. . a
Scart writing programs in C++ right away

using this friendly guide \

GNU compiler
‘and all code from the
book on CD-ROM

“

4th Edition

A Reference
for the

Rest of Us!

Stephen Randy Davis

Author of MORE C++ For Dummies:

" C++ For Dummies, bth Edition

BESTSELLING
BOOK SERIES

Declarations

// declaration of a simple type

[const] type objName [= expression]; // declaration of a class object

[const] type objName[(argument 1ist)]; // if no arguments, then the

// default constructor is invoked

// declaration of a function

type fnName([argument Tist]); // if empty, the argument Tist is

// assumed to be void

Declarations have one of the following forms. The intrinsic types are

[<signed | unsigned >Ichar

[<signed | unsigned>] [<short | long>] int
float
double
long double

Users may also define their own types using the c1ass or struct keywords:

<struct | class> ClassName [: [public] BaseClass]

{

public:

// public data members

type dataMemberName;

// publit member functions

type memberFunctionName([arg 1ist]) [{...)]

// const member function

type memberfFunctionName([arg 1ist]) const [{...}]

// virtual member functions

virtual type memberFunctionName([arg list]) [{...}];

// pure virtual member functions

virtual type memberFunctionName([arg list]) = 0;

protected:

// repeat for any protected members};

For Dummies: Bestselling Book Series for Beginners

B C++ For Dummies, 4th Edition

Here, in a nutshell, are a few rules to live by. I've used the following contractions in these rules:
[feature] feature is optional

<{featurel | feature2> either featurel or else feature2

unspecified number of statements or expressions

Expressions

Expressions have both a value and a type. Expressions take one of the following forms:

objName // for a simple object
operator expression // for unary operators
exprl operator expr2 // for binary operators
exprl ? expr2 : expr3 // for the ternary operator

funcName(Largument 1ist]); // for function calls

Operators

lling Book Series logo end all releted trade dress are trademarks or registered tredemarks

Operator Cardinality Associativity ”

Highest precedence 00->. left to right §
I~ 4 - ++— & *(cast) sizeof unary left to right §

1% binary left to right k g

+- binary left to right E

=3

<< >> binary left to right 3 ::5,

<<=>>= binary left to right S

=== binary left to right v e

& binary left to right s

& binary left to right = ;

| binary left to right 'S8

- - g3

&& binary left to right 2t

- B
) Ii binary left to right i%
(3 ternary right to left g

=*=/=%= += = &= A= = <<= >>= binary right to left 5=

Lowest precedence , binary left to right gé
=

e

g2

235

Copyright © 2000 Stephen R. Davis
All rights reserved.

Cheat Sheet $2.95 value. item 0746-X.

Hungl"\' Minds rormoraliformetionsboct Hungry Minds,
call 1-800-762-2974

For Dummies: Bestselling Book Series for Beginners

™ -

References for the
Rest of Us!"

Are you intimidated and confused by computers? Do you find
BESTSELLING that traditional manuals are overloaded with technical details
you'll never use? Do your friends and family always call you to

fix simple problems on their PCs? Then the For Dummies”
BOOK SERIES computer book series from Hungry Minds, Inc. is for you.

For Dummies books are written for those frustrated computer users who know they

aren't really dumb but find that PC hardware, software, and indeed the unique vocabulary of
computing make them feel helpless. For Dummies books use a lighthearted approach,

a down-to-earth style, and even cartoons and humorous icons to dispel computer novices’
fears and build their confidence. Lighthearted but not lightweight, these books are a perfect
survival guide for anyone forced to use a computer.

(

“l like my copy so much | told
friends; now they bought copies.”

—Irene C., Orwell, Ohio

“Quick, concise, nontechnical,
and humorous.”

“Thanks, | needed this book. Now |
can sleep at night.”

— Robin F, British Columbia, Canada

—JayA., Elburn, lllinois

1/01

Already, millions of satisfied readers agree. They have

made For Dummies books the #1 introductory level ﬁ
computer book series and have written asking for more. .
So, if you're looking for the most fun and easy way to Hungry MlndS“‘

learn about computers, look to For Dummies books to
give you a helping hand.

C++ For Dummies® 4th Edition

Published by

Hungry Minds, Inc.
909 Third Avenue

New York, NY 10022
www. hungryminds.com
www.dummies.com

Copyright © 2000 Stephen R. Davis. All rights reserved. No part of this book, including interior design, cover design, and
icons, may be reproduced or transmitted in any form, by any means (electronic, photocopying, recording, or otherwise)
without the prior written permission of the publisher.

Library of Congress Control Number: 00-102505

ISBN: 0-7645-0746-X

Printed in the United States of America

1098

4B/TQ/QR/QS/IN

Distributed in the United States by Hungry Minds, Inc.

Distributed by CDG Books Canada Inc. for Canada: by Transworld Publishers Limited in the United Kingdom; by IDG
Norge Books for Norway; by IDG Sweden Books for Sweden; by IDG Books Australia Publishing Corporation Pty. Ltd.

for Australia and New Zealand; by TransQuest Publishers Pte Ltd. for Singapore, Malaysia. Thailand, Indonesia, and
Hong Kong; by Gotop Information Inc. for Taiwan; by ICG Muse, Inc. for Japan; by Intersoft for South Africa: by Eyrolles
for France; by International Thomson Publishing for Germany. Austria and Switzerland; by Distribuidora Cuspide for
Argentina; by LR International for Brazil; by Galileo Libros for Chile; by Ediciones ZETA S.C.R. Ltda. for Peru: by

WS Computer Publishing Corporation, Inc., for the Philippines; by Contemporanea de Ediciones for Venezuela: by
Express Computer Distributors for the Caribbean and West Indies; by Micronesia Media Distributor. Inc. for Micronesia:
by Chips Computadoras S.A. de C.V. for Mexico; by Editorial Norma de Panama S.A. for Panama; by American Bookshops
for Finland.

For general information on Hungry Minds’ products and services please contact our Customer Care Department within
the U.S. at 800-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

For sales inquiries and reseller information, including discounts, premium and bulk quantity sales, and foreign-language
translations, please contact our Customer Care Department at 800-134-3422, fax 317-572-1002, or write to Hungry Minds.
Inc., Attn: Customer Care Department, 10475 Crosspoint Boulevard, Indianapolis, IN 46256.

For information on licensing foreign or domestic rights, please contact our Sub-Rights Customer Care Department at
212-884-5000.

For information on using Hungry Minds’ products and services in the classroom or for ordering examination copies.
please contact our Educational Sales Department at 800-434-2086 or fax 317-572-4005.

For press review copies, author interviews, or other publicity information, please contact our Public Relations
Department at 317-572-3168 or fax 317-572-4168.

For authorization to photocopy items for corporate, personal, or educational use, please contact Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, or fax 978-750-4470.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST EFFORTS IN
PREPARING THIS BOOK. THE PUBLISIER AND AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT
TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH
EXTEND BEYOND THE DESCRIPTIONS CONTAINED N THIS PARAGRAPH. NO WARRANTY MAY BE CREATED OR
EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ACCURACY AND COMPLETENESS OF
THE INFORMATION PROVIDED HERFEIN AND THE OPINIONS STATED HEREIN ARE NOT GUARANTEED OR WARRANTED
TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUTT-
ABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT
OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL.
OR OTHER DAMAGES.

Trademarks: For Dummies, Dummies Man, A Reference for the Rest of Us!, The Dumimies Way, Dummies Daily. and related
trade dress are registered trademarks or trademarks of Hungry Minds, Inc. in the United States and other countries. and
may not be used without written permission. All other trademarks are the property of their respective owners. Hungry
Minds, Inc. is not associated with any product or vendor mentioned in this book.

HungryMindS‘ is a trademark of Hungry Minds, Inc.

Author’s Acknowledgments

1 find it very strange that only a single name appears on the cover of any
book, but especially a book like this. In reality, many people contribute to the
creation of a For Dummies book. From the beginning, editorial manager Mary
Corder and editorial agent Claudette Moore were involved in guiding and
molding the book’s content. During development, 1 found myself hip-deep in
edits, corrections, and suggestions from project editors Kelly Ewing and
Colleen Williams (third edition), and Susan Pink (first and second editions);
and technical reviewers Jeff Bankston (third edition), Garrett Pease (second
edition), and Greg Guntle (first edition) — this book would have been a
poorer work but for their involvement. And nothing would have made it into
print without the aid of the person who coordinated the first and second edi-
tions of the project, Suzanne Thomas. Nevertheless, one name does appear
on the cover and that name must take responsibility for any inaccuracies in
the text.

| also have to thank my wife, Jenny, and son, Kinsey, for their patience and
devotion. | hope we manage to strike a reasonable balance.

Finally, a summary of the animal activity around my house. For those of you
who have not read any of my other books, I should warn you that this has
become a regular feature of my For Dummies books.

My two dogs, Scooter and Trude, continue to do well although Trude is all
but blind now. Our two mini-Rex rabbits, Beavis and Butt-head, passed on to
the big meadow in the sky after living in our front yard for almost a year and
a half. We acquired two cats, Bob and Marly (both female, by the way),
during the writing of MORE C++ For Dummies. Marly died of kitty leukemia,
but Bob and the family have carried on.

A friend of my sister-in-law was secretly harboring a pot-bellied pig named
Penny in her (the friend’s, not Penny’s) apartment last winter. Due to some
sort of piggy indiscretions, the cover was blown and the apartment manager
threatened Penny with bodily harm (apparently he didn’t keep kosher). We
were forced to spirit Penny away in the back of my Explorer under the cover
of darkness. Penny arrived safely at her new quarters (outside this time),
where she continues to thrive.

If you would like to contact me concerning C++ programming, pot-bellied
pigs, semi-blind dogs, or free-roaming rabbits, feel free to drop me a line at
srdavis@ACM.org.

Publisher’s Acknowledgments

We're proud of this book; please send us your comments through our Online Registration Form
located at www.dummies.com.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Production

Media Development Project Coordinator: Maridee Ennis
Project Editor: Jade L. Williams Layout and Graphics: Beth Brooks,
(Previous Edition: Colleen Williams, Kelly Ewing) Tracy K. Oliver, Brent Savage,

Jacque Schneider, Janet Seib,

Acquisiti itor: i Morningst
cquisitions Editor: Sherri Morningstar Brian Torwelle

C Editor: Christine B
oPY ° T Proofreaders: Laura Albert, Corey Bowen,

Proof Editor: Teresa Artman Susan Moritz, York Production
Technical Editor: Namir Shammas Services, Inc.
Permissions Editor;: Carmen Krikorian Indexer: York Production Services, Inc.
Associate Media Development Specialist: Special Help

Megan Decraene Amanda M. Foxworth

Editorial Manager: Kyle Looper

Media Development Manager:
Heather Heath Dismore

Editorial Assistant: Sarah Shupert

General and Administrative

Hungry Minds Technology Publishing Group: Richard Swadley, Vice President and Executive
Group Publisher; Bob Ipsen, Vice President and Group Publisher; Joseph Wikert, Vice President
and Publisher; Barry Pruett, Vice President and Publisher; Mary Bednarek, Editorial Director;
Mary C. Corder, Editorial Director; Andy Cummings, Editorial Director

Hungry Minds Manufacturing: Ivor Parker, Vice President, Manufacturing

Hungry Minds Marketing: John Helmus, Assistant Vice President, Director of Marketing
Hungry Minds Production for Branded Press: Debbie Stailey, Production Director
Hungry Minds Sales: Michael Violano, Vice President, International Sales and Sub Rights

®

Contents at a Glance

(I E N EENENNENENENNENENNEEENENENEEN NN NN NN N NN EENEENENNEEREREEEEEEE
JREPOAUCHIONe.aeeaenaaneaeneennaeeneaseasasanaesnnsesensesensaeans]

Part I: Introducing C++ Programningcccceeeeeeesa

Chapter 1: Writing Your First C++ Program...........cccccoeeviieiivenieinieneeneeereeseeneereneens 11
Chapter 2: Declaring Variables Constantlyccccoecevviviniieniiicrieneenrieeieneeeseneens 25
Chapter 3: Performing Mathematical Operationscccceeeeeeeeerereiveecsrerereeensnsrenenes 35
Chapter 4: Performing Logical Operationsccco.eoeveievieueceeesieecececeereveneeeevenenens 43
Chapter 5: Controlling Program FIOWccccovririiiiniiiccieeeceeeeee e 57

Part 1l: Becoming a Functional Programmer71

Chapter 6: Creating FUNCHIONScccovuiiiiiniiriiinercieciiiereieeestes e e s s seseans 73
Chapter 7: Storing SEqUENCES iN AITAYSc.c.ccevereeeereirereerirsirereereraesssessssesessesesessssens 85
Chapter 8: Taking a First Look at C++ POINtersccocevevevenenieieieceeieceeeeeeveee 99
Chapter 9: Taking a Second Look at C++ Pointers...........ccceeeeveveereeereeeeeeeereecreceenene 1Ll
Chapter 10: Remaining Functional Featuresccceevveieeniceneresece e 125
Chapter 11: DebUZZING C+ wcccoviiiviiniriiieresieniiiinieerieenseestesesseseesasessessosesassesaesassesassesenes 135

Part 111: Programming with Class............cccccccecueeeeeeeec 159

Chapter 12: Examining Object-Oriented Programmingccccceeeveveiveiveiseiceiicnene 161
Chapter 13: Adding Class £0 C++ wevuiviivierereereeieieeieeseestesseisessessessessessesesesensensessenneasens 165
Chapter 14: Making Classes WOIKc.cccoceniiiiinciiiiinneniiininniiecsctneessecsnesenens 173
Chapter 15: Creating Pointers to ObJects.........cocivvuieirenneeiieeeee e 187
Chapter 16: Protecting Members: Do Not Disturbc.c.cococcivniiiininninnne. 205
Chapter 17: Building and Tearing Down Objects: The Constructor

AN DESTIUCTOT ...veniiiiiiiieiiieiiteie ettt ettt ettt se st et s et ese st se s eaesae e se e eseseeneseetene 213
Chapter 18: Making Constructive Arguments...........ococcveeiviiiincienieiiiinniinicienenns 223
Chapter 19: Copying the Copy Copy Copy Constructorccccoevevvievievennuciennn 241
Chapter 20: Static Members: Can Fabric Softener Help?..........cocccoovvceviicnecoiiencnnene 253

Part IU: Class INAHItANCEc.uueeeeeueaeaennaennaenaaeea 2l]

Part U: Optional Features....... ol . 20 PPy COMBBPUPO | ..

Chapter 24: Overloading OPerators..........cccoeiiuiuiieeniiriienietiieieieeecnereeeeeresesseneseneenees 321
Chapter 25: Overloading the Assignment OPeratorcccceeeeeuiirenenienieescencnes Ber
Chapter 26: Using Stream 1/Occoiiiriiciieieteeccsten et 345
Chapter 27: Handling Errors — EXCEPHIONScoovieiuiiieeiiciiiieieee et 361
Chapter 28: Inheriting Multiple Inheritance...........ccooveiiinniininniiiiiniicns 369
Part Vl: The Part of Tenscccceueeeeeeereeeeenneeeeenenennns 38 1
Chapter 29: Ten Ways to Avoid Adding Bugs to Your Program 383
Chapter 30: The Ten Most Important Microsoft Visual C++ Compiler Settmgs 389

Appendix A: About the CD-ROM.................c...ccccuucc.... 399
Appendix B: Glossary...............uuueeeeeieiiiicicccacccccnnne. 403
Index............. € 0n 0« T T 5 4 T 0 B 44 e sl a R o o TN SN

Hungry Minds End-User License Agreement................4 26
GNU General Public License...............ccccccccueecccieancans 428

Cartoons at a Glance

The 5th Wave By Rich Tennant

The 5th Wave percntenant BY Rich Tennant
UL TWODTW

'S0 1 SAID VATER' WATER! THERE'S A BLG IN MY SOUP!I AND HE

" CAREFUL, SONDANCE, TUIS CRES EL)\ »Cli” UpP 40 '7‘(4:1? FE4- SAYS, "SCRRY, SIR , THE CHEF USED TO PROGRA! AUTERS'
5 e 2 (SR, T 5 GRAM (oM A
TEST pooRLY D'rJ 0 m _UF‘,*IP‘"S LULL WEEK AND HAHA MG:WU mim-mv" e
page 759 page 71
The 5th Wave By Rich Tennan T he Sth Wave By Rich Tennant
EW |
V

page 381

The S[h Wave By Rich T t The 5th Wave By Rich Tennant
B

= TH GREA ~,.mA£-rmmaww&H
TROGRAMMING 15 1T5 MACE SOF TWARE |
’7EILLD’_NT A5 EASY 45 AUTTING [
__ONE RO IN FRONT OF Ti€ CTHER =

pre—
) -

j WITH OBJECT-CRENTED PROGRAWVIG, | o=

1 UNPERSTAND THE “ENCAPSULATION™ £
JND “INHERITANCE® PART PRETTY WELL |
175 THAT DARN' (LOTTERMORAHISM”
THAT S ME

page 271 page 319
Fax: 978-546-7747

E-mail: richtennant@the5thwave.com

World Wide Web: www .the5thwave.com

Table of Contents

® 000000000 800688 EOOOSEGEESESSTESEDEOD

JREFOAUCEIONoveeaaaaaeeaeeeeaeeeeeeeeeeeaeeneeensaeeennanssennsneenns]

What’s in This BOOKccceieiieriiiieieeieie ettt 1
What's 0n the CD......cooveieirieieee ettt 2
WRAL IS CH42n ettt ettt es e eees 2
Conventions Used in This Book. 3
What You're Not to Read............. ced)
Foolish ASSUumptionscccccoeceeivieiniieeeieeeeeen, 4
How This Book Is Organized..........c.cccoeveevevenrennane. 4

At the end of each part.)
Part I: Introducing C++ Programming............... ecctd)
Part lI: Becoming a Functional Programmer...... oo
Part Ill: Programming with Class...................... vetb
Part 1V: Class Inheritance............6
Part V: Optional Features.....)
Part VI: The Part of Tens....... ...
lcons Used in This BOOK.....c..ccccoceievienieiienieniecieciceece e e
Where to Go from Here..........cccooimiiiieeeereccteeeee et erenns 7

Part I: Introducing C++ Programuning..................ccccccee9

Chapter 1: Writing Your First C++ Program 1

Grasping C++ Concepts
What's a program?....
How do 1 program? ...

Installing GNU C++..cocoovivvivinininennce

Creating Your First C++ Program....
Entering the C++ code............
Building your program.............c.ccceeveeveveveenesesesesesesessessnsisseencenees

Executing Your Program
GNU is gUh-NOt WINAOWSooierierieieiierieieerenenrenresreeeeseesesseeneenees
GNU Ct++ NelIP oottt

Reviewing the Annotated Program
Examining the framework for all C++ programs...........c.cccceccooeveucecne 20
Clarifying source code with comments................c.ccocconnniinnninn 20
Basing programs on C++ statements
Writing declarations...........ccccoeievinnnne.
Generating OUEPULccocooiiuieiiiieec ettt

Calculating EXPressionscccocoiiciceiiiiiiiiiciccnic e
Storing the results of expression...................
Examining the remainder of Conversion

xi(/ C++ For Dummies, 4th Edition

Chapter 2: Declaring Variables Constantly

Declaring Variablescccocivioiiniiieniiiie sttt seanes
Declaring Different Types of Variablescccoueveviiviiviivinvenneccnnne,
Reviewing the limitations of integers in C++.
Solving the truncation problem.........c.cc.ccooiiiinnniiinnnccccee
Examining the limitations of floating point..............cccccocoiinnnnne
Declaring Variable Types
Types of constants
Special characters......
Mixed Mode Expressions

Chapter 3: Performing Mathematical Operations 35
Performing Simple Binary Arithmetic
Decomposing EXPressionsccccoovneienueniinuenueneneescececenees
Determining the Order of Operations
Performing Unary Operations
Using Assignment Operators.........coccoeieveriienenieiciiciieiecetee e
Chapter 4: Performing Logical Operations 43
Why Mess with Logical Operations?.........cccccociveienerieeciieeie e ceeeeseeeens 43
Using the Simple Logical Operatorsccocccieieiiiiieicinciecercceeeees 44
Be careful performing logical operations on
floating point variablesccooeeiieiinieieeceeeee e 45
Expressing Binary NUMDErScouoiiiiiiiiiiiiieccccecce e 47
The decimal NUMDbBEr SYStEMccoiiiiiiiiitiiiciccieeierecte et 48
Other NUMDEr SYSLEIMS ...c.eoiiiiiiieieceeee ettt eneeaeas 48
The binary number SYyStem.........ccoccouiiiiiiiiiiiiiiiicc e 48
Performing Bitwise Logical Operations...........cccceceieniiiiiiiniiiiiniiiceiiieiiees 50
The single bit OPeratorsc.ccceocviiiiiiiiiinieicccccic e 51
Using the bitwise Operators........ceecevcecieniiecieiiiiiccicieeceeneie 51
A simple test
Why define such a crazy operator?..........ccocecvviinnciicinniiininennne. 54
Chapter 5: Controlling ProgramFlow 57
Controlling Program Flow with the Branch Commandsccccccccccc.ce. 57
Executing Loops in @ Program.......c..cocoiiiieiniiinicinicciiiccececcceenneeee 59
Looping while a condition is true.......c..cccoeeeeviciniciciicicncnencinnne)
Using the autoincrement/autodecrement feature...............ccoeueeee. 61
USING the fOr 100D ..coueevieiiiieeeee e 62
Avoiding the dreaded infinite 100P.....c..c.ccocoviiniiniiiiicne 65
Applying special 100p CONtrolscoconviiiiiiiiiiiiiiie s 65
Nesting Control COMMANAScccooiiiiiiiiiiieeeec ettt eae e 67

Switching to A Different SUBJECt?.......ccooviiviiiiiiiiiiiii s 69

Table of Contents

Part 1l: Becoming a Functional Programmer 71

Chapter 6: Creating Functionscocvvennna... 13
Writing and Using @ FUNCHIONccooiiiiiiiiviiiiciinc e 74
Understanding the Details of FUNCLiONS........ccooceeviiiniinniiniinieieieiene 76

Understanding Simple functionscc.cccoceceveiniivinereninneenserereoens 77

Understanding functions with arguments............c.ccccococceinnnnenn. 77
Overloading Function Namesccocoeeieieineiiieicnice e e 80
Defining Function Prototypes..........cocoiineennieicnccnecccneceeeee e 82
Variable StOrage TYPEScceimirererenienreninnrennecieriesraiesreesesseseessesessessassoseenss 84

Chapter 7: Storing Sequences in Arraysc.coovvvvnninens 85
Considering the Need for Arrayscccoveiivieivineiinneeenneees 85

USING QN QITAY c.vevvivrireeinrrirrerrenresiessisiessessessessessessessessessessessessessessessessens 87
[NitialiZziNg QN Array.....ccoceeververeervercnicinisieeeesesresesesse st esesseas 89
Accessing too far into an array........c.ccceeceveeceinieeieieieeeeee 90
USING QITAYS?.cvvevverenrerrernerierseriersessessesesessessassessessessessessessessessessessesseos 91
Defining and using arrays of arrays 91

Using Arrays of CharacCtersoceveiveevcecireneiieesecseeiee e 92
Manipulating StrANGScoeeiruieieieeiererere ettt ssessessessessees 94
Writing our own concatenate funCtionocceceeeveveeccnccnececennennes 94
Reviewing the C++ string handling functionsc..cccececeeecnecnd 96
Handling wide characterscccoocoeeveierieineneneeesecescscsie e 97
Avoiding Obsolescent Output FURCHIONSc.coveviviiiniiniineniniiniiiiiiiiene 98
Chapter 8: Taking a First Look at C++ Pointers 99
What's in an AdAress?o.oeiveeieeeieieieieteieeeeeeet v cer e 99
Using Pointer Variables ...101
Comparing pointers and housescccccoeeeviiiciiin e, 102
Using different types of pointers..........ccoccooeviiiiiniiniicnccnienes 103
Passing Pointers to Functions105
Passing by value ... 105
Passing pointer Valuescooveueuieerivciccieiieie v 106
Passing by reference............ccccoccecvcnininnnnnn, .. 107

107

Making Use of a Block of Memory Called the Heap.. .
Limiting sCOpecccceevrvereirnnnnen. ...108
Examining the scope problem109
Providing a solution using the heapcccoooveeiiniiiniineinnnne 110

Chapter 9: Taking a Second Look at C++ Pointers m

Defining Operations on Pointer Variables.........cccoooniiviinnnene 111
Re-examining arrays in light of pointer variablesc.............. 112
Applying operators to the address of an array 114
Expanding pointer operations to a string...........c..cco.....115

Applying operators to pointer types other than char..... ...119
Contrasting a pointer with an array..........ccecevviiiiiennninneninns 119

xv

X(/i C++ For Dummies, 4th Edition

Declaring and Using Arrays of POINterscccocoivevinininninceniene e 121
Utilizing arrays of character stringscccocovevcevcecevevereneceeennene 122
Accessing the arguments to main()....c..ccccveeeveriinenenicenecrececnenen 123

Chapter 10: Remaining Functional Features 125

Breaking Programs APart?cccccooiiieinniiicnrenincneseeressseseeeseesesneesnens 125

Looking at a Large Program..........cccccoieeeineieiinieincncceenene s 126

Examining the Divided FunctionDemo Program............c.ccccccoeieiiennne 127
Separating off the sumSequence() module...........ccccoueveerrenurnnnnene. 128
Generating the remnant MainFunction.cpp module...................... 130
Creating the project fileccooeveiiirerniceeccceee e 131
Creating a project file under GNU C++ ...ocooeveioniiiinieieececeeene 131
Creating a project file under Visual C++ i..... 032

Including the #include Directivec.cocecciiieeniiieineiiiceecccceee e 133

Using the Standard C++ LIDraryccccoeeeeieieeneieecececeeeeeeeeve e 134

Chapter 11: Debugging C++coooiiiiiiiiiiiiiinnn,
ldentifying Types of Errors ...

Choosing the WRITE Technique for the Problem
Catching bug #1cccovvviniiiiniiiicniicccns
Catching BUg #2coiiiieieeeeccrcr et s

Calling for the DEDUZZETccccveviiirieiriieiieieteeieeeteenieseesceresesee e s caae e enas
Defining the debugger.......................

Deciding which debugger to use
Running a test program.................... .
Single-stepping through a program.....
Single-stepping into a function............
Using breakpoints........ccccceccereveeneennen.
Viewing and modifying variables
Budget 1 PrOgram......coccocvioiiiiiiiieieiieeere et ss ettt et et st esne e sae e

Part 111: Programming with Classcccccueeeceunnee. 159

Chapter 12: Examining Object-Oriented Programming 161
Abstracting Microwave OVENScccovueeecreninercerincniesiienensicsissescesseesens
Preparing functional nachos................
Preparing object-oriented nachos...
Classifying Microwave Ovens....................
MV A] S S Sy LSS s e S S 164
Chapter 13: Adding Classto C++ ..ottt 165
Introducing the Class............. Y N . W oou0000 165
The format of @ Classc..cccceeeverriiiiiininiiiie e 166
Accessing the members of @ Class.......cccoceveiiiiiiiiiiiicciinscsnsnsanann 167

EXamn] Cl Do [T oS I ———————— e e 168

Table of Contents x(/i i

Chapter 14: Making ClassesWork 173
Activating Our ODJECtScccccoeiviiieririiiiiceresee et 174
Simulating real world objects 174

Why bother with member functions?.......

Adding a Member Function................ 175
Creating a member function176
Naming class members............. G177

Calling a Member Functioncccceceeeeeceieieceneceerennne. 177
Accessing a member function...........ccccoceoeiiiiiinnnnne. ..178
Accessing other members from a member function 179

Scope Resolution (And I Don’t Mean How Well Your

MiCrosCOPe WOTKS) ..c..cuemiiriiiieiieceeesteete ettt sttt sas s enns 180

Defining a Member Function in the Class182

Keeping a Member Function After Class....... ...184

Overloading Member FUNCtions..........cccoccooviiiiiiiinccece e 185

Chapter 15: Creating Pointers to Objects 187

Defining Arrays of and Pointers to Simple Things........ccccccoceccevervirennnee. 187

Declaring Arrays of Objects

Declaring Pointers t0 ODJecCtS.......c.cooiiiiieieiieciecieeeseestesee e 189
Dereferencing an object pOINter........ccccoveeieeieeneeiienenienienienieisensennens 190
Shooting arrow pointers

Passing Objects to FUNCHIONScooeeuiiiiiiieececeeeeeeee e
Calling a function with an object valueccccovcieenerrieneiceneeenne. 191
Calling a function with an object pointer...........cccoeeeieveerereeseennens 192
Why pass pointers to functions when you can pass

the object itself?.......cooiiiiiiiii e
Calling a function by using the reference operator ...

Returning to the Heapcccooovieiiiiioiiiiieeeeceeceeecee ..

Linking up with Linked LiStS.......cccooiiiiiiiiieeeeeeecceee e
The array data StruCtUrecooceeieniiieieeceeeeece e
The linked list L
Performing other operations on a linked list.........c.ccccocennniniiine
Properties of linked liStS.......ccoveeriiieiiieie et

Hooking Up with a LinkedListData Program...........ccccecccuviinninninnininns

Chapter 16: Protecting Members: Do Not Disturb

Protecting MEemDBETSccccoviiiiiiiiiiiiicieciier ettt sn e sae e
Why you need protected members

Discovering how protected members work

Making an Argument for Using Protected Members..

