

Algorithms For Dummies®
Published by: John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030-5774, www.wiley.com
Copyright © 2017 by John Wiley & Sons, Inc., Hoboken, New
Jersey
Media and software compilation copyright © 2017 by John Wiley
& Sons, Inc. All rights reserved.
Published simultaneously in Canada
No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United
States Copyright Act, without the prior written permission of the
Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons,
Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax
(201) 748-6008, or online at
http://www.wiley.com/go/permissions .
Trademarks: Wiley, For Dummies, the Dummies Man logo,
Dummies.com, Making Everything Easier, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons,
Inc. and may not be used without written permission. All other
trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE
PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO
THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION
WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE.
NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND

http://www.wiley.com/
http://www.wiley.com/go/permissions

STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE
FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER
PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR
SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM.
THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES
NOT MEAN THAT THE AUTHOR OR THE PUBLISHER
ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT
INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK
WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services,
please contact our Customer Care Department within the U.S. at
877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-
4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies .
Wiley publishes in a variety of print and electronic formats and by
print-on-demand. Some material included with standard print
versions of this book may not be included in e-books or in print-
on-demand. If this book refers to media such as a CD or DVD that
is not included in the version you purchased, you may download
this material at http://booksupport.wiley.com . For more
information about Wiley products, visit www.wiley.com .
Library of Congress Control Number: 2017936606
ISBN 978-1-119-33049-3 (pbk); ISBN 978-1-119-33053-0 (ebk);
ISBN 978-1-119-33052-3 (ebk)

https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com/
http://www.wiley.com/

Algorithms For Dummies®
To view this book's Cheat Sheet, simply go to
www.dummies.com and search for “Algorithms
For Dummies Cheat Sheet” in the Search box.

Table of Contents
Cover
Introduction

About This Book
Foolish Assumptions
Icons Used in This Book
Beyond the Book
Where to Go from Here

Part 1: Getting Started
Chapter 1: Introducing Algorithms

Describing Algorithms
Using Computers to Solve Problems
Distinguishing between Issues and Solutions
Structuring Data to Obtain a Solution

Chapter 2: Considering Algorithm
Design

Starting to Solve a Problem
Dividing and Conquering
Learning that Greed Can Be Good
Computing Costs and Following Heuristics
Evaluating Algorithms

Chapter 3: Using Python to Work with
Algorithms

Considering the Benefits of Python
Looking at the Python Distributions

http://www.dummies.com/
file:///C:/Users/mirko/AppData/Local/Temp/calibre_uebaue/dylaof_pdf_out/OEBPS/Image00002.jpg

Installing Python on Linux
Installing Python on MacOS
Installing Python on Windows
Downloading the Datasets and Example Code

Chapter 4: Introducing Python for
Algorithm Programming

Working with Numbers and Logic
Creating and Using Strings
Interacting with Dates
Creating and Using Functions
Using Conditional and Loop Statements
Storing Data Using Sets, Lists, and Tuples
Defining Useful Iterators
Indexing Data Using Dictionaries

Chapter 5: Performing Essential Data
Manipulations Using Python

Performing Calculations Using Vectors and
Matrixes
Creating Combinations the Right Way
Getting the Desired Results Using Recursion
Performing Tasks More Quickly

Part 2: Understanding the Need to Sort and
Search

Chapter 6: Structuring Data
Determining the Need for Structure
Stacking and Piling Data in Order
Working with Trees
Representing Relations in a Graph

Chapter 7: Arranging and Searching
Data

Sorting Data Using Mergesort and Quicksort
Using Search Trees and the Heap
Relying on Hashing

Part 3: Exploring the World of Graphs

Chapter 8: Understanding Graph
Basics

Explaining the Importance of Networks
Defining How to Draw a Graph
Measuring Graph Functionality
Putting a Graph in Numeric Format

Chapter 9: Reconnecting the Dots
Traversing a Graph Efficiently
Sorting the Graph Elements
Reducing to a Minimum Spanning Tree
Finding the Shortest Route

Chapter 10: Discovering Graph Secrets
Envisioning Social Networks as Graphs
Navigating a Graph

Chapter 11: Getting the Right Web page
Finding the World in a Search Engine
Explaining the PageRank Algorithm
Implementing PageRank
Going Beyond the PageRank Paradigm

Part 4: Struggling with Big Data
Chapter 12: Managing Big Data

Transforming Power into Data
Streaming Flows of Data
Sketching an Answer from Stream Data

Chapter 13: Parallelizing Operations
Managing Immense Amounts of Data
Working Out Algorithms for MapReduce

Chapter 14: Compressing Data
Making Data Smaller

Part 5: Challenging Difficult Problems
Chapter 15: Working with Greedy
Algorithms

Deciding When It Is Better to Be Greedy

Finding Out How Greedy Can Be Useful
Chapter 16: Relying on Dynamic
Programming

Explaining Dynamic Programming
Discovering the Best Dynamic Recipes

Chapter 17: Using Randomized
Algorithms

Defining How Randomization Works
Putting Randomness into your Logic

Chapter 18: Performing Local Search
Understanding Local Search
Presenting local search tricks
Solving satisfiability of Boolean circuits

Chapter 19: Employing Linear
Programming

Using Linear Functions as a Tool
Using Linear Programming in Practice

Chapter 20: Considering Heuristics
Differentiating Heuristics
Routing Robots Using Heuristics
Explaining Path Finding Algorithms

Part 6: The Part of Tens
Chapter 21: Ten Algorithms That Are
Changing the World

Using Sort Routines
Looking for Things with Search Routines
Shaking Things Up with Random Numbers
Performing Data Compression
Keeping Data Secret
Changing the Data Domain
Analyzing Links
Spotting Data Patterns
Dealing with Automation and Automatic
Responses

Creating Unique Identifiers
Chapter 22: Ten Algorithmic Problems
Yet to Solve

Dealing with Text Searches
Differentiating Words
Determining Whether an Application Will End
Creating and Using One-Way Functions
Multiplying Really Large Numbers
Dividing a Resource Equally
Reducing Edit Distance Calculation Time
Solving Problems Quickly
Playing the Parity Game
Understanding Spatial Issues

About the Authors
Connect with Dummies
End User License Agreement

Guide
Cover
Table of Contents
Begin Reading

file:///C:/Users/mirko/AppData/Local/Temp/calibre_uebaue/dylaof_pdf_out/OEBPS/Image00002.jpg

Introduction
You need to learn about algorithms for school or work. Yet, all the
books you’ve tried on the subject end up being more along the
lines of really good sleep-inducing aids rather than texts to teach
you something. Assuming that you can get past the arcane
symbols obviously written by a demented two-year-old with a
penchant for squiggles, you end up having no idea of why you’d
even want to know anything about them. Most math texts are
boring! However, Algorithms For Dummies is different. The first
thing you’ll note is that this book has a definite lack of odd
symbols (especially of the squiggly sort) floating about. Yes, you
see a few (it is a math book, after all), but what you find instead
are clear instructions for using algorithms that actually have
names and a history behind them to perform useful tasks. You’ll
encounter simple coding techniques that perform amazing things
that will intrigue your friends and certainly make them jealous as
you perform amazing feats of math that they can’t begin to
understand. You get all this without having to strain your brain,
even a little, and you won’t even fall asleep (well, unless you
really want to do so).

About This Book
Algorithms For Dummies is the math book that you wanted in
college but didn’t get. You discover, for example, that algorithms
aren’t new. After all, the Babylonians used algorithms to perform
simple tasks as early as 1,600 BC. If the Babylonians could figure
this stuff out, certainly you can, too! This book actually has three
things that you won’t find in most math books:

Algorithms that have actual names and a historical basis so that
you can remember the algorithm and know why someone took
time to create it
Simple explanations of how the algorithm performs amazing
feats of data manipulation, data analysis, or probability

prediction
Code that shows how to use the algorithm without actually
dealing with arcane symbols that no one without a math degree
can understand

Part of the emphasis of this book is on using the right tools. This
book uses Python to perform various tasks. Python has special
features that make working with algorithms significantly easier.
For example, Python provides access to a huge array of
packages that let you do just about anything you can imagine, and
more than a few that you can’t. However, unlike many texts that
use Python, this one doesn’t bury you in packages. We use a
select group of packages that provide great flexibility with a lot of
functionality, but don’t require you to pay anything. You can go
through this entire book without forking over a cent of your hard-
earned money.
You also discover some interesting techniques in this book. The
most important is that you don’t just see the algorithms used to
perform tasks; you also get an explanation of how the algorithms
work. Unlike many other books, Algorithms For Dummies enables
you to fully understand what you’re doing, but without requiring
you to have a PhD in math. Every one of the examples shows the
expected output and tells you why that output is important. You
aren’t left with the feeling that something is missing.
Of course, you might still be worried about the whole
programming environment issue, and this book doesn’t leave you
in the dark there, either. At the beginning, you find complete
installation instructions for Anaconda, which is the Python
language Integrated Development Environment (IDE) used for this
book. In addition, quick primers (with references) help you
understand the basic Python programming that you need to
perform. The emphasis is on getting you up and running as
quickly as possible, and to make examples straightforward and
simple so that the code doesn’t become a stumbling block to
learning.

To help you absorb the concepts, this book uses the following
conventions:

Text that you’re meant to type just as it appears in the book is in
bold . The exception is when you’re working through a step list:
Because each step is bold, the text to type is not bold.
Words that we want you to type in that are also in italics are
used as placeholders, which means that you need to replace
them with something that works for you. For example, if you see
“Type Your Name and press Enter,” you need to replace Your
Name with your actual name.
We also use italics for terms we define. This means that you
don’t have to rely on other sources to provide the definitions you
need.
Web addresses and programming code appear in monofont . If
you’re reading a digital version of this book on a device
connected to the Internet, you can click the live link to visit that
website, like this: http://www.dummies.com .
When you need to click command sequences, you see them
separated by a special arrow, like this: File ⇒ New File, which
tells you to click File and then New File.

Foolish Assumptions
You might find it difficult to believe that we’ve assumed anything
about you — after all, we haven’t even met you yet! Although
most assumptions are indeed foolish, we made certain
assumptions to provide a starting point for the book.
The first assumption is that you’re familiar with the platform you
want to use, because the book doesn’t provide any guidance in
this regard. (Chapter 3 does, however, tell you how to install
Anaconda; Chapter 4 provides a basic Python language overview;
and Chapter 5 helps you understand how to perform the essential
data manipulations using Python.) To give you the maximum
information about Python with regard to algorithms, this book
doesn’t discuss any platform-specific issues. You really do need

http://www.dummies.com/

to know how to install applications, use applications, and
generally work with your chosen platform before you begin
working with this book.
This book isn’t a math primer. Yes, you see lots of examples of
complex math, but the emphasis is on helping you use Python to
perform common tasks using algorithms rather than learning math
theory. However, you do get explanations of many of the
algorithms used in the book so that you can understand how the
algorithms work. Chapters 1 and 2 guide you through a better
understanding of precisely what you need to know in order to use
this book successfully.
This book also assumes that you can access items on the
Internet. Sprinkled throughout are numerous references to online
material that will enhance your learning experience. However,
these added sources are useful only if you actually find and use
them.

Icons Used in This Book
As you read this book, you encounter icons in the margins that
indicate material of interest (or not, as the case may be). Here’s
what the icons mean:

 Tips are nice because they help you save time or perform
some task without a lot of extra work. The tips in this book
are time-saving techniques or pointers to resources that you
should try so that you can get the maximum benefit from
Python, or in performing algorithm-related or data analysis–
related tasks.

 We don’t want to sound like angry parents or some kind of
maniacs, but you should avoid doing anything that’s marked
with a Warning icon. Otherwise, you might find that your
application fails to work as expected, you get incorrect
answers from seemingly bulletproof algorithms, or (in the
worst-case scenario) you lose data.

 Whenever you see this icon, think advanced tip or
technique. You might find these tidbits of useful information
just too boring for words, or they could contain the solution
you need to get a program running. Skip these bits of
information whenever you like.

 If you don’t get anything else out of a particular chapter or
section, remember the material marked by this icon. This text
usually contains an essential process or a bit of information
that you must know to work with Python, or to perform
algorithm-related or data analysis–related tasks successfully.

