objects.

Understanding the bestmctor
Just as objects are created, so are they destroyed (ashes to ashes, dust to dust).

If a class can have a constructor to set things up, it should also have a special

member function to take the object apart. This member is called the destructor.

Why you need the destructor

A class may allocate resources in the constructor; these resources need to be

deallocated before the object ceases to exist. For example, if the constructor

opens a file, the file needs to be closed before leaving that class or the pro-

gram itself. Or if the constructor allocates memory from the heap, this

memory must be freed before the object goes away. The destructor allows

the class to do these cleanup tasks automatically without relying on the

application to call the proper member functions.

Working u/ith destructors

The destructor member has the same name as the class but with a tilde (-)

added to the front. (C++ is being cute again — the tilde is the symbol for the

logical NOT operator. Get it? A destructor is a "not constructor." Tres clever.)

Like a constructor, the destructor has no return type. For example, the class

Student with a destructor added appears as follows:

class Student
I

publ ic:

Student()

I

semesterHours = 0;

gpa - 0.0;

)

-StudentC

)

{

// ...whatever assets are returned here...

!

// ...other public members...
protected:
int semesterHours

;

float gpa;

Chapter 17: Building and Tearing Down Objects: The Constructor and Destructor 22 1

The destructor is invoked automatically when an object is destroyed, or in

C++ parlance, when an object is destructed. That sounds sort of circular ("the

destructor is invoked when an object is destructed"), so I've avoided the

term until now. You can also say, "when the object goes out of scope." A local

object goes out of scope when the function returns. A global or static object

goes out of scope when the program terminates.

If more than one object is being destructed, the destructors are invoked in

the reverse order in which the constructors were called. This is also true

when destructing objects that have class objects as data members. For

example, here's the example Tutor Pa i r program with destructors added:

#include <iostream.h>
class Student
I

publ ic:

Student(

)

(

cout << "constructing student\n"

;

semester-Hours = 0;

gpa = 0.0;
i

~Student(

)

(

cout << "destructing studen t\n"; (

// . . .other publ i c mem bers. .

protected:
int semesterHours

;

float gpa;

class Teacher
i

publ i c

:

Teacher(

)

I

cout << "constructing
i

teach e r \ n "
;

t

~Teacher(

)

i

cout << "destructing
}

teache r \ n "

;

1;

class TutorPair

publ ic:

TutorPair(

)

cout << "constructing tutor pai r\n"

;

222 Part III: Programming with Class

noMeetings = 0;

}

-TutorPai r(

)

I

cout << "destructing tutor pair\n";

}

protected:
Student s;

Teacher t;

int noMeetings;
1;

int main(int argcs, char* pArgs[])
{

TutorPair tp;

cout << "back in main\n";
return 0;

I

If you execute this program, it generates the following output:

construct! ng student
constructi ng teacher
constructing tutor pair
back in main
destructi ng tutor pair
destructing teacher
destructing student

The constructor for TutorPairis invoked at the declaration of tp. The
destructor is invoked at the closing brace of ma i n ()

.

Chapter 18

Making Constructive Arguments

In This Chapter

Making argumentative constructors

Overloading the constructor

.*> Creating objects by using constructors

Invoking member constructors

- Order of construction and destruction

I\ class represents a type of object in the real world. For example, we
W \ have used the class Student to represent the properties of a student

complete with name and Social Security Number.

Just like students, classes think that they are self-reliant. Unlike a student, a

class is responsible for its own care and feeding — a class must keep itself in

a valid state at all times. For example, aStudentlDofOis probably not valid.

It's up to the class to make sure that the ID is initialized to a legal value when
the object is created.

C++ allows the programmer to define a special member function called the

constructor that's called automatically when the object is created. The con-

structor allows the class to initialize the object properly when it's created.

The constructors shown in Chapter 17 have no arguments — they have no

choice but to initialize the object to some default state This chapter exam-
ines constructors with arguments.

22fc* Part III: Programming with Class

Outfitting Constructors With Arguments
C+ + allows the programmer to define a constructor with arguments. For

example:

//include <i ostream. h>

^include <string.h>
class Student
I

Student(char *pName)
{

cout << "constructing student " << pName << "\n";
strncpy(name, pName, sizeof (name))

;

name[sizeof (name) - 1] '\0';

}

// ...other public members go here
protected:
char name[40];
int semesterHours

;

float gpa;

Justifying constructors

Something as straightforward as adding arguments to the constructor

shouldn't require much justification, but let me take a shot at it anyway. First,

allowing arguments to constructors is convenient. It's a bit silly to make the

programmer construct a default object and then immediately call an initial-

ization function to store data in it. A constructor with arguments is like one-

stop shopping — sort of a full-service constructor.

Another more important reason to provide arguments to constructors is that

it may not be possible to construct a reasonable default object. Remember
that a constructor's job is to construct a legal object (legal as defined by the

class). If some default object is not legal, the constructor isn't doing its job.

For example, a bank account without an account number is probably not

legal. (C++ doesn't care one way or the other, but the bank might get snitty.)

We could construct a numberless BankAccount object and then require that

the application use some other member function to initialize the account

number before it's used. This breaks our rules, however, because it forces the

class to rely on the application for initialization.

Chapter 18: Making Constructive Arguments £^5

Usinq a constructor)

Conceptually, the idea of adding an argument is simple. A constructor is a

member function and member functions can have arguments. Therefore, con-

structors can have arguments.

Remember, though, that you don't call the constructor like a normal function.

Therefore, the only way to pass arguments to the constructor is when the

object is created. For example, the following program creates an object s of

class Student by calling the Student (char*) constructor. The object s is

destructed when the function ma i n () returns.

^include <iostream.h>
#include <string.h>
class Student
{

publ i c:

Student(char *pName)
{

cout << "constructing student " << pName << "\n";
strncpyCname, pName, sizeof (name))

;

nameCsizeof (name) - 1] = '\0';

semester-Hours = 0;

gpa = 0.0;

)

~Student(

)

{

cout << "destructing " << name << "\n";

// it's a good idea to wipe out the student name
// since the object is no longer valid
name[0] = '\0'

;

// ...other public members...
protected:
char name[40];
int semesterHours;
float gpa;

};

int mainMnt argcs, char* pArgs[])
{

Student sCDanny"); // construct little Danny
return 0;

} // now. get rid of him

The constructor looks like the constructors shown in Chapter 17 except for

the addition of the char* argument pName. The constructor initializes the

data members to their empty start-up values, except for the data member
name, which gets its initial value from pName.

<?<?(? P art '" Programming with Class

The object s is created in ma i n () . The argument to be passed to the con-

structor appears in the declaration of s, right next to the name of the object.

Thus, the student s is given the name Danny in this declaration. The closed

brace invokes the destructor on poor little Danny.

Executing the program generates the following output:

ajttNG/

constructing student Danny
obstructing Danny

Many of the constructors in this chapter violate the "functions with more than

three lines shouldn't be inlined" rule. I decided to make them inline anyway
because I think they're easier for you to read that way. Aren't I a nice guy?

When outlined, constructors and destructors appear as follows:

#inc1ude <iostream.h>
^include <string.h>
class Student

publ ic:

// declarations only
Student(char *pName);

~Student()

;

// ...other public members
protected:
char name[40];
int semesterHours

;

float gpa;

// definitions (notice no return type)
Student: :Student(char *pName)
{

cout << "constructing student " << pName <<

strncpy(name, pName. si zeof (name))

:

name[sizeof (name) - 1] = '\0';

semesterHours = 0;

gpa = 0.0:

'\n'

// check out this destructor declaration
// - does this look bizarre or what?
Student: :~Student()

{

cout << "destructing " << name << "\n"

As your experience in C++ grows, you should have no trouble mentally con-

verting from one form to the other.

Chapter 18: Making Constructive Arguments 22 /

Overloading the Constructor (Is That

Like Placing Too Many Demands
on the Carpenter?)

While I'm drawing parallels between constructors and other, more normal
member functions in this chapter, I can draw one more: Constructors can be
overloaded.

Overloading a function means to define two functions with the same short

name but with different types of arguments. See Chapter 6 for the latest news
in function overloading.

C++ chooses the proper constructor based on the arguments in the declara-

tion of the object. For example, the class Student can have all three con-

structors shown in the following snippet at the same time:

^include <iostream.h>
^include <string.h>
class Student
{

publ ic:

StudentC

)

{

cout << "constructing student no name\n";
semesterHours = 0;

gpa = 0.0;
name[0] = '\0'

;

}

Student(char *pName)
I

cout << "constructing student " << pName << "\n";
strncpy(name, pName, sizeof (name))

;

name[sizeof (name) - 1] = '\0';

semesterHours = 0;

gpa = 0;

1

Student(char *pName, int xfrHours, float xfrGPA)
{

cout << "constructing student " << pName << "\n";

strncpy(name, pName, sizeof (name))

;

name[sizeof (name) - 1] = '\0';

semesterHours = xfrHours;
gpa = xfrGPA;

}

~Student(

)

228 Part III: Programming with Class

cout << "destructi ng student\n";
}

// ...other public members...
protected:
char name[40];
int semesterHours

;

float gpa;

// the following invokes each constructor in turn
int main(int argcs, char* pArgs[])
(

Student noName;
Student f reshMan("Smel 1 E. Fish");
Student xferC'Upp R. Classman", 80, 2.5);
return 0;

Because the object noName appears with no arguments, it's constructed using

the constructor Student : : Student (). This constructor is called the default,

or void, constructor. (I prefer the latter name, but the former is more
common, so I use it in this book— I'm a slave to fashion.) The f reshMan is

constructed using the constructor that has only a char* argument and the

xfer Student uses the constructor with three arguments.

Notice how similar all three constructors are, particularly the last two. By
adding defaults to the last constructor, all three constructors can be com-
bined into one. For example, the following class combines all three construc-

tors into a single, clever constructor:

^include <iostream.h>
if/include <string.h>
class Student

publ ic:

Student(char *pName = "no name'
int xfrHours = 0,

float xfrGPA = 0.0)

{

cout << "constructing student " << pName << "\n'

strncpy(name, pName, si zeof (name))

;

name[sizeof (name) - 1] = '\0';

semesterHours = xfrHours;
gpa = xfrGPA;

~Student()

Chapter 18: Making Constructive Arguments ££y

£I*BE/?

cout << "destructing student\n";
}

// ...other public members...
protected:
char name[40];
int semesterHours;
float gpa;

};

int main(int argcs, char* pArgs[])
(

Student noName;
Student f reshMan("Smel 1 E. Fish");
Student xfer("Upp R. Classman", 80. 2.5);
return 0;

}

Now all three objects are constructed using the same constructor; defaults

are provided for nonexistent arguments in noName and freshMan.

In earlier versions of C++, you couldn't create a default constructor by provid-

ing defaults for all the arguments. The default constructor had to be a separate

explicit constructor. Although this restriction was lifted in the standard (it

seems to have had no good basis), some older compilers may still impose it.

Defaulting Default Constructors

As far as C++ is concerned, every class must have a constructor; otherwise,

you can't create any objects of that class. If you don't provide a constructor

for your class, C++ should probably just generate an error, but it doesn't. To
provide compatibility with existing C code, which knows nothing about con-

structors, C++ automatically provides a default constructor (sort of a default

default constructor) that sets all the data members of the object to binary

zero. Sometimes I call this a Miranda constructor — you know, "if you cannot

afford a constructor, a constructor will be provided for you."

If your class already has a constructor, C++ doesn't provide the automatic

default constructor. (Having tipped your hand that this isn't a C program,

C++ doesn't feel obliged to do any extra work to ensure compatibility)

The result is: If you define a constructor for your class but you also want a

default constructor, you must define it yourself.

23(f ^art '"' P r°9ramm ' n g wi^ Class

Some code snippets help demonstrate this. The following is legal:

cl

1

ass Student
i

!:

// . ..all the same stu ff as before but no const ructors

i rit maind'nt argcs , cr ar* pA r g i>[])

i

1

Student no

return 0;

Name;

noName is declared with no arguments, so C++ invokes the default construc-

tor to construct it. Because the programmer has not already defined any con-

structors for class Student, C++ provides a default constructor that zeros

out any data members that Student may have.

The following code snippet does not compile properly:

class Student
{

publ i c

:

Student(char *pName);

int mainCint argcs, char* pArgs[])
{

Student noName;
return 0;

The seemingly innocuous addition of the Student (char*) constructor pre-

cludes C++ from automatically providing a Student () constructor with

which to build object noName. This example generates the following error

message from the GNU C++ compiler which comes on the enclosed CD-ROM.
(The error message from any other compiler would be similar.)

Error: no matching function for call to ' Student

:

:Student ()'

The compiler is telling you that it can't find the Student : : Student () con-

structor. Adding a default constructor solves the problem:

class Student
(

publ ic:

StudentCchar *pName);
StudentO; // manually provided default

constructor
! :

int maindnt argcs, char* pArgs[])

Chapter 18: Making Constructive Arguments 23 7

{

Student noName; // used to build this object
return 0;

}

It's just this type of illogic that explains why C++ programmers get the really

big bucks!

Constructing Class Members
In the preceding examples, all data members have been of simple types, such

as i nt and float. With simple types, it's sufficient to assign a value to the

variable within the constructor. But what if the class contains data members
of a user-defined class? Consider the following example:

//include <i ostream. h>

//include <string.h>

int nextStudentld = 0;

class Studentld
{

publ ic:

StudentldO
{

value = ++nextStudentId;
cout << "Assigning student id " << value << "\n";

1

protected:
int value;

class Student
{

publ ic:

Student(char *pName = "no name")
{

cout << "Constructing student " << pName << "\n";
strncpy(name, pName, si zeof (name))

;

name[sizeof (name) - 1] = '\0';

1

protected:
char name[40];
Studentld id;

};

int main(int argcs, char* pArgs[])
{

Student s("Randy")

;

return 0;

}

^?3^- Part III: Programming with Class

A student ID is assigned to each student as the student object is con-

structed. In this example, IDs are handed out sequentially using the global

variable nextStudentld.

This Student class contains a member id of class Student Id. The construc-

tor for Student can't assign a value to this i d member because Student
does not have access to the protected members of Student Id. You could

make Studenta friend ofStudentld, but that violates the "you take care of

your business, I'll take care of mine" philosophy. Somehow you need to

invoke the constructor for Studentld when Student is constructed.

C++ does this for you automatically in this case, invoking the default con-

structor Studentld: :StudentId() on id. This occurs after the Student
constructor is called but before control passes to the first statement in the

constructor. (Single step the preceding program in the debugger to see what I

mean. As always, be sure that inline functions are forced outline.) The output

from executing this simple program follows:

Assigning student id 1

Constructing student Randy

Notice that the message from the Studentld constructor appears before the

output from the Student constructor.

(By the way, with all these constructors performing output, you may think

that constructors must output something. Most constructors don't output a

bloody thing.)

If the programmer does not provide a constructor, the default constructor

provided by C++ automatically invokes the default constructors for any data

members. The same is true come harvesting time. The destructor for the

class automatically invokes the destructor for any data members that have

destructors. The C++-provided destructor does the same.

Okay, this is all great for the default constructor. But what if we wanted to

invoke a constructor other than the default? Where do we put the object? To

demonstrate, assume that instead of calculating the student ID. it is provided

to the Student constructor, which passes the ID to the constructor for class

Studentld.

Let me first show you what doesn't work. Consider the following program:

//include <iostream.h>
//include <string.h>

class Studentld
1

publ ic:

StudentldUnt id = 0)

1

Chapter 18: Making Constructive Arguments 233

value = id;

cout << "Assigning student id " << value
}

<< "\n";

protected:
int value;

};

class Student
t

publ ic:

Student(char *pName = "no name", int ssld == 0)

1

cout << "Constructing student " << pName << "\n";
strncpy(name, pName, sizeof (name))

;

name[sizeof (name) - 1] = '\0';

// don't try this at home kids. It doesn't work
Studentld id(ssld); // construct a student id

i

protected:
char name[40];
Studentld id;

};

int mainMnt argcs, char* pArgs[])
i

Student s("Randy", 1234);
cout << "This message from main\n":
return 0;

}

The constructor for Studentld has been changed to accept a value exter-

nally (the default value is necessary to get the example to compile, for rea-

sons that will become clear shortly). Within the constructor for Student, the

programmer (that's me) has (cleverly) attempted to construct a Studentld
object named id.

If you look at the output from this program, you notice a problem:

Assigning stijdent id

Constructing student Randy
Assigning student id 1234
Destructing id 1234
This message from main
Destructing id

The first problem is that the constructor for Studentld appears to be
invoked twice, once with zero and a second time with the expected 1234.

Then we notice that the 1234 object is destructed before the output string in

main(). Apparently the Studentld object is destructed within the Student
constructor itself.

23b Part III: Programming with Class

The explanation for this rather bizarre behavior is clear. The data member i d

already exists by the time the body of the constructor is entered. Rather than

constructing the existing data member i d, the declaration provided in the

constructor creates a local object of the same name. This local object is

destructed upon returning from the constructor.

Somehow we need a different mechanism to indicate "construct the existing

member; don't create a new one." This mechanism needs to appear before

the open brace, before the data members are declared. For this, C++ defined

a new construct, as follows:

class Student
{

publ ic:

Student(char *pName = "no name", int ssld = 0) : id(ssld)
{

cout << "Constructing student " << pName << "\n";
strncpy(name, pName, sizeof (name))

;

name[sizeof (name) - 1] = '\0';

}

protected:
char name[403:
Studentld id;

};

Notice in particular the first line of the constructor. Here's something you
may not have seen before. The : means that what follows are calls to the con-

structors of data members of the current class. To the C++ compiler, this line

reads: "Construct the member i d using the argument ssld of the Student
constructor. Whatever data members are not called out in this fashion are

constructed using the default constructor."

This new program generates the expected result:

Assigning student id 1234
Constructing student Randy
This message from main
Destructing id 1234

The : syntax must also be used to assign values to const or reference type

members. Consider the following silly class:

class SillyClass
{

publ ic:

SillyClass(int& i) : ten(lO). refl(i)

{

Chapter 18: Making Constructive Arguments 235

protected:
const int ten;
int& refl;

int maindnt argcs, char* pArgs[])
{

int i ;

Si 1 lyCl ass sc(i)

;

return 0;

After the constructor for Si 11 yCl ass has been entered, the data members
ten and refl have already been created. This is analogous to declaring a

const or reference variable in a function. Such variables must be assigned a

value when declared.

In fact, any data member can be declared using the preceding syntax, but

const and reference variables must be declared in this way.

Avoiding the "object declaration trap'

Look again at the way the Student objects

were declared in the earlier example:

Student noName;

Student f reshMan("Smel 1 E.

Fish");

Student xferC'Upp R. Classman",
80, 2.5);

All Student objects except noName are

declared with parentheses surrounding the

arguments to the constructor. Why is noName
declared without parentheses?

To be neat and consistent, you may think you

could have declared noName as follows:

Student noName()

;

Unfortunately, this is allowed, but it doesn't have

the intended effect. Instead of declaring an

object noName of class Student to be con-

structed with the default constructor, this

declares a function that returns an object of

class Student by value. Surprise! (I think I

need a raise.)

The following two declarations demonstrate

howsimilarthe new C++ format for declaring an

object is to that of declaring a function. (I think

this was a mistake, but what do I know?) The

only difference is that the function declaration

contains types in the parentheses, whereas the

object declaration contains objects:

Student thi sIsAFunc(int)

;

Student thi sIsAnObject(10)

;

If the parentheses are empty, nothing can dif-

ferentiate between an object and a function. To

retain compatibility with C, C++ chose to make a

declaration with empty parentheses a function.

(A safer alternative would have been to force

the keyword v o i d in the function case, but that

would not have been compatible with existing C

programs.)

236 Part III: Programming with Class

Constructing the Order of Construction

When there are multiple objects, all with constructors, the programmer usu-

ally doesn't care about the order in which things are built. If one or more of

the constructors has side effects, however, the order can make a difference.

The rules for the order of construction are as follows:

*> Local and static objects are constructed in the order in which their dec-

larations are invoked.

*> Static objects are constructed only once.

v* All global objects are constructed before mainO-

v* Global objects are constructed in no particular order.

v* Members are constructed in the order in which they are declared in the

class.

ctABE/?

*> Destructors are invoked in the reverse order from constructors.

A static variable is a variable that is local to a function but retains its value

from one function invocation to the next. A global is a variable declared out-

side of any function.

Consider each of the above rules in turn.

Local objects construct in order

Local objects are constructed in the order in which the program encounters

their declaration. Normally this is the same as the order in which the objects

appear in the function, unless your function jumps around particular declara-

tions. (By the way, jumping around declarations is a bad thing to do. It con-

fuses the reader and the compiler.)

Static objects construct only once

Static objects are similar to other local variables, except that they are con-

structed only once. This is to be expected because statics retain their value

from one invocation of the function to the next. However, unlike C. which is

free to initialize statics when the program begins, C++ must wait until the first

time control passes through the static's declaration to perform the construc-

tion. Consider the following trivial program:

Chapter 18: Making Constructive Arguments

^include <iostream.h>
//include <string.h>
class DoNothing
f

publ i c:

DoNothi ng(int initial)
{

cout << "DoNothing constructed with a value of
<< initial
<< "\n";

void fn(int i

)

{

static DoNothing dn(i);
cout << "In function fn with i = " << i << "\n";

int main(int argcs, char* pArgs[]
f

fn(10);
fn(20);
return 0;

>

Executing this program generates the following results:

DoNothing constructed with a value of 10

In function fn with i = 10

In function fn with i = 20

Notice that the message from the function f n() appears twice, but the mes-

sage from the constructor for DoNothi ng appears only the first time f n()

is called.

Alt global objects construct before main ()

All global variables go into scope as soon as the program starts. Thus, all

global objects are constructed before control is passed to ma i n ()

.

This can cause a real debugging headache. Some debuggers try to execute up
to ma i n () as soon as the program is loaded and before they hand over control

to the user. This makes perfect sense for C because no user code is ready to

execute until ma i n () is entered. For C++, however, this can be a problem
because the constructor code for all global objects has already been executed

by the time you get control. If one of them has a fatal bug, you never even get

control. In this case, the program appears to die before it even starts!

2j8 Part '" : Programming with Class

You can approach this problem in several ways. One is to test each construc-

tor on local objects before using them on globals. If that doesn't solve the

problem, you can try adding output statements to the beginning of all sus-

pected constructors. The last output statement you see probably came from

the flawed constructor.

Global objects construct

in no particular order

Figuring out the order of construction of local objects is easy. An order is

implied by the flow of control. With globals, no such flow is available to give

order. All globals go into scope simultaneously, remember? Okay, you argue,

why can't the compiler just start at the top of the file and work its way down
the list of global objects? That would work fine for a single file (and I presume
that's what most compilers do).

Unfortunately, most programs in the real world consist of several files that

are compiled separately and then linked. Because the compiler has no con-

trol over the order in which these files are linked, it cannot affect the order in

which global objects are constructed from file to file.

Most of the time this is pretty ho-hum stuff. Once in a while, though, it can

generate bugs that are extremely difficult to track down. (It happens just

often enough to make it worth mentioning in a book.)

Consider the following example:

// in Student. H:

class Student
i

publ ic:

Student (unsigned i

(

d) : Stlidentld(id)

)

const unsigned studer

} ;cl ass Tutor
i

it Id ;

i

publ ic:

Tutor(Student& s)
r

i

tutoredld = s.st
i

uden tld:
1

protected:
unsigned tutoredld:

};

Chapter 18: Making Constructive Arguments

// in FILE1.CPP
// set up a student
Student randy(1234):

// in FILE2.CPP
// assign that student a tutor
Tutor jenny(randy)

;

Here the constructor for Student assigns a student ID. The , constructor for

Tutor records the ID of the student to help. The program declares a student

randy and then assigns that student a tutor jenny.

The problem is that you're making the implicit assumption that randy gets

constructed before j enny. Suppose that it was the other way around. Then

j enny would get constructed with a block of memory that had not yet been

turned into a Student object and, therefore, had garbage for a student ID.

The preceding example is not too difficult to figure out and more than a little

contrived. Nevertheless, problems deriving from global objects being con-

structed in no particular order can appear in subtle ways. To avoid this prob-

lem, don't allow the constructor for one global object to refer to the contents

of another global object.

Members construct in the order

in Which they are declared

Members of a class are constructed according to the order in which they're

declared within the class. This isn't quite as obvious as it may sound.

Consider the following example:

class Student
{

publ ic:

Student (unsigned id, unsigned age) : sAge(age), sld(id)

{

}

const unsigned sld;
const unsigned sAge;

);

2 if
Part "' : Programming with Class

In this example, s Id is constructed before sAge even though it appears

second in the constructor's initialization list. The only time you could proba-

bly detect any difference in the construction order is if both of these were
members of classes that had constructors and these constructors had some
mutual side effect.

Destructors destruct in the reverse

order of the constructors

Finally no matter in what order the constructors kick off. you can be assured

that the destructors are invoked in the reverse order. (It's nice to know that

at least one rule in C++ has no ifs. ands. or buts.)

Chapter 19

Copying the Copy Copy

Copy Constructor

In This Chapter

Introducing the copy constructor

* Making copies

Having copies made for you automatically

Shallow copies versus deep copies

Avoiding all those copies

7he constructor is a special function that C++ invokes automatically when
an object is created to allow the object to initialize itself. Chapter 17

introduces the concept of the constructor whereas Chapter 18 describes

other types of constructors. This chapter examines a particular variation of

the constructor known as the copy constructor.

Copying an Object
A copy constructor is the constructor that C++ uses to make copies of

objects. It carries the name X : : X (X&) , where X is the name of the class. That

is, it's the constructor of class X, which takes as its argument a reference to

an object of class X. Now I know that this sounds really useless, but just give

me a chance to explain why C++ needs such a beastie.

Why do I need it)

Think for a moment about what happens when you call a function like the

following:

2 if2 Part "' : Programming with Class

void fn(Student fs)
i
i

// ...same scenario; different argument.,
i

•

int main(int argcs, char* pArgs[])
1

Student ms;

fn(ms)

:

return 0;

}

In the call to f n () , C++ passes a copy of the object ms and not the object itself.

C++ passes arguments to functions by value.

Consider for a minute what it means to create a copy of an object. First, it

takes a constructor to create an object, even a copy of an existing object. C++
could copy the existing object into the new object one byte at a time, but

what if we don't want a simple copy of the object? What if something else is

required? (Ignore the "why?" of this for a little while.) You need to be able to

specify how the copy should be constructed.

Thus, the copy constructor is necessary in the preceding example to create a

copy of the object ms on the stack during the call of function fn(). This par-

ticular copy constructor would be Student : : Student (Student&) — say

that three times quickly.

Usinq the copy constructor

The best way to understand how the copy constructor works is to see one in

action. Consider the following Student class:

^include <iostream.h>
^include <string.h>
class Student
{

publ ic:

// conventional constructor
Student(char *pName = "no name", int ssld = 0)

{

cout << "Constructing new student "

<< pName
<< "\n";

Chapter 19: Copying the Copy Copy Copy Constructor 2^3

strncpy(name, pName, sizeof (name)

)

name[sizeof (name) - 1] = '\0';

id = ssld;

}

// copy constructor
Student(Student& s)

{

cout << "Constructing Copy of
"

<< s.name
« "\n";

strcpy(name, "Copy of ");

strcat(name, s.name);
id = s . i d

;

-Student(

)

(

cout << "Destructing " << name << "\n'

}

protected:
char name[40];
int id;

// fn - receives its argument by value
void fn(Student s)

{

cout << "In function fn()\n";

int main(int argcs, char* pArgs[])
{

Student randy("Randy" , 1234);
cout << "Cal

1

ing fn()\n"

;

fn(randy)

;

cout << "Returned from fn()\n";
return 0;

The output from executing this program follows:

Constructing new stiident Ra ndy
Calling fn(

)

Constructing Copy o1
: Randy

In function fn()
Destructing Copy of Randy
Returned from fn(

)

Destructing Randy

2 if if Part '" : Programming with Class

Starting with ma i n () ,
you can see how this program works. The normal con-

structor generates the first message, mai n() generates the calling. . . mes-

sage. C++ calls the copy constructor to make a copy of randy to pass to fn(),

which generates the next line of output. The copy is destructed at the return

from fn(). The original object, randy, is destructed at the end of main().

The copy constructor here is flagged with comments. It looks like a normal
constructor except that it takes its input from another object rather than

from several separate arguments.

(Notice that this copy constructor does a little bit more than just make a copy
of the object; it tacks the phrase Copy of to the front of the name. That was for

your benefit. Normally, copy constructors should restrict themselves to just

making copies. But, if the truth be known, they can do anything they want.)

The Automatic Copy Constructor

Like the default constructor, the copy constructor is important. Important

enough that C++ thinks no class should be without one. If you don't provide

your own copy constructor, C++ generates one for you. (This is different from

the default constructor that C++ provides unless your class has any construc-

tors defined for it.)

The copy constructor provided by C++ performs a member-by-member copy
of each data member. Originally, the copy constructor that C++ provided per-

formed a bit-wise copy. The difference is that a member-by-member copy
invokes any copy constructors that might exist for the members of the class,

whereas a bit-wise copy does not. You can see the effects of this difference in

the following example:

^include <iostream.h>
//include <string.h>

class Student
I

publ ic:

StudentCchar *pName = "no name")
{

cout << "Constructing new student " << pName << "\n"

strncpy(name, pName, sizeof (name))

:

nameEsizeof (name) - 1] = '\0':

Student(Student& s)

I

Chapter 19: Copying the Copy Copy Copy Constructor 2 if5

cout << "Constructing Copy of " << s.name << "\n'

strcpy(name, "Copy of ");

strcat(name, s .name)

;

-Student(

)

{

cout << "Destructing " << name << "\n'

protected:
char name[40];

class Tutor
{

publ ic:

Tutor(Student& s) : student(s) // invoke copy
// constructor

{ // on member student
cout << "Constructing tutor\n";

}

protected:
Student student;

void fndutor tutor)

{

cout << "In function fn()\n";
}

int main(int argcs, char* pArgs[])
{

Student randy("Randy")

;

Tutor tutor(randy)

;

cout << "Calling fn()\n";
fn(tutor)

;

cout << "Returned from fn()\n";
return 0;

)

Executing this program generates the following output:

Constructing new student Randy
Constructing Copy of Randy
Constructing tutor
Cal 1 ing fn(

)

Constructing Copy of Copy of Randy
In function fn()
Destructing Copy of Copy of Randy
Returned from fn(

)

Destructing Copy of Randy
Destructing Randy

2ifO Part '" ; Programming with Class

Constructing the object randy invokes the Student constructor, which out-

puts the first line.

The object tutor is created by invoking the constructor Tutor (Students).

This constructor initializes the data member Tutor::studentby invoking the

copy constructor for Student explicitly. This generates the next line of output.

The call to function f n () requires a copy of tutor to be created. Because I

didn't provide a copy constructor for Tutor, the default copy constructor

(provided by C++) copies each member. This invokes the copy constructor

for class Student to copy the data member tutor, student.

Creating Shadow Copies

Versus beep Copies
Performing a member-by-member copy seems the obvious thing to do in a

copy constructor. Other than adding the capability to tack silly things such

as Copy of to the front of students' names, when would you ever want to do
anything but a member-by-member copy?

Consider what happens if the constructor allocates an asset, such as memory
off the heap. If the copy constructor simply makes a copy of that asset without

allocating its own, you end up with a troublesome situation: two objects think-

ing they have exclusive access to the same asset. This becomes nastier when
the destructor is invoked for both objects and they both try to put the same
asset back. To make this more concrete, consider the following example class:

//include <iostream. h>

//include <string.h>
class Person
{

publ i c:

Person(char *pN)

{

cout << "Constructing " << pN << "\n":
pName = new char[strl en(pN) + 1];
if (pName != 0)

{

strcpy(pName, pN);

~Person(

)

Chapter 19: Copying the Copy Copy Copy Constructor 2 1) 7

cout <<
"

// let's
pName[0]
delete pN

i

Destruct
wipe out
= '\0'

;

ame;

ing
the

" <<

name
pName
just

<<

for

"\n";
the heck of it

)

protected:
char *pName;

i

.

int mainCint argcs
,
char * pAr gs[])

i

Person pl(

Person p2
return 0:

}

"Randy"

)

= pi:

//

i n v o k

. ..eq

e the copy constructor
uivalent to Person p2(pi):

Here, the constructor for Person allocates memory off the heap to store the

person's name, rather than put up with some arbitrary limit imposed by a

fixed-length array. The destructor dutifully puts this heap memory back as it

should. The main program simply creates one person, pi, and then makes a

copy of that person, p2.

When you execute this program, you get only one constructor output mes-

sage. That's not too surprising, because C++ provided the copy constructor

used to build p2 and it performs no output. As pi and p2 go out of scope, you
don't receive the two output messages that you might have expected.

If you are single-stepping the program under a debugger such as Visual C++,

you should see the expected Destructi ng Randy message when the first

object is destructed. Instead of a second destructor message, however, you
get some type of error message. In the case of Microsoft Visual C++, you get a

window like the one shown in Figure 19-1.

:—s2=Eazzn2a
Figure 19-1:

An error

window

opened

by the

Visual C++

debugger.

© Debug ~ wtiofi Faled

Program. CAUSER\OT\DUMMIES\PART2\DEBUG\PAR^EXE
Re dbgdel.cpp

Line 47

ExpretiMrt _BLOCK.TYPt:_IS_VAUD(pHead-;rfilockUse)

(Press Ret/y to debug the applicallonl

If Abort_ I Retry I

The constructor is called once and allocates a block of memory off the heap

to hold the person's name. The copy constructor provided by C++ copies that

address into the new object without allocating a new block.

2uO ^art '" : Programming with Class

When the objects are destructed, the destructor for p2 gets at the block first.

This destructor clears out the name and then releases the block. When pi

comes along, the memory has been released and the name has been wiped
out already. This explains the error message (the message is a bit obscure,

but if you look into dbgdel . cpp, one of the functions that makes up the

Visual C++ standard C++ library, you see that this function is making sure that

the pointer you handed it refers to a block of heap memory that is still in

use). The problem is shown in Figure 19-2. The object pi is copied into the

new object p2, but the assets are not. Thus, pi and p2 end up pointing to the

same assets (in this case, heap memory). This is known as a shallow copy
because it just "skims the surface," copying the members themselves.

Figure 19-2:

Shallow

copy of pi

top2.

pi pi

pName pName

P2

pName

Before copy After copy

What you need to fix the problem shown in Figure 19-2 is a copy constructor

that allocates its own assets to the new object. Add one of these to Person

and see how it looks. The following shows an appropriate copy constructor

for class Person:

class Person

(

publ ic:

// copy constructor allocates a new block
// from the heap
Person(Person& p)

{

cout << "Copying " << p.pName << " into its own£ block\n":
pName = new char[strlen(p.pName) + 1];

if (pName != 0)

1

strcpy(pName, p.pName):

// ...everything else the same...
1

// . . .same here as wel 1 . .

.