Protecting the internal state of the classcccoceecvviiiinnnnnnnn.
Using a class with a limited interfacec.ccccocoovvevieiiiiiicninncnnnns

Giving Non-Member Functions Access to Protected Members.
Why do | need friends? (1 am a rock, | am an island)

XUIf C++ For Dummies, 4th Edition

Chapter 17: Building and Tearing Down Objects:

The Constructor and Destructorcccvvviinnnnn. 213
Creating ODJECEScoeuieeeieruenieteeeeesteteeeetenesee st seass et essssesesseseesaseseseananas 213
USING CONSIUCTOTS «.cueiieiiieteieiee et eteeeeieteaee st e etesees et esse s nseseae e s enens 214

Explaining the need for constructorscccccecvveviieecceennene. 214
Making constructors WOrkcocoeeeieueiiecicesteeeieeeeeeeee e e 216
Understanding the DeStrucCtorcccocoeiivieineieeieeee e 220
Why you need the destructorcccccoveeevcinnecncccreneeeneeenenen. 220
Working with destructors..........cooiiiiiininicicciinncecceneeseeeeceneenn. 220

Chapter 18: Making Constructive Arguments 223

Outfitting Constructors with Argumentscccccovvvinniniinccneennnn. 223
Justifying CONSIIUCLOTSceuieiierieirieiieiriet et et ene et eneaenan 224
USING @ CONSIIUCLOT? ...oviieeieiiieiieieeeteeeteste e et aeee e s s e e seseneene 224

Overloading the Constructor (Is That Like Placing Too

Many Demands on the Carpenter?)cccooeveerenreeevenesenenesenenen. 227

Defaulting Default Constructors.. ..229
Constructing Class MEMDErS........cccoouvieiiiiiiieieeeieiee et 231

Constructing the Order of CoOnstructioncoceeeeiireceneniecieceeeenenn 236
Local objects construct in order..........ccooeeeeeveeeeesieeccesiecceeeeeeneenns 236
Static objects construct only Oncecccceceveveveeceeneecieneseeee e 236
All global objects construct before main()

Global objects construct in no particular orderc........... 238
Members construct in the order in which they are declared.......239
Destructors destruct in the reverse order

of the CONStIUCLOrSc.ocoiiiiiiiiiiiii e 240

Chapter 19: Copying the Copy Copy Copy Constructor 24
Copying an Object........ 241

Why do I need it?.................... 241

Using the copy constructor .. 242

The Automatic Copy CONStrUCIOT.....coiiiiiiiieecieeeeeeeeee ettt st 244
Creating Shallow Copies versus Deep COPIesc.ccccoeeerveinircicicriucniaenes 246

It's a Long Way to Temporariesc.cceevvrneiniinninicnineiiencnicicicnenens 249
Chapter 20: Static Members: Can Fabric Softener Help? 253
Defining a Static MEMDETooiioiieieiiiciii i 253

Why do I need them? ..o 253

Using static members 254

Referencing static data members.
Uses for static data members ...
Declaring Static Member Functions....... ;
A Budget with Class — BUDGET2.CPPcccoooiiiiiiiiiiiiiicciiiiiie 2

Table of Contents

Part 1U: Class Inheritance................ueeeeeeuenneeeannennnnnn 271

Chapter 21: InheritingaClasscoiua... 273
Do I Need INheritance?ccocveeeeoveeuecieieeeeeieeeeent v eseese s esseneeneone 274
How Does a Class INNErit?..........ccveveiuieiiiiiecceeeeeeeceee e 276

Constructing a SUDCIASSccoeieeerieiriiieiiesie et 278
Having a HAS_A Relationshipccccoeoveieoiiinieiieceecccr e 279
Chapter 22: Examining Virtual Member Functions:
AreTheyforReal? ..., 281
Why Do | Need Polymorphism?cccoceviiieveneiennineeniceeree s 284
How Does Polymorphism Work?...........ccoooveinmiinnnnneicneeeeceeeee 286
Making Nachos the Polymorphic Way........cccecoueieieeeneieecececeeeeereeeenene
When Is a Virtual Function Not?..............
Considering Virtual Considerationscccoceeeveeeeeeeeeeeereeeeeereeenennnes
Chapter 23: Factoring Classesc.c.coiiiiiinnnnnn.. 295
FACTOTING ..ottt et st eae et er et v aetea s enesnenesnen 296

Implementing AbStract ClasSeS......ccceieiereeieiiceeieesieeeseesseeees et eneanens 300
Describing the abstract class conceptc.ccoeeveveeennenenecncncenns 302

Making an honest class out of an abstract class...........cccccocceverene 303
Passing abstract Classes.......coceevveeeiieeiienenceeisieceeseee e 305
Declaring pure virtual functions — is it really necessary? 306

Trying to Rationalize My Budget: BUDGET3.CPP.........ccccceiiinicinnnnne. 308

Part U: Optional Features..............ccccccecccuuneaecaaacnnnneae 319

Chapter 24: Overloading Operatorscccovuennn 321
Overloading Operators — Can’t We Live Together in Harmony? 822

How Does an Operator Function and a Function Operate?.................... S
Taking a More Detailed LOOKcccocerciiciiiiiiiiiniiieseciiceiecienccn 326
Considering the operator+() case..... w326
Considering the operator++() Case........cccevevvuevireriscvenenicicrisiennenes 328

Coding Operators as Member FUNCLIONSc.cccccovveniiiiniiiinneninncinnns 329
Suffering through Yet Another Overloading Irritatione331

Overloading Operators Using Implicit Conversioncc.ccovvinenene. 332
Promoting user defined objectscccccoveiviiiiniiniiiine 333
Defining a Cast OPeratorco.ececcevivinireninininiineniecsnie s seeas 334

Defining the rules for implicit conversions..........cccocceceeiniiininnn. 335

xix

XX

C++ For Dummies, 4th Edition

Chapter 25: Overloading the Assignment Operator 337

Overloading the Assignment Operator Is Critical.........ccccceeeeereicrennnnens 337
Finding Out How to Overload the Assignment Operator........................ 338
Creating shallow copies is a deep problemcccccccevieveecnnenee. 340
Going to C++ member-by-member
Returning from over-C’s assignments
Providing member protection..........c....ccccc.c.....

Chapter 26: Using Stream 1/0coiiiiiiiiininn,

Diving into Stream 1/O ..ot
Examining the fstream Subclasses
Using the strstream Subclasses

Manipulating Manipulators...........ccocoviiiiiniiiiiiiieeene
Writing Custom INSEITerscccoiieiiiiiiniiieieieeee et
Generating Smart INSErters...........coevvinieevinieeie et ceeeeesenes

Chapter 27: Handling Errors — Exceptions 361

Justifying a New Error Mechanism?cccocoeviveienenicinenee e 362
Examining the Exception Mechanism.......cccccocevceieveieiicieeceecceeeeeveenene 364
What Kinds of Things Can I Throw?ccoecovieieininciecieeeeeceeee e 366

Chapter 28: Inheriting Multiple Inheritance369

Describing the Multiple Inheritance Mechanism
Straightening Out Inheritance Ambiguities
Adding Virtual Inheritance..........cccoeveevveenvenvereecncennen.
Constructing the Objects of Multiple Inheritance
Voicing a Contrary OPiNiONccucceieeeeeeeeseeieseerescoreetest e nrceneee e eesneane

Part Ul: The Part of Tens..........uueeeeeeeeeeececccccsccnnnnneeens 38 1

Chapter 29: Ten Ways to Avoid Adding Bugs to Your Program 383
Enabling All Warnings and Error Messagescccccccviveiciiniicccnincnnne. 383
Insisting on Clean Compiles..........cccviiiiiiininiiininiiiccicccre e 384
Adopting a Clear and Consistent Coding Style.........ccocoociiiiiiiiiniicnnen. 384

Limiting the VISiDIlityccccoeeeiiiieiiciiiiin e 385
Commenting Your Code While You Write Itcccocooiiiiniiiiiiinnn, 386
Single-Stepping Every Path at Least Once ..o, 387
Avoid Overloading Operators

Heap Handlingcccoeveveeieininicnnnnne

Using Exceptions to Handle Errors.........ccoooviinniiinininincne. 388

Avoiding Multiple Inheritance ..., 388

Table of Contents

Chapter 30: The Ten Most Important Microsoft
Visual C++ Compiler Settingscoooue.s. 389

Generating a Command Line Programcccccccceeeeveeeceicnecceeseieiencnnes 390
Changing Project Settingscc.........

Choosing General Settings...........cccccvenenne

Selecting Settings for Debug....................

Choosing General Options for C/C++
Controlling C++ Language Settings

Choosing Code Generation Settingsc.ccecueeeveeiecreceeceecennneenens
Customizing with the Code Generation Window
Controlling Compile OptimiZationsccccceeoeeeeninenieeeees ettt
Selecting Precompiled Headers..........ccocoeiiiiiiiiieseecececeeeeceee e

Appendix A: About the CD-ROMc...ccccuueaaaennen.

System ReqUIrementscccocevuevuerierienienieiiene ettt ee e se e saeeneene
Using the CD with Microsoft Windows..........ccceeeccenercccciecnn.

What YOU'll FINA .o seeeeeeene
If You've Got Problems (Of the CD Kind)cccooevvivivevenineniiincnennn

Appendix B: Glossary.............cceeeccvueeeiiineeciiirenecannnnn 503
(. OO POPRPRPRRSPPRY /1 4
Hungry Minds End-User License Agreement 426
GNU General Public Licenseccccueecccuueeccanann 428

xxi

Introduction

About This Book

Welcome to C++ For Dummies, 4th Edition. Think of this book as C++: Reader’s
Digest Edition, bringing you everything you need to know without the boring
stuff.

What’s in This Book

C++ For Dummies is an introduction to the C++ language.

C++ For Dummies starts from the ground floor: It doesn’t assume that you
have any knowledge of programming (this is different from previous editions,
which assumed a prior knowledge of C).

Unlike other C++ programming books, C++ For Dummies considers the “why”
just as important as the “how.” The features of C++ are like pieces of a jigsaw
puzzle. Rather than just present the features, I think it's important that you
understand how they fit together.

If you don’t understand why a particular feature is in the language, you won't
truly understand how it works. After you finish this book, you’'ll be able to
write a reasonable C++ program, and, just as important, you’ll understand
why and how it works.

C++ For Dummies doesn’t cover Windows programming. Finding out how to
program Windows in C++ is really a two-step process. First, you need to master
C++. That accomplished, you can move on to Windows. And for that, you could
do worse than (watch out for shameless plugs) Windows 98 Programming For
Dummies (of course, published by IDG Books Worldwide, Inc.).

2

C++ For Dummies, 4th Edition

What'’s on the CD

The CD-ROM included with C++ For Dummies contains the source code to the
examples in this book. This can spare you considerable typing.

The CD-ROM also contains the GNU C++ development environment.

Your computer can't execute a C++ program directly (not even a Pentium III).
You first need to run your C++ programs through a C++ development environ-
ment, which spits out an executable program. (Don’t worry, this procedure is
explained in Chapter 1.) The GNU C++ contained on the enclosed CD-ROM is
just such an environment.

GNU C++ is not some reduced capability, time-limited shareware package.
The enclosed GNU C++ is a fully functional, American National Standards
Institute (ANSI) standard compliant development tool. GNU C++ can generate
the same programs that the big boy can.

Of course, the examples contained in C++ For Dummies are compatible with
GNU C++. The examples are just as compatible with any other standard ANSI
C++ environment — feel free to use your favorite C++ tool, such as Microsoft
Visual C++ — to build the programs in this book.

What Is C++?

C++ is an object-oriented, low-level ANSI and ISO standard programming lan-
guage. Object-oriented means that C++ supports programming styles that sim-
plify the building of large-scale, extensible programs. As a low-level language,
C++ can generate very efficient, very fast programs. The ANSI and
International Standards Organization (1SO) certifications make C++ a portable
language. C++ programs are compatible with almost all modern development
environments.

C++, as the name implies, is the next generation of the C programming lan-
guage: the result of adding New Age academic computer linguistic thinking to
that old workhorse C. Anything C can do, C++ can do, too. C++ can even do it
the same way. But C++ is more than just C with a new coat of paint slapped
on. The extensions to C++ are significant and require some thought and some
getting used to, but the results are worth it.

The experienced C programmer will find C++ both exciting and frustrating.
Just like a German reading Dutch — there's enough similarity that the C pro-
grammer can almost make sense out of a C++ program but just enough differ-
ence that it isn't quite possible. This book will help you get from C to C++ as
painlessly as possible; however, C++ For Dummies, 4th Edition, doesn’t
assume that the reader knows anything about C language.

Introduction 3

Conventions Used in This Book

When | describe a message or information that you see on screen, it appears
like this:

Hi mom!
In addition, code listings appear as follows:

// some program
void main()
{

}

If you are entering these programs by hand, you must enter the text exactly
as shown with one exception: The number of spaces is not critical, so don’t
worry if you enter one too many or one too few spaces.

Words that are not really English words but are computer words, such as
commands or function names, appear 1ike this. Function names are
always followed by an open and closed parenthesis like
myFavoriteFunction().

Sometimes the book directs you to use specific keyboard commands to get
things done. For example, when the text instructs you to press Ctrl+C, it
means that you should hold down the Ctrl key while pressing the C key, and
then release both together. Don’t type the plus sign.

Sometimes I'll tell you to use a menu command, like this:
Filec: Open

This line means to use the keyboard or mouse to open the File menu and
then choose the Qpen command. (The underlined letters are the keyboard
hot keys, which let you use the menus without reaching for your mouse. To
use them, first press the Alt key. In the preceding example, you would press
and release the Alt key, press and release the F key, and then press and
release the O key.)

What Vou've Not to Read

C++ is a big pill to swallow. There are the easy parts and the not-so-easy
parts. To keep from swamping you with information that you may not be
interested in at the moment, technical stuff is flagged with a special icon. (See
the section “Icons Used in This Book.™)

4

C++ For Dummies, 4th Edition

In addition, certain background information is stuck into sidebars. If you feel
the onset of information overload, feel free to skip these sections during the
first reading. (Remember to read them sometime, though. In C++, what you
don’t know will hurt you — eventually.)

Foolish Assumptions

How

C++ For Dummies, 4th Edition, makes no assumptions about the reader’s pro-
gramming experience, or lack thereof. Of course, it would help if you had
turned a computer on before, but it's not an absolute necessity.

Previous versions of C++ For Dummies assumed that you already know at
least some C. The feeling was that the C++ student should learn C first.
Assuming a background in C turned out to be a mistake. First of all, many of
the principles of C++ are fundamentally different than those behind C, even
though the syntax looks deceptively similar. In addition, most students of C++
today are programming newcomers rather than C retreads.

This fourth edition of C++ For Dummies begins with basic programming con-
cepts. The book works its way through simple syntax into the care and feed-
ing of basic programs right into object-oriented concepts. The reader who
has digested the entire contents of the book should have no trouble impress-
ing his friends and acquaintances at parties.

This Book Is Organized

Each new feature is introduced by answering the following three questions:

v What is this new feature?
1 Why was it introduced into the language?

v How does it work?

Small pieces of code are sprinkled liberally throughout the chapters. Each
demonstrates some newly introduced feature or highlights some brilliant
point I'm making. These snippets may not be complete and certainly don’t do
anything meaningful.

Note: Due to the margins of the book, very long lines of code continue to a
second line. This arrow appears at the end of those lines of code to remind
you to keep on typing — don’t press the Enter key yet! | have tried diligently
to keep these run-on coding sentences to a minimum (even if | don't do the
same in my English sentences).

Introduction 5

At The End of Each Part. . .

In addition, a series of BUDGET programs appears at the end of Parts II, 1lI,
and IV. These programs are large enough that you can see a “real” program in
action.

I think it’s important to see the features of C++ working together in a com-
plete program. 1 get distracted, however, when I'm forced to wade through
many different example programs. I spend more time figuring out what each
program does than understanding the language features it contains. In addi-
tion, 1 have difficulty comparing them because they don’t do the same thing.

I use one simple example program, BUDGET. This program starts life as a
simple, functionally oriented program. Subsequent versions incorporate the
features presented in each new part.

By the time you reach the end of the book, BUDGET has blossomed into a
complete C++ debutante ready for the object-oriented cotillion. Some may
find this a ghastly waste of time. (If so, just skip it and keep it to yourself — |
convinced my editor that it was a really neat idea.) However, | hope that as
you see BUDGET evolve, you'll see how the features of C++ work together.

Part I: Introducing C++ Programming

Part I starts you on your journey. You begin by examining what it means to
write a computer program. From there, you step through the syntax of the
language (the meaning of the C++ commands).

Part 11: Becoming a Functional
Programmer

In this part, you expand upon your newly gained knowledge of the basic com-
mands of C++ by adding the capability to bundle sections of C++ code into
modules and reusing these modules in programs.

In this section, I also introduce that most dreaded of all topics, the C++
pointer. If you don’t know what that means, don’t worry — you'll find out
soon enough.

6

C++ For Dummies, 4th Edition

Part 111: Programming with Class

The plot thickens in this part. Part lll begins the discussion of object-oriented
programming. Object-oriented programming is really the reason for the exis-
tence of C++. Take the OO features out of C++ and you're left with its prede-
cessor language, C. I discuss things such as classes, constructors,
destructors, and making nachos (I'm not kidding, by the way). Don't worry if
you don’t know what these concepts are (except for nachos — if you don't
know what nachos are, we're in big trouble).

Part IV: Class Inheritance

Inheritance is where object-oriented programming really comes into its own.
Understanding this most important concept is the key to effective C++ pro-
gramming and the goal of Part IV. There's no going back now — after you've
completed this part, you can call yourself an Object-Oriented Programmer.
First Class.

Part U: Optional Features

By the time you get to Part V, you know all you need to program effectively in
C++. 1 touch on remaining, optional issues. You may want to hold off reading
these chapters until you stop feeling lightheaded from information overload.

Part Ul: The Part of Tens

What For Dummies book would be complete without The Part of Tens? in the
first chapter in Part VI, you find out the best ways to avoid introducing bugs
into your programs.

Have you noticed how many different compiler options there are these days?
How do 1 know whether | want my v_table pointer to follow my member
pointer? And what's the alternative to fast floating point? Slow floating point?
I guide you through these options, pointing out those that are important and
those that are better left alone.

Introduction 7

leons Used in This Book

This is technical stuff that you can skip on the first reading.

Tips highlight a point that can save you a lot of time and effort.

Alerts you to examples and software that appear in this book’s CD-ROM.

Remember this. It’s important.

Remember this, too. This one can sneak up on you when you least expect it
and generate one of those really hard-to-find bugs.

Where to Go from Here

Finding out about a programming language is not a spectator sport. I'll try to
make it as painless as possible, but you have to power up the ol’ PC and get
down to some serious programming. Limber up the fingers, break the spine
on the book so that it lies flat next to the keyboard (and so that you can’t
take it back to the bookstore), and dive in.

Partl

Introducing G++
Programming

The 5th Wave By Rich Tennant

DAY I PEALLY HIT BERTHA JUST HOW OBSESSED HER HUSBAND
HAD BECOME WITH HIS COMPUTER.

In this part . . .

Both the newest, hottest flight simulator and the sim-
plest yet most powerful accounting programs use the
same basic building blocks. In this part, you discover the
basic features you need to write your killer application.

Chapter 1
Writing Your First C++

Program
In This Chapter
» Finding out about C++
Installing the GNU C++ program from the enclosed CD-ROM
Creating your first C++ program
Executing your program

Okay, so here we are. No one here but just you and me. Nothing left to do
but to get started. First, let’s begin with a few fundamental concepts.

A computer is this amazingly fast but incredibly stupid machine. A computer
can do anything you tell it (within reason) but it does exactly what it’s told —
nothing more and nothing less.

Perhaps unfortunately for us, computers don’t understand any reasonable
human language — they don’t speak English either. Okay, 1 know what you're
going to say: “I've seen computers that could understand English.” What you
really saw was a computer executing a program that could meaningfully
understand English. (I'm still a little unclear on this computer-understanding-
language concept, but then | don’t know that my son understands my advice,
either, so I'll let it slide.)

Computers understand a language variously known as computer language or
machine language. It’s possible but extremely difficult for humans to speak
machine language. Therefore, computers and humans have agreed to sort of
meet in the middle using intermediate languages such as C++. Humans can
speak C++ (sort of) and C++ is converted into machine language for the com-
puter to understand.

7 2 Part I: Introducing C++ Programming

Grasping C++ Concepts

In the early seventies, a consortium of really clever people worked on a com-
puter system called Multix. The goal of Multix was to provide inexpensive
computer access in all houses to graphics, e-mail, stock data, and pornogra-
phy (okay, | slipped in the pornography part). Of course, this was a com-
pletely crazy idea and the entire concept failed.

A small team of engineers working for Bell Labs decided to save some portion
of Multix in a very small, lightweight operating system that they dubbed Unix
(Un-ix, Mult-ix, get it?).

Unfortunately for these engineers, they didn’t have one large machine but a
number of smaller machines each from a different manufacturer. The stan-
dard development tricks of the day were all machine dependent — they
would have to rewrite the same program for each of the available machines.
Instead, these engineers invented a small, powerful language, named C.

C was indeed a powerful language, and it caught on like wildfire. However,
new programming techniques were devised (most notably object-oriented
programming) that left the C programming language behind. Not to be out-
done, the engineering community added these new features to the C lan-
guage, and the result was called C++.

The C++ language consists of:

' ¥ A vocabulary of commands that humans can understand and that can be
converted into machine language fairly easily

and

1+ A language structure (or grammar) that allows humans to combine these
C++ commands into a program that actually does something (well,
maybe does something)

Note: The vocabulary is often known as the semantics, while the grammar is
the syntax.

What's a program?

A C++ program is a text file containing a sequence of C++ commands put
together according to the laws of C++ grammar. This text file is known as the
source file (probably because it's the source of all frustration). A C++ source
file carries the extension .CPP just as a Microsoft Word file ends in .DOC or an
MS-DOS batch file ends in .BAT. The concept extension .CPP is just a conven-
tion, but it's used almost exclusively in the PC world.

Chapter 1: Writing Your First C++ Program ’3

The point of programming is to write a sequence of C++ commands that can

be converted into a machine language program that does whatever it is that

we want done. Such machine executable programs carry the extension .EXE.
The act of creating an executable program from a C++ program is called com-
piling (or building — there is a difference, but it’s small).

That sounds easy enough — what'’s the big deal? Keep going.

How do | program?

To write a program, you need two things: an editor to build your .CPP source
file with and a program that converts your source file into a machine exe-
cutable .EXE file to carry out your commands. The tool that does the conver-
sion is known as a compiler.

Nowadays, tool developers generally combine the compiler with an editor
into a single work-environment package. After entering your program, you
need only click a button to create the executable file.

The most popular of all C++ environments is Microsoft’s Visual C++.. All of the
programs in this book compile and execute with Visual C++; however, many
of you may not already own Visual C++ and at $250 bucks a pop, street price,
this may be a problem.

Fortunately, there are public domain C++ environments — the most popular
of which is GNU C++. The most recent version of GNU C++ environment is
included on CD-ROM enclosed at the back of this book. (You can download
the absolute most recent version off the Web at www.delorie.com/djgpp,
if you prefer.)

You can download public domain programs from the Internet. Some of these
programs are not free — you are either encouraged to or required to pay
some usually small fee. You do not have to pay to use GNU C++.

GNU is pronounced “guh - new.” GNU stands for the circular definition “GNU
is Not UNIX.” This joke goes way back to the early days of C++ — just accept
it as is. GNU is a series of tools built by the Free Software Foundation.

GNU C++ is not some bug-ridden, limited edition C++ compiler from some fly-

by-night group of developers. GNU C++ is a full-fledged C++ environment. GNU
C++ supports the entire C++ language and executes all of the programs in this
book (and all other C++ book).

GNU C++ is not a Windows development package for the Windows environ-
ment. You'll have to break open the wallet and go for a commercial package
like Visual C++.

’ 4 Part I: Introducing C++ Programming

Follow the steps in the next section to install GNU C++ and build your first
C++ program. This program’s task is to convert a temperature entered by the
user in degrees Celsius into degrees Fahrenheit.

Installing GNU C++

C++ For Dummies, 4th Edition, comes with a public domain GNU C++ develop-
ment environment, which can be used to compile and test each of the pro-
grams in this book. You do not need to install GNU C++ if you prefer to use a
C++ package that you already own, such as Visual C++. The following steps
guide you through the installation of the GNU C++ compiler.

To install the items from the CD to your hard drive, follow these steps.

1. Insert the CD into your computer’s CD-ROM drive.
Give your computer a moment to take a look at the CD.

2. When the light on your CD-ROM drive goes out, double-click the My
Computer icon. (It's probably in the top-left corner of your desktop.)

The My Computer window opens showing all the drives attached to your
computer, the Control Panel, and a couple other handy things.

3. Double-click the icon for your CD-ROM drive.
Another window opens, showing you all the folders and files on the CD.
4. Double—click the file called License.txt.

This file contains the license that you agree to by using the CD. When
you are finished reading the license, close the program.

5. Double-click the file called Readme.txt.

This file contains the most up-to-date information about the code.

Creating Your First C++ Program

In this section, you create your first C++ program. You first enter the C++
code into a file called CONVERT.CPP, and then convert the C++ code into an
executable program.

Entering the C++ code

The first step to creating any C++ program is to enter C++ instructions using a
text editor. The heart of the GNU C++ package is a utility known as rhide. At its

core, rhide is an editor that links the other facilities of GNU C++ into an inte-

Chapter 1: Writing Your First C++ Program

grated package. You use rhide to create Convert.cpp later in this chapter.

1. Open an MS-DOS window by clicking the MS-DOS icon under the

Programs menu.

GNU C++ is a command line utility. You will always start rhide from an

MSDOS prompt.

2. Create the directory c: \CPP_FD\Chap01 (assuming that your main

drive is drive C).

You can use whatever directory name you like, but it’s a lot easier to manipu-
late MS-DOS directory names that don’t contain any spaces. It's easier yet to

use directory names that are eight characters or fewer in length, but even |
have to draw the line somewhere.

Within Chap01, enter the command rhide at the MS-DOS prompt.

Create an empty file by entering New under the File menu. A blank window
opens. Enter the following program exactly as written.

a\J

Don’t worry too much about indentation or spacing — it isn’t critical whether
a given line is indented two or three spaces, or whether there are one or two

spaces between two words. C++ is case sensitive, however, so you need to
make sure everything is lowercase.

The rhide interface

The rhide interface looks fundamentally differ-
ent than a Windows-oriented program.
Windows programs “paint” their output to the
screen. This gives Windows programs a more
refined appearance.

By comparison, the rhide interface is based on
characters. rhide uses a number of blocking
characters available in the PC arsenal to simu-
late a Windows interface — simulate is a strong
word here. This gives rhide a less than elegant
appearance. For example, rhide doesn’t support

resizing the window away from the 80x25 char-
acter display which is the standard for MS-DOS
programs. rhide does support most of the fea-
tures you're used to — drop-down menus, mul-
tiple windows, mouse interface, and speed
keys, for example.

For those of you old enough to remember, the
rhide interface looks virtually identical to the
interface of the now-defunct Borland suite of
programming tools.

15

10

Part I: Introducing C++ Programming

B\

You can cheat and copy the Conversion.cpp file contained on the enclosed
CD-ROM in directory \programs\Chap01.

//

// Program to convert temperature from Celsius degree
// units into Fahrenheit degree units:

// Fahrenheit = Celsjus * (212 - 32)/100 + 32

//

#include <stdio.h>

#include <iostream.h>

int main(int nNumberofArgs, char* pszArgs[l)
{
// enter the temperature in Celsius
int celsius;
cout << "Enter the temperature in Celsius:";
cin >> celsius;

// calculate conversion factor for Celsius
// to Fahrenheit

int factor;

factor = 212 - 32;

// use conversion factor to convert Celsius
// into Fahrenheit values

int fahrenheit;

fahrenheit = factor * celsius/100 + 32;

// output the results
cout << "Fahrenheit value is:";
cout << fahrenheit;

return 0;
}

After you enter the code shown, choose Save As under the File menu to save
the file under the name Conversion.cpp.

I know that it may not seem all that exciting, but you've just created your first
C++ program!

Building your program

After you've saved your Conversion.cpp C++ source file to disk, it's time to
generate the executable machine instructions.

To build your Conversion.cpp program, select the Make option under the
Compile menu, or simply click F9. rhide opens a small window at the bottom
of the window to display the progress of the build process. If all goes well,
the message Creating Conversion.exe is followed by no errors.

Chapter 1: Writing Your First C++ Program

GNU C++ installation errors

A number of common errors might happen
during the installation process to spoil your out-
of-the-box programming experience. The two
most common error messages don’t become
obvious until you try to compile your program.

The message Bad command or file name
means that MS-DOS can'tfind gcc.exe, the GNU
C++ compiler. Either you didn't install GNU C++
properly or vyour path doesnt include
c:\djgpp\bin where gcc.exe resides.Try
reinstalling GNU C++ and make sure thatthe com-
mand SET PATH=c:\djgpp\bin;%PATH%
isinyour autoexec.bat file. Reboot.

The message gcc.exe: Conversion.cpp:
No such file or directory (ENOENT)
indicates that gcc doesn’t know that you're using
long file names {as opposed to old MS-DOS 8.3
file names). To correct this problem, edit the file
c:\djgpp\djgpp.env.Setthe LFN property
toY.

One final warning, GNU C++ doesn’t understand
file names containing spaces no matter what
the value of the long-file-name flag.

GNU C++ generates an error message if it finds any type of error in your C++
program. Coding errors are about as common as snow in Alaska. You'll
undoubtedly encounter numerous warnings and error messages, probably
even when entering the simple Conversion.cpp. To demonstrate the error
reporting process, let’s change Line 14 from cin >> celsius; tocin >>>

celsius;

17

This seems like an innocent enough offense — forgivable to you and me per-
haps, but not to C++. rhide generates the following messages during the build
process:

Compiling: Conversion.cpp

In function 'int main(int, char **)':
Conversion.cpp(14) Error: parse error before '>'
There were some errors

This error indicates that GNU C++ can’t understand what the “>>>"on Line 14
means.

The term parse means to convert the C++ commands into something that the
machine code generation part of the process can work with.

Edit the file and remove the extra ‘>’ to fix the problem. Press F9 to build
Conversion.exe successfully.

Part I: Introducing C++ Programming

Why is C++ so picky?

C++ was able to determine without a doubt that
| had screwed up in the previous example.
However, if GNU C++ can figure out what | did
wrong, then why doesn't it just fix the problem
and go on?

The answer is simple but profound. GNU C++
thinks that | mistyped the ““>>" symbol but it
may be mistaken. What could have been a
mistyped command may actually be some other,

simply corrected the problem, GNU C++ would
have masked the real problem.

Finding an error buried in a program that builds
without error is difficult and time consuming. It's
far better ta let the compiler find the error if at all
possible. Generating a compiler erroris a waste
of the computer’s time — forcing me to find a
mistake that GNU C++ could have caughtis a
waste of my time. Guess which one | vote for?

completely unrelated error. Had the compiler

Executing Your Program

It's now come time to execute your new creation . . . that is, to run your pro-
gram. You will run the CONVERT.EXE program file and provide it input to see
how well it works.

To execute the Conversion program, click the Run item of the Run menu or
press Ctrl+F9.

A window opens immediately, requesting a temperature in Celsius. Enter a
known temperature, such as 100 degrees. After you press Enter, the program
returns with the equivalent temperature of 212 degrees Fahrenheit. However,
because rhide closes the window as soon as the program terminates. you do
not have time to see the output before the window closes. Rhide opens an
alert box with the message that the program terminated with an error code of
zero. Despite the name “error code,” a zero means that no error actually
occurred.

To see the output from the now-terminated program, click the User Screen
menu item in the Windows menu or press Alt+5. This window displays the
current MS-DOS window. In this window. vou see the last 25 lines of output of
the program, including the calculated Fahrenheit temperature.

Congratulations! You just entered, built, and executed vour first program by
using GNU C++.

Chapter 1: Writing Your First C++ Program

GNU is guh-not Window's

Notice that GNU C++ is not intended for developing Windows programs. In
theory, you could write a Windows application by using GNU C++, but it
wouldn’t be easy without the help provided by external library such as those
that come with Visual C++.

Windows programs have a very visually oriented, windows based output.
Convesion.exe is a 32-bit program that executes under Windows, but it’s not a
“Windows” program in the visual sense.

If you don’t know what 32-bit program means, don’t worry about it. As | said
earlier, this book isn’t about writing Windows programs. The C++ programs
you write in this book have a command line interface executing within an
“MS-DOS box.”

Budding Windows programmers shouldn’t despair — you didn’t waste your
money. Learning C++ is a prerequisite to writing Windows programs.

GNU C++ help

GNU C++ provides a help system through the rhide user interface. Place your
cursor on a construct that you don’t understand and press F1. A window
pops up. Alternatively, choose Helpc’lndex to display a list of help topics.
Click on a topic of interest to display help.

The help that GNU C++ provides isn’t nearly as comprehensive as the help
you get from other tools, such as Microsoft Visual C++. For example, place
the cursor on the ‘int’ statement and press F1. A window appears describing
the editor — not exactly what |1 was looking for. The help provided by GNU
C++ tends to center on library functions and compiler options. Fortunately,
after you master the C++ language itself, GNU C++ help is satisfactory for
most applications.

Reviewing the Annotated Program

Entering in someone else’s program isn’t very exciting. You can recognize a few
features of Conversion.cpp even at this early date. We can review the
Conversion program looking for the elements that are common to all programs.

20 Part I: Introducing C++ Programming

Examining the framework
for all C++ programs

Every C++ program you write for this book uses the same basic framework:

// this is some comment that the computer ignores
#include <stdio.h>
#include <iostream.h>
int main(int nNumberofArgs, char* pzArgs[])
{
...your code goes here...
return 0;
}

Without going into all the boring details, execution begins with the code con-
tained in the open and closed braces.

Clarifying source code with comments

The first few lines in Conversion.cpp appear to be freeform text. Either this
code was meant for human eyes or GNU C++ is a lot smarter than | give it
credit for. These first six lines are known as comments. Comments are the
programmer’s explanation of what he or she is doing or thinking when writ-
ing a particular code segment. The compiler ignores comments.

A C++ comment begins with a double slash (//) and ends with a newline. You
can put any character you want in a comment. A comment may be as long as
you want, but it's customary to keep comments to 80 characters so that com-
ments fit on your computer screen.

A newline was known as a carriage return back in the days of typewriters —
back when the act of entering characters into a machine was called typing and
not keyboarding. A newline is the character that terminates a command line.

C++ allows a second form of comment in which everything appearing after a
/* and before a */ is ignored; however, this form of comment isn’t normally
used in C++ anymore.