Beyond the Book
This book isn’t the end of your Python or algorithm learning
experience — it’s really just the beginning. We provide online
content to make this book more flexible and better able to meet
your needs. That way, as we receive email from you, we can
address questions and tell you how updates to Python, or its
associated add-ons affect book content. In fact, you gain access
to all these cool additions:

Cheat sheet: You remember using crib notes in school to make
a better mark on a test, don’t you? You do? Well, a cheat sheet
is sort of like that. It provides you with some special notes about
tasks that you can do with Python, Anaconda, and algorithms
that not every other person knows. To find the cheat sheet for
this book, go to www.dummies.com and search for Algorithms For
Dummies Cheat Sheet. It contains really neat information such
as finding the algorithms that you commonly need to perform
specific tasks.
Updates: Sometimes changes happen. For example, we might
not have seen an upcoming change when we looked into our
crystal ball during the writing of this book. In the past, this
possibility simply meant that the book became outdated and
less useful, but you can now find updates to the book at
www.dummies.com/go/algorithmsfd .
In addition to these updates, check out the blog posts with
answers to reader questions and demonstrations of useful book-
related techniques at http://blog.johnmuellerbooks.com/ .
Companion files: Hey! Who really wants to type all the code in
the book and reconstruct all those plots manually? Most readers
prefer to spend their time actually working with Python,
performing tasks using algorithms, and seeing the interesting
things they can do, rather than typing. Fortunately for you, the
examples used in the book are available for download, so all
you need to do is read the book to learn algorithm usage
techniques. You can find these files at
www.dummies.com/go/algorithmsfd .

Where to Go from Here
It’s time to start your algorithm learning adventure! If you’re
completely new to algorithms, you should start with Chapter 1 and
progress through the book at a pace that allows you to absorb as
much of the material as possible. Make sure to read about Python
because the book uses this language as needed for the
examples.

http://www.dummies.com/
http://www.dummies.com/go/algorithmsfd
http://blog.johnmuellerbooks.com/
http://www.dummies.com/go/algorithmsfd

If you’re a novice who’s in an absolute rush to get going with
algorithms as quickly as possible, you can skip to Chapter 3 with
the understanding that you may find some topics a bit confusing
later. If you already have Anaconda installed, you can skim
Chapter 3 . To use this book, you must install Python version 3.4.
The examples won’t work with the 2.x version of Python because
this version doesn’t support some of the packages we use.
Readers who have some exposure to Python, and have the
appropriate language versions installed, can save reading time by
moving directly to Chapter 6 . You can always go back to earlier
chapters as necessary when you have questions. However, you
do need to understand how each technique works before moving
to the next one. Every technique, coding example, and procedure
has important lessons for you, and you could miss vital content if
you start skipping too much information.

Part 1
Getting Started

IN THIS PART …
Discover how you can use algorithms to perform practical tasks.
Understand how algorithms are put together.
Install and configure Python to work with algorithms.
Use Python to work with algorithms.
Perform basic algorithm manipulations using Python.

Chapter 1
Introducing Algorithms

IN THIS CHAPTER
 Defining what is meant by algorithm
 Relying on computers to use algorithms to provide

solutions
 Determining how issues differ from solutions
 Performing data manipulation so that you can find a

solution

If you’re in the majority of people, you’re likely confused as you
open this book and begin your adventure with algorithms because
most texts never tell you what an algorithm is, much less why
you’d want to use one. Most texts assume that you already know
something about algorithms and that you are reading about them
to refine and elevate your knowledge. Interestingly enough, some
books actually provide a confusing definition for algorithm that
doesn’t really define it after all, and sometimes even equates it to
some other form of abstract, numeric, or symbolic expression.
The first section of this chapter is dedicated to helping you
understand precisely what the term algorithm means and why you
benefit from knowing how to use algorithms. Far from being
arcane, algorithms are actually used all over the place, and you
have probably used or been helped by them for years without
really knowing it. In truth, algorithms are becoming the spine that
supports and regulates what is important in an increasingly
complex and technological society like ours.
This chapter also discusses how you use computers to create
solutions to problems using algorithms, how to distinguish
between issues and solutions, and what you need to do to

manipulate data to discover a solution. The goal of this chapter is
to help you differentiate between algorithms and other tasks that
people perform that they confuse with algorithms. In short, you
discover why you really want to know about algorithms and how to
apply them to data.

Describing Algorithms
Even though people have solved algorithms manually for literally
thousands of years, doing so can consume huge amounts of time
and require many numeric computations, depending on the
complexity of the problem you want to solve. Algorithms are all
about finding solutions, and the speedier and easier, the better. A
huge gap exists between mathematical algorithms historically
created by geniuses of their time, such as Euclid, Newton, or
Gauss, and modern algorithms created in universities as well as
private research and development laboratories. The main reason
for this gap is the use of computers. Using computers to solve
problems by employing the appropriate algorithm speeds up the
task significantly, which is the reason that the development of new
algorithms has progressed so fast since the appearance of
powerful computer systems. In fact, you may have noticed that
more and more solutions to problems appear quickly today, in
part, because computer power is both cheap and constantly
increasing. Given their ability to solve problems using algorithms,
computers (sometimes in the form of special hardware) are
becoming ubiquitous.
When working with algorithms, you consider the inputs, desired
outputs, and process (a sequence of actions) used to obtain a
desired output from a given input. However, you can get the
terminology wrong and view algorithms in the wrong way because
you haven’t really considered how they work in a real-world
setting. The third section of the chapter discusses algorithms in a
real-world manner, that is, by viewing the terminologies used to
understand algorithms and to present algorithms in a way that
shows that the real-world is often less than perfect. Understanding

how to describe an algorithm in a realistic manner also makes it
possible to temper expectations to reflect the realities of what an
algorithm can actually do.
This book views algorithms in many ways. However, because it
provides an overview telling how algorithms are changing and
enriching people’s lives, the focus is on algorithms used to
manipulate data with a computer providing the required
processing. With this in mind, the algorithms you work with in this
book require data input in a specific form, which sometimes
means changing the data to match the algorithm’s requirements.
Data manipulation doesn’t change the content of the data. What it
does do is change the presentation and form of the data so that
an algorithm can help you see new patterns that weren’t apparent
before (but were actually present in the data all along).
Sources of information about algorithms often present them in a
way that proves confusing because they’re too sophisticated or
downright incorrect. Although you may find other definitions, this
book uses the following definitions for terms that people often
confuse with algorithms (but aren’t):

Equation: Numbers and symbols that, when taken as a whole,
equate to a specific value. An equation always contains an
equals sign so that you know that the numbers and symbols
represent the specific value on the other side of the equals sign.
Equations generally contain variable information presented as a
symbol, but they’re not required to use variables.
Formula: A combination of numbers and symbols used to
express information or ideas. Formulas normally present
mathematical or logical concepts, such as defining the Greatest
Common Divisor (GCD) of two integers (the video at
https://www.khanacademy.org/math/in-sixth-grade-

math/playing-numbers/highest-common-factor/v/greatest-

common-divisor tells how this works). Generally, they show the
relationship between two or more variables. Most people see a
formula as a special kind of equation.

https://www.khanacademy.org/math/in-sixth-grade-math/playing-numbers/highest-common-factor/v/greatest-common-divisor

 Algorithm: A sequence of steps used to solve a
problem. The sequence presents a unique method of
addressing an issue by providing a particular solution. An
algorithm need not represent mathematical or logical concepts,
even though the presentations in this book often do fall into that
category because people most commonly use algorithms in this
manner. Some special formulas are also algorithms, such as the
quadratic formula. In order for a process to represent an
algorithm, it must be

Finite: The algorithm must eventually solve the problem.
This book discusses problems with a known solution so that
you can evaluate whether an algorithm solves the problem
correctly.
Well-defined: The series of steps must be precise and
present steps that are understandable. Especially because
computers are involved in algorithm use, the computer must
be able to understand the steps to create a usable
algorithm.
Effective: An algorithm must solve all cases of the problem
for which someone defined it. An algorithm should always
solve the problem it has to solve. Even though you should
anticipate some failures, the incidence of failure is rare and
occurs only in situations that are acceptable for the
intended algorithm use.

With these definitions in mind, the following sections help to clarify
the precise nature of algorithms. The goal isn’t to provide a
precise definition for algorithms, but rather to help you understand
how algorithms fit into the grand scheme of things so that you can
develop your own understanding of what algorithms are and why
they’re so important.

Defining algorithm uses

An algorithm always presents a series of steps and doesn’t
necessarily perform these steps to solve a math formula. The
scope of algorithms is incredibly large. You can find algorithms
that solve problems in science, medicine, finance, industrial
production and supply, and communication. Algorithms provide
support for all parts of a person’s daily life. Any time a sequence
of actions achieving something in our life is finite, well-defined,
and effective, you can view it as an algorithm. For example, you
can turn even something as trivial and simple as making toast into
an algorithm. In fact, the making toast procedure often appears in
computer science classes, as discussed at
http://brianaspinall.com/now-thats-how-you-make-toast-using-

computer-algorithms/ .

 Unfortunately, the algorithm on the site is flawed. The
instructor never removes the toast from the wrapper and
never plugs the toaster in, so the result is damaged plain
bread still in its wrapper stuffed into a nonfunctional toaster
(see the discussion at
http://blog.johnmuellerbooks.com/2013/03/04/procedures-

in-technical-writing/ for details). Even so, the idea is the
correct one, yet it requires some slight, but essential,
adjustments to make the algorithm finite and effective.

One of the most common uses of algorithms is as a means of
solving formulas. For example, when working with the GCD of two
integer values, you can perform the task manually by listing each
of the factors for the two integers and then selecting the greatest
factor that is common to both. For example, GCD(20, 25) is 5
because 5 is the largest number that divides into both 20 and 25.
However, processing every GCD manually (which is actually a
kind of algorithm) is time consuming and error prone, so the
Greek mathematician Euclid (
https://en.wikipedia.org/wiki/Euclid) created an algorithm to
perform the task. You can see the Euclidean method
demonstrated at

http://brianaspinall.com/now-thats-how-you-make-toast-using-computer-algorithms/
http://blog.johnmuellerbooks.com/2013/03/04/procedures-in-technical-writing/
https://en.wikipedia.org/wiki/Euclid
https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/the-euclidean-algorithm

https://www.khanacademy.org/computing/computer-
science/cryptography/modarithmetic/a/the-euclidean-algorithm

.
However, a single formula, which is a presentation of symbols and
numbers used to express information or ideas, can have multiple
solutions, each of which is an algorithm. In the case of GCD,
another common algorithm is one created by Lehmer (see
https://www.imsc.res.in/~kapil/crypto/notes/node11.html and
https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm for
details). Because you can solve any formula multiple ways,
people often spend a great deal of time comparing algorithms to
determine which one works best in a given situation. (See a
comparison of Euclid to Lehmer at
http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.31.693&rep=rep1&type=pdf .)

 Because our society and its accompanying technology are
gaining momentum, running faster and faster, we need
algorithms that can keep the pace. Scientific achievements
such as sequencing the human genome were possible in our
age because scientists found algorithms that run fast enough
to complete the task. Measuring which algorithm is better in a
given situation, or in an average usage situation, is really
serious stuff and a topic of discussion among computer
scientists.