Chapter 19: Copying the Copy Copy Copy Constructor 2iJ y

Here you see that the copy constructor allocates its own memory block for

the name and then copies the contents of the source object name into this

new name block. See Figure 19-3. Deep copy is so named because it reaches
down and copies all the assets. (Okay, the analogy is pretty strained, but

that's what they call it.)

Figure 19-3:

Deep copy

of pi to p2.

P1 pi

pName pName

P2

pName

Before copy After copy

The output from this program is as follows:

Constructing Randy
Copying Randy into its own b'

Destructing Randy
Destructing Randy

ock

Heap memory is not the only asset that requires a deep copy constructor, but

it is the most common. Open files, ports, and allocated hardware (such as

printers) also require deep copies. These are the same types of assets that

destructors must return. Thus, a general rule is that if your class requires a

destructor to deallocate assets, it also requires a copy constructor.

It's a Long Way to Temporaries
Copies are generated when objects are passed by value. Copies are created

under other conditions as well, such as when objects are returned by value.

Consider the following example:

250 Part '" : Programming with Class

Student fn(); // returns object by value
int maindnt argcs, char* pArgs[])
{

Student s;

s = fn(); // call to fn() creates temporary

// how long does the temporary returned by fn()last?
return 0;

I

The function f n () returns an object by value. Eventually, the returned object

is copied to s, but where does it reside until then?

C++ creates a temporary object into which it stuffs the returned object.

(Temporaries are created in other ways, as well.) "Okay," you say. "C++ creates

the temporary, but how does it know when to destruct the temporary?" (How
clever you are for asking just the right question!) In this example, it doesn't

make much difference because you'll be through with the temporary when the

copy constructor copies it into s . But what if s were defined as a reference:

int main

{

Studen
// ...

return
}

(int argcs , chain* pArgs [])

t& refS =

now what?.
0;

fn();

Now it makes a big difference how long temporaries live because ref S exists

for the entire function. Temporaries created by the compiler are valid through-

out the extended expression in which they were created and no further. In the

following function, I mark the point at which the temporary is no longer valid:

Student fnl()

;

int fn2(Student&):
int main(int argcs, char* pArgs[])
{

int x;

// create a Student object by calling fnl().
// Pass that object to the function fn2().
// fn2() returns an integer that is used in some
// si 1 ly calculation.
// All this time the temporary returned from fnl()
// remains valid.
x = 3 * fn2(fnl()) + 10:

// the temporary returned from fnl() is now no longer valid
// . . .other stuff. .

.

return 0;

Chapter 19: Copying the Copy Copy Copy Constructor 25 7

The comments seem to wrap in example above. I've retained the text but

broke them up differently.

This makes the reference example invalid, because the object may go away
before ref S does, leaving ref S referring to a non-object.

It may have occurred to you that all this copying of objects hither and yon
can be a bit time-consuming. What if you don't want to make copies of every-

thing? The most straightforward solution is to pass objects to functions and
return objects from functions by reference. This knocks out the majority of

cases.

But what if you're still not convinced that C++ isn't out there craftily con-

structing temporaries that you know nothing about? Or what if your class

allocates unique assets that you don't want copied? What do you do then?

You can simply add an output statement to your copy constructor. The pres-

ence of this message warns you that a copy has just been made. Another

approach is to declare the copy constructor protected, as follows:

class Student
{

protected:
Student(Student&s){

}

publ ic:

// ...everything else normal...

This precludes any external functions, including C++, from constructing a

copy of your Student objects. (This does not affect the capability of member
functions to create copies.)

The fact that the copy constructor is used to create temporaries and copies

on the stack answers one pesky detail that may have occurred to you.

Namely, consider the following program:

class Student
{

publ ic:

Student(

)

h

// .

.

.whatever. .

.

)

Student(Student s)

{

// .

.

.whatever. .

.

252 Part "' : Programming with Class

void fn(Student fs)

{

}

int maind'nt argcs, char* pArgs[])
{

Student ms;
fn(ms)

;

return 0;

Why is it that the copy constructor for the class Student isn't declared

Student : : Student (Student)? In fact, such a declaration isn't even legal.

The GNU C++ compiler complains with the following helpful error message

Error: invalid constructor; you probably meant ^Student
(const Students)

'

Why must the argument to the constructor be referential? Consider carefully

the program. When ma i n () calls the function f n () , the C++ compiler uses

the copy constructor to create a copy of the Student object on the stack.

However, the copy constructor itself requires an object of class Student. No
problem, the compiler can invoke the copy constructor to create a Student
object for the copy constructor. But, of course, that requires another call to

the copy constructor, and so it goes until eventually the compiler collapses in

a confused heap of exhaustion.

Chapter 20

Static Members: Can Fabric

Softener Help?

In This Chapter

How do I declare static member data?

What about static member functions?

Why can't my static member function call my other member functions?

By default, data members are allocated on a "per object" basis. For

example, each student has his or her own name.

You can also declare a member to be shared by all objects of a class by
declaring that member static. The term static applies to both data members
and member functions, although the meaning is slightly different. This chap-

ter describes these differences, beginning with static data members.

Defining a Static Member
Data members are made common to all objects of a class by declaring them
static. Such members are called static data members (I would be a little upset

if they were called something else).

Why do I need them)

Most properties are properties of the object. Using the well-worn (one might

say, threadbare) student example, properties such as name, ID number, and

courses are specific to the individual student. However, some properties are

shared by all students — for example, the number of students currently

enrolled, the highest grade of all students or a pointer to the first student in a

linked list.

2$U Part III: Programming with Class

It's easy enough to store this type of information in a common, ordinary,

garden-variety global variable. For example, we could use a lowly int variable

to keep track of the number of Student objects. The problem with this solu-

tion is that global variables are "outside" the class. It's like putting the volt-

age regulator for my microwave outside of the enclosure. Sure, it could be

done, and it would probably work— the only problem is that when my dog
got across the wires and I had to peel him off the ceiling, I might get angry

(the dog wouldn't like it too much, either).

If the class is going to be held responsible for its own state, global variables

such as that have to be brought inside the class, just as the voltage regulator

has to be inside the microwave lid, away from prying paws. This is the idea

behind static members.

You may hear static members referred to as class members because they are

shared by all objects in the class. By comparison, normal members are

referred to as instance members, or object members, because each object gets

its own copy of these members.

Using static members
A static data member is one that has been declared with the static storage

class. For example:

class Student
{

publ ic:

Student(char *pName = "no name")

{

strcpy(name, pName);
noOfStudents++;

}

~Student(

)

f

noOfStudents-- :

)

i nt number (

)

(

return noOfStudents:

protected:
static int noOfStudents
char name[40]

:

Student si;

Student s2;

Chapter 20: Static Members: Can Fabric Softener Help?

^BE/?

The data member noOf Students is part of the class Student but is not part of

either si or s 2. That is, for every object of class Student, there is a separate

name, but there is only one noOf Students, which all Students must share.

"Well then," you ask, "if the space for noOf Students is not allocated in any of

the objects of class Student, where is it allocated?" The answer is, "It isn't."

You have to specifically allocate space for it, as follows:

int Student: : noOfStudents = 0;

This somewhat peculiar-looking syntax allocates space for the static data

member and initializes it to zero. Static data members must be global — a

static variable cannot be local to a function.

The name of the class is required for any member when it appears outside its

class boundaries.

Referencing static data members
The access rules for static members are the same as the access rules for

normal members. From within the class, static members are referenced like

any other class member. Public static members can be referenced from out-

side the class as well-protected static members can't. Both types of reference

are shown in the following code snippet:

class Student
{

publ ic:

Student(

)

{

noOfStudents++; // reference from inside the class
// . . .other stuff. . .

}

static int noOfStudents

;

// ...other stuff like before...

void fn(Student& si. Students s2)

I

// reference public static
cout << "No of students "

<< si .noOfStudents // reference from outside
// of the class

<< "\n";

256 Part III: Programming with Class

In fn(), noOf Students is referenced using the object si. But si and s2

share the same member noOf Students — how did I know to choose si? Why
didn't I use s2 instead? It doesn't make any difference. You can reference a

static member using any object of that class. For example:

// ...class defined the same as before...
void fn(Student& si, Student& s2)

{

// the following produce identical results
cout << "No of students " << si .noOfStudents << "\n";
cout << "No of students " << s2. noOfStudents << "\n";

In fact, you don't need an object at all. You can use the class name directly

instead, if you prefer, as in the following:

// .

void
..class defined the same as before...
fn(Student& si, Student& s2)

t

II the fol

1

owir
cout << "No of

<< Student
<< "\n";

}

g produce identical
students "

: :noOf Students

resu Its

If you use an object name, C++ uses only the class of the object.

This is a minor technicality, but in the interest of full disclosure: The object

used to reference a static member is not evaluated even if it's an expression.

For example, consider the following case:

class Student
{

publ ic:

static int noOfStudents;
Student& nextStudentC);
// ...other stuff the same...

void fn(Student& s)

{

cout << s. nextStudentC) .noOfStudents << "\n"

}

The member function nextStudentC) is not actually called. All C++ needs to

access noOfStudents is the return type, and it can get that without bother-

ing to evaluate the expression. This is true even if nextStudentC) should do
other things, such as wash windows or shine your shoes. None of those

things will get done. Although the example is obscure, it does happen. That's

what you get for trying to cram too much stuff into one expression.

Chapter 20: Static Members: Can Fabric Softener Help?

Uses for static data members
There are umpteen uses for static data members, but let me touch on a few

here. First, you can use static members to keep count of the number of

objects floating about. In the Student class, for example, the count is initial-

ized to zero, the constructor increments it, and the destructor decrements it.

At any given instant, the static member contains the count of the number of

existing Student objects. Remember, however, that this count reflects the

number of Student objects (including any temporaries) and not necessarily

the number of students.

A closely related use for a static member is as a flag to indicate whether a

particular action has occurred. For example, a class Radi o may need to ini-

tialize hardware before sending the first tune command but not before subse-

quent tunes. A flag indicating that this is the first tune is just the ticket. This

includes flagging when an error has occurred.

Another common use is to contain the pointer to the first member of a linked

list. Static members can allocate bits of "common data" that all objects in all

functions share (overuse of this common memory is a really bad idea since it

makes tracking errors difficult).

Declaring Static Member Functions
Member functions can be declared static as well. Like static data members,
static member functions are associated with a class and not with any particu-

lar object of that class. This means that like a reference to a static data

member, a reference to a static member function does not require an object.

If an object is present, only its type is used.

Thus, both calls to the static member function number () in the following

example are legal:

^include <iostream.h>
^include <string.h>
class Student
{

publ ic:

static int number(

)

{

return noOf Students

;

)

// ...other stuff the same...
protected:
char name[40];

2f}8 Part '" : Programming with Class

static int

(;

noOfSt udents '•

int Student: :no0fSt udents = 0;

int main(int argcs , char* p/*rgs [])

(

Student s;

cout << S.Iiumber() <<
"
\n" *

cout << Stijdent: : number () « "\n";
return 0;

}

Notice how the static member function can access the static data member. A
static member function is not directly associated with any object, however,

so it does not have default access to any non-static members. Thus, the fol-

lowing would not be legal:

class Student
{

publ 1c:

// the following is not legal
static char *sName(

)

{

return name; // which name? there is no object

// ...other stuff the same...
protected:
char name[40] ;

static int noOfStudents

;

);

That's not to say that static member functions have no access to non-static

data members. Consider the following useful function:

^include <iostream.h>
^include <string.h>

class Student
{

publ ic:

// same constructor and destructor as earlier
StudentCchar *pName):

-StudenU)

;

// findName - return student w/specified name
static Student *f indName(char *pName):

protected:
static Student *pFirst;

Chapter 20: Static Members: Can Fabric Softener Help? 250

Student *pNext;
char name[40]

;

Student* Student : :pFi rst = 0;

// findName - return the Student with the
// specified name.
// Return zero if no match.
Student* Student: :findName(char *pName)
{

// loop thru the linked list...
for (Student *pS = pFirst; pS; pS = pS->pNext)
{

// ...if we find the specified name...
if (strcmp(pS->name, pName) == 0)

{

// ...then return the object's address
return pS;

// ...otherwise, return a zero (item not found)
return (Student*)0;

int main(int argcs, char* pArgs[])
{

Student sl("Randy")

;

Student s2("Jenny")

;

Student s3("Kinsey")

;

Student *pS = Student : :findName("Jenny")

;

return 0;

}

The function f i n d N a me () has access to p F i r s t because it's shared by all

objects. Being a member of class Student , fi ndName() has access also to

name, but the call must specify the object to use (that is, whose name). No
default object is associated with a static member function. Calling the static

member function with an object doesn't help. For example:

// . . .same i as before. .

.

int mainM nt iargcs, char* pAirgs[])
t

Student sir"Randy")

;

Student s2("Jenny")

;

Student s3("Kinsey")

;

Student *pS = sl.findNameC"Jenny")

;

return C

}

1;

260 Part III: Programming with Class

The si is not evaluated and not passed to f i ndName(). Only its class is used
to decide which fi ndName() to call.

&v£^s

Static member functions are useful when you want to associate an action to a

class but you don't need to associate that action with any particular object.

For example, the member function Duck: :fly() is associated with a particu-

lar duck () while the rather more drastic member function

Duck: :goExtinct() is not.

What is this about, anyway?
I mention this a few times throughout this

book, but let's look at it again just for grins, this

is a pointer to the "current" object within a

member function. It's used when no other object

name is specified. In a normal memberfunction,

this is the implied first argument to the func-

tion. For example:

class SC

publ ic:

void nFn(int a) ; //

SC: :nFn(SC *this, int

static void sFn(int
1 ike SC: :sFn(int a)

void fn(SC& s)

like
a)

a); //

s.nFn(lO); // -converts to->
SC::nFn(&s, 10);

s.sFn(lO); // -converts to->
SC::sFn(10):

That is, the function nFn() is interpreted almost

as if it were declared void SC: :nFn(SC

*this, int a). The call to nFn() is con-

verted by the compiler as shown, with the

address of s passed as the first argument. (You

can't actually write the call this way; this is only

what the compiler is doing.)

References to other non-static members within

SC: :nFn() automatically use the this argu-

ment as the pointer to the current object. When
SC : : s Fn () was called, no object address was

passed. Thus, it has no this pointer to use

when referencing non-static functions. This is

why we say that a static memberfunction is not

associated with any current object.

Chapter 20: Static Members: Can Fabric Softener Help?

A Budget With Class— BUDGET2.CPP
In this section, we will look over a version of the BUDGET program first

addressed at the end of Part II. Rather than the function-based solution pre-

sented back then, this is an object-based solution based on active classes.

The "budget problem" is to setup accounts like you would see in a bank.

These simple accounts provide for deposits (that's good) and withdrawals

(that's even better). (The earlier version of BUDGET introduced back at the

end of Part II handled only a single type of bank account.) This version han-

dles two types of accounts each with its own slightly different rules.

Checking accounts:

Iv*
Charge a fee of 20 cents per check if the balance drops below $500

i* Do not charge a fee when the balance is above $500

Savings accounts:

Iv*
Do not charge a fee for the first withdrawal of the month

\^ Charge a fee of $5.00 for each withdrawal thereafter

Looking at the BUDGET problem, it's easy to see that the class candidates are

Checking and Savings. We know that it's a good idea to make data members
protected, so a few access functions are necessary in case a non-member
function needs the account number or balance.

Like all classes, Checking and Savings need a constructor to initialize

objects to legal values (mostly to a balance of zero). Two additional member
functions are also necessary: deposit () and withdrawal ().

Finally I added one other member function called di spl ay () to display the

current object. This is not a requirement, but it is common to let the object

display itself rather than rely on an external function to do it. (Those other

functions would need knowledge of the class's internals to know how to dis-

play it properly, and that's something you want to avoid.)

Here is the resulting program:

// BUDGET2.CPP - Budget program with active classes,

#include <iostream.h>
#include <stdio.h>

202 Part III: Programming with Class

// the maximum number of accounts one can have
const int maxAccounts = 10;

// Checking - this describes checking accounts
class Checking
{

publ ic:

Checkingd'nt initializeAN = 0)

1

accountNumber = initializeAN;
balance = 0.0;

}

// access functions
int accountNo()

I

return accountNumber;
}

double acntBal ance(

)

{

return balance;
}

// transaction functions
void deposi t(doubl e amount)
{

balance += amount;

}

void wi thdrawal (doubl e amount);

// display function for displaying self on 'cout'
void di spl ay(

)

(

cout << "Account " << accountNumber
<< " = " << balance
<< "\n";

}

protected:
unsigned accountNumber;
double balance;

I;

// withdrawal - this member function is too big to

// be defined inline
void Checking: withdrawal (double amount)
{

if (balance < amount)
(

cout << "Insufficient funds: balance " << balance
<< "

, check " << amount

Chapter 20: Static Members: Can Fabric Softener Help? 203

« "\n";

}

else
{

balance -= amount;

// if balance falls too low,...
if (balance < 500.00)
{

// ...charge a service fee
balance -= 0.20;

// Savings - you can probably figure this one out
class Savings
{

publ ic:

Savings (int initial AN = 0)

{

accountNumber = initialAN;
bal ance = 0.0;
noWi thdrawal s = 0;

// access functions
int accountNoC

)

{

return accountNumber;
}

double acntBal ance(

)

{

return balance;

// transaction functions
void deposi t(double amount)
{

balance += amount;
}

void withdrawal (doubl e amount);

// display function - display self to cout
void di spl ay(

)

I

cout << "Account " << accountNumber
<< " = " << balance
<< " (no. withdrawals = " << noWi thdrawal s

<< "An";

2H Part III: Programming with Class

protected:
unsigned accountNumber

;

double balance;
int noWi thdrawal s

;

};

void Savings: :withdrawal (double amount)
{

if (balance < amount)
{

cout << "Insufficient funds: balance " << balance
<< ", withdrawal " << amount
<< "\n";

}

else
{

// after more than one withdrawal in a month...
if (++noWithdrawals > 1)

{

// . . .charge a $5 fee
balance -= 5.00;

}

// now make the withdrawal
balance -= amount;

// prototype declarations
void process(Checking* pChecking);
void process(Savings* pSavings);

// checking and savings account objects
Checking* chkAcnts[maxAccounts]

;

Savings* svgAcnts[maxAccounts]

;

// main - accumulate the initial input and output totals
int maind'nt argcs, char* pArgs[])
{

// loop until someone enters an 'X' or 'x'

int noChkAccounts = 0; // count the number of accounts
int noSvgAccounts = 0;

char accountType; // S or C

while (1)

{

cout << "Enter S for Savings, "

<< "C for Checking, "

<< "X for exit: "

;

cin >> accountType;

// exit the loop when the user enters an X

if (accountType == 'x' l| accountType == 'X')

{

break;

Chapter 20: Static Members: Can Fabric Softener Help? 205

II otherwise, handle according to the account type
switch (accountType)
{

// checking account
case 'c' :

case 'C :

if (noChkAccounts < maxAccounts

)

{

int acnt;
cout << "Enter account number:";
cin >> acnt;
chkAcnts[noChkAccounts] = new Checking(acnt) ;

process (chkAcnts[noChkAccounts])

;

noChkAccounts++;
1

else
{

cout << "No more room for checking accounts\n";
}

break;

// savings account
case '

s
' :

case 'S' :

if (noSvgAccounts < maxAccounts)
(

int acnt;
cout << "Enter account number:";
cin >> acnt;
svgAcnts[noSvgAccounts] = new Savings(acnt)

;

process (svgAcnts[noSvgAccounts])

;

noSvgAccounts++;
}

else
{

cout << "No more room for savings accounts\n";
}

break;

default:
cout << "I didn't get that.Vn";

}

// now present totals
double chkTotal = 0; // total of all checking accounts
cout << "Checking accounts : \n"

;

for (int i = 0; i < noChkAccounts; i++)

200 Part III: Programming with Class

chkAcnts[i]->display() ; // Note 10
chkTotal += chkAcnts[i]->acntBalance()

;

}

double svgTotal = 0; // total of all savings accounts
cout << "Savings accounts: \n"

;

for (int j = 0; j < noSvgAccounts ; j++)

{

svgAcnts[j]->display()

;

svgTotal += svgAcnts[j]->acntBalance()

;

I

double total = chkTotal + svgTotal;
cout << "Total for checking accounts = "

<< chkTotal
<< "\n";

cout << "Total for savings accounts = "

<< svgTotal
<< "\n";

cout << "Total worth =
"

<< total
<< "\n";

return 0;

// process(Checking) - input the data for a checking account
void process(Checking* pChecking)
{

cout << "Enter positive number for deposit, \n"
<< "negative for check, to terminated"

;

double transaction;
do

{

cout << "
:

"
;

cin >> transaction;

// deposit
if (transaction > 0)

(

pChecking->deposit(transact ion)

;

// withdrawal
if (transaction < 0)

{

pChecking->withdrawal (-transaction) ;

}

} while (transaction != 0);

Chapter 20: Static Members: Can Fabric Softener Help? 2V 7

II process(Savings) - input the data for a savings account
void process(Savings* pSavings)
{

cout << "Enter positive number for deposit, \n"
<< "negative for withdrawal, to termi nate\n" ;

double transaction;
do

{

COUt << ":";

cin >> transaction;

// deposit
if (transaction > 0)

I

pSavings->deposi t(trans acti on)

;

// withdrawal
if (transaction < 0)

{

pSavings->withdrawal(-transact!' on)

}

whi le (transaction != 0)

;

I executed the program with the following data in order to demonstrate how
the program works (or, as is so often the case with my programs, doesn't

work). Bold characters indicate user input, while non-bold characters indi-

cate output from the program.

268 Part III: Programming with Class

:0

Enter S for Savings, C for Checking, X for exit:C
Enter account number:456
Enter positive number for deposit,
negative for check, to terminate
:600
:-20

:0

Enter S for Savings, C for Checking, X for exit:x
Checking accounts:
Account 345 = 179.8
Account 456 = 580
Savings accounts:
Account 123 = 180 (no. withdrawals = 1)

Account 234 = 175 (no. withdrawals = 2)

Total for checking accounts = 359.6
Total for savings accounts = 355
Total worth = 1114.8
Press any key to continue

Starting with class Checking, you can see each of the member functions men-
tioned earlier. The constructor assigns the account number. The "= 0" allows

the program to construct an object with a default account number of 0:

Checking cl =

Checking c2 =
new Checking(123) ;

new Checki ng()

:

In this case, the Checki ng object cl is created with account number 123

while the object c2 is created with the default account number of 0.

The functions accountNo() and acntBal ance() give the outside world

access to the protected members accountNumber and bal ance. The point of

such a function is to allow non-class functions to read these values but not

modify them. In addition, these access functions would shield outside func-

tions from any future changes in the way that the account number or the bal-

ance is stored.

The deposi t() and wi thdrawal () functions either deposit or withdraw

amount. Since the deposi t () function is simple, it is defined directly inline

within the class. The withdrawal () function, being a bit more complicated,

is declared here but defined later.

The di spl ay () function outputs the important data members to the stan-

dard output.

The class Savi ngs is virtually identical to the class Checki ng except for the

addition of the member noWi thdrawal s , which is used to track the number
of withdrawals made.

Chapter 20: Static Members: Can Fabric Softener Help? 269

Room for the savings account and checking account objects is allocated in

the arrays svgAcnts and chkAcnts, respectively. The maximum number of

accounts is maxAccounts.

The ma i n () function is slightly more complicated that its Budgetl cousin

since it must deal with two different types of accounts. After the check for 'X',

main() uses the swi tch construct to decide between 'C checking and 'S'

savings accounts. The swi tch construct is used here since it is a) easier to

extend by adding more cases and b) it provides a def aul t case to handle

erroneous input.

Just as before, the second section of ma i n () actually displays the account
data accumulated in the initial section.

Notice how the internals of the Checking and Savi ngs objects are hidden

from ma i n () . For example, ma i n () asks the objects to display themselves

(meaning display the internal components) - ma i n () has no idea how the

classes may choose to do this nor does it care.

The process () function which handles the actual deposits and withdrawals

relies on the deposi t() and wi thdrawal () member functions to do the

dirty work. Although you know how these actions are performed, remember
that process () does not— again, nor does it care. However, how a savings

account may choose to withdraw cash is up to the class.

I encourage you to type this program and single step through it. Nothing else

will give you a feel for what's going on faster than seeing the program in action.

Believe it or not, from a programming standpoint Budget2 is actually easier

to program than Budgetl. When writing Savi ngs, I didn't have to worry

about how the main program might use the class. The same applied to

Checki ng. In addition, while working on the main functions, I didn't concern

myself with class internals. "Render unto the class that which is the class's"

or something like that.

On the negative side, it is clear that there are a lot of similarities between the

Savi ngs and Account classes. Somehow, there should be a way to reduce

the duplications. In fact, this is exactly the topic of Part IV. You can see this

implemented in Budget3 at the end of that part.

2 70 Part '" : Programming with Class

Part IV

Class Inheritance

The 5th Wave By RichTennant

In this part . .

.

1
n the discussions of object-oriented philosophy in Part

*C "I, two main features of real-world solutions are seem-

ingly not shared by functional programming solutions.

The first is the capability of treating objects separately. I

present the example of using a microwave oven to whip
up a snack. The microwave oven provides an interface

(the front panel) that I use to control the oven, without

worrying about its internal workings. This is true even if I

know all about how the darn thing works (which I don't).

A second aspect of real-world solutions is the capability of

categorizing like objects— recognizing and exploiting

their similarities. If my recipe calls for an oven of any

type, I should be okay because a microwave is an oven.

I already presented the mechanism that C++ uses to imple-

ment the first feature, the class. To support the second

aspect of object-oriented programming, C++ uses a con-

cept known as inheritance, which extends classes.

Inheritance is the central topic of this part.

Chapter 21

Inheriting a Class

In This Chapter

Defining inheritance

Inheriting a base class

Constructing the base class

Exploring meaningful relationships: The IS_A versus the HAS_A relationship

This chapter discusses inheritance, the ability of one class to inherit

capabilities or properties from another class.

Inheritance is a common concept. I am a human (except when I first wake up
in the morning). I inherit certain properties from the class Human , such as

my ability to converse (more or less) intelligently and my dependence on air,

water, and carbohydrate-based nourishment (a little too dependent on the

latter, I'm afraid). These properties are not unique to humans. The class

Human inherits the dependencies on air, water, and nourishment from the

class Mamma 1 , which inherited it from the class An i ma 1

.

The capability of passing down properties is a powerful one. It enables you to

describe things in an economical way. For example, if my son asks, "What's a

duck?" I can say, "It's a bird that goes quack." Despite what you may think,

that answer conveys a considerable amount of information. He knows what a

bird is, and now he knows all those same things about a duck plus the duck's

additional property of "quackness." (Refer to Chapter 12 for a further discus-

sion of this and other profound observations.)

Object-oriented languages express this inheritance relationship by allowing

one class to inherit from another. Thus, 00 languages can generate a model
that's closer to the real world (remember that real-world stuff!) than the

model generated by languages that don't support inheritance.

C++ allows one class to inherit another class as follows:

27b Part IV: Class Inheritance

class Student
{

};

class GraduateStudent : public Student
f

};

Here, a GraduateStudent inherits all the members of Student. Thus, a

GraduateStudent IS a Student. Of course, GraduateStudent may also con-

tain members unique to a GraduateStudent.

bo I Need Inheritance?

Inheritance was introduced into C++ for several reasons. Of course, the major
reason is the capability of expressing the inheritance relationship. (I'll return

to that in a moment.) A minor reason is to reduce the amount of typing.

Suppose that you have a class Student, and you're asked to add a new class

called GraduateStudent. Inheritance can drastically reduce the number of

things you have to put in the class. All you really need in the class

GraduateStudent are things that describe the differences between students

and graduate students.

A more important, related issue is that major buzzword reuse. Software scien-

tists have known for some time that it doesn't make much sense to start from

scratch with each new project, rebuilding the same software components.

Compare the situation in software to that of other industries. How many car

manufacturers that you know of start by building their own wrenches and
screwdrivers before they construct a car? And even if they did. how many
would start over completely, building all new tools for the next model?

Practitioners in other industries have found that it makes more sense to start

from existing screws, bolts, nuts, and even larger off-the-shelf components,

such as motors and compressors.

Unfortunately, this same philosophy doesn't seem to exist in the software

industry. Except for very small functions like those found in the Standard C
library, it's rare to find much reuse of software components. One problem is

that it's virtually impossible to find a component from an earlier program

that does exactly what you want. Generally, all existing components require

"tweaking" before they can be used in the current application.

Chapter 21: Inheriting a Class

There's a rule in software: "If you open it, you've broken it." In other words, if

you have to modify a function or class to adapt it to a new application, you
need to retest everything, not just the parts you add. Changes can introduce

bugs anywhere in existing code. ("The one who last touched it is the one who
gets to fix it" in software is just as true as the ancient principle "he who
drinks the last cup has to make a new pot.")

Inheritance allows existing classes to be adapted to new applications without

the need for internal modifications. The existing class is inherited into a new
subclass that contains the necessary additions and modifications.

This carries with it a third benefit of inheritance. Suppose you inherit from

some existing class. Later you find that the base class has a bug that must be

corrected. If you've modified the class to reuse it, you must manually check

for, correct, and retest the bug in each application separately. If you've inher-

ited the class without changes, you can generally stick the updated class into

the other application without much hassle.

This is amazing

To make sense out of our surroundings, humans

build extensive taxonomies. Fido is a special

case of dog, which is a special case of canine,

which is a special case of mammal, and so it

goes. This shapes our understanding of the

world.

To use another example, a student is a (special

type of) person. Having said this, I already know

a lot of things about students (American stu-

dents, anyway). I know they have Social

Security Numbers, they watch too much TV, and

they daydream about about the opposite sex

(the male ones, anyway). I know all these things

because these are properties of all people.

In C++, we say thatthe class Student inherits

from the class Person. Also, we say that

Person is a base class of Student, and

Student is a subclassof Person. Finally, we
say that a Student IS_A Person (using all

caps is a common way of expressing this unique

relationship — I didn't make it up). C++ shares

this terminology with other object-oriented

languages.

Notice that although Student IS_A Person,

the reverse is not true. A Person IS not A
Student. (A statement like this always refers

to the general case. It could be that a particular

Person is, in fact, a Student.)Alot of people

who are members of class Person are not

members of class Student. In addition, class

Student has properties it does not share with

class Person. For example, Student has a

grade point average, but Person does not.

The inheritance property is transitive. For exam-

ple, if I define a new class GraduateStuden

t

as a subclass of Student,

GraduateStudent must also be Person. It

has to be that way: If a GraduateStudent
IS_A Student and a Student IS_A Person,

thena GraduateStudent IS APerson.

2 70 Part IV: Class Inheritance

HovO Does a Class Inherit)

Here's the GraduateStudent example again. Fill it out with a few example
members:

^include <string.h>
class Advisor

class Student
{

publ ic:

StudentCchar *pName = "no name")
{

strncpy(name, pName, sizeof (name))

;

average = 0.0;
semesterHours = 0;

void addCourseUnt hours, float grade)

{

average = (semesterHours * average + grade)
semesterHours += hours;
average = average / semesterHours;

int hours() { return semesterHours
float gpa() { return average;}

protected:
char name[40]

;

int semesterHours;
float average;

class GraduateStudent : public Student
1

publ ic:

int qualified) { return qual if ierGrade

protected:
Advisor advisor;
int qual if ierGrade;

i nt main()

Chapter 21 : Inheriting a Class 2 / /

The class Student has been defined in the conventional fashion. The object

1 1 u is just like other Student objects. The class GraduateStudent is a bit

different, however; the colon followed by the phrase public Student
declares GraduateStudent to be a subclass of Student.

The appearance of the keyword public implies that there is probably pro-

tected inheritance as well. All right, it's true, but protected inheritance is

beyond the scope of this book.

The object g s , as a member of a subclass of S t u d e n t , can do anything that

1 1 u can do. It has the data members name, semesterHours, and average
and the member function addCourse(). GraduateStudent adds the mem-
bers qual i f i er(), advi sor , and qual i f i erGrade. After all, gs quite liter-

ally IS_A Student plus a little bit more than a Student.

Consider the following scenario:

void fn(Student& s)

{

// whatever fn it wants to have
}

int main()

{

GraduateStudent gs;

fn(gs);
return 0;

Notice that the function f n () expects to receive as its argument an object of

class Student. The call from mai n() passes it an object of class

GraduateStudent. However, this is fine because once again (all together

now) "a GraduateStudent IS_A Student."

Basically, the same condition arises when invoking a member function of

Student with a GraduateStudent object. For example:

int mai n()

I

GraduateStudent gs;

gs.addCourseO, 2.5); // calls Student: :addCourse(
return 0;

278 Part IV: Class Inheritance

Constructing a Subclass
Even though a subclass has access to the protected members of the base

class and could initialize them, it would be nice if the base class constructed

itself. In fact, this is exactly what happens.

Before control passes beyond the open brace of the constructor for

GraduateStudent, control passes to the default constructor of Student
(because no other constructor was indicated). If Student were based on
another class, such as Person, the constructor for that class would be

invoked before the Student constructor got control. Like a skyscraper, the

object is constructed starting at the "base"-ment class and working its way
up the class structure one story at a time.

Just as with member objects, you sometimes need to be able to pass argu-

ments to the base class constructor. You handle this in almost the same way
as with member objects, as the following example shows:

class GraduateStudent : public Student
I

publ i c:

GraduateStudent(char *pName = "no name",
Advisor& adv) : Student(pName) ,

advi sor(adv)
{

qual if ierGrade = 0;

// ...remainder as before.

void fn(Advisor& advisor)
(

GraduateStudent gsC'Yen Kay Doodle", advisor);
// ...whatever this function does...

}

Here the constructor for GraduateStudent invokes the Student construc-

tor, passing it the argument pName. The base class is constructed before any

member objects; thus, the constructor for Student is called before the con-

structor for Advi sor. After the constructor for Advi sor is called for

advi sor, the constructor for GraduateStudent gets a shot at it.

Following the rule that destructors are invoked in the reverse order of the

constructors, the destructor for GraduateStudent is given control first. After

it's given its last full measure of devotion, control passes to the destructor for

Advi sor and then to the destructor for Student. If Student were based on a

class Person, the destructor for Person would get control after Student.

Chapter 21: Inheriting a Class

This is logical. The blob of memory is first converted to a Student object. Only

then is it the job of the GraduateStudent constructor to transform this simple

Student into a GraduateStudent. The destructor simply reverses the process.

Harinq a HAS_A Relationship

Notice that the class GraduateStudent includes the members of class

Student and Advi sor, but in a different way By defining a data member of

class Advi sor, you know that a Student has all the data members of

an Advisor within it; however you can't say that a GraduateStudent is an

Advisor— instead you say that a GraduateStudent HAS_A Advi sor. What's

the difference between this and inheritance?

Use a car as an example. You could logically define a car as being a subclass

of vehicle, and so it inherits the properties of other vehicles. At the same
time, a car has a motor. If you buy a car, you can logically assume that you
are buying a motor as well. (Unless you went to the used-car lot where I got

my last junk heap.)