It may seem odd to have a command in C++ (or any other programming lan-
guage) that’s specifically ignored by the computer. However, all computer lan-
guages have some version of the comment. It's critical that the programmer
explains what was going through her mind when she wrote the code. A pro-
grammer's thoughts may not be obvious to the next guy who picks up her
program to use it or modify it. In fact. the programmer herself may forget
what her program meant if she looks at it months later.

Chapter 1: Writing Your First C++ Program

<P

Basing programs on C++ statements

All C++ programs are based upon what are known as C++ statements. This
section reviews the statements that make up the program framework used by
the Convert program.

A statement is a single set of commands. All statements other than comments
end with a semicolon (There’s a reason that comments don’t end with a semi-
colon but it’s obscure. To my mind, comments should end in a semicolon as
well, for consistency'’s sake if nothing else.)

Program execution begins with the first C++ statement after the open brace
and continues through the listing, one statement at a time.

As you look through the program, you can see that spaces, tabs, and new
lines appear throughout the program. In fact, 1 place a newline after every
statement in this program. These characters are collectively known as white
space because you can’t see them on the monitor.

You may add white space anywhere you like in your program to enhance
readability except in the middle of a word.

Although C++ may ignore white space, it doesn’t ignore case. The variable
fullspeed and the variable FullSpeed have nothing to do with each other.
While the command int may be understood completely, C++ has no idea
what INT means.

Writing declarations

The line int nCelsius; is a declaration statement. A declaration is a state-
ment that defines a variable. A variable is a “holding tank” for a value of some
type. A variable contains a value, such as a number or a character. (I explain
what nCelsius is in Chapter 5.)

The term variable stems from algebra formulae of the following type:

10
3R

X
Y

In the second expression, y is set equal to 3 times x, but what is x? The vari-
able x acts as a holding tank for a value. In this case, the value of x is 10, but
we could have just as well set the value of x to 20 or 30 or -1. The second for-
mula makes sense no matter what the value of x.

In algebra you're allowed to begin with a statement, such as x = 10. In C++,
the programmer must first define the variable x before she can use it.

21

22

Part I: Introducing C++ Programming

In C++, a variable has a type and a name. The variable defined on Line 11 is
called celsius. celsius is declared to hold an integer. (Why they couldn’t
have just said integer instead of int, I'll never know. It’s just one of those
things that you learn to live with.)

The name of a variable has no particular significance to C+. A variable must
begin with the letters A through Z or a through z. All subsequent characters
must be a letter, a digit 0 through 9 or an underscore (). Variable names can
be as long as you want to make them.

It’s convention that variable names begin with a lowercase letter. Each new
word within a variable begins with a capital letter, as in myVariable.

Try to make variable names short but descriptive. Avoid names such as x
because x has no meaning. A variable name such as 1engthOfLineSegment
is much more descriptive.

Generating output

The lines beginning with cout and cin are known as input/output
statements, often contracted to 1/O statements. (Like all engineers, program-
mers love contractions and acronyms.)

The first 1/O statement says output the phrase Enter the temperature in Celsius
to cout (pronounced “see-out™). cout is the name of the standard C++ output
device. In this case, the standard C++ output device is your monitor.

The next line is exactly the opposite. This says extract a value from the C++
input device and store it into the integer variable celsius. The C++ input
device is normally the keyboard. This is the C++ analogue to the algebra for-
mula x = 10 mentioned above. For the remainder of the program, the value of
celsius is whatever the user enters here.

Calculating Expressions

All but the most basic programs perform calculations of one type or another.
In C++ an expression is a statement that performs a calculation. Said another
way, an expression is a statement that has a value. An operator is a command
that generates a value.

Chapter 1: Writing Your First C++ Program

For example, in the Conversion example program, the two lines marked as a
“calculation expression,” the program declares a variable factor and assigns it
the value resulting from a calculation. This command calculates the differ-
ence of 212 and 32. In this example, the operator is the minus sign “~” while
the expression is “212-32."

Storing the results of expression

The spoken language can be very ambiguous. The term equals is one of those
ambiguities. The word equals can mean that two things have the same value
as in “5 cents equals a nickel.” Equals can also imply assignment as in math
when you say that “y equals 3 times x.”

To avoid ambiguity, C++ programmers call “=” the assignment operator. The
assignment operator says store the results of the expression on the right of
the “=” into the variable to the left. Programmers say that “factor is assigned
the value 212-32.”

Examining the remainder of Conversion

The second expression in Conversion.cpp presents a slightly more compli-
cated expression than the first. This expression uses the same mathematical
symbols: “*” for multiplication, “/” for division and, “+” for addition. In this
case, however, the calculation is performed on variables and not simply
constants.

The value contained in the variable factor (calculated immediately prior, by
the way) is multiplied by the value contained in nCelsius (which was input
from the keyboard). The result is divided by 100 and summed with 32. The
result of the total expression is assigned to the integer variable fahrenheit.

The final two commands output the string “Fahrenheit value is:” to the display
followed by the value of fahrenheit.

23

Chapter 2
Declaring Variables Constantly

© 000000020000 03003086008350060630000060260850606 S

In This Chapter

» Declaring variables

p Declaring different types of variables

» Using floating point variables

» Declaring and using other variable types

) 9 9 9 6 © 6055000900000 0606806 o8

r]e most fundamental of all concepts in C++ is the variable. A variable is
like a small box. You can store things in the box for later use, in particular
numbers. The concept of a variable is borrowed from mathematics. A state-
ment like:

o=l
stores the value 1 into the variable x. From that point forward the mathemati-
cian can use the variable x in place of the constant 1 — until she changes the
value of x to something else.
Variables work the same way in C++. You can make the assignment:

s =mg

From that point forward in the program until the value of x is changed any
references to x are the same as referencing 1. We say that the value of x is 1.

Unfortunately, C++ has a few more concerns about variables than the mathe-
matician does. This chapter deals with the care and feeding of variables in C++.

26

Part I: Introducing C++ Programming

Declaring Variables

C++ saves numeric values in small storage boxes known as variables.
Mathematicians throw variables around with abandon. A mathematician
might write down something like the following:

(x +2) =y /2
x+ 4=y
solve for x and y

The reader realizes that the mathematician has introduced the variables x
and y without explicitly being told. C++ isn’t that smart (1 told you that com-
puters are stupid).

You have to announce each variable to C++ before you can use it. You have to
say:

This declares that there is a variable x and that it is of type int. (Variable
types are discussed in the next section.) You can declare variables (almost)
anywhere you want to in your program as long as you declare the variable
before you use it.

Declaring Different Types of Variables

You probably think of a variable in mathematics as just an amorphous box
capable of holding whatever you might choose to store in it. You might easily
write something like the following:

=

2

"this is a sentence"
Texas

X X X X

C++ is not that flexible. (On the other hand, C++ can do things that you can't
do, such as add a million numbers or so in a second, so don't get too uppity.)
To C++, there are different types of variables just as there are different types
of storage bins. Some storage bins are so small that they can only handle a
single number. It takes a larger bin to handle a sentence. Of course, no bin is
large enough to hold Texas (maybe Massachussetts, but not Texas).

Chapter 2: Declaring Variables Constantly

You have to tell C++ what size bin you need before you can use a C++ vari-
able. In addition, different types of variables have different properties. So far,
you have only seen the inf type of variable.

n

I et

i X

X I

The variable type int is the C++ equivalent of an integer. (An integer is a
number that has no fractional part. Integers are also known as counting num-
bers or whole numbers.)

Integers are great for most calculations. You can make it up through most (if
not all) of grade school with integers. It isn’t until 6th grade or so that they
start mucking up the waters with fractions. The same is true in C++. Over 90
percent of all variables in C++ are declared to be of type int.

Unfortunately, int variables don’t always work properly in a program. If you
worked through the temperature conversion program in Chapter 1, it isn’t
obvious, but the program has a problem — it can only handle integer temper-
atures. That is, the conversion program can only handle whole numbers that
don’t have a fractional part. This limitation of only using integers is not a
problem for daily use because it isn't likely that someone (except a meteorol-
ogist) would get all excited about entering a fractional temperature, such as
10.5°. A worse problem is that the conversion program lops off the fractional
portion of temperatures that it calculates without complaint. This can result
in Minnesota getting the credit (again) for having the record low temperature,
even though North Dakota beat them out by half a degree just because of an
error caused by ignoring the fractional part of a number.

Reviewing the limitations
of integers in C++

The int variable type is the C++ version of an integer. int variables suffer
the same limitations as their counting integer equivalents in math do.

Integer round off

Consider the problem of calculating the average of three numbers. Given
three int variables — nValuel, nValue?, and nValue3 — an equation for
calculating the average is

(nValuel + nValue2 + nValue3) / 3

Because all three values are integers, the sum is assumed an integer. Given
the values 1, 2,and 2, the sum is 5. Five divided by 3 is 1% ,or 1.666. Given that
all three variables nValuel, nValue?2, and nValue3 are integers, the sum is

27

28

Part I: Introducing C++ Programming

also assumed to be an integer. Unlike people (who are reasonable), comput-
ers (which are not always reasonable) force the quotient to be an integer by
forcing 1.666 into 1.

Lopping off the fractional part of a number is called truncation, or rounding
off. For many applications, truncation isn’t a big deal. In fact, some might go
so far as to consider it reasonable (not mathematicians or bookies, of
course). However, integer truncation in computer programs can be much
worse. Consider the following equivalent formulation:

nValuel/3 + nValue2/3 + nValue3/3

Plugging in the same 1, 2, and 2 values, you get a result of 0. To see how this
can occur, consider that % truncates to 0, % truncates to 0, and # truncates to
0. The sum of 0, 0, and 0 is zero. (Sort of like that old song: “Nothing from
nothing leaves nothing, ya gotta be something. . .") You can see that integer
truncation can be completely unacceptable.

Limited range

A second problem with the int variable type is its limited range. A normal
int variable can store a maximum value of 2,147,483,647 and a minimum
value of -2,147,483,648 — more or less, plus 2 billion to minus 2 billion, for a
total range of 4 billion.

Solving the truncation problem

The limitations of int variables can be unacceptable in some applications.
Fortunately, C++ understands decimal numbers. A decimal number can have
anonzero fractional part. (Mathematicians also call these real numbers.)
Decimal numbers avoid many of the limitations of int type integers. Notice
that a decimal number “can have” a nonzero fractional part. In C++ the
number 1.0 is just as much a decimal number as 1.5. The equivalent integer is
written simply as 1.

C++ refers to decimal numbers as floating-point numbers or simply floats.
The term floating point stems from the fact that the decimal point is allowed
to float back and forth as necessary to express the value. Floating-point vari-
ables are declared in the same way as int variables:

float fValuel;

From this point forward the variable fValuel is declared to be a f1oat. Once
declared, you cannot change the type of a variable. fValuel is now a float
and will be a f1oat for the remainder of its natural instructions. To see how

Chapter 2: Declaring Variables Constantly

floating-point numbers fix the truncation problem inherent with integers, con-
vert all the int variables to float:

i =8 248 ZiE

is equivalent to

0.333... + 0.666... + 0.666...
which equals

1.666...

The programs IntAverage and FloatAverage are available on the enclosed
CD to demonstrate this averaging example.

Examining the limitations of floating point

While floating point variables can solve many calculation problems such as
truncation, they have a number of limitations themselves. These problems
are sort of the reverse of those associated with integer variables. f1oat vari-
ables cannot be used as counting numbers, they are more difficult for the
computer, and they also suffer from round-off error (though not nearly to the
same degree as int variables).

Counting

You cannot use floating-point variables in applications where counting is
important. This includes C++ constructs, which requires counting ability. C++
can’t verify which whole number value is meant by a given floating-point
number.

For example, it’s clear that 1.0 is 1. But what about 0.9 or 1.1? Should these
also be considered as 1? C++ simply avoids the problem by insisting on using
int values when counting is involved.

Calculation speed

Historically, a computer processor can process integer arithmetic quicker
than floating-point arithmetic. Thus, while a processor can add 1,000 integer
numbers in a given amount of time, the same processor can perform only 200
floating-point calculations.

Calculation speed is becoming less of a problem as microprocessors increase
in ability. Most modern processors contain special calculation circuitry for
performing floating-point calculations almost as fast as integer calculations.

29

30 Part I: Introducing C++ Programming

Loss of accuracy

Floating-point variables cannot solve all computational problems. Floating-
point variables have a limited precision of about 6 digits — an extra-economy
size, double-strength version of float can handle some 15 significant digits
with room left over for lunch.

To evaluate the problem, consider that ¥ is expressed as 0.333 . . . in a contin-
uing sequence. The concept of an infinite series makes sense in math, but not
to a computer. The computer has a finite accuracy. Average 1, 2, and 2 and
you get 1.666667.

C++ can correct for many forms of round off error. For example, in output,
C++ can determine that instead of 0.999999, that the user really meant 1. In
other cases, even C++ cannot correct for round-off error.

Not so limited range

The float data type also has a limited range though the range of a f1oat is
much larger than that of an integer. The maximum value for an int is a skosh
more than 2 billion. The maximum value of a f10at variable is roughly 10 to
the 38th power. That’s 1 followed by 38 zeroes.

SMBER
Q‘?;/\—‘- Only the first 6 digits have any meaning as the remaining 32 digits suffer from
{ .” floating-point round-off error. Thus, a floating-point variable can hold the
\ value 123,000,000 without round-off error but not 123,456,789.

e _

Declaring Variable Types

You have seen that variables must be declared and that they must be
assigned a type. C++ provides a number of different variable types. See Table
2-1 for a list of variables, their advantages and limitations.

Table 2-1 C++ Variables

Variable Example Purpose

int 1 A simple counting number, either
positive or negative.

float 1.0F Areal number.

double 1.0 Alarger version of f10at that takes

more memory but has more accuracy
and greater range.

e\4

WING/
&

Chapter 2: Declaring Variables Constantly

Variable Example Purpose

char € A single char variable stores a single
alphabetic or digital character. Not
suitable for arithmetic.

string “this is a string” A string of characters forming a sen-
tence or phrase.

long 10L A potentially larger version of int.
There is no difference between 1ong
and int with GNU C++ and Microsoft
Visual C++.

The following statement declares a variable 1Variable as type 1ong and sets
it equal to the value 1, while dVariable is a double set to the value 1.0.

// declare a variable and set it to 1
long 1Variable;
1Variable = 1;

// declare a variable of type double and set it to 1.0
double dVariable;
dVariable = 1.0;

You can declare a variable and initialize it in the same statement:

int nVariable = 1; // declare a variable and
// initialize it to 1

The only benefit to initializing a variable in the declaration is that it saves
typing; however, such declarations are common.

A char variable can hold a single character, whereas a string holds a string of
characters. Thus, a is the character a, whereas a is a string containing just
the letter a. (String is not actually a variable type but for most purposes you
can treat it as such. Chapter 9 describes strings in detail.)

The character a and the string a are not the same thing. If an application
requires a string, you cannot provide a character, even if the string contains
only the single character.

Types of constants

A constant is an explicit number or character (such as 1, 0.5, or ‘¢’).
Constants have a type just like variables. In an expression suchasn = 1;,
the constant 1 is an int. To make 1 a Tong integer, write the statement as

31

32

Part I: Introducing C++ Programming

n = 1L;. The analogy is as follows: 1 represents a single ball in the bed of a
pickup truck, while 1L is a single ball in a dump truck. The ball is the same,
but the capacity of its container is much larger.

Following the int to long comparison, 1.0 represents the value 1, butin a
floating-point container. Notice, however, that the default for floating point
constants is double. Thus, 1.0 is a double number and not a float.

Special characters

You can store any printable character you want in a char or string vari-
able. You can also store a set of non-printable characters that is used as char-
acter constants. See Table 2-2 for a description of these important
nonprintable characters.

Table 2-2 Special Characters
Character Constant Action

\n new line

\t tab

\0 null

\\ backslash

You have already seen the newline character at the end of strings. This char-
acter breaks a string up onto separate lines. However, a newline may appear
anywhere within a string. For example,

"This is line 1\nThis is line 2"
appears on the output as:

This is line 1
This is line 2

Similarly, the \t tab character moves output to the next tab position. This
position can vary, depending on the type of computer you are using to run
the program. Because the backslash character is used to signify special char-
acters, a character pair for the backslash itself is required. The character \ \
represents the backslash.

Chapter 2: Declaring Variables Constantly

C++ collision with MS-DOS file names

MS-DOS uses the backslash character to sep-
arate folder names in the path to a file. Thus,
root\folderA\file represents File within
FolderA which is a subdirectory of Root.

escape character in C++. The character \\ is a
backslash in C++. The MS-DOS path
root\folderA\file is represented in C++
string as root\\folderA\\file.

33

Unfortunately, MS-DOS's use of backslash con-
flicts with the use of backslash to indicate an

Mixed Mode Expressions

C++ allows you to mix variable types in a single expression. That is, you are
allowed to add an integer with a double. The following expression where
nValuel is an int is allowed:

// in the following expression the value of nValuel
// is converted into a double before performing the
// assignment

int nValuel = 1;

nValuel + 1.0;

An expression in which the two operands are not the same type is called a
mixed mode expression. Mixed mode expressions generate a value whose
type is equal to the more capable of the two operands. In this case, nValuel
is converted to a doub]e before the calculation proceeds. Similarly, an
expression of one type may be assigned to a variable of a different type as in
the following statement:

// in the following assignment, the whole

// number part of fVariable is stored into nVariable
float fVariable = 1.0;

int nVariable;

nVariable = fVariable;

You can loose precision or range if the variable on the left-hand side of the
assignment is smaller. In the previous example, you must truncate the value
of fVariable before storingin nVariable.

34

Part I: Introducing C++ Programming

Naming conventions

You may have noticed that the name of each
variable begins with a special character that
seems to have nothing to do with the name.
These special characters are shown in the fol-
lowing table. You can immediately recognize
dVariable as avariable of type double by
using this convention.

These leading characters help the programmer
keep track of the variable type. Thus, you can
immediately identify the following as a mixed
mode assignmentofa 1ong variabletoan int
variable.

nVariable = 1Variable;

Although this book uses some special charac-
ters in variable names, these characters have
no significance to C++. You can use the letter

g to signify int, if you desire. | used this
first-letter-naming convention in this chapter to
simplify the discussion; however, many pro-
grammers use this naming scheme all the time.

Character Type

n int

| long

f float

d double

c character
sz string

Converting a larger size value into a smaller type is called demotion, while
converting values in the opposite direction is known as promotion.

Programmers say that the value of int variable nVariablel is promoted to a

double as in the following:

int nVariablel

=1;
double dVariablie =

A\

nVariablel;

Mixed mode expressions are not a good idea. Avoid forcing C++ to do your

conversions for you.

Chapter 3

Performing Mathematical
Operations

eo000 00 eecoeecesoae

In This Chapter

» Defining mathematical operators in C++

]
]

» Using the C++ mathematical operators
» Identifying expressions
Increasing clarity with special mathematical operators

® a P PR, ey i

®

A mathematician uses more than just the variables described in Chapter 2.
A mathematician must do something with those variables: She can add

them together, subtract them, multiply them, an almost endless list of other
operations.

C++ offers the same set of basic operations: C++ programs can multiply, add,
divide, and so forth. Programs have to be able to perform these operations in
order to get anything done. What good is an insurance program if it can’t cal-
culate how much you're supposed to (over) pay?

C++ operations look like the arithmetic operations you would perform on a
piece of paper, except for the fact that variables must be declared before they
can be used (as detailed in Chapter 2):

int varl;
int var2 = 1;

varl = 2 * var2;

Two variables, varl and var?, are declared. var? is initialized to 1. varlis
assigned the value resulting from the calculation 2 times the value of var2.

This chapter describes the complete set of C++ mathematical operators.

36 Part I: Introducing C++ Programming

Performing Simple Binary Arithmetic

A binary operator is one that has two arguments. If you can say varl op varz,
then op must be a binary operator. The most common binary operators are the
simple operations you performed in grade school. The binary operators are
flagged in Table 3-1.

Table 3-1 Mathematical Operators in Order of Precedence

Precedence Operator Meaning

1 + (unary) Effectively does
nothing

1 - (unary) Returns the nega-
tive of its argument

2 ++ (unary) Increment

2 -- (unary) Decrement

3 * (binary) Multiplication

3 / (binary) Division

3 % (binary) Module

4 + (binary) Addition

4 - (binary) Subtraction

5 =, *=,%=,+=,-= (special) Assignment types

Multiplication, division, modulus, addition, and subtraction are the operators
used to perform arithmetic. In practice, they work just like the familiar arith-
metic operations as well:

float var = 133 / 12;

Each of these binary operators has the conventional meaning that you stud-
ied in grammar school with one exception. You may not have encountered
modulus in your studies.

The modulus operator (%) is similar to the remainder after division. For exam-
ple, 4 goes into 15 three times with a remainder of 3. Expressed in C++ terms,
15 modulus 4 is 3.

int var = 15 % 4; // var is initialized to 3

NNG/
&

Chapter 3: Performing Mathematical Operations
Because programmers are always trying to impress nonprogrammers with
the simplest things, C++ programmers define modulus as follows:

IntValue % IntDivisor
is equal to

IntValue - (IntValue / IntDivisor) * IntDivisor
Try this out on this example:

15 % 4 is equal to 15 - (15/4) * 4

15 =E3EARY
TN W
3

Modulus is not defined for floating point variable because it depends on the
round-off error inherent in integers. (I discuss round-off errors in Chapter 2.)

Decomposing Expressions

The most common type of statement in C++ is the expression. An expression
is a C++ statement with a value. All expressions also have a type such as int,
double, char, and so on. A statement involving any of the mathematical
operators is an expression since all these operators return a value. For exam-
ple, 1 + 2 is an expression whose value is 3 and type is int. (Remember that
constants without decimal points are ints.)

Expressions can be complex or extremely simple. In fact, the statement 1 is
an expression because it has a value (1) and a type (int). There are five
expressions in the following statement:

zZ=x*y +w;
The expressions are:

*y+w
*y

T X X X

An unusual aspect of C++ is that an expression is a complete statement. Thus,
the following is a legal C++ statement:

ILR

All expressions have a type. The type of the expression 1 is int.

37

38 Part I: Introducing C++ Programming

Determining the Order of Operations

All operators perform some defined function. In addition, all operators have a
precedence. The precedence of the operator determines the order in which
the expressions are evaluated. This solves the following problem:

int var = 2 * 3 + 1;

If the addition is performed before the multiplication then the value of the
expression is 2 times 4 or 8. If the multiplication is performed first, the value
is6+1or7.

The precedence of the operators determines who goes first. Table 3-1 shows
that multiplication has higher precedence than addition, so the result is 7.
(The concept of precedence is also present in arithmetic. C++ adheres to the
common arithmetic precedence.)

So what happens when we use two operators of the same precedence in the
same expression?

int var = 8 / 4 / 2;
Is this 8 divided by 2 or 4, or is it 2 divided by 2 or 1? When operators of the
same precedence appear in the same expression, they are evaluated from left
to right (this is also the same common rule applied in arithmetic). Thus, the
answer is 8 divided by 4, which is 2 divided by 2 (which is 1).
The expression

x / 100 + 32
divides x by 100 before adding 32. But what if the programmer wanted to
divide x by 100 plus 32? The programmer can bundle expressions together
using parentheses as follows:

x/(100 + 32)
This has the same effect as dividing x by 132.
The original expression

x / 100 + 32

is identical to the expression

(x/100) + 32

Chapter 3: Performing Mathematical Operations

Why did C++ bundle the expressions the way it did? In a given expression,
C++ performs multiplication and division before addition or subtraction.
Multiplication and division have higher precedence than addition and
subtraction.

In summary: Precedence refers to the order in which operators are evaluated.
An operator with higher precedence is executed first. You can override the
precedence of an operator by using parentheses.

Performing Unary Operations

Arithmetic binary operators, those operators that take two arguments, are
familiar. You've probably been doing binary operations since the first grade
in school. Unary operators are those operators that take a single argument:
for example, -a. Many of these operations are not so well known.

The unary mathematical operators are +, -, ++ and ——. Thus:

10;
-varl;

int varl
int var?

[}

The latter expression uses the unary operator — to calculate the value neg-
ative 10.

The minus operator changes the sign of its argument. Positive numbers be-
come negative and vice versa. The plus operator does not change the sign of
its argument. Effectively, the plus operator has no effect at all.

The ++ and the —— operators might be new to you. These operators increment
and decrement their arguments by one. The increment and decrement opera-
tors are limited to non-floating point variables. The value of var after execut-
ing the following expression is 11.

int var = 10; // initalize var
var+t; // now increment it
// value of var is now 11

The increment and decrement operators are peculiar in that both come in
two flavors: a prefix version and a postfix version. Consider the increment
operator (the decrement is exactly analogous).

Suppose that the variable n has the value 5. Both ++n and n++ increment n to
the value 6. The difference between the two is that the value of ++n in an ex-
pression is 6 while the value of n++ is 5. This is demonstrated in the following
example:

39

40

Part I: Introducing C++ Programming

// declare three integer variables
int nl, n2, n3;

// the value of both nl and n2 is 6
nl = 5;
n2 = ++nl;

// the value of nl is 6 but the value of n3 is 5
nl = 5;
n3 = nl++;

Thus, n2 is given the value of nl after nl has been incremented using the pre-
increment operator, while n3 gets the value of nl before it is incremented
using the post-increment operator.

Using Assignment Operators

\4

The assignment operators are binary operators that change the value of their

left argument. The simple assignment operator, the =, is an absolute neces-

sity in any programming language. This operator stores the value of the right-

hand argument into the left argument. However, the other assignment

operators appear to be someone’s whim.

The creators of C++ noticed that assignments often follow the form:
variable = variable # constant

where # is some binary operator. Thus, to increment an integer operator by
two, the programmer might write:

nVariable = nVariab]e = 23

This says “add two to the value of nVariable and store the results back into
nVariable.”

It is common to see the same variable on both the right and left side of an
assignment.

Because the same variable appears on both sides of the = sign, they decided to
add the operator to the assignment operator. All of the binary operators have
an assignment version. Thus, the assignment above could have been written:

nVariable += 2;

Once again this says “add 2 to the value of nVariable.”

Chapter 3: Performing Mathematical Operations

Why define a separate increment operator?

The authors of C++ noted that programmers add In addition, most computer processors have an
1 more than any other constant. As a conve- increment instruction that is faster than the
nience factor, a special add 1 instruction was addition instruction. When C++ was created
added to the language. with microprocessors being what they were,
saving a few instructions was a big deal.

Other than assignment itself, these assignment operators are not used that
often. In certain cases, they can actually make the resulting program easier
to read.

41

Chapter 4
Performing Logical Operations

® 00 00098 CEOEE S e SO0 S eSO E SO EEEHOC S EEEOO0OGSESE QRS TOESE

In This Chapter

p- Using sometimes illogical logical operators

p Defining logical variables

p- Operating with bitwise logical operators logically a bit at a time

P20 0000 PO 000000002005 800 8 B ¢ 5 P a p e e e =

l he most common statement in C++ is the expression. Most expressions
involve the arithmetic operators such as addition (+), subtraction (-) and
multiplication (*). This chapter describes these types of expressions.

There is a whole other class of operators known as the logical operators. By
comparison with the arithmetic operators, most people don’t think about
operations.

It isn’t that people don’t deal with logical operations. People compute AND
and OR constantly.] won’t eat cereal without cereal AND milk AND sugar
(lots of sugar). I'll have a bourbon OR scotch. People use logical operations
all the time, it’s just that they don’t write them down or think of them in that
light.

Logical operators fall into two types. The AND and OR operators are what 1
will call simple logical operators. There is a second type of operator, the bit-
wise operator, which is unique to the computer world. This type of operator
looks at each of the bits that make up the computer’s internal representation
of a number.

Why Mess with Logical Operations?

If 1 could get through this much of my life without worrying about logical
operations, then why start now? C++ programs have to make decisions. A
program that can’t make decisions is of limited use. The Conversion program
(see Chapter 1) is about as complex you can get without some type of decision-
making. Do this if the input variable is negative, do this if it’s positive. Making
decisions requires the use of logical operators.

44 Part I: Introducing C++ Programming

Using the Simple Logical Operators

C++ programs must be able to make decisions. The Convert program from
Chapter 1 that did nothing more than convert one temperature from
Fahrenheit to Celsius was particularly unexciting because it did not make any
decisions based on the input. C++ programs use the logical operators to
make these decisions.

The simple logical operators, shown in Table 4-1, evaluate to true or false.

Table 4-1 Simple Operators Representing Daily Logic

Operator Meaning

= Equality; true if the left-hand argument has the same value
as the right

1=l Inequality; opposite of equality

>, < Greater than, less than; true if the left-hand argument is
greater than/less than the right-hand argument

>=, <= Greater than or equal to, less than or equal to; true if
either > or == is true/< or == is true

&& AND; true if both the left-and right-hand arguments are
true

I OR; true if either the left-or the right-hand arguments are
true

! NOT; true if its argument is false

The first six entries in Table 4-1 are comparison operators. The equality oper-
ator is used to compare two numbers. For example, the following is true if the
value of n is 0 and is false otherwise.

ally cannot catch — that makes it more than twice as bad.

npt==SEE
N NG/
N RN Don't confuse the equality operator == with the assignment operator =. Not
(‘ only is this a common mistake, but it's a mistake that the C++ compiler gener-
\ 7

n=10; // programmer meant to say n ==

Chapter 4: Performing Logical Operations

The greater than (>) and less than (<) operators are similarly common in
everyday life. The following expression logical comparison is true:

int nl
int n2
nl < n2

1;
728
It’s easy to forget which is greater than and which is less than. Just remember
that the operator is true if the arrow points to the smaller of the two.

You may think that nl is greater than or less than n2; however, this ignores
the possibility that n1 and n2 are equal. The greater than or equal to opera-
tor (>=) and less than or equal to operator (<=) are similar to the less than
and greater than operators except that they include equality whereas the
other operators do not.

The & (AND) and | | (OR) are equally common. These operators are typically
combined with the other logic operators:

// true if n2 is greater than nl but smaller than nV3
(nl < n2)% & (n2 < n3);

Just as an aside, you can define the greater than or equal to operator as
follows:

nl <= n2 is the same as (nl < n2) || (nl == n2)

Be careful performing logical operations
on floating point variables

Real numbers are those numbers that can have a fractional part. Because of
this, real numbers cannot be counting numbers. That is, you can say the first
(1st), second (2nd), third, fourth, etc. because the relationship of 1, 2, and 3
are known exactly. It does not make sense to speak of the 4.5th number in a
sequence. (This brings to mind the number between the fourth and fifth, but
it has no real meaning).

Similarly the C++ type float, which is the C++ representation, is not a counting
number. Even worse, unlike a real number, a floating number does not have
an infinite number of digits beyond the decimal point. Because of this, you
must be careful when using the comparison operators on floating-point num-
bers. Consider the following example:

float f1 10.0;
float f2 = f1 / 3;
fl == (f2 * 3.0); // are these two equal?

b5

46

Part I: Introducing C++ Programming

The comparison in the preceding example is not necessarily true. A floating-
point variable cannot hold an unlimited number of significant digits. Thus, 2
is not equal to 3 and a third, but 3.3333. Unlike the mathematical concept, the
number of threes after the decimal point is finite. After multiplying 3.3333 by
3, you are more likely to get 9.9999 than 10. Such small differences may be
unnoticeable to a person but not to the computer. Equality means exactly
that, exact equality.

Modern processors are very sophisticated in performing such calculations.
The processor may, in fact, accommodate the round-off error, but from C++,
you can't tell exactly what the processor will do.

Problems can arise even in a straightforward calculation, such as the following:

float f1 = 10.0;
float f2 = 100./10.0;
fl == f2; // are these two equal?

Theoretically, f1 and 2 should be equal (refer to Chapter 3 if you don’t
remember the modulus operator). There doesn’t appear to be any problem
with round off; however, you can’t be sure — you have no idea how the com-
puter represents floating numbers internally. To flatly claim that 100 percent,
10 has no round-off error makes assumptions about the CPU internals.