When it comes to computer science, the same algorithm can see
multiple presentations. For example, you can present the
Euclidean algorithm in both a recursive and an iterative manner,
as explained at
http://cs.stackexchange.com/questions/1447/what-is-most-

efficient-for-gcd . In short, algorithms present a method of
solving formulas, but it would be a mistake to say that just one
acceptable algorithm exists for any given formula or that there is
only one acceptable presentation of an algorithm. Using

https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/the-euclidean-algorithm
https://www.imsc.res.in/~kapil/crypto/notes/node11.html
https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.693&rep=rep1&type=pdf
http://cs.stackexchange.com/questions/1447/what-is-most-efficient-for-gcd

algorithms to solve problems of various sorts has a long history —
it isn’t something that has just happened.
Even if you limit your gaze to computer science, data science,
artificial intelligence, and other technical areas, you find many
kinds of algorithms — too many for a single book. For example,
The Art of Computer Programming, by Donald E. Knuth (Addison-
Wesley), spans 3,168 pages in four volumes (see
http://www.amazon.com/exec/obidos/ASIN/0321751043/datacservip

0f-20/) and still doesn’t manage to cover the topic (the author
intended to write more volumes). However, here are some
interesting uses for you to consider:

Searching: Locating information or verifying that the information
you see is the information you want is an essential task. Without
this ability, it wouldn’t be possible to perform many tasks online,
such as finding the website on the Internet selling the perfect
coffee pot for your office.
Sorting: Determining which order to use to present information
is important because most people today suffer from information
overload, and putting information in order is one way to reduce
the onrush of data. You likely learned as a child that when you
place your toys in order, it’s easier to find and play with a toy
that interests you, compared to having toys scattered randomly
everywhere. Imagine going to Amazon, finding that over a
thousand coffee pots are for sale there, and yet not being able
to sort them in order of price or most positive review. Moreover,
many complex algorithms require data in the proper order to
work dependably, therefore ordering is an important requisite for
solving more problems.
Transforming: Converting one sort of data to another sort of
data is critical to understanding and using the data effectively.
For example, you might understand imperial weights just fine,
but all your sources use the metric system. Converting between
the two systems helps you understand the data. Likewise, the
Fast Fourier Transform (FFT) converts signals between the time
domain and the frequency domain so that it becomes possible
to make things like your Wi-Fi router work.

http://www.amazon.com/exec/obidos/ASIN/0321751043/datacservip0f-20/

Scheduling: Making the use of resources fair to all concerned
is another way in which algorithms make their presence known
in a big way. For example, timing lights at intersections are no
longer simple devices that count down the seconds between
light changes. Modern devices consider all sorts of issues, such
as the time of day, weather conditions, and flow of traffic.
Scheduling comes in many forms, however. For example,
consider how your computer runs multiple tasks at the same
time. Without a scheduling algorithm, the operating system
might grab all the available resources and keep your application
from doing any useful work.
Graph analysis: Deciding on the shortest line between two
points finds all sorts of uses. For example, in a routing problem,
your GPS couldn’t function without this particular algorithm
because it could never direct you along city streets using the
shortest route from point A to point B.
Cryptography: Keeping data safe is an ongoing battle with
hackers constantly attacking data sources. Algorithms make it
possible to analyze data, put it into some other form, and then
return it to its original form later.
Pseudorandom number generation: Imagine playing games
that never varied. You start at the same place; perform the same
steps, in the same manner, every time you play. Without the
capability to generate seemingly random numbers, many
computer tasks become impossible.

 This list presents an incredibly short overview. People use
algorithms for many different tasks and in many different
ways, and constantly create new algorithms to solve both
existing problems and new problems. The most important
issue to consider when working with algorithms is that given a
particular input, you should expect a specific output.
Secondary issues include how many resources the algorithm
requires to perform its task and how long it takes to complete
the task. Depending on the kind of issue and the sort of
algorithm used, you may also need to consider issues of
accuracy and consistency.

Finding algorithms everywhere
The previous section mentions the toast algorithm for a specific
reason. For some reason, making toast is probably the most
popular algorithm ever created. Many grade-school children write
their equivalent of the toast algorithm long before they can even
solve the most basic math. It’s not hard to imagine how many
variations of the toast algorithm exist and what the precise output
is of each of them. The results likely vary by individual and the
level of creativity employed. In short, algorithms appear in great
variety and often in unexpected places.
Every task you perform on a computer involves algorithms. Some
algorithms appear as part of the computer hardware. (They are
embedded, thus you hear of embedded microprocessors.) The
very act of booting a computer involves the use of an algorithm.
You also find algorithms in operating systems, applications, and
every other piece of software. Even users rely on algorithms.
Scripts help direct users to perform tasks in a specific way, but
those same steps could appear as written instructions or as part
of an organizational policy statement.
Daily routines often devolve into algorithms. Think about how you
spend your day. If you’re like most people, you perform essentially

the same tasks every day in the same order, making your day an
algorithm that solves the problem of how to live successfully while
expending the least amount of energy possible. After all, that’s
what a routine does; it makes us efficient.
Emergency procedures often rely on algorithms. You take the
emergency card out of the packet in front of you in the plane. On it
are a series of pictographs showing how to open the emergency
door and extend the slide. In some cases, you might not even see
words, but the pictures convey the procedure required to perform
the task and solve the problem of getting out of the plane in a
hurry. Throughout this book, you see the same three elements for
every algorithm:

1. Describe the problem.
2. Create a series of steps to solve the problem

(well defined).
3. Perform the steps to obtain a desired result (finite

and effective).

Using Computers to Solve
Problems

The term computer sounds quite technical and possibly a bit
overwhelming to some people, but people today are neck deep
(possibly even deeper) in computers. You wear at least one
computer, your smartphone, most of the time. If you have any sort
of special device, such as a pacemaker, it also includes a
computer. Your smart TV contains at least one computer, as does
your smart appliance. A car can contain as many as 30 computers
in the form of embedded microprocessors that regulate fuel
consumption, engine combustion, transmission, steering, and
stability (according to a New York Times article at
http://www.nytimes.com/2010/02/05/technology/05electronics.ht

http://www.nytimes.com/2010/02/05/technology/05electronics.html

ml) and more lines of code than a jet fighter. The automated cars
appearing in the car market will require even more embedded
microprocessors and algorithms of greater complexity. A
computer exists to solve problems quickly and with less effort than
solving them manually. Consequently, it shouldn’t surprise you
that this book uses still more computers to help you understand
algorithms better.
Computers vary in a number of ways. The computer in your watch
is quite small; the one on your desktop quite large.
Supercomputers are immense and contain many smaller
computers all tasked to work together to solve complex issues,
such as tomorrow’s weather. The most complex algorithms rely on
special computer functionality to obtain solutions to the issues
people design them to solve. Yes, you could use lesser resources
to perform the task, but the trade-off is waiting a lot longer for an
answer or getting an answer that lacks sufficient accuracy to
provide a useful solution. In some cases, you wait so long that the
answer is no longer important. With the need for both speed and
accuracy in mind, the following sections discuss some special
computer features that can affect algorithms.

Leveraging modern CPUs and GPUs
General-purpose processors, CPUs, started out as a means to
solve problems using algorithms. However, their general-purpose
nature also means that a CPU can perform a great many other
tasks, such as moving data around or interacting with external
devices. A general-purpose processor does many things well,
which means that it can perform the steps required to complete an
algorithm, but not necessarily fast. In fact, owners of early
general-purpose processors could add math coprocessors
(special math-specific chips) to their systems to gain a speed
advantage (see
http://www.computerhope.com/jargon/m/mathcopr.htm for details).
Today, general-purpose processors have the math coprocessor
embedded into them, so when you get an Intel i7 processor, you
actually get multiple processors in a single package.

http://www.nytimes.com/2010/02/05/technology/05electronics.html
http://www.computerhope.com/jargon/m/mathcopr.htm

 Interestingly enough, Intel still markets specialty processor
add-ons, such as the Xeon Phi processor used with the Xeon
chips (see
http://www.intel.com/content/www/us/en/processors/xeon/x

eon-phi-detail.html and
https://en.wiki2.org/wiki/Intel_Xeon_Phi for details). You
use the Xeon Phi chip alongside a Xeon chip when
performing compute-intensive tasks such as machine
learning (see Machine Learning For Dummies, by John
Mueller and Luca Massaron, for details on how machine
learning uses algorithms to determine how to perform various
tasks that help you use data to predict the unknown and to
organize information meaningfully).

You may wonder why this section mentions Graphics Processing
Units (GPUs). After all, GPUs are supposed to take data,
manipulate it in a special way, and then display a pretty picture
onscreen. Any computer hardware can serve more than one
purpose. It turns out that GPUs are particularly adept at
performing data transformations, which is a key task for solving
algorithms in many cases. A GPU is a special-purpose processor,
but one with capabilities that lend themselves to faster algorithm
execution. It shouldn’t surprise you to discover that people who
create algorithms spend a lot of time thinking outside the box,
which means that they often see methods of solving issues in
nontraditional approaches.
The point is that CPUs and GPUs form the most commonly used
chips for performing algorithm-related tasks. The first performs
general-purpose tasks quite well, and the second specializes in
providing support for math-intensive tasks, especially those that
involve data transformations. Using multiple cores makes parallel
processing (performing more than one algorithmic step at a time)
possible. Adding multiple chips increases the number of cores
available. Having more cores adds speed, but a number of factors

http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
https://en.wiki2.org/wiki/Intel_Xeon_Phi

keeps the speed gain to a minimum. Using two i7 chips won’t
produce double the speed of just one i7 chip.

Working with special-purpose chips
A math coprocessor and a GPU are two examples of common
special-purpose chips in that you don’t see them used to perform
tasks such as booting the system. However, algorithms often
require the use of uncommon special-purpose chips to solve
problems. This isn’t a hardware book, but spending a little time
looking around can show you all sorts of interesting chips, such as
the new artificial neurons that IBM is working on (see the story at
http://www.computerworld.com/article/3103294/computer-
processors/ibm-creates-artificial-neurons-from-phase-change-

memory-for-cognitive-computing.html). Imagine performing
algorithmic processing using memory that simulates the human
brain. It would create an interesting environment for performing
tasks that might not otherwise be possible today.
Neural networks, a technology that is used to simulate human
thought and make deep learning techniques possible for machine
learning scenarios, are now benefitting from the use of specialized
chips, such as the Tesla P100 from NVidia (see the story at
https://www.technologyreview.com/s/601195/a-2-billion-chip-

to-accelerate-artificial-intelligence/ for details). These kinds
of chips not only perform algorithmic processing extremely fast,
but learn as they perform the tasks, making them faster still with
each iteration. Learning computers will eventually power robots
that can move (after a fashion) on their own, akin to the robots
seen in the movie I Robot (see one such robot described at
http://www.cbsnews.com/news/this-creepy-robot-is-powered-by-

a-neural-network/). There are also special chips that perform
tasks such as visual recognition (see
https://www.technologyreview.com/s/537211/a-better-way-to-

build-brain-inspired-chips/ for details).

http://www.computerworld.com/article/3103294/computer-processors/ibm-creates-artificial-neurons-from-phase-change-memory-for-cognitive-computing.html
https://www.technologyreview.com/s/601195/a-2-billion-chip-to-accelerate-artificial-intelligence/
http://www.cbsnews.com/news/this-creepy-robot-is-powered-by-a-neural-network/
https://www.technologyreview.com/s/537211/a-better-way-to-build-brain-inspired-chips/

 No matter how they work, specialized processors will
eventually power all sorts of algorithms that will have real-
world consequences. You can already find many of these
real-world applications in a relatively simple form. For
example, imagine the tasks that a pizza-making robot would
have to solve — the variables it would have to consider on a
real-time basis. This sort of robot already exists (this is just
one example of the many industrial robots used to produce
material goods by employing algorithms), and you can bet
that it relies on algorithms to describe what to do, as well as
on special chips to ensure that the tasks are done quickly
(see the story at
http://www.bloomberg.com/news/articles/2016-06-

24/inside-silicon-valley-s-robot-pizzeria).

 Eventually, it might even be possible to use the human
mind as a processor and output the information through a
special interface. Some companies are now experimenting
with putting processors directly into the human brain to
enhance its ability to process information (see the story at
https://www.washingtonpost.com/news/the-
switch/wp/2016/08/15/putting-a-computer-in-your-brain-

is-no-longer-science-fiction/ for details). Imagine a system
in which humans can solve algorithms at the speed of
computers, but with the creative “what if” potential of humans.

Leveraging networks
Unless you have unlimited funds, using some algorithms
effectively may not be possible, even with specialized chips. In
that case, you can network computers together. Using special
software, one computer, a master, can use the processors of all
slave computers running an agent (a kind of in-memory

http://www.bloomberg.com/news/articles/2016-06-24/inside-silicon-valley-s-robot-pizzeria
https://www.washingtonpost.com/news/the-switch/wp/2016/08/15/putting-a-computer-in-your-brain-is-no-longer-science-fiction/

background application that makes the processor available).
Using this approach, you can solve incredibly complex problems
by offloading pieces of the problem to a number of slave
computers. As each computer in the network solves its part of the
problem, it sends the results back to the master, which puts the
pieces together to create a consolidated answer, a technique
called cluster computing.
Lest you think this is the stuff of science fiction, people are
already using cluster computing techniques in all sorts of
interesting ways. For example, the article at
http://www.zdnet.com/article/build-your-own-supercomputer-

out-of-raspberry-pi-boards/ details how you can build your own
supercomputer by combining multiple Raspberry Pi (
https://www.raspberrypi.org/) boards into a single cluster.
Distributed computing, another version of cluster computing (but
with a looser organization) is also popular. In fact, you can find a
list of distributed computing projects at
http://www.distributedcomputing.info/projects.html . The list of
projects includes some major endeavors, such as Search for
Extraterrestrial Intelligence (SETI). You can also donate your
computer’s extra processing power to work on a cure for cancer.
The list of potential projects is amazing.
Networks also let you access other people’s processing power in
an unattached form. For example, Amazon Web Services (AWS)
and other vendors provide the means to use their computers to
perform your work. A network connection can make the remote
computers feel as if they’re part of your own network. The point is
that you can use networking in all sorts of ways to create
connections between computers to solve a variety of algorithms
that would be too complicated to solve using just your system.