If some friends asked you to show up at a rally on Saturday with your vehicle

of choice and you came in your car, they couldn't complain (even if someone
else showed up on a bicycle) because a car IS_A vehicle. But if you appeared

on foot carrying a motor, your friends would have reason to laugh at you
because a motor is not a vehicle. A motor is missing certain critical proper-

ties that vehicles share — such as electric clocks that don't work.

From a programming standpoint, the HAS_A relationship is just as straightfor-

ward. Consider the following:

class Vehicle
{

};

class Motor

class Car : public Vehicle
{

publ ic:

Motor motor;

void VehicleFnC Vehicle& v)

void motorFn(Motor& m);

int main()

{

280 Part IV: Class Inheritance

Car c;

VehicleFn(c) ; // this is al lowed
motorFn(c)

;

// this is not allowed
motorFn(c. motor) ;// this is , however
return 0;

}

The call VehicleFn(c) is allowed because c IS_A Vehicle. The call

motor Fn (c) is not because c is not a Motor, even though it contains a Motor.

If what was intended was to pass the motor portion of c to the function, this

must be expressed explicitly, as in the call motorFn(c .motor).

Chapter 22

Examining Virtual Member

Functions: Are They for Real?

In This Chapter

Discovering how polymorphism works (a.k.a. late binding)

Finding out how safe are polymorphic nachos

Overriding member functions in a subclass

Checking out special considerations with polymorphism

7he number and type of a function's arguments are included in its full, or

extended, name. This enables you to give two functions the same name
as long as the extended name is different:

void someFn(int);
void someFn(char*) ;

void someFn(char*, double);

In all three cases the short name for these functions is someFn () (hey! this is

some fun). The extended names for all three differ: someFn (int) versus

someFn (char*) and so on. C++ is left to figure out which function is meant
by the arguments during the call.

The return type is not part of the extended name so you can't have two func-

tions with the same extended name that differ only in type of object they

return.

Member functions can be overloaded. Not only are the number and type of

arguments part of the extended name, but the class name as well.

Inheritance introduces a whole new wrinkle, however. What if a function in a

base class has the same name as a function in the subclass? Consider, for

example, the following simple code snippet:

282 Part 'V; Class Inheritance

class Student
{

pub! i c:

// ...all as it was before.
float calcTuitionC)

;

class GraduateStudent : public Student

pub! ic:

float calcTuitionC)
);

int main(int argcs

,

char* pArg:s[])

i

Student s;

GraduateSt udent gs *

s . cal cTui

t

ion()

;

II cal 1 s Stud ent: : cal cTuitionC)

gs .cal cTui tion()

;

II cal 1 s

II Gradu.ateSt udent : :calcTuition ()

return 0;

}

As with any overloading situation, when the programmer refers to

calcTuition(),C++ has to decide which calcTuitionC) is intended.

Obviously, if the two functions differed in the type of arguments, there's no
problem. Even if the arguments were the same, the class name should be suf-

ficient to resolve the call, and this example is no different. The call

s.calcTuition() refers to Student: :calcTuition() because s is

declared locally as a Student, whereas gs . cal cTui ti on() refers to

GraduateStudent: :calcTuition().

But what if the exact class of the object can't be determined at compile time?

To demonstrate how this can occur, change the preceding program in a seem-

ingly trivial way:

class Student
I

publ i c:

// ...all as it was before...
float cal cTuition(

)

I

return 0;

class GraduateStudent : public Student
(

publ ic:

float calcTuitionC)

Chapter 22: Examining Virtual Member Functions: Are They for Real? 283

return 0;

};

void fn(Students x)

x. cal cTui tion()

;

// to which cal cTui tion() does
// this refer?

int main(int argcs, char* pArgs[]
{

Student s;

GraduateStudent gs;

fn(s);
fn(gs);
return 0;

}

*JAM»

Instead of calling calcTuition() directly, the call is now made through an

intermediate function, f n (). Depending on how f n () is called, x can be a

Student or a GraduateStudent. A GraduateStudent IS_A Student.

If you didn't know that, it isn't because anyone IS_A dummy— you just need
to look over Chapter 21.

The argument x passed to f n () is declared to be a reference to Student in

order to save time and space. C++ would have to construct a whole new
Student object on every call to f n () were it to be passed by value.

Depending upon the class Student and the number of times f n () is called,

this could add up. Only the address of the existing Student object is passed

when calling fn(Student&) or fn(Student*). See Chapter 15 if this doesn't

make sense.

We would like x.calcTuition() to call Student: :calcTuition() when x

isaStudent but call GraduateStudent: :calcTuition() when x is a

GraduateStudent. It would be really cool if C++ were that smart for really

cool reasons that you'll see later in this chapter.

Normally, the compiler decides which function a call refers to at compile

time. When you click the button to tell the C++ compiler (be it GNU C++,

Visual C++ or whatever) to rebuild your executable program, the compiler

has to snoop around in your program and decide which function you meant
every time an overloaded function is called based on the arguments used.

In the case described here, the declared type of the argument to f n () is not

completely descriptive. Although the argument is declared to be a Student, it

may actually be a GraduateStudent. A decision can't be made until you're

254 Part IV: Class Inheritance

actually executing the program (this is known as run time). Only when the

function is actually called can C++ look at the type of the argument and

decide whether it's plain old Student or a GraduateStudent.

The type that you've been accustomed to until now is called the declared or

compile-time type. The declared type of x is Student in both cases because

that's what the declaration in f n () says. The other type, you might say the

actual type, is the run-time type. In the case of the example function f n ()

,

the run-time type of x is Student when f n () is called with s and

GraduateStudent when fn() is called with gs. Aren't we having fun?

The capability of deciding at run time, which of several overloaded member
functions to call based on the run-time type is called polymorphism, or late

binding. The term polymorphism comes from poly (meaning multiple), morph

(meaning form), and /5m (meaning unintelligible Greek word). C++ supports

polymorphism. (This is not very surprising by now; I wouldn't be spending

all this time talking about polymorphism if C++ didn't support it.) Deciding

which overloaded member functions to call at compile time is called early

binding because that sounds like the opposite of late binding.

c*LST(/jc Polymorphism and late binding are not quite identical terms. Polymorphism

refers to the capability of the call to decide between possible actions at run

time. Late binding is the mechanism C++ uses to implement polymorphism.

The difference is subtle, however.

Overloading a base class function is called overriding the base class function.

This new name is used in order to differentiate this more complicated case

from the normal overload case.

U/hy Do I Need Polymorphism)

£!**

Polymorphism is key to the power of object-oriented programming. It's so

important that languages that don't support polymorphism can't advertise

themselves as 00 languages. (I think it's a FDA regulation - you can't label a

language that doesn't support 00 unless you add a disclaimer from the

Surgeon General, or something like that.)

Languages that support classes but not polymorphism are called object-

based languages. Ada is an example of such a language.

Without polymorphism, inheritance has little meaning. Let me spring yet

another example on you to show why. Suppose that I had written a really

boffo program that used some class called, just to pick a name out of the air.

Student. After months of design, coding, and testing, 1 release this applica-

tion to rave reviews from colleagues and critics alike. (There's even talk of

starting a new Nobel Prize category for software, but I modestly brush such

talk aside.)

Chapter 22: Examining Virtual Member Functions: Are They for Real? 285

Time passes and my boss asks me to add to this program the capability of

handling graduate students who are similar but not identical to normal stu-

dents. (The graduate students probably claim that they're not similar at all.)

Now, my boss doesn't know or care that deep within the program,

someFunction() calls the member function calcTuition(). (There's a lot

that he doesn't know or care about, by the way.)

void someFunction(St udent& s)

i

// . . .whatever "it mi ght do. .

.

S.(:al cTuition()

// . . . continues on

If C++ didn't support late binding, I would need to edit someFuncti on() to

something like the following to add class GraduateStudent:

^define STUDENT 1

#define GRADUATESTUDENT 2

void someFunction(Student& s)

{

// ...whatever it might do...
// add some member type that indicates
// the actual type of the object
switch (s.type)

I

STUDENT:
s. Student: :calcTuition();
break;

GRADUATESTUDENT:
s .GraduateStudent: : cal cTui tion()

;

break;

}

// ... continues on. . .

I would have to add the variable type to the class. I would then add the

assignment type = STUDENT to the constructor for Student and type =

GRADUATESTUDENT to the constructor for GraduateStudent. The value of

type would then indicate the run-time type of s. I would then add the test

shown in the preceding code snippet to every place where an overridden
member function is called.

That doesn't seem so bad, except for three things. First, this is only one func-

tion. Suppose that cal cTui tion() is called from a lot of places and suppose
that cal cTui tion() is not the only difference between the two classes. The
chances are not good that I will find all the places that need to be changed.

286 Part IV: Class Inheritance

Second, I must edit (read "break") code that was debugged and working,

introducing opportunities for screwing up. Edits can be time-consuming and
boring, which usually makes my attention drift. Any one of my edits may be
wrong or may not fit in with the existing code. Who knows?

Finally, after I've finished editing, redebugging, and retesting everything, I

now have two versions to keep track of (unless I can drop support for the

original version). This means two sources to edit when bugs are found

(perish the thought) and some type of accounting system to keep them
straight.

Then what happens when my boss wants yet another class added? (My boss

is like that.) Not only do I get to repeat the process, but I'll have three copies

to keep track of.

With polymorphism, there's a good chance that all I need to do is add the

new subclass and recompile. I may need to modify the base class itself, but at

least it's all in one place. Modifications to the application code should be

minimal to none.

At some philosophical level, there's an even more important reason for poly-

morphism. Remember how I made nachos in the oven? In this sense, I was
acting as the late binder. The recipe read: Heat the nachos in the oven. It

didn't read: If the type of oven is microwave, do this; if the type of oven is

conventional, do that; if the type of oven is convection, do this other thing.

The recipe (the code) relied on me (the late binder) to decide what the action

(member function) heat means when applied to the oven (the particular

instance of class Oven) or any of its variations (subclasses), such as a

microwave oven (Mi crowave). This is the way people think, and designing a

language along lines of the way people think allows the programming model
to more accurately describe the real world.

Hou/ Does Polymorphism Work)
Any given language could support early or late binding upon its whim. C++

supports both forms; however, you may be surprised that the default for C++

is early binding. The reason is simple if a little dated. Polymorphism adds a

small amount of overhead to each and every function call both in terms of

data storage and code needed to perform the call. The founders of C+* were

concerned that any additional overhead they introduced over and above its

predecessor C would be used as a reason not to adopt C++ as the system's

language of choice, so they made the more efficient early binding the default.

Chapter 22: Examining Virtual Member Functions: Are They for Real? 28 /

To make a member function polymorphic, the programmer must flag the

function with the C++ keyword vi rtual , as follows:

#i include <iostream. h>

class Base

{

publ ic:

vi rtual void fn(

)

{

cout << "In Base class\n";

}

};

class Subclass : public Base

{

publ ic:

vi rtual void fn(

)

{

cout << "In SubClass\n";
}

};

void test(Base& b)

(

b.fnO; // this call bound late

int maind'nt argcs, char* pArgs[])
{

Base be;

Subclass sc;

cout << "Calling test(bc)\n":
test(bc)

;

cout << "Calling test(sc)\n";
test(sc)

;

return 0;

It is the keyword vi rtual that tells C++ fn() is a polymorphic member func-

tion. That is to say, declaring f n () virtual means that calls to it will be bound
late if there is any doubt as to the run-time type of the object with which
fn() is called.

In the example snippet, f n () is called through the intermediate function

test(). When test() is passed a Base class object, b. fn() calls

Base: :fn(). But when test() is passed a SubCl ass object, the same call

invokes SubCI ass : : fn().

288 Part IV: Class Inheritance

S*^*

Executing the program generates the following output:

Calling test(bc)
In Base class
Calling test(sc)
In Subclass

If you're comfortable with the debugger that comes with your Cn

ment, you really should single step through this example.

environ-

You only need to declare the function virtual in the base class. The "virtual-

ness" is carried down to the subclass automatically. In this book, however.

I follow the coding standard of declaring the function virtual everywhere
(virtually).

Making Machos the Polymorphic Way
Okay now that you've seen some of the nitty-gritty details of declaring a vir-

tual function, return to the nacho example and see what it looks like in code.

Consider the following code snippet:

#include <dos.h>
cl ass Stuff!) ;

// needed for sleepO function

class Nachos : public Stufff};// nachos are a type
// of stuff

//Oven - implements a conventional oven
class Oven
{

publ ic:

virtual void cook(Nachos& nachos):
// support functions that we need
void turnOn(); // apply current
void turnOffO; // turn off current
void insert(Stuff& s); // put stuff in oven
void remove(Stuff& s); // pull stuff out

protected:
float temp;

):

void Oven: :cook(Nachos& nachos)
{

// preheat oven (turn oven on and sit in a loop
// waiting for the temperature to reach 350 degrees)
turn0n()

;

Chapter 22: Examining Virtual Member Functions: Are They for Real? 289

while (temp < 350

:

// now put nachos in for 15 minutes
insert(nachos) ;

sleep(15 * 60);

// get them out and turn the oven off
remove(nachos)

;

turnOffO;

class Microwave : public Oven
{

publ ic:

virtual void cook(Nachos& nachos);
void rotateStuff (Stuff& s);

};

void Mi crowave: :cook(Nachos& nachos)
{

// no preheating necessary - temperature irrelevant
// put nachos in first
insert(nachos) ;

turnOn()

;

// only cook for a minute (rotate in the middle)
sleep(30); // wait 30 seconds
rotateStuff (nachos)

;

sleep(30); // wait 30 seconds

// turn the oven off first (lest your hair fall out)
turnOffO;
remove(nachos)

;

Nachos makeNachos(0ven& oven)
I

// get all the stuff together
// and assemble the parts
Nachos n;

// now (here comes the critical part), cook it

// (given whatever kind of oven you have)
oven.cook(n)

;

// return the results
return n;

290 Part IV: Class Inheritance

Here you seethe class Nachos, which is declared as a subclass of Stuff
(meaning cookable stuff). The class Oven is outfitted with the common func-

tions turnOn(), turnOff (), insert(), and remove(). (The last two refer to

the insertion and extraction of stuff from the oven.) In addition, the class Oven

has a member function cook(Nachos&), which has been declared virtual.

The function cook(Nachos&) has been declared virtual because it is imple-

mented differently in the subclass Mi crowa ve, which inherits from the class

Oven. The implementation of Oven : : cook(Nachos&) preheats the oven to a

temperature of 350 degrees, puts the nachos in, and cooks them for 15 min-

utes. It then removes said nachos before turning off the oven. The implemen-
tation of Mi crowa ve: : cook(Nachos&), by comparison, puts the nachos in,

turns the power on for 30 seconds, rotates the nachos, and then waits

another 30 seconds before turning the oven off and removing the nachos.

This is fine and dandy, but it's all just a buildup for the really interesting part.

The function makeNachos () is passed an Oven of some type. Given that

oven, it assembles all the parts into an object n and then cooks them by call-

ing oven . cook(). Exactly which function is used, function Oven : : cook() or

function Mi crowave: : cook(), depends on the real-time type of oven. The
function makeNachos () has no idea— and doesn't want to know — what the

run-time type of oven is.

Why is polymorphism such a good idea? First, it allows the maker of ovens —
and not the cooker of nachos — to worry about the details of how ovens

work. Our division of labor lays such details at the oven programmer's feet.

Second, polymorphism can greatly simplify the code. Look how simple

makeNachos() appears without any of the oven details. (I realize that it

wouldn't be too complicated even with the details, but remember that poly-

morphism works for real-world problems with their attendant complexity.) The
nacho functions can concentrate on nacho details. Finally, the result is extensi-

ble. When a new subclass Convecti onOven comes along with a new member
function Convecti onOven : : coo k (Nachos &), we don't need to change one

iota of makeNachos () to incorporate the new function. Polymorphism auto-

matically includes the new function and calls it when necessary.

This is heady stuff. Reflect on what this means. Polymorphism is the key that

unlocks the power of inheritance.

When Is a Virtual function NoO
Just because you think that a particular function call is bound late doesn't

mean that it is.

Chapter 22: Examining Virtual Member Functions: Are They for Real? 2yl
-JONG/

C++ generates no indication at compile time of which calls it thinks are bound
early and late.

The most critical thing to watch for is that all the member functions in ques-

tion are declared identically, including the return type. If not declared with

the same arguments in the subclasses, the member functions are not overrid-

den polymorphically, whether or not they are declared virtual. For example,

change the previous function so that the arguments don't match exactly, and
then rerun the program:

^include <iostream.h>
class Base
i

publ ic:

virtual void fn(int x)
i
i

cout << "In Base class, int x = "

}

« X << "\n";

class Subclass : public Base
(

publ ic:

virtual void fn(float x)

(

cout << "In Subclass, float x = "

}

};

void test(Base& b)

<< X << "\n"

;

t

int i = 1

;

b.fn(i); // this call not bound late
float f = 2. OF;

b.fn(f); // neither is this one
)

int main(int argcs, char* pArgs[])
t

Base be;

Subclass sc;

cout << "Calling test(bc)\n";
test(bc)

;

cout << "Calling test(sc)\n";
test(sc)

;

return 0;

)

292 Part IV: Class Inheritance

The only difference between this program and the one before it is that f n (

)

in Base is declared as fn(i nt), whereas the SubCl ass version is declared

f n (f 1 oat). No error is generated because this program is legal. The results,

however, show no sign of polymorphism:

Ca lling test(bc)

In Base c' 1 ass

,

i nt x = 1

In Base c" 1 ass

,

i nt x = 2

Ca lling test(sc)

In Base c" 1 ass

,

int x = 1

In Base c' 1 ass

,

int x = 2

Because the first call passes an i nt, it's not surprising that the compiler calls

f n (int) with both be and sc. It is a little surprising that the float in the

second call is converted to an int and that the same Base: :fn(i nt) is

called the second time in test(). This happens because the object b passed

to test () is declared as an object of class Base. Without polymorphism,

calls tob.fn()intest() refer to Base: :fn(int).

If the arguments don't match exactly, there is no late binding.

One exception to the preceding identical declaration rule is that if the

member function in the base class returns a pointer or reference to a base

class object, an overridden member function in a subclass may return a

pointer or reference to an object of the subclass. In other words, the follow-

ing is allowed:

class Base
i

publ i c:

// return a copy of the current
Base* makeACopy(

)

object

1

// ...do whatever it takes to

1

make a copy

) .

class Subclass : public Base
i

publ ic:

// return a copy of the current
Subclass* makeACopyO
i

object

i

// ...do whatever it takes to

1:

};

make a copy

Chapter 22: Examining Virtual Member Functions: Are They for Real? i?y3

void fn(BaseCl ass& be)

{

BaseClass* pCopy = bc.makeACopy(

)

// proceed on. .

.

In practice, this is quite natural. A ma keACopy ()function should return an

object of type SubCl ass even though it might override

BaseCl ass : : ma keACopy ().

Considering Virtual Considerations

There are a few things to keep in mind when using virtual functions.

First, static member functions cannot be declared virtual. Because static

member functions are not called with an object, there is no run-time object to

have a type.

Second, specifying the class name in the call forces a call to bind early

whether the function is virtual or not. For example, the following call is to

Base: : f n() because that's what the programmer indicated, even if fn() is

declared virtual:

void test(Base& b)

{

b . Base: :fn() ; // this call is not bound late

}

Next, a virtual function cannot be inlined. To expand a function inline, the

compiler must know which function is intended at compile time. Thus,

although the example member functions so far have been declared in the

class, all of them have been outline functions.

Finally, constructors cannot be virtual because there is no (completed)

object to use to determine the type. At the time the constructor is called, the

memory that the object occupies is just an amorphous mass. It's only after

the constructor has finished that the object is a member of the class in good
standing.

By comparison, the destructor should be declared virtual. If not, you run the

risk of improperly destructing the object, as in the following circumstance:

2% Part IV: Class Inheritance

class Base

Ji

publ ic:

-BaseO;

class Subclass : public Base

publ ic:

~SubClass()

;

pHeapObject)

// . . .work with object . . .

// now return it to the heap
del ete pHeapObject; // this calls ~Base() no matter

1 // the run-time type of

// pHeapObject

If the pointer passed to f i ni shWi thObject() really points to a SubCl ass,

the SubCl ass destructor is not invoked properly— because the destructor

has been not been declared virtual, it's always bound early. Declaring the

destructor virtual solves the problem.

So when would you not want to declare the destructor virtual? There's only

one case. Virtual functions introduce a "little" overhead. Let me be more spe-

cific. When the programmer defines the first virtual function in a class. C+ +

adds an additional, hidden pointer— not one pointer per virtual function,

just one pointer if the class has any virtual functions. A class that has no vir-

tual functions (and does not inherit any virtual functions from base classes)

does not have this pointer.

Now, one pointer doesn't sound like much, and it isn't unless the following

two conditions are true:

v* The class doesn't have many data members (so that one pointer repre-

sents a lot compared to what's there already).

i> You intend to create a lot of objects of this class (otherwise, the over-

head doesn't make any difference).

If these two conditions are met and your class doesn't already have any vir-

tual member functions, you may not want to declare the destructor virtual.

^NG -' Except for this one case, always declare destructors to be virtual even if a

i&f ~§^\ class is not subclassed (yet) — you never know when someone will come
along and use your class as the base class for her own. If you don't declare

the destructor virtual, document it!

Chapter 23

Factoring Classes

In This Chapter

Factoring common properties into a base class

Using abstract classes to hold factored information

Declaring abstract classes

Using dynamic typing

rhe concept of inheritance allows one class to inherit the properties of a

base class. Inheritance has a number of purposes, including paying for

my son's college. It can save programming time by avoiding needless code
repetition. Inheritance allows the program to reuse existing classes in new
applications by overriding functions.

The main benefit of inheritance is the ability to point out the relationship

between classes. This is the so-called IS_A relationship — a MicrowaveOven
IS_A Oven and stuff like that.

Factoring is great stuff if you make the correct correlations. For example, the

microwave versus conventional oven relationship seems natural. Claim that

microwave is a special kind of toaster and you're headed for trouble. True,

they both make things hot, they both use electricity, and they're both found

in the kitchen but the similarity ends there — a microwave can't make toast.

Identifying the classes inherent in a problem and drawing the correct rela-

tionships between these classes is a process known as factoring. (The word is

related to the arithmetic that you were forced to do in grade school: factoring

out the Least Common Denominators; for example, 12 is equal to 2 times 2

times 3.)

296 Part IV: Class Inheritance

Factoring

To see how factoring works, look back at the two classes used in the BUDGET
examples appearing at the end of each Part, Checki ng and Savi ngs. I can

talk until I'm blue in the face about these classes; however, object-oriented

programmers have come up with a concise way to describe the salient points

of a class in a drawing. The Checking and Savings classes are shown in

Figure 23-1.

Figure 23-1:

Independent

classes

Checking

and

Savings.

Checking

withdrawal!

)

deposit!

accountNol

first!
!

next!
]

noAccounts!

pFirst

pNext

count

accountNumber

balance

withdrawal!

deposit!

accountNol

first!
)

next!
]

Savings

noAccounts! I

pFirst

pNext

count

accountNumber

balance

noWithdrawals

JABJ

To read this figure and the other figures, remember the following:

v* The big box is the class, with the class name at the top.

v* The names in boxes are member functions.

V The names not in boxes are data members.

* The names that extend partway out of the boxes are publicly accessible

members; that is, these members can be accessed by functions which

are not part of the class or any of its decendents. Those members that

are completely within the box are not accessible from outside the class.

Iv*
A thick arrow represents the IS_A relationship.

*-" A thin arrow represents the HAS_A relationship.

A Car IS_A Vehicle but a Car HAS_A Motor.

You can see in Figure 23-1 that the Checki ng and Savings classes have a lot

in common. For example, both classes have a wi thdrawal () and deposits)

member function. Because the two classes aren't identical, however, they

must remain as separate classes. (In a real-life bank application, the two

classes would be a good deal more different than in this example.) Still, there

should be a way to avoid this repetition.

Chapter 23: Factoring Classes

We could have one of these classes inherit from the other. Savings has more
members than Checki ng, so we could let Savings inherit from Checki ng.

This arrangement is shown in Figure 23-2. The Savings class inherits all of

the members. The class is completed with the addition of the data member
noWi thdrawal s and by overriding the function wi thdrawal (). We have to

override wi thdrawal () because the rules for withdrawing money from a sav-

ings account are different than those for a checking account. (These rules

don't apply to me because I don't have any money to withdraw anyway.)

Figure 23-2:

Savings

implemented

as a

subclass of

checking.

Checking

withdrawal!

)

i :

deposit!

)

accountNo!

)

first!

)

next! I

noAccounts!

;

pFirst

pNext

count

accountNumber

balance

Savings

withdrawal!
) noWithdrawals

Although letting Savi ngs inherit from Checkingis labor-saving, it's not com-
pletely satisfying. The main problem is that it, like the weight listed on my
driver's license, misrepresents the truth. This inheritance relationship

implies that a Savi ngs account is a special type of Checking account, which
it is.

"So what?" you say. "Inheriting works and it saves effort." True, but my reser-

vations are more than stylistic trivialities — my reservations are at some of

the best restaurants in town, at least that's what all the truckers say. Such
misrepresentations are confusing to the programmer, both today's and
tomorrow's. Someday, a programmer unfamiliar with our programming tricks

will have to read and understand what our code does. Misleading representa-

tions are difficult to reconcile and understand.

In addition, such misrepresentations can lead to problems down the road.

Suppose, for example, that the bank changes its policies with respect to check-

ing accounts. Say it decides to charge a service fee on checking accounts only

if the minimum balance dips below a given value during the month.

298 Part IV: Class Inheritance

A change like this can be easily handled with minimal changes to the class

Checking. You'll have to add a new data member to the class Checki ng to

keep track of the minimum balance during the month. Let's go out on a limb

and call it mi nimumBal ance.

But now we have a problem. Because Savi ngs inherits from Checking,

Savings gets this new data member as well. It has no use for this member
because the minimum balance does not affect savings accounts, so it just sits

there. Remember that every Checking account object has this extra

mi nimumBal ance member. One extra data member may not be a big deal, but

it adds further confusion.

Changes like this accumulate. Today it's an extra data member, tomorrow it's

a changed member function. Eventually, the Savi ngs account class is carry-

ing a lot of extra baggage that is applicable only to Checki ng accounts.

Now the bank comes back and decides to change some savings account

policy. This requires us to modify some function in Checking. Changes like

this in the base class automatically propagate down to the subclass unless

the function is already overridden in the subclass Savings. For example, sup-

pose that the bank decides to give away toasters for every deposit into the

checking account. (Hey— it could happen!) Without the bank (or its pro-

grammers) knowing it, deposits to savings accounts would automatically

result in toaster donations. Unless you're very careful, changes to Checki ng

may unexpectedly appear in Savings.

How can we avoid these problems? Claiming that Checking is a special case

of Savi ngs changes but doesn't remove our problems. What we need is some
third class (call it Account just for grins) that embodies the things that are

common between Checki ng and Savi ngs. This relationship is shown in

Figure 23-3.

How does building a new account solve the problems? First, creating a new
account is a more accurate description of the real world (whatever that is). In

our concept of things (or at least in mine), there really is something known as

an account. Savings accounts and checking accounts are special cases of this

more fundamental concept.

In addition, the class Savings is insulated from changes to the class Checking

(and vice versa). If the bank institutes a fundamental change to all accounts,

we can modify Account and all subclasses will automatically inherit the

change. But if the bank changes its policy only for checking accounts, we can

modify just the Checking account class without modifying Savings.

This process of culling out common properties from similar classes is called

factoring. This is an important feature of object-oriented languages for the rea-

sons described so far, plus one more: reduction in redundancy. Let me repeat,

redundancy is bad, there is no place for redundancy: said another way. . .

.

Chapter 23: Factoring Classes 2 y y

Figure 23-3:

Basing

Checking

and Savings

on a

common

Account

class.

Account

withdrawal!

i

.

deposit!

)

accountNo!

first!
]

next!

Checking

withdrawal! I minimumBalance

pFirst

pNext

count

accountNumber

balance

noAccounts!
]

Savings

withdrawal!) noWithdrawals

Factoring is legitimate only if the inheritance relationship corresponds to

reality. Factoring together a class Mouse and Joysti ck because they're both

hardware pointing devices is legitimate. Factoring together a class Mouse and
Display because they both make low-level operating system calls is not.

Factoring can and usually does result in multiple levels of abstraction. For

example, a program written for a more developed bank may have a class

structure such as that shown in Figure 23-4.

Figure 23-4:

A more

developed

bank

account

hierarchy.

Acc Dunt

Conventional Tin ed Market

Savings Che :king CD 501

K

Stock MutualFunds

Special Checking

300 Part IV: Class Inheritance

Here you see that another class has been inserted between Checki ng and
Savi ngs and the most general class Account. This class, called

Conventional, incorporates features common to conventional accounts.

Other account types, such as stock market accounts, are also foreseen.

Such multitiered class structures are common and desirable as long as the

relationships they express correspond to reality. Note, however, that no one
correct class hierarchy exists for any given set of classes.

Suppose that the bank allows account holders to access checking and stock

market accounts remotely. Withdrawals from other account types can be
made only at the bank. Although the class structure in Figure 23-4 seems nat-

ural, the one shown in Figure 23-5 is also justifiable given this information.

The programmer must decide which class structure best fits the data and
leads to the cleanest, most natural implementation.

Figure 23-5:

An alternate

class

hierarchy

to the one in

Figure 23-4.

Account

RemotelyAccessible LocallyAccessible

Stock Che :king Market Savings

Special Checking CD MutualFunds 501K

Implementing Abstract Classes

As intellectually satisfying as factoring is. it introduces a problem of its own.

Return one more time to the bank account classes, specifically the common
base class Account. Think for a minute about how you might go about defin-

ing the different member functions defined in Account.

Most Account member functions are no problem because both account types

implement them in the same way. Implementing those common functions

with Account . wi thdrawal () is different, however. The rules for withdraw-

ing from a Savings account are different than those for withdrawing from a

Checking account. We'll have to implement Savings: : wi thdrawa -i

[) differ-

ently than Checki ng : : wi thdrawal (). But how are we supposed to imple-

ment Account :

:

withdrawal ()?

Chapter 23: Factoring Classes

Let's ask the bank manager for help. I imagine the conversation going some-

thing like the following:

"What are the rules for making a withdrawal from an account?" you ask

expectantly.

"What type of account? Savings or checking?" comes the reply.

"From an account," you say. "Just an account."

Blank look. (One might say a "blank bank look" . . . then again, maybe not.)

The problem is that the question doesn't make sense. There's no such thing

as "just an account." All accounts (in this example) are either checking

accounts or savings accounts. The concept of an account is an abstract one
that factors out properties common to the two concrete classes. It is incom-

plete, because it lacks the critical property withdrawal (). (After you get fur-

ther into the details, you may find other properties that a simple account

lacks.)

An abstract class is one that only exists in subclasses. A concrete class is a

class that is not abstract.

Let me borrow an example from the animal kingdom. You can observe the dif-

ferent species of warm-blooded, baby-bearing animals and conclude that

there is a concept called mammal. You can derive classes from mammal, such

as canine, feline, and hominid. It is impossible, however, to find anywhere on
earth a pure mammal, that is, a mammal that isn't a member of some sub-

species of mammal. Mammal is a high-level concept that man has created —
no instances of mammal exist.

Note that I can make this assertion confidently although time has passed
since 1 wrote this. Scientists discover new animals all the time. One scientist

even discovered a new phylum. Not once has a scientist come back and said,

"This new thing is a mammal and nothing more . . . just a mammal." The prob-

lem with a statement like this is that this animal surely has properties that

other mammals don't share and, even if doesn't, there's a distinct possibility

that someone will find such a property in the future.

In order to reflect this situation, C++ provides the capability of defining

abstract classes incompletely.

302 Part IV: Class Inheritance

Describing the abstract class concept

An abstract class is a class with one or more pure virtual functions. Oh. great!

That helps a lot. . . .

Okay, a pure virtual function is a virtual member function that is marked as

having no implementation probably because no one knows how to imple-

ment it.

It doesn't make sense to ask exactly how to implement the withdrawal (

function in the class Account. However, the concept of a withdrawal from

an account does make sense. The C++ programmer can write a function

wi thdrawal () that represents the concept of withdrawing money but has no

function body because we don't know how to implement this feature. Such a

function is called a pure virtual function. (Don't ask me where they came up
with that name.)

The syntax for declaring a function pure virtual is demonstrated in the follow-

ing class Account:

// Account - this class is an abstract class
class Account
{

protected:
Account(Account& c);

publ ic:

Account(unsigned accNo, float ini tial Bal ance = 0.0F):

// access functions
unsigned int accountNo();

float acntBal ance()

;

static Account *first();

Account *next()

;

static int noAccounts();

// transaction functions
void deposit(float amount):

// the following is a pure virtual function
virtual void wi thdrawal (fl oat amount) = 0;

protected:
// keep accounts in a linked list so there's no limit
// to the number of accounts
static Account *pFirst:
Account *pNext;
static int count: // number of accounts
unsigned accountNumber;
float balance:

Chapter 23: Factoring Classes

The = after the declaration ofwithdrawal () indicates that the program-

mer does not intend to define this function. The declaration is a placeholder

for the subclasses. The subclasses of Account are expected to override this

function with a concrete function.

I think this notation is silly, and I don't like it any more than you do. But it's

here to stay, so you just have to learn to live with it. There is a reason, if not

exactly a justification, for this notation. Every virtual function must have an

entry in a special table. This entry contains the address of the function. The
entry for a pure virtual function is zero.

An abstract class cannot be instanced with an object; that is, you can't make
an object out of an abstract class. For example, the following declaration is

not legal:

void fn()

1

// declare an account with 100 dollars
Account acnt(1234, 100.00) ;// this is not legal
acnt .withdrawal (50)

;

// what would you expect

}

// this call to do?

If the declaration were allowed, the resulting object would be incomplete,

lacking in some capability. For example, what should the preceding call do?

Remember, there is no Account : :wi thdrawal ().

Abstract classes serve as base classes for other classes. An Account contains

all the properties associated with a generic bank account. You can create

other types of bank accounts by inheriting from Account, but they can't be

instanced with an object.

Making an honest class out

of an abstract class

The subclass of an abstract class remains abstract until all pure virtual func-

tions have been overridden. The class Savings is not abstract because it

overrides the pure virtual function wi thdrawal () with a perfectly good defi-

nition. An object of class Savi ngs knows how to perform wi thdrawal ()

when called on to do so. The same is true of class Checki ng: The class is not

virtual, because the function wi thdrawal () overrides the pure virtual func-

tion in the base class.

301} Part IV: Class Inheritance

A subclass of an abstract class can remain abstract, however. Consider the

following classes:

class Display
{

publ ic:

virtual void initial i z e () = 0;

virtual void write(char *pString) = 0;

};

class SVGA : public Display
{

// override both member functions with "real" functions
virtual void initial i z e ();

virtual void write(char *pString);

class HWVGA : public Display
{

// override the only function we know how to up until now
virtual void write(char *pString);

class ThreedVGA : public HWVGA
{

virtual void initial i z e ();

};

void fn()

{

SVGA mc;

VGA vga;
// ...what the function chooses to do from here...