The safer comparison is as follows:

float f1 = 10.0:
float f2 = f1 / 3;
float f3 = f2 * 3.0;

(f1 - f3) < 0.0001 && (f3 - f1) < 0.0001:

This comparison is true if 1 and 3 are within some delta of each other,
which should be true even accounting for some small round-off error.

Short circuits and C++

The& & and | | perform what is called short circuit evaluation. Consider the
following:

conditionl && condition2
If conditionl is not true, then the result is not true no matter what the value
of condition?2 (for example., condition2 could be true or false without

changing the result). Similarly in the following:

conditionl || condition2

Chapter 4: Performing Logical Operations

§\\\NG.

)

!
Al

If conditionl is true, then the result is true no matter what the value of
condition?.

To save time, C++ evaluates conditionl first. C++ does not evaluate
condition? if conditionl is false in the case of & & or conditionl is true
in the case of | |.

Logical variable types

If > is an operator, then a comparison such as a > 10 must be an expression.
Clearly, the result of such an expression must be either TRUE or FALSE.

You may have noticed already that there was no Boolean variable type men-
tioned in our discussion of variable types back in Chapter 2. That is, there is
no variable type that can have the value TRUE or FALSE. Then what is the
type of an expression suchas a > 10?

C++ uses the type int to store Boolean values. The value 0 is taken to be
FALSE. Any value other than zero is TRUE. An expression suchasa > 10
evaluates to 0 (FALSE) or 1 (TRUE).

Microsoft Visual Basic also uses an integer to hold TRUE and FALSE values;
however, in Visual Basic, a comparison operation returns either a 0 (FALSE)
or a-1 (TRUE).

The new ANSI C++ standard does define a type bool to handle Boolean vari-
ables; however, it is not supported in the GNU C++, which comes on the
enclosed CD-ROM.

Expressing Binary Numbers

C++ variables are stored internally as so-called binary numbers. Binary num-
bers are stored as a sequence of 1 and 0 values known as bits. Most of the
time, you don’t really need to deal with numbers at the bit level; however,
there are occassions when doing so is convenient. C++ provides a set of oper-
ators for this purpose.

Because it is not often that you have to deal with C++ variables at the bit
level, the remainder of this chapter should be considered a Techie section.

The so-called bitwise logical operators operate on their arguments at the bit
level. To understand how they work, let’s first examine how computers store
variables.

b7

48

Part I: Introducing C++ Programming

The decimal number system

The numbers that we are familiar with are known as decimal numbers
because they are based on the number 10. In general, the programmer
expresses C++ variables as decimal numbers. Thus, you would say that the
value of var is 123, for example.

A number such as 123 referstol * 100 + 2 * 10 + 3 * 1.Each of these
base numbers — 100, 10, and 1 — are powers of 10.

1230 = IR~ R 0 Ot S (0 N N
Expressed in a slightly different but equivalent way:
128 =0 O R O A (T I S N

Remember that any number to the zero power is 1.

Other number systems

The use of a base number of 10 for our counting system stems in all probabil-
ity from the fact that humans have 10 fingers, the original counting tools. The
alternative would have been base 20.

If our numbering scheme had been invented by dogs, it might well be based
on the numeral eight (one digit of each paw is out of sight on the back part of
the leg). Such an octal system would have worked just as well:

123,= 1 * 8 + 7 * 8 + 3 * 8A° = 173,

The small 10 and 8 here refer to the numbering system, 10 for decimal (base
10) and 8 for octal (base 8). A counting system may use any positive base.

The binary number system

Computers have essentially two fingers. (Maybe that's why computers are so
stupid: without an opposable thumb, they can't grasp anything. And then
again, maybe not.) Computers prefer counting using base 2. The number
123,, would be expressed as:

*128 + 1%64 + 1%¥32 + 1%¥16 + 1*8 + 0*4 +1%2 + 1*1
1111011,

S o

Chapter 4: Performing Logical Operations

It is always convention to express binary numbers by using 4, 8, 32, or 32
binary digits even if the leading digits are zero. This is also because of the
way computers are built internally.

Because the term digit refers to a multiple of ten, a binary digit is called a bit.
The terms stem from binary digit. 8 bits make up a byte. A word is usually
either two or four bytes.

With such a small base, it is necessary to use a large number of bits to
express numbers. It is inconvenient to use an expression such as 01111011,
to express such a mundane value as 123,,. Programmers prefer to express
numbers by units of bytes, or four bits.

A single four-bit digit is essentially base 16 beause four bits can express up
any value from 0 to 15. Base 16 is known as the hexadecimal counting system.
Hexadecimal is often contracted to simply, hex.

Hexadecimal uses the same digits for the numbers 0 through 9. For the digits
between 9 and 16, hexadecimal uses the first six letters of the alphabet: A for
10, B for 11, etc. Thus, 123,, becomes 7B,;.

123 =7 * 16! + B (i.e. 11) * 16" = 7By

Because programmers prefer to express numbers in 4, 8, 32, or 64 bits, they
similarly prefer to express hexadecimal numbers in 1, 2, 4, or 8 hexadecimal
digits even when the leading digits are 0.

Finally, it is inconvenient to express a hexadecimal number such as 7B ; using
a subscript because terminals don’t support subscripts. Even on a word
processor such as the one | am using now, it is inconvenient to change fonts to
and from subscript mode just to type two digits. Therefore, programmers use
the convention of beginning a hexadecimal number with a 0x (the reason for
such a strange conviction goes back to the early days of C). Thus, 7B becomes
0x7B. Using this convention, 0x7B is equal to 123 while 0x123 is equal to 291.)
Once | learned this, those computer nerds had a hard time losing me at dinner
parties (until they start bring out that .net nonsense, anyway).

All of the mathematical operators can be performed on hexadecimal numbers
in the same way that they are applied to decimal numbers. The reason that
we can not perform a multiplication such as 0xC * 0xE in our head has more
to do with the multiplication tables we learned in school than on any limita-
tion in the number system.

49

50

Part I: Introducing C++ Programming

ment of math.

Adding two Roman numerals isn't too difficult:
XIX + XXVI = XLV

Think this one out:

before the X so the resultis V carry the X.

It is interesting to note that some numbering
systems do hinder computations. The Roman
numeral system greatly hindered the develop-

a) IX + VI: The | after the V cancels out the |

Roman numeral expressions

b) X + XX: Plus the carry X is XXXX, which is
expressed as XL.

Subtraction is only slightly more difficult.

However, multiplying to Roman numerals
requires a Bachelors degree in Mathematics.
(You end up with rules like X promotes the digits
onthe right by 1 letter so that X IV becomes XL.)
Division required a PhD and higher operations
such as integration would have been completely
impossible.

Performing Bitwise Logical Operations

All C++ numbers can be expressed in binary form. Binary numbers use only
the digits 1 and 0 to represent a value. The following Table 4-2 defines the set
of operations that work on numbers one bit at a time; hence the term bitwise

operators.
Table 4-2 Bitwise Operators
Operator Function
~ NOT: Toggle each bitfrom 1to 0 and from0to 1
& AND: Each bit of the left-hand argument with
that on the right
| OR
& XOR

Bitwise operations can potentially store a lot of information in a small amount

of memory. There are a lot of traits in the world that have only two (or, at most,
that are either this way or that way. You are either married

four) possibilities

or you're not (you might be divorced but you are still not currently married).
You are either male or female (at least that's what my driver's license says). In
C++, you can store each of these traits in a single bit — in this way, you can
pack 32 separate properties into a single int, a 32-to-1 savings.

In addition, bit operations can be extremely fast. There is no performance
penalty paid for that 32-to-1 savings.

Chapter 4: Performing Logical Operations

The single bit operators

The bitwise operators (AND (&), OR (1) and NOT (~)) perform logic opera-
tions on single bits. If you consider 0 to be false and 1 to be true (it doesn’t
have to be this way, but that is the common convention), then you can say
things like the following for the NOT operator:

NOT 1 (true) 1is O (false)
NOT O (false) is 1 (true)

Similarly, the AND operator is defined as following:

1 (true) AND 1 (true) 1is 1 (true)
1 (true) AND O (false) is 0 (false)

Similarly for the OR operator:

1 (true) OR O (false) is 1 (true)
0 (false) OR 0 (false) is 0 (false)

The definition of the truth table for the AND and OR operators appear in the
following table.

One other logical operation that is not so commonly used in day-to-day living
is the or else operator commonly contracted to XOR. XOR is true if either
argument is true but not if both are true. The truth table for XOR is shown in
Table 4-3.

Table 4-3 Truth Table for the XOR Operator
XOR 1 0
1 0 1
0 1 0

Armed with these single bit operators, we can take on the C++ bitwise logical
operations.

Using the bitwise operators
The bitwise operators operate on each bit separately.
The bitwise operators are used much like any other binary arithmetic opera-

tor. The NOT operator is the easiest to understand. To NOT a number is to
NOT each bit that makes up that number:

51

52

Part I: Introducing C++ Programming

~0110, (0x6)
1001, (0x9)

Thus we say that ~0x6 equals 0x9.
The following calculation demonstrates the & operator:

0110,
&
0011,
0010,

Beginning with the most significant bit, 0 AND 0 is 0. In the next bit, 1 AND 0
is 0. In bit 3, 1 AND 1 is 1. In the least significant bit, 0 AND 1 is 0.

The same calculation can be performed in hexadecimal by first converting
the number in binary, performing the operation and then converting the
result back.

0x6 0110,
& - &
0x3 0011,
0010, - 0x,

In shorthand, we say that 0x6 & 0x3 equals 0x2.

(Try this test: was is 0x6 | 0x3? Get this and you'll be in Seventh Heaven. Fail
and you're taking the first in the Seven Steps to Hell. 1 was able to get this in
just a little before eight minutes.)

A simple test

The following program serves as an example of the bitwise operators in
action. The program initializes two variables and outputs the result of
ANDing, ORing, and XORing them.

// BitTest - initialize two variables and output the
// results of applying the ~,& , | and *
/1l operations

#finclude <stdio.h>

#include <iostream.h>

int main(int nArg. char* pszArgs[])

{
// set output format to hexadecimal
cout.setf(ios::hex, ios::hex);

// initialize two arguments

int nArgl;
nArgl = 0x1234;

int nArg2;
nArg2 = 0x00ff;

Chapter 4: Performing Logical Operations 5 3

// now perform each operation in turn
// first the unary NOT operator

cout << "Argl
cout << "Arg?
cout << "~nArgl
cout << "~nArg?

0x" << nArgl << "\n";
0x" << nArg2 << "\n";
0x" << ~nArgl << "\n";
0x" << ~nArg2 << "\n";

wononon

// now the binary operators

cout << "nArgl
<< (nArgl
<< "\n";

cout << "nArgl
<< (nArgl
<< "\n";

cout << "nArgl
<< (nArgl
<4 Bt

return 0;
}

&
&

nArg2 = Ox"
nArg2)
nArg2 = 0x"
nArg2)
nArg2 = 0Ox"
nArg2)

The first of statement in our program (the one right after the main keyword)
that appears as cout.setf(i0s::hex); sets the output format from the
default decimal to hexadecimal (you’ll have to trust me that it works for

now).

The remainder of the program is straightforward. The program reads nArgl
and nArg2 from the keyboard and then outputs all combinations of bitwise

calculations.

Executing the program on the values 0x1234 and x00ff using the Visual
C++environment results in the following output:

Argl = 0x1234
Arg?2 = Oxff
~nArgl = Oxffffedcb
~nArg?2 = Oxffffff00
nArgl & nArg2 = 0x34

nArgl | nArg2 = Ox12ff
nArgl # nArg2 = 0x12cb

The GNU C++ compiler does not handle hexadecimal input or output. The
preceding results are only achievable with Visual C++.

54

Part I: Introducing C++ Programming

Hexadecimal numbers appear with a preceding 0x.

Why define such a crazy operator?

The purpose for most operators is clear. No one would quarrel with the need
for the plus or minus operators. The use for the < or > operators is clear. It
may not be so clear to the beginner when and why one would use the bitwise
operators.

The AND operator is often used to mask out information. For example, sup-
pose that we wanted to extract the least significant hex digit from a four-digit
number:

0x1234 0001 0010 0011 0100
& —&
0x000F 0000 0000 0000 1111
0000 0000 0000 0100 — 0x0004

Another use is that of setting and extracting individual bits.

Suppose that you were using a single byte to store information about a
person in a database that you were building. The most significant bit might
be set to 1 if the person is male, the next set to 1 if a programmer, the next set
to 1 if the person is handsome, and the least significant bit set to 1 if the
person has a dog. See the following Table 4-4.

Table 4-4 Sample Bits and Settings
Bit Meaning

0 1->male

1 1->programmer

2 1->Vulcan

3 1->owns a dog

This byte is encoded for each database and stored along with name, Social
Security number, and any number of other illegal information.

Chapter 5
Controlling Program Flow

In This Chapter
Controlling the flow through the program
Executing a group of statements repetitively
Avoiding infinite loops

rle simple programs that appear in Chapters 1 through 4 process a fixed
number of inputs, output the result of that calculation, and quit.
However, these programs lack any form of flow control. They can not make
tests of any sort. Computer programs are all about making decisions. If the
user presses a key, the computer responds to the command.

For example, if the user presses Ctrl + C, the computer copies the currently
selected area to the Clipboard. If the user moves the mouse, the pointer
moves on the screen. If the user clicks the right mouse button with the
Windows key depressed, the computer crashes. The list goes on and on.
Programs that don’t make decisions are necessarily pretty boring.

Flow control commands allow the program to decide what action to take
based on the results of the C++ logical operations performed (see Chapter 4).
There are basically three types of flow control statements: the branch, the
loop, and the switch.

Controlling Program Flow with the
Branch Commands

The simplest form of flow control is the branch statement. This instruction
allows the program to decide which of two paths to take through C++ instruc-
tions based on the results on a logical expression (see Chapter 4 for a
description of logical expressions).

58 Part I: Introducing C++ Programming

In C++, the branch statement is implemented using the i f statement:

if (m > n)
{
// Path 1
// ...instructions to be executed if

// m is greater than n

)
else

{
// Path 2
// ...instructions to be executed if not

}

First, the logical expressionm > n is evaluated. If the result of the expression
is true, then control passes down the path marked Path 1 in the previous
snippet. If the expression is not true, control passes to Path 2. The else
clause is optional. If it is not present, then C++ acts as if it is present but
empty.

Actually, the braces are optional if there is only one statement to execute as
part of the if. However, it is very easy to make a mistake that the C++ com-
piler can’t catch without the braces as a guide marker. It is always much safer
to include the braces. If your friends try to entice you into not using braces,
just say no.

The following program demonstrates the if statement:

// BranchDemo - input two numbers. Go down one path of the

/1l program if the first argument is greater than
// the first or the other path if not

#include <stdio.h>

#include <iostream.h>

int main(int arg, char* pszArgs(])
{

// input the first argument...

int argl;

cout << "Enter argl: ";
cin >> argl:

// ...and the second
int arg2:

cout << "Enter arg2: ";
cin >> arg2:

// now decide what to do:
if (argl > arg2)
{
cout << "argument 1 is greater than argument 2\n";

Chapter 5: Controlling Program Flow 59

}
else
{
cout << "argument 1 is not greater than argument
2\n";
}

return 0;

}

Here the program reads two integers from the keyboard and compares them.
If the expression “argl is greater than arg2” is true, then control flows to the
output statement cout << "argument 1 is greater than argument 2".
If argl is not greater than arg2, control flows to the else clause where the
statement cout << "argument 1 is not greater than argument 2\n"
is executed.

Executing Loops in a Program

Branch statements allow you to control the flow of a program’s execution
from one path of a program or another. This is a big improvement but still not
enough to write full strength programs.

Consider the problem of updating the computer display. On the typical PC dis-
play, one thousand pixels are drawn to update the entire display. A program
outfit without the ability to execute the same code repetitively would need to
include the same set of instructions over and over one thousand times.

What we really need is a way for the computer to execute the same (short)
sequence of instructions one thousand times. Executing the same command
multiple times requires looping statements.

Looping while a condition is true

The simplest form of looping statement is the while loop. The while
appears as follows:

while(condition)
{

}

// ...repeatedly executed as long as condition is true

The condition is tested. This condition could be if var > 10 orif varl
== var2 or anything else you might think of. If it is true, then the statements
within the braces are executed. Upon encountering the closed brace, control

60

Part I: Introducing C++ Programming

returns to the beginning and the process starts over. The effect is that the
C++ code within the braces is executed repeatedly as long as the condition is
true. (Kind of like how 1 get to walk around the yard with my dog until she . ..
well, until we're done.)

If the condition were true the first time, then what would make it be false in
the future? Consider the following example program:

// WhileDemo - input a loop count. Loop while

// outputting astring arg number of times.
#include <stdio.h>

#include <iostream.h>

int main(int arg, char* pszArgs[])
{
// input the loop count
int lToopCount;
cout << "Enter loopCount:
cin >> loopCount;

// now loop that many times
while (loopCount > 0)
{
loopCount = loopCount - 1;
cout << "Only " << loopCount << " loops to go\n";
}
return 0;

}

WhileDemo begins by retrieving a loop count from the user, which it stores in
the variable 1ToopCount. The program then executes a whileloop. The

while first tests ToopCount. If 1oopCount is greater than zero the program
enters the body of the loop (the body is the code between the braces) where
it decrements 1oopCount by 1 and outputs the result to the display. The pro-
gram then returns to the top of the loop to test whether 1oopCount is still
positive.

When executed, the program WhileDemo outputs the results shown below.
Here you can see that | entered a loop count of 5. The result is that the pro-
gram loops 5 times, each time outputting a count down.

Only 4 loops to go
Only 3 loops to go
Only 2 loops to go
Only 1 loops to go
Only 0 loops to go

If the user enters a negative loop count, the program skips the loop entirely.
Because the condition is never true, control never enters the loop. In addi-
tion, if the user enters a very large number, the program loops for a long time
before completing.

Chapter 5: Controlling Program Flow

WING!

A separate, less frequently used version of the whi1e loop known as the
do...while appears identical except that the condition isn’t tested until the
bottom of the loop:

do
{

// ...the inside of the loop
} while (condition);

Because the condition isn't tested until the end, the body of the do. . .while
is always executed at least once.

The condition is only checked at the beginning of the while loop or at the
end of the do. . .while loop. Even if the condition ceases to be true some
time during the execution of the loop, control does not exit the loop until the
condition is retested.

Using the autoincrement/autodecrement
feature

Programmers very often use the autoincrement ++ or the autodecrement - -
operators with loops that count something. Notice from the following snippet
extracted from the WhileDemo example, that the program decrements the
loop count by using the assignment and subtraction statements

// now loop that many times
while (loopCount > Q)
{
loopCount = ToopCount - 1;
cout << "Only " << loopCount << " Toops to go\n";
}

A more compact version would have been to use autodecrement feature:
while (loopCount > 0)
{
loopCount--;

cout << "Only " << loopCount << " loops to go\n";
}

The logic in this version is the same as the original. The only difference is the
way that 1oopCount is decremented.

Because the autodecrement both decrements its argument and returns its
value, the decrement operation can actually be combined with the while
loop. In particular, the following version is the smallest loop yet.

01

62

Part I: Introducing C++ Programming

while (loopCount-- > 0)
{

)

cout << "Only " << loopCount << " Toops to go\n":

Believe it or not, the Toopcount-- > 0 is the version that most C++ pro-
grammers would use. It’s not that C++ programmers like being cute —
although they do. You will find the more compact version using the autoin-
crement or autodecrement feature embedded in the logical comparison
easier to read as you gain experience.

Both 1oopCount - - and --1oopCount expressions decrement 1oopCount;
however, the former returns the value of 1oopCount before being decre-
mented and the latter after.

How often should the autodecrement version of WhileDemo execute when the
user enters a loop count of 1? If you use the predecrement version, the value
of --1oopCount is 0 and the body of the loop is never entered. With the post-
decrement version, the value of ToopCount - - is 1 and control enters the
loop.

You might be fooled into thinking that the version of the program with the
autodecrement command executes faster since it contains fewer statements.
This is not the case, however. Modern compilers are pretty good at getting
the number of machine language instructions down to a minimum no matter
which of the above decrement instructions you use.

Using the for loop

A second form of loop is the for loop. The for loop is preferred over the
more basic while loop because it is generally easier to read — there is really
no other advantage.

The for loop has the following format:

for (initialization: conditional: increment)
{

}

// ...body of the loop

Execution of the for loop begins with the initialization clause.

The initialization clause got its name because this is normally where counting
variables are initialized. The initialization clause is only executed once when
the for loop is first encountered.

Chapter 5: Controlling Program Flow 63

Execution continues with the conditional clause. In similar fashion to the
while loop, the for loop continues to execute as long as the conditional
clause is true.

After completing execution of the code in the body of the loop, control
passes to the increment clause before returning to check the conditional,
thereby repeating the process. The increment clause normally houses the
autoincrement or autodecrement statements used to update the counting
variables.

The while equivalent to the for loop is:

initialization;
while(conditional)
{

{

}

increment;

// ...body of the loop

}

All three clauses are optional. If the initialization or increment clauses are
missing, C++ ignores them. If the conditional clause is missing, C++ performs
the for loop forever (or until something else passes control outside of the

loop).

The for loop is better understood by example. The following ForDemo pro-
gram is nothing more than the WhileDemo converted to use the for loop
construct.

// ForDemo - input a loop count. Loop while

/7 outputting astring arg number of times.
fpincliude <stdio.h>

ffinclude <iostream.h>

int main(int arg, char* pszArgs[])
{

// input the loop count
int loopCount;

cout << "Enter loopCount: *;
cin >> loopCount;

// count up to the loop count 1imit
for (; loopCount > 0;)
{

loopCount = loopCount - 1;

cout << "Only " << loopCount << " loops to go\n";
}
return 0;

64

Part I: Introducing C++ Programming

NNG/
&

This modified version of Whi1eDemo loops the same as it did before.
However, rather than modify the value of ToopCount, this ForDemo version
uses a counter variable.

Control begins by declaring a variable and initializing it to the value con-
tained in ToopCount. It then checks the variable i to make sure that it is posi-
tive. If so, the program executes the output statement decrements i and
starts over.

The for loop is also convenient when you need to count from 0 up to the loop
count value rather than from the loop count down to 0. This is implemented
by a simple change to the for loop:

// ForDemo - input a Toop count. Loop while

// outputting astring arg number of times.
#include <stdio.h>

#include <iostream.h>

int main(int arg, char* pszArgs[])
{

// input the loop count

int loopCount;

cout << "Enter loopCount: ";
cin >> loopCount;

// count up to the loop count limit
for (int i = 1; i <= loopCount; i++)
{

}
return 0;

cout << "We've finished " << i << " loops\n";

}

Rather than begin with the loop count, this version of ForDemo starts with 1
and loops up to the value entered by the user. The use of the variable i for
for loop increments is historical (stemming from the early days of the FOR-
TRAN programming language).

When declared within the initialization portion of the for loop, the index
variable is only known within the for loop itself. Nerdy C++ programmers say
that the scope of the variable is the for loop. In the example above, the vari-
able i is not accessible from the return statement since that statement is not
within the loop. Not all compilers stick to this rule, however. You will need to
test your own C++ compiler to see which way it works.

You might be tempted to ask, “If there is a whi 1e equivalent to the for com-
mand, while mess with the for loop?” (Go ahead . .. ask it.) By forcing the ini-
tialization, test, and increment features of any loop into fixed locations and
format, the for loop is considerably easier to understand.

Chapter 5: Controlling Program Flow 6 5

Avoiding the dreaded infinite loop

An infinite loop is an execution path that continues forever. An infinite loop
occurs any time the condition, which would otherwise terminate the loop,
cannot occur — usually due to some coding error.

Consider the following minor variation of the earlier loop:
while (loopCount > 0)
{

cout << "Only " << loopCount << " loops to go\n";
}

The programmer forgot to decrement the variable 10opCount as in the loop
example below. The result would be a loop counter that never changed. The
test condition would either be always false or always true. The program exe-
cutes in a never ending or infinite loop.

| realize that nothing’s infinite. Eventually the power will fail, the computer
will break, Microsoft will go bankrupt, and dogs will sleep with cats. . . . Either
the loop will stop executing or you won't care anymore.

You can create an infinite loop in many more ways than shown here, most of
which are much more difficult to spot than this one.

Applying special loop controls

C++ defines two special flow control commands known as break and
continue. It can happen that the condition for terminating the loop occurs nei-
ther at the beginning nor at the end of the loop but in the middle. Consider the
following program that accumulated number of values entered by the user. The
loop terminates when the user enters a negative number.

The challenge with this problem is that the program can’t exit the loop until the
user has entered a value, but must exit before the value is added to the sum.

For these cases, C++ defines the break command. When encountered, the
break causes control to exit the current loop immediately. Control passes
from the break statement to the statement immediately following the closed
brace.

The format of the break commands is as follows:
while(condition) // break works equally well in for loop

{
if (some other condition)

66 Part I: Introducing C++ Programming

break; // exit the loop

// control passes here when the
// program encounters the break

Armed with this new break command, my solution to the accumulator prob-
lem appears as the program BreakDemo.

// BreakDemo - input a series of numbers.

/1l
/1!
/1

Continue to accumulate the sum
of these numbers until the user
enters a 0.

#Hinclude <stdio.h>
J#Hnclude <iostream.h>

int main(int arg, char* pszArgs[])

{

// input the Tloop count
int accumulator = 0;
cout << "This program sums values entered"

cout << "Terminate the loop by entering

<< "by the user\n";

<< "a negative number\n";

// loop "forever"
i@RCg 2)

{

}

// fetch another number

int value = 0;

cout << "Enter next number: ";
cin >> value;

// if it's negative...
if (value < 0)
{
// ...then exit
break:
}

// ...otherwise add the number to the
// accumulator
accumulator = accumulator + value;

// now that we've exited the loop
// output the accumulated result
cout << "\nThe total is "

<< accumulator
SRR

return 0;

Chapter 5: Controlling Program Flow 6 7

After explaining the rules to the user (entering a negative number to termi-
nate, etc.), the program enters what looks like an infinite for loop. Once
within the loop, BreakDemo retrieves a number from the keyboard. Only after
the program has read a number can it test to see if the number read matches
the exit criteria. If the input number is negative, control passes to the break
causing the program to exit the loop. If the input number is not negative con-
trol skips over the break command to the expression that sums the new
value into the accumulator. Once the program exits the loop, it outputs the
accumulated value and exits.

When performing an operation on a variable repeatedly in a loop, make sure
that the variable is initialized properly before entering the loop. In this case,
the program zeros accumulator before entering the loop where value is
added to it.

A\

The continue command is used less frequently. When the program encoun-
ters the continue command, it immediately passes back to the top of the
loop. The remainder of the statements in the loop are ignored for the current
iteration. The following example snippet ignores negative numbers that the
user might input:

while(1)

{
// input a value
cout << "Input a value:";
cin >> inputVal;

// if the value is negative...
if (inputVal < 0)
{

// ...output an error message...
cout << "Negative numbers are not allowe\n";

// ...and go back to the top of the loop
continue;
}

// ...process input 1ike normal

Nesting Control Commands

Return to our PC screen repaint problem. Surely a loop structure of some
type is used to write each pixel from left to right on a single line (do Hebrew
displays scan from right to left?) What about repeatedly repainting each scan
line from top to bottom? (Do PC screens in Australia scan from the bottom to
the top?) For this, you need to include the left-to-right scan loop within the
top-to-bottom scan line.

68 Part I: Introducing C++ Programming

A loop command within another loop is known as a nested loop. As an exam-
ple, you can modify the BreakDemo program into a program that accumu-
lates any number of sequences. In this NestedDemo program, the inner loop
sums numbers entered from the keyboard until the user enters a negative
number. The outer loop continues accumulating sequences until the sum is 0.

// NestedDemo - input a series of numbers.

// Continue to accumulate the sum

// of these numbers until the user
// enters a 0. Repeat the process

// until the sum is 0.

#include <stdio.h>
##include <iostream.h>

int main(int arg. char* pszArgs(])
{
// the outer loop
cout << "This program sums multiple series\n”
<< "of numbers. Terminate each sequence\n"
<< "by entering a negative number.\n"
<< "Terminate the series by entering two\n"
<< "negative numbers in a row\n";

// continue to accumulate sequences
int accumulator;
do
{
// start entering the next sequence
// of numbers
accumulator = 0;
cout << "\nEnter next sequence\n”;

// loop forever
for(;;)
{
// fetch another number
int value = 0;
cout << "Enter next number:
cin >> value;

// if it's negative...
if (value < 0)
{
// ...then exit
break;
}

/! ...otherwise add the number to the

// accumulator
accumulator = accumulator + value:

output the accumulated result...

Chapter 5: Controlling Program Flow

cout << "\nThe total is "
<< accumulator

SO
// ...and start over with a new sequence
// if the accumulated sequence was not zero
} while (accumulator != 0);
cout << "Program terminating\n";
return 0;

Switching to A Different Subject?

One last control statement is useful in a limited number of cases. The switch
statement resembles a compound if statement by including a number of dif-
ferent possibilities rather than a single test:

switch(expression)
{
case cl:
// go here if the expression == cl
break;
CalSEWE:
// go here if expression == c2
break;
else

// go here if there is no match
}

The value of expression must be an integer (int, 1ong, or char). The case
values cl, c2, and ¢3 must be constants. When the switch statement is
encountered, the expression is evaluated and compared to the various case
constants. Control branches to the case that matches. If none of the cases
match, control passes to the else clause.

Consider the following example code snippet:

cout << "Enter a 1, 2 or 3:";
cin >> choice;

switch(choice)
{
case 1:
// do "1" processing
break;

case 2:
// do "2" processing

69

Partll

Becoming a
Functional
Programmer

The 5th Wave By Rich Tennant

S CBRUHTANAT
@ EDAN B

] l;--' N
07 il T/'? - Bl i,
% o i : A

"S0 1 SAID,"VAITER ! WAITER! THERE'S A BLG IN MY SOUP! AND HE
SAYS, ‘SORRY, SIR , THE CHEF USED TO PROGRAM COMPUTERS! AHH HALA
PAHA THANK YOU! THANK YOU!”

In this part . . .

t’s one thing to perform operations such as addition
and multiplication — even when we’re logical (AND,
OR, and the like). It's another thing to write real programs.
This section introduces the features necessary to make

this leap into programmerdom.

Chapter 6
Creating Functions

®© 0060600060600 080606000 606000000000 000880000e0ed0000 e0 eo

In This Chapter

p Writing functions

» Passing data to functions

» Naming functions with different arguments

» Creating function templates

» Determining variable storage class

e

e\

€ 668006800 0040060606080 00a8ae86 040906 0 0 ¢

Developers often need the ability to break programs up into smaller
chunks that are easier to develop. The programs developed in prior
chapters have been small enough that this subdivision was not necessary;
however, “real world” programs can be many of thousands (or millions!) of
lines long. Without this ability to divide up the program into parts, develop-
ing such large programs would quickly become impossible.

C++ allows programmers to divide their code up into chunks known as func-
tions. A function with a simple description and a well-defined interface to the
outside world can be written and debugged without worrying about the code
that surrounds it.

A good function can be described using a single sentence that contains a min-
imum number of ORs and ANDs. For example, the function sumSequence
accumulates a sequence of integer values entered by the user. This definition
is concise and clear.

This divide-and-conquer approach reduces the difficulty of creating a work-
ing program of significant size. This is a simple form of encapsulation — see
Chapter 12 for more details on encapsulation.

74

Part ll: Becoming a Functional Programmer

Writing and Using a Function

A\

Functions are best understood by example. This section starts with the exam-
ple program, FunctionDemo, which simplifies the NestDemo program I dis-
cussed in Chapter 5 by defining a function to contain part of the logic. This
section then explains how the function is defined and how it is invoked using
an example program FunctionDemo as a pattern both of the problem and the
solution.

NestDemo involves an inner loop, which accumulates a sequence of numbers
surrounded by an outer loop that repeats the process until the user quits.
Separating the two loops simplifies the program.

The following FunctionDemo program shows how NestDemo can be simpli-
fied by creating the function sumSequence().

Function names are normally written with a set of parentheses immediately
following the term.