Leveraging available data
Part of solving an algorithm has nothing to do with processing
power, creative thinking outside the box, or anything of a physical
nature. To create a solution to most problems, you also need data
on which to base a conclusion. For example, in the toast-making

http://www.zdnet.com/article/build-your-own-supercomputer-out-of-raspberry-pi-boards/
https://www.raspberrypi.org/
http://www.distributedcomputing.info/projects.html

algorithm, you need to know about the availability of bread, a
toaster, electricity to power the toaster, and so on before you can
solve the problem of actually making toast. The data becomes
important because you can’t finish the algorithm when missing
even one element of the required solution. Of course, you may
need additional input data as well. For example, the person
wanting the toast may not like rye. If this is the case and all you
have is rye bread to use, the presence of bread still won’t result in
a successful result.
Data comes from all sorts of sources and in all kinds of forms. You
can stream data from a source such as a real-time monitor,
access a public data source, rely on private data in a database,
scrape the data from websites, or get it in myriad other ways too
numerous to mention here. The data may be static (unchanging)
or dynamic (constantly changing). You may find that the data is
complete or missing elements. The data may not appear in the
right form (such as when you get imperial units and require metric
units when solving a weight problem). The data may appear in a
tabular format when you need it in some other form. It may reside
in an unstructured way (for instance in a NoSQL database or just
in a bunch of different data files) when you need the formal
formatting of a relational database. In short, you need to know all
sorts of things about the data used with your algorithm in order to
solve problems with it.

 Because data comes in so many forms and you need to
work with it in so many ways, this book pays a lot of attention
to data. Starting in Chapter 6 , you discover just how data
structure comes into play. Moving on to Chapter 7 , you begin
looking at how to search through data to find what you need.
Chapters 12 through 14 help you work with big data.
However, you can find some sort of data-specific information
in just about every chapter of the book because without data,
an algorithm can’t solve any problems.

Distinguishing between Issues
and Solutions

This book discusses two parts of the algorithmic view of the real
world. On the one hand, you have issues, which are problems that
you need to solve. An issue can describe the desired output of an
algorithm or it can describe a hurdle you must overcome to obtain
the desired output. Solutions are the methods, or steps, used to
address the issues. A solution can relate to just one step or many
steps within the algorithm. In fact, the output of an algorithm, the
response to the last step, is a solution. The following sections help
you understand some of the important aspects of issues and
solutions.

Being correct and efficient
Using algorithms is all about getting an acceptable answer. The
reason you look for an acceptable answer is that some algorithms
generate more than one answer in response to fuzzy input data.
Life often makes precise answers impossible to get. Of course,
getting a precise answer is always the goal, but often you end up
with an acceptable answer instead.
Getting the most precise answer possible may take too much
time. When you get a precise answer but that answer comes too
late to use, the information becomes useless and you’ve wasted
your time. Choosing between two algorithms that address the
same issue may come down to a choice between speed and
precision. A fast algorithm may not generate a precise answer, but
the answer may still work well enough to provide useful output.
Wrong answers can be a problem. Creating a lot of wrong
answers fast is just as bad as creating a lot of precisely correct
answers slowly. Part of the focus of this book is helping you find
the middle ground between too fast and too slow, and between
inaccurate and too accurate. Even though your math teacher
stressed the need for providing the correct answer in the way

expressed by the book you used at the time, real-world math often
involves weighing choices and making middle-ground decisions
that affect you in ways you might not think possible.

Discovering there is no free lunch
You may have heard the common myth that you can have
everything in the way of computer output without putting much
effort into deriving the solution. Unfortunately, no absolute solution
exists to any problem, and better answers are often quite costly.
When working with algorithms, you quickly discover the need to
provide additional resources when you require precise answers
quickly. The size and complexity of the data sources you use
greatly affect the solution resolution as well. As size and
complexity increase, you find that the need to add resources
increases as well.

Adapting the strategy to the problem
Part 5 of this book looks at strategies you can use to decrease the
cost of working with algorithms. The best mathematicians use
tricks to get more output from less computing. For example, you
can create an ultimate algorithm to solve an issue, or you can use
a host of simpler algorithms to solve the same issue, but using
multiple processors. The host of simple algorithms will usually
work faster and better than the single, complex algorithm, even
though this approach seems counterintuitive.

Describing algorithms in a lingua
franca
Algorithms do provide a basis for communication between people,
even when those individuals have different perspectives and
speak different languages. For example, Bayes’ Theorem (the
probability of an event occurring given certain premises; see
https://betterexplained.com/articles/an-intuitive-and-short-

explanation-of-bayes-theorem/ for a quick explanation of this
amazing theorem)

https://betterexplained.com/articles/an-intuitive-and-short-explanation-of-bayes-theorem/

P(B|E) = P(E|B)*P(B)/P(E)

appears the same whether you speak English, Spanish, Chinese,
German, French, or any other language. Regardless what
language you speak, the algorithm looks the same and acts the
same given the same data. Algorithms help cross all sorts of
divides that serve to separate humans from each other by
expressing ideas in a form that anyone can prove. As you go
through this book, you discover the beauty and magic that
algorithms can provide in communicating even subtle thoughts to
others.

 Apart from universal mathematical notations, algorithms
take advantage of programming languages as a means for
explaining and communicating the formulas they solve. You
can find all the sorts of algorithms in C, C++, Java, Fortran,
Python (as in this book), and other languages. Some writers
rely on pseudocode to overcome the fact that an algorithm
may be proposed in a programming language that you don't
know. Pseudocode is a way to describe computer operations
by using common English words.

Facing hard problems
An important consideration when working with algorithms is that
you can use them to solve issues of any complexity. The
algorithm doesn’t think, have emotion, or care how you use it (or
even abuse it). You can use algorithms in any way required to
solve an issue. For example, the same group of algorithms used
to perform facial recognition to act as an alternative to computer
passwords (for security purposes) can find terrorists lurking in an
airport or recognize a lost child wandering the streets. The same
algorithm has different uses; how to use it depends on the
interests of the user. Part of the reason you want to read this book
carefully is to help you solve those hard problems that may
require only a simple algorithm to address.

Structuring Data to Obtain a
Solution

Humans think about data in nonspecific ways and apply various
rules to the same data to understand it in ways that computers
never can. A computer’s view of data is structured, simple,
uncompromising, and most definitely not creative. When humans
prepare data for a computer to use, the data often interacts with
the algorithms in unexpected ways and produces undesirable
output. The problem is one in which the human fails to appreciate
the limited view of data that a computer has. The following
sections describe two aspects of data that you see illustrated in
many of the chapters to follow.

Understanding a computer’s point of
view
A computer has a simple view of data, but it’s also a view that
humans typically don’t understand. For one thing, everything is a
number to a computer because computers aren’t designed to
work with any other kind of data. Humans see characters on the
computer display and assume that the computer interacts with the
data in that manner, but the computer doesn’t understand the data
or its implications. The letter A is simply the number 65 to the
computer. In fact, it’s not truly even the number 65. The computer
sees a series of electrical impulses that equate to a binary value
of 0100 0001.
Computers also don’t understand the whole concept of uppercase
and lowercase. To a human, the lowercase a is simply another
form of the uppercase A, but to a computer they’re two different
letters. A lowercase a appears as the number 97 to the computer
(a binary value of 0110 0001).
If these simple sorts of single letter comparisons could cause
such problems between humans and computers, it isn’t hard to
imagine what happens when humans start assuming too much

about other kinds of data. For example, a computer can’t hear or
appreciate music. Yet, music comes out of the computer
speakers. The same holds true for graphics. A computer sees a
series of 0s and 1s, not a graphic containing a pretty scene of the
countryside.

 It’s important to consider data from the computer’s
perspective when using algorithms. The computer sees only
0s and 1s, nothing else. Consequently, when you start
working through the needs of the algorithm, you must view
the data in that manner. You may actually find it beneficial to
know that the computer’s view of data makes some solutions
easier to find, not harder. You discover more about this oddity
in viewing data as the book progresses.

Arranging data makes the difference
Computers also have a strict idea about the form and structure of
data. When you begin working with algorithms, you find that a
large part of the job involves making the data appear in a form
that the computer can use when using the algorithm to find a
solution to an issue. Although a human can mentally see patterns
in data that isn’t arranged precisely right, computers really do
need the precision to find the same pattern. The benefit of this
precision is that computers can often make new patterns visible.
In fact, that’s one of the main reasons to use algorithms with
computers — to help locate new patterns and then use those
patterns to perform other tasks. For example, a computer may
recognize a customer’s spending pattern so that you can use the
information to generate more sales automatically.

Chapter 2
Considering Algorithm Design
IN THIS CHAPTER

 Considering how to solve a problem
 Using a divide-and-conquer approach to solving

problems
 Understanding the greedy approach to solving problems
 Determining the costs of problem solutions
 Performing algorithm measurements

As stated in Chapter 1 , an algorithm consists of a series of steps
used to solve a problem. In most cases, input data provides the
basis of solving the problem and sometimes offers constraints that
any solution must consider before anyone will see the algorithm
as being effective. The first section of this chapter helps you
consider the problem solution (the solution to the problem you’re
trying to solve). It helps you understand the need to create
algorithms that are both flexible (in that they can handle a wide
range of data inputs) and effective (in that they yield the desired
output).
Some problems are quite complex. In fact, you look at them at
first and may decide that they’re too complicated to solve. Feeling
overwhelmed by a problem is common. The most common way to
solve the issue is to divide the problem into smaller pieces, each
of which is manageable on its own. The divide-and-conquer
approach to problem solving, discussed in this chapter’s second
section, originally referred to warfare (see
http://classroom.synonym.com/civilization-invented-divide-

conquer-strategy-12746.html for a history of this approach).
However, people use the same ideas to cut problems of all sorts
down to size.

http://classroom.synonym.com/civilization-invented-divide-conquer-strategy-12746.html

 The third section of the chapter refers to the greedy
approach to problem solving. Greed normally has a negative
connotation, but not in this case. A greedy algorithm is one
that makes an optimal choice at each problem-solving stage.
By doing so, it hopes to obtain an overall optimal solution to
solve the problem. Unfortunately, this strategy doesn’t always
work, but it’s always worth a try. It often yields a good enough
solution, making it a good baseline.

No matter what problem-solving approach you choose, every
algorithm comes with costs. Being good shoppers, people who
rely heavily on algorithms want the best possible deal, which
means performing a cost/benefit analysis. Of course, getting the
best deal also assumes that a person using the algorithm has
some idea of what sort of solution is good enough. Getting a
solution that is too precise or one that offers too much in the way
of output is often wasteful, so part of keeping costs under control
is getting what you need as output and nothing more.
To know what you have with an algorithm, you need to know how
to measure it in various ways. Measurements create a picture of
usability, size, resource usage, and cost in your mind. More
important, measurements offer the means of making
comparisons. You can’t compare algorithms without
measurements. Until you can compare the algorithms, you can’t
choose the best one for a task.

Starting to Solve a Problem
Before you can solve any problem, you must understand it. It isn’t
just a matter of sizing up the problem, either. Knowing that you
have certain inputs and require certain outputs is a start, but that’s
not really enough to create a solution. Part of the solution process
is to

Discover how other people have created new problem solutions
Know what resources you have on hand
Determine the sorts of solutions that worked for similar problems
in the past
Consider what sorts of solutions haven’t produced a desirable
result

The following sections help you understand these phases of
solving a problem. Realize that you won’t necessarily perform
these phases in order and that sometimes you revisit a phase
after getting more information. The process of starting a problem
solution is iterative; you keep at it until you have a good
understanding of the problem at hand.