The class Di spl ay, intended to represent video PC displays, has two pure

virtual functions: initializeC) and wri te(). You can't implement either

function for adapters in general. The different types of video cards do not ini-

tialize or write in the same way.

One of the subclasses, SVGA, is not abstract. This is a particular type of video

adapter that the programmer knows how to program. Therefore, the class

SVGA has overridden both initializeC) and wri te() appropriately for

this adapter.

ThreedVGA, another one of the subclasses, is also not abstract. Here again,

the programmer knows how to program the accelerated VGA adapter hard-

ware. In this case, however, a level of abstraction is between the generic

Chapter 23: Factoring Classes

Di spl ay and the specific case of the ThreedVGA display, which represents

the special 3-D hardware display cards.

For this discussion, assume that all hardware accelerated VGA cards are writ-

ten to in the same way, but that each must be initialized in its own way. (This

isn't necessarily true, but assume that it is.) To express the common write

property, introduce the class HWVGA to implement the wri te() function

(along with any other properties that all HWVGA have in common). Don't

override the member function initial i z e () , however, because the different

HWVGAs do not have this property in common.

Therefore, although the function wri te() has been overridden, the class

HWVGA is still abstract because the initial ize() function has yet to be

overridden.

fctABE/?

Because ThreedVGA inherits from HWVGA, it has to override only the one miss-

ing member function, i n i t i a 1 i z e () , to complete the definition of Di spl ay

adapter. The function f n () is therefore free to instance and use a ThreedVGA
object.

Overriding the last pure virtual function with a normal member function

makes the class complete (that is, non-abstract). Only non-abstract classes

can be instanced with an object.

Originally, every pure virtual function in a subclass had to be overridden,

even if the function was overridden with another pure virtual function.

Eventually, the people who count realized that this was as silly as it sounds

and dropped the requirement. Older compilers may still require it, though.

Passing abstract classes

Because you can't instance an abstract class, it may sound odd that it's possi-

ble to declare a pointer or a reference to an abstract class. With polymor-

phism, however, this isn't as crazy as it sounds. Consider the following code

snippet:

void fn(Account '

void otherFn()

^Account)

;

// this is legal

i

Savings s;

Checking c;

// this is leg
fn(&s);
// same here
fn(&c);

}

itimate because Savirigs IS_A Account

306 Part IV: Class Inheritance

SJftBEft

Here, pAccount is declared as a pointer to an Account. However, it's under-

stood that when the function is called, it will be passed the address of some
non-abstract subclass object such as Savings or Checking.

All objects received by fn() will be of either class Savings or class

Checki ng (or some future non-abstract subclass of Account). The function is

assured that you will never pass an actual object of class Account, because
you could never create one to pass in the first place.

Declaring pure Virtual functions—
is it realty necessary}

Ifwithdrawal () can't be defined, why not leave it out? Why not declare the

function in Savings and Checking where it can also be defined and keep it

out of Account? In many object-oriented languages, you can do just that. But

C++ wants to be able to check that you really know what you're doing.

$^~®\ Remember that declaring a function establishes its extended name including

arguments while a definition includes the code to execute when the function

is called.

I can make the following minor changes to Account to demonstrate the

problem:

class Account
i

// just 1 i ke before but without
// the declaration of withdrawal ()

(;

class Savings
i

: publ ic Account
t

publ ic:

virtual void
):

withdrawal (float amrit):

void fn(Account *pAcc)

// withdraw \some money
pAcc- Withdrawal (100. OOF);

// this call is not all owed
// withdrawal () is not a member

1;

// of class Account

int main()

Chapter 23: Factoring Classes y\)(

{

Savings s; // open an account
fn(&s);

Suppose that you open a savings account s. You then pass the address of

that account to the function f n (), which attempts to make a withdrawal.

Because the function withdrawal () is not a member of Account, however,

the compiler generates an error.

Some languages wait to make that test when the function is actually called

during the execution of the program. In this case, the above code snippet would

work; ma i n () calls the function f n () passing the object s. When f n () subse-

quently calls withdrawal (), the language would realize that wi thdrawal () is,

in fact, defined for the object given it. While flexible, this approach is slow

because the language has to make a number of tests during program execution.

It's also fraught with errors— if someone did pass an Account object without

the member function wi thdrawal () defined, the program would terminate if it

couldn't figure out what to do about it— this doesn't make users very happy.

See how pure virtual functions correct the problem. Here's the same situation

with Account declared as an abstract class:

class Account
{

publ i c

:

// just like preceding
// declare withdrawal pure virtual
virtual void withdrawal (float amnt) = 0;

};

class Savings : public Account
(

publ ic:

virtual void withdrawal (fl oat amnt);

};

void fn(Account *pAcc)
{

// withdraw some money
pAcc->wi thdrawal (100. OOF) ; // now it works

};

int main()

{

Savings s; // open an account
fn(&s);
// ... same as before. .

.

308 Part IV: Class Inheritance

The situation is the same except the class Account includes a member
function wi thdrawal (). Now when the compiler checks to see whether
pAcc->wi thdrawal () is defined, it sees the definition of

Account: :wi thdrawal () just as it expects. The compiler is happy. You're

happy. That makes me happy, too. (Frankly, a football game and a cold beer

are enough to make me happy.)

The pure virtual function is a placeholder in the base class for the subclass

to override with its own implementation. Without that placeholder in the

base class, there is no overriding.

Trying to Rationalize My Budget:

BUDGET3XPP
The chapter continues the metamorphosis of the purely functional Budgetl

at the end of Part II through the object-based version Budget2 at the end of

Part III into an object-oriented Budget3 program here.

The Budget programs handle bank deposits and withdrawals for a simulated

bank. The user enters a series of bank accounts followed by the deposits and
withdrawals for that account. Once the user has entered all of her transac-

tions, the program displays the balances for each account plus the overall

balance. Budget2 and Budget3 simulate both Checki ng and Savings

accounts. Checking accounts charge a small fee for withdrawals when the

balance is less that $500 while savings accounts charge a large fee after the

first withdrawal irrespective of the balance.

Budget2 was an improvement over Budgetl in one sense: it isolated the

details of account classes from the exterior functions that manipulate

accounts. Unfortunately, Budget2 contained a large amount of redundancy
between the two classes Savi ngs and Checki ng, redundancies which we
could have avoided using the inheritance principles.

Budget3 adds the following improvements over its predecessors:

* Use of inheritance to highlight the similarities between checking and

savings accounts and to avoid redundancy

v* Use of virtual member functions to increase readability and expandability

i> Creation of a pure virtual class to capture the commonalties between

checking and savings accounts

»-" Use of linked list rather than an array in order to relieve the limit on the

number of bank accounts the program can hold

Chapter 23: Factoring Classes ^Qy

With the help of the new 00 superhero inheritance and its sidekick polymor-

phism, we can rationalize the two account classes into a single class

Account, which captures the commonalties between these two classes. The
result is a much smaller and simpler program:

// BUDGET3.CPP - Budget program with inheritance and

II Tate binding (aka , po lymorphism) . Notice
II how much smal 1 er the

|

Drogram is compared
II with Budget? now that the redund ancy
II has been removed. A single funct ion can

II now handle both c heck'i n g and
II savings accounts (and any other accounts
II that you might invent in the fut ure)

.

II

II In addition, this version stored accounts
II in a linked list rathi?r than a f ixed array
II in order to avoid the 1 i mi tati on of a

II fixed maximum num ber iDf objects.
#incl ude <i ostream. h>

#incl ude <stdlib .h>

#incl ude <ctype. i>

#incl ude < s t r i n g .h>

cl ass . LirikedListObject

pub! ic:

LinkedListObj sct()

\

// add the current object to the end of the
// 1 inked list

}

addToEndO :

// link list manipul ation
Stc
i

itic LinkedL i stObject* first(

)

return pFirst
i

;

)

Li r

i

ikedLi stObject* next()

i

return pNext;
i

i

voi d addToEndO:

protected:
// keep accoun ts in a 1 inked 1 i st

// so there's no 1 i mi t to the number of objects
static LinkedL istObject* pFirst;

};

LinkedL istObject* pNext;

3 / Part IV: C|ass Inheritance

// allocated the static pointer to the first
// object in the linked list
LinkedListObject* LinkedListObject : :pFi rst = 0;

// add the current object to the linked list of
void LinkedLi stObject: :addToEnd(

)

// add this to end of list and count it

if (pFirst == 0)

{

pFirst = this; // empty list; make it first
)

el se

{

// search for the last element in the list
LinkedListObject* pA;

for (pA = pFirst; pA->pNext; pA = pA->pNext)
{

}

pA->pNext = this; // tack us onto end
}

pNext = 0; // we're always last

// Account - this abstract class incorporates properties
// common to both account types: Checking and
// Savings. However, it's missing the concept
// wi thdrawal () . which is different between the two
class Account : public LinkedListObject
{

publ ic:

Account

:

:Account(unsigned accNo,
double ini tialBalance = 0.0)

{

// initialize the data members of the object
accountNumber = accNo;
balance = ini ti al Bal ance;

// count it

count++;

// access functions
int accountNo(

)

{

return accountNumber;
}

double acntBal ance(

)

Chapter 23: Factoring Classes 3* /

return balance;
}

static int noAccountsO
{

return count;

}

// linked list functions which provide the proper
// promotions, save a lot of hassle later
static Account* firstO
{

return (Account*) Linked Li stObject: :f i rst()

;

(

Account* next(

)

{

return (Account*) Linked Li stObject: :next()

;

// transaction functions
void deposit(double amount)
!

bal ance += amount;
}

virtual void withdrawal (doubl e amount) = 0;

// display function for displaying self on 'cout'
void di spl ay(

)

{

cout << type(

)

<< " account " << accountNumber
<< " = " << balance
<< "\n"

;

}

virtual char* type() = 0;

// number of accounts
protected:
static int count;
unsigned accountNumber;
double balance;

// allocate space for statics
int Account: :COunt = 0;

// Checking - this class contains properties unique to
// checking accounts. Not much left, is there?
class Checking : public Account
{

publ ic:

3/2 Part IV: c,ass Inheritance

Checking: :Checking(unsigned accNo,
double initialBalance = 0.0)

Account(accNo, initial Bal ance)

{

// overload pure virtual functions
virtual void withdrawal (double amount);
char* type(

)

return "Checking";

// withdrawal - overload the Account: withdrawal () member
// function to charge a 20 cents per check if

// the balance is below $500
void Checking: withdrawal (double amount)
{

if (balance < amount)

{

cout << "Insufficient funds: balance " << balance
<< ", check

"
<< amount

<< "\n";
I

el se

{

balance -= amount;

// if balance falls too low, charge service fee
if (balance < 500.00)
{

balance -= 0.20;

// Savings - same story as Checking except that it also
// has a unique data member
class Savings : public Account
{

publ ic:

Savings: : Savings (unsigned accNo.
double initialBalance = 0.C

Account (accNo. initialBalance)
{

noWi thdrawal s = 0;

Chapter 23: Factoring Classes 3*3

II transaction functions
virtual void withdrawal (double amount!
char* type(

)

{

return "Savings";

protected:
int noWi thdrawal s

;

// withdrawal - overload the Account: withdrawal () member
// function to charge a $5.00 fee after the

f i rst

// withdrawal of the month
void Savings: withdrawal (double amount)

if (balance < amount)
{

cout << "Insufficient funds: balance
<< ", withdrawal "

<< "\n";

<< balance
<< amount

(

el se

{

if (++noWi thdrawal s > 1)

{

balance -= 5.00;

}

balance -= amount;
)

// prototype declarations
unsigned getAccntNo()

;

void process(Account* pAccount);
void getAccounts()

;

void display Re sults();

// main - accumulate the initial input and output totals
int maindnt argcs, char* pArgs[])
{

// read accounts from user
getAccounts()

;

// display the linked list of accounts
displ ayResul ts()

;

return 0;

3U Part IV: Class Inheritance

// getAccounts - load up the specified array of Accounts
void getAccounts(

)

{

Account* pA;

// loop until someone enters 'X' or 'x'

char accountType; // S or C

while (1)

{

cout << "Enter S for Savings, "

<< "C for Checking, X for exit:";
cin >> accountType;
switch (accountType)
{

case 'c'

:

case 'C :

pA = new Checking(getAccntNo())

;

break;

case '

s
'

:

case '

S'

:

pA = new Savings(getAccntNo())

;

break;

case 'x'

:

case '

X'

:

return ;

default:
cout << "I didn't get that.\n";

// now process the object we just created
process(pA)

;

// displ ayResul ts - display the accounts found in the

// Account link list
void displ ayResul ts(

)

{

// now present totals
double total = 0.0;
cout << "Account totals:\n";
for (Account* pA = Account : :fi rst() ; pA; pA = pA->next())
(

pA->display()

;

total += pA->acntBalance()

;

Chapter 23: Factoring Classes 3*5

I

cout << "Total worth = " << total << "\n";

// getAccntNo - return the account number entered
unsigned getAccntNoO
{

unsigned accntNo;
cout << "Enter account number:";
cin >> accntNo;
return accntNo;

}

// process(Account) - input the data for an account
void process(Account* pAccount)
{

cout << "Enter positive number for deposit, \n"

<< "negative for withdrawal, to terminate\n'
double transaction;
do

{

cout << ":";

cin >> transaction;

// deposit
if (transaction > 0)

I

pAccount ->depos it (transact ion)

;

}

// withdrawal
if (transaction < 0) {

pAccount ^withdrawal (-transaction);
}

1 while (transaction != 0);

I executed the program with the following data in order to demonstrate how
the program works (or, as is so often the case with my programs, doesn't

work). Bold characters indicate user input, while non-bold characters indi-

cate output from the program.

316 Part IV: Class Inheritance

negat
200
-10
-10

Enter
Enter
Enter
negat
200
-20

Enter
Enter
Enter
negat

ive for withdrawal, to terminate

S for Savings, C for Checking, X for exitrc
account number:345
positive number for deposit,

ive for withdrawal, to terminate

S for Savings, C for Checking, X for exit:C
account number:456
positive number for deposit,

ive for withdrawal, to terminate
:600
:-20

:0

Enter S for Savings, C for Checking, X for exit:x
Account totals:
Savings account 123 = 180
Savings account 234 = 175
Checking account 345 = 179.8
Checking account 456 = 580
Total worth = 1114.8
Press any key to continue

The object oriented Budget3 begins with the base class Li nkedLi stObject.

This class contains the logic necessary to create a linked list.

Li nkedLi stObject contains the first and next pointers as well as the

common f i rst() and next() member functions. Any class derived from

Li nkedLi stObject can be used to create a linked list using the member
functions it inherits.

The next class contained in Budget3 is Account. This class encapsulates all

the things that we know about generic accounts:

v They are identified by account numbers.

v Each account carries a balance.

p" Users can make deposits or withdrawals from a bank account.

We know how to perform a deposit for an Account, hence the member
function deposi t() is defined here. We don't know how to perform a

wi thdrawal () since the different types accounts define a slightly different

withdrawal process. This is reflected by declaring Account : : wi thdrawal (

)

pure virtual (this is indicated by the "= 0" at the end of the declaration).

Chapter 23: Factoring Classes

tjftBEff

The constructor for Account begins by automatically calling the constructor

for Li nkedLi stObject , which adds the current Account to the end of the

linked list of account objects. The Account constructor then creates the

unique account information by saving off the account number and the initial

balance, which is assumed to be zero if not specified. It continues by incre-

menting the static data member count thereby keeping track of the number
of Account objects in existence.

There is only one copy of a static object for the class. It is shared among all

objects.

The accountNo() and acntBal ance() functions defined next give the out-

side world the account number and balance information without giving them
the ability to modify them directly.

The Account: :fi rst() and next() member functions override the

Li nkedLi stObject versions. Without these seemingly senseless functions,

the users of Account would have to cast the objects returned from f i rst()

and next() themselves.

The object returned from f i rst() and next() is a Li nkedLi stObject and
not an Account.

The di spl ay () and type() functions give all accounts a similar display

format.

The Check i ng subtype of Account is fairly simple. The constructor for

Checking does nothing more than pass its arguments to Account. The only

real member function is wi thdrawal () which implements the rules of

engagement for checking accounts.

cjABE/r

The Savings class is identical to the C h e c k i n g class in that all that it pro-

vides is the wi thdrawal () method.

Any subclass of Account which does not override wi thdrawal () would be

virtual — you cannot create an instance of a virtual class.

The functions that make up the main program are now simplified. The func-

tion getAcounts() creates a Savi ngs or a Checki ng account object depend-
ing upon the character entered by the user. This is the only place within the

main program where the subclass of Account is referred to directly.

The di spl ayResul ts () function loops through the linked list asking each
Account object to display itself irrespective of the details of how a savings or

checking account (or any other type of account for that matter) might accom-
plish this.

318 Part IV: Class Inheritance

The process () function is even more impressive. This function performs

deposits (handled by Account : :deposi t()) and withdrawals (handled by

Savings: :withdrawal () or Checking: withdrawal () depending upon the

type of object pointed to by pAc count).

Notice how desirable the process () function has become. First, the redun-

dancy of defining different versions ofprocessO has been removed. Even

more importantly, the logic of the process () function has been simplified.

The programmer can now concentrate on how this function works without

worrying about the internal details of different types of accounts.

The problem that Budget3 solves is fairly simple (and a lot contrived).

Nevertheless, comparing the different versions of Budget may give you a feel

for the differences between a purely functional program (Budget 1) through

an object-based program lacking inheritance (Budget2) to a fully object-

oriented version (Budget3).

PartV

Optional Features

The 5th Wave By Rich Tennan

In this part . .

.

7he goal of this book is not to turn you into a C++ lan-

guage lawyer; it's to give you a solid understanding of

the fundamentals of C++ and object-oriented programming.

The earlier parts in this book cover the essential features

you need to know to produce a well-written, object-

oriented C++ program. C++, however, is a big language (it

has a serious case of feature-itis, if you ask me), and I have

yet to discuss many features. In Part V, 1 present a sum-
mary of the additional features that 1 find most useful,

along with my opinion as to when — and when not — to

use them.

Chapter 24

Overloading Operators

In This Chapter

Overview of overloading operators in C++

Discussion of operator format versus function format

Implementing operators as a member function versus as a non-member function

The return value from an overloaded operator

A special case: The cast operator

7he special little symbols that you use in C++ expressions (+, -, &, and so

on) are called (smooth) operators. These operators are already defined

for the intrinsic types like i nt, doubl e , and char (not every operator is

defined for every type). However, the existing operators are not defined for

the classes that you invent yourself (the so-called user-defined classes).

Perhaps lucky for us, C++ allows you to define what the C++ operators would
mean if they were applied to a user-defined class. This feature, called opera-

tor overloading, is the topic of this chapter.

I say, "perhaps this is lucky" for a reason. Normally, operator overloading is

optional and usually not attempted by beginning C++ programmers. A lot of

experienced C++ programmers don't think operator overloading is such a

great idea, either. Therefore, if you're feeling a bit overwhelmed, you can skip

this chapter and return to it when you feel curious and more at ease.

All warnings aside, you do need to know how to overload the assignment

operator and it really helps to overload the ">>" and "<<" operators.

Fortunately, there is a template that you can follow for these three operators

that makes them easier to get right. Because 1 don't want you to get mixed up
about different operators, I cover each of the three in its own chapter.

JUNG/ Let me say it one more time (I don't want irate e-mails questioning my lin-

eage because someone overloaded some operator and he can't find his way
back to safety): Operator overloading can introduce errors that are very diffi-

cult to find. Be sure that you know what you're doing before you plunge in.

322 Part V: Optional Features

Overloading Operators— Can't We
Live Together in Harmony?

C++ considers user-defined types to be just as valid as intrinsic types, such

as i nt and char. Because the operators are defined for the intrinsic types,

why not allow them to be defined for user-defined types?

I realize that this is a weak argument, but operator overloading may have its

uses. Consider a class USDol 1 ar that represents greenbacks. Some of the

operators make no sense at all when applied to dollars. For example, what

would it mean to invert (the - operator) a USDol 1 a r? Turn it upside down?
(Does inverting the class Wallet make objects of class Do! 1 ar fall out?

Probably not.) On the other hand, some operators definitely are applicable.

For example, it makes sense to add a USDol 1 ar to or subtract a JSDol 1 ar

from a USDol 1 dr, the result being a USDol 1 ar. It also makes sense to multi-

ply or divide a USDol 1 a r by a double. It probably doesn't make sense to mul-

tiply a USDol 1 ar by a USDol 1 a r.

Overloading the simple arithmetic operators for USDol 1 ar may improve

the readability of your program. Compare the following two example code

snippets:

// expense - calculate the amount of money paid
// (including both principle and simple
// interest)
USDollar expense(USDol 1 ar principle, double rate)

{

// calculate the interest expense
USDollar interest = pri ncipl e. interest(rate) ;

// now add this to the principle and return the
// result
return pr inci pie. add

(

interest) ;

}

With overloaded operators, the same function looks like the following:

// expense - calculate the amount of money paid
// (including both principle and simple interest)
USDollar expense(USDol 1 ar principle, double rate)

(

USDollar interest = principle * rate:
return principle + interest:

1

Cool, no?

Before you investigate how to overload an operator, you need to understand

the relationship between an operator and a function.

Chapter 24: Overloading Operators

Hovtf Does an Operator Function

and a Function Operate)
Think about this one for a second: An operator is nothing more than a built-in

function with a peculiar syntax. For example, what's the difference between
a+b and +(a , b)? Or, perhaps add (a , b)? None. In fact, that's exactly how
addition is expressed in some languages.

C++ gives each operator a special functional name. The functional name of an

operator is the operator symbol preceded by the keyword operator and
followed by the appropriate argument types. For example, the + operator that

adds an i nt to an i nt generating an i nt is called i nt operator+(i nt , i nt).

The operator that adds two integers (int operator+(i nt , int)) is differ-

ent from the operator that adds two doubles (doubl e operator+(doubl e ,

double)). This isn't too hard to accept when you realize that the internal

format of an int variable and a doubl e variable are completely different.

You can't invent new operators nor can you change the precedence or format

of the operators. In addition, the operators can't be redefined when applied

to intrinsic types — that is, you can't redefine what it means to add two inte-

gers (unless you have a Ph.D. in math).

The following examples demonstrate how the addition and increment opera-

tor might be defined for the class USDol 1 ar (I could have implemented the

same functions for Canadi anDol 1 ar, but who wants to put "eh?" in every

comment?):

// USDol lar - an object containing an integer number of
// dollars plus an integer number of cents,
// one hundred of which equals a complete
// dollar
class USDol 1 ar

(

friend USDollar operator+(USDol 1 ar&, USDollar&);
friend USDollar& operator++(USDol 1 ar&)

;

pub! ic

:

USDol

1

ar(unsigned int d, unsigned int c);

Drotected:
unsigned i nt dol 1 ars ;

unsigned int cents;

// constructor
USDol lar : :USDol

1

ar(unsigned int d, unsigned int c)

32^5 Part V: Optional Features

{

dol 1 ars = d;

cents = c;

while (cents >= 100

{

dol 1 ars++;
cents -= 100;

// operator+ - add si to s2 and return the result
// in a new object
USDollar operator+(USDol 1 ar& si, USDollar& s2)

{

unsigned int cents = si. cents + s2. cents;
unsigned int dollars = si. dollars + s2. dollars;
USDollar dCdollars, cents);
return d;

}

// operator++ - increment the specified argument;
// change the value of the provided object
USDollar& operator++(USDol 1 ar& s)

(

s .cents++;
if (s. cents >= 100)

{

s. cents -= 100;
s.dol 1 ars++;

}

return s;

int mainCint argcs, char* pArgs[])
I

USDollar did, 60);
USDollar d2(2. 50);
USDollar d3(0. 0);
d3 = dl + d2; // straightforward in use
++d3;
return 0;

The class US Dol 1 ar is defined as having an integer number of dollars and an

integer number of cents that must be less than 100. The constructor enforces

the latter rule by reducing the number of cents by 100 at a time and increas-

ing the number of dollars appropriately.

Here operator+() and operator++() have been implemented as conven-

tional non-member functions that are friends of USDol 1 ar.

Chapter 24: Overloading Operators

Who's your friend?

The keyword friend is one that you haven't

seen before. From within a class declaration you

can declare an "outside function" to be a friend

of the class. A friend function has all the rights

and privileges of a class member. By declaring

operator+() to be a friend, I'm giving it

access to the protected members of

USDollar.

The comparison between a class and a family

works here as in our discussion of class access

control. All of the members of the family have

access to the fine silver (except that crazy aunt,

but lefs ignore that exception). Most people out-

side of the family are not allowed access unless

they're specifically anointed by the family as

friends. In this case, the family has decided to

allow the family friend access to the fancy silver

(and everything else, by the way — even the

farmer's daughter) and that the first family trusts

them not to abuse the privilege.

Notice that a person cannot declare himself to

be a friend of the family— it must be the family

that extends the invitation. The same applies

here: A function can't declare itself to be the

friend of a class. The friend keyword only

makes sense within the class declaration.

It is possible for a family to invite a second

family to be friends. This means that every

member of the second family has access to the

fancy silver. Similarly, a class can declare

another class to be a friend, meaning that every

member function in the second class is a friend.

There is no reciprocal agreement: declaring

class B to be a friend of A gives B access to the

protected members of A but not the other way
around.

Because operator+() is a binary operator (that is, it has two arguments),

you see two arguments to the function (si and s2). The operator+() takes

si and adds it with s2. The result of the expression is returned as a

USDol 1 a r object from the function.

The unary operators, such as operator++(), take a single argument.

operator++() increments the cents field. If it goes over 100, it increments

the dollar field and zeros out the cents.

,^\NG/ Nothing forces operator+(USDollar&, USDol 1 ar&) to perform addition.

You could have operator+() do anything you like; however, doing anything

else besides addition is a really bad idea. People are accustomed to their

operators performing in certain ways. They don't like their operators dancint

about willy-nilly performing other operations.

The operator += has nothing to do with the operators + or

operator must be overloaded independently.

That is, each

If you provide only one operator++() or operator- -(), it's used for both

the prefix and postfix versions. The standard for C++ says that a compiler

doesn't have to do this, but most do.

32V Part V: Optional Features

Originally there was no way to overload the prefix operator ++x separately

from the postfix version x++. Enough programmers complained, so the rule

was made that operator++(Cl assName) refers to the prefix operator and
operator++(CI assName , i nt) refers to the postfix operator. A zero is

always passed as the second argument. Personally, I think that this syntax is

silly, but it works. The same rule applies to operator- -().

In use, the operators appear very natural. What could be simpler than d3 =

dl + d2and++d3?

Taking a More Detailed Look
Why does operator+() return the sum by value, but operator++() return

the incremented object by reference? This is not an accident, but a very

important difference.

We're starting to get into the part of operator overloading that is difficult to

grasp, easy to screw up, and difficult to debug.

Considering the operator* () case

The addition of two objects changes neither object. That is, a + b changes

neither a nor b. operator+() cannot store the results of the addition into

either a or b.:

// this is a really bad idea since it modifies
// si back in the calling function
USDollar& operator+(USDol

1

ar& si, USDollar& s2)

{

si. cents += s2. cents;
if (si. cents >= 100)

1

si. cents -= 100;
sl.dollars++;

1

si .dol 1 ars += s2.dol 1 ars;
return si;

The problem here is that a simple assignment such as ul = u2 + u3 : would

modify u2 as well as u3.

Instead operator+() must generate a temporary object into which it can

store the result of the addition. This is why operator+() constructs its own
temporary object to return.

Chapter 24: Overloading Operators j2/

Specifically, the following would not work:

// this doesn't work
USDol 1 ar& operator+(USDol 1 ar& si. USDol 1 ar& s2)

unsigned int cents = si. cents + s2. cents;
unsigned int dollars = si. dollars + s2. dollars
USDollar resul t(dol 1 ars , cents);
return result;

}

^\NG/

jjftNG/

*£*5fe

Common screwup #1: Although this compiles without a squeak of complaint,

it generates flaky results. The problem is that the returned reference refers to

an object, resul t, whose scope is local to the function. Thus, resul t is out

of scope by the time it can be used by the calling function.

Why not allocate a block of memory from the heap, as follows?

// this sort of works
USDollar& operator+CUSDol

1

ar& s 1, USDoll ar& s2)

i

unsigned int cents = si. cents + s2.cen ts;

unsigned int dollars = s l.dol 1 ars + s2 .dol 1 ars ;

return *new USDollar(dol
1

1 ars , cents)

;

Common screwup #2: You can return a reference to an object that was allo-

cated off of the heap except that no mechanism exists to return the memory
back to the heap. This type of error is called a memory leak and is very hard

to track down. Although this operator works, it slowly drains memory from

the heap each time an addition is performed.

Returning by value forces the compiler to generate a temporary object of its

own on the caller's stack. The object generated in the function is then copied

into the object as part of the return from operator+().

How long does the temporary object returned from operator+() hang
around? Originally this was vague, but the standards people got together and
decided that such a temporary remains valid until the extended expression is

complete. The extended expression is everything up to the semicolon. For

example, consider the following snippet:

SomeClass f ()

;

LotsAClass g()

;

void fn(

)

int i ;

1 = f() + (2 * g());

j28 Part V; Optional Features

The temporary object returned by f () remains in existence while g() is

invoked and while the multiplication is performed. This object becomes
invalid at the semicolon.

Considering the operator++ () case

Unlike operator+(), operator++() does modify its argument. Thus, you
don't need to create a temporary or to return by value. You can save the cal-

culated result in s. The argument provided can be returned to the caller:

// this works fine
USDollar& operator++(USDol 1 ar& s)

{

s.cents++;
if (s. cents >= 100)

{

s. cents -= 100;
s . dol lars++;

}

return s;

In fact, the following version, which returns by value has a subtle bug:

// this isn't 100% reliable either
USDollar operator++(USDo1

1

ar& s)

{

s .cents++;
if (s. cents >= 100)

(

s. cents -= 100;
s.dol lars++;

}

return s;

)

Common screwup #3: By returning s by value, the function forces the com-

piler to generate a copy of the object. This works fine in expressions a = ++b.

but what happens with an expression like ++(++a)? We would expect a to be

incremented by 2. With the preceding definition, however, a is incremented by

1 and then a copy of a — not a itself— is incremented the second time.

The ++(++a) example is not a common construct, but it is legal. In any case,

there are plenty of other examples that wouldn't work either.

The general rule is: If the operator changes the value of its argument, return

the argument by reference. If the operator does not change the value of either

argument, create a new object to hold the results and return that object by

value. The input arguments should always be referential.

Chapter 24: Overloading Operators j£y

Coding Operators as Member Functions
An operator can be implemented as a non-static member function in addition

to being a nonmember function. Implemented in this way, the example
USDol 1 ar class appears as follows:

class USDollar
{

publ i c:

USDol

1

ar(unsigned int d , unsigned int c);

USDol lar& operator++()

;

USDollar operator+(USDol

1

ar& s);

protected:
unsi gned int dol

1

ars ;

unsigned int cents;

};

USDol

1

ar: : USDol 1 ar(unsigned int d, unsigned int c)

I

dol 1 ars = d;

cents = c;

while (cents >= 100)

I

dol lars++;
cents -= 100;

// operator* - add this to s2 and return the result
// in a new object
USDollar USDol 1 ar: :operator+(USDol 1 ar& s2)

(

// the "this->" is optional
unsigned int c = this->cents + s2. cents;
unsigned int d = thi s->dol 1 ars + s2. dollars;
USDollar t(d, c);

return t;

// operator++ - increment the specified argument;
// change the value of the provided object
USDol lar& USDol 1 ar: :operator++(

)

{

this->cents++;
if (this->cents >= 100)
I

this->cents — 100;
thi s->dol 1 ars++;

33 Part V: Optional Features

return *this;
}

int main(int argcs, Ch:3r* --- r
? S[])

USDollar did, 60)
USDollar d2(2, 50) \

USDollar d3(0. 0);

d3 = dl + d2; II ven St raightforward i n use
++d3;
return 0;

}

I include the "this->" phrase in the above example in order to highlight the

similarity between the member function and the nonmember function ver-

sions of the same operator. Obviously, this phrase is optional and understood

by default.

Compare the declaration of USDol 1 ar : : opera tor+(USDol 1 ar&) with

: :operator+(USDollar&, USDol 1 ar&). At first glance, it appears that the

member version has one less argument than the nonmember version. The fol-

lowing example compares the nonmember with the member versions of the

function:

// operator+ - the non-member version
USDollar operator+(USDol

1

ar& si. USDollar& s2)

{

unsigned int cents = si. cents + s2. cents;
unsigned int dollars = si. dollars + s2. dollars;
USDollar d(dollars, cents);
return d;

1

// operator+ - the member version
USDollar USDol 1 ar: :operator+(USDol 1 ar& s2)

(

unsigned int c = this->cents + s2. cents;
unsigned int d = this->dol lars + s2. dollars:
USDollar t(d, c):

return t;

Chapter 24: Overloading Operators jj 7

fctfBE/?

You can see that the functions are nearly identical. Where the nonmember
version adds si and s2, however, the member version adds the "current

object" — the one pointed at by t h i s — to s 2.

The member version of an operator always has one less argument than the

nonmember version — the left-hand argument is implicit.

Suffering through \let Another

Overloading Irritation

SttNG/

Just because you've overloaded one version of an operator doesn't mean that

you've overloaded them all: C++ considers operator*(doubl e ,

USDollar&) to be different from operator* (USDol 1 a r& , double).

Common screwup #4: Each version of the operator must be overloaded

separately.

This isn't as big a drag as it may appear at first blush. First, nothing keeps

one operator from referring to the other. In the case of operator* (), you
would probably do something like the following:

USDollar operator*(doubl

e

f, USDol lar& s)

(

// . . . impl ementation of function here
i

inline USDol' ar operator* (USDollar'& s, dou ble f)

t

// use
return

}

the
f *

previous
s

;

def i ni ti on

fctfBE/?

The second version merely calls the first version with the order of the opera-

tors reversed. Making it inline avoids any extra overhead.

The machine code for inline functions is inserted at the point of the call.

jj2 Part V: Optional Features

When to make operators members or nonmembers
When should the programmer implement an

operator as a member and when as a nonmem-

ber? The following operators must be imple-

mented as member functions:

= Assignment

() Function call

[] Subscript

-> Class membership

Other than the operators listed, there isn't much

difference between implementing an operator

as a member or as a nonmember, with the fol-

lowing exception. An operator like the following

could not be implemented as a memberfunction:

USDollar operator*(double
factor, USDollar& s);

void fn(USDo"Nar& principle)

{

USDollar interestExpense =

interest * principle

//...

To be a memberfunction, operator*() would

have to be a member of class doubl e. Mere

mortals cannot add operators to the intrinsic

classes. Thus, operators such as the preceding

must be nonmember functions.

If you have access to the class internals, make

the overloaded operator a member of the class.

This is particularly true if the operator modifies

the object upon which it operates.