// FunctionDemo - demonstrate the use of functions

/7 by breaking the inner loop of the
/7 NestedDemo program off into its own
// function

#include <stdio.h>
#include <iostream.h>

// sumSequence - add a sequence of numbers entered from

// the keyboard until the user enters a
// negative number.
// return - the summation of numbers entered

int sumSequence(void)
{
// loop forever
int accumulator = 0;
for(:;)
{
// fetch another number
int value = 0;
cout << "Enter next number:
cin >> value;

// if it's negative...

if (value < 0)

{
// ...then exit from the loop
break;

}

// ...otherwise add the number to the
// accumulator

Chapter 6: Creating Functions

accumulator= accumulator+ value;
}

// return the accumulated value
return accumulator;
}

int main(int arg, char* pszArgs[])
{
cout << "This program sums multiple series\n"
<< "of numbers. Terminate each sequence\n"
<< "by entering a negative number.\n"
<< "Terminate the series by entering two\n"
<< "negative numbers in a row\n":

// accumulate sequences of numbers...
int accumulatedValue;

do
{
// sum a sequence of numbers entered from
// the keyboard
cout << "\nEnter next sequence\n";
accumulatedValue = sumSequence();
// now output the accumulated result
cout << "\nThe total is "
<< accumulatedValue
L€ A3
// ...until the sum returned is O
} while (accumulatedValue [= 0);
cout << "Program terminating\n";
return 0;

Calling the function sumSequence ()

First, concentrate on the main program contained in the braces following
main(). This section of code looks similar to NestDemo.

The main difference is the expression accumulatedValue =

sumSequence () ; appearing roughly in the middle of the main () section. The
sumSequence() calls a function called sumSequence(). A value returned by
the function is stored in the variable accumulatedValue. This value is sub-
sequently displayed. The main program continues to loop until the sum
returned by the inner function is zero, which indicates that the user has fin-
ished calculating sums.

To call a function means to begin executing the code contained in the func-
tion. After this code is finished, control returns to the statement immediately
following the function call.

/5

76 Part Il: Becoming a Functional Programmer

Defining the sumSequence () function

The statement int sumSequence(void) begins the definition of the
sumSequence () function. The block of code contained in the braces is the
function body. The function body of sumSequence () is identical to that found
in the inner loop of NestDemo.

So the declaration goes like this: The main program enters a loop that looks
like the outer loop in NestedDemo. In the middle of this loop where you
would have found an inner loop, all that is there is the call to
sumSequence (). When execution reaches this inner section, control passes
to the sumSequence () function, which accumulates a sum. This sum is
returned to the main body of code that continues with the remainder of the
outer loop.

Understanding the Details of Functions

Functions are so fundamental to the creating of C++ programs that under-
standing the details of defining, creating, and testing functions is critical.
With the example FunctionDemo program finished, here’s a definition of
function.

A function is a logically separated block of C++ code. The function construct
has the following form:

<return type> name(<arguments to the function>)

1 cos
return <expression>;
}

The arguments to a function are values that can be passed for the function to
use as input. The return value is a value that the function returns. For exam-
ple, in the call to the function square(10), the value 10 is an argument to the
function square (). The returned value is 100.

Both the arguments and the return value are optional. If either is absent, the
keyword void is used instead. That is, if a function has a void argument list,
the function does not take any arguments when called (this was the case with
the FunctionDemo program). If the return type is void, the function does not
return a value to the caller.

In the example FunctionDemo program, the name of the function is
sumSequence (), the return type is int, and no arguments exist.

Chapter 6: Creating Functions

A\

B\

N\

The default argument type to a function is void, meaning that it takes no
arguments. A function int fn(void) may be declared as int fn().

The function construct made it possible for me to write two distinct parts of
the FunctionDemo program separately. | concentrated on creating the sum of
a sequence of numbers when writing the sumSequence () function. | didn’t
think about other code that may call the function.

Similarly, when writing main(), | concentrated on handling the summation
returned by sumSequence () while thinking only of what the function did —
not how it worked.

Understanding Simple functions

The simple function sumSequence () returns an integer value that it calcu-

lates. Functions may return any of the regular types of variables. For exam-
ple, a function might return a double or a char. (int, double, and char are a
few of the variable types discussed in Chapter 5.)

If a function returns no value, the return type of the function is labeled void.

A function may be labeled by its return type. Thus, a function that returns an
int is often known as an integer function. A function that returns no
value is known as a void function.

For example, the following void function performs an operation, but returns
no value.

void echoSquare()
{
cout << "Enter a value:";
cin >> value;
cout << "\n The square is:" << value * value "\n";
return;

}

Control begins at the open brace and continues through to the return state-
ment. The return statement in a void function is not followed by a value.

The return statement in a void function is optional. If not present, execution
returns to the calling function when control encounters the close brace.

77

78 Part 1l: Becoming a Functional Programmer

Understanding functions with arguments

Simple functions are of limited use because the communication from such
functions is one-way — through the return value. Two-way communication is
through function arguments.

Functions with arguments

A function argument is a variable whose value is passed to the calling function
during the call operation. The following example defines and uses a function
square() that returns the square of a double precision float passed to it:

// SquareDemo - demonstrate the use of a function
!/ which processes arguments

#include <stdio.h>
#include <iostream.h>

// square - returns the square of its argument
// doubieVar - the value to be squared
// returns - square of doubleVar
double square(double doubleVar)
f
1

return doubleVar * doubleVar;
}

// sumSequence - add a sequence of numbers entered from

// the keyboard and squareduntil the

/7 user enters a negative number.

// return - the summation of the square
// of the numbers entered

int sumSequence(void)
{
// Toop forever
int accumulator= 0;
for(;;)
{
// fetch another number
double dValue = 0;
cout << "Enter next number: ":
cin >> dValue;

// if it's negative...

if (dvValue < 0)

// ...then exit from the loop
break:

// ...otherwise calculate the square
int value = (int)square(dValue);

Chapter 6: Creating Functions

// now add the square to the
// accumulator
accumulator= accumulator+ value;

]

// return the accumulated value
return accumulator:

int main(int arg, char* pszArgs[])

cout << "This program sums multiple series\n"
<< "of numbers. Terminate each sequence\n”
<< "by entering a negative number.\n"
<< "Terminate the series by entering two\n"
<< "negative numbers in a row\n";

// Continue to accumulate numbers...

int accumulatedValue;

do

{
// sum a sequence of numbers entered from
// the keyboard
cout << "\nEnter next sequence\n";
accumulatedValue = sumSequence();

// now output the accumulated result
cout << "\nThe total is "

<< accumulatedValue

KR :

// ...until the sum returned is O
} while (accumulatedValue != 0);
cout << "Program terminating\n";
return 0;

}

This is the same FunctionDemo() program, except that SquareDemo() adds
the square of the values entered. The function square () returns the value of
its one argument multiplied by itself. The change to the sumSequence () func-
tion is simple — rather than accumulate the value entered, the function now
accumulates the result returned from square().

Functions with multiple arguments

Functions may have multiple arguments that are separated by commas. Thus,
the following function returns the product of its two arguments:

int product(int argl, int arg2)
{

}

return argl * arg?2;

79

80

Part ll: Becoming a Functional Programmer

Casting values

Line 38 of the SquareDemo program contains an
operator never before seen:

accumulator = accumulator +
(int)dValue;

The (int)in front of the dValue indicates that the
programmer wants to convert the dValue vari-
able from its current type, in this case double,
into an int before performing the addition.

A castis an explicit conversion from one type to
another.

Any numeric type may be castinto any other
numeric type. Without such a cast, C++ would
have converted the types anyway, but would
have generated a warning just to make sure that
it's doing the correct conversion. The castreas-
sures the compiler that this conversion is what's
wanted.

main () exposed

The “keyword” main() from our standard program template is nothing more
than a function — albeit a function with strange arguments — but a function

nonetheless.

When a program is built, C++ adds some boilerplate code that executes
before your program ever starts. This code sets up the environment in which
your program operates. For example, this boilerplate code opens the default

input and output channels.

After the environment has been established, the C-+ boilerplate code calls
the function main(), thereby beginning execution of your code. When your
program finishes, it exits from main (). This enables the C++ boilerplate to

clean up a few things before turning control over to the operating system that

kills the program.

Overloading Function Names

C++ allows the programmer to assign the same name to two or more func-

tions. This multiple use of names is known as overloading functions or simply

overloading.

In general, two functions in a single program cannot share the same name. lf
they did, C++ would have no way to distinguish them.

However, the name of the function includes the number and type of its argu-
ments. (The name of the function does not include its return argument.)
Thus, the following are not the same functions:

Chapter 6: Creating Functions

void someFunction(void)
{

}
void someFunction(int n)
{

}
void someFunction(double d)
{

}
void someFunction(int nl, int n2)
{

}

//perform some function

// ...perform some different function

// ...perform some very different function

//do something different yet

C++ still knows that the functions someFunction(void), someFunction(int),
someFunction(double), and someFunction(int, int) are not the same.
Like so many things that deal with computers, this has an analogy in the
human world.

void as an argument type is optional. sumFunction(void) and
sumFunction() are the same function. A function has a shorthand name, such
as someFunction(), in same way that [have the shorthand name Stephen
(actually, my nickname is Randy, but work with me on this one). If there aren’t
any other Stephens around, then people can talk about Stephen behind his
back. If, however, there are other Stephens, no matter how handsome they
might be, people have to use their full names — in my case, Stephen Davis. As
long as we use the entire name, no one gets confused — no matter how many
Stephens there might be. The full name for one of the someFunctions ()is
someFunction(int). As long as this full name is unique, no confusion occurs.

The analogies between the computer world (where ever that is) and the
human world are hardly surprising because humans build computers.
wonder if dogs had built computers, would the standard unit of memory be a
gnaw instead of a byte, or would requests group in packs instead of queues?

A typical application may appear as follows:

int intVariablel, intVariable2; // equivalent to
// int Variablel;
// int Variable?2;
double doubleVariable;

// functions are distinguished by the type of

// the argument passed

someFunction(); // calls someFunction(void)
someFunction(intVariablel); // calls someFunction(int)
someFunction(doubleVariable); // calls someFunction(double)

81

82 Part Il: Becoming a Functional Programmer

someFunction(intVariablel, intVariable2):; // calls
// someFunction(int, int)

// this works for constants as well

someFunction(l); // calls someFunction(int)
someFunction(1.0); // calls someFunction(double)
someFunction(l, 2); // calls someFunction(int, int)

In each case, the type of the arguments matches the full name of the three
functions.

The return type is not part of the extended name (also known as the function
signature) of the function. The following two functions have the same name
and, thus, cannot be part of the same program:

int someFunction(int n): // full name of the function
// is someFunction(int)
double someFunction(int n); // same name

The following is acceptable:

int someFunction(int n);
double d = someFunction(10); // promote returned value

The int returned by someFunction() is promoted into a double. Thus, the
following would be confusing:

int someFunction(int n);
double someFunction(int n):
double d = someFunction(10);// promote returned int?
// or use returned double as is

C++ wouldn't know whether to use the value returned from the double ver-
sion of someFunction() or promote the value returned from int version.

Defining Function Prototypes

The programmer may provide the remainder of a C++ source file, or module,
the extended name (the name and functions) during the definition of the
function.

The target functions sumSequence () and square () appearing earlier in this
chapter were both defined in code that appeared before the actual call. This
doesn't have to be the case: A function may be defined anywhere in the
module. (A module is another name for a C++ source file.)

A\

Chapter 6: Creating Functions 83

However, something has to tell main() the full name of the function before it
can be called. Consider the following code snippet:

int main(int argc, char* pArgs(])
{

}
int someFunc(double argl, int arg2)
{

)

someFunc(1l, 2);

// ...do something

The call to someFunc () from within main() doesn’t know the full name

of the function. It may surmise from the arguments that the name is
someFunc(int, int) and that its return type is void; however, as you can
see, this is incorrect.

1 know, | know — C++ could be less lazy and look ahead to determine the full
name of someFunc()s on its own, but it doesn't. Like my crummy car, I've
learned to live with it.

What is needed is some way to inform main() of the full name of someFunc()
before it is used. What is needed is a before use function declaration. We
need some type of prototype.

A prototype declaration appears the same as a function with no body. In use,
a prototype declaration appears as follows:

int someFunc(double, int);
int main(int argc, char* pArgs[])

somefFunc(l, 2);
int someFunc(double argl, int arg2)

// ...do something

The prototype declaration tells the world (at least that part of the world
after the declaration), that the extended name for someFunc() is
somefFunction(double, int). The callin main() now knows to cast the 1
to a double before making the call. In addition, main() knows that the value
returned by someFunc() is an int.

A function call that returns a value is an expression. As with any other provide
expression, you are allowed to throw away the value returned by a function.

84 Part Il: Becoming a Functional Programmer

Variable Storage Types

Function variables are stored in three different places. Variables declared
within a function are said to be local. In the following example, the variable
localVariable is local to the function fn():

int globalVariable;
void fn()
{
int TocalVariable;
static int staticVariable;
}

The variable 1ocalVariable doesn't exist until the function fn() is called.
localVariable ceases to exist when the function returns. Upon return,
whatever value that is stored in 1ocalVariable is lost. In addition, only
fn() has access to TocalVariable — other functions cannot reach into the
function to access it.

By comparison, the variable g1oba1Variable exists as long as the program
is running. All functions have access to globalVariable all of the time.

The static variable staticVariable is something of a mix between a local
and a global variable. The variable staticVariable is created when execu-
tion first reaches the declaration (roughly, when the function fn() is called).
In addition, staticVariable is only accessible within fn (). Unlike
localVariable, however, staticVariable continues to exist even after the
program returns from fn().1f fn() assigns a value to staticVariable once.
it will still be there the next time that fn() is called.

In case anyone asks, there is a fourth type, auto, but today it has the same
meaning as 1ocal, so just ignore them. It’s just like | ignore the blue smoke
coming from my auto.

Chapter 7
Storing Sequences in Arrays

20 00 0 ® 2000 00 00 006 &

In This Chapter
» Introducing the array data type

Using arrays

Initializing an array

Using the most common type of array — the character string

50 0 90666 O 8 ® ' 2 66 6 8 56 06 & 3

A n array is a sequence of variables that share the same name and are ref-
erenced using an index. Arrays are useful little critters that allow you to
store a large number of values that are related in some way — for example,
the batting averages of all the players on the same team might be a good can-
didate for storage within an array. Arrays can be multidimensional, too,
allowing you, for example, to store an array of batting averages within an
array of months, which allows you to work with the batting averages of the
team as they occur by month. If you think about it long enough, you get a
headache.

In this chapter, you find out how to initialize and use arrays for fun and profit.
You also find out about an especially useful form of array, a string, which in
C++ is really just an array of type char.

Considering the Need for Arrays

Consider the following problem. You need a program that can read a
sequence of numbers from the keyboard. You'll use the now-standard rule
that a negative number terminates input. Once the numbers have been read
in, and only then, the program shall display them on the standard output
device.

86 Part |l: Becoming a Functional Programmer

You can attempt to store numbers in a set of independent variables, as in:

cin >> valuel;

if (valuel >= 0)

{
cin >> value2;
if (value2 >= 0)
{

You can see that this approach can’t handle sequences involving more than
just a few numbers. Besides, it's ugly. What is needed is some type of struc-
ture that has a name like a variable but that can contain more than one vari-
able. This is the purpose of the array.

An array solves the problem of sequences nicely. For example, the following
snippet declares an array valueArray that has storage for up to 128 int
values. It then populates the array with numbers entered from the keyboard.

int value;

// declare an array capable of holding up to 128 ints
int valueArray[128];

// define an index used to access subsequent members of
// of the array; don't exceed the 128 int limit
for (int i = 0; i < 128; i++)
{
cin >> value;

// exit the loop when the user enters a negative
// number

if (value < 0)

{

}
valueArray[i] = value;

break;

}

The second line of this snippet declares an array valueArray. Array declara-
tions begin with the type of the array members: in this case, int. This is fol-
lowed by the name of the array. The last element of an array declaration is an
open and closed bracket containing the maximum number of elements that
the array can hold. In this code snippet, valueArray can accommodate up to
128 integers.

This snippet reads a number from the keyboard and stores it into each subse-
quent member of the array valueArray. An individual element of an array is
accessed by providing the name of the array followed by brackets containing
the index. The first integer in the array is valueArray[0], the second is
valueArray[1], and so on.

Chapter 7: Storing Sequences in Arrays 8 7

In use, valueArray[i] represents the i'th element in the array. The index
variable i must be a counting variable — that is, i must be a char, an int, or
along.lf valueArray is an array of ints, then valueArrayl[i]isan int.

Using an array

The following program inputs a sequence of integer values from the keyboard
until the user enters a negative number. The program then displays the num-
bers input and reports their sum.

// ArrayDemo - demonstrate the use of arrays
// by reading a sequence of integers
/7 and then displaying them in order
ffinclude <stdio.h>
#include <iostream.h>

// prototype declarations
int sumArray(int integerArray[], int sizeOfloatArray):
void displayArray(int integerArray[], int sizeOfloatArray);

int main(int nArg, char* pszArgs[])
{

// input the loop count

int nAccumulator = 0;

cout << "This program sums values entered"”
<< "by the user\n";

cout << "Terminate the loop by entering "
<< "a negative number\n";

// store numbers into an array
int inputValues[128];
int numberOfValues = 0;
for(; numberOfValues < 128; numberOfValues++)
{
// fetch another number
int integerValue:
cout << "Enter next number: ":
cin >> integerValue;

// if it's negative...
if (integerValue < 0)
{

// ...then exit
break;
}

// ... otherwise store the number
// into the storage array
inputValues[numberOfValues] = integerValue;

88 Part Il: Becoming a Functional Programmer

// now output the values and the sum of the values
displayArray(inputValues, numberOfValues);
cout << "The sum is "
<< sumArray(inputValues, numberOfValues)
&L =it 3
return 0;

}

// displayArray - display the members of an
il array of length sizeOfloatArray
void displayArray(int integerArray[], int sizeOfArray)
{
cout << "The value of the array is:\n";
for (int i = 0; i < sizeOfArray: i++)
{
cout.width(3);
cout << i << ": " << integerArray[i] << "\n";
}
cout << "\n";
}

// sumArray - return the sum of the members of an
// integer array
int sumArray(int integerArray[], int sizeOfArray)
{

int accumulator = 0;

for (int i = 0; i < sizeOfArray; i++)

{

}
return accumulator;

accumulator += integerArrayl[i];

}

The program ArrayDemo begins with a prototype declaration of the functions
sumArray() and displayArray() that it will need later. The main body of
the program contains an input loop (boring). This time, however, the input
values are stored off in the array inputValues.

Input occurs within the initial for loop. The input value is first stored off into
the local variable integerValue. If it is found to be negative, control exits
the loop through the break. If not, integerValue is copied into the array.
The int variable number0fValues is used as an index into the array.

number0fValues was initialized to O up at the beginning of the for loop. The
index is incremented on each iteration of the loop. The test in the for loop
keeps the program from storing more than 128 entries because this is the size
of the array. (The program goes immediately to the output portion after 128
entries whether the user enters a negative number or not.)

Chapter 7: Storing Sequences in Arrays

\NG/
S

The array inputValues is declared as 128 integers long. If you're thinking
that this is enough, don’t count on it. Writing more data than an array causes
your program to perform erratically and often to crash. No matter how large
you make the array, always put a check to make sure that you do not exceed
the limits of the array.

The main function ends by displaying the contents of the array and the sum.
The displayArray() function contains the typical for loop used to traverse
an array. Each entry in the array is added to the variable accumulator. The
sizeOfArray passed to the function indicates the number of values con-
tained in the array.

Notice yet again, that the index is initialized to 0 and not to 1. In additions,
notice how the for loop terminates before i is equal to sizeOfArray. You
don’t want to add all 128 elements of integerArray to accumulator — none
of the elements after the sizeOfArray element contains valid data.

Just to keep nonprogrammers guessing, the term iterate is used to mean tra-
verse through a set of objects such as an array. Programmers say that the
sumArray () function iterates through the array. In a similar fashion, the
displayArray() function iterates through integerArray, displaying each
element.

Initializing an array

A local variable does not start life with a valid value, including 0. Said another
way, a local variable contains garbage until you actually store something into a
local variable. Locally declared arrays are the same — each element contains
garbage until you actually assign something to it. You should initialize local vari-
ables when you declare them. This rule is even more true for arrays. It is far too
easy to access uninitialized array elements thinking that they are valid values.

Fortunately, an array may be initialized at the time it is declared. The follow-
ing code snippets demonstrates how this is done:

float floatArrayf[5] = {0.0, 1.0, 2.0, 3.0, 4.0};

This initializes f1oatArray[0]to 0, floatArray[1]tol, floatArray[(2] to
2 and so on.

The number of initialization constants can determine the size of the array.
For example, we could have determined that f1oatArray has 5 elements just
by counting the values within the braces. C++ can count as well (here’s at
least one thing C++ can do for itself).

The following declaration is identical to the one above.

89

90

Part Il: Becoming a Functional Programmer

float floatArray[] = {0.0, 1.0, 2.0, 3.0, 4.0};

You may initialize all of the elements in an array to a common value by listing
only that value. For example, the following initializes all 25 locations in
floatArray to 1.0.

float floatArray[25] = {1.0};

Accessing too far into an array

Mathematicians start counting arrays with 1. The first member of a mathe-
matical array x is x(1). Most program languages start with an offset of 1 as
well. C++ arrays begin counting at 0. The first member of a C++ array is
valueArray[0].

Sometimes | wonder whether they shouldn't call it Contrarion++. In indexing,
a C++ array begins with 0; thus, the last element of a 128-integer array is
integerArray[127] and not integerArray[128].

Unfortunately for the programmer, C++ does not check to see whether the
index you are using is within the range of the array. C++ is perfectly happy
giving you access to integerArray[200]. In fact, C++ will even let you
access integerArray[-15].

As an analogy, suppose that distances on a highway were measured by
equally spaced power line poles. (In Oklahoma this isn’t too far from the
truth.) We'll call this unit of measure a pole length. The road to my house
begins at the turnoff from the main highway and continues to my house in a
straight line. The length of this road is exactly nine pole lengths. If we begin
numbering poles with the telephone pole at the highway, then the telephone
pole next to my house is pole number 10.

You can access any position along the road by counting poles from the high-
way. If you measure from the highway to the highway, you calculate a dis-
tance of 0 pole lengths. The next discrete point is one pole length and so one
until you get to my house at nine pole-lengths distance.

You can measure a distance 20 pole lengths away from the highway. Of
course, this location is not on the road. (Remember that the road stops at
my house.) In fact, there's no telling what you might find there. You might be
on the next highway, you might be out in a field, you might even land in my
neighbor’s living room (that might be fun). Examining that location is bad
enough, but storing something there could be a lot worse. Storing something
in a field is one thing, but plop something down in my neighbor’s living room
and it’s his. (I know because every time my newspaper misses my yard, it
ends up in my neighbor's living room.)

Chapter 7: Storing Sequences in Arrays

WING/
&@

By analogy, reading array[20] of a 10-element array returns a more or less
random value. Writing to array[20] has unpredictable results. It may do
nothing, it may lead to erratic behavior, or it may crash the program.

The most common incorrect location to access is integerArray[128].
While only one element beyond the end of the array, reading or writing this
location is just as dangerous as any other incorrect address.

Using arrays?

On the surface, the ArrayDemo program doesn’t do anything more than our

earlier, non-array-based programs did. True, this version can replay its input
by displaying the set of input numbers before calculating their sum, but this
feature hardly seems earth shattering.

Yet, the ability to redisplay the input values hints at a significant advantage
to using arrays. Arrays allow the program to process a series of numbers
multiple times. The main program was able to pass the array of input values
todisplayArray() for display and then repass the same numbers to
sumArray () for addition.

Defining and using arrays of arrays

Arrays are adept at storing sequences of numbers. Some applications require
sequences of sequences. A classic example of this matrix configuration is the
spreadsheet. Laid out like a chessboard, each element in the spreadsheet has
both an x and a y offset.

C++ implements the matrix as follows:
int intMatrix[10][5];

This matrix is 10 elements in 1 dimension, and 5 in another, for a total of 50
elements. In other words, intMatrix is a 10-element array, each element of
which is a 5-int array. As you might expect, one corner of the matrix is in
intMatrix[0]{0] while the other corneris intMatrix[9][4].

Whether you consider intMatrix to be ten elements long in the x dimension
and in the y dimension is a matter of taste. A matrix may be initialized in the
same way that an array is:

int intMatrix(2]103] = ({1, 2, 3}, {4, 5, 6}};

This initializes the three-element array intMatrix[0] to 1, 2, and 3 and the
three-element array intMatrix[1] to 4, 5, and 6, respectively.

91

92 Part Il: Becoming a Functional Programmer

Using Arrays of Characters

The elements of an array are of any type. Arrays of floats, doubles, and longs
are all possible; however, arrays of characters have particular significance.

Human words and sentences can be expressed as an array of characters. An
array of characters containing my first name would appear as:

char sMyName[] = {'S', 't', 'e', 'p', 'h', 'e'. 'n'};
The following small program displays my name:

// CharDisplay - output a character array to

/1! standard output, the MS-DOS window
f#Hinclude <stdio.h>

fHinclude <iostream.h>

// prototype declarations
void displayCharArray(char stringArray(].
int sizeOfloatArray);

int main(int nArg, char* pszArgs[])
{
char charMyName[] = {'S', 't', 'e', 'p', 'h', 'e', 'n'};
displayCharArray(charMyName, 7);
COUEIR< IR \SE:
return 0;
}

// displayCharArray - display an array of characters
// by outputing one character at
// a time
void displayCharArray(char stringArrayl[],

int sizeOfloatArray)
{

for(int i = 0; i< sizeOfloatArray; i++)
{

}

cout << stringArrayl[il:
]

The program declares a fixed array of characters charMyName containing — you
guessed it — my name (what better name?). This array is passed to the function
displayCharArray() along with its length. The displayCharArray()
function is identical to the displayArray() function in our earlier example
program except that this version displays chars instead of ints.

Chapter 7: Storing Sequences in Arrays 93

This program works fine; however, it is inconvenient to pass the length of the
array around with the array itself. If we could come up with some rule, we
wouldn’t need to pass the size of the array — we would know that the array
was complete when we encountered the special code character.

Let’s use the code that 0 marks the end of a character array.

The character whose value is 0 is not the same thing as 0. The value of 0 is
0x10. The character whose value is 0 is often written as \0, whose value is
0x0, just to make it clear that this is a character.

The character \yis the character whose numeric value is y. The character \0
is known as the null character. Using that rule, the previous small program
becomes:

// DisplayString - output a character array to

// standard output, the MS-DOS window
#include <stdio.h>

#include <iostream.h>

// prototype declarations
void displayString(char stringArray[]);

int main(int nArg, char* pszArgs[])
{
char charMyName[] =
{'s', ‘t', 'e', 'p', 'h', 'e', 'n', 0};
displayString(charMyName);
cout << "\n";
return 0;
}

// displayString - display a character string
// one character at a time
void displayString(char stringArray[])
{
for(int i = 0; stringArray(i] !'= 0; i++)
{

}

cout << stringArrayl[il;
}

The declaration of charMyName declares the character array with the extra
null character \0 on the end. The displayString program iterates through
the character array until a null character is encountered.

The function displayString() is simpler to use than its
displayCharArray() predecessor. It is no longer necessary to pass along
the length of the character array.

9& Part Il: Becoming a Functional Programmer

Further, displayString() works when the size of the character string is not
known at compile time. This case occurs more often than you might think
(see Chapter 9 for details).

This code of terminating a character array with a null is so convenient that it
is used throughout the C++ language. C++ even gives such an array a special

QQN!BER name.
.“ \ A string is a null terminated character array.

= C++ provides a more convenient means of initializing a string using double
quotes rather than the single quotes used for characters. The following is
exactly equivalent to Lines 11 and 12 in the previous example.

char szMyName[] = "Stephen":

The naming convention used here is exactly that, a convention. C++ does not

care. The prefix sz stands for zero-terminated string.
«MBER
& /"“;\»

& 7 The string Stephen is eight characters long and not seven — the null charac-

"i'yl) ter after the n is assumed.
\.//;

Manipulating Strings

The C++ programmer is often required to manipulate strings. C++ provides a
number of standard string-manipulation functions to make the job easier. Try
writing your own first to get an idea of how these functions work.

Writing our own concatenate function

You can write your own example string manipulation function to concatenate
function by using array semantics and adding the test for a null at the end of
the array. Consider the following example:

// Concatenate - concatenate two strings
with a " - " in the middle
#include <stdio.h>

#include <iostream.h>

// the following include file is required for the
/ str functions
#include <string.h>

prototype declarations
void concatString(char szTarget[]. char szSourcel(]):

Chapter 7: Storing Sequences in Arrays 95

int main(int nArg, char* pszArgs[])
{
// read first string...
char szStringi[256];
cout << "Enter string #1:";
cin.getline(szStringl, 128);

// ...now the second string...
char szString2[128];

cout << "Enter string #2:";
cin.getline(szString2, 128);

// ...concatenate a " - " onto the first...
concatString(szStringl, " - ");

// strcat(szStringl, " - ");

// ...now add the second string...

concatString(szStringl, szString2);
// strcat(szStringl, szString2);

// ...and display the result
cout << "\n" << szStringl << "\n";

return 0;
}

// concatString - concatenate the szSource string
// onto the end of the szTarget string
void concatString(char szTarget[], char szSourcel[])
{
// find the end of the first string
int targetlndex = 0;
while(szTarget[targetIndex])
{

}

targetIndex++;

// tack the second onto the end of the first
int sourcelndex = 0;
while(szSourcelsourcelndex])
{
szTarget[targetindex] =
szSourcel[sourcelndex];
targetIndex++;
sourcelndex++;

}

// tack on the terminating null
szTarget[targetIndex] = '\0';:

96 Part lIl: Becoming a Functional Programmer

A\

The main function reads two strings using the get1ine() function. The alter-
nate cout >> szString reads up to the first space. Here, you want to read
until the Enter key.

Function main() concatenates the two strings using our concatString(
function before outputting the result. The concatString() concatenates the
second argument, szSource, onto the end of the first argument, szTarget. It
does this in several stages.

The first loop within concatString() finds the end of the szTarget string.
concatString() iterates through the string szTarget until targetIndex
references the null at the end of the string. At this point, targetIndex now
references the last character in the target string.

The loop while(value == 0) is the same as while(value) because value
is considered false if it’s equal to 0 and true otherwise. Also. this common
shorthand takes a little getting use to.

The second loop iterates through the szSource string, copying each element
from that string into szTarget starting with the first character in szSource
and the last character in szTarget. The loop stops when sourcelndex refer-
ences the null character in szSource.

The concatString() function tacks a final null character onto the resulting
target string before returning.

Don’t forget to terminate the strings that you construct programmatically.
You will generally know that you forgot to terminate your string if the string
appears to contain garbage at the end when displayed or if the program
crashes inexplicably.

Make sure that the target array has enough room to handle the resulting
concatenated string. It is very tempting to write C++ statements such as the

following:

char dash(] = " "
concatString(dash, szMyName);

This doesn’t work because dash is provided just enough room to store four
characters. The function will undoubtedly overrun the end of the dash array.

Reviewing the C++ string
handling functions

The C++ library provides a set of simple functions for manipulating strings.
Some of these functions are more complicated than they might appear to be.

Chapter 7: Storing Sequences in Arrays

You can write your own versions — it can even be instructional, as was the
case with the example of the concatenate() function. Using these functions
can save you a lot of trouble and heartache, see Table 7-1.

Table 7-1 String-Handling Functions

Name Operation

int strlen(string) Returns the number of characters in
a string

void strcat(target, source) Concatenates the source string onto
the end of the target string

void strcpy(target, source) Copy a string into a buffer

int strstr Find the first occurrence of one

string in another

int strcmp(sourcel, source?2) Compare two strings

int stricmp(sourcel, source2) Compare two strings without regard
to case

You need to add the statement #include <strings.h> to the beginning of any
program that uses the str. .. functions.