Modeling real-world problems
Real-world problems differ from those found in textbooks. When
creating a textbook, the author often creates a simple example to
help the reader understand the basic principles at work. The
example models just one aspect of a more complex problem. A
real-world problem may require that you combine several
techniques to create a complete solution. For example, to locate
the best answer to a problem, you may:

1. Need to sort the answer set by a specific
criterion.

2. Perform some sort of filtering and transformation.
3. Search the result.

Without this sequence of steps, comparing each of the answers
adequately may prove impossible, and you end up with a less-
than-optimal result. A series of algorithms used together to create
a desired result is an ensemble . You can read about their use in
machine learning in Machine Learning For Dummies, by John
Paul Mueller and Luca Massaron (Wiley). The article at
https://www.toptal.com/machine-learning/ensemble-methods-

https://www.toptal.com/machine-learning/ensemble-methods-machine-learning

machine-learning gives you a quick overview of how ensembles
work.
However, real-world problems are even more complex than simply
looking at static data or iterating that data only once. For example,
anything that moves, such as a car, airplane, or robot, receives
constant input. Each updated input includes error information that
a real-world solution will need to incorporate into the result in
order to keep these machines working properly. In addition to
other algorithms, the constant calculations require the proportional
integral derivative (PID) algorithm (see http://www.ni.com/white-
paper/3782/en/ for a detailed explanation of this algorithm) to
control the machine using a feedback loop. Every calculation
brings the solution used to control the machine into better focus,
which is why machines often go through a settling stage when you
first turn them on. (If you work with computers regularly, you might
be used to the idea of iterations. PIDs are for continuous systems;
therefore, there are no iterations.) Finding the right solution is
called settling time — the time during which the algorithm
controlling the machine hasn’t yet found the right answer.
When modeling a real-world problem, you must also consider
non-obvious issues that crop up. An obvious solution, even one
based on significant mathematical input and solid theory, may not
work. For example, during WWII, the allies had a serious problem
with bomber losses. Therefore, the engineers analyzed every
bullet hole in every plane that came back. After the analysis, the
engineers used their solution to armor the allied planes more
heavily to ensure that more of them would come back. It didn’t
work. Enter Abraham Wald. This mathematician suggested a non-
obvious solution: Put armor plating in all the places that lacked
bullet holes (because the areas with bullet holes are already
strong enough; otherwise the plane wouldn’t have returned). The
resulting solution did work and is now used as the basis for
survivor bias (the fact that the survivors of an incident often don’t
show what actually caused a loss) in working with algorithms. You
can read more about this fascinating bit of history at
http://www.macgetit.com/solving-problems-of-wwii-bombers/ .

https://www.toptal.com/machine-learning/ensemble-methods-machine-learning
http://www.ni.com/white-paper/3782/en/
http://www.macgetit.com/solving-problems-of-wwii-bombers/

The point is that biases and other problems in modeling problems
can create solutions that don’t work.
Real-world modeling may also include the addition of what
scientists normally consider undesirable traits. For example,
scientists often consider noise undesirable because it hides the
underlying data. Consider a hearing aid, which removes noise to
enable someone to hear better (see the discussion at
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111515/ for
details). Many methods exist for removing noise, some of which
you can find in this book starting with Chapter 9 as part of other
topic discussions. However, as counterintuitive as it might seem,
adding noise also requires an algorithm that provides useful
output. For example, Ken Perlin wanted to get rid of the machine-
like look of computer-generated graphics in 1983 and created an
algorithm to do so. The result is Perlin noise (see
http://paulbourke.net/texture_colour/perlin/ for details). The
effect is so useful that Ken won an Academy Award for his work
(see http://mrl.nyu.edu/~perlin/doc/oscar.html for details).
Other people, such as Steven Worley, have created other sorts of
noise that affect graphics in other ways (see the discussion at
http://procworld.blogspot.com/2011/05/hello-worley.html ,
which compares Perlin noise to Worley noise). The point is that
whether you need to remove or add noise depends on the
problem domain you want to solve. A real-world scenario often
requires choices that may not be obvious when working in the lab
or during the learning process.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111515/
http://paulbourke.net/texture_colour/perlin/
http://mrl.nyu.edu/~perlin/doc/oscar.html
http://procworld.blogspot.com/2011/05/hello-worley.html

 The main gist of this section is that solutions often require
several iterations to create, you may have to spend a lot of
time refining them, and obvious solutions may not work at all.
When modeling a real-world problem, you do begin with the
solutions found in textbooks, but then you must move beyond
theory to find the actual solution to your problem. As this
book progresses, you’re exposed to a wide variety of
algorithms — all of which help you find solutions. The
important thing to remember is that you may need to combine
these examples in various ways and discover methods for
interacting with data so that it lends itself to finding patterns
that match the output you require.

Finding solutions and
counterexamples
The previous section introduces you to the vagaries of discovering
real-world solutions that consider issues that solutions found in
the lab can’t consider. However, just finding a solution — even a
good one — isn’t sufficient because even good solutions fail on
occasion. Playing the devil’s advocate by locating
counterexamples is an important part of starting to solve a
problem. The purpose of counterexamples is to

Potentially disprove the solution
Provide boundaries that define the solution better
Consider situations in which the hypothesis used as a basis for
the solution remains untested
Help you understand the limits of the solution

A common scenario that illustrates a solution and counterexample
is the statement that all prime numbers are odd. (Prime numbers
are integers that can be divided only by themselves and 1 to
produce an integer result.) Of course, the number 2 is prime, but
it’s also even, which makes the original statement false. Someone

making the statement could then qualify it by saying that all prime
numbers are odd except 2. The partial solution to the problem of
finding all the prime numbers is that you need to find odd
numbers, except in the case of 2, which is even. In this second
case, disproving the solution is no longer possible, but adding to
the original statement provides a boundary.
By casting doubt on the original assertion, you can also consider
situations in which the hypothesis, all prime numbers except 2 are
odd, may not hold true. For example, 1 is an odd number but isn’t
considered prime (see the discussion at
https://primes.utm.edu/notes/faq/one.html for details). So now
the original statement has two boundaries, and you must restate it
as follows: Prime numbers are greater than 1 and usually odd,
except for 2, which is even. The boundaries for prime numbers
are better defined by locating and considering counterexamples.
Just in case you’re wondering, 0 is also not considered a prime
number, for the reasons discussed at
http://math.stackexchange.com/questions/539174/is-zero-a-

prime-number .

 As the complexity of a problem grows, the potential for
finding counterexamples grows as well. An essential rule to
consider is that, as with reliability, having more failure points
means greater potential for a failure to occur. Thinking of
algorithms in this way is important. Ensembles of simple
algorithms can produce better results with fewer potential
counterexamples than a single complex algorithm.

Standing on the shoulders of giants
A myth that defies explanation is that the techniques currently
used to process huge quantities of data are somehow new. Yes,
new algorithms do appear all the time, but the basis for these
algorithms is all of the algorithms that have gone before. In fact,
when you think about Sir Isaac Newton, you might think of

https://primes.utm.edu/notes/faq/one.html
http://math.stackexchange.com/questions/539174/is-zero-a-prime-number

someone who invented something new, yet even he stated (using
correct spelling for his time), “If I have seen further it is by
standing on the sholders of Giants” (see
https://en.wikiquote.org/wiki/Isaac_Newton for additional
quotes and insights).
The fact is that the algorithms you use today weren’t even new in
the days of Aristotle (see
http://plato.stanford.edu/entries/aristotle-mathematics/ for a
discussion of how Aristotle used math) and Plato (see
http://www.storyofmathematics.com/greek_plato.html for a
discussion of how Plato used math). The origins of algorithms in
use today are so hidden in history that the best that anyone can
say is that math relies on adaptations of knowledge from ancient
times. The use of algorithms since antiquity should give you a
certain feeling of comfort because the algorithms in use today are
based on knowledge tested for thousands of years.
This isn’t to say that some mathematicians haven’t overturned the
apple cart over the years. For example, John Nash’s theory, Nash
Equilibrium, significantly changed how economics are considered
today (see https://www.khanacademy.org/economics-finance-
domain/microeconomics/nash-equilibrium-tutorial for a basic
tutorial on this theory). Of course, recognition for such work
comes slowly (and sometimes not at all). Nash had to wait for a
long time before he received much in the way of professional
recognition (see the story at
https://www.princeton.edu/main/news/archive/S42/72/29C63/inde

x.xml) despite having won a Nobel Prize in economics for his
contributions. Just in case you’re interested, John Nash’s story is
depicted in the movie A Beautiful Mind, which contains some
much-debated scenes, including one containing a claim that the
Nash Equilibrium somehow overturns some of the work of Adam
Smith, another contributor to economic theories. (See one such
discussion at https://www.quora.com/Was-Adam-Smith-wrong-as-
claimed-by-John-Nash-in-the-movie-A-Beautiful-Mind .)

https://en.wikiquote.org/wiki/Isaac_Newton
http://plato.stanford.edu/entries/aristotle-mathematics/
http://www.storyofmathematics.com/greek_plato.html
https://www.khanacademy.org/economics-finance-domain/microeconomics/nash-equilibrium-tutorial
https://www.princeton.edu/main/news/archive/S42/72/29C63/index.xml
https://www.quora.com/Was-Adam-Smith-wrong-as-claimed-by-John-Nash-in-the-movie-A-Beautiful-Mind

Dividing and Conquering
If solving problems were easy, everyone would do it. However, the
world is still filled with unsolved problems and the condition isn’t
likely to change anytime soon, for one simple reason: Problems
often appear so large that no solution is imaginable. Ancient
warriors faced a similar problem. An opposing army would seem
so large and their forces so small as to make the problem of
winning a war unimaginably hard, perhaps impossible. Yet, by
dividing the opposing army into small pieces and attacking it a
little at a time, a small army could potentially defeat a much larger
opponent. (The ancient Greeks, Romans, and Napoleon
Bonaparte were all great users of the divide-and-conquer
strategy; see Napoleon For Dummies, by J. David Markham
[Wiley], for details.)
You face the same problem as those ancient warriors. Often, the
resources at your disposal seem quite small and inadequate.
However, by dividing a huge problem into small pieces so that you
can understand each piece, you can eventually create a solution
that works for the problem as a whole. Algorithms have this
premise at their core: to use steps to solve problems one small
piece at a time. The following sections help you understand the
divide-and-conquer approach to problem solving in more detail.

Avoiding brute-force solutions
A brute-force solution is one in which you try each possible
answer, one at a time, to locate the best possible answer. It’s
thorough, this much is certain, but it also wastes time and
resources in most cases. Testing every answer, even when it’s
easy to prove that a particular answer has no chance of success,
wastes time that an algorithm can use on answers that have a
better chance of success. In addition, testing the various answers
using this approach generally wastes resources, such as memory.
Think of it this way: You want to break the combination for a lock,
so you begin at 0, 0, 0, even though you know that this particular
combination has no chance of success given the physical

characteristics of combination locks. A brute-force solution would
proceed with testing 0, 0, 0 anyway and then move on to the
equally ridiculous 0, 0, 1.

 It’s important to understand that every solution type does
come with advantages, sometimes quite small. A brute-force
solution has one such advantage. Because you test every
answer anyway, you don’t need to perform any sort of
preprocessing when working with a brute-force solution. The
time saved in skipping the preprocessing, though, is unlikely
to ever pay back the time lost in trying every answer.
However, you may find occasion to use a brute-force solution
when

Finding a solution, if one exists, is essential.
The problem size is limited.
You can use heuristics to reduce the size of the solution set.
Simplicity of implementation is more important than speed.

Starting by making it simpler
The brute-force solution has a serious drawback. It looks at the
entire problem at one time. It’s sort of like going into a package
and hunting book by book through the shelves without ever
considering any method of making your search simpler. The
divide-and-conquer approach to package searches is different. In
this case, you begin by dividing the package into children’s and
adults’ sections. After that, you divide the adults’ section into
categories. Finally, you search just the part of the category that
contains the book of interest. This is the purpose of classification
systems such as the Dewey Decimal System (see
https://en.wikipedia.org/wiki/List_of_Dewey_Decimal_classes

for a list of classes, hierarchical divisions, and sections). The point
is that divide and conquer simplifies the problem. You make things
faster and easier by reducing the number of book candidates.

https://en.wikipedia.org/wiki/List_of_Dewey_Decimal_classes

The divide part of divide and conquer is an essential way to
understand a problem better as well. Trying to understand the
layout of an entire package could prove difficult. However,
knowing that the book on comparative psychology you want to
find appears as part of Class 100 in Division 150 of Section 156
makes your job easier. You can understand this smaller problem
because you know that every Section 156 book will contain
something about the topic you wish to know about. Algorithms
work the same way. By making the problem simpler, you can
create a set of simpler steps to finding a problem solution, which
reduces the time to find the solution, reduces the number of
resources used, and improves your chances of finding precisely
the solution you need.