Overloading Operators Using

Implicit Conversion
There is a second, entirely different approach to defining operators for user-

defined classes. Think about the following expression for a second:

int i = 1;

double d = 1.0;

// expression #1
d = i + d;

// expression #2

The first expression adds an i nt to a doubl e. C++ does not define an opera-

tor-!- (int, double) function, but C++ does define an oper a tor+(double,

doubl e). In the absence of an (int . doubl e"1 function. C++ converts the

int i into a double (we say that "i is promoted to a double ") in order to use

the (double, double) version. The same process occurs for both expres-

sions, however, the situation is even worse in the second expression because

double result must be demoted before being assigned to i

.

Chapter 24: Overloading Operators 333

Promoting user defined objects

If the programmer defines a promotion path from an intrinsic type to the user

class, C++ will try to use it to make sense of an expression. Suppose, for

example, that you provided a constructor to convert a double into a

USDollar.

class USDollar
(

friend USDollar operator+CUSDol 1 ar& si, , uselOll ar& s2);

publ ic:

USDollarCint d,

USDollarCdouble
int c)

;

val ue)

i

dol 1 ars = (i nt)

cents = (int)(

(

i

va'

va"

ue;

ue - dol 1 ars) • 100 + 0. 5);

i

// . . . as before.

.

}

As far as C++ is concerned, you have provided a promotion path from double
to USDol 1 ar. That is, anytime C++ finds itself in need of some cash, it can

pawn a doubl e.

We can use that conversion feature in order to piggyback on an existing

operation:

void fn(USDollar
i

& s)

t

// all of the following use
// operator+(USDollar&, USDollar&)
s = USDollarCl .5) + s; // explicit conversion...
s = 1.5 + s

;

// ...implicit conversion...
s = s + 1.5; // ... in either order
S = s + 1; // even this works by converting the...

// ...int into a double and then...

)

// ...continuing as above

Now you need define neither operator+(doubl e, USDol 1 ar&) nor opera-
tor+CUSDol lar&. double). C++ will convert the doubl e into a USDol 1 ar

and use the operator+CUSDol 1 ar&, USDol 1 ar&) function already defined.

This conversion can be explicit, as shown in the first addition. It can also

remain implicit, in which case C++ performs the conversion automatically.

Providing such conversion paths can save considerable effort by reducing

the number of different operators the programmer must define.

33 fi
Part V: °Ptional Features

^\NG/

Possible screwup #5: Allowing C++ to make these conversions, however, can

be dangerous. If multiple possible conversion paths exist, mysterious com-
piler errors can arise.

Defining a Cast Operator

The cast operator can be overloaded as well. (The cast operator is not the

person who puts those caste dots on Indian women's foreheads. The cast oper-

ator converts one type into another.) In practice, it looks like the following:

class USDollar
1

publ i c:

USDollar(double value = 0.0):

// the following function acts as a cast operator
operator doublet)

I

return dollars + cents / 100.0;
}

protected:
unsigned int dollars;
unsigned int cents;

USDollar: :USDol 1 ar(double value)
{

dol lars = (int)val ue;

cents = (int)Uvalue - dollars) * 100 + 0.5)

The cast operator operator doubleO provides a demotion path from

USDol 1 ar to doubl e. This cast creates a double equal to the number of dol-

lars plus the number of cents divided by 100.

In practice, operators such as cast can be used as follows:

int mainUnt argcs, char* pArgs[])

(

USDollar dl(2.0). d2(1.5). d3:

// invoke cast operator explicitly...
d3 = USDollar((double)dl + (double)d2):

// . . . or impl i ci tly
d3 = dl + d2;
return 0:

Chapter 24: Overloading Operators 335
A cast operator is the word operator followed by the desired type. The
member function USDol 1 a r : : operator doubl e() provides a mechanism
for converting an object of class USDol 1 a r into a double. For reasons that are

beyond me, cast operators have no return type. (The argument is, "You don't

need it because you can tell the return type from the name." I prefer a bit of

consistency.)

In the first expression, we convert the two USDol 1 a r values into double, use

the existing operator+(double, double) and then use the constructor to

convert the results back into a USDol 1 a r.

The second expression has exactly the same effect, but it's much sneakier.

C++ tries to make sense out of the d 3 = dl + d 2 by first converting dl and
d2 to doubles and then converting the sum back into a USDol 1 a r. The result-

ing logic is the same as in the first expression, but C++ figured it out this time.

This demonstrates both the advantage and disadvantage of providing a cast

operator. Providing a conversion path from USDol 1 a r to double relieves pro-

grammers of the need to provide their own set of operators. USDol 1 a r can

just piggyback on the operators defined for double.

On the other hand, providing a conversion path removes the ability of pro-

grammers to control which operators are defined. By providing a conversion

path to doubl e, USDol 1 ar gets all of doubl e's operators whether they make
sense or not. In addition, going through the extra conversions may not be the

most efficient process in the world. For example, the simple addition just

noted involves three type conversions with all of the attendant function calls,

multiplications, divisions, and so on.

Defining the rules for implicit conversions

With all this converting going on, how do you know what C++ will do with an

expression such as the addition of a USDol 1 ar dl and a double d2?The
rules are straightforward:

1. C++ first looks for operator+(USDollar, double).

2. C++ next looks for an operator that can used by casting USDollar into a

double.

3. Finally, C++ looks for an operator that can be used by casting both

USDollar and double.

Number 1 is always unique; however, both Numbers 2 and 3 can be ambiguous.

336 Part V: Optional Features

Common screwup #6: It's a compile time error if there are more operation

paths than one that could be used.

It's also an error if two conversions are provided for the same thing.

Common screwup #7: You can't provide two conversion paths to the same
type. For example, the following is asking for trouble:

cl ass A

f

public:
A(B& b);

};

class B

{

publ ic

:

operator A()

;

If asked to convert an object of class B into an object of class A, the compiler

will not know whether to use B's cast operator B : operatorA() or A's con-

structor A : : A (B&) , both of which start out with a B and end up making an A

out of it.

Perhaps the result of the two conversion paths would be the same, but the

compiler doesn't know that. It must know which conversion path you really

intended. If it can't determine this unambiguously, the compiler throws up its

electronic hands and spits out an error.

Chapter 25

Overloading the Assignment

Operator

In This Chapter

Introducing the assignment operator

Overloading the assignment operator is necessary

Similarities between the user defined assignment operator and the copy constructor

• » • • *

Chapter 24 demonstrates how to go about overloading operators for

classes that you define. Whether or not you start out overloading all

operators, you need to learn how to overload the assignment operator fairly

early.

In general overloading C++ operators is a dicey proposition. You shouldn't

have any trouble overloading the assignment operator=() if you follow the

pattern shown here.

Overloading the Assignment
Operator Is Critical

C defines only one operator that can be applied to structure types: the

assignment operator. In C, the following is legal and results in a bit-wise copy
from source to destination:

void fn(

)

{

struct MyStruct source, destination;
destination = source;

jjO Part ^: Optional Features

To retain compatibility with C, C++ provides a default definition for

operator=() for all user-defined classes. This default definition performs

a member-by-member copy of each data member. However, this default

member-by-member copy can be overloaded by an operator=() written

specifically for the specified class.

The assignment operator is much like the copy constructor (see Chapter 19).

In use, the two look almost identical:

void fn(MyClass& mc)

{

MyClass newMC = mc;// this uses the copy constructor
newMC = mc; // this uses the assignment operator

The difference is that when the copy constructor was invoked on newMC, the

object newMC didn't already exist. When the assignment operator was
invoked, newMC was already a MyCl ass object in good standing.

The copy constructor is used when a new object is being created that's a

copy of another. The assignment operator is used if the right-hand object is

being copied over an existing argument on the left side of the assignment

operator. Like the copy constructor, an assignment operator should be pro-

vided whenever a shallow copy isn't appropriate.

Finding Out Hout to 0(/eHoad

the Assignment Operator
Overloading the assignment operator is similar to overloading any other

operator. For example, an assignment operator has been provided as an

inline member function for the following class Name. (Remember, the assign-

ment operator must be a member function of the class.)

^include <stdlib.h>
^include <string.h>
^include <ctype.h>

// Name - a simplistic example class
class Name
{

publ ic:

Name(

)

I

pName = (char*)0:
1

Name(char *pN)

Chapter 25: Overloading the Assignment Operator 33V

copyName(pN) ;

Name(Name& s)

copyName(s .pName)

;

~Name(

)

deleteName()

;

// assignment operator
Name& operator=(Name& s)

// make sure we aren't assigning to ourselves
if (this==&s)
i

II do nothing return*s;
1

// delete existing stuff...
deleteName()

;

//...before replacing with new stuff
copyName(s .pName)

;

// return reference to existing object
return *this;

}

protected:
// copyName - copy the source string pN to a locally
// allocated block of memory
void copyName(char *pN)
i

i

int length = strlen(pN) + 1;

pName = new char[l ength]

;

strncpy(pName, pN, length);
}

// deleteName - return the pName memory to the heap
void del eteName(

)

1

// if there is a block of heap memory...
if (pName)
i
i

// ...return it to the heap...
delete pName;

// ...and flag the fact that the pointer is no
// longer valid
pName = 0;

}

3^0 Part V: Optional Features

// pName points to a block of memory containing
// the actual name as an ASCI IZ string
char *pName;

int maind'nt argcs, char* pArgs[])
{

Name s("CI audette")

;

Name t("temporary")

;

t = s; // this invokes the assignment operator
return 0;

The class Name retains a person's name in memory that is allocated from the

heap in the constructor. The constructors and destructor for class Naiie are

typical for a class containing a dynamic array of memory.

The assignment operator appears with the name operator=(). Notice that

the assignment operator looks like a destructor followed by a copy construc-

tor. This is also typical. Consider the assignment in the example. The object t

already has a name associated with it (temporary). In the assignment t = s,

you must first call del eteNameC) to return to the heap the memory that the

original name occupies. Only then can you call copy Name () to allocate new
memory into which to store the new name.

The copy constructor did not need to call del eteName() because the object

didn't already exist. Therefore, memory had not already been assigned to the

object when the constructor was invoked.

In general, an assignment operator has three parts. The operator checks to

make sure that the source and destination objects are different. The second

part resembles a destructor in that it deletes the assets that the existing

object already owns. The second part resembles a copy constructor in that it

allocates new assets from the source object into the now-empty target object.

Always check to make sure that the source object and the target object are

different. Ignore obj=obj;

Creating sfutllout copies is a deep problem

Okay, so what's so wrong with a member-by-member copy? Often nothing,

but not in the case of Name.

The class Name contains an asset that has been checked out for its use:

namely, the block of heap memory pointed at by pName. If you didn't already

know this, you could tell by looking at the constructors. Each of these

(except for the default) calls the function copyNameC) shown here:

Chapter 25: Overloading the Assignment Operator jlXl

II copyName - copy the source string pN to a locally
// allocated block of memory
void copyName(char *pN)

{

int length = strlen(pN) + 1;

pName = new char[l ength]

;

strncpy(pName, pN, length);

}

Notice how the function allocates a string of memory equal to the length of

the source char* string. (In a subsequent step, copyName () copies the con-

tents of pN to the newly allocated string.)

The default government issue member-by-member copy blindly copies the

data member to the target object. This results in two Name objects pointing at

the same chunk of memory— a recipe for disaster. This called a shallow copy.

The assignment operator for Name must first return the existing pName memory
to the heap (by calling del eteName()) before allocating its own chunk of

memory (by calling copyName ()) heap. This is known as a deep copy.

Going to C++ member-by-member
I've been very careful about saying "member-by-member copy." I avoid the

simpler unqualified term "copy" because this implies a bit by bit just "moving

over."

The significance of the member-by-member isn't obvious until you start look-

ing at classes that themselves have class objects.

class MyClass
1

publ ic:

Name name;
int age;

MyCl ass(char* pName , int newAge) : name(pName)
i

age = newAge;
}

};

void fn(

)

i

MyClass aCKinsey",
MyClass b("Christa"
a = b;

}

16);

, 1);

(See Chapter 18 if you aren't familiar with the : name(pName) syntax for ini-

tializing the data member name.)

3fy2 Part V; Optional Features

The default assignment operator works just fine in this case. The member-
by-member copy assigns the int b.agetoa.age — no problem so far. It

continues by assigning the object b . name to a . name. This copy uses the

Name: :operator=() assignment operator.

Unless the class itself allocates resources (irrespective of what its member
objects might do), it's unnecessary to overload the assignment operator.

Returning from o</er*C's assignments

Notice that the return type of operator=() is Name&. I could have made the

return type void — C++ would have allowed it. If I did, however, the following

would not work:

void
void

otherFn(Name&)

;

fn(Name& oldN)

Name newN;

// this wouldn
otherFn(newN =

't work
oldN);

// neither wou
Name newerN;
newerN = newN

}

Id this

= oldN;

The results of the assignment newN = ol dN would be void, the return type

of operator=(). This means that there is no value to use in the subsequent

operation, be it a function call or an expression.

j^jABEff Remember that the result of an assignment operator is the value of the right

hand argument and the type of the left. Thus, the value of u = 1 is 1. This

is what allows expressions like i = j = 1;. The variable i is assigned the

result of the assignment j = 1, which is 1.

Declaring operator=() to return a reference to the "current" object and
returning *thi s retains the C++ semantics that you have all come to know
and love.

The second detail to notice is that operator=() was written as a member
function. Unlike other operators, the assignment operator cannot be over-

loaded with a nonmember function.

The assignment operator must be a nonstatic member function. Interestingly

enough, the special assignment operators, such as += and *«, have no special

restrictions and can be nonmember functions.

Chapter 25: Overloading the Assignment Operator j*f3

Providing member protection

Writing an assignment operator isn't so difficult; however, sometimes you
just don't want bother. If you don't want to bother writing an assignment

operator, you may choose to just make it impossible to make assignments by

overloading the default with a protected assignment operator.

For example:

class Name

.<

// . . .just 1 ike before. .

.

protected:
// assignment operator
Name& operator=(Name& s)

{

return *this;

}

};

With this definition, assignments such as the following are precluded:

void fn(Name& n)

{

Name newN;
newN = n; // generates a compiler error -

// function has no access to op=()
}

The function f n () doesn't have access to the now-protected assignment

operator. This trick may save you the trouble of overloading the assignment

operator.

344 Part V: Optional Features

Chapter 26

Using Stream I/O

••a

In This Chapter

Rediscovering stream I/O as an overloaded operator

Using stream file I/O

Using stream buffer I/O

P> Going behind the scenes with manipulators

Writing your own inserters and extractors

•••A*

Chapter 1 1 takes a quick look at stream I/O. If you compare Chapter 1

1

with the coverage of operator overloading presented in Chapter 25 you
notice that stream I/O is not based on a new special set of symbols << and >>

but just the right and left shift operators overloaded to perform input and
output, respectively. (If you haven't read about operator overloading be sure

to go over Chapter 25 before continuing.)

In this chapter, I describe stream I/O in more detail. I must warn you that

stream I/O is too large a topic to be covered completely in a single chapter —
entire books are devoted to this one topic. Fortunately for both of us, there

isn't all that much that you need to write the vast majority of programs.

bitiinq into Stream I/O

The operators that make up stream I/O are defined in the include file

iostream.h. This file includes prototypes for several operator>>() and
operator<<() functions. The code for these functions is included in the

standard library, which your C++ program links with.

// for input we have:
istream& operator>Xistream& source, char* pDest
istream& operator>>(i stream& source, int& dest);
istream& operator>>(i streams source, char& dest)
// . . .and so forth. . .

3^0 Part V: Optional Features

tf£5$fe
Buzzword time: When overloaded to perform I/O, operator>>() is called the

extractor and operator<<() is called the inserter.

Look at what happens when I write the following:

#incl ude <iost ream.,h>
void fn(

)

i
i

cout <<

}

"My name i s St<?phen\n" ;

First, C++ determines that the left-hand argument is of type ostream and the

right-hand argument is of type char*. Armed with this knowledge, it finds the

prototype operator<<(ostream&, char*) in i ostream. h. C++ generates a

call to the function for the char* inserter, passing the function the string "My

name is RandyXn" and the object cout as the two arguments. That is, it

makes the call operator<<(cout, "My name is RandyXn"). The char*
inserter function, which is part of the standard C++ library, performs the

requested output.

How did the compiler know that cout is of class ostream? This and a few

other global objects are also declared in i ostream. h. A list is shown in Table

26-1. These objects are constructed automatically at program start-up. before

main() gets control.

Table 26-1 Standard Stream I/O Objects

Object Class Purpose

cin istream Standard input

cout ostream Standard output

cerr ostream Standard error output

clog ostream Standard printer output

Chapter 26: Using Stream I/O 3^)7

But why the shift operators?

You may ask, "Why use the shift operators? Why
not use another operator? Why use the operator

overloading approach at all? Why not use

another mechanism?" Why ask so many ques-

tions?

It didn't have to be the shift operators. The

developers of C++ could have agreed on some

standard function name such as output () to

perform output and simply overloaded that func-

tion name for all the intrinsic types. Compound

output would have looked something like the fol-

lowing:

void di spl ayName(char* pName,
int age)

output(cout, "The name passed
was ");

output(cout, pName);

output(cout, "; his age is
");

output(cout, age);

output(cout, "\n");

}

The left shift operator was chosen instead for

several reasons. First, it's a binary operator. This

means that you can make the ostream object

the left-hand argument and the output objectthe

right-hand argument. Second, left shift is a very

low-priority operator. Thus, expressions such as

the following work as expected:

//include <iostream.h>

void fnd'nt a, int b) {

cout << "a + b" << a + b <<

"\n"

;

// operator-i- has higher prece-
dence than

// operator<<

// so this expression is inter-
preted as

// cout << "a + b" << (a + b)

<< "\n";

// and not interpreted as

// (cout << "a + b" << a) + (b

<< "\n");

}

Third, the left shift operator binds from left to

right. This is what allows you to string output

statements together. For example, the previous

function is interpreted as follows:

//include <iostream.h>

void fn(int a, int b) (

((cout << "a + b") << a + b)

<< "\n"

;

}

But having said all this, the real reason is prob-

ably just that it looks really neat. The double less

than, «, looks like something is moving out of

the code, and the double greater than, », looks

like something is coming in. And, hey, why not?

And just what is an ostream anyway? An ostream object contains the mem-
bers necessary to keep track of output. In a similar vein, i stream describes

an input stream.

The C equivalent is struct FILE, which is defined in stdi o . h. The function

fopen() opens a file for input and output, f open() returns a pointer to a

FILE object into which it has stored the information necessary for subse-

quent I/O operations. This object is returned in calls to the f x() functions,

such as fprintf (), fscanf (), and fgets().

3 (48 Part V: Optional Features

Also defined as part of the stream I/O library are a number of subclasses of

os t ream and i stream. These subclasses are used for input and output to

files and internal buffers.

Examining the (stream Subclasses
The subclasses ofstream, ifstream, and f stream are defined in the include

file fstream.hto perform stream input and output to a disk file. These three

classes share a number of member functions that are used to control input

and output, many of them inherited from i stream and ostream. A complete

list is provided with your compiler documentation, but let me get you
started.

Class ofstream, which is used to perform file output, has several constructors,

the most useful of which is

ofstream: :of stream (char *pFi

1

eName,
i nt mode = i os : :out

,

int prot = f i 1 ebuff : : openprot)

;

The first argument is a pointer to the name of the file to open. The second
and third arguments specify how the file will be opened. The legal values for

mode are listed in Table 26-2 and those for prot in Table 26-3. These values

are bit fields that have the OR operator applied together. (The classes i os

and f i 1 ebuff are both parent classes of ostream.)

Table 26-2 Values for Mode in the ofstream Constructor

Flag Meaning

ios::ate Append to the end of the file, if it exists

ios::in Open file for input (implied for i stream)

ios::out Open file for output (implied for ostream)

ios::trunc Truncate file if it exists (default)

ios::nocreate If file doesn't already exist, return error

ios::noreplace If file does exist, return error

ios::binary Open file in binary mode (alternative is text mode)

Chapter 26: Using Stream I/O 3^0

Table 26-3 Values for prot in the ofstream Constructor

Flag Meaning

filebuf::openprot Compatibility sharingmode

filebuf::sh_none Exclusive; no sharing

filebuf::sh_read Read sharing allowed

filebuf::sh_write Write sharing allowed

For example, the following program opens the file MYNAME and then writes

some important and absolutely true information into that file:

#include <fstream.h>

void fn()

{

// open the text file MYNAME for writing - truncate
// whatever's there now
ofstream myn("MYNAME")

;

// now write to the file
myn << "Randy Davis is suave and handsome\n"

<< "and definitely not balding prematurely\n" ;

The constructor ofstream: :ofstream(char*) expects only a filename and
provides defaults for the other file modes. If the file MYNAME already exists,

it is truncated; otherwise, MYNAME is created. In addition, the file is opened
in compatibility-sharing mode.

A second constructor ofstream: : of stream(char* , i nt) enables the pro-

grammer to specify other file I/O modes. For example, if 1 wanted to open the

file in binary mode and append to the end of the file if the file already exists, I

would create the ostream object as follows. (In binary mode, new-lines are

not converted to carriage returns and line feeds on output nor converted

back to new-lines on input.)

^include <fstream.h>

void
{

fn()

// open the binary file BINFILE for writing; if it

// exists, append to end of whatever's already there
ofstream b f i 1 e

(

"BINFILE" , ios::binary
|
ios::ate);

// continue on as before...

350 Part V: Optional Features

The member function bad() returns 1 if the file object has an error. To check
whether the file was opened properly in the earlier example. I would have

coded the following:

^include <fstream.h>

void fn(

)

{

ofstream myn("MYNAME")

;

if (myn.bad()) // if the open didn't work...
{

cerr << "Error opening file MYNAMENn";
return; //...output error and quit

}

myn << "Randy Davis is suave and handsome\n"
<< "and definitely not balding prematurely\n"

;

All attempts to output toanofstream object that has an error have no effect

until the error has been cleared by calling the member function cl ear().

The destructor for class of stream automatically closes the file. In the pre-

ceding example, the file was closed when the function exited.

Class i f stream works much the same way for input, as the following exam-

ple demonstrates:

^include <fstream.h>

void fn(

)

{

// open file for reading; don't create the file
// if it isn't there
ifstream bankStatementC "STATEMNT" , ios : :nocreate)

:

if (bankStatement.bad()

)

{

cerr << "Couldn't find bank statement\n"

;

return;

// sit in a loop inputing from the file until

// end-of-file reached
while (IbankStatement.eof ()

)

1

bankStatement >> accountNumber >> amount;
//...process this withdrawal

Chapter 26: Using Stream I/O

cjABE/?

The function opens the file STATEMNT by constructing the object

bankStatement. If the file does not exist, it is not created. (You assume that

the file has information for you, so it wouldn't make much sense to create a

new, empty file.) If the object is bad (for example, if the object was not cre-

ated), the function outputs an error message and exits. Otherwise, the func-

tion loops, reading the accountNumber and withdrawal amount until the file

is empty (end-of-file is true).

An attempt to read an i f stream object that has the error flag set, indicating

a previous error, returns immediately without reading anything. Use the func-

tion cl ea r () to clear an error in an input file.

The class fstream is like an i f stream and an of stream combined. (In fact,

it inherits from both.) An object of class fstream can be created for input or

output or both.

Using the strstream Subclasses
The classes i strstream, ostrstream, and strstream are defined in the

include file name either strstrea . h or strstream. h.

SftMG/ The original MS-DOS used on PCs limited file names to 8 characters followed

by a three letter extension, hence the name 8.3 DOS file names. This limita-

tion is long gone, however, many PC based C++ compilers, including Visual

C++, stick with the 8.3-compatible name strstrea . h. The GNU C++ which
comes on the enclosed CD-ROM sticks with the original strstream. h name.

The classes in strstream . h allow the operations defined for files by the

fstream classes to be applied to character strings in memory. This is much
like the s x () functions in C, s p r i n t f () and s s c a n f ()

.

For example, the following code snippet parses the data in a character string

using stream input:

// if in Visual C++ or most other PC compilers...
#ifdef _W I N 3

2

// ... use the 8. 3 name. .

.

^include <strstrea.h>
// .

.

.otherwi se, . . .

#el se

// ... use the f ul 1 name
#include <strstream. h>

#endi

f

jf}2 Pflrt ^: Optional Features

// parseString - demonstrate the string stream classes
// by reading a passed buffer as if it were
// an actual file
char* parseString(char* pString)
{

// associate an istrstream object with the input
// character string
istrstream inp(pString, 0);

// now input from that object
int accountNumber;
float balance;
inp >> accountNumber >> balance;

// allocate a buffer and associate an

// ostrstream object with it

char* pBuffer = new char[128];
ostrstream out(pBuffer, 128);

// output to that object
out << "account number = " << accountNumber

<< ", balance = $" << balance;
return pBuffer;

}

For example, pStri ng might point to the following string:

"1234 100.0"

The object i np is associated with that string by the constructor for

istrstream. The second argument to the constructor is the length of the

string. In this example, the argument is 0, which means "read until you get to

the terminating NULL."

On the output side, the object out is associated with the buffer pointed to by
pBuffer. Here again, the second argument to the constructor is the length of

the buffer. A third argument, which corresponds to the mode, defaults to

i os : : out. However, you can set this argument to ios : :ate, if you want the

output to append to the end of whatever is already in the buffer rather than

overwrite it.

The input section extracts the value 1234 into the variable accountNumber
and the value 100 into bal a nee. The output sections insert the string

"account number = " into the output buffer *pBuf fer followed by the value

1234 stored i n accountNumber and so on.

The buffer generated by this example input would contain the string

"account number = 1234. balance = $100.00"

Chapter 26: Using Stream I/O

The #i fdef s at the beginning of the previous code snippet are required in

order to include the correct file. _W1N32 is always defined when building a

program using Visual C++, but not when compiling using GNU C++. Thus,

when compiling with Visual C++, the program #i ncl tides , strstrea . h,

otherwise, the program uses the full name strstream.h.

Step back and examine this code snippet again. Other than the constructor,

i np and out could have both pointed to files and the program would not

have changed at all. Treating a memory buffer like an external file opens up
the world of file manipulation functions to the common but frustrating world

of string manipulation.

Manipulating Manipulators
You can use stream I/O to output numbers and character strings by using

default formats. Usually the defaults are fine, but sometimes they don't cut it.

rfftNG

For example, I was less than tickled when the total from my favorite BUDGET
program came back 249.600006 instead of 249.6 (or, better yet, 249.60). There

must be a way to bend the defaults to my desires. True to form, C++ provides

not one way but two ways to control the format of output.

Depending on the default settings of your compiler, you may get 249.6 as your

output. Nevertheless, you really want 249.60.

First, the format can be controlled by invoking a series of member functions

on the stream object. For example, the number of significant digits to display

is set by using the function preci si on () as follows:

#include <iostream.h>
void fn(float interest f 1 oat dol 1 arAmount

!

cout << "Dollar amount =

cout

.

preci si on(2) ;

cout << dol larAmount ;

cout. preci sion(4)

;

cout << interest
<< "\n";

In this example, the function preci si on () sets the precision to 2 immedi-
ately before outputting the value dol 1 arAmount. This gives you a number
such as 249.60, the nice type of result you want. It then sets the precision to 4

before outputting the interest.

35fy Part V: °Ptional Features

A second approach uses what are called manipulators. (Sounds like someone
behind the scenes of the New York Stock Exchange, doesn't it? Well, manipu-
lators are every bit as sneaky.) Manipulators are objects defined in the

include file i oma n i p . h to have the same effect as the member function calls.

(You must include i omani p . h to have access to the manipulators.) The only

advantage to manipulators is that the program can insert them directly into

the stream rather than resort to a separate function call.

If you rewrite the preceding example to use manipulators, the program
appears as follows:

i n c 1 ikie <iostream.h>
#incl ucle <iomanip.h>
void fri(float interest

,
fl oat dol 1 arAmo tint)

i

cout << "Do! 1 ar amount = : -

<< setpreci sion(2) << doll arAmount
<< setpreci sion(4) << interest
<<

}

"\n";

The most common manipulators and their corresponding meanings are

shown in Table 26-4.

Table 26-4 Common Manipulators and Stream

Format Control Functions

Manipulator Member Function Description

dec flags(IO) Set radix to 10

hex flags(16) Set radix to 16

oct flags(8) Set radix to 8

setfill(c) fill(c) Set the fill character to c

setprecision(c) precision(c) Set display precision to c

setw(n) width(n) Set width of field to n characters*

* This returns to its default value after the next field is output.

o$t\NG/ Watch out for the width parameter (width() function and setw(1 manipula-

•^Z" ~^\ tor). Most parameters retain their value until they are specifically reset by a

subsequent call, but the width parameter does not. The width parameter is

reset to its default value as soon as the next output is performed. For exam-

ple, you might expect the following to produce two eight-character integers:

Chapter 26: Using Stream I/O 355

#include <iostream .ro

^include <iomanip. h>

void fn(

)

(

cout << setw(8) // width is 8. .

.

<< 10 //. . .for the 10, but. .

.

<< 20 //. . .default for the 20
<<

H
\n";

}

What you get, however, is an eight-character integer followed by a two-

character integer. To get two eight-character output fields, the following is

necessary:

^include <iostream .h>

#include <iomanip. h>

void fn(

)

(

cout << setw(8) // set the width. .

.

<< 10

<< setw(8) // . . . now reset it

<< 20

<< "\n";

}

Thus, if you have several objects to output and the default width is not good
enough, you must include a setw() call for each object.

Which way is better, manipulators or member function calls? Member func-

tions provide a bit more control because there are more of them. In addition,

the member functions always return the previous setting so you know how to

restore it (if you want). Finally, a query version of each member function

exists to enable you to just ask what the current setting is without changing

it. This is shown in the following example:

^include <iostream.h>
void fn(float value)
{

int previousPreci si on

;

// .

.

.doing stuff here. .

.

// you can ask what the current precision is:

previousPreci sion = cout .preci sion()

;

// or you can save the old value when you change it

previousPrecision = cout .precision(2)

;

cout << value;

// now restore the precision to previous value
cout. preci s ion (previous Preci si on)

;

//...do more neat stuff...

350 Part V: Optional Features

Even with all these features, the manipulators are the more common, proba-

bly because they look neat. Use whatever you prefer, but be prepared to see

both in other peoples' code.

Writing Custom Inserters

The fact that C++ overloads the left shift operator to perform output is really

exciting because you are free to overload the same operator to perform

output on classes you define. (Okay, really exciting is a bit extreme. I suppose
finding out that you just won the lottery would be really exciting. This falls

more in the category of syntactically satisfying.)

This is the much-vaunted extensibility of stream I/O that I have alluded to but

avoided explaining until now. Consider, for example, the USDol 1 ar class

introduced in Chapter 24, extended with a di spl ay () member function:

#ifdef _WIN32
^include <strstrea.h>
#el se

#i include <strstream.h>
#endif

#i include <iomanip.h>
class USDollar
{

publ ic:

USDollar(double v = 0.0)

{

dol 1 ars = v

;

cents - int((v - dollars) * 100.0 + 0.5);

operator doublet)

{

return dollars + cents / 100.0;
I

void di spl ay(ostream& out)

{

out << '$' << dollars << '

.

'

// set fill to 0's for cents
<< setfill('O') << setw(2) << cents
// now put it back to spaces
<< setfilK ' '):

protected:
unsigned int dol lars

;

unsigned int cents;

Chapter 26: Using Stream I/O 35 7

7 operator<< - overload the inserter for our class
istream& operator<< (ostream& o, USDollar& d)

d.display(o) ;

return o;

nt main(int argcs, char* pArgs[])

USDollar usd(1.50);
cout << "Initially usd = " << usd << "\n";
usd = 2.0 * usd;
cout << "then usd = " << usd << "\n";
return 0;

}

The di spl ay () function starts by displaying $, the dollar amount, and the

obligatory decimal point. Notice that output is to whatever ostream object it

is passed and not necessarily just to cout. This allows the same function to

be used on fstream and strstream objects, both of which are subclasses of

ostream.

When it comes time to display the cents amount, di spl ay () sets the width

to two positions and the leading character to 0. This ensures that numbers
smaller than 10 display properly.

Notice how class USDol 1 ar, instead of accessing the di spl ay() function

directly, also defines an operator<<(ostream&, USDol 1 ar&). The program-
mer can now output USDollar objects with the same ease and grace of the

intrinsic types, as the example ma i n () function demonstrates.

The output from this program is as follows:

Initial ly usd = $1 .50
then usd = $3.00

You may wonder why the operator<<() returns the ostream object passed
to it. This allows the operator to be chained with other inserters in a single

expression. Because operator<<() binds from left to right, the following

expression

void fn(USDollar& usd, float i)

{

cout << "Amount " << usd << ", interest = " << i;

}

is interpreted as

jf}8 Part V: Optional Features

void fn(USDollar& usd, float i)

I

(((cout << "Amount ") << usd) << "
, interest = ") << i

The first insertion outputs the string "Amount" to cout. The result of this

expression is the object cout, which is then passed to operator<<
(ostream&, USDol 1 ar&). It is important that this operator return its

os t ream object so that the object can be passed to the next inserter in turn.

Had you declared the return type of the insertion operator voi d, a perfectly

valid usage, such as the preceding example, would generate a compiler error

because you can't insert a string into a void. The following error is worse
because it's more difficult to find:

ostream& operator<<(ostream& os, USDollar& usd)

1

usd.di spl ay(os) ;

return cout;

Notice that this function returns not the ostream object it was given but the

o s t r e a m object c o u t . This is easy to do because c o u t is far and away the

most commonly referenced ostream object, (cout has already been voted

into the ostream Hall of Fame.)

This problem doesn't become visible until the following comes along:

void st ore;Accoun

USDol

1

ts(

ar

int account,
bal ance,

;

char* pName)

(

ofstream outFi let "ACCOUNTS", ios : : :ate);
outFi

(

le << accourit << balance << pName;

The int account outputs to outFi 1 e through the function operator<<
(ostream& , i nt&), which returns outFi 1 e. Then USDol 1 ar outputs to

outFi 1 e through operator<<(ostream&. USDollar&), which incorrectly

returns cout, not outFi 1 e. Now pName outputs to cout instead of to the file

as intended.

Chapter 26: Using Stream I/O 350

Generating Smart Inserters

Many times, you would like to make the inserter smart. That is, you would
like to say cout << baseCl as sObject and let C++ choose the proper sub-

class inserter in the same way that it chooses the proper virtual member
function. Because the inserter is not a member function, you cannot declare

it virtual directly. This is not a problem for the clever C++ programmer, as the

following example demonstrates:

#include <iostream.h>
#i include <iomanip.h>
class Currency
{

publ ic:

Currency(doubl e v = 0.0)

{

unit = v;

cent = int((v - unit)* 100.0 + 0.5);
}

virtual void di spl ay(ostream& out) = 0;

protected:
unsigned int unit;
unsigned int cent;

class USDollar : public Currency
{

publ i c:

USDol lar(double v = 0.0) : Currency(v)

// display format: $123.45
virtual void di spl ay(ostream& out)

i

out << '$• << unit << ' .