In the Concatenate program, the call to concatString() could have been
replaced with a call to the standard C++ strcat () saving us the need to write
our own version:

strcat(szStringl, " - ");

These functions may seem somewhat backwards to any reasonable individual
(this is an acid test for the reader). The second string is concatenated onto
the end of the first argument. Our own concatString() was written the
same way in order to mimic the C++ standard.

Handling wide characters

The standard C++ char type is an 8-bit field capable of representing the
values from 0 to 255. There are 10 digits, as well as 26 lowercase letters plus
26 uppercase letters. Even if you add various umlaut and accented
characters, you still have more than enough range to represent the Roman
alphabet set and still have room left over for the Cyrillic alphabet.

97

98 Part Il: Becoming a Functional Programmer

Problems with the char type don't arise until you begin to include the orien-
tal character sets, in particular the Chinese and Japanese kanjis. There are lit-
erally thousands of these symbols — much more than the lowly eight-bit
character set.

C++ includes support for a newer character type called wchar, or wide char-
acters. While this is not an intrinsic type like char, numerous C++ functions
treat it as if it were. For example, wstrstr() compares two wide character
sets. If you are writing international applications and need access to oriental
languages, you will need to use these wide character functions.

Because this is an added level of complexity, | don’t speak any more of it in
this book.

Avoiding Qbsolescent Qutput Functions

C++ provides a set of lower level input and output functions. The most useful
is the printf () output function. In it’s most basic form, printf () outputs a
string to the default display.

printf("This string is output to display"):

The printf () function performs output using a set of embedded format con-
trol commands each of which begins with a % sign. For example, the follow-
ing prints out the value of an integer and a double variable.

int nint = 1;

double doubleVar = 3.5:

printf("The int value is %i; the float value is %f",
nint, doubleVar):

The integer value is inserted at the point of the %i, while the double appears
at the location of the %f:

The int value is 1: the float value is 3.5

The printf() function is not as difficult to use as it appears once you get
used to its quirks. However, the stream version of output that the remainder
of this book uses is easier (and less likely to be used incorrectly, as we see in
later chapters — remember to always practice safe hex).

Chapter 8
Taking a First Look at C++ Pointers

In This Chapter
Addressing variables in memory
Declaring and using pointer variables
Recognizing the inherent dangers of pointers
Passing pointers to functions
Allocating objects off of the heap (whatever that is)

rle C++ language is fairly conventional compared with other programming
languages. Some computer languages lack (i 1) logical operators (see
Chapter 4). C++ certainly presents its own unique syntax. C++ really sepa-
rates itself from the crowd in definition and use of pointer variables. Pointers
are variables that “point at” other variables. This is to say that pointer vari-
ables contain the addresses of locations in memory.

This chapter introduces the pointer variable type. It begins with some con-
cept definitions, flows through pointer syntax, and then introduces some of
the reasons for the pointer mania, which grips the C++ programming world.

What's in an Address?

Just as the saying goes, “Everyone has to be somewhere,” every C++ variable
is stored somewhere in the computer’s memory. Memory is broken into indi-
vidual bytes with each byte carrying its own address numbered 0, 1, 2, and
SO on.

A variable intRandy might be at address 0x100 while f1oatReader might be
over at location 0x180. (By convention, memory addresses are expressed in
hexadecimal.)

Just like a person, a variable takes a certain amount of room. Again, just like a
person, some variable types take up more room than others. (I'm not going
into whether I'm one of the large volume or small volume types.) The amount
of storage consumed by the different variable types appears in the following
table (these values are for Visual C++ 6 and GNU C++ executing on a Pentium
processor).

7 00 Part Il: Becoming a Functional Programmer

Table 8-1 Variables and Storage Space
Variable Type Memory Consumed [Bytes]

int 4

long 4

float 4

double 8

Consider the following Layout test program that demonstrates the layout of
variables in memory. (Ignore the new & operator — let's just say for now that
&n returns the address of the variable n.)

// Layout - this program tries to give the
// reader an idea of the layout of
// local memory in her compiler
#include <stdio.h>

#include <iostream.h>

int main(int intArgc, char* pszArgs(])
{

int ml;
int n;
long g
float f;
double d;
int me;

// set output to hex mode
cout.setf(ios::hex);

// output the address of each variable
// in order to get an idea of the size
// of each variable

colle & P=== 0x" << (long)&ml << "\n";

cout << "&n = 0Ox" << (long)&n << "\n";
cout << "&1 = 0Ox" << (long)&1 << "\n";
cout << "&f = 0x" << (long)&f << "\n";
cout << "&d = Ox" << (long)&d << "\n":
cout << "--- = 0Ox" << (long)&m2 << "\n";
return 0;

}

WING!
g%" i?\ Don’t worry if the values you see when running this program are different.
/ 7~ B
‘ Your program is storing its variables in a different memory range, which is
/ expected. The relationship between the locations is the prime importance.
et

Chapter 8: Taking a First Look at C++ Pointers ’ 0 ’

From the comparison of locations, we can also infer that the size of n is four
bytes (0x65fdf4 - 0x65{df0), the size of the long 1 is also four bytes (0x65{df0 -
0x65fdec), and so forth.

GNU C++ and Visual C++ choose the same variable layout.

Using Pointer Variables

A pointer variable is a variable that contains an address, usually the address
of another variable. See Table 8-2 for an example.

Table 8-2 Pointer Operators

Operator Meaning

& (unary) The address of

* (unary) {in an expression) The thing pointed at by

{in a declaration) Pointer to

You can see the use of these new operators in the following example:

void fn()

{
int intVar;
int* pintVar;

pintVar = &intVar; // pintVar now points to intVar
*pintVar = 10; // stores 10 into int location
// pointed at by pintVar

1
J

The function fn() begins with the declaration of intVar. The next statement
declares the variable pintVar to be a variable of type pointer to an int. (By
the way, pintVar is pronounced pee-int-Var, not pint-Var.)

Pointer variables are declared like normal variables except for the addition of
the unary * character. This * character can appear anywhere between the
base type name — in this case int —, and the variable name; however, it is
becoming increasingly common to add the * to the end of the variable type.

The * character is called the asterisk character (that’s logical enough), but
because asterisk is hard to say, many programmers have come to call it the
splat character. Thus, they would say splat pintVar.

I 02 Part Il: Becoming a Functional Programmer

Many programmers adopt a naming convention in which the first character
of the variable name indicates the type of the variable, such as n for int, d
for double, and so on. A further aspect of this naming convention is to place
a p on the beginning of a pointer variable name.

In an expression, the unary operator & means the address of. Thus, we would
read the first assignment as store the address of intVarinpintVar.

To make this more concrete, let’s assume that the memory for function fn()
starts at location 0x100. In addition, we’ll assume that intVar is at address
0x102 and that pintVar is at 0x106. The layout here is simpler than the
actual results from the Layout program; however, the concepts are identical.

The first assignment stores the value of & intVar (0x102) in the pointer vari-
able pintVar. The second assignment in the small program snippet says
store 10 in the location pointed at by pintVar. The value 10 is stored in the
address contained in pintVar, which is 0x102 (the address of intVar).

Compatring pointers and houses

A pointer is much like a house address. Your house has a unique address.
Each byte in memory has an address that is unique. A house address is made
up of both numbers and letters. For example, my address is 123 Main Street
(of course, it isn’t — I lied — 1 don’t want stalkers, unless, of course, they
were female stalkers). An address in memory is just a series of numbers (like
123456). For reasons of convenience, computer addresses are generally writ-
ten in hexadecimal, but that's immaterial.

You can store a couch in the house at 123 Main Street — you can store a
number in the byte located at 0x123456. Alternatively, you can take a piece of
paper and write down an address — | don't know, say, 123 Main Street. You
can now store a couch at the house with the address written down on the
piece of paper. In fact, this is the way delivery people work — their job is to
deliver a couch to the address written down on the shipping orders whether
it’s 123 Main Street or not. (I'm not maligning delivery people — they have
brains — it’s just that this is more or less the way things work.)

In C++, this is written (loosely speaking):

House myHouse;

House* houseAddress:
houseAddress = &myHouse:
*houseAddress = couch;

In humanspeak, you would say myHouse is a House. houseAddress is the
address of a House. Assign the address of myHouse to the House pointer,
houseAddress. Now store a couch at the house located at the address stored
in houseAddress.

Chapter 8: Taking a First Look at C++ Pointers ’ 03

Having said all that, let’s look at the int and int* version of that:

int mylnt;

int* intAddress;
intAddress = &mylnt;
*intAddress = 10;

That is, myInt is an int. intAddress is a pointer to an int. Assign the
address of my Int into the pointer intAddress. Finally, assign 10 to the int
pointed at by intAddress.

Using different types of pointers

Every expression has a type as well as a value. The type of the expression
intVar expression is pointer to an integer, written as int*. Comparing this
with the declaration of pintVar, you see that the types match exactly:

int* pintVar = &intVar; // both sides of the assignment are
// of type int*

Similarly, because pintVar is of type int*, the type of *pintVar is int.

*pintVar = 10; // both sides of the assignment are
// of type int

The type of the thing pointed to by pintVar is int. This is equivalent to
saying that if houseAddress is the address of a house, then the thing pointed
at by houseAddress must be a house. Amazing, but true.

Pointers to other types of variables are expressed the same way:

double doubleVar:
double* pdoubleVar = &doubleVar;
*pdoubleVar = 10.0;

A pointer on a Pentium class machine takes four bytes no matter what it
points to. That is, an address on a Pentium is four bytes long, period.

Matching pointer types is extremely important. Consider what might happen
if the following were allowed:

int nl;

int* pintVar;
pintVar = &nl;
*pintVar = 100.0;

The second assignment attempts to store the eight-byte double value
100.0 into the four-byte space allocated for nl. Actually, this isn't as bad as it

,04 Part Il: Becoming a Functional Programmer

looks — C++ is smart enough to demote the constant 100.0 to an int before
making the assignment.

[t is possible to cast one type of variable into another:

int iVar;
double dVar = 10.0;
iVar = (int)dvar;

Similarly, it is possible to cast one pointer type into another.

int* piVar;

double dvVar = 10.0:
double* pdVar;

piVar = (int*)pdVar;

Consider, however, what catastrophes can arise if this type of casting about
of pointers were to get loose. Save a variable into an area of the wrong size

and nearby variables can be wiped out. This is demonstrated graphically in
the following LayoutError program.

// LayoutError - demonstrate the results of
// a messing up a pointer usage
f#include <stdio.h>

f#include <iostream.h>

int main(int intArgc, char* pszArgs(])
{

int upper = Q;
int n =0:
int lower = Q;

// output the values of the three variables before...
cout << "upper " << upper << "\n";
cout << "n e << "\n";
cout << "lower " << lower << "\n";

honon

// now store a double into the space

// allocated for an int

cout << "\nPerforming assignment of double\n";
double* pD = (double*)&n;

*pD = 13.0;
// display the results
cout << "upper = " << upper << "\n";

cout << "n =" K&Kn <K "\n";
cout << "lower = " << lower << "\n";

return 0;

Chapter 8: Taking a First Look at C++ Pointers 7 0 5

The first three lines in main() declare three integers in the normal fashion.
The assumption made here is that these three variables are laid out next to
each other.

The next three executable lines output the value of the three variables. Not
surprisingly, all three variables display as 0. The assignment *pD = 13.0;
stores the double value 13.0 into the integer variable n. The three output
statements display the values of all three variables after the assignment.

After assigning the double value 13.0 into the integer variable n, n itself is not
modified at all; however, the nearby variable upper is filled with a garbage
value. This is not good.

The house equivalent goes something like this:

House* houseAddress = &"123 Main Street";
Hotel* hotelAddress;

hotelAddress = (Hotel*)houseAddress;
*hotelAddress = TheRitz;

houseAddress is initialized to point to my house. The variable
hotelAddress is a pointer to a hotel. Now, the house address is cast into the
address of a hotel and saved off. Finally, The Ritz is plopped down on top of
my house. Because The Ritz is a lot bigger than my house (Okay, slightly
bigger than my house), it isn’t surprising that TheRitz wipes out my neigh-
bors’ houses as well.

The type of the pointer saves the programmer from stuffing an object into a
space that is too big or too small. The assignment *pintVar = 100.0; actu-
ally causes no problem — because C++ knows that pintVar points to an int,
C++ knows to demote the 100.0 into an int before making the assignment.

Passing Pointers to Functions

One of the uses of pointer variables is in passing arguments to functions. To
understand why this is important, you need to understand how arguments
are passed to a function.

Passing by value

You may have noticed that it is not normally possible to change the value of a
variable passed to a function from within the function. Consider the following
example code segment:

, 06 Part Il: Becoming a Functional Programmer

void fn(int intArg)
{

intArg = 10;

// value of intArg at this point is 10
}

void parent(void)
{

int nl = 0;

fninl);

// value of nl at this point is 0
}

Here the parent () function initializes the integer variable n1 to zero. The
value of nl is then passed to fn(). Upon entering the function, intArgis
equal to 10, the value passed. fn() changes the value of intArg before
returning to parent (). Perhaps surprisingly, upon returning to parent(),
the value of n1 is still 0.

The reason is that C++ doesn’t pass a variable to a function. Instead, C++
passes the value contained in the variable at the time of the call. That is, the
expression is evaluated, even if it just a variable name, and the result is passed.

It is easy for a speaker to get lazy and say something like, “Pass the variable x
to the function fn().” This really means to pass the value of the expression x.

Passing pointer values

Like any other intrinsic type, a pointer may be passed as an argument to a
function:

void fn(int* pintArg)
{

*pintArg = 10;
}

void parent(void)
{
int n = 0;

fn(&i); // this passes the address of i
// now the value of n is 10
}

In this case, the address of n is passed to the function fn() rather than the
value of n. The significance of this difference is apparent when you consider
the assignment within fn().

&&

NG/

Chapter 8: Taking a First Look at C++ Pointers 7 0 7

Suppose n is located at address 0x102. Rather than the value 10, the call
fn(&n) passes the value 0x102. Within fn (), the assignment *pintArg =10
stores the value 10 into the int variable located at location 0x102, thereby
overwriting the value 0. Upon returning to parent (), the value of n is 10
because n is just another name for 0x102.

Passing by reference

C++ provides a shorthand for the above — a shorthand that doesn’t involve
the hassle of dealing with pointers yourself. In the following example, the
variable n is passed by reference.

In passed by reference, the parent function passes a reference to the variable
rather than the value. Reference is another word for address.

void fn(int& intArg)
{

}

intArg = 10;

void parent(void)
{
int n = 0;
fn(n)
// here the value of n is 10
}

In this case, a reference to n is passed to fn() rather than the value. The
fn() function stores the value 10 into int location referenced by intArg.

Notice that reference is not an actual type. Thus, the function’s full name is
fn(int) and not fn(int&).

Making Use of a Block of Memory
Called the Heap

The heap is an amorphous block of memory that your program can access as
necessary. This section describes why it exists and how to use it.

Just as it is possible to pass a pointer to a function, it is also possible for a
function to return a pointer. A function that returns the address of a double
would be declared as follows:

double* fn(void);

’ 08 Part Il: Becoming a Functional Programmer

However, one must be very careful when returning a pointer. In order to
understand the dangers, you must know something about variable scope.
(No, I don't mean a variable zoom rifle scope.)

Limiting scope

C++ variables have a property in addition to their value and type known
as scope. Scope is the range over which a variable is defined (and not a
mouthwash!).

Consider the following code snippet:

// the following variable is accessible to
// all functions and defined as long as the
// program is running(giobal scope)

int intGlobal;

// the following variable intChild is accessible
// only to the function and is defined only

// as long as C++ is executing child() or a

// function which child() calls (function scope)
void child(void)

{

}

int intChild;

// the following variable intParent has function
// scope
void parent(void)
{
int intParent = 0;
fn();

int intlLater = 0;
intParent = intlLater;
}

int main(int nArgs, char* pArgs(])
{
parent():

]

Execution begins with main (). The function main() immediately invokes
parent(). The first thing that the processor sees in parent () is the declara-
tion of intParent. At that point, intParent goes into scope — that is,
intParent is defined and available for the remainder of the function

parent().

The second statement in parent () is the call to child(). Once again, the
function child() declares a local variable, this time intChild. The variable

Chapter 8: Taking a First Look at C++ Pointers

intChild is within the scope of child (). Technically intParent is not
within the scope of child()because child() doesn’t have access to
intParent; however, the variable intParent continues to exist.

When child() exits, the variable intChi1d goes out of scope. Not only is
intChild no longer accessible, but it no longer even exists. (The memory
occupied by intChild is returned to the general pool to be used for other
things.)

As parent () continues executing, the variable intLater goes into scope at
the declaration. At the point that parent() returns tomain(), both
intParent and intLater go out of scope. The programmer may declare a
variable outside of any function. This type of variable, known as a global vari-
able, remains in scope for the duration of the program.

Because intGlobal is declared globally in this example, it is available to all
three functions and remains available for the life of the program.

Examining the scope problem

The following code segment compiles without error but does not work:

double* child(void)
{
double dlLocalVariable;
return &dlLocalVariable;
}

void parent(void)

{
double* pdlLocal;
pdLocal child();
*pdLocal i (0]

}

The problem with this function is that dLocalVariable is defined only
within the scope of the function fn(). Thus, by the time that the memory
address of dLocalVariable is returned from child(), it refers to a variable
that no longer exists. The memory that dLocalVariable formerly occupied
is probably being used for something else.

This is a very common error because it can creep up in a number of different
ways. Unfortunately, this error does not cause the program to instantly stop.
In fact, the program may work perfectly well most of the time — as long as
the memory formerly occupied by dLocalVariable is not reused immedi-
ately, the program continues to work. Such intermittent problems are the
most difficult to solve,

109

7 ’ 0 Part ll: Becoming a Functional Programmer

a\\3

Providing a solution using the heap

The scope problem originated from the fact that C++ returned the locally
defined memory before the programmer was ready. What is needed is a block
of memory controlled by the programmer. She can allocate the memory and
put it back when she wants to — not because C++ thinks it a good idea. Such
a block of memory is called the heap.

Heap memory is allocated using the new command followed by the type of
object to allocate. For example, the following allocates a doub1e variable off
the heap.

double* child(void)

{
double* pdLocalVariable = new double;
return pdLocalVariable;

}

Although the variable pdLocalVariable goes out of scope when the func-
tion child() returns, the memory to which pdLocalVariable refers does
not. A memory location returned by new does not go out of scope until it is
explicitly returned to the heap using the delete command:

void parent(void)

{
// child() returns the address of a block
// of heap memory
double* pdMyDouble = child();

// store a value there
*pdMyDouble = 1.1;

/!

// now return the memory to the heap
delete pdMyDouble;
pdMyDouble = 0;

/1
}

Here the pointer returned by child() is used to store a double value. Once
the function is finished with the memory location, it is returned to the heap.
The function parent() sets the pointer to zero once the heap memory has
been returned — this is not a requirement, but a very good idea. If the pro-
grammer mistakenly attempts to store something in * pdMyDouble after the
delete, the program will crash immediately.

A program that crashes immediately upon encountering an error is much
easier to fix that one that is intermittent in its behavior.

Chapter 9

Taking a Second Look
at C++ Pointers

In This Chapter
-Introducing mathematical operations on character pointers
Examining the relationship between pointers and arrays
Applying this relationship to increase program performance
Extending pointer operations to different pointer types
Explaining the arguments to main() in our C++ program template

e A Coe A - ~ T N N s N e N e e

C++ allows the programmer to operate on pointer variables much as she
would on simple types of variables. (The concept of pointer variables is
introduced in Chapter 8.) Applying operations on pointers has some pro-
found implications that will be presented in this chapter.

Defining Operations on Pointer Variables

Some of the same operators discussed in Chapter 3 may be applied to pointer
types. This section examines the implications of this both to pointers and to
the array types (arrays are presented in Chapter 7). Table 9-1 lists the three
fundamental operations that are defined on pointers.

Table 9-1 The Three Operations Defined on Pointer Types

Operation Result Meaning

pointer + offset pointer Calculate the address of the
object integer entries from
pointer

(continued)

7 ’ 2 Part |l: Becoming a Functional Programmer

Table 9-1 (continued)

Operation Result Meaning
pointer - offset pointer The opposite of addition
pointer2 - pointerl offset Calculate the number of

entries between pointer?2
and pointerl

Here of fset is of type int. (Although not listed in Table 9-1, operators closely
related to addition and subtraction, such as ++ and += are also defined.)

The real estate memory model (used so effectively in Chapter 8, if [don’t say
so myself) is useful to explain how mathematical operations on pointers
work. Consider a city block in which all houses are numbered sequentially.
The house next to 123 Main Street would have the address 124 Main Street
(or 122 if you go backward, like the left-handed and the British).

Now it's pretty clear that the house four houses down from 123 Main Street
must be 127 Main Street; thus, it would be called 123 Main + 4 = 127
Main. Similarly, if | were to say how many houses are there from 123 Main to
127 Main, the answer would be four — 127 Main - 123 Main = 4. Justas

-

an aside, a house is zero houses from itself: 123 Main - 123 Main = 0.

Re-examining arrays in light
of pointer variables

Let’s consider the strange and mysterious world of arrays. Once again. my
neighborhood comes to mind. An array is just like my city block. Each ele-
ment of the array corresponds to a house on that block. Here. however, the
array elements are measured by the number of houses from the beginning of
the block (the street corner). The house right on the corner is 0 houses from
the corner, the house next to it is 1 house from the corner, etc. Thus,
cityBlock[0] is the first house on the block, etc.

Now consider an array of 32 one-byte characters called charArray. If the first
byte of this array were stored at address 0x110, then the array would extend
over the range 0x110 through 0x12f. While charArray[0] is located at address

0x110, charArray[1]is at 0x111, charArray[2] at 0x112 and so forth.
Make the next step to a pointer ptr variable. After executing the expression:
ptr = &charArray(0];

the pointer ptr contains the address 0x110. Addition of an integer offset to a
pointer is defined such that the relationships shown in Table 9-2 are true.

Chapter 9: Taking a Second Look at C++ Pointers

Table 9-2 also demonstrates why adding an offset n to ptr calculates the
address of the nth element in charArray.

Table 9-2 Adding Offsets
Offset Result Corresponds to
+0 0x110 charArray[0]
+1 0x111 charArray{1]
+2 0x112 charArray(2]
+n 0x110+n charArray[n]

The addition of an offset to a pointer is similar to applying an index to an array.
Thus, given that:
char* ptr = &charArray[0];
then
*(ptr + n) corresponds with charArray[n]
Because * has higher precedence than addition, * ptr + n adds n to the
character that ptr points to. The parentheses are needed to force the addi-
tion to occur before the indirection. The expression *(ptr + n) retrieves
the character pointed at by the pointer ptr plus the offset n.
In fact, the correspondence between the two forms of expression is so strong
that C++ considers array[n] nothing more than a simplified version of *(ptr
+ n) where ptr points to the first element in array.
array[n] -- C+t+ interprets as — *(&array[0] + n)
In order to complete the association, C++ takes a second short cut. Given
char charArray[20];
then

charArray is defined as &charArray[0];

That is, the name of an array without any subscript present is the address of
the array itself. Thus, we can further simplify the association to

array[nl --> C++ interprets as --> *(array + n)

113

' 7 4 Part Il: Becoming a Functional Programmer

Applying operators to the
address of an array

The correspondence between indexing an array and pointer arithmetic is a
useful concept. (If it weren't a powerful concept, would I have brought it up?
Okay, you got me on that one, but it's powerful none the less.)

For example, adisplayArray() function used to display the contents of an
array of integers could be written as follows:

// displayArray - display the members of an
// array of length nSize
void displayArray(int intArray[], int nSize)
{

cout << "The value of the array is:\n";

for(int n; n < nSize; ntt)
{

}
cout << "\n";

cout << n << ": " << intArrayln] << "\n";

}

This version uses the array operations with which you are familiar. A pointer
version of the same appears as follows:

// displayArray - display the members of an
1/ array of length nSize
void displayArray(int intArray[], int nSize)
{

cout << "The value of the array is:\n";

int* pArray = intArray;
for(int n; n < nSize; n++, pArrayt+)
{

}
cout << "\n";

cout << n << ": " <L *pArray << "\n";

}

The new displayArray() begins by creating a pointer to an integer pArray
<MBER that points at the first element of intArray.

L% 20N

</ - . . L . . .
(."T \ The p in the variable name indicates that the variable is a pointer.
\d

The function then loops through each element of the array. On each loop.
displayArray() outputs the current integer, that is, the integer pointed at
by pArray before incrementing the pointer to the next entry in intArray.

Chapter 9: Taking a Second Look at C++ Pointers

You may think that such a conversion is silly; however, the pointer version of
displayArray() is more common that the array version. For some reason,
C++ programmers avoid the use of arrays.

The use of pointers to access arrays is nowhere more common than in the
accessing of character arrays.

Expanding pointer operations to a string

A string is simply a character array whose last character is a null. C++ uses
the null character at the end to serve as a terminator. This null terminated
array serves as a quasi-variable type of its own. (See Chapter 7 for an expla-
nation of string arrays.) Often C++ programmers use character pointers to
manipulate such strings. The following code examples compare this tech-
nique to the earlier technique of indexing in the array.

Contrasting pointer-based with array-based string manipulation

Character pointers enjoy the same relationship with a character array that any
other pointer and array share. However, the fact that strings end in a terminat-
ing null makes them especially amenable to pointer-based manipulation.

The concatString() function in Chapter 7 concatenated two character
string arrays. The prototype for this function was declared as follows:

void concatString(char szTarget[], char szSourcel]);

The prototype declaration describes the type of arguments, which the function
accepts, as well as the return type. This declaration appears the same as a
function definition with no function body.

In order to find the null at the end of the szTarget array, the concatString()
function iterated through szTarget string using the following whi 1e loop:

void concatString(char szTarget{], char szSource[])
{

// find the end of the first string

int intTargetIndex = 0;

while(szTarget[intTargetIndex])

(.

intTargetIndex++;
}

//

115

7 76 Part |l: Becoming a Functional Programmer

Using the relationship between pointers and arrays, concatString() could
have been prototyped as follows:

void concatString(char* pszTarget, char* pszSource);
The sz refers to a string of characters that ends in a zero (null).

The pointer version of concatString() contained in the program
ConcatenatePtr is written:

void concatString(char* pszTarget, char* pszSource)
{
// find the end of the first string
while(*pszTarget)
{

}
/!

pszTarget++;

The while loop in the array version of concatString() looped until
szTarget[intTargetIndex] was equal to zero. This version iterates
through the array by incrementing pszTarget on each pass through the
‘x&N\BEﬁ loop until the character pointed at by pszTarget is null.
<
The expression ptr++ is a shortcut for ptr = ptr + 1.

Upon exiting the while loop, pszTarget points to the null character at the
end of the szTarget string. It is no longer correct to say the array pointed at
by pszTarget since pszTarget no longer points to the beginning of the
array.

Completing the concatString () example
The following displays the complete ConcatenatePtr program:

// ConcatenatePtr - concatenate two strings

1/ with a " - " in the middle
// using pointer arithmetic
// rather than array subscripts

f#finclude <stdio.h>
f#include <iostream.h>

void concatString(char* pszTarget. char* pszSource);

int main(int nArg, char* pszArgs([])
{
// read first string...
char szStringl[2561];
cout << "Enter string #1:";
cin.getline(szStringl., 128):

Chapter 9: Taking a Second Look at C++ Pointers

// ...now the second string...
char szString2(128];

cout << "Enter string #2:";
cin.getline(szString2, 128);

// ...concatenate a " - " onto the first...
concatString(szStringl, " - ");
// ...now add the second string...

concatString(szStringl, szString2);

// ...and display the result
UGS iintsed szString Lu<<g = \n" ;

return 0;
}

// concatString - concatenate* pszSource onto the
// end of* pszTarget
void concatString(char* pszTarget, char* pszSource)
{
// find the end of the first string
while(*pszTarget)
{

pszTarget++;
}

// tack the second onto the end of the first
// (copy the null at the end of the source array
// as well - this terminates the concatenated
// array)
while(*pszTarget++ = *pszSourcet++)
{
}
}

The main() portion of the program does not differ from its array based
cousin. The concatString() function is significantly different, however.

As noted, the equivalent declaration of concatString() is now based on
char* type pointers. In addition, the initial while() loop within
concatString() searches for the terminating null at the end of the
pszTarget array.

The extremely compact loop that follows copies the pszSource array onto
the end of the pszTarget array. The while() clause does all the work, exe-
cutes as follows:

1. Fetch the character pointed at by pszSource.

2. Increment pszSource to the next character.

117

7 78 Part Il: Becoming a Functional Programmer

A\

3. Save the character in the character position pointed at by pszTarget.
4. Increment pszTarget to the next character.

5. Execute the body of the loop if the character is not null.

After executing the empty body of the while loop, control passes back up to
the while() clause itself. This loop is repeated until the character copied to*
pszTarget is the null character.

Justifying pointer-based string manipulation

The sometimes-cryptic nature of pointer-based manipulation of character
strings might lead the reader to wonder, “Why?” That is, what advantage
does the char* pointer version of concatString() have over the easier to
read index version?

The pointer version of concatenate() is much more common in C++ pro-
grams that the array version.

The answer is partially historic and partially human nature. When C, the
progenitor to C++, was invented, compilers were pretty simplistic. These
compilers could not perform the complicated optimizations that modern
compilers can. As complicated as it might appear to the human reader, a
statement such as Line 48 can be converted into an amazingly small number
of machine level instructions even by a stupid compiler.

Older computer processors were not very fast by today’s standards. In the
old days of C, saving a few computer instructions was a big deal. This gave C
a big advantage over other languages of the day, notably Fortran, which did
not offer pointer arithmetic.

In addition to the efficiency factor, programmers like to generate clever pro-
gram statements to combat what can be a repetitively boring job. Once C++
programmers learn how to write compact and cryptic but efficient state-
ments, there is no getting them back to searching arrays with indices.

Do not generate complex C++ expressions in order to create a more efficient
program. There is no obvious relationship between the number of C++ state-
ments and the number of machine instructions generated. Compare the fol-

lowing two sets of expressions:

// this expression...
*pszArrayl++ = '\0';

// ...and this expression might generate the same
// amount of machine code

*pszArray2 = '\0':

pszArray2 = pszArray2 + 1:

Chapter 9: Taking a Second Look at C++ Pointers 7 ’ 9

In the old days, when compilers were simpler, the first version might have
generated fewer instructions but the code generated should be identical
using today’s optimizing compilers.

Applying operators to pointer
types other than char

It is not too hard to convince yourself that szTarget + n points to szTarget
[n] when szTarget is an array of chars. After all, a char occupies a single
byte. lf szTarget were stored at 0x100, then the sixth element is located at
0x105.

It is not so obvious that pointer addition works in exactly the same way for
an int array because an int takes four bytes for each char’s one byte. If the
first element in intArray were located at 0x100, then the sixth element
would be located at Nx114 (0x100 + (5 * 4) = 0x114).

Fortunately for us, array + n points at array[n] no matter how large a single
element of array might be. C++ takes care of the element size for us.

Once again our dusty old house analogy works here as well. (1 mean dusty
analogy, not dusty houses.) The third house down from 123 Main is 126 Main,
no matter how large the houses might be.

Contrasting a pointer with an array

There are some differences between the address of an array and a pointer.
For one, the array allocates space for the data while the pointer does not:

void arrayVsPointer()

{
// allocate storage for 128 characters
char charArray[1287;

// allocate space for a pointer but not for
// the thing pointed at

char* pArray;
}

Here charArray occupies 128 characters. pArray occupies only four bytes,
the amount of storage required by a pointer.

The following function does not work:

void arrayVsPointer()

1 20 Part Il: Becoming a Functional Programmer

\3

// this works fine

char charArray[128];
charArray[10] = '0";
*(charArray + 10) = '0';

// this does not work

char* pArray;

pArray[10] = '0"';

*(pArray + 10) = '0";
}

The expressions charArray[10]} and *(charArray + 10) are equivalent
and legal. The two expressions involving pArray don’t make sense. While
they are both legal to C++, the uninitialized pointer pArray contains some
random value. pArray has not been initialized to point to an array such as
charArray so that both pArray[10] and the equivalent *(pArray + 10)
reference garbage.