Breaking down a problem is usually
better
After you have divided a problem into manageable pieces, you
need to conquer the piece in question. This means creating a
precise problem definition. You don’t want just any book on
comparative psychology; you want one written by George
Romanes. Knowing that the book you want appears in Section
156 of the Dewey Decimal System is a good start, but it doesn’t
solve the problem. Now you need a process for reviewing every
book in Section 156 for the specific book you need. The process
might go further still and look for books with specific content. To
make this process viable, you must break the problem down
completely, define precisely what you need, and then, after you
understand the problem thoroughly, use the correct set of steps
(algorithm) to find what you need.

ALGORITHMS HAVE NO
ABSOLUTES

You may think that you can create a scenario in which you can say that you
always use a particular kind of algorithm to solve a particular kind of problem.

However, this isn’t the case. For example, you can find discussions of the
relative merits of using brute-force techniques against certain problems as
compared to divide and conquer. It shouldn’t surprise you to discover that
divide and conquer doesn’t win in every situation. For example, when looking
for the maximum value in an array, a brute-force approach can win the day
when the array isn’t sorted. You can read a discussion of this particular topic
at   http://stackoverflow.com/questions/11043226/why-do-divide-and-
conquer-algorithms-often-run-faster-than-brute-force . The interesting thing
is that the brute-force approach also uses fewer resources in this particular
case. Always remember that rules have exceptions and knowing the
exceptions can save you time and effort later.

Learning that Greed Can Be
Good

In some cases, you can’t see the end of a solution process or
even know whether you’re winning the war. The only thing you
can really do is to ensure that you win the individual battles to
create a problem solution in hopes of also winning the war. A
greedy method to problem solving uses this approach. It looks for
an overall solution such that it chooses the best possible outcome
at each problem solution stage.

 It seems that winning each battle would necessarily mean
winning the war as well, but sometimes the real world doesn’t
work that way. A Pyrrhic victory is one in which someone
wins every battle but ends up losing the war because the cost
of the victory exceeds the gains of winning by such a large
margin. You can read about five Pyrrhic victories at
http://www.history.com/news/history-lists/5-famous-

Pyrrhic-victories . The important lesson from these
histories is that a greedy algorithm often does work, but not
always, so you need to consider the best overall solution to a
problem rather than become blinded by interim wins. The

http://stackoverflow.com/questions/11043226/why-do-divide-and-conquer-algorithms-often-run-faster-than-brute-force
http://www.history.com/news/history-lists/5-famous-Pyrrhic-victories

following sections describe how to avoid the Pyrrhic victory
when working with algorithms.

Applying greedy reasoning
Greedy reasoning is often used as part of an optimization
process. The algorithm views the problem one step at a time and
focuses just on the step at hand. Every greedy algorithm makes
two assumptions:

You can make a single optimal choice at a given step.
By choosing the optimal selection at each step, you can find an
optimal solution for the overall problem.

You can find many greedy algorithms, each optimized to perform
particular tasks. Here are some common examples of greedy
algorithms used for graph analysis (see Chapter 9 for more about
graphs) and data compression (see Chapter 14 for more about
data compression) and the reason you might want to use them:

Kruskal’s Minimum Spanning Tree (MST): This algorithm
actually demonstrates one of the principles of greedy algorithms
that people might not think about immediately. In this case, the
algorithm chooses the edge between two nodes with the
smallest value, not the greatest value as the word greedy might
initially convey. This sort of algorithm might help you find the
shortest path between two locations on a map or perform other
graph-related tasks.
Prim’s MST: This algorithm splits an undirected graph (one in
which direction isn’t considered) in half. It then selects the edge
that connects the two halves such that the total weight of the
two halves is the smallest that it can be. You might find this
algorithm used in a maze game to locate the shortest distance
between the start and the finish of the maze.
Huffman Encoding: This algorithm is quite famous in
computers because it forms the basis for many data-
compression techniques. The algorithm assigns a code to every
unique data entry in a stream of entries, such that the most

commonly used data entry receives the shortest code. For
example, the letter E would normally receive the shortest code
when compressing English text, because you use it more often
than any other letter in the alphabet. By changing the encoding
technique, you can compress the text and make it considerably
smaller, reducing transmission time.

Reaching a good solution
Scientists and mathematicians use greedy algorithms so often
that Chapter 15 covers them in depth. However, it’s important to
realize that what you really want is a good solution, not just a
particular solution. In most cases, a good solution provides
optimal results of the sort you can measure, but the word good
can include many meanings, depending on the problem domain.
You must ask what problem you want to solve and which solution
solves the problem in a manner that best meets your needs. For
example, when working in engineering, you might need to weigh
solutions that consider weight, size, cost, or other considerations,
or perhaps some combination of all these outputs that meet a
specific requirement.
To put this issue into context, say that you build a coin machine
that creates change for particular monetary amounts using the
fewest coins possible (perhaps as part of an automatic checkout
at a store). The reason to use the fewest coins possible is to
reduce equipment wear, the weight of coins needed, and the time
required to make change (your customers are always in a hurry,
after all). A greedy solution solves the problem by using the
largest coins possible. For example, to output $0.16 in change,
you use a dime ($0.10), a nickel ($0.05), and a penny ($0.01).

 A problem occurs when you’re unable to use every coin
type in creating a solution. The change machine might be out
of nickels, for example. To provide $0.40 in change, a greedy
solution would start with a quarter ($0.25) and a dime ($0.10).

Unfortunately, there are no nickels, so the coin machine then
outputs five pennies (5 × $0.01) for a total of seven coins.
The optimal solution in this case is to use four dimes instead
(4 × $0.10). As a result, the greedy algorithm provides a
particular solution, but not a good (optimal) solution in this
case. The change-making problem receives considerable
attention because it’s so hard to solve. You can find additional
information in discussions such as “Combinatorics of the
Change-Making Problem,” by Anna Adamaszeka and Michal
Adamaszek (see
http://www.sciencedirect.com/science/article/pii/S019566

9809001292 for details).

Computing Costs and
Following Heuristics

Even when you find a good solution, one that is both efficient and
effective, you still need to know precisely what the solution costs.
You may find that the cost of using a particular solution is still too
high, even when everything else is considered. Perhaps the
answer comes almost, but not quite, on time or it uses too many
computing resources. The search for a good solution involves
creating an environment in which you can fully test the algorithm,
the states it creates, the operators it uses to change those states,
and the time required to derive a solution.
Often, you find that a heuristic approach, one that relies on self-
discovery and produces sufficiently useful results (not necessarily
optimal, but good enough) is the method you actually need to
solve a problem. Getting the algorithm to perform some of the
required work for you saves time and effort because you can
create algorithms that see patterns better than humans do.
Consequently, self-discovery is the process of allowing the
algorithm to show you a potentially useful path to a solution (but
you must still count on human intuition and understanding to know
whether the solution is the right one). The following sections

http://www.sciencedirect.com/science/article/pii/S0195669809001292

describe techniques you can use to compute the cost of an
algorithm using heuristics as a method of discovering the actual
usefulness of any given solution.

Representing the problem as a
space
A problem space is an environment in which a search for a
solution takes place. A set of states and the operators used to
change those states represent the problem space. For example,
consider a tile game that has eight tiles in a 3-x-3 frame. Each tile
shows one part of a picture, and the tiles start in some random
order so that the picture is scrambled. The goal is to move one tile
at a time to place all the tiles in the right order and reveal the
picture. You can see an example of this sort of puzzle at
http://mypuzzle.org/sliding .
The combination of the start state, the randomized tiles, and the
goal state — the tiles in a particular order — is the problem
instance. You could represent the puzzle graphically using a
problem space graph. Each node of the problem space graph
presents a state (the eight tiles in a particular position). The edges
represent operations, such as to move tile number eight up. When
you move tile eight up, the picture changes — it moves to another
state.
Winning the game by moving from the start state to the goal state
isn’t the only consideration. To solve the game efficiently, you
need to perform the task in the least number of moves possible,
which means using the smallest number of operators. The
minimum number of moves used to solve the puzzle is the
problem depth.
You must consider several factors when representing a problem
as a space. For example, you must consider the maximum
number of nodes that will fit in memory, which represents the
space complexity. When you can’t fit all the nodes in memory at
one time, the computer must store some nodes in other locations,
such as the hard drive, which can slow the algorithm considerably.

http://mypuzzle.org/sliding

To determine whether the nodes will fit in memory, you must
consider the time complexity, which is the maximum number of
nodes created to solve the problem. In addition, it’s important to
consider the branching factor, which is the average number of
nodes created in the problem space graph to solve a problem.

Going random and being blessed by
luck
Solving a search problem using brute-force techniques (described
in “Avoiding brute-force techniques,” earlier in this chapter) is
possible. The advantage of this approach is that you don’t need
any domain-specific knowledge to use one of these algorithms. A
brute-force algorithm tends to use the simplest possible approach
to solving the problem. The disadvantage is that a brute-force
approach works well only for a small number of nodes. Here are
some of the common brute-force search algorithms:

Breadth-first search: This technique begins at the root node,
explores each of the child nodes first, and only then moves
down to the next level. It progresses level by level until it finds a
solution. The disadvantage of this algorithm is that it must store
every node in memory, which means that it uses a considerable
amount of memory for a large number of nodes. This technique
can check for duplicate nodes, which saves time, and it always
comes up with a solution.
Depth-first search: This technique begins at the root node and
explores a set of connected child nodes until it reaches a leaf
node. It progresses branch by branch until it finds a solution.
The disadvantage of this algorithm is that it can’t check for
duplicate nodes, which means that it might traverse the same
node paths more than once. In fact, this algorithm may not find a
solution at all, which means that you must define a cutoff point
to keep the algorithm from searching infinitely. An advantage of
this approach is that it’s memory efficient.
Bidirectional search: This technique searches simultaneously
from the root node and the goal node until the two search paths

meet in the middle. An advantage of this approach is that it’s
time efficient because it finds the solution faster than many other
brute-force solutions. In addition, it uses memory more efficiently
than other approaches and always finds a solution. The main
disadvantage is complexity of implementation, translating into a
longer development cycle.

Using a heuristic and a cost function
For some people, the word heuristic just sounds complicated. It
would be just as easy to say that the algorithm makes an
educated guess and then tries again when it fails. Unlike brute-
force methods, heuristic algorithms learn. They also use cost
functions to make better choices. Consequently, heuristic
algorithms are more complex, but they have a distinct advantage
in solving complex problems. As with brute-force algorithms, there
are many heuristic algorithms and each comes with its own set of
advantages, disadvantages, and special requirements. The
following list describes a few of the most common heuristic
algorithms:

Pure heuristic search: The algorithm expands nodes in order
of their cost. It maintains two lists. The closed list contains the
nodes it has already explored; the open list contains the nodes it
must yet explore. In each iteration, the algorithm expands the
node with the lowest possible cost. All its child nodes are placed
in the closed list and the individual child node costs are
calculated. The algorithm sends the child nodes with a low cost
back to the open list and deletes the child nodes with a high
cost. Consequently, the algorithm performs an intelligent, cost-
based search for the solution.
A * search: The algorithm tracks the cost of nodes as it
explores them using the equation: f(n) = g(n) + h(n), where

n is the node identifier.
g(n) is the cost of reaching the node so far.
h(n) is the estimated cost to reach the goal from the node.
f(n) is the estimated cost of the path from n to the goal.

The idea is to search the most promising paths first and avoid
expensive paths.
Greedy best-first search: The algorithm always chooses the
path that is closest to the goal using the equation: f(n) = h(n).
This particular algorithm can find solutions quite quickly, but it
can also get stuck in loops, so many people don’t consider it an
optimal approach to finding a solution.