'

<< setfill('O') << setw(2) << cent
<< setfill (

' ');

class DMark : public Currency
{

publ ic:

DMark(double v = 0.0) : Currency(v)

360 Part V: Optional Features

// display 123.00DM
virtual void di spl ay(ostream& out)
(

out << unit << '
.

'

// set fill to O's for cents
<< setfill('O') << setw(2) << cent
// now put it back to spaces
<< setfillC '

)

<< " DM";

ostream& operator<< (ostream& o, Currency& c)

{

c.displ ay(o)

;

return o;

}

void fn(Currency& c)

I

// the following output is polymorphic because
// operator(ostream&, Currency&) is through a virtual
// member function
cout << "Deposit was " << c

<< "\n";

int main(int argcs, char* pArgs[])
{

// create a dollar and output it using the
// proper format for a dollar
USDollar usd(1.50);
fn(usd)

;

// now create a DMark and output it using its own format
DMark d(3.00);
fn(d);
return 0;

The class Currency has two subclasses, USDol 1 ar and DMark. In Currency,

the di spl ay () function is declared pure vi rtual . In each of the two
subclasses, this function is overloaded with a di spl ay () function to output

the object in the proper format for that type. The call to di spl ay () in

operator<<() is now a virtual call. Thus, when operator<<() is passed

USDol 1 ar, it outputs the object as a dollar. When passed DMark, it outputs

the object as a deutsche mark.

Thus, although operator<<() is not virtual, because it invokes a virtual

function the result is virtual perfection:

Deposit was $1 .50
Deposit was 3.00 DM

This is another reason why 1 prefer to perform the work of output in a

member function and let the non-member operator refer to that function.

Chapter 27

Handling Errors— Exceptions

In This Chapter

Introducing an exceptional way of handling program errors

Finding what's wrong with good ol' error returns

Examining throwing and catching exceptions

Packing more heat into that throw

m know that it's hard to accept, but occasionally functions don't work

X properly— not even mine. The traditional means of reporting failure is to

return some indication to the caller. C++ includes a new, improved mecha-
nism for capturing and handling errors called exceptions. An exception is "a

case in which a rule or principle does not apply". Exception is also defined as

an objection to something. Either definition works: An exception is an unex-

pected (and presumably objectionable) condition that occurs during the exe-

cution of the program.

The exception mechanism is based on the keywords try, catch, and throw
(that's right, more variable names that you can't use). In outline, it works like

this: A function trys to get through a piece of code. If the code detects a prob-

lem, it throws an error indication that the calling function must catch.

The following code snippet demonstrates how that works in Is and Os:

^include <iostream.h>

// factorial - compute factorial
int factorial (i nt n)

{

// you can't handle negative values of n;

// better check for that condition first
if (n < 0)

{

throw "Argument for factorial negative";

362 Part V: Optional Features

// go ahead and calculate factorial
int accum = 1

;

while(n > 0)

i

accum *= n;

n--

;

}

return accum;
}

int maind'nt argcs, char* pArgs[]

)

i

try
i
i

// this will generate an exception
cout << "Factorial of -1 is " << factorial (-1) << endl ;

// control will never get here
cout << "Factorial of 10 is " << factorial (10) << endl;

t

// control passes here
catch(char* pError)
(

cout << "Error occurec

}

}

1 :

" << pError << endl
;

ma i n () starts out by creating a block outfitted with the t ry keyword. Within

this block, it can proceed on the way it would were the block not present. In

this case, ma i n () attempts to calculate the factorial of a negative number.

Not to be hoodwinked, the clever f actori al () function detects the bogus
request and throws an error indication using the throw keyword. Control

passes to the catch phrase, which immediately follows the closing brace of

the try block. The second call tofactorialOis not performed.

Justifying a Aleut Error Mechanism)
What's wrong with error returns like FORTRAN used to make Factorials

cannot be negative, so I could have said something like "Okay, if factori al (

)

detects an error, it returns a negative number. The actual value indicates the

source of the problem." What's wrong with that? That's how it's been accom-
plished for ages.

Unfortunately, several problems arise. First, although it's true that the result

of a factorial can't be negative, other functions aren't so lucky. For example,

you can't take the log of a negative number either, but the negative return

value trick won't work here — logarithms can be either negative or positive.

Chapter 27: Handling Errors— Exceptions 3^3

Second, there's just so much information that you can store in an integer.

Maybe you can have -1 for "argument is negative" and -2 for "argument is too

large." But if the argument is too large, I'd like to know what the argument

was because it may help me to debug the problem. There's no place to store

that type of information.

Third, the processing of error returns is optional. Suppose that someone
writes f a c tori al () so that it dutifully checks the argument and returns a

negative number if the argument is out of range. If the code that calls that

function doesn't check the error return, it doesn't do any good. Sure, I make
all kinds of menacing threats like "You will check your error returns or else,"

but you all know that the language can't force anyone.

Even if I do check the error return from f a c tori al () or any other function,

what can my function do with the error? It can probably do nothing more
than output an error message of my own and return another error indication

to my caller, which probably does the same. Pretty soon, all code begins to

have the following appearance:

// call some function, check the error return, handle it,

// and return
errRtn = someFunc()

;

if (errRtn)
i

errorOutC "Error on call to someFunc()"
)

;

return MY_ERR0R_1;
I

errRtn = someOtherFunc()

;

if (errRtn)
i

errorOut("Error on call to someOtherFunc()"
)

;

return MY ERROR 1;

}

This mechanism has several problems:

W It's highly repetitive.

*> It forces the user to invent and keep track of numerous error return indi-

cations.

v* It mixes the error-handling code into the normal code flow, thereby

obscuring the normal, non-error path.

These problems don't seem so bad in this simple example, but they become
increasingly worse as the calling code becomes more complex. The result is

that error-handling code doesn't get written to handle all the conditions that

it should.

30lt Part V: Optional Features

The exception mechanism addresses these problems by removing the error

path from the normal code path. Further, exceptions make error handling

obligatory. If your function doesn't handle the thrown exception, control

passes up the chain of called functions until C++ finds a function to handle

the error. This also gives you the flexibility to ignore errors that you can't do
anything about anyway. Only the functions that can actually correct the prob-

lem need to catch the exception.

Examining the Exception Mechanism
Take a closer look at the steps that the code goes through to handle an

exception. When the throw occurs, C++ first copies the thrown object to

some neutral place. It then begins looking for the end of the current try

block.

If a try block is not found in the current function, control passes to the calling

function. A search is then made of that function. If no try block is found there,

control passes to the function that called it. and so on up the stack of calling

functions. This process is called unwinding the stack.

An important feature of stack unwinding is that as each stack is unwound,
any objects that go out of scope are destructed just as if the function had
executed a return statement. This keeps the program from losing assets or

leaving objects dangling.

When the encasing try block is found, the code searches the first catch

phrase immediately following the closing brace of the catch block. If the

object thrown matches the type of argument specified in the catch statement,

control passes to that catch phrase. If not. a check is made of the next catch

phrase. If no matching catch phrases are found, the code searches for the

next higher level try block in an ever-outward spiral until an appropriate

catch can be found. If no catch phrase is found, the program is terminated.

Consider the following example:

^include <iostream.h>

class Obj

{

publ ic:

Obj (char c)

1

label = c:

cout << "Constructing object " << label << endl

;

1

-Obj (

)

Chapter 27: Handling Errors— Exceptions j\)J

cout << "Destructing object " << label << end!

protected:
char 1 abel

;

void fl();
void f2();
int main(int, char*[]
{

Obj a('a');
try

Obj bCb');
fl();

catch(float f)

cout << "Float catch" << endl

;

catch(i nt i

)

cout << "Int catch" << endl;

catch(. . .

)

cout << "Generic catch" << end"

return 0:

void fl()

i

try
{

Obj c('c');
f2();

}

catch(char* pMsg)

I

cout << "String catch" << endl

void f2(

)

{

Obj dCd');

throw 10;

$00 Part V: Optional Features

The output from executing this program appears as follows:

Constructing object a

Constructing object b

Constructing object c

Constructing object d

Destructing object d

Destructing object c

Destructing object b

Int catch
Destructing object a

First you see the four objects a, b, c, and d being constructed as control passes

through each declaration before f 2 () throws the int 10. Because no try block

is defined in f 2 () , C++ unwinds f 2 () 's stack, causing object d to be destruc-

ted. f 1 () defines a try block, but its only catch phrase is designed to handle

char*, which doesn't not match the i nt thrown. Therefore, C++ continues

looking. This unwinds f 1 ()'s stack, resulting in object c being destructed.

Back in ma i n () , C++ finds another try block. Exiting that block causes object

b to go out of scope. The first catch phrase is designed to catch floats that

don't match our i nt, so it's skipped. The next catch phrase matches the i nt

exactly, so control stops there. The final catch phrase, which would catch

any object thrown, is skipped because a matching catch phrase was already

found.

What Kinds of Things Can I Throu/7

The thing following the throw keyword is actually an expression that creates

an object of some kind. In the examples so far, I've always thrown integers, but

throw can handle any type of object. This means that you can throw almost as

much information as you want. Consider the following class definition:

#include O'ostream. h>

^include <iostream.h>
^include <string.h>

// Exception - generic exception handling class
class Exception
{

publ ic:

Exception(char* pMsg, char* pFile. int nLine)
1

strncpyCmsg, pMsg, sizeof msg);
msg[sizeof msg - 1] = '\0'; // make sure it's

// terminated

Chapter 27: Handling Errors— Exceptions j\?/

strncpy(f i 1 e, pFile , sizeof file);
file[sizeof file -

1] = '\0
;

1 ineNum = n Li ne;

}

virtual void di spl ay(ostream& out)

t

out << "Error <" << msg <<
'>\n";

out << "Occurred on line #" << lineNum
<< ". file " << file << endl ;

t

protected:
// error message
char msg[80]

;

// file name and line number where error occurred
char file[80];
int lineNum;

};

The throw looks like the following:

throw Exception("Negative argument to factorial",
FILE LINE) ;

FILE and LINE are intrinsic ^defines that are set to the name of the source file

and the current line number in that file, respectively.

The class ostream used by di spl ay()is the base class of the output stream

classes. The object cout is an ostream, but so are of stream and ostrstream
objects. (See Chapter 26.)

The corresponding catch is straightforward:

void myFunc(

)

t

try

{

//. . .whatever
i

ca lis

i

// catch an Except" i on object
catch(Exception x)
j

// use the built- in di spl ay member function
x.di spl ay(cerr)

;

}

}

308 Part V: Optional Features

cjMJEft

The catch snags the Except i on object and then uses the built-in di spl ay (

)

member function to display the error message.

The object cerr is the standard error output object — like cout but for error

output. The difference between cout and cerr is only important if you're an

accomplished Unix user.

The Except i on class represents a generic error-reporting class. However,

this class can be extended by subclassing from it. For example, I can define

an Inval idArgument Except i on class that stores the value of the invalid

argument in addition to the message and location of the error:

class Inval idArgumentException : publ ic Exception
t

publ ic:

Inval idArgumentException(int arg, c

: Exception(" Inval id argument", pF

har

ile

* pFile,
, n L i n e

)

int nLine)

invArg = arg;

virtual void di spl ay(ostream& out)

Exception: :di spl ay (out)

;

out << "Argument was " << invArg << endl ;

protected:
int invArg;

};

The calling function automatically handles the new
Inval id Argument Except i on because an Inval idArgumentException is an

Excepti on and the di spl ay () member function is polymorphic.

Chapter 28

Inheriting Multiple Inheritance

In This Chapter

Introduction to multiple inheritance

Avoiding ambiguities with multiple inheritance

Avoiding ambiguities with virtual inheritance

The ordering rules for multiple constructors

Problems with multiple inheritance

fn the class hierarchies discussed elsewhere in this book, each class has

«£ inherited from a single parent. Such single inheritance is sufficient to

describe more real-world relationship. Some classes, however, represent the

blending of two classes into one.

An example of such a class is the sleeper sofa. As the name implies, it is a

sofa and a bed (although not a very comfortable bed). Thus, the sleeper sofa

should be allowed to inherit bed-like properties. To address this situation,

C++ allows a derived class to inherit from more than one base class. This is

called multiple inheritance.

Describing the Multiple

Inheritance Mechanism
To see how multiple inheritance works, I can expand on the sleeper sofa

example. Figure 28-1 shows the inheritance graph for class SI eeperSof a.

Notice how this class inherits from class Sofa and from class Bed. In this

way, it inherits the properties of both.

3 70 Part V: Optional Features

Figure 28-1:

Class hier-

archy of a

sleeper

sofa.

Bed Sofa

veightI sleep!) I weight I watc hTVI) I v

SicleperSofa

I foldOutf

)

The code to implement class SI eeperSof a looks like the following:

class Bed

{

publ ic:

BedO;
void sleep()

;

int weight;

class Sofa

publ ic:

SofaO;
void watchTV()

;

int weight;

// SleeperSofa - is both a Bed and a Sofa
class SleeperSofa : public Bed, public Sofa

publ ic:

SleeperSofaC)

;

void foldOuU)

int main(int argcs, char* pArgs[])
{

SleeperSofa ss;

// you can watch TV on a sleeper sofa like a sofa..
ss.watchTV(); // Sofa : :watchTV(

)

//...and then you can fold it out...
ss.foldOuU): // SleeperSofa: :foldOut

Chapter 28: Inheriting Multiple Inheritance 377

//...and sleep on it like a bed (sort of)

ss.sleepO; // Bed::sleep()
return 0;

Here the class SleeperSofa inherits from both Bed and Sofa. This is

apparent from the appearance of both classes in the class declaration.

SI eeperSof a inherits all the members of both base classes. Thus, both of

the calls ss . si eep() and ss .watchTV() are legal. You can use a

SI eeperSof a as a Bed or a Sofa. Plus the class SI eeperSof a can have
members of its own, such as f ol dOut (). Is this a great country or what?

Straightening Out Inheritance

Ambiguities
Although multiple inheritance is a powerful feature, it introduces several pos-

sible problems. One is apparent in the preceding example. Notice that both

Bed and Sofa contain a member wei ght. This is logical because both have a

measurable weight. The question is, "Which wei ght does SI eeperSof a

inherit?"

The answer is "both." SI eeperSof a inherits a member Bed: : wei ght and a

separate member Sof a : : wei ght. Because they have the same name, unqual-

ified references to wei ght are now ambiguous. This is demonstrated in the

following snippet:

//include <iostream.h>

void fn(

)

i

SleeperSofa ss;

cout << "weight = "

<< ss. weight // i 1 legal - which weight?
<< "\n"

:

}

The program must now indicate one of the two weights by specifying the

desired base class. The following code snippet is correct:

//include <iostream.h>
void fn(

)

{

SleeperSofa ss;

cout << "sofa weight = "

<< ss .Sofa: :weight // specify which weight
<< "\n";

}

j /2 Part V: Optional Features

Although this solution corrects the problem, specifying the base class in the

application function isn't desirable because it forces class information to leak

outside the class into application code. In this case, f n () has to know that

SI eeperSof a inherits from Sofa. These types of so-called name collisions

weren't possible with single inheritance but are a constant danger with

multiple inheritance.

Adding Virtual Inheritance

In the case of SI eeperSof a, the name collision on weight was more than a

mere accident. A SI eeperSof a doesn't have a bed weight separate from its

sofa weight. The collision occurred because this class hierarchy does not

completely describe the real world. Specifically the classes have not been
completely factored.

Thinking about it a little more, it becomes clear that both beds and sofas are

special cases of a more fundamental concept: furniture. (I suppose I could

get even more fundamental and use something like object with mass, but fur-

niture is fundamental enough.) Weight is a property of all furniture. This rela-

tionship is shown in Figure 28-2.

Figure 28-2:

Further

factoring of

beds and

sofas (by

weight).

Furniture

weight

Bed

sleep!
I

Sofa

watchTVI

SleeperSofa

foldOutl I

Chapter 28: Inheriting Multiple Inheritance y ij

Factoring out the class Furniture should relieve the name collision. With

much relief and great anticipation of success, I generate the following C++

class hierarchy:

^include <iostream. h>

// Furniture - more fundamental concept; this class
// has "weight" as a property
class Furniture

publ ic:

Furni ture()

;

int weight;

class Bed : public Furniture

publ ic:

BedO;
sleep()

;

class Sofa : public Furniture
{

publ ic:

SofaO;
void watchTV()

;

class SleeperSofa : public Bed, public Sofa
{

publ ic:

SleeperSofa()

;

void foldOut;

void fn(

}

SleeperSofa ss;

cout << "weight = "

<< ss. weight // problem solved; right?
« "\n";

Imagine my dismay when 1 find that this doesn't help at all — wei ght is still

ambiguous. (I wish my weight were as ambiguous!) "Okay," I say (not really

understanding why weight is still ambiguous), "I'll try casting ss to a

Furni ture."

3 7fy Part V; Optional Features

#include <i ostream. h>

void fn(

)

SleeperSofa ss;

Furniture* pF;

pF = (Furni ture*)&ss; // use a Furniture pointer...
cout << "weight = " // ...to get at the weight

<< pF->weight
<< "\n";

>;

Casting sstoafurniture doesn't work either. Now, I get some strange mes-

sage that the cast of SI eeperSof a* to Furniture* is ambiguous. What's

going on?

The explanation is straightforward. SI eeperSof a doesn't inherit from

Furniture directly. Both Bed and Sofa inherit from Furniture and then

SI eeperSof a inherits from them. In memory, a SI eeperSof a looks like

Figure 28-3.

Figure 28-3:

Memory

layout of a

SleeperSofa.

Furniture

— the Bed part

— the Sofa part

a complete

— SleeperSofa

object

Bed stuff

(without Furniture)

Furniture

Sofa stuff

(without Furniture)

SleeperSofa

unique stuff

You can see that a SI eeperSof a consists of a complete Bed followed by a

complete Sofa followed by some SI eeperSof a unique stuff. Each of these

subobjects in SleeperSofa has its own Furni ture part, because each inher-

its from Furni ture. Thus, a SI eeperSof a contains two Furniture objects!

I haven't created the hierarchy shown in Figure 28-2 after all. The inheritance

hierarchy 1 have actually created is the one shown in Figure 28-4.

Chapter 28: Inheriting Multiple Inheritance j 73

Figure 28-4:

Actual

result of my

first attempt.

Furniture

weight

Furniture

weight

ii n

Bee 1

i

Sofa

1 sleepl

)

|

watchTVI)

SiceperSofa

1 fold()utn

ifiiSfe-

But SI eepersofa containing two Furniture objects is nonsense.

SI eeperSof a needs only one copy of Furni ture. I want SI eeperSof a to

inherit only one copy of Furni ture, and I want Bed and Sofa to share that

one copy. C++ calls this virtual inheritance because it uses the virtual keyword.

I hate this overloading of the term virtual because virtual inheritance has

nothing to do with virtual functions.

Armed with this new knowledge, I return to class SI eeperSof a and imple-

ment it as follows:

^include <iostream.
class Furniture

h>

t

publ ic:

Furni ture() {

}

int weight;
};

class Bed : virtual PL bl ic Furniture
(

publ ic:

BedO {}

void sleep()

;

1;

3 70 Part V: Optional Features

class Sofa : virtual public Furniture
{

publ ic:

SofaO {}

void watchTV()

;

class SleeperSofa : public Bed, public Sofa

{

publ ic:

SleeperSofaO : SofaO, BedO {}

void foldOutO;
):

void fn(

)

{

SleeperSofa ss;

cout << "weight = "

<< ss. weight
<< "\n";

}

Notice the addition of the keyword virtual in the inheritance of Furniture in

Bed and Sofa. This says, "Give me a copy of Furniture unless you already

have one somehow, in which case I'll just use that one." A SI eeperSof a ends

up looking like Figure 28-5 in memory.

Figure 28-5:

Memory

layout of

SleeperSofa

with virtual

inheritance.

Furniture

stuff

a complete

— SleeperSofa

object

Bed stuff

(without Furniture)

Sofa stuff

(without Furniture)

SleeperSofa

unique stuff

Here you can see that a SI eeperSof a inherits Furni ture, and then Bed

minus the Furniture part, followed by Sofa minus the Furniture part.

Bringing up the rear are the members unique to SI eeperSof a. (Note that this

may not be the order of the elements in memory, but that's not important for

the purpose of this discussion.)

Chapter 28: Inheriting Multiple Inheritance

Now the reference in f n () to w e i g h t is not ambiguous because aSleeperSofa
contains only one copy of F u r n i t u r e . By inheriting Furniture virtually, you
get the desired inheritance relationship as expressed in Figure 28-2.

If virtual inheritance solves this problem so nicely, why isn't it the norm? The
first is because virtually inherited base classes are handled internally much
differently than normally inherited base classes, and these differences

involve extra overhead. The second reason is that sometimes you want two
copies of the base class (although this is unusual).

As an example of the latter, consider a TeacherAssistant who is both a

Student and a Teacher, both of which are subclasses of Academician. If the

university gives its teaching assistants two IDs — a student ID and a separate

teacher ID — class TeacherAssistant will need to contain two copies of

class Academici an.

Constructing the Objects

of Multiple Inheritance

The rules for constructing objects need to be expanded to handle multiple

inheritance. The constructors are invoked in the following order:

1. First, the constructor for any virtual base classes is called in the order in

which the classes are inherited.

2. Then the constructor for any nonvirtual base classes is called in the

order in which the classes are inherited.

3. Next, the constructor for any member objects is called in the order in

which the member objects appear in the class.

4. Finally, the constructor for the class itself is called.

Notice that base classes are constructed in the order in which they are inher-

ited and not in the order in which they appear on the constructor line.

Voicing a Contrary Opinion
I should point out that not all object-oriented practitioners think that multi-

ple inheritance is a good idea. In addition, many object-oriented languages

don't support multiple inheritance.

j lO Part V: Optional Features

Multiple inheritance is not an easy thing for the language to implement. This

is mostly the compiler's problem (or the compiler writer's problem). But mul-

tiple inheritance adds overhead to the code when compared to single inheri-

tance, and this overhead can become the programmer's problem.

More importantly, multiple inheritance opens the door to additional errors.

First, ambiguities such as those mentioned in the earlier section "Inheritance

Ambiguities" pop up. Second, in the presence of multiple inheritance, casting

a pointer from a subclass to a base class often involves changing the value of

the pointer in sophisticated and mysterious ways. Let me leave the details to

the language lawyers and compiler writers. I want to point out, however, that

this can result in unexpected results. For example:

^include <i ostream. h>

cl ass Basel (int mem; }

;

cl ass Base2 { int mem; }

;

class Subclass : public Basel, publ ic Base2 { 1

;

void fn(SubCl ass* pSC)

Basel* pBl = (Basel*)pSC;
Base2* pB2 = (Base2*)pSC;
if ((void*)pBl == (void*)pB2)
l
i

cout << "Members numerically
}

)

int main(int argcs, char* pArgs
i

equal \n"

;

[])

Subclass sc;

fn(&sc);
return 0;

}

pBl and pB2 are not numerically equal even though they came from the same
original value, pSC, and the message "Members numerically equal" doesn't

appear. (Actually, if fn() is passed a zero because C++ doesn't perform these

transmigrations on null, the message does appear; for any nonzero address,

the message doesn't appear. See how strange it gets?)

1 suggest that you avoid using multiple inheritance until you're comfortable

with C++. Single inheritance provides enough expressive power to get used

to. Later, you can study the manuals until you're sure that you understand

exactly what's going on when you multiply inherit. One exception is the use

of commercial libraries such as Microsoft's Foundation Classes (MFC), which

use multiple inheritance quite a bit. These classes have been checked out

and are safe.

Chapter 28: Inheriting Multiple Inheritance 3 / y

Don't get me wrong. I'm not out and out against multiple inheritance. The fact

that Microsoft and others use multiple inheritance effectively in their class

libraries proves that it can be done. If multiple inheritance weren't worth the

trouble, they wouldn't use it. However, multiple inheritance is a feature that

you might want to hold off on using until you're ready.

j&O Part V; Optional Features

Part VI

The Part of Tens

The 5th Wave By RichTennan

WANW HAD I* D1S1INCT FeaiMG HER HUSBANDS NEW

|
S0FIWR£ PROGRAM WS AgCUT TO BECOME MERCTIVE

.

In this part . .

.

if/ hat For Dummies book would be complete without

WW a Part of Tens? In Chapter 29, 1 cover ten ways to

avoid adding bugs to your C++ program. (Most of these

suggestions work for C programs too at no extra charge.)

Chapter 30 lists the ten most important compiler options

(plus a few more) in Visual C+ +
, the most popular com-

mercial C++ development tool for the PC.

Chapter 29

Ten Ways to Avoid Adding

Bugs to Your Program

In This Chapter

Enabling all warnings and error messages

Insisting on clean compiles

Using a clear and consistent coding style

Limiting the visibility

Adding comments to your code while you write it

Single-stepping every path at least once

Avoiding overloaded operators

Heap handling

Using exceptions to handle errors

Avoiding multiple inheritance

••••••••••••••••••••••••••••••*••••••••••••©•••••

Enabling Alt Warnings
and Error Messages

7he syntax of C++ allows for a lot of error checking. When the compiler

encounters a construct that it cannot decipher, it has no choice but to gen-

erate an error message. Although the compiler attempts to sync back up with

the next statement, it does not attempt to generate an executable program.

Disabling warning and error messages is a bit like unplugging the red lights

on your car dashboard because they bother you. Ignoring the problem does-

n't make it go away. If your compiler has a Syntax Check from Hell mode,
enable it. Both Microsoft and Borland have an Enable All Messages option —
set it. You save time in the end.

381* Part VI: The Part of Tens

During all its digging around in your source code, a good C++ compiler also

looks for suspicious-looking syntactical constructs, such as the following

code snippet:

#include "student. h"

//include "class.h"
Student* addNewStudent(Cl ass class, char *pName, SSNumber ss)

{

Student pS;
if (pName != 0)

{

pS = new Student(pName , ss);
class.addStudent(pS) ;

}

return pS;

Here you see that the function first creates a new Student object that it then

adds to the Class object provided. (Presumably addStudent() is a member
function of CI ass.)

If a name is provided (that is, pName is not 0), a new Student object is cre-

ated and added to the class. With that done, the function returns the

Student created to the caller. The problem is that if p Name is 0, pS is never

initialized to anything. A good C++ compiler, such as the Visual C++ compiler,

can detect this path and generate a warning that there's a possibility that pS

is never initialized when it's returned to the caller and maybe you should

look into the problem, or words to that effect.

Insisting an Clean Compiles
Don't start debugging your code until you remove or at least understand all

the warnings generated during compilation. Enabling all the warning mes-

sages if you then ignore them does you no good. If you don't understand the

warning, look it up. What you don't know will hurt you.

Adopting a Clear and Consistent

Coding Style

Coding in a clear and consistent style not only enhances the readability of

the program but also results in fewer coding mistakes. Remember, the less

brain power you have to spend deciphering C++ syntax, the more you have

left over for thinking about the logic of the program at hand. A good coding

style enables you to do the following with ease:

Chapter 29: Ten Ways to Avoid Adding Bugs to Your Program

m* Differentiate class names, object names, and function names

i> Know something about the object based on its name

i* Differentiate preprocessor symbols from C++ symbols (that is, #defined

objects should stand out)

v* Identify blocks of C++ code at the same level (this is the result of consis-

tent indentation)

In addition, you need to establish a standard module header that provides

information about the functions or classes in the module, the author (pre-

sumably, that's you), the date, the version of the compiler you're using, and a

modification history.

Finally, all programmers involved in a single project should use the same
style. Trying to decipher a program with a patchwork of different coding

styles is confusing.

Limiting the Visibility

Limiting the visibility of class internals to the outside world is a cornerstone

of object-oriented programming. The class is responsible for its own inter-

nals; the application is responsible for using the class to solve the problem at

hand.

Specifically, limited visibility means that data membersshould not be accessi-

ble outside the class — that is, they should be marked as private or pro-

tected. In addition, member functions that the application software does not

need to know about should also be protected.

A related rule is that public member functions should trust application code
as little as possible. Any argument passed to a public member function

should be treated as though it may cause bugs until it has been proven safe.

A function such as the following is an accident waiting to happen:

class Array
{

publ ic:

Arrayd'nt s)

{

size = 0;

pData = new int[s]

;

if (pData)
{

size = s;

}

}

386 Part VI: The Part of Tens

~Array(

)

delete pData;
size = 0;

pData = 0;

}

//either return or set the array data
int data (int index)

(

return pData[index] ;

}

int data(int index, int newValue)

int old Value = pData[index]

;

pData[index] = newVal ue;

return oldVal
i

ue;

protected:
int size;
int *pData;

};

The function data (i nt) allows the application software to read data out of

Array. This function is too trusting; it assumes that the i ndex provided is

within the data range. What if the index is not? The function data (i nt

,

int) is even worse because it overwrites an unknown location.

What's needed is a check to make sure that the index is in range. In the fol-

lowing, only the data (i nt) function is shown for brevity:

int data(unsigned int index)

{

if (index >= size)

{

cout << "Array index out of range (" << index << ")\n";
return 0;

}

return pData[i ndex]

;

Now an out-of-range index will be caught by the check. (Making i ndex

unsigned precludes the necessity of adding a check for negative index values.)

Commenting \/our Code

White \lou Write It

I think you can avoid errors if you comment your code while you write it

rather than wait until everything works and then go back and add comments.

Chapter 29: Ten Ways to Avoid Adding Bugs to Your Program

I can understand not taking the time to write voluminous headers and func-

tion descriptions until later, but you always have time to add short com-
ments while writing the code.

Short comments should be enlightening. If they're not, they aren't worth
much and you should be doing something else instead. You need all the

enlightenment you can get while you're trying to make your program work.

When you look at a piece of code you wrote a few days ago, comments that

are short, descriptive, and to the point can make a dramatic contribution to

helping you figure out exactly what it was you were trying to do.

In addition, consistent code indentation and naming conventions make the

code easier to understand. It's all very nice when the code is easy to read

after you're finished with it, but it's just as important that the code be easy to

read while you're writing it. That's when you need the help.

Single-Stepping Every

Path at Least Once
As a programmer, it's important for you to understand what your program is

doing. Nothing gives you a better feel for what's going on under the hood
than single-stepping the program with a good debugger. (The debuggers

included in the IDE of interactive compilers work just fine.)

Beyond that, as you write a program, you sometimes need raw material to

figure out some bizarre behavior. Nothing gives you that material better than

single-stepping new functions as they come into service.

Finally, when a function is finished and ready to be added to the program,

every logical path needs to be traveled at least once. Bugs are much easier to

find when the function is examined by itself rather than after it's been thrown
into the pot with the rest of the functions — and your attention has gone on
to new programming challenges.

Avoid Overbading Operators
Other than using the two stream I/O operators operator<<() and opera -

tor>>() and the assignment operator operator=(), you should probably

hold off overloading operators until you feel comfortable with C++. Although

a good set of overloaded operators can increase the utility and readability of

a new class, overloading operators other than the three just listed is almost

388 Part VI: The Part of Tens

never necessary and can significantly add to your debugging woes as a new
programmer. You can get the same effect by defining and using the proper

public member functions instead.

After you've been C-plus-plussing for a few months, feel free to return and
start overloading operators to your heart's content.

Heap Handling
As a general rule, programmers should allocate and release heap memory at

the same "level." If a member function MyCl ass : : create() allocates a block

of heap memory and returns it to the caller, then there should be a member
function MyClass: :release() that returns the memory to the heap.

Specifically, MyClass::create() should not require the parent function to

release the memory itself. This certainly doesn't avoid all memory problems -

the parent function may forget to call My Class: :release() — but it does

reduce the possibility somewhat.

Using Exceptions to Handle Errors

The exception mechanism in C++ is designed to handle errors conveniently

and efficiently. Now that this feature has been standardized, you should use

it. The resulting code is easier to write, easier to read, and easier to maintain.

Besides, other programmers have come to expect it— you wouldn't want to

disappoint them, would you?

Avoiding Multiple Inheritance

Multiple inheritance, like operator overloading, adds another level of com-
plexity that you don't need to deal with when you're just starting out.

Fortunately, most real-world relationships can be described with single inher-

itance. (Some people claim that multiple inheritance is not necessary at all —
I'm not one of them.)

Feel free to use multiple-inherited classes from commercial libraries, such as

the Microsoft MFC classes. Microsoft has spent a considerable amount of

time setting up its classes, and it knows what it's doing.

After you feel comfortable with your level of understanding of C + *. experi-

ment with setting up some multiple inheritance hierarchies. That way, you'll

be ready when the unusual situation that requires multiple inheritance to

describe it accurately arises.

Chapter 30

The Ten Most Important Microsoft

Visual C++ Compiler Settings

In This Chapter

Producing a command line program

Changing your project settings

Using the General Settings tab: MFC and directories

Choosing debug factors

Getting to the good stuff from the General tab

Changing C++ language settings

'P Controlling code generation

& Customizing your C++ language extensions

Regulating compile optimizations

Enabling precompiled headers

rhis entire chapter should be considered a techie chapter. The default set-

tings for most C++ compilers, including Visual C+ + , work for 99 percent of

all programs. However, you can use these modifications to default settings to

enhanced your programs in many cases.

Most programmers use the Microsoft Visual C++ compiler on the PC to gener-

ate applications. This chapter explains the ten most important Visual C++

compiler settings used to generate command line programs.

Note: The terms "switch settings," "switches," and "settings" are used syn-

onymously in the programming world.

Because this isn't a Windows programming book, 1 don't cover settings used

to generate Windows programs.

390 Part VI: The Part of Tens

Generating a Command Line Program
Because the name Microsoft is so closely linked to Windows and because the

Visual C++ compiler has some neat tools for generating Microsoft Windows
applications, people often assume that Visual C++ won't generate a DOS-like

command line type application. This simply isn't the case. In fact, I tested all

the programs in this book using the Visual C++ 6 compiler (in addition to the

GNU C++, which is included on the enclosed CD-ROM).

To create a command line program (what Microsoft calls a console applica-

tion), choose File1^ New^ Projects. From the list of program types, select

Win32 Console Application. Enter a project name and then click OK. Each

program that you create must have a project associated with it and each pro-

ject goes into its own directory. The project describes the details of how the

program was created (the flags are described in this chapter). (See Chapter

10 for a discussion of Project Files.) You can change the base directory for

the project by editing the path specified in Location. Click OK to have Visual

C++ create a project. At this point, you should be looking at an empty work-

space (it's empty in the sense that there are no C++ source files associated

with the project).

To create a new C++ source file, choose FileCNew< Files. From this, you
should see a list of possible types of files that you can create. Select C++

Source File from the list of options and type in the filename of the new C++

source file. Selecting OK opens a new window into which you can type your

program. In addition, Visual C++ automatically adds the new file to the cur-

rently open project.

If you want to add previously created C++ source files to your project, choose
Projects Add To ProjectCFiles. The Files dialog box opens. Select the source

files that you want to add to the project.

Changing Project Settings

To view the project settings, choose ProjectCSettings to reveal a screen like

the one in Figure 30-1. Notice that Visual C++ allows you to maintain multiple,

different project setting configurations. In fact, it creates two settings for you

from the very beginning: Debug and Release. The difference between these

settings is that Debug tends to be set to the value that's most convenient for

the debugger. Because these settings are also the slowest possible, the

Production setting is provided to produce the fastest, smallest executable

program. These settings are used to create the final executable files prior to

release of the program for use (perhaps by a customer).