The mistake of referencing memory with an uninitialized pointer variable is
generally caught by the CPU when the program executes, resulting in the
dreaded segment violation error that you see from time to time issuing from
your favorite applications under your favorite, or not so favorite, operating
system.

A second difference between a pointer and the address of an array is the fact
charArray is a constant while pArray is not. Thus, the following for loop
used to initialize the array charArray does not work:

void arrayVsPointer()

{

char charArray[10];

for (int i = 0; 1 < 10: i++)

{
*charArray = '\0'; // this makes sense...
charArray++; // ...this does not

1

}

The expression charArray++ makes no more sense than 10++. The following
version is correct:

void arrayVsPointer()

{

char charArray(10];

char* pArray = charArray:

for (int i = 0; i < 10; i++)

{
*pArray = '\0'; // this works great
pArrayt+;

Chapter 9: Taking a Second Look at C++ Pointers 7 2 ’

Declaring and Using Arrays of Pointers

If pointers can point to arrays, then it seems only fitting that the reverse
should be true. Arrays of pointers are a type of array of particular interest.

Just as arrays may contain other data types, an array may contain pointers.
The following declares an array of pointers to ints.

int* pInts[10];

Given the above declaration, pnInt[0] is a pointer to an int value. Thus, the
following is true:

void fn()
{
int nl;
int* pInts(3];
pIntsf{0] = &nl;
*pIntsf0] = 1;
}

or
void fn()
{
int nl, n2, n3;
int* pInts{3] = {&nl,&n2,&n3};
for (int 1 = 0; i < 3; i++)
{
*pInts{i] = 0;
}
}
or even
void fn()
{
int* pIntsf{3] = {(new int),
(new int),
(new int)};

o Gime 5 =2 0g B 358 T,
{

}

Il

*pInts{i] = 0;

}
The latter declares three int objects off the heap.
The most common use for arrays of pointers is to create arrays of character

strings. The following two examples show why arrays of character strings are
useful.

’ 22 Part Il: Becoming a Functional Programmer

Utilizing arrays of character strings

1f C++ supports arrays of pointers, then arrays of pointers to arrays must be
possible. You could take this recursion as far as you want (“arrays of pointers
to arrays of pointers to. ..). A case of particular interest is an array of point-
ers to character strings. (Remember that a string is nothing more than a spe-
cial type of character array.)

Suppose | need a function that returns the name of the month corresponding
to an integer argument passed it. For example, if the program is beyond the
value 1, it responds by returning a pointer to the string January. The month
0 is assumed to be invalid as are any numbers greater than 12.

1 could write the function as follows:

// int2month() - return the name of the month
char* int2month(int nMonth)
{

char* pszReturnValue;

switch(nMonth)
{
case 1: pszReturnValue = "January":

break;
case 2: pszReturnValue = "February";
break;
case 3: pszReturnValue = "March":
break;
// ...and so forth...
default: pszReturnValue = "invalid";
}
return pszReturnValue;
(MBER '
& .
Lo The switch() control command is like a sequence of i f statements.

\‘\-J A more elegant solution uses the integer value for the month as an index into
an array of pointers to the names of the months. In use, this appears as follows:

// int2month() - return the name of the month
char* int2month(int nMonth)
{
// first check for a value out of range
if (nMonth < 1 || nMonth > 12)
{

|

return "invalid";

// nMonth is valid - return the name of the month

Chapter 9: Taking a Second Look at C++ Pointers 7 23

char* pszMonths[] = {"invalid",
"January",
"February",
"March",
"April®,
"May”,
"June",
"July”,
"pAugust”,
"September”,
"October”,
"November”,
"December"};

return pszMonths{nMonth];

}

Here int2month() first checks to make sure that nMonth is a number
between 1 and 12, inclusive (the default clause of the switch statement
handled that for us in the previous example). If nMonth is valid, the function
uses it as an offset into an array containing the names of the months.

Accessing the arguments to main ()

First argument to main() is an array of pointers to strings. These strings con-
tain the arguments to the program itself. The arguments to a program are the
strings that appear with the program name when you launch it. For example,
suppose | entered the following command at the MS-DOS prompt:

MyProgram file.txt /w

MS-DOS executes the program contained in the file MyProgram.exe, passing
it the arguments file.txt, and /w. Switch arguments beginning with a slash
(/) or adash (-) are treated like any other — it is left up to the program to
interpret them. However, arguments beginning with <, >, >>, or | | have spe-
cial interest to MS-DOS and Unix and are not passed as arguments to the pro-
gram.

The use of the term arguments is a little confusing. The arguments to a pro-
gram and the arguments to a C++ function follow a different syntax but the
meaning is the same.

The variable pszArgs passed to main() is an array of pointers to the argu-
ments to the program while nArg is the number of arguments.

Consider the following simple program:

// PrintArgs - write the arguments to the program
// to the standard output

7 24 Part Il: Becoming a Functional Programmer

#include <stdio.h>
#include <iostream.h>

int main(int nArg, char* pszArgs(])
{
// print a warning banner
cout << "The arguments to " << pszArgs[0] << "\n";

// now write out the remaining arguments
for (int i = 1; i < nArg; i++)
{

}

cout << i << ":" << pszArgs[1] << "\n";

// that's it
cout << "That's it\n";
return 0;

}

As always, the function main() accepts two arguments. The first argument is
an int that | have been calling nArgs. This variable is the number of argu-
ments passed to the program. The second argument is an array of pointers of
type char* which | have been calling pszArgs. Each one of these char=* ele-
ments points to an argument passed to the program.

If 1 executed the PrintArgs program as follows:
PrintArgs argl arg2 argl /w

from the command line of an MS-DOS window nArgs would be 5 (one for each
argument). The first argument is the name of the program itself. Thus,
pszArgs[0] points to PrintArgs. The remaining elements in pszArgs point to
the program arguments. The element pszArgs[1] points to argl,
pszArgs[2] to arg2, for example. Because MS-DOS does not place any signifi-
cance on /w, this string is also passed as an argument to be processed by the
program.

In

Chapter 10

Remaining Functional Features

This Chapter

~ Separating programs into multiple modules
Adding files to a project

Using the #include directive

Other preprocessor commands

Many programs are small enough that they can fit comfortably in a
single .cpp source file. For most “industrial strength” programs, this
would be a severe limitation. This chapter examines how to break up a pro-
gram into multiple .cpp files, each of which can be written, examined, and
compiled on its own.

Breaking Programs Apart?

The programmer can break a single program into separate source files gener-
ally known as modules. These modules are compiled separately and then
combined during the build process to generate a single program.

The process of combining separately compiled modules into a single exe-
cutable is called linking.

Breaking programs into smaller, more manageable pieces has several advan-
tages. First, breaking a program into modules reduces the compile time. Both
GNU C++ and Visual C++ take but seconds to gobble up the small programs
that appear in this book and spit out an executable program. Very large pro-
grams can take quite some time to build. I've worked on projects that took
most of the night to rebuild.

Rebuilding an entire program every time even a single function changes is an
awful waste. It's much better to recompile a single module (which may contain
more than just the one function, but not that many more).

7 26 Part ll: Becoming a Functional Programmer

Second, it’s easier to comprehend and, therefore, easier to write and debug a
program that consists of a number of well-thought-out modules, each of
which represents a logical grouping of functions. A large, single source
module full of all the functions that a program might use quickly becomes
hard to keep straight (“hard to get your arms around,” so to speak).

Finally comes reuse. A module full of common routines that have been sepa-
rated from the main application may find application in future programs.

Looking at a Large Program

| can’t really include a large program in a book like this . . . well, | could, but
there wouldn’t be enough room left in the book for my dry and subtle yet
humorous wit. (Maybe I should have just put in the large program and left it
at that.) The FunctionDemo program from Chapter 6 will serve as an example
large program.

The module FunctionDemo.cpp appears as follows:

// FunctionDemo - demonstrate the use of functions

1/ by breaking the inner loop of the
// NestedDemo program off into its own
// function

#include <stdio.h>
#include <iostream.h>

// sumSequence add a sequence of numbers entered from

i the keyboard until the user enters a
// negative number.
// return - the summation of numbers entered

int sumSequence(void)
{
// loop forever
int nAccumulator = 0;
for(;:)
{
// fetch another number
int nValue = 0;
cout << "Enter next number:
cin >> nValue:

.,

// if it's negative...
if (nValue < 0)
{
// ...then exit from the loop
break:

Chapter 10: Remaining Functional Features

// ...otherwise add the number to the
// accumulator
nAccumulator = nAccumulator + nValue;

}

// return the accumulated value
return nAccumulator;

int main(int nArg, char* pszArgs[])

cout << "This program sums multiple series\n"
<< "of numbers. Terminate each sequence\n"
<< "by entering a negative number.\n"
<< "Terminate the series by entering two\n"
<< "negative numbers in a row\n";

// accumulate sequences of numbers...
int nAccumulatedValue;
do
{
// sum a sequence of numbers entered from
// the keyboard
cout << "\nEnter next sequence\n";
nAccumulatedValue = sumSequence();

// now output the accumulated result
cout << "\nThe total is "

<< nAccumulatedValue

<< "\n";

// ...until the sum returned is 0
} while (nAccumulatedValue != 0);
cout << "Program terminating\n";
return 0;

}

As with many other programs in this book, FunctionDemo adds a sequence of
numbers that the user types. It differs from some of its brethren in that
main() calls a function sumSequence () to actually perform the work of
adding up the sequence of numbers entered.

Examining the Divided
FunctionDemo Program

The module FunctionDemo.cpp is logically divided into two functions that
perform different roles. The function main() prompts the user with an entire
paragraph before entering into a loop that accumulates and outputs the sum

127

7 28 Part Il: Becoming a Functional Programmer

of a sequence of numbers. The function sumSequence () sums the sequence
of numbers and returns their sum.

The program could be divided along these lines: the module that actually
accumulates sums of numbers and that which uses this function to add a
sequence of numbers input from the keyboard and output this information to
the user.

To demonstrate the point, | break the following version of the FunctionDemo
program into two parts: the first containing the function sumSequence(), and
the second containing the function main().

The example program here is pretty small. Although the sumSequence(]
function may be worth separating for use in the future, you certainly wouldn't
break FunctionDemo into two parts in order to reduce compile time or
reduce complexity. This example merely demonstrates the mechanics of
dividing a program into multiple modules.

Separating off the sumSequence () module

The sumSequence () function is easily separable from the rest of the
FunctionDemo module. The following SeparateModule.cpp file contains the
sumSequence() function in a single, standalone module:

// SeparateModule - demonstrate how programs can be

// broken into multiple modules to

// make them easier to write and test:
/! this module contains the function
// that main() calls

##include <stdio.h>
#include <iostream.h>

// sumSequence - add a sequence of numbers entered from

// the keyboard until the user enters a
// negative number.
// return - the summation of numbers entered

int sumSequence(ostream& out, istream& in)
{
// loop forever
int nAccumulator = 0;
for(;:)
{
// fetch another number
int nValue = 0;
out << "Enter next number:
in > nValue:

// if it's negative...

}

Chapter 10: Remaining Functional Features 7 2 9

if (nValue < 0)
{
// ...then exit from the loop
break;

}

// ...otherwise add the number to the

// accumulator

nAccumulator = nAccumulator + nValue;
}

// return the accumulated value
return nAccumulator;

The framework for SeparateModule.cpp is the same as the one | use for all of
the programs (maybe SeparateModule isn’t all that separate). The only real
difference is the absence of amain() function. If you tried to build this
module, it would compile fine, but it would generate a “can’t find nomain()
function” error during the final build phase.

The final phase of the build process is known as the link phase because this
is where the different modules are linked together into one executable.

The function sumSequence () appears almost the same as it did in the
FunctionDemo program from Chapter 9 with one difference. The older version
input its data from cin and output to cout. We want sumSequence() to be as
generic as possible. Rather than input from a fixed object, this version accepts
input from an input object and outputs to the output object passed to it.

The cin object you've seen up to now is a type of istream but so are input
files other than standard input. By specifying a generic istream object that
the calling function provides, this version of sumSequence() can be used to
read other types of input including external files. The same flexibility is true
of the ostream object as well. See Chapter 26 for a more detailed discussion.

It may seem like unnecessary confusion to pass the input and output objects
to sumSequence().

Don't forget, eschew obfuscation!

You should go out of your way to write functions as flexible as possible if you
think that you may be reusing them in future programs.

]30 Part Il: Becoming a Functional Programmer

Generating the remnant MainFunction.cpp
module

With sumSequence () safely stored off in a separate module, MainModule.cpp
is left with only the main() function:

// MainModule - demonstrate how programs can be

// broken into multiple modules to make
// them easier to write and test;
// this module contains the main() function

#include <stdio.h>
#include <iostream.h>

// provide prototypes for external functions
int sumSequence(ostream& out, istream& in);

int main(int nArg, char* pszArgs[])
{
cout << "This program sums multiple series\n"
<< "of numbers. Terminate each sequence\n”
<< "by entering a negative number.\n"
<< "Terminate the series by entering two\n”
<< "negative numbers in a row\n";

// accumulate sequences of numbers...
int nAccumulatedValue;

do

{
// sum a sequence of numbers entered from
// the keyboard
cout << "\nEnter next sequence\n":
nAccumulatedValue = sumSequence(cout, cin);
// now output the accumulated result
cout << "\nThe total is "
<< nAccumulatedValue
< "\n";

// ...until the sum returned is 0

} while (nAccumulatedValue != 0):

cout << "Program terminating\n";:

return 0;

Other than the absence of the sumSequence() function, the only difference is
the addition of the function prototype.

int sumSequence(ostream& out., istream& in):

Chapter 10: Remaining Functional Features ’3 ’

Chapter 6 describes the function prototype.

Without the presence of the actual function, the programmer must include a
prototype to describe the interface to sumSequence().

Creating the project file

You can now open the two source files SeparateModule.cpp and
MainModule.cpp in the rhide editor. With both files open, click the Make
command from the Compile menu (or press F9). rhide compiles both files and
links them into a single program which is gives the unlikely name of aout.exe.
(You can rename it to whatever you want later.)

Creating a project file under GNU C++

The approach of keeping all relevant modules open in the rhide editor has
one advantage: It's very easy. This can be a disadvantage, however, if the
number of modules that make up the program is large.

A more flexible approach is to create a file that tells rhide which files to link
together to build the program. Such a file is called the project file.

Follow these steps to create a project file under rhide:

1. Close any open files and then choose Project: Open Project.

2. Type Separate for the project name (the name isn't actually impor-
tant — you can choose any name you want).

A project window with the single entry <empty> opens along the bottom
of the display.

3. Choose Project:vAdd Item.

A window opens, showing you the files in the current directory.
4. Click the file MainModule.cpp to open it.

Repeat for SeparateModule.cpp.

5. Click Cancel to close the add window. This completes the creation of
the Project Separate.

6. Select Make under the Compile menu to create the program
Separate.exe.

Another advantage to project files is that they give rhide a place to store off
properties about the program. rhide project files don’t include a lot of infor-
mation, however, Visual C++ stores a lot of information.

732 Part Il: Becoming a Functional Programmer

Creating a project file under Uisual C++

You may be using your own Visual C++ environment to build the programs in
this book. Here are the steps for creating a Visual C++ project file:

1.

Choose Filer: Close Workspace to close any project files you opened
previously. (A workspace is the Microsoft name for a collection of
project files.)

. Open the MainModule.cpp source file and click the compile button.

(Notice that 1 did not say “the make button.”)

If you do accidentally click Make, it won't hurt anything but the program
won't link properly.

. Visual C++ now asks you whether you want to create a Project file.

This is because Visual C++ cannot operate on a C++ file without a pro-
ject file of some type. Click Yes.

You now have a project file containing the single source file
SeparateModule.cpp.

. If it’s not already opened, open the Workspace window and select

Workspace under View.

You should see a window open up with two tabs at the bottom: one
marked Class View and the other marked File View. These two tabs pro-
vide two different ways of looking at the contents of the project. The file
view lists the .CPP modules which make up the program.

. Switch to the File view by clicking on the tab marked FileView within

the Project window.

. Right-click on MainModule files. A drop-down window appears.

This drop-down lists the files that make up the MainModule project.
Right now MaiModule.cpp is the only file list.

. Select Add Files to Project. An “Open File"” menu appears.

This menu is similar to that which appears when you open a file in
Microsoft Word.

. From the menu, open the SeparateModule.cpp source file to add the

file to the project.

Both MainModule.cpp and SeparateModule.cpp should now appear in
the list of functions that make up the project.

. Click Build to build the program with the new project.

Chapter 10: Remaining Functional Features ’33

Including the #include Directive

MainModule had to include a prototype for the sumSequence() function in
order to let main() know how to call it. Unfortunately, it’s all too easy to
make a mistake when including such a prototype. Worse yet, what if multiple
modules use sumSequence()? The programmer needs to enter a prototype
declaration into each of the using modules. And what if the various proto-
types disagree, probably due to some careless error?

C++ provides a mechanism to handle such a situation. The programmer can
create a single file that can be “included” into other files at compile time.
Include files work as follows:

1. Create a file SeparateModule.h containing the prototype declaration for
sumSequence(). It's a convention that the name of an include file end

in .h:
// SeparateModule.h - include the prototype declarations
// for functions contained within
// SeparateModule.cpp

int sumSequence(ostream& out, istream& in);

2. Edit MainModule.cpp to include SeparateModule.h in place of the proto-
type declaration. (This file is included on the enclosed CD-ROM as
MainModulelnclude.cpp.)

// MainModule- demonstrate how programs can be

/7 broken into multiple modules to make
// them easier to write and test;
// this module contains the main() function

#include <stdio.h>
#include <iostream.h>

// include external prototypes and declarations
#include "SeparateModule.h"

int main(int nArg, char* pszArgs(])
{

The #include directive tells C++ to insert the contents of the file
SeparateModule.h into the file being compiled. Thus, what the compiler sees
after the insertion is identical to what it saw before.

The directive #include must start in column one.

Including the same .h file more than once in the same module can happen
more often that you would think. One include includes another that includes
a third and a fourth and before you know it, you've included the same file.

,34 Part Il: Becoming a Functional Programmer

This is not a problem as long as the .h file includes only #defines and function
prototypes. It is considered bad form for an include file to define a global
variable or contain the implementation of a function.

You can avoid the multiple include problem by using another pound com-
mand called #ifdef. This command says include the remainder of the com-
mands up to an #endif, if the following #define has been defined.
(Alternatively, #ifndef is the inverse operations: if NOT def.)

// MyInclude.h

// check to see if some {#define has already been
// defined if not then this is the first time that
// this include file has been encountered during
// compilation

#ifndef MyModule_h

// now define MyModule_h to signal that we've been by
// this way before
ftdefine MyModule_h

// now put whatever you want in your include file

// close the {ifndef at the end of the file
ffendi f

sf/ —:\": These checks are performed during the compilation of the module and not
" ‘ during the execution of the program.

Using the Standard C++ Library

Now you can see why | include the directives #include <stdio. h> and #include
<iostream.h> in my programs. These include files contain the definitions for
functions that I've been using, such as cin>.

Notice that the standard C++ defined .h files are included using the <> brack-
ets while locally defined .h files are defined using the quote commands. The
only difference between the two is that C++ looks for files contained in quotes
starting with the “current” directory (the directory containing the project
file) while C++ begins the search for bracketed files in the C++ include file
directories. Either way, the programmer controls the directories searched via
project file settings.

Chapter 11
Debugging C++

In This Chapter
» Differentiating the types of errors
Understanding “crash messages”
Choosing the write statement debugging technique

- Mastering the debugger tool

~ oA e e ~ e on S N A e

ou may have noticed that your programs often don't work the first time.
In fact, [have seldom, if ever, written a nontrivial C++ program that
didn’t have some type of error the first time | tried to execute it.

That leaves you with two alternatives: You can abandon a program that has
an error or find and fix the error. This chapter assumes you'll use the latter

approach: In this chapter, you find out how to track down and eradicate soft-
ware bugs.

Identifying Types of Errors

Two types of errors exist — those that the C++ compiler can catch on its own
and those that the compiler can’t catch. Errors that C++ can catch are known
as compile-time errors. Compile-time errors are relatively easy to fix because
the compiler generally points you to the problem. Sometimes the description
of the problem isn’t quite correct (it’s easy to confuse a compiler) but after
you learn the quirks of your own C++ environment, understanding its com-
plaints isn’t too difficult.

Errors that C++ can’t catch show up as you try to execute the program. These
are known as run-time errors. Run-time errors are harder to find than compile-
time errors because you have no hint of what’s gone wrong except for what-

ever errant output the program might generate. “Errant” is the key word here.

’36 Part IIl: Becoming a Functional Programmer

You can use two different techniques for finding bugs. You can add output
statements at key points. You can get an idea of what’s gone wrong with your
program as these different output statements are executed. A second
approach is to use a separate program called a debugger. A debugger enables
you to control your program as it executes.

Both of these debugging techniques are covered in this chapter.

Choosing the WRITE Technique
for the Problem

Adding output statements to the C++ source code to find out what's going on
within the program is known as using the WRITE statement approach. It
gained this name back in the days of early programs, which were written in
FORTRAN. Fortran’s output is through its WRITE command.

The following “buggy” program shows how the WRITE approach works.

The following program is supposed to read a series of numbers from the key-
board and return their average. Unfortunately, the program contains two
errors, one that makes the program crash and one that causes the program
to generate incorrect results.

// ErrorProgram - this program averages a series

// of numbers, except that it contains
// at least one fatal bug

#include <stdio.h>

ffinclude <iostream.h>

int main(int argc, char* pszArgs{])
{
cout << "This program is designed to crash!\n":

// accumulate input numbers until the
// user enters a negative number, then
// return the average
int nSum;
for (int nNums = 0; :)
{
// enter another number to add
int nValue;
cout << "\nEnter another number:":
cin >> nValue:

// if the input number is negative...
if (nValue < 0)
{

Chapter 11: Debugging C++ 73 7

Figure 11-1:
The initial
version of

ErrorProgram
terminates
suddenly
instead of
generating
the expected
output.

// ...then output the average
cout << "\nAverage is: "

<< nSum/nNums

G B) i
break;

}

// not negative, add the value to
// the accumulator
nSum += nValue;

}
return 0;
}

After entering this program, build the executable ErrorProgram.exe file
(press F9). (This version of the program appears on the enclosed CD-ROM as
ErrorPrograml.cpp.)

5 Finished - ErrorProgram

si=00000054 edi=000272¢8
JBOBP* 1. ESE

Execute the program by double-clicking the program name from Windows
Explorer. Enter the values of 1, 2, and 3 followed by -1 to terminate input.
However, instead of producing the much-anticipated value of 2 (even I can
calculate the average of 1, 2, and 3), the program terminates with the not-
very-friendly error message shown in Figure 11-1.

Catching bug #1

The error message shown in Figure 11-1 seems rather imposing. The fact is
that most of the information provided in this message is useless to us. (This
extra information probably not useful to anyone.) However, the second line
gives us one very useful piece of information: “Division by zero at. . .."
Apparently someone divided some number by zero (pretty astute, huh?).

738 Part |l: Becoming a Functional Programmer

<P

ST
Figure 11-2:
The return
code of OxFF
indicates
that the pro-
gram exited
abnormally,
but it doesn't
indicate
why.

EA S S S ik]

This isn’t always so straightforward. For example, suppose that the program
lost its way and began executing instructions that aren’t part of the program?
(That happens a lot more often than you think.) The CPU may just happen to
execute a divide instruction, thereby generating a divide by zero error mes-
sage, and thereby masking the source of the problem. (An errant program is
like a train that's jumped the track — the program doesn’t stop executing
until it hits something really big.)

A program “losing its way” is so common that it has names: “jumping into
space” or “driving into the weeds.” Both of these phrases generate descriptive
images.

NextExecute the program from within the environment — sometimes environ-
ments such as Visual C++ and GNU C++ can make some sense out of some of
those error numbers.

The examples shown here are from GNU C++; however, the output from Visual
C++ is very similar.

From within rhide, load the program, rebuild it, and execute it by using the
Run command (Ctrl+F9). Again, enter the same 1, 2, 3, and -1 values, and
again the program crashes (at least something is predictable).

One of the first things you need to do when tracking down a problem is find
the set of operations that causes the program to fail every time. By reproduc-
ing the problem, you know not only how to recreate it for debug purposes,
but you also know when it’s fixed.

rhide opens a window containing the message “Program exit code 255
(0xff)”, as shown in Figure 11-2. I may not know much (this is true, by the
way, [don’t know much), but the normal, “no error” return code is 0. The fact
that the return code isn't zero means that something went wrong; however,
the actual value 0xff doesn’t do much for me.

iat maiaCiat arge,

caat << "This §

10t aSun;
1:1

<\¥

Figure 11-3:
rhide is able
to calculate
the location
of the
failure.
L= _m o ¥)

Chapter 11: Debugging C++ ’ 39

Click the OK button. rhide opens two windows in addition to the source
code window.

You may not see all three windows because one window may be covering one
of the others. Cycle through the available windows by pressing the F6 key.

In Window 3, you see the same error message that you saw when executing

the previous program, but what’s this behind curtain number 2? Window 2
appears in Figure 11-3.

int mainCint arge, char= pszfirgs[])

caut << “This pragram is designed to crash!\a“;

nput
egat

The “Call frame traceback” sounds like a telephone wiretap and in a way it is.
A traceback lists the address of each function that was called backward up
to the very first function. In this case, you can see that something called
__crtl _startup (how's that for a descriptive name?) called main(). The
error actually occurred on Line 28 of the source file ErrorProgram.cpp within
function main (). That's progress.

It turns out that Line 28 appears as follows:

cout << "\nAverage // line 26
<< nSum/nNums // line 27
<< "\n"; // 1ine 28

| don’t see a division on Line 28 at all. What'’s going on here?

C++ considers all of the expressions up to a semicolon to be a single com-
mand line. In this case, Lines 26 through 28 are all part of the same command
line that terminates on Line 28. Thus, anything that happened on Line 26, 27,
or 28 would be considered Line 28.

Armed with that knowledge, you know that the error actually occurred
during the division on Line 27.

’40 Part ll: Becoming a Functional Programmer

1 know that at the time of the division, nNums must have been equal to zero.
nNums is supposed to be a count of the number of values entered. | can see
where nNums is initialized to 0, but where is it incremented? It isn’t, and this
is the bug. Clearly nNums should have been incremented during each loop of
the input section. | edit the for loop as follows:

for (int nNums = 0; ;nNums++)

Catching bug #2

You have now found bug #1. Now execute the program using the same 1, 2, 3,
-1 input that crashed the program earlier. This time, the program doesn’t
crash and it returns a return code of 0, but the program doesn’t work either.
The output shown below is ridiculous:

This program is designed to crash!
Enter another number:1
Enter another number:2
Enter another number:3
Enter another number:-1

Average is: -286331151
Press any key to continue

How can C++ tie an error message
back to the source code?

200 of machine code in the executable code was
created from the C++ source code on Line 16.

The information | received when executing the
program directly from Windows or from an

MS-DOS window wasn't very informative. By
comparison, both Visual C++ and rhide are
able to direct me to the line from whence the
problem originated. How did they do that?

C++ has two modes when building a program. By
default, C++ builds the program in what is called
debug mode. In debug mode, C++ adds line-
number information that maps the lines of C++
code to the corresponding lines of machine
code. For example, this map might say that line

When the divide-by-zero error occurred, C++
was able to track the machine code address
returned by MS-DOS to the source line number
using this debug information.

As you may imagine, this debug information
takes a lot of space. Before a program is
“shipped,” the program tells rhide to generate
an executable without debug information.

Chapter 11: Debugging C++ ’4 ’

Apparently, either nSum or nNums (or both) isn’t being calculated properly. To
get any further, you need to know the value of these variables. In fact, it
would help if you knew the value of nValue as well, because nValue is used
to calculate nSum.

To learn the values of the nSum, nNums, and nValue, modify the for loop as
follows (this version of the program appears on the CD-ROM as
ErrorProgram2.cpp):

for (int nNums = 0; ;nNums++)
{
// enter another number to add
int nValue;
cout << "\nEnter another number:";
cin >> nValue;

// if the input number is negative...
if (nValue < 0)
{
// ...then output the average
cout << "\nAverage is: "
<< nSum/nNums
KL P\
break;

}

// output critical information

cout << "nSum = " << nSum << "\n";
cout << "nNums= " << nNums << "\n";
cout << "nValue= "<< nValue << "\n";
cout << "\n";

// not negative, add the value to
// the accumulator
nSum += nValue;

}

Notice the addition of the output statements to display nSum, nNums, and
nValue on each iteration through the loop.

The result of executing the program with the now standard 1, 2, 3, and -1
input is shown below. Even on the first loop, the value of nSum is unreason-
able. In fact, at this point during the first loop, the program has yet to add a
new value to nSum. You would think that the value of nSum should be 0.

This program is designed to crash!

Enter another number:1
nSum = -858993460
nNums= 0

nValue= 1

7& 2 Part Il: Becoming a Functional Programmer

Enter another number:2
nSum = -858993459
nNums= 1

nValue= 2

Enter another number:3
nSum = -858993457
nNums= 2

nValue= 3

Enter another number:

On careful examination of the program, nSum is declared but it isn’t initialized
to anything. The solution is to change the declaration of nSum to the following:

int nSum = 0;

Note: Until a variable has been initialized, the value of that variable is inde-
terminate.

Once you have convinced yourself that you have found the problem, “clean
up” the program as follows (this version is ErrorProgram3.cpp on the
enclosed CD-ROM):

// ErrorProgram - this program averages a series
// of numbers

!/ (This version has been fixed.)
#include <stdio.h>

#include <iostream.h>

int main(int argc, char* pszArgs[])
]
1

cout << "This program works!\n";

// accumulate input numbers until the
// user enters a negative number, then
// return the average
int nSum = 0;
for (int nNums = 0: ;nNums++)
{
// enter another number to add
int nValue:
cout << "\nEnter another number:";
cin >> nValue:

// if the input number is negative...

if (nValue < 0)

{
// ...then output the average
cout << "\nAverage is: " << nSum/nNums << "\n";
break;

Chapter 11: Debugging C++ ’ 43

// not negative, add the value to
// the accumulator
nSum += nValue;
}
return 0;
}

1 rebuild the program and retest with the 1, 2, 3, and -1 sequence. This time |
see the expected average value of 2:

This program works!
Enter another number:1
Enter another number:2
Enter another number:3
Enter another number:-1
Average is: 2

After testing the program with a number of other inputs, | convince myself
that the program is now executing properly.

Calling for the Debugger

For small programs, the WRITE technique works reasonably well. Adding state-
ments is simple enough and the programs rebuild quickly so the cycle time is
short enough. Problems with this approach don't really become obvious until
the size of the program grows beyond the simple programs you've seen so far.

In larger programs, the programmer often doesn’t generally know where to
begin adding output statements. The constant cycle of adding write state-
ments, executing the program, adding write statements, and on and on
becomes tedious. Further, in order to change an output statement, the pro-
grammer must rebuild the entire program. For a large program, this rebuild
time can itself be significant. (1 have been on programs that took most of the
night to rebuild.)

Finally, finding pointer problems with the WRITE approach is almost impossi-
ble. A pointer written to the display in hex means nothing and as soon as you
attempt to dereference the pointer, the program blows.

A second, more sophisticated technique is based on a separate utility known
as a debugger. This approach avoids the disadvantages of the write statement
approach. Unfortunately, however, this approach involves learning to use a
new tool, the debugger.

7 44 Part Il: Becoming a Functional Programmer

Defining the debugger

A debugger is actually a tool built into the rhiide and Microsoft Visual C++
environments (the debuggers are different between the two but work on the
same principle).

The programmer controls the debugger through commands in the same way
that the programmer might use the Edit commands when using the editor or
the different build commands when creating the executable. These com-
mands are available through menu items or by using hot keys.

The debugger allows the programmer to control the execution of her pro-
gram. She can execute one step in the program at a time, she can stop the
program at any point, and she can examine the value of variables.

To appreciate the power of the debugger you need to see it in action. This
section introduces you to the use of the debugger by fixing a small program.
(1l use the rhide debugger, but Visual C++ can use your debugger by using
the corresponding commands.)