Evaluating Algorithms
Gaining insights into precisely how algorithms work is important
because otherwise you can’t determine whether an algorithm
actually performs in the way you need it to. In addition, without
good measurements, you can’t perform accurate comparisons to
know whether you really do need to discover a new method of
solving a problem when an older solution works too slowly or uses
too many resources. The reality is that you’ll use algorithms made
by others most of the time, potentially devising a few of your own.
Knowing the basis to use to compare different solutions and
deciding between them is an essential skill when dealing with
algorithms.
The issue of efficiency has been part of discovering and designing
new algorithms since the concept of algorithms first came into
being, which is why you see so many different algorithms
competing to solve the same problem (sometimes a real
embarrassment of riches). The concept of measuring the size of
the functions within an algorithm and analyzing how the algorithm
works isn’t new; both Ada Lovelace and Charles Babbage
considered the problems of algorithm efficiency in reference to
computers as early as 1843 (see a short history of the Babbage
engine at http://www.computerhistory.org/babbage/adalovelace/
).
Donald Knuth (http://www-cs-faculty.stanford.edu/~uno/),
computer scientist, mathematician, professor emeritus at Stanford
University, and author of the milestone, multivolume book The Art
of Computer Programming (Addison-Wesley), devoted much of

http://www.computerhistory.org/babbage/adalovelace/
http://www-cs-faculty.stanford.edu/~uno/

his research and studies to comparing algorithms. He strived to
formalize how to estimate the resource needs of algorithms in a
mathematical way and to allow a correct comparison between
alternative solutions. He coined the term analysis of algorithms,
which is the branch of computer science devoted to
understanding how algorithms work in a formal way. The analysis
measures resources required in terms of the number of
operations an algorithm requires to reach a solution or by its
occupied space (such as the storage an algorithm requires in
computer memory).
Analysis of algorithms requires some mathematical understanding
and some computations, but it’s extremely beneficial in your
journey to discover, appreciate, and effectively use algorithms.
This topic is considerably more abstract than other topics in this
book. To make the discussion less theoretical, later chapters
present more practicalities of such measurement by examining
algorithms together in detail. The following sections provide you
with the basics.

Simulating using abstract machines
The more operations an algorithm requires, the more complex it
is. Complexity is a measure of algorithm efficiency in terms of time
usage because each operation takes some time. Given the same
problem, complex algorithms are generally less favorable than
simple algorithms because complex algorithms require more time.
Think about those times when speed of execution makes the
difference, such as in the medical or financial sector, or when
flying on automatic pilot on an airplane or space rocket.
Measuring algorithm complexity is a challenging task, though a
necessary one if you want to employ the right solution. The first
measurement technique uses abstract machines like the Random
Access Machine (RAM).

 RAM also stands for Random-Access Memory, which is
the internal memory that your computer uses when running
programs. Even though it uses the same acronym, a
Random-Access Machine is something completely different.

Abstract machines aren’t real computers, but theoretical ones,
computers that are imagined in their functioning. You use abstract
machines to consider how well an algorithm would work on a
computer without testing it on the real thing, yet bound by the type
of hardware you’d use. A RAM computer performs basic
arithmetic operations and interacts with information in memory,
that’s all. Every time a RAM computer does anything, it takes a
time step (a time unit). When you evaluate an algorithm in a RAM
simulation, you count time steps using the following procedure:

1. Count each simple operation (arithmetic ones) as
a time step.

2. Break complex operations into simple arithmetic
operations and count time steps as defined in
Step 1.

3. Count every data access from memory as one
time step.

To perform this accounting, you write a pseudocode version of
your algorithm (as mentioned in Chapter 1) and perform these
steps using paper and pencil. In the end, it’s a simple approach
based on a basic idea of how computers work, a useful
approximation that you can use to compare solutions regardless
of the power and speed of your hardware or the programming
language you use.

 Using a simulation is different from running the algorithm
on a computer because you use a standard and predefined
input. Real computer measurements require that you run the
code and verify the time required to run it. Running code on a
computer is actually a benchmark, another form of efficiency
measurement, in which you also account for the application
environment (such as the type of hardware used and the
software implementation). A benchmark is useful but lacks
generalization. Consider, for instance, how newer hardware
can quickly execute an algorithm that took ages on your
previous computer.

Getting even more abstract
Measuring a series of steps devised to achieve a solution to a
problem poses quite a few challenges. The previous section
discusses counting time steps (number of operations), but
sometimes you also need to compute space (such as the memory
an algorithm consumes). You consider space when your problem
is greedy for resources. Depending on the problem, you may
consider an algorithm better when it works efficiently with regard
to one of these resource consumption aspects:

Running time
Computer memory requirements
Hard-disk usage
Power consumption
Data-transmission speed in a network

Some of these aspects relate to others in an inverse manner, so
if, for instance, you want speedier execution time, you can
increase memory or power consumption to get it. Not only can
you have different efficiency configurations when running an
algorithm, you can also change the hardware characteristics and
software implementation to accomplish your goals. In terms of
hardware, using a supercomputer or a general-purpose computer

does matter, and the software, or language used to write the
algorithm, is definitely a game changer. In addition, the quantity
and kind of data you feed the algorithm could result in better or
worse performance measurements.
RAM simulations count time because when you can employ a
solution in so many environments and its resource usage
depends on so many factors, you have to find a way to simplify
comparisons so that they become standard. Otherwise, you can’t
compare possible alternatives. The solution is, as so often
happens with many other problems, to use a single measure and
say that one size fits all. In this case, the measure is time, which
you make equal to the number of operations, that is, the
complexity of the algorithm.
A RAM simulation places the algorithm in a situation that’s both
language and machine agnostic (it’s independent of programming
language and computer type). However, explaining how a RAM
simulation works to others requires quite an effort. The analysis of
algorithms proposes to use the number of operations you get from
a RAM simulation and turn them into a mathematical function
expressing how your algorithm behaves in terms of time, which is
a quantification of the steps or operations required when the
number of data inputs grows. For instance, if your algorithm sorts
objects, you can express complexity using a function that reports
how many operations it needs depending on the number of
objects it receives.

Working with functions
A function in mathematics is simply a way to map some inputs to
a response. Expressed in a different way, a function is a
transformation (based on math operations) that transforms (maps)
your input to an answer. For certain values of input (usually
denoted by the letters x or n), you have a corresponding answer
using the math that defines the function. For instance, a function
like f(n) = 2n tells you that when your input is a number n, your
answer is the number n multiplied by 2.

Using the size of the input does make sense given that this is a
time-critical age and people’s lives are crammed with a growing
quantity of data. Making everything a mathematical function is a
little less intuitive, but a function describing how an algorithm
relates its solution to the quantity of data it receives is something
you can analyze without specific hardware or software support.
It’s also easy to compare with other solutions, given the size of
your problem. Analysis of algorithms is really a mind-blowing
concept because it reduces a complex series of steps into a
mathematical formula.
Moreover, most of the time, an analysis of algorithms isn’t even
interested in defining the function exactly. What you really want to
do is compare a target function with another function. These
comparison functions appear within a set of proposed functions
that perform poorly when contrasted to the target algorithm. In this
way, you don’t have to plug numbers into functions of greater or
lesser complexity; instead, you deal with simple, premade, and
well-known functions. It may sound rough, but it’s more effective
and is similar to classifying the performance of algorithms into
categories, rather than obtaining an exact performance
measurement.
The set of generalized functions is called Big O notation, and in
this book, you often encounter this small set of functions (put into
parentheses and preceded by a capital O) used to represent the
performance of algorithms. Figure 2-1 shows the analysis of an
algorithm. A Cartesian coordinate system can represent its
function as measured by RAM simulation, where the abscissa (the
x coordinate) is the size of the input and the ordinate (the y
coordinate) is its resulting number of operations. You can see
three curves represented. Input size matters. However, quality
also matters (for instance, when ordering problems, it’s faster to
order an input which is already almost ordered). Consequently,
the analysis shows a worst case, f 1 (n) , an average case, f 2 (n)

, and a best case, f 3 (n) . Even though the average case might
give you a general idea, what you really care about is the worst
case, because problems may arise when your algorithm struggles

to reach a solution. The Big O function is the one that, after a
certain n 0 value (the threshold for considering an input big),
always results in a larger number of operations given the same
input than the worst-case function f 1 . Thus, the Big O function is
even more pessimistic than the one representing your algorithm,
so that no matter the quality of input, you can be sure that things
cannot get worse than that.

FIGURE 2-1: Complexity of an algorithm in case of best, average, and worst input case.

Many possible functions can result in worse results, but the choice
of functions offered by the Big O notation that you can use is
restricted because its purpose is to simplify complexity
measurement by proposing a standard. Consequently, this section
contains just the few functions that are part of the Big O notation.
The following list describes them in growing order of complexity:

Constant complexity O(1): The same time, no matter how
much input you provide. In the end, it is a constant number of
operations, no matter how long the input data is. This level of
complexity is quite rare in practice.
Logarithmic complexity O(log n): The number of operations
grows at a slower rate than the input, making the algorithm less
efficient with small inputs and more efficient with larger ones. A

typical algorithm of this class is the binary search, as described
in Chapter 7 on arranging and searching data.
Linear complexity O(n): Operations grow with the input in a 1:1
ratio. A typical algorithm is iteration, which is when you scan
input once and apply an operation to each element of it. Chapter
5 discusses iterations.
Linearithmic complexity O(n log n): Complexity is a mix
between logarithmic and linear complexity. It is typical of some
smart algorithms used to order data, such as Mergesort,
Heapsort, and Quicksort. Chapter 7 tells you about most of
them.
Quadratic complexity O(n2): Operations grow as a square of
the number of inputs. When you have one iteration inside
another iteration (nested iterations, in computer science), you
have quadratic complexity. For instance, you have a list of
names and, in order to find the most similar ones, you compare
each name against all the other names. Some less efficient
ordering algorithms present such complexity: bubble sort,
selection sort, and insertion sort. This level of complexity means
that your algorithms may run for hours or even days before
reaching a solution.
Cubic complexity O(n3): Operations grow even faster than
quadratic complexity because now you have multiple nested
iterations. When an algorithm has this order of complexity and
you need to process a modest amount of data (100,000
elements), your algorithm may run for years. When you have a
number of operations that is a power of the input, it is common
to refer to the algorithm as running in polynomial time.
Exponential complexity O(2n): The algorithm takes twice the
number of previous operations for every new element added.
When an algorithm has this complexity, even small problems
may take forever. Many algorithms doing exhaustive searches
have exponential complexity. However, the classic example for
this level of complexity is the calculation of Fibonacci numbers
(which, being a recursive algorithm, is dealt with in Chapter 5).
Factorial complexity O(n!): A real nightmare of complexity
because of the large number of possible combinations between

the elements. Just imagine: If your input is 100 objects and an
operation on your computer takes 10-6 seconds (a reasonable
speed for every computer, nowadays), you will need about 10140

years to complete the task successfully (an impossible amount
of time since the age of the universe is estimated as being 1014

years). A famous factorial complexity problem is the traveling
salesman problem, in which a salesman has to find the shortest
route for visiting many cities and coming back to the starting city
(presented in Chapter 18).

Chapter 3
Using Python to Work with

Algorithms
IN THIS CHAPTER

 Using Python to discover how algorithms work
 Considering the various Python distributions
 Performing a Python installation on Linux
 Performing a Python installation on OS X
 Performing a Python installation on Windows
 Obtaining and installing the datasets used in this book

You have many good choices when it comes to using computer
assistance to discover the wonders of algorithms. For example,
apart from Python, many people rely on MATLAB and many
others use R. In fact, some people use all three and then compare
the sorts of outputs they get (see one such comparison at
https://www.r-bloggers.com/evaluating-optimization-

algorithms-in-matlab-python-and-r/). If you just had the three
choices, you’d still need to think about them for a while and might
choose to learn more than one language, but you actually have
more than three choices, and this book can’t begin to cover them
all. If you get deep into the world of algorithms, you discover that
you can use all programming languages to write algorithms and
that some are appreciated because they boil everything down to
simple operations, such as the RAM simulation described in
Chapter 2 . For instance, Donald Knuth, winner of the Turing
Award, wrote examples in Assembly language in his book The Art
of Computer Programming (Addison-Wesley). Assembly language
is a programming language that resembles machine code, the

https://www.r-bloggers.com/evaluating-optimization-algorithms-in-matlab-python-and-r/

language used natively by computers (but not understandable by
most humans).
This book uses Python for a number of good reasons, including
the community support it enjoys and the fact that it’s full featured,
yet easy to learn. Python is also a verbose language, resembling
how a human creates instructions rather than how a computer
interprets them. The first section of this chapter fills in the details
of why this book uses Python for the examples, but also tells you
why other options are useful and why you may need to consider
them as your journey continues.
When you speak a human language, you add nuances of
meaning by employing specific word combinations that others in
your community understand. The use of nuanced meaning comes
naturally and represents a dialect. In some cases, dialects also
form because one group wants to demonstrate a difference with
another group. For example, Noah Webster wrote and published
A Grammatical Institute of the English Language, in part to
remove the influence of the British aristocracy from the American
public (see http://connecticuthistory.org/noah-webster-and-
the-dream-of-a-common-language/ for details). Likewise, computer
languages often come with flavors, and vendors purposely add
extensions that make their product unique to provide a reason to
buy their product over another offering.
The second section of the chapter introduces you to various
Python distributions, each of which provides a Python dialect. This
book uses Analytics Anaconda, which is the product you should
use to obtain the best results from your learning experience.
Using another product, essentially another dialect, can cause
problems in making the examples work — the same sort of thing
that happens sometimes when someone who speaks British
English talks to someone who speaks American English.
However, knowing about other distributions can be helpful when
you need to obtain access to features that Anaconda may not
provide.

http://connecticuthistory.org/noah-webster-and-the-dream-of-a-common-language/

The next three sections of this chapter help you install Anaconda
on your platform. The examples in this book are tested on the
Linux, Mac OS X, and Windows platforms. They may also work
with other platforms, but the examples aren’t tested on these
platforms, so you have no guarantee that they’ll work. By installing
Anaconda using the procedures found in this chapter, you reduce
the chance of getting an installation that won’t work with the
example code. To use the examples in this book, you must install
Anaconda 4.2.0 with support for Python 3.5. Other versions of
Anaconda and Python may not work with the example code
because, as with human language dialects, they could
misunderstand the instructions that the code provides.
Algorithms work with data in specific ways. To see particular
output from an algorithm, you need consistent data. Fortunately,
the Python community is busy creating datasets that anyone can
use for testing purposes. This allows the community to repeat
results that others get without having to download custom
datasets from an unknown source. The final section of this
chapter helps you get and install the datasets needed for the
examples.

Considering the Benefits of
Python

To work with algorithms on a computer, you need some means of
communicating with the computer. If this were Star Trek, you
could probably just tell the computer what you want and it would
dutifully perform the task for you. In fact, Scotty seems quite
confused about the lack of a voice computer interface in Star Trek
IV (see http://www.davidalison.com/2008/07/keyboard-vs-
mouse.html for details). The point is that you still need to use the
mouse and keyboard, along with a special language, to
communicate your ideas to the computer because the computer
isn’t going to make an effort to communicate with you. Python is
one of a number of languages that is especially adept at making it

http://www.davidalison.com/2008/07/keyboard-vs-mouse.html

easy for nondevelopers to communicate ideas to the computer,
but it isn’t the only choice. The following paragraphs help you
understand why this book uses Python and what your other
choices are.

Understanding why this book uses
Python
Every computer language available today translates algorithms
into a form that the computer can process. In fact, languages like
ALGOL (ALGOrithmic Language) and FORTRAN (FORmula
TRANslation) make this focus clear. Remember the definition of
an algorithm from Chapter 1 as being a sequence of steps used to
solve a problem. The method used to perform this translation
differs by language, and the techniques used by some languages
are quite arcane, requiring specialized knowledge even to make
an attempt.

 Computers speak only one language, machine code (the
0s and 1s that a computer interprets to perform tasks), which
is so incredibly hard for humans to speak that early
developers created a huge array of alternatives. Computer
languages exist to make human communication with
computers easier. Consequently, if you find yourself
struggling to make anything work, perhaps you have the
wrong language. It’s always best to have more than one
language at your fingertips so that you can perform computer
communications with ease. Python happens to be one of the
languages that works exceptionally well for people who work
in disciplines outside application development.

Python is the vision of a single person, Guido van Rossum (see
his home page at https://gvanrossum.github.io/). You might be
surprised to learn that Python has been around for a long time —
Guido started the language in December 1989 as a replacement
for the ABC language. Not much information is available as to the

https://gvanrossum.github.io/

precise goals for Python, but it does retain ABC’s capability to
create applications using less code. However, it far exceeds the
capability of ABC to create applications of all types, and in
contrast to ABC, boasts four programming styles. In short, Guido
took ABC as a starting point, found it limited, and created a new
language without those limitations. It’s an example of creating a
new language that really is better than its predecessor.
Python has gone through a number of iterations and currently has
two development paths. The 2.x path is backward compatible with
previous versions of Python; the 3.x path isn’t. The compatibility
issue is one that figures into how you use Python to perform
algorithm-related tasks because at least some of the packages
won’t work with 3.x . In addition, some versions use different
licensing because Guido was working at various companies
during Python’s development. You can see a listing of the
versions and their respective licenses at
https://docs.python.org/3/license.html . The Python Software
Foundation (PSF) owns all current versions of Python, so unless
you use an older version, you really don’t need to worry about the
licensing issue.

 Guido actually started Python as a skunkworks project (a
project developed by a small and loosely structured group of
people). The core concept was to create Python as quickly as
possible, yet create a language that is flexible, runs on any
platform, and provides significant potential for extension.
Python provides all these features and many more. Of
course, there are always bumps in the road, such as figuring
out just how much of the underlying system to expose. You
can read more about the Python design philosophy at
http://python-history.blogspot.com/2009/01/pythons-

design-philosophy.html . The history of Python at
http://python-history.blogspot.com/2009/01/introduction-

and-overview.html also provides some useful information.

https://docs.python.org/3/license.html
http://python-history.blogspot.com/2009/01/pythons-design-philosophy.html
http://python-history.blogspot.com/2009/01/introduction-and-overview.html

The original development (or design) goals for Python don’t quite
match what has happened to the language since that time. Guido
originally intended Python as a second language for developers
who needed to create one-off code but who couldn’t quite achieve
their goals using a scripting language. The original target
audience for Python was the C developer. You can read about
these original goals in the interview at
http://www.artima.com/intv/pyscale.html .
You can find a number of applications written in Python today, so
the idea of using it solely for scripting didn’t come to fruition. In
fact, you can find listings of Python applications at
https://www.python.org/about/apps/ and
https://www.python.org/about/success/ .
Naturally, with all these success stories to go on, people are
enthusiastic about adding to Python. You can find lists of Python
Enhancement Proposals (PEPs) at
http://legacy.python.org/dev/peps/ . These PEPs may or may
not see the light of day, but they prove that Python is a living,
growing language that will continue to provide features that
developers truly need to create great applications of all types.

Working with MATLAB
Python has advantages over many other languages by offering
multiple coding styles, fantastic flexibility, and great extensibility,
but it’s still a programming language. If you honestly don’t want to
use a programming language, you do have other options, such as
MATLAB (https://www.mathworks.com/products/matlab/), which
focuses more on algorithms. MATLAB is still a scripting language
of a sort, and to perform any significant tasks with it, you still need
to know a little about coding, but not as much as with Python.
One of the major issues with using MATLAB is the price you pay.
Unlike Python, MATLAB requires a monetary investment on your
part (see https://www.mathworks.com/pricing-licensing/ for
licensing costs). The environment is indeed easier to use, but as

http://www.artima.com/intv/pyscale.html
https://www.python.org/about/apps/
https://www.python.org/about/success/
http://legacy.python.org/dev/peps/
https://www.mathworks.com/products/matlab/
https://www.mathworks.com/pricing-licensing/

with most things, there is no free lunch, and you must consider
the cost differential as part of determining which product to use.
Many people are curious about MATLAB, that is, its strengths and
weaknesses when compared to Python. This book doesn’t have
room to provide a full comparison, but you can find a great
overview at http://www.pyzo.org/python_vs_matlab.html . In
addition, you can call Python packages from MATLAB using the
techniques found at
https://www.mathworks.com/help/matlab/call-python-

libraries.html . In fact, MATLAB also works with the following:

MEX (https://www.mathworks.com/help/matlab/call-mex-file-
functions.html)
C (https://www.mathworks.com/help/matlab/using-c-shared-
library-functions-in-matlab-.html)
Java (https://www.mathworks.com/help/matlab/using-java-
libraries-in-matlab.html)
.NET (https://www.mathworks.com/help/matlab/using-net-
libraries-in-matlab.html)
COM (https://www.mathworks.com/help/matlab/using-com-
objects-in-matlab.html)

Therefore, you don’t necessarily have to choose between
MATLAB and Python (or other language), but the more Python
features you use, the easier it becomes to simply work with
Python and skip MATLAB. You can discover more about MATLAB
in MATLAB For Dummies, by Jim Sizemore and John Paul
Mueller (Wiley).

Considering other algorithm testing
environments
A third major contender for algorithm-related work is R. The R
programming language, like Python, is free of charge. It also
supports a large number of packages and offers great flexibility.
Some of the programming constructs are different, however, and
some people find R harder to use than Python. Most people view

http://www.pyzo.org/python_vs_matlab.html
https://www.mathworks.com/help/matlab/call-python-libraries.html
https://www.mathworks.com/help/matlab/call-mex-file-functions.html
https://www.mathworks.com/help/matlab/using-c-shared-library-functions-in-matlab-.html
https://www.mathworks.com/help/matlab/using-java-libraries-in-matlab.html
https://www.mathworks.com/help/matlab/using-net-libraries-in-matlab.html
https://www.mathworks.com/help/matlab/using-com-objects-in-matlab.html

R as the winner when it comes to performing statistics, but they
see the general-purpose nature of Python as having major
benefits (see the articles at
https://www.datacamp.com/community/tutorials/r-or-python-for-

data-analysis and http://www.kdnuggets.com/2015/05/r-vs-
python-data-science.html). The stronger community support for
Python is also a major advantage.
As previously mentioned, you can use any computer
programming language to perform algorithm-related work, but
most languages have a specific purpose in mind. For example,
you can perform algorithm-related tasks using a language such as
Structured Query Language (SQL), but this language focuses on
data management, so some algorithm-related tasks might
become convoluted and difficult to perform. A significant lack in
SQL is the ability to plot data with ease and to perform some of
the translations and transformations that algorithm-specific work
requires. In short, you need to consider what you plan to do when
choosing a language. This book uses Python because it truly is
the best overall language to perform the tasks at hand, but it’s
important to realize that you may need another language at some
point.

Looking at the Python
Distributions

You can quite possibly obtain a generic copy of Python and add
all the packages required to work with algorithms to it. The
process can be difficult because you need to ensure that you
have all the required packages in the correct versions to
guarantee success. In addition, you need to perform the
configuration required to make sure that the packages are
accessible when you need them. Fortunately, going through the
required work is not necessary because numerous Python
products that work well with algorithms are available for you to

https://www.datacamp.com/community/tutorials/r-or-python-for-data-analysis
http://www.kdnuggets.com/2015/05/r-vs-python-data-science.html

use. These products provide everything needed to get started with
algorithm-related projects.

 You can use any of the packages mentioned in the
following sections to work with the examples in this book.
However, the book’s source code and downloadable source
code rely on Continuum Analytics Anaconda 4.2.0 because
this particular package works on every platform this book
supports: Linux, Mac OS X, and Windows. The book doesn’t
mention a specific package in the chapters that follow, but
any screenshots reflect how things look when using
Anaconda on Windows. You may need to tweak the code to
use another package, and the screens will look different if
you use Anaconda on some other platform.

 Windows 10 presents some serious installation issues
when working with Python. You can read about these issues
on my (John’s) blog at
http://blog.johnmuellerbooks.com/2015/10/30/python-and-

windows-10/ . Given that so many readers of my other Python
books have sent feedback saying that Windows 10 doesn’t
provide a good environment, I can’t recommend Windows 10
as a Python platform for this book. If you’re working with
Windows 10, simply be aware that your road to a Python
installation will be a rocky one.

Obtaining Analytics Anaconda
The basic Anaconda package is a free download that you obtain
at https://store.continuum.io/cshop/anaconda/ . Simply click
Download Anaconda to obtain access to the free product. You do
need to provide an email address to get a copy of Anaconda.
After you provide your email address, you go to another page,

http://blog.johnmuellerbooks.com/2015/10/30/python-and-windows-10/
https://store.continuum.io/cshop/anaconda/

where you can choose your platform and the installer for that
platform. Anaconda supports the following platforms:

Windows 32-bit and 64-bit (the installer may offer you only the
64-bit or 32-bit