Chapter 30: The Ten Most Important Microsoft Visual C++ Compiler Settings jyl

1 1 'Y, I EH
Geneva! j Debug

C3fegofir IfJiHnBffWWMI d Reset

PortfeMo-membef fepfesentahon

Representation method

iBe^A^s d

i J
P Enabte eycept^ori harming

I

-
EnabteRun-TffneTypetnf0fm3hGn[RTTI)

f~ Disable construction displacement

Project Options

.DEBUG" /D ".CONSOLE" /D"_MBCS" Z3
'Fp'Debug/ParG pen" MX /fo'Debug/" ,1

Ok Cance

If the Project Settings window is not already open, choose Projects Settings.

To change a setting, select the configuration for which you want the settings

changed by clicking on the drop-down menu next to the Settings For label.

Choosing General Settings

The General Settings tab window, shown in Figure 30-2, contains two settings

of interest. First, are you or are you not using MFC? MFC stands for Microsoft

Foundation Classes and applies to Windows development, so the answer here

is basically No.

Figure 30-2

The General

tab window.

SeangiFor [wr.32 Debug d Genoa! | Debug
| C/C+* | Lrk | Retouro

[|

MoocoO Foundation Gaswr

1 1

|No! Using MFC d

InteimeoWe fte >

[Debug

Output fie;

Ok Cancel
' '

392 Part VI: The Part of Tens

The second question concerns directories. Visual C++ generates several inter-

mediate files while both editing and compiling. Normally, these files go into

the current directory. However, Visual C++ allows you to place these tempo-
raries in a different directory if you want. About the only reason for this

would be if the current directory were full (unlikely) or if you had a really fast

disk (like a RAM disk) off to the side that you could use for temporary files.

In this same section, Visual C++ allows you to place the file executable in any
directory you want.

The directory name provided is relative, so if you want the output directory

to be completely independent of the current directory, provide a full path

(refer to Figure 30-2) for the Output directory.

Selecting Settings for bebuq
The Debug Settings tab, shown in Figure 30-3, has four catchall questions.

The second and third text fields are the only ones that affect much.

The second text field specifies the Working Directory. This directory is much
the same as the Intermediate File directory specified under the General tab,

which allows the user to direct intermediate debug files to a separate location.

The third text field allows the programmer to enter any arguments to the pro-

gram during debug. These arguments would normally follow the program
name when executing it from the command line prompt.

A second category under the Debug Settings tab is Additional DLL. Here DLL
stands for Dynamic Link Library. You'll have little use for this setting.

IiTv"iITi "*l

Figure 30-3

The Debug

tab window.

irrn

Set»mgi For. |,Mn 32 Debug d General Debug
j
UC**

|
Lr*

j
Resource

: j

~jf£)E39
Categocjf

|
General ^|

Executable ft* debug session

|

,
-: :

zz
: - - ?.-

:
-: ;h ?*- 1

Woting dfcectoiy

r~
Program wgyrnent;.

1

Remote executable pa* and lie name

1

Chapter 30: The Ten Most Important Microsoft Visual C++ Compiler Settings 393

Choosing General Options for C/C++
The C/C++ tab hides most of the "good stuff" starting right from the General

category, as shown in Figure 30-4.

The Warning Level tells the compiler how hard to look for errors. A level of

says to overlook all but the most heinous infractions. Level 4 says don't let

much of anything get by. The default is Level 3 (although I prefer Level 4).

Normally, the compiler continues with the link step after all the source files

have compiled, even if warnings were generated. If the Warnings as Errors

check box is selected, then Visual C++ will not continue with the link step if

any warnings are generated during the compilation phase.

The Debug Info select box enables the user to select the form that the debug
information takes. You probably don't have a reason to mess with this setting.

To browse variables during debug, you must have Visual C++ generate

browser information during compilation. However, this is not the default

because it increases the size of the object files while slowing down compila-

tion a lot. To enable this, select the Generate Browse Info check box.

The Optimizations setting controls the amount of optimization that the com-
piler performs. During debug, you really don't want any optimizations per-

formed because it can cause the debugger to do some confusing things.

When you're ready to generate a "for release" version, enable either the

Maximum Speed or Minimum Size options. If you prefer, you can select

Customize and select the particular optimizations from the list provided that

you would like to perform.

Figure 30-4:

The General

category of

the C/C++

tab window.

ii.' "41 " I

Setting; Foi zl General
| Debug C/C+

Category
|
General

Link j Resouro
|

1

1.

T] Reset

Warning level;

|
Level 4 »]

V Warning* as errors V generate browse info

Debug into Optimisations"

| Piogiam Database 2j |
Disable IDebugl 2j

Preprocessor definitions

|WIN32_DEBUG .CONSOLE .DUMMIES

Proiect Options:

/nologo /MLd /W4 /GX /2 /Od /D 'WIN32" /D

".DEBUG" /D ".CONSOLE" /D ".DUMMIES"
/Fp'Debug/Parrl pch" MY. /tV'Debug/"

39l> Part VI: The Part of Tens

Finally, the Preprocessor Definitions window enables you to define any
preprocessor #def i nes you want. For example, notice that I added the

#def i ne _DUMMIES. This enables me to control how my code is compiled via

preprocessor directives within the code. You can add whatever you want, but

be careful not to remove or modify any directives that are already there.

Controlling C++ Language Settings

The C++ language category enables the programmer to control those settings

that are unique to C++. Some of these settings are rather confusing, so you
may want to skip this category. This window is shown in Figure 30-5.

Figure 30-5:

The C++

category of

the C/C++

tab window.

ut—'iIT" I

Pon'et-rcHTiembef repiesentahon

Representation method

|
Best Case Always d

1 d
I* Enable exception handfeig

f~ Enable Run-Tune Type Information (RTTI)

I

-
Disable construction displacements

Project Ctphoro-

/nologo /MLd /W4 /GX fZi /Ud /D 'WIN32" /[

"_DEBUG" /D •'.CONSOLE" /D ".DUMMIES"
/Fp"Debug/Part2 pch" AX /Fo'TJebug/"

Visual C++ supports different formats for the way that pointers to virtual

member functions are handled. The default is Best-Case Always, which allows

the compiler to select the virtual pointer type. However, if you want to con-

trol the pointer type, select General Purpose under Representation method
and you're afforded three options: Point to Any Class; Point to Single- and

Multiple-Inheritance Classes; and Point to Single-Inheritance Classes. The first

two options generate more complicated code than the single-inheritance

option. Select Single-Inheritance Classes if you have no intent of using multi-

ple inheritance— the code generated will execute more quickly, but Visual

C++ does not support multiple inheritance with this setting. (See Chapter 28

for a discussion of multiple inheritance.)

The next three check boxes also allow you to simplify the code generated by
the compiler. If you are not using exception handing (you should be), click

Exception Handling Off for a small decrease in the time to call a function.

Leave the next two deselected — 1 don't cover those features.

Chapter 30: The Ten Most Important Microsoft Visual C++ Compiler Settings j yj

Choosing Code Generation Settings

The Code Generation window, shown in Figure 30-6, controls the final step in

the compilation process.

The Processor allows the user to select the type of CPU for which the com-
piled code is designed. The default Blend produces a blend of code that's

optimized for most 80386 and later processors. You can select other specific

variations of the Intel 80 x 86 processor; however, the resulting code may not

execute on earlier processors.

The Calling Convention drop-down menu refers to the default way in which
arguments are passed to functions. The default cdecl refers to the way in

which most compilers pass arguments to C functions, by pushing arguments

from left to right. The selection stdcal 1 passes functions in the opposite

direction. The third selection fastcall passes the first two arguments by
caching them in a register. This can significantly speed up the performance of

very small functions.

The third drop-down menu, Use Run-time Library, refers to the set of .lib func-

tions you want to link with. Normally, you want to link with the Single-threaded

or Debug Single-threaded. If you're creating multiple threads in your program
(I didn't in this book), you'll need to select the Multi-threaded versions.

The final drop-down menu enables the user to select the alignment of struc-

tures. Making this number too large wastes a small amount of space but has

no other effect. Making this number too small can slow down the execution

speed of the program significantly. When you generate code for modern Intel

processors, this number should certainly not be less than 4 and perhaps not

even smaller than 8.

Figure 30-6:

The Code

Generation

category of

the C/C++

tab window.

[

Scrooge For
|

, >;; jj

rrpEH
General

|
Debug C/C** | Luk

|
Rrnouo

I |>

Category
| Code Generator jj B<«et

|

Procwtor U re run-tme .Unary.

|Blend- _»| \Dtbug Single ThieadecJ^]

Caing convention St/ucr member abgnment

|_cdecl" zi |3ey.es- z.

H—
Protect Qptam

/nologo /Mid 'j 4 . li.- /Zi 'Od lb "WIN iZ' /D »|
DEBUG" /D " CONSOLE" /D " DUMMIES" Zj

/Fp"Debug/Patt2pch" A*/Fo' Debug/'
..J

Of Cancel

396 Part VI: The Part of Tens

Customizing utith the Code

Generation Windou)
The Customize window of the C/C++ tab window, shown in Figure 30-7, con-

tains a series of individual check boxes.

Visual C++ enables a few language extensions to make Windows programming
easier. It's a good idea to disable these language extensions if you're trying to

write code that will be ported to a different environment.

Enabling Minimal Rebuild can save programmer time by relinking only those

parts of the program that have changed since the last time the program was
linked. Because this results in a larger executable file, you'll eventually want

to perform a full relink, but it's worthwhile when you're in the constant com-
pile/relink cycle common during development.

Enabling Incremental Compilation can also save time in that it recompiles

only those functions that have changed since the last time the module has

been compiled.

Figure 30-7:

The

Customize

category of

the C/C++

tab window.

General
J

Debug C/C++ I Link |
Rescue*

|
>

|
*

Category
|
Customize "3

f Disable language extensions

!~~
E nabte Junction-level linking

P Eferatate dupicate stnngs

W jEnable mtrarnal rebufcl

I

-
Enable incremental compilation

W Suppress startup banner ardrtonrvabon messages

'nologo /MLd AV4 /Gm /GX iZ /'0d /D 'WIN32
--

'_DEBUG" /D ".CONSOLE" /D ".DUMMIES"
'Fp"Debug/Part2 pch" /YX /Fo"Debug/

-

Controlling Compile Optimizations

The Optimizations category allows the programmer to control the types of

compile optimizations that are performed (see Figure 30-8).

Chapter 30: The Ten Most Important Microsoft Visual C++ Compiler Settings 3 • /

cmitting For :_: ezjc ~] Genaal j Debug C/C+* j Unk | Resourc>

• ^BH Categoiir [optimizations jj Re:

3ptitieationS-

"
1

Cuslomce z

BMHH
Default

Disable (Debug)

Maximize Speed
Minimize Size

Figure 30-8:

The nine function e>?>an$ion

Optimizations

category of

the C/C++ tab

Disable zl
3
rotect Opttons

'nologc Wld <W4 njm /G> CI' Vl [

"_DEBUG" /D '^CONSOLE" /D "^DUMMIES"
/Fp"Debug/Parl2 pch" AX /Fo'Debug/"

=1
-1

window.

^^^^^ OK Can*
1

The three most common selections are Debug (meaning perform no optimiza-

tions), Optimize for Speed, or Optimize for Size. A fourth option, Customize,

enables the user to select the specific customizations that she would like to

perform. I don't recommend this setting, however, because some of the opti-

mizations aren't safe. Without knowing what you're doing, you can generate

code that doesn't work from perfectly correct source code.

The Inline function expansion setting has three positions. In debug mode, the

default is Disable, meaning that all functions are outlined whether they're

declared inline or not. A second setting inlines functions that are specifically

declared with the inline keyword, but none else. The final setting, Any Suitable,

enables inlining for any function, which fulfills the requirements for inlining.

Selecting Precompiled Headers
The Standard C++ include files almost never change. Compiling these include

files over and over again can result in a significant waste of time, because
they seldom, if ever, change. To address this, the window shown in Figure

30-9 shows the support in Visual C + + for precompiled headers.

When precompiled headers are enabled the first time you compile your source

file, the compiler writes the results of compiling the .H include files to a sepa-

rate file, with the file extension .PCH. The next time you compile that module,

or any other module that includes the same .H files, the compiler reads this

saved information instead of recompiling the same files. Often, the Standard

C++ include files are considerably larger than the application code, so enabling

precompiled headers can increase compilation speed considerably.

398 Part VI: The Part of Tens

Figure 30-9:

The

Precompiled

Headers

category of

the C/C++

tab window.

Project Settings rr\
Geras

|
Debug C/O* 1 Li*.

|
Resource

| >Settiig: For |\ ,
,r ;; ; e: , : -^|

C Not using ptecompsted headers

(• Agtcmabc use of precorapied header*

Though header

f~ QeaieprecwTspfed header fte[.pch|

!

<~ Use precoapJed headef Se (.pchl

1

Project OpSon*

/nologo /MLd /W4 /Cm /GX /Zi t 'V1N32" Tj »]
j

".DEBUG" /D ".CONSOLE" /D ".DUMMIES" J
if /Fp'tlebug/Part2-pch"/rX/Fo•T)ebug/

»J

OK Carce'

To get the maximum benefit from precompiled headers, try to include the

same .H files in the same order in each module. Enabling precompiled head-

ers should have no effect on the executable file produced. When precompiled

headers are turned on, they should sense a change to a header file automati-

cally and cause the precompiled headers to rebuild. If you suspect otherwise,

you can turn off precompiled headers.

Appendix A

About the CD-ROM

On the CD-ROM

Getting your CD up and running

Installing the code for this book

Installing the GNU C++ development environment

Getting help

verything you need to know about the C++ For Dummies, 4th Edition

CD-ROM is covered here in Appendix A.

System Requirements
Make sure that your computer meets the following minimum system require-

ments listed. If your computer doesn't match up to most of these require-

ments, you may have problems using the contents of the CD.

*> A PC with a 486 pentium or faster processor.

W Microsoft Windows 95 or later or Windows 2000 or later.

t* At least 16MB of total RAM installed on your computer for Windows 95.

Later versions of Windows require significantly more.

**" At least 60MB of hard drive space available to install the GNU C++ devel-

opment environment.

i* At least 16 MB of hard disk space if you intend to copy all of the source

code to your hard disk.

i^ A CD-ROM drive.

If you need more information on the basics, check out Windows 95 For

Dummies, 2nd Edition or Windows 98 For Dummies, both by Andy Rathbone
(Hungry Minds, Inc).

400 C++ For Dummies, 4th Edition

Usinq the CD tilth Microsoft Windows
C++ For Dummies, 4th Edition, comes with a public domain GNU C++ develop-

ment environment, which can be used to compile and test each of the pro-

grams in this book. You do not need to install GNU C++ if you prefer to use a

C++ package that you already own, such as Visual C++. The following steps

guide you through the installation of the GNU C++ compiler.

To install the items from the CD to your hard drive, follow these steps.

1. Insert the CD into your computer's CD-ROM drive.

Give your computer a moment to take a look at the CD.

2. When the light on your CD-ROM drive goes out, double-click the My
Computer icon. (It's probably in the top-left corner of your desktop.)

The My Computer window opens showing all the drives attached to your

computer, the Control Panel, and a couple other handy things.

3. Double-click the icon for your CD-ROM drive.

Another window opens, showing you all the folders and files on the CD.

4. Double-click the file called License.txt.

This file contains the license that you agree to by using the CD. When
you are finished reading the license, close the program.

5. Double-click the file called Readme.txt.

This file contains the most up-to-date information about the code.

What l/ou'(t Find
The CD-ROM includes two folders (also known as directories): Author and

DJGPP.

The Author folder contains the source code from the book. The programs are

organized in folders named with the corresponding chapter number. (For

example the first Conversion.cpp program is contained in the folder

\Author\Dummies\ChapOT.) To browse the files, copy them to your C drive.

The folder DJGPP contains the GNU C++ compiler. To install the GNU C++

compiler and RHIDE editor onto your computer, copy the DJGPP folder. If

you're running any version but Windows Me, keep reading going to the next

Appendix A: About the CD-ROM [)Q]

section. If you're running Windows Me, skip ahead to the "Windows Me" sec-

tion.

Windows 95, 98, NT, 2000
With the DJGPP folder copied to your hard drive, perform the following steps

to install the GNU C++ compiler.

1. Open NOTEPAD and click FileCOpen and select c:\AUTOEXEC.BAT.

2. Add the following two lines to your AUTOEXEC.BAT file. (Note: If the

file AUTOEXEC.BAT does not exist, then Steps 1 and 2 creates it. This is

okay.)

set PATH=%PATH%;C:\DJGPP\BIN
set DJGPP=C:\DJGPP\DJGPP.ENV

3. Save the file and reboot.

Windows Me
With the DJGPP folder copies to your hard drive, perform the following steps

to install the GNU C++ compiler.

1. Click Starts Programs^ Accessories1^ System Tools"vSystem

Information.

The System Configuration Utility window appears.

2. Select Tools 1
: System Configuration.

The System Configuration window opens.

3. Select the Environment tab.

4. Click PATH and then click the Edit button.

5. Add the string ;\c:\djgpp\bin to the end of whatever appears in the

PATH window already.

The result might look something like the following (don't worry if yours

looks a little different): c:\windows;c:\windows\command;c:\djgpp\bin.

6. Click the Add button to add a new environment.

7. Enter DJGPP as the name of the variable and C:\djgpp\djgpp.env as

the value.

8. Click Save to save the result.

9. Click the check box to the left of the new DJGPP variable to enable it.

10. Click Save to save the settings and then exit.

W2 C++ For Dummies, 4th Edition

Problems With the GNU compiler

The following list are some of the problems I've come across with the GNU
compiler. If you're having problems, try the following:

*> The rhide editor does not execute the GCC compiler under Windows
2000. You may edit the files using the rhide compiler, but you need to

use the DOS prompt in order to compile your file. The batch file cc.batm

on the CD, simplifies this task. For example, from within the ChapOl
folder, enter cc Conversion to build the Conversion.exe executable file

from the Conversion.cpp source file. See www. stephendavi s . com for

possible future updates to rhide to make it compatible with Windows
2000.

t> Windows XP insists on executing the rhide editor in full screen mode;
however, the rhide screen is usable and all commands work properly.

u* The rhide editor has not been tested with Windows NT 4.0.

u* The rhide editor works without issue on Windows 95, Windows 98, and
Windows Me.

^" Neither rhide nor the GCC compiler work with Windows 3.1 or earlier.

If you have problems using the GNU C++ compiler that comes with the

enclosed CD-ROM, read through the installation instructions. Check
www. stephendavis.comfora list of the most common installation prob-

lems. If you still have trouble installing the items from the CD, please call the

Hungry Minds Customer Care phone number: 800-762-2974 (outside the U.S.:

317-572-3393).

317-572-3993).

Appendix B

Glossary

abstract class: A class that contains one or more pure virtual functions. Such

a class cannot be instanced with an object.

abstraction: The concept of simplifying a real-world concept into its essential

elements. Abstraction allows software classes to represent what would other-

wise be hopelessly complicated real-world concepts.

analysis phase: The phase of development during which the problem is ana-

lyzed to determine its essential elements.

base class: A class from which another class inherits.

callback function: A function invoked by the operating system when a spe-

cific event occurs.

class member: Another term for static member.

classification: The grouping of similar objects. For example, warm-blooded,

live-bearing, suckling animals are grouped into the classification mammals.

code segment: The part of a program containing executable instructions.

coding phase: The phase during which the results of the design phase are

turned into code.

constructor: A special member function invoked automatically when an

object is created.

copy constructor: A constructor whose argument is a reference to an object

of the same class. For example, the copy constructor for class Z is declared

Z::Z(Z&).

data segment: The block of memory where C and C++ keep global and static

variables. See code segment and stack segment.

deep copy: A copy made by replicating the object plus any assets owned by

the object, including objects pointed at by data members of the object being

copied.

I) Qif C++ For Dummies, 4th Edition

default constructor The constructor that has a void argument list.

derived class: A class that inherits from another class.

design phase: The phase of development during which the solution to the

problem is formulated. The input to this phase is the result of the analysis

phase.

disambiguation: The process of deciding which overloaded function a call

refers to by comparing the use with the prototypes of the overloaded functions.

early binding: The normal, non-polymorphic calling method. All calls in C are

bound early.

expression: A sequence of subexpressions and operators. A C or C++ expres-

sion always has a type and a value.

extensibility: The capability to add new features to a class without modifying

existing code that uses that class.

friend: A function or class that is not a member of the class but is granted

access to the private and protected members of the class.

function declaration: The description of a function giving its name, the name
of the class with which the function is associated (if any), the number and

type of any arguments, and the type of any value returned by the function.

function prototype declaration: A function declaration that contains no code.

function signature: Another name for the full function name (including argu-

ment types and return type).

global variable: A variable declared outside a function and therefore accessible

to all functions.

heap: Memory allocated to the program through calls to mal 1 oc(). Such

memory must be returned to the heap through calls to free ().

inheritance: The capability of a class in C++ to assume the properties of an

existing class.

inline function: A function expanded at the point it is called, much like a

macro definition.

instance member Another term for a normal, nonstatic member.

instance of a class: A declared object of the specified type. For example, in

the i nt i declaration, i is an instance of class i nt.

Appendix B: Glossary

IS_A: The relationship between a subclass and its base class. For example, a

Mai 1 ard IS_A Duck, meaning that an object of class Mai 1 a rd is also a Duck.

late binding: The process by which polymorphism is accomplished in C++.

local variable: A variable declared in a function and therefore accessible to

only that function.

member function: A function defined as part of a class in the same way that a

data member is defined.

method: Another term for member function.

object-oriented programming: Programming that is based on the principles

of data hiding, abstraction, inheritance, and polymorphism.

operator overloading: Defining a meaning for intrinsic operators when
applied to a user-defined class.

outline function: A conventional function that is expanded at the point it is

declared. Any subsequent references to the function generate a call to the

point in memory where the function is expanded. See inline function.

overloading: Giving two different functions the same name. Such functions

must be differentiable by the number or types of their arguments.

overriding: Providing a function in a subclass with the same name and argu-

ments as a function in the base class. See polymorphism and virtual member
function.

paradigm: A way of thinking; an approach to programming. Used in the con-

text of the object-oriented paradigm or the functional programming para-

digm. (Pronounced "pair-a-dime," as in 20 cents.)

pointer variable: A variable that contains an address.

polymorphism: The capability to decide which overloaded member function

to invoke on the basis of the real-time type of the object, not the declared

type of the object.

private: A class member accessible only to other members of the same class.

protected: A class member accessible to other members of the same class

and members of any subclass. Protected members are not accessible publicly.

public: A class member accessible outside the class.

pure virtual function: A virtual member function that has no implementation.

W6 C++ For Dummies, 4th Edition

reference variable: A variable that serves as an alias to another variable.

shallow copy: A binary, bit-for-bit copy.

short-circuit evaluation: A technique by which the right-hand subexpression

of a binary expression is not evaluated if its value would not affect the value

of the overall expression. This occurs with two operators: && and
j

. For

example, in the expression a && b, if the left-hand argument evaluates to

(false), there is no need to evaluate the right-hand argument because the

result will still be 0.

signature field: A nonstatic data member that is given a particular value.

This value can be checked in the member functions to determine whether
this points to a valid object. This is a highly effective debugging technique.

stack segment: The part of a program in memory that contains the nonstatic,

local variables.

static data member A data member not associated with the individual

instances of the class. For each class, one instance of each static data

member exists, irrespective of how many objects of that class are created.

static member function: A member function that has no this pointer.

stream I/O: C++ input/output based on overloading operator<< and
operator>>. The prototypes for these functions are in the include file

iostream.h.

subclass: A class that inherits publicly from a base class. If Undergraduate is

a subclass of Student, then Undergraduate IS_A Student.

this: The pointer to the current object, this is an implicit, hidden, first argu-

ment to all nonstatic member functions, this is always of type "pointer to

the current class."

variable type: Specifies the size and internal structure of the variable. The
built-in, or intrinsic, variable types are i nt, char, float, and doubl e.

virtual member function: A member function that is called polymorphically.

See polymorphism.

v_table: A table that contains the addresses of the virtual functions of a

class. Each class that has one or more virtual member functions must have a

v table.

Index

Numbers & Symbols
!,44

!= 1,44

#define, 367, 385, 394

#ifndef, 134

#include, 96, 133

%,36
%=,36
&, 50-54, 101, 102

&&, 44

0,39,190,235,332
*,36, 101, 113, 190

7,20
*=,36

+
, 36, 39

+ 0, 113

+ 1,113

+ 2, 113

+ n, 113

++
, 36, 39

+=,36

-,36

-,39

-=,36

->, 191,332

.,190

A 36

/*, 20

/A 20

<<><<>, 321, 347

«», 134

=, 23, 36, 40, 44, 332

==,44

==,44

>, 44, 45, 47, 54

», 321,347

>=, 44, 45

:, 21

[],86, 187,332

\0, 32

\n, 32, 34

\t,32

\\, 32
A

, 50-52

{}, 20, 58, 76, 77, 166, 364

I , 50-53

I 1,44

-, 50, 220

abstract class, 299-308, 403

abstraction, 162, 403

accented characters, 97

accessing

arrays, 89, 90

class member functions, 178

class members from member function, 179

data member, 177

files, 349

friend functions, 325

non-member functions to protected

classes, 209-212

static members, 255, 256

Add watch command, 145

adding

to end of file, 348

to end of linked list, 199, 200

objects to arrays, 198

addition

operator, 36

order of operation, 39

Roman numerals, 50

ws C++ For Dummies, 4th Edition

addresses, memory
described, 99-101

operators, applying, 114, 115

passing pointers by, 107

addTailO function, 200, 204

ambiguities, inheritance, 372

analysis phase, 403

AND operator (&&), 44-46

AND operator (&), 51-54

AND/OR computations. See operators,

logical

ANSI C++ standard, Boolean variables, 47

anti-virus software, 401

arguments

binary operators, 36

constructor, fitting with, 224-226

functions, 76, 78-80

functions, declaring, 306

main(), accessing, 123, 124

operators, 325

overloaded virtual member functions,

282, 283

passing pointers, 106, 107

passing to functions, 395

string manipulation, 115

subclasses, 278

arrays

accessing too far into, 89, 90

addresses, applying operators, 114, 115

advantages and disadvantages, 197

arguments to mainO, 123, 124

arrays of, 91

characters, 91-93

characters, wide, 97

defined, 85, 86, 187

finding elements, 201

initializing, 89

objects, declaring, 188

output functions, avoiding obsolete, 97

pointer variables, 112, 113

pointer versus, 119, 120

pointers, declaring, 121

strings, 94-96

uses, 86-88

wide characters, 97

arrow operator

calling functions, 193

objects, 191

assignment operators

ambiguity, resolving, 23

autoincrement/autodecrement feature, 61

confusion with equality operator, 44

functions, 332

overloading, 321, 337-343, 387

using, 40

asterisk (*), 101, 190

author, 385

autodecrement -- operators, 61

autoincrement ++ operators, 61

B
backslash character (\), 32

base class, 403

Bell Labs, 12

Best-Case Always, 394

binary digit, 49

binary mode, 348, 349

binary numbers
bitwise logical operations, 50-52, 54, 55

defined, 47

described, 48

binary operator, 36, 325

bit, 49

bitwise copy constructor, 244, 245

bitwise operators

defined, 43

listed, 50

need, 54

blocks, code, 385

Boolean variable type, 47

Borland syntax check mode, 383

braces ({})

class definition, 166

execution code, 20

functions, 76, 77

if statement, 58

looping while condition true. 59

stack unwinding. 364

brackets (<<>>), 134

Index W9
brackets ([]), 86, 187

branch statement, 57-59

break control, 65-67, 70

breakpoint, 149, 150

Browse Info check box, 393

BUDGET program
factoring, 296, 297, 298

static member classes, 261-269

BUDGET3 program, 308-318

buffer

copying string, 96

stream I/O, 348

bugs, avoid adding, 383-388

Build command, 144

byte, 49

assignment operator, overloading, 337-343

breaking up programs, 125-127, 129-131,

133, 134

class, 173-176, 178-183, 185, 186

class inheritance, 273-277, 279, 280

class members, protecting, 205-209,

211,212

class, adding, 165-168, 170

classes, factoring, 295-298, 300, 302-309,

311,313-317

compiler settings, 389, 390, 392-398

constructor with arguments, 223-225,

227-230, 232-240

constructors, copying, 241-252

data members, static, 253-261,

263-267, 269

debugging, 135-153, 155-158

development, 12, 13

error-handling, 361-364, 366, 368

errors, avoiding, 383-388

functions, creating, 73-84

I/O, stream, 345-358, 360

inheritance, multiple, 369-373, 375-379

logical operations, 43, 45-52, 54, 55

object-oriented programming, 162-164

objects, creating and destroying,

213,-216,218,219,221,222

operators, overloading, 321-336

pointers, 99-103, 105-114, 116-124

pointers to objects, 187-192, 194, 196-204

program flow, 57-65, 67, 69, 70

programming, 14

programs, executing (Ctrl+F9), 18

sequences, storing in arrays, 85-97

variables, 25-27, 29, 30, 32, 33

virtual member functions, 281-287,

289-294

calculation

entries between pointers, 112

expressions, 22, 23

speed, 29

call to function, 246

callback function, 403

calling

class member functions, 177-179

functions, 75

functions, exceptions, 368

Calling Convention, 395

carriage return. See new line

case sensitivity

strings, 96

typing conventions, 15, 21

cast operator, 334, 335

casting values, 80

catch keyword, 361, 362, 367

CD-ROM
installing, 14

Microsoft Windows, 399, 400

system requirements, 399

troubleshooting, 400, 401

cdecl, 395

cerr, 346, 368

char variable

arrays, 91

described, 31

strings, 97

switch statement, 69

char* type pointers

string concatenation, 117

Q, / C++ For Dummies, 4th Edition

character naming convention, 34

global objects, 214

instructions, saving, 118

origins, 12

characters

strings, 116

arrays, 91-93, 115

arrays of strings, 122, 123

naming conventions, 34

pointers, 115

special, listed, 32

strings, 96, 116,351

variables, 31

wide, 97

y,93
check, data range, 386

Chinese, 97

cin, 22, 129, 346

class

abstract, factoring, 302- 305

abstract, passing, 305, 306

accessing members, 167, 168

associating, 173

denned, 165

denning operators. See operator

overloading

example program, 168-170

format, 166

illustrated, 296

instance, 214

internals, limiting visibility, 385, 386

linkable, 198

linked lists, 198

members, constructing, 231-233, 235

members, protecting, 205-209, 211, 212

multiple inheritance, 369-379

names, differentiating, 385

naming members, 177

object versus, 213

objects, 174, 180

scope resolution, 180, 181

static members. 255, 256

virtual functions, declaring, 306-308

class inheritance

described, 273, 274

example, 276, 277

HAS_A relationship, 279

reasons, 274, 275

subclass, constructing, 278

class member functions. See member
functions

class members, 403. See also static

members
class membership operator (->), 332

class abstract, factoring, 300

classes

files, 351

overloading operators, 337

class factoring, 295-298, 300

classification

abstraction, 163

defined, 403

object-oriented programming, 164

reasons, 164

cleanup, memory allocation, 220

clearO, 351

clog, 346

code
limiting interconnection, 206

styles, 157, 384, 385

Code Generation, 395, 396

code segment, 403

coding phase, 403

colon (:), 277

command line programs

C++ language settings, 394

Code Generation window, 395. 396

Debug Settings, 392

General category, 393, 394

generating, 389. 390

Optimizations, 396. 397

precompiled headers, 397, 398

project settings, changing. 390. 391

commands
branch, 57, 58. 59

debugger, 144

flow control, described. 57

loops, executing, 59-62. 64. 65. 67

nesting control, 67, 68

single set. See statements

switch statement, 69, 70

Index 411

comments
copy constructor, 244

described, 20

comparison operators, 44

compile-time errors

described, 135

implicit conversions, 336

temporary copies, 252

compiler

avoiding bugs, 387

branch control statements, 58

Code Generation settings, 395

Code Generation window, 396

command line program, generating, 390

Debug Settings, 392

described, 13

errors, catching, 135

General category, 393

General Settings, 391,392

language settings, 394

multiple inheritance, 378

optimizations, 396

Optimizations category, 396, 397

pointers, 118

Precompiled Headers, 397, 398

private class members, 207

project settings, 390

syntax check, 383

temporary copies, 252

version, 385

virtual member functions, 283

compiling, 13

computer processors

code, saving lines, 118

floating point variable, 29

rounding off errors, 46

concatenating

source string at end of target string, 96

strings, 94, 95, 96

console application. See command-line
programs

constructor

arguments, outfitting, 223-226

BUDGET3 example program, 317

copy. See copy constructor

copy, assignment operator versus, 338

default, 229, 230

defined, 214,403

need, 214-216

nonvirtual base classes, 377

object declaration trap, 235

order of, 236-240

overloading, 227-229

static data member, 257

stream I/O, 348, 349

subclass, 278

user-defined classes, 231-233, 235

virtual base classes, 377

virtual member functions, ineligibility, 293

working, 216-219

continue control, 65, 67

copies

deep versus shallow, 341

shallow, 340, 341

copy constructor

assignment operator versus, 338

assignment operator, overloading, 340

automatic, 244, 245

described, 403

reasons for, 241, 242

shallow versus deep copies, 246-249

temporary, 249-252

using, 242-244

copying

data members, 338

object, 328

strings, 96

counting

arrays, accessing too far, 89, 90

autoincrement/autodecrement operators,

61,62

infinite loop, 65

logical operations, 45

up from 0, 64

variables, 29, 30

counting numbers. See integer

cout, 22, 346, 359, 367

cpp source files

breaking up programs, 125-127,

129-131, 133

extension, 12

multiple, breaking into, 132, 134

CPU, 395

4/2 C++ For Dummies, 4th Edition

crashes

accessing arrays, 90

array sizes, 89

credit card numbers, 167

customers, describing, 167

Cyrillic alphabet, 97

D
d,34
data

arrays, advantages and disadvantages, 197

linked lists, 198

space, allocating, 119

static members. See static members
data entry

arrays, using, 86-88

break control, 67

loops, 67

nested control commands, 68, 69

sequences, storing, 86

data groups. See class

data members
accessibility, 385

illustrated, 296

data segment, 403

databases

bit wise operators, need for, 54

Debug, 397

inline functions, 397

debugger

avoiding bugs, 387

constructor function, 217

described, 136, 144

polymorphism, 288

settings, 392

debugging

breakpoints, 149, 150

commands, 144, 145

debugger use, 143, 144

error types, identifying, 135, 136

global objects, constructing, 237

overloaded operators, 326

polymorphism, usefulness of, 286

single-stepping, 147-149

test program, 145-147

variables, viewing and modifying, 151-153

WRITE statement approach, 136-143

dec manipulator, 354

decimal numbers, 48. See also floating

point variable

declarations

arrays, 86, 187

arrays of pointers, 121

naming conventions, 22

object declaration trap, 235

pointer variables, 101

pure virtual functions, 306, 307

static members functions, 257-260

variable types, 30, 31

variables, 26

variables, different types, 26, 27

writing, 21

decrement operator, 36

deep copies, 341

deep copy, 403

default

compiler settings, 389

constructor, 228-230

operator=(), 338

public versus private classes, 207

default constructor, 404

denning

arrays of arrays, 91

class member function, 182, 184

function prototypes, 83

functions, 76, 82

demotion, 33, 334, 335

derived class, 404

design phase, 404

destructor

assignment operator compared to, 340

closing files, 350

defined, 220

need, 220

order, 236, 240

shallow versus deep copies, 246, 247

static data member, 257

virtual member functions, 293, 294

working with, 220-222

digit, 49

disambiguation, 404

display

array, contents of, 114

BUDGET3 example program, 317

Index m
error messages, 368

object, 261

precision, 354

printing, 97, 98

updating, 59

displayO function, 357, 360

displayData() function, 204

division

operator, 36

order of operation, 39

remainder. See modulus operator

Roman numerals, 50

DLL, 392

do. ..while loop, 61

dot operator (.), 190

double slash (//), 20

double variable

arrays, 91

described, 30

memory space, 100

naming convention, 34

promotion, 332

dValue, 80

Dynamic Link Library, 392

early binding, 404

equality operator (==), 44

equals sign (=), 23

error messages, display, 368

error returns, 363

errors

accessing arrays, 90

array sizes, 88

avoiding, 383-388

CD-ROM, back of the book, 400

conversion paths, multiple, 334

copying objects, 328

debugging. See debugging
existing files, 348

file stream I/O, 350

flag, reading, 351

global objects, constructing, 237

GNU C++ installation, 17

language settings, 394

need to review, 18

non-existent files, 348

operator overloading, 321

scope problem, 109, 110

segment violation, 120

standard output, 346

strings, nonterminating, 96

temporary copies, 252

escape character (\), 33

exceptions

described, 361, 362

language settings, 394

mechanism, 364, 365, 366

objects, 366, 367, 368

reasons, 362, 363

using, 388

EXE file extension, 13

executable code
building, 13, 16

file extension, 13

producing, 398

executing, 18

expressions

decomposing, 37

described, 22, 404

logical operations, 43-50, 52,-55

mixed mode, 33

pointers, 103, 104

type, 37

extensibility, 404

extractor, 346

f, 34

factoring

abstract classes, 300-308

benefits, 295

described, 296-298, 300

multiple inheritance, 373

FALSE. See TRUE or FALSE
fastcall, 395

file names, 17, 351

files

copy constructors, deep, 249

saving, 16

stream I/O, 348, 349

fill character, 354

6U C++ For Dummies, 4th Edition

finding

list list, members of, 201

null character at end of string, 115

strings, 96

float variable. See floating point variable

floating point variable

arrays, 91

described, 30

limitations, 29, 30

logical operations, 45^17

memory space, 100

modulus operator, 37

naming convention, 34

polymorphism, 292

reasons to use, 28

flow charts, 162

for loop, 62, 63, 64

FORTRAN, 64, 136, 362

Free Software Foundation. See GNU
friend, 325, 404

friend keyword, 209-212

fstream subclasses, 348, 349, 351

function argument, 78, 79

function body, 76

function call operator (), 332

function declaration, 404

function prototype declaration, 404

function signature, 404

functional programmers, 162

functional programs, 174

functions

arguments, 76-79, 395

BUDGET3 example program, 317

casting values, 80

class member. See member functions

constructor, 214-219, 223-227, 229, 230,

232-236, 238-240

copy constructors and, 242-244

defined, 73, 76

defining outside class, 184, 185

error correction, 364

form, 76

global objects, 214

inheritance, 277

language settings, 394

library links, 395

memory, handling, 388

modules, 126

names, 80, 81,82, 385

non-member access to protected

classes 209

object, 191-195

objects, 214

obsolete, avoiding, 97, 98

operator, 323-330

pointers, 105, 107, 260

protected, 205, 209, 385

prototypes, defining, 82, 83

return type, 82

return value, 76, 77

single-stepping, 148, 149

static member, 253, 257-260

string, 94, 95, 96, 97

temporary copies, 250-252

testing, 387

unwinding the stack (exception

mechanism), 364, 365, 366

variables, storing, 84

virtual member, 281-287, 289, 290,

292-294, 305

writing and using, 74-76

garbage, 96

General category, 393

General Settings, 391,392

getlineO function, 95

global object, 214

constructing, 237, 238

defined, 236

global variables, 84, 254, 404

GNUC+, 13

GNU C++
debugger, 145. See also debuggers

hexadecimal numbers, 53

installation errors, 17

origins, 13

project files, creating, 131

variable layout, 101

Go command, 145

grammar, 12

greater than operator (>), 44, 45, 54, 58, 59

greater than or equal to operator (>=), 44, 45

Index 4/5

H •

HAS_A relationship, 279, 296

headers, 387, 398

heap
allocation, 220

assignment operator, overloading, 340

described, 107-109, 404

error, 110

handling, 388

memory leak, 327

pointers, returning, 196

scope, 110

shallow copies, 340, 341

shallow versus deep copies, 246-249

hex manipulator, 354

hexadecimal numbers, 49

bitwise operators, 52

counting system, 49

GNU C++, 53

/

I/O

denned, 22

operators, overloading, 387

stream. See stream I/O

if statement

branch statement implementation, 58, 59

versus switch statement, 70

ifdef, 134

include directive, 133

include files, 345, 397

include statement. See #include

increment operator, 36

Incremental Compilation, 396

index

arrays, 86, 88, 187, 188

date, 386

described, 85

for loop, 64

indirection, 113

inequality operator, 44

inheritance

benefits, 295

BUDGET3 program example, 308

defined, 273, 404

HAS_A relationship, 279

illustrated, 297

language settings, 394

levels, using, 388

polymorphism, 284

reasons, 274, 275

subclasses, 278

virtual member functions, 281

workings, 276, 277

inheritance, multiple

ambiguities, 371, 372

constructing objects, 377

mechanism, 369-371

problems, 377, 378

virtual, 372-377

init() function, 158

initializeO function, 210

initializing

arrays, 89

for loop, 62

global objects, 214

index variable, 64

pointer variables, importance of, 120

pointers, 199, 204

static members, 255

strings, 93

variables, 31, 35

inline function, 183, 217, 293, 331, 397, 404

inline keyword, 397

inline member function, 338, 339, 340

input

functions, 76

single-stepping, 148

standard I/O, 346

storing data in arrays, 88

input device, 22

input/output statements. See I/O

inserters

defined, 346

writing custom, 356-358

writing smart, 359, 360

inserting

middle of linked list, 201

objects to middle of array, 198

instance, 163, 166,214,317

instance of a class, 404

int strcmp(sourcel, source2) function, 97

416 C++ For Dummies, 4th Edition

int stricmp(sourcel, source2) function, 97

int strlen(string) function, 96

int strstr function, 96

int variable

Boolean data storage, 47

described, 27, 30

limited range, 28

memory usage, 100

naming convention, 34

pointer, 103

rounding off problem, 27

switch statement, 69

truncation, 28

integerArray[128],90

integers

limitations, 27

limited range, 28

matching, 69

promotion, 332

round off, 27

switch statements, 69, 70

throw, 366-368

truncation, 28

interfaces

limiting to outside, 206

protected class members, 209

rhide, 15

istream object, 129

IS_A, 275, 296, 405

iterate, 88

Japanese, 97

K
kanjis, 97

keyboard
bitwise calculations, 53

BreakDemo command, 67

C++ input, 22

data entry, 86

input sequence of numbers, 128

reading sequences of numbers, 85

keyboard shortcuts

debugger commands, 144, 145

executable program, building (F9), 16

programs, executing, 18

windows, cycling through (F6), 139

keywords
catch, 361,362,367
friend, 209-212, 325

inline, 397

main(), 80

operator, 323

protected, 206, 207

public, 206

throw, 361,362, 366-368

try, 361,362

virtual, 287

void, 76, 77, 235

1,34

language category, 394

language extensions, 396

late binding, 405

benefits, 285

polymorphism versus, 284

left shift operator (<<><<>)

described, 347

overloading, 356

stream I/O, 345

less than operator (<), 44, 45, 54

less than or equal to operator (<=), 45

library

debug settings, 392

Microsoft Foundation Classes, 391

multiple inheritance classes, 388

selecting, 395

Standard C++, 134

stream I/O functions, 345

line feeds, 349

line number, source files, 367

link phase, 129

link step, 393

linked lists

adding elements to end, 199, 200

BUDGET3 example program, 316

defined, 197

described, 198

properties, 201

sample program, 201-204

virtual member functions, 308

Index 4/7

LinkedListData program, 201-204

linking, 125

lists, linked. See linked lists

local objects

constructing, 236

initializing, 214

local variables, 84, 405

logical operators. See operators, logical

long variable

arrays, 91

described, 31

memory space, 100

naming convention, 34

switch statement, 69

loops

arrays, 114

autoincrement/autodecrement operators,

61,62

break control, 65-67, 70

continue control, 65, 67

displaying BUDGET3 example program, 317

for, 62, 63, 64

function, denning, 76

infinite loops, 65

nesting, 67, 69

separating, 74-76

statements , 59

string concatenation, 95

while condition true, 59-61

•M
machine language, 13

main()

accessing arguments, 123

constructing global objects, 237

constructor, 217

described, 80

MainModule.cpp, 130, 131

Make option, 16

mask, 55

matching

integers, switch statement. 69

pointer types, 103

mathematics

assignment operators, 40

binary arithmetic, 35, 36

expressions, decomposing, 37

operations, order of, 38, 39

operations, unary 39, 40

variable, concept of, 25

member functions

accessing, 178

accessing other members, 179

assignment operator, 338-340, 342

calling, 177, 179

defining outside class, 184

described, 405

inlining, 183

naming, 177

operator, 329

overloading, 185, 186

reasons for, 1 75

terminology, 176

member-by-member copy, 341

members, class

accessing, 167, 168

defined, 166

memory
allocation, 220

assignment operator, overloading, 340

CD-ROM, back of the book, 401

file character strings, 351

global objects, constructing, 239

handling, 388

heap, 107-110

heap, returning pointers, 196

leak, 327

overloading operators, 327

pointers. See pointers

polymorphism, 286

refererencing error, 120

shallow copies, 246, 247, 340, 341

shallow versus deep copies, 248, 249

messages
conversion completed alert box, 18

disabling error and warning, 383

error, 383, 384

GNU ++ installation errors, 17

methods. See member functions

MFC. See Microsoft Foundation Classes

Microsoft Foundation Classes, 378, 388, 391

Microsoft Visual Basic. See Visual Basic

(Microsoft)

UiO C++ For Dummies, 4th Edition

Microsoft Visual C++. See Visual C++
(Microsoft)

Microsoft Windows. See Windows
(Microsoft)

Microsoft, syntax check mode, 383

mixed mode expression

caution, 34

described, 33

naming convention, 34

modification history, 385

module. See source files

modulus operator (%), 36

monitors, 22

MS-DOS. See also command-line programs
backslash () confusion, 33

file names, 351

multiple inheritance

language settings, 394

multiplication

operator, 36

order of operation, 38, 39

Roman numerals, 50

Multix, 12

A/

name
array, 86, 113

class member functions, 177, 185, 186

class object, 180

differentiating, 385

function, 74

function, overloading, 80-82

functions, declaring, 306

overriding base class function, 284

source files, 367

variable, 22

virtual member functions, 281, 293

name collisions, 372

name operator=(), 340

names, file, 351

naming convention

benefits, 387

debugging variables, 157

strings, 93

variable name, 102

negative number
input, terminating, 85

loops, ending, 65

operator, 36

newline (n), 20, 21

newline (\n), 32

nonstatic member function, 342

NOR operator (), 46

NOT operator (!) , 44

NOT operator (-), 51

null character (0), 92, 115

null character (\0), 32

numbers. See variables

characters in a string, 96

sequences. See sequences

object-based languages, 284

object-oriented programming, 405

BUDGET3 example, 308-318

factoring. See factoring

inheritance, 273, 274

multiple inheritance, 377, 379

nacho-making explanation, 161-164

protected class members, 205

objection. See exception

objects

addresses, calculating, 1 1

1

arrays, advantages and disadvantages, 197

arrays, declaring, 188

arrow pointer, dereferencing, 191

constructor, 377

copying, 241-244, 246-252

creating, 213-218, 220

declaration trap, 235

destroying, 220, 222

display, 261

global, constructing, 231

heap, allocating, 197

linked lists, 198

local, constructing, 236

multiple inheritance, 377

names, differentiating, 385

passing to functions. 193-195

pointers, 187-194, 196-204

238

Index 619

pointers, dereferencing, 190

properties, 253

stack unwinding, 364

static, constructing, 236, 237

stream I/O, 346

throw, 366, 367, 368

traversing. See iterate

objects, grouping. See class

oct manipulator, 354

operator keyword, 323

operator+O, 326-328

operator=(), 338

operators

array addresses, 114, 115

arrow, 191

assignment, 40

autoincrement/autodecrement, 61

denned, 22

order, 38, 39

overloading, 405

pointer, 101, 111, 119

reference, 196

scope resolution, 180-182

splat, 190

stream I/O, 345

unary, 39, 40

operators, logical

binary numbers, 47-50

bitwise, 50, 51,53-55

defined, 43

floating point variables, 45, 46

listed, 44, 45

program flow control, 57, 59

short circuits, 46

variable types, 47

operators, overloading

described, 321,322

friend keyword, 325

functions, 323, 324

implicit conversion, 332-336

member functions, coding as, 329, 330

members, 332

operator^), 326-328

operator++(), 328

problem, 331

Optimizations, 396

OR operator (I), 44, 45, 51-53, 348

order

constructing, 239

constructor, 236-240

destuctor, 240

ostream, 367

outline functions, 217, 405

output

bitwise calculations, 53

constructor, invoking, 218

copy constructor, 243

files, 348

moving, 32

obsolete functions, avoiding, 97, 98

standard error, 346

standard I/O, 346

statements, debugging with. See WRITE
statement approach

view, 18

overloading, 405

base class function. See overriding

class member functions, 185, 186

constructor, 227-229

function names, 80, 81, 82

operators, 321-336

virtual member functions, 281, 282

overriding, 405

base class function, 284

subclasses, 317

virtual functions, 305, 308

paradigm, 405

parentheses ()

function names, 74

object declaration trap, 235

overriding precedence, 39, 190

pointer arrays, 113

parse, 17

passing abstract classes, 305, 306

PCH file extensions, 397

If20 C++ For Dummies, 4th Edition

personal data. See databases

phrases, 31

pointer + offset operator, 1 1

1

pointer - offset operator, 112

pointer variable, 101-103, 405

pointer2 - pointer 1 operator, 112

pointers

arrays of, 121

arrays of character strings, 122, 123

arrays of objects, 188

arrays versus, 119, 120

denned, 99

errors, finding, 143

functions with an object pointer, calling,

192, 193

functions with an object value, calling,

191, 192

functions, calling with reference

operator, 196

heap, returning to, 196

language settings, 394

linked lists, 197-204

main(), arguments to, 123, 124

memory heap, using, 107, 108, 109, 110

object in member function, 260

object, calling function with, 192, 193

object, dereferencing, 190, 191

to objects, declaring, 189

operations, denning, 111-114

operators, 119

passing to functions, 105-107, 193-195

shooting arrow, 191

simple things, 187, 188

strings, 115, 116, 117

types, 103, 105

variables, 101, 102

virtual member functions, 294

polymorphism
denned, 405

example, 288, 290

reasons, 284, 286

virtual member functions, 309

workings, 286, 287

precedence. See operators, order

precision

floating point variable. 30

variables, 33

Preprocessor Definitions window, 394

preprocessor symbols, 385

printers

copy constructors, deep, 249

standard output, 346

printfO output function, 97. 98

private, 405

private class members, 208

private keyword, 385

Processor, 395

program flow

autoincrement/decrement, 61, 62

branch commands, 57, 58, 59

control commands, nesting, 67, 68

for loop, 62-64

infinite loop, 65, 67

loops, 59-61

switch statement. 69. 70

Program reset command, 145, 147, 148, 150

programs
breaking into smaller sizes, 73

size, debugging and, 143

programs, example
ArrayDemo, 86-88

BUDGET, 153-156, 261-269, 296-298.

308, 309

BUDGET1.C, 157, 158

BUDGET3, 308-318

class, 168-171

Concatenatel.cpp, 145, 146

ConcatenatePtr, 116, 117

ForDemo program. 63

FunctionDemo. 74. 76. 126-131, 133, 134

LayoutError, 104

linked lists. 201-204

NestDemo, 75. 76

NestedDemo, 68

student records, 182. 184

project file. 131

Project Settings. 390

Index 427

promotion
denned, 333

integers, 332

user-defined classes, 333

properties

class, 166-168, 174

culling common. See factoring

inheriting from other classes. See

inheritance

linked lists, 201

multiple inheritance, 369, 371

static members, 253

protected, 405

protected keyword, 206, 207, 385

protection

assignment operator, 342, 343

class with limited interface, 209

friend keyword, 325

inheritance, 277

internal state of class, 208

non-member functions, access by, 209-212

reasons for, 205, 206

workings, 206, 207

prototypes

function, 82, 83

sumSequenceO function, 133

public, 405

public member function, 385, 386

public members, 205

pure virtual function, 405

pVariable, 188

R
radix, 354

range

floating point variable, 30

variables, 33

readability

operators, 41

overloading operators, 387

virtual member functions, 308

reading

files, 349

objects with error flag, 351

real numbers. See floating point variable

redundancy, reducing. See factoring

reference

current object, returning, 342

memory leak, 327

operator, calling functions, 196

passing pointers by, 107

returning argument by, 328

static members, 255, 256

virtual member functions, 283

reference variable, 406

registration() function, 211

remove() function, 200

removing

objects from arrays, 198

objects from linked lists, 200

return error

existing files, 348

non-existent files, 348

problems, 362, 363

return type

assignment operator, 342

cast operators, 335

constructor, 216

virtual member functions, 281, 291

return value

functions, 76, 77

pointers, 107, 108

rhide

debugger. See debugger

execution time alert box, 18

help, 19

interface, 14-16

project file, creating, 131

right shift operator (>>), 345

Roman alphabet set, 97

Roman numeral system, 50

rounding off

error correction, 30

integers, 27, 28

modulus operator, 37

Run menu, 18

run-time errors, 135

£f 22 C++ For Dummies, 4th Edition

scope
heap solution, 110

limiting, 108

problem, examining, 109

scope resolution operator, 180-182

segment violation error, 120

semantics, 12

semicolon, 327

sentences, 31

Set breakpoint command, 144

setfill(c) manipulator, 354

setprecision(c) manipulator, 354

settings, 389

setw(n) manipulator, 354

shallow copy, 338, 340, 341, 406

shift operators, 347

short circuit evaluation, 46, 406

signature field, 406

signature, function, 82

single stepping, 147-149, 217, 288, 387

single-threaded, 395

size, optimizing for, 397

source files

#include Directive, 133

breaking into, 125, 129, 130

debug settings, 393

defined, 12

division, 128, 130

error-checking, 384

GNU C++ project file, 131

header, 385

multiple, breaking into, 127, 131-134

name, 367

project file, creating, 131

reasons, 125-127

Standard C++ Library, 134

Visual C++ project file, 132

spaces

executable code, 21

file names, 17

speed
calculation, 29

optimizing for, 397

postdecrement loop, 62

splat character. See asterisk character (*)

spreadsheets, 91

stack segment, 406

Standard C++ Library, 134

statements

calculations, 22, 23

described, 21

input/output (I/O), 22

values with. See expressions

variables, declaring, 31. See also

declarations

static data member, 406

static member function, 406

static members
defined, 253-255

functions, 293

functions, declaring, 257-260

referencing, 255, 256

uses, 257

static objects, 236, 237

static variable, 84, 236

stdcall, 395

Step in command, 144

Step over command, 144

storing

sequences, 85-98

variables, 25, 84

stream I/O

described, 345, 346, 406

fstream subclasses, 348-351

inserters, generating smart, 359, 360

inserters, writing custom, 356-358

manipulators, 353-356

operators overloading, 387

shift operators, 347

strstream subclasses, 351-353

stream I/O library

buffers, 348

files, 348

string variable

described, 31

naming convention, 34

strings

breaking up, 32

character, arrays of, 122

concatenating. 94-96

Index [}23

debugging, 152, 153

denned, 93

described, 31

functions, listed, 96, 97

pointers, 115-119

strstream subclasses, 351-353

struct keyword, 166

subclass

abstract class notation, 303

constructing, 278

described, 275, 406

error-reporting, 368

fstream, 348, 349, 351

overriding, 317

strstream, 351-353

subscript operator ([]), 332

subtraction

autoincrement/autodecrement

operators, 61

operator, 36

order of operation, 39

Roman numerals, 50

sumSequenceO function, 128, 129

switch settings, 389

switch statement, 69, 70

switches, 389

symbols
differentiating, 385

operators. See operators

syntax, 12, 383

system requirements, 399

sz, 34

•T
tab character (\t), 32

tabs, 21

target object , 340

taxonomies, 275

telephone number, IDG Books Worldwide,

Inc., 401

temporary objects

copying, 249, 251, 252

duration, 327

terminating

array, 115

strings, 96

test program
debugging, 146, 147

tests. See also flow control

text editor. See also rhide

programs, creating, 14

text mode, 348

this, 406

throw keyword, 361, 362, 366-368

tilde 0), 220

traceback, 139

TRUE or FALSE, 47

truncation, 28, 348

try block, 364, 366

try keyword, 361, 362

type

converting. See cast

declared or compile time, 284

run-time, 284

variable, 22

typing conventions

case sensitivity, 15, 21

white space, 21

U
umlaut, 97

unary operators, 36, 39, 40, 102, 325

universal pointer, 199

Unix, 12

unwinding the stack, 364-366

Use Run-time Library, 395

user-defined classes

constructor, 231-233, 235

promotion, 333

user-defined types, 322

users. See data entry

utilities

debugger. See debugger
rhide editor, 14-16

424 C++ For Dummies, 4th Edition

(/•
values

calling functions, 191, 192

casting, 80

denned, 21

naming conventions, 22

passing pointers by, 105

returning by, 327

variable type, 406

variables

class, 166

coding styles, 157

constants, 32

debugging, 151-153, 155, 156

declaring, 26

declaring types, 30

denned, 25

floating points, 29

functions, return value, 77

integers, limitations of, 28

mathematics, 35, 36, 37, 39, 41

mixing types, 33

naming conventions, 34

pointers. See pointers

storage types, 84

truncation, 28

types, listed, 30

View User Screen command, 145

View variable command, 144, 151

virtual keyword, 287

virtual functions

abstract classes, 302, 303
BUDGET3 program example, 308

declaring, 306-308

overriding, 305

virtual inheritance, 372-376

virtual member functions

considerations, 293, 294

described, 281-284, 406

destructors, 294

determining, 290, 292, 293

language settings, 394

polymorphism, 284-288, 290

smart inserters, generating, 359

Visual Basic (Microsoft), 47

Visual C++ (Microsoft)

bitwise operators example, 53

compiler default settings, 389-397

debuggers, 144, 145

programs, compiling, 13

project files, creating, 132

variable layout, 101

void

argument type, 81

assignment operator return type, 342

constructor, 228

keyword, 76, 77, 235

void function, 77

void strcat(target, source) function, 96

void strcpy(target, source) function, 96

v_table, 406

W
Warning Level, 393

wchar, 97

Web site, address listed, GNU C++, 13

while loop, 61

described, 59, 60

finding null character, 115

for loop versus, 62

single-stepping, 151

white space, 21

whole numbers. See integers

width, 354, 357

Windows (Microsoft)

CD-ROM, back of the book. 399

Conversion.exe, 19

development package. 13

language extensions. 396

Microsoft Foundation Classes. See

Microsoft Foundation Classes

rhide interface versus. 15

word. 49

word operator, 335

WRITE statement debugging, 136, 137,

139-143

Index 425

XOR operator, 51,52,53

• J/.
y.93

zero-terminated string, 93

Hungry Minds, Inc.,

End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the software

packet(s) included with this book ("Book"). This is a license agreement ("Agreement") between
you and Hungry Minds, Inc. ("HMI"). By opening the accompanying software packet(s), you
acknowledge that you have read and accept the following terms and conditions. If you do not

agree and do not want to be bound by such terms and conditions, promptly return the Book and
the unopened software packet(s) to the place you obtained them for a full refund.

1. License Grant. HMI grants to you (either an individual or entity) a nonexclusive license to

use one copy of the enclosed software program(s) (collectively, the "Software") solely for

your own personal or business purposes on a single computer (whether a standard com-
puter or a workstation component of a multi-user network). The Software is in use on a

computer when it is loaded into temporary memory (RAM) or installed into permanent
memory (hard disk, CD-ROM, or other storage device). HMI reserves all rights not expressly

granted herein.

2. Ownership. HMI is the owner of all right, title, and interest, including copyright, in and to the

compilation of the Software recorded on the disk(s) or CD-ROM ("Software Media").

Copyright to the individual programs recorded on the Software Media is owned by the

author or other authorized copyright owner of each program. Ownership of the Software and
all proprietary rights relating thereto remain with HMI and its licensers.

3. Restrictions On Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival purposes, or (ii)

transfer the Software to a single hard disk, provided that you keep the original for

backup or archival purposes. You may not (i) rent or lease the Software, (ii) copy or

reproduce the Software through a LAN or other network system or through any com-
puter subscriber system or bulletin-board system, or (iii) modify, adapt, or create

derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You may transfer

the Software and user documentation on a permanent basis, provided that the transferee

agrees to accept the terms and conditions of this Agreement and you retain no copies. If

the Software is an update or has been updated, any transfer must include the most
recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual requirements

and restrictions detailed for each individual program in the "About the CD-ROM" section of

this Book. These limitations are also contained in the individual license agreements recorded

on the Software Media. These limitations may include a requirement that after using the pro-

gram for a specified period of time, the user must pay a registration fee or discontinue use.

By opening the Software packet(s), you will be agreeing to abide by the licenses and restric-

tions for these individual programs that are detailed in the "About the CD-ROM" section and

on the Software Media. None of the material on this Software Media or listed in this Book
may ever be redistributed, in original or modified form, for commercial purposes

5. Limited Warranty.

(a) HMI warrants that the Software and Software Media are free from defects in materials

and workmanship under normal use for a period of sixty (60) days from the date of pur-

chase of this Book. If HMI receives notification within the warranty period of defects in

materials or workmanship, HMI will replace the defective Software Media.

(b) HMI AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO
THE SOFTWARE, THE PROGRAMS, THE SOURCE CODE CONTAINED THEREIN,
AND/OR THE TECHNIQUES DESCRIBED IN THIS BOOK. HMI DOES NOT WARRANT
THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET YOUR REQUIRE-
MENTS OR THAT THE OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have other rights that

vary from jurisdiction to jurisdiction.

6. Remedies.

(a) HMI's entire liability and your exclusive remedy for defects in materials and workman-
ship shall be limited to replacement of the Software Media, which may be returned to

HMI with a copy of your receipt at the following address: Software Media Fulfillment

Department, Attn.: C++ For Dummies, 4th Edition, Hungry Minds, Inc., 10475 Crosspoint

Blvd., Indianapolis, IN 46256, or call 1-800-762-2974. Please allow four to six weeks for

delivery. This Limited Warranty is void if failure of the Software Media has resulted from

accident, abuse, or misapplication. Any replacement Software Media will be warranted

for the remainder of the original warranty period or thirty (30) days, whichever is longer.

(b) In no event shall HMI or the author be liable for any damages whatsoever (including

without limitation damages for loss of business profits, business interruption, loss of

business information, or any other pecuniary loss) arising from the use of or inability to

use the Book or the Software, even if HMI has been advised of the possibility of such

damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability for conse-

quential or incidental damages, the above limitation or exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software for or on
behalf of the United States of America, its agencies and/or instrumentalities (the "U.S.

Government") is subject to restrictions as stated in paragraph (c)(l)(ii) of the Rights in

Technical Data and Computer Software clause of DFARS 252.227-7013, or subparagraphs (c)

(1) and (2) of the Commercial Computer Software-Restricted Rights clause at FAR 52.227-19,

and in similar clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and revokes

and supersedes all prior agreements, oral or written, between them and may not be modified

or amended except in a writing signed by both parties hereto that specifically refers to this

Agreement. This Agreement shall take precedence over any other documents that may be in

conflict herewith. If any one or more provisions contained in this Agreement are held by any
court or tribunal to be invalid, illegal, or otherwise unenforceable, each and every other pro-

vision shall remain in full force and effect.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place -Suite 330, Boston, MA 021 11-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and
change free software—to make sure the software is free for all its users. This General Public

License applies to most of the Free Software Foundation's software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public

Licenses are designed to make sure that you have the freedom to distribute copies of free software

(and charge for this service if you wish), that you receive source code or can get it if you want it,

that you can change the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or

to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if

you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give

the recipients all the rights that you have. You must make sure that they, too. receive or can get the

source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license

which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands

that there is no warranty for this free software. If the software is modified by someone else and

passed on, we want its recipients to know that what they have is not the original, so that any prob-

lems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the

danger that redistributors of a free program will individually obtain patent licenses, in effect

making the program proprietary. To prevent this, we have made it clear that any patent must be

licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

This License applies to any program or other work which contains a notice placed by the copy-

right holder saying it may be distributed under the terms of this General Public License. The
"Program", below, refers to any such program or work, and a "work based on the Program" means
either the Program or any derivative work under copyright law: that is to say, a work containing

the Program or a portion of it, either verbatim or with modifications and/or translated into another

language. (Hereinafter, translation is included without limitation in the term "modification".) Each

licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are

outside its scope. The act of running the Program is not restricted, and the output from the Program

is covered only if its contents constitute a work based on the Program (independent of having been

made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it,

in any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that

refer to this License and to the absence of any warranty; and give any other recipients of the

Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option

offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms

of Section 1 above, provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part contains

or is derived from the Program or any part thereof, to be licensed as a whole at no
charge to all third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print

or display an announcement including an appropriate copyright notice and a notice that

there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is interactive but does not normally

print such an announcement, your work based on the Program is not required to print an

announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that

work are not derived from the Program, and can be reasonably considered independent

and separate works in themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the

whole must be on the terms of this License, whose permissions for other licensees

extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written

entirely by you; rather, the intent is to exercise the right to control the distribution of deriva-

tive or collective works based on the Program. In addition, mere aggregation of another work
not based on the Program with the Program (or with a work based on the Program) on a

volume of a storage or distribution medium does not bring the other work under the scope
of this License.

You may copy and distribute the Program (or a work based on it, under Section 2) in object

code or executable form under the terms of Sections 1 and 2 above provided that you also

do one of the following:

(a) Accompany it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a medium customarily

used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third party,

for a charge no more than your cost of physically performing source distribution, a com-
plete machine-readable copy of the corresponding source code, to be distributed under

the terms of Sections 1 and 2 above on a medium customarily used for software inter-

change; or,

(c) Accompany it with the information you received as to the offer to distribute correspond-

ing source code. (This alternative is allowed only for noncommercial distribution and

only if you received the program in object code or executable form with such an offer, in

accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications

to it. For an executable work, complete source code means all the source code for all mod-
ules it contains, plus any associated interface definition files, plus the scripts used to control

compilation and installation of the executable. However, as a special exception, the source

code distributed need not include anything that is normally distributed (in either source or

binary form) with the major components (compiler, kernel, and so on) of the operating

system on which the executable runs, unless that component itself accompanies the exe-

cutable.

If distribution of executable or object code is made by offering access to copy from a desig-

nated place, then offering equivalent access to copy the source code from the same place

counts as distribution of the source code, even though third parties are not compelled to

copy the source along with the object code.

You may not copy, modify, sublicense, or distribute the Program except as expressly pro-

vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute

the Program is void, and will automatically terminate your rights under this License.

However, parties who have received copies, or rights, from you under this License will not

have their licenses terminated so long as such parties remain in full compliance.

You are not required to accept this License, since you have not signed it. However, nothing

else grants you permission to modify or distribute the Program or its derivative works.

These actions are prohibited by law if you do not accept this License. Therefore, by modify-

ing or distributing the Program (or any work based on the Program), you indicate your

acceptance of this License to do so, and all its terms and conditions for copying, distributing

or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient

automatically receives a license from the original licensor to copy, distribute or modify the

Program subject to these terms and conditions. You may not impose any further restrictions

on the recipients' exercise of the rights granted herein. You are not responsible for enforcing

compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other

reason (not limited to patent issues), conditions are imposed on you (whether by court

order, agreement or otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot distribute so as to satisfy

simultaneously your obligations under this License and any other pertinent obligations, then

as a consequence you may not distribute the Program at all. For example, if a patent license

would not permit royalty-free redistribution of the Program by all those who receive copies

directly or indirectly through you, then the only way you could satisfy both it and this

License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-

stance, the balance of the section is intended to apply and the section as a whole is intended

to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property

right claims or to contest validity of any such claims; this section has the sole purpose of

protecting the integrity of the free software distribution system, which is implemented by

public license practices. Many people have made generous contributions to the wide range

of software distributed through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing to distribute software

through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of

the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those

countries, so that distribution is permitted only in or among countries not thus excluded. In

such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General

Public License from time to time. Such new versions will be similar in spirit to the present

version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version

number of this License which applies to it and "any later version", you have the option of fol-

lowing the terms and conditions either of that version or of any later version published by
the Free Software Foundation. If the Program does not specify a version number of this

License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution

conditions are different, write to the author to ask for permission. For software which is

copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserv-

ing the free status of all derivatives of our free software and of promoting the sharing and
reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-
MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE. YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIB-

UTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES. INCLUDING
ANY GENERAL. SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

Notes

By breaking the seal of this software packet, you

a accept the terms and conditions of the End-User

^ License Agreement and/or the GNU General Public

License included with this product.

Object-oriented
programming —

explained in plain English

Your first aid kit for
building and debugging your programs

Now updated to cover the latest ANSI C++ standards, this friendly

guide gives you a C++ jump start with expanded coverage of beginning

programming techniques. From classes and hierarchies to libraries,

the easy-to-follow explanations of object-oriented and non-object-

oriented C++ concepts and the step-by-step instructions will have you

programming in no time.

Stephen Randy Davis is a software consultant and instructor with

Valtech, Inc. He wrote Windows 95 Programming For Dummies and the

previous editions of C++ For Dummies .

_ Discover
how to:
Write your firstprogram

Create source code

Use the Visual C++ help

system

Build objects

DevelopC++ pointers

Debug yourprograms

y '"85555 03753'" 3 PCs/Programming/C++ 9 780764 H 507465

Register to win cool prizes

Browse exclusive articles

and excerpts

free Dummies Daily

/ newsletter

with authors and
iew other books

Talk to us, ask questions,

get answers