Deciding which debugger to use

Unlike the C++ language, which is standardized across manufacturers, each
debugger has its own command set. Fortunately, most debuggers offer the
same basic commands. The commands you need are available in both the
ubiquitous Microsoft Visual C++and the GNU C++rhide environments. In
addition, both debuggers offer access to debugger commands by using either
menu items or the function keys. Table 11-1 lists the command hot keys yvou
use in both environments.

Throughout the rest of this chapter, | refer to the debug commands by name.
Table 11-1 lists the corresponding keystrokes you use in your environment.

Table 11-1 Debugger Commands for Microsoft
Visual C++ and GNU rhide
Command Visual C++ GNU C++ (rhide)
Build Shift+F8 F9
Stepin 1 F
Step over F10 F8
View variable menu only Ctl+F4

Set breakpoint F9 Ctl+F8

Chapter 11: Debugging C++ ’ 45

Command Visual C++ GNU C++ (rhide)
Add watch menu only Ctl+F7
Go E5 Ctl+F9
View User Screen Click on Program Window Alt+F5
Program reset Shift+F5 Ctl+F2

Running a test program

The best way to learn how to fix a program using the debugger is to go
through the steps to fix a buggy program. The following program has several
problems that need to be discovered and fixed. This version is found on the
CD-ROM as Concatenatel.cpp.

// Concatenate - concatenate two strings
// with a “ - " in the middle
// (this version crashes)
#include <stdio.h>

#include <iostream.h>

void concatString(char szTarget[], char szSource(]);
int main(int nArg, char* pszArgs([])

cout << "This program concatenates two strings\n";
cout << "(This version crashes.)\n\n";

// read first string...

char szStringl[256];

cout << "Enter string #f1:";
cin.getline(szStringl, 128);

// ...now the second string...
char szString2{128];

cout << "Enter string #2:";
cin.getline(szString2, 128);

// ...concatenate a " - " onto the first...
concatString(szStringl, " - ");
// ...now add the second string...

concatString(szStringl, szString2);

// ...and display the result
cout << "\n" << szStringl << "\n";

return 0;

746 Part Il: Becoming a Functional Programmer

// concatString - concatenate the string szSource

// to the end of szTarget
void concatString(char szTarget[], char szSourcel])
{

int nTargetIndex;
int nSourcelndex;

// find the end of the first string
while(szTarget[++nTargetIndex])

{

}

// tack the second to the end of the first
while(szSource[nSourcelndex])
{
szTarget[nTargetIndex] =
szSource[nSourcelndex];
nTargetIndex++;
nSourcelndex++;

}

Build the program uneventfully. Execute the program. When it asks for string
#1, enter this is a string. For string #2, enter THIS IS A STRING (you can use
any two phrases that you want).

Rather than generate the proper output, the program terminates with the
cursed Oxff return code. Click OK (I don’t actually have any other choice). In
an attempt to offer some solace, the debugger opens the Message Window
containing the following:

Call frame traceback:

Concatenate.cpp(49) in function concatString__FPcTO
Concatenate.cpp(28) in function main

in function __crtl_startup+174

From this you can see that the error occurred on or about Line 49 of the
module Concatenate.cpp, which is within the function concatString().
concateString() was called from Line 28 within the function main().
Finally, main() was invoked from some stupid function that we don’t know
anything about.
Line 49 appears as follows:

while(szTarget[++nTargetIndex])

while Line 28 contains the function call:

concatString(szStringl, * ")

Chapter 11: Debugging C++ ’4 7

Nothing appears to be wrong with the statement on Line 49 or the call on
Line 28. You will need to use the riide debugger.

Note: Actually, you may already see the problem based on the information
that rhide provided, but work with me here.

Single-stepping through a program

The best first step when tracking down a program problem is to use a debugger
feature known as single stepping. From within rhide, execute Program Reset.

Note: In Table 11-1 you can see that this is Ctrl+F2 within rhide and Shift+F5
within Visual C++, but I'm not going to give you hints anymore. For each
debugger command, refer to Table 11-1. In addition, remember that each of
these debugger commands is available from drop-down menu options.

The Program Reset command makes sure that everything within the debug-
ger is reset back to the beginning in case you had been in the middle of
debugging something already. It’s always a good idea to reset the debugger
before beginning.

Execute the Step Over command to begin debugging the program. rhide
opens an MS-DOS window as if it were about to execute the program; how-
ever, the debugger immediately switches back the program edit window with
the first executable line of the program highlighted.

An executable statement is a statement other than a declaration or a comment.
An executable statement is one that generates machine code when compiled.

The debugger has actually executed the program up to the first line of the
main() function and then snatched control. The debugger is waiting for you
to decide what to do next.

Execute Step Over again — rhide repeats the process of displaying the user
screen for just a second and returning to the edit window. This time the second
line is highlighted. Click on View User Screen and you should see the output

This program concatenates two strings
from the previous C++ command line.
Execute through the program until it crashes by repeatedly executing Step
Over. This should reveal a lot about what went wrong. Executing a program
one line at a time is known as single-stepping the program.
When you try to Step Over the cin.getline() command, the debugger

doesn'’t take control back from the MS-DOS window as it normally would.
Instead, the program appears to be frozen at the prompt to enter the first string.

7 48 Part ll: Becoming a Functional Programmer

B\

P SR
Figure 11-4:
Something
in the
concat-
String()
function
causes the
program

to crash.

[i& S ket o]

The reason for this apparent program crash is that the debugger doesn’t take
control back from the program until the C++ statement finishes executing —
the statement containing the call to get1ine() cannot finish until you enter
a string of text from the keyboard.

Enter this is a string and press Enter. The rhide debugger stops the program
at the next statement, the cout << "Enter string #2".Enter the single
step command again and enter the second line of text in response to the
second call to getline().

If the debugger seems to halt without returning when single-stepping through
a program, your program is waiting for something to happen. Most likely, the
program is waiting for input, either from you or from an external device.

Eventually you will single-step down to the call to concatString(), as
shown in Figure 11-4. When you try to Step Over the call, however, the
program crashes as before.

EEEN ==
la?iﬁ!EI_JJJIIEIE_!__..J;ﬁﬁ#ﬁg;ﬁgﬁ:if};:gﬁ:gr:;5;;:;;5__L Aelp STH/ 31

veonca(slrilg(szS(ringl , s2String2);

coot (2‘

retura I3

void coacatString(e

int aTargetlade|
34:1

This doesn’t tell reveal any more that the previous crash. What is needed is
the ability to execute into the function rather than simply “stepping over" it.

Single-stepping into a function

A debugger allows the programmer to step into a function one instruction at
a time. You will need this feature in order to ferret out the first bug in the test
program.

You will need to start over. Execute Program Reset command in order to reset
the debugger to the beginning of the program.

Chapter 11: Debugging C++ ’ 4 9

Figure 11-5;
The Step In
command
moves
control to
the first
executable
line in
concat-
String().

A\

A\

Single-step through the program using the Step Over command until you reach
the call to concatString(). This time rather than step over the call, use the
Step In command to move into the function. Immediately, the pointer moves to
the first executable line in concatString() as shown in Figure 11-5.

% RHIDE Version 1.4 - No project

. apii’Loncatenate.epp
t d ‘af. s2Target
znid cancatStringCel rget[], ehar szSounree[])

int nTargetIndex;
int nSonreelndgu;

i
3}

ghile(sZSn;rc:knﬁéureelndexi; JR

There’s no difference between the Step Over and Step In commands when not
executing a function call.

If you Step In to a function unintentionally, the debugger may ask you for the
source code to some file that you've never heard of before. The function is
probably within a library module. Execute the Cancel command to view a list-
ing of machine instructions that aren’t very useful even to the most hardened
techies. To return to sanity, open the edit window, set a break point as
described in the next section to the statement after the call, and execute the
Go command.

Now use the Step Over command to execute the first statement in the func-
tion. The rhide debugger responds by reporting the same fatal error mes-
sage as before.

Now you know for sure that something about the while loop is not correct
and that executing it even the first time crashes the program. To find out
what it is, you will need to stop the program right before it executes the
offending line and take a look around.

Using breakpoints

Single-stepping a program is fine when you are just “sniffing around;” how-
ever, you can use a debugger command known as the breakpoint when you
already know where you want to go.

750 Part ll: Becoming a Functional Programmer

RSt Bl " T
Figure 11-6:
rhide
highlights a
breakpoint
by turning

the line red. |

To see this in action, execute the Program Reset command to move the
debugger back to the beginning of the program. You could single-step back
through the program to the while loop as you did before. With a large pro-
gram, this could get laborious. You can employ the breakpoint shortcut
instead. Place the cursor on the while statement and execute the Set break-
point command. The editor highlights the statement, as shown in Figure 11-6.

Tindows Felp %7

-cpp

int aTergetIndex;
iot eSeercelodes;

find the e r

2/ fis ad af the firs
|(!iiIe(szhrgel[Hﬂargelhd
3

/7 tack the second fe
44220 - -

'I F2 Save F3 Opso F5 Zoom F6 Next Mlt+F9 Compile F10 Meou #1t+X Quit

A breakpoint enables the program to execute normally up to the point where
you want to take control A breakpoint tells the debugger to halt on that state-
ment if control ever passes its way. Breakpoints are useful either when you
know where to stop or when you want the program to execute normally until
it’s time to stop.

With the breakpoint set, execute the Go command. The program appears to

execute normally up to the point of the while call. At that point, the program
obediently hands the torch back to the debugger.

Now that you’re here, you still probably don't know what’s wrong.

Viewing and modifying variables

There isn’t much point in executing the while statement again — you know
that it will crash. You need more information about what the program is
doing to determine why it crashed. For example, you might like to see the
value of nTarget Index immediately prior to the execution of the while loop.

Chapter 11: Debugging C++

Figure 11-7:
A debugger
allows the
programmer
to view and
modify
program
variables.
P o v

ject "ptices Lindow
1/oncateoate-cpp

First, double-click the variable name nTargetIndex. Next, execute the View
Variable command. A window appears with the name nTargetIndex in the
upper field. Click Eval to find the current value of the variable. The results,
shown in Figure 11-7, are obviously nonsensical.

Looking back at the C++ code, you will see that the program does not initial-
ize either the nTargetIndex or nSourcelndex variables. To test this theory,
enter a 0 in the New Value window and click Change. Repeat the process for
nSourcelIndex. Close the window and click Step Over to continue executing.

With the index variables initialized, single-step into the whi1e loop. The pro-
gram does not crash. Each Step Over or Step In command executes one itera-
tion of the while loop. Because the cursor ends up right where it started,
there appears to be no change; however, after one loop, nTargetIndex has
incremented to 1.

It’s too much work to reevaluate nTarget Index on each iteration. Double-
click nTargetIndex and execute the Add Watch command. A window
appears with the variable nTarget Index and the value 1 to the right. Execute
Step In a few more times. nTargetIndex increments on each iteration
through the loop. After several iterations, control eventually passes outside
of the loop.

Set a breakpoint on the closing brace of the concatString function and exe-
cute Go. The program stops immediately prior to returning from the function.

To check the string generated, double-click szTarget string and execute
View Variable. The results shown in Figure 11-8 are unexpected.

151

152

Part Il: Becoming a Functional Programmer

s v e
Figure 11-8:
Even after
solving the
initial prob-
lem, the
target string
resulting
from con-
catenation
isn't correct.
3T YR

\\3

1

e e et ene eYeastez e e

snrce

The 0xa73a8 is the address of the string in memory. This information can be
useful when tracking pointers. For example, this information would be
extremely helpful in debugging a linked-list application. It’s of little use here.

The expected string “this is a string” is there, but it’s immediately followed by
a string of garbage. Apparently the target string is not being terminated after
the source string has been appended onto the end.

Modifying a string after the terminating nul1 or forgetting to terminate a
string with a nul1 are by far the two most common string-related errors.

You now know two errors — it would be prudent to go ahead and fix these
errors in the source code before you forget them. Press Program Reset and
fix the concatString() function. The updated concatString() function
appears as follows:

void concatString(char szTarget[]., char szSourcel])
{ .
int nTargetIndex = 0;
int nSourcelndex 0

// find the end of the first string
while(szTarget[nTargetIndex])
{

}

nTargetIndex++:

// tack the second onto the end of the first
while(szSource[nSourcelndex])
{
1
szTarget[nTargetIndex] =
szSource[nSourcelndex]:
nTargetIndex++:

Chapter 11: Debugging C++ ’53

nSourcelndex++;

}

// terminate the string properly
szTarget[nTargetIndex] = '\0';
}

Just because you've fixed one problem does not mean thatthere aren’t more
bugs. You should start the debug process again. Set a watch on szTarget
and nTargetIndex while executing the second loop. The source string
appears to be copied to the end of the target string properly.
> You really need to execute this one yourself. It’s the only way you can get a
feel for how neat it is to watch one string grow while the other string shrinks
on each iteration through the loop.

Convinced that all seems to be working well, clear any breakpoints left, and
execute Go to allow the program to continue to completion. The following
output seems correct:

This program concatenates two strings
(This version works.)

Enter string #l:this is a string
Enter string #2:THIS IS A STRING

this is a string - THIS IS A STRING

Congratulations! You're now a debugging expert.

Budget 1 Program

The chapters that make up Part | and 1l provide you the programming infor-
mation necessary to write your own non-trivial programs. The following pro-
gram, BUDGET is just such a program.

In actual fact, BUDGET appears multiple times in this book. Each version uses
the features introduced in earlier chapters. In this way, you can see the pro-
gram advance in capability by incorporating more advanced features. This
version uses the functional (that is, function-based) programming techniques
of Parts l and 1L

The BUDGET program is a simple bank account register program. Here’s what
it does:

Il »~~ Gives the user the ability to create one or more bank accounts.

V¥ Assigns an account number to each account.

754 Part Il: Becoming a Functional Programmer

I 1~ Begins accepting transactions, consisting of deposits and withdrawals.

1~ After the user chooses to exit, the program displays the ending balance
of all accounts and the total of all accounts.

This program mimics a few bank rules concerning transactions (we will add
more rules as the program develops):

1 Never let the balance become negative. (Your bank may be friendly, but I
bet it’s not that friendly.)

I v Never charge for making a deposit.
The following budget program is explained below:

// BUDGET1.CPP - A "functional" Budget program
J#Hinclude <iostream.h>
#include <stdio.h>

// the maximum number of accounts you can have
const int maxAccounts = 10;

// data describes accounts
unsigned accountNumber[maxAccounts];
double balance[maxAccounts];

// prototype declarations
void process(unsigned& accountNumber,
doubled balance);
void init(unsigned& accountNumber,
double& balance);

// main - accumulate the initial input and output totals
int main(int nArg, char* pszArgs[])
{

// loop until someone enters

int noAccounts = 0; // the number of accounts

// don't create more accounts than we have room for
while (noAccounts < maxAccounts)
{
char transactionType;
cout << "Enter C to continue or X to terminate:":
cin >> transactionType:

if (transactionType x|

// quit if the user enters an X; otherwise...
transactionType == 'X')

{
}

break;

Chapter 11: Debugging C++ 755

// if the user enters a C...

if (transactionType == 'c' ||
transactionType == 'C')

{
// ...then initialize a new account...

init(accountNumber[noAccounts],
balance[noAccounts]);

// ...and input transaction information
process(accountNumber[noAccounts],
balance[noAccounts]);

// move the index over to the next account
noAccounts++;

}

// now present totals

// first for each account

double total = 0;

cout << "Account information:\n";

for (int i = 0; i < noAccounts; i++)
cout << "Balance for account "

<< accountNumber([i]

L=

<< balance[i]

<< "\n";

// accumulate the total for all accounts
total += balance(i];

// now display the accumulated value
cout << "Balance for all accounts = "
<< total
<< "\n";

return 0;

}

// init - initialize an account by reading
// in the account number and zeroing out the
// balance
void init(unsigned& accountNumber,
double& balance)
{

cout << "Enter account number:";
cin >> accountNumber;
balance = 0.0;

157

Chapter 11: Debugging C++

To demonstrate the program in action, | entered the following sequence
(output from the program in normal font, my input in bold):

Enter C to continue or X to terminate:c
Enter account number:1234

Enter positive number for deposit,
negative for withdrawal,

:200

:-100

:-200

Insufficient funds:
:0

Enter C to continue or X to terminate:c
Enter account number:2345

Enter positive number for deposit,

balance 100, check 200

negative for withdrawal,
1200

g =L

5 =50

1=60

:0

Enter C to continue or X
Account information:
Balance for account 1234
Balance for account 2345
Balance for all accounts

to terminate:x

100
50
150

Coding styles

You may notice that | try to be consistent in my
indentation and in my naming of variables.

We humans have a limited amount of CPU power
between our ears. We need to direct our CPU
power toward getting programs working, not
toward figuring out simple stuff like indentation.

This makes itimportant that you be consistentin
how you name variables, where you place open
and close braces, and so on. This is called your
coding style. Once you have developed a style,
stick to it — after a while, your coding style will
become second nature. You'll find that you can
code your programs with less time and read your
programs with less effort.

When waorking on a project with several pro-
grammers, it's just as important that you all use

the same style to avoid a Tower of Babel effect
with conflicting and confusing styles. In addition,
| strongly suggest that you enable every error
and warning message that your compiler can
produce. Even if you decide that a particular
warning is not a problem, why would you want
it suppressed? You can always ignore it. More
often than not, even a warning represents a
potential problem or programming style that
needs to be corrected.

Some people don't like the compiler finding their
slip-ups because they thinkiit's embarrassing and
they think that correcting things to get rid of the
warnings wastes time. Just think how embar-
rassing and time-consuming itis to painstakingly
search for a bug only to find that it's a problem
your compiler told you about hours ago.

’58 Part |I: Becoming a Functional Programmer

Here's how the BUDGET1.C program works. Two arrays are created, one to
contain account numbers and the other their balances. These two arrays are
kept in synch, that is, balance[n] contains the balance of the account
accountNumber[{n] no matter what the value of n. Due to the limitations of a
fixed length array, the program can only accommodate MAXACCOUNTS
number of bank accounts.

The main program is divided in two sections: the accumulation section,
where the deposits and withdrawals are accumulated into accounts, and the
display section. The accumulation section first enters a loop in which the
accounts are handled separately. First, the program prompts the user for a C
for continue or X for exit. If the user enters an X, the program breaks from the
loop and enters the second section of main().

The program exits the loop after MAXACCOUNTS number of accounts has
been created, whether the user enters an X or not.

Notice that the program checks for both ‘X’ and ‘x’. While C++ considers case
to be important, people generally don't.

If the user enters C, control passes to the init() function which enters the
account number information (creates an account) followed by the process()
function which enters the transaction data into the account.

The arguments to init() and process() have been declared referential so that
the functions can modify their values in the calling function as well.
Otherwise, the new data might be lost when the function exits.

Once the program exits the account creation section, it enters the output
second. Here, main() cycles through each account outputting the balance in
each. The program ends with the total balance of all accounts.

The init() function creates a new account by prompting the user, inputting
the account number and zeroing out the balance.

It is important to always create an element in a legal state. An initial balance
of 0 makes sense - an initial balance containing random garbage does not.

The process() function enters a loop inputting transaction information.
Positive values are taken to be deposits while negative values withdrawals.
An entry of zero is assumed to be the last transaction for a given account.

The program is using an otherwise nonsensical value as a flag. This technique
is common but not generally a good idea. | use the technique here only
because it minimizes the size of the program.

Although other (even better) ways exist to implement this program, it serves
nicely as the basis for our investigations. As you progress in your knowledge
of C++, you will see this program morph into a full-blown, object-oriented C++
program.

Part lll

Programming
with Class

v Rich Tennant

Wave

AN\
JLIEDN \\\\‘\ \

\

) = —

* CAREFUL, SUNDANCE, THIS CNE'S BEEN LOCKED UP AND FORCED TO BEW-
TEST POORLY DOCUMENTED SOFTWARE PRODUCTS ALLLL WEEK AND
HE'S TCHING FOR A FIGHT"

In this part . . .

Fe feature that differentiates C++ from other languages
is C++'s support for object-oriented programming.
Object-oriented is about the most hyped term in the com-
puter world (okay, maybe .com has it beat). Computer
languages, editors, and databases all claim to be object-
oriented, sometimes with justification but most of the
time without.

What is it about being object-oriented that makes it so
desired around the world? Read on to find out.

Chapter 12
Examining Object-Oriented

In This Chapter
Making nachos
Reviewing of object-oriented programming
Introduction to abstraction and classification

Discovering why object-oriented programming is important

mat, exactly, is object-oriented programming? Object-oriented pro-
gramming, or OOP as those in the know prefer to call it, relies on two
principles you learned before you ever got out of Pampers: abstraction and
classification. To explain, let me tell you a little story.

Abstracting Microwave Ovens

Sometimes when my son and | are watching football, | whip up a terribly
unhealthy batch of nachos. I dump some chips on a plate, throw on some
beans, cheese, and lots of jalapenos, and nuke the whole mess in the
microwave oven for five minutes.

To use my microwave, [open the door, throw the stuff in, and punch a few
buttons on the front. After a few minutes, the nachos are done. (I try not to

stand in front of the microwave while it's working lest my eyes start glowing
in the dark.)

Now think for a minute about all the things 1 don’t do to use my microwave:
v~ | don’t rewire or change anything inside the microwave to get it to work.

The microwave has an interface — the front panel with all the buttons
and the little time display — that lets me do everything | need.

7 62 Part lll: Programming with Class

+ | don’t have to reprogram the software used to drive the little processor
inside my microwave, even if | cooked a different dish the last time 1
used the microwave.

v+~ 1 don’t look inside my microwave's case.

v+~ Even if | were a microwave designer and knew all about the inner work-
ings of a microwave, including its software, 1 would still use it to heat my
nachos without thinking about all that stuff.

These are not profound observations. You can deal with so much stress in
your life. To reduce the number of things that you deal with, you work at a
certain level of detail. In object-oriented (OO) computerese, the level of detail
at which you are working is called the level of abstraction. To introduce
another OO term while | have the chance, | abstract away the details of the
microwave’s innards.

When I'm working on nachos, | view my microwave oven as a box. (As I'm
trying to knock out a snack, | can’'t worry about the innards of the microwave
oven and still follow the Cowboys on the tube.) As long as | use the
microwave only through its interface (the keypad), there should be nothing |
can do to cause the microwave to enter an inconsistent state and crash or,
worse, turn my nachos into a blackened, flaming mass.

Preparing functional nachos

Suppose | were to ask my son to write an algorithm for how Dad makes
nachos. After he understood what | wanted, he would probably write “open a
can of beans, grate some cheese, cut the jalapefos,” and so on. When it came
to the part about microwaving the concoction, he would write something like
“cook in the microwave for five minutes” (on a good day).

That description is straightforward and complete. But it's not the way a func-
tional programmer would code a program to make nachos. Functional pro-
grammers live in a world devoid of objects such as microwave ovens and
other appliances. They tend to worry about flow charts with their myriad
functional paths. In a functional solution to the nachos problem, the flow of
control would pass through my finger to the front panel and then to the inter-
nals of the microwave. Pretty soon, flow would be wiggling around through
complex logic paths about how long to turn on the microwave tube and
whether to sound the “come and get it” tone.

In a world like this, it's difficult to think in terms of levels of abstraction. There
are no objects, no abstractions behind which to hide inherent complexity.

Chapter 12: Examining Object-Oriented Programming

Preparing object-oviented nachos

In an object-oriented approach to making nachos, 1 would first identify the
types of objects in the problem: chips, beans, cheese, and an oven. Then 1
would begin the task of modeling these objects in software, without regard to
the details of how they will be used in the final program.

While 1 am doing this, I'm said to be working (and thinking) at the level of the
basic objects. | need to think about making a useful oven, but | don’t have to
think about the logical process of making nachos yet. After all, the microwave
designers didn't think about the specific problem of my making a snack.
Rather, they set about the problem of designing and building a useful
microwave.

After the objects | need have been successfully coded and tested, I can
ratchet up to the next level of abstraction. | can start thinking at the nacho-
making level, rather than the microwave-making level. At this point, | can
pretty much translate my son’s instructions directly into C++ code.

Classifying Microwave QOvens

Critical to the concept of abstraction is that of classification. If | were to ask
my son, “What’s a microwave?” he would probably say, “It’s an oven that. . ..”
If I then asked, “What’s an oven?” he might reply, “It’s a kitchen appliance
that....” (If] then asked, “What'’s a kitchen appliance?” he would probably
say, “Why are you asking so many stupid questions?”)

The answers my son gave in my example questioning stem from his under-
standing of our particular microwave as an example of the type of things
called microwave ovens. In addition, my son sees microwave ovens as just a
special type of oven, which itself is just a special type of kitchen appliance.

In object-oriented computerese, my microwave is an instanceof the class
microwave. The class microwave is a subclass of the class oven, and the
class oven is a subclass of the class kitchen appliances.

Humans classify. Everything about our world is ordered into taxonomies. We
do this to reduce the number of things we have to remember. Take, for exam-
ple, the first time you saw an SUV. The advertisement probably called the
SUV “revolutionary, the likes of which have never been seen.” But you and |
know that that just isn’t so. | like the looks of some SUVs (others need to go
back to take another crack at it), but hey, an SUV is a car. As such, it shares
all of (or at least most of) the properties of other cars. It has a steering
wheel, seats, a motor, brakes, and so on. | bet | could even drive one without
reading the user’s manual first.

163

7 64 Part lll: Programming with Class

Why

1 don’t have to clutter my limited storage with all the things that an SUV has
in common with other cars. All I have to remember is “an SUV is a car that . . .”
and tack on those few things that are unique to an SUV (like the price tag). |
can go further. Cars are a subclass of wheeled vehicles along with other mem-
bers, such as trucks and pickups. Maybe wheeled vehicles are a subclass of
vehicles, which include boats and planes. And on and on and on.

Classify?

Why do we classify? It sounds like a lot of trouble. Besides, people have been
using the functional approach for so long, why change now?

It may seem easier to design and build a microwave oven specifically for this
one problem, rather than build a separate, more generic oven object.
Suppose, for example, that | want to build a microwave to cook nachos and
nachos only. There would be no need to put a front panel on it, other than a
START button. | always cook nachos the same amount of time. I could dis-
pense with all that DEFROST and TEMP COOK nonsense. It only needs to hold
one flat little plate. Three cubic feet of space would be wasted on nachos.

For that matter, | can dispense with the concept of “microwave oven” alto-
gether. All | really need is the guts of the oven. Then, in the recipe, | put the
instructions to make it work: “Put nachos in the box. Connect the red wire to
the black wire. Bring the radar tube up to about 3,000 volts. Notice a slight
hum. Try not to stand too close if you intend to have children.” Stuff like that.

But the functional approach has some problems:

I v+ Too complex. | don’t want the details of oven building mixed into the
details of nacho building. If | can't define the objects and pull them out
of the morass of details to deal with separately, | must deal with all the
complexities of the problem at the same time.

1+ Not flexible. Someday | may need to replace the microwave oven with
some other type of oven. | should be able to do so as long as its inter-
face is the same. Without being clearly delineated and developed sepa-
rately, it becomes impossible to cleanly remove an object type and
replace it with another.

+# Not reusable. Ovens are used to make lots of different dishes. | don’t
want to create a new oven every time | encounter a new recipe. Having
solved a problem once, it would be nice to be able to reuse the solution
in future programs.

Chapter 13
Adding Class to C++

In This Chapter
» Grouping data into classes
Declaring and defining class members

Accessing class members

programs often deal with groups of data: a person’s name, rank, and serial
number, stuff like that. Any one of these values is not sufficient to
describe a person — only in the aggregate do the values make any sense. A
simple structure such as an array is great for holding stand-alone values;
however, it doesn’t work very well for data groups. This makes good ol’
arrays inadequate for storing complex data (such as personal credit records
that the Web companies maintain so they can loose them to hackers).

For reasons that will become clear shortly, I'll call such a grouping of data an
object. A microwave oven is an object. You are an object (me, I'm not so sure
about). Your name, rank, and credit card number in a database is an object.

Introducing the Class

What we need is a structure that can hold all of the different types of data
necessary to describe a single object. In our simple example, a single object
would hold both the first name and last name along with the credit card
number.

C++ calls the structure that combines multiples pieces of data into a single
object a Class.

100

Part lll: Programming with Class

The format of a Class

A class used to describe a name and credit card grouping might appear as
follows:

// the dataset class

cltass NameDataSet

{

public:

char firstName[128];
char lastName [128];
int creditCard;

g

// a single instance of a dataset
NameDataSet nds;

A class definition starts with the keyword class followed by the name of the
class and an open-closed brace pair.

The alternative keyword struct may be used. The keywords struct and
class are completely identical except that the public declaration is assumed
in the struct.

The statement after the open brace is the keyword pubiic. (Hold off asking
about the meaning of the public keyword. I'll make its meaning public a little
later. Later chapters describe options to public, such as private. Thus, the
public must stay private until | can make the private public.)

Following the public keyword are the entries it takes to describe the object.

The NameDataSet class contains the first and last name entries along with

the credit card number. As you would expect the first and last names are

both character arrays — the credit card number is shown here as a simple
MBER integer (“the better to steal you with, my dear™).

.“) A class declaration includes the data necessary to describe a single object.

The last line of the snippet declares the variable nds to be a single entry of
class NameDataSet. Thus, nds might be an entry that describes a single
person.

We say that nds is an instance of the class NameDataSet. You instantiate the
class NameDataSet to create nds. Finally, we say that firstName and the
others are members or properties of the class. We say a whole lot of silly
things.

Chapter 13: Adding Class to C++

Accessing the members of a Class

The following syntax is used to access the property of a particular object:

NameDataSet nds;

nds.creditCard = 10;
cin >> nds.firstName;
cin >> nds.lastName;

Here, nds is an instance of the class NameDataSet (for example, a particular
NameDataSet object). The integer nds.creditCard is a property of the nds
object. The type of nds.creditCardis int while that of nds.firstName is
char[].

Okay, that’s computerspeak. What has actually happened here? The program
snippet declares an object nds, which it will use to describe a customer. For
some reason, the program assigns the person the credit card number10
(obviously bogus but it’s not like I'm going to include one of my credit card
numbers).

Next, the program reads the person'’s first and last names from the default
input.

From now on, the program can refer to the single object nds without dealing
with the separate parts (the first name, last name, and credit card number)
until it needs to.

int getData(NameDataSet& nds)

{
cout << "\nEnter first name:";
cin >> nds.firstName;

if (stricmp(nds.firstName, "exit") == 0)
{

}

return 0;
cout << "Enter last name:";
cin >> nds.lastName;

cout << "Enter credit card number:";
cin >> nds.creditCard;

return 1;

167

168 Part lll: Programming with Class

// displayData - output the index'th data set
void displayData(NameDataSet& nds)
{
cout << nds.firstName
Ko
<< nds.lastName
RIL
<< nds.creditCard
<< "\n";
}

int main(int nArg, char* pszArgs[])
{
const int MAX = 25;
// allocate 25 name data sets
NameDataSet nds[MAX];

// load first names, last names and social
// security numbers
cout << "Read name/credit card information\n"
<< "Enter 'exit' for first name to exit\n";
int index = 0:
while (getData(nds[index]) && index < MAX)
{

}

index++;

cout << "\nEntries:\n";
for (int i = 0; i < index; i++)
{

}
return 0;
}

displayData(nds{il);

Example program
The following program demonstrates the NameDataSet class:

// DataSet store associated data in
// an array of objects
#include <stdio.h>

#include <iostream.h>

#include <string.h>

// NameDataSet stores name and credit card
// information
class NameDataSet

Chapter 13: Adding Class to C++ ’ 69

public:
char firstName[128];
char lastName [128];
int creditCard;
s

// getData - read a name and credit card
1/ number; return 0 if no more to
// read
int getData(NameDataSet& nds)
{
cout << "\nEnter first name:";
cin >> nds.firstName;

if ((strcmp(nds.firstName, "exit") == 0)

Y
(strcmp(nds.firstName, "EXIT") == 0))
{

}

return 0;

cout << "Enter last name:";
cin >> nds.lastName;

cout << "Enter credit card number:";
cin >> nds.creditCard;

return 1;

}

// displayData - output the index'th data set
void displayData(NameDa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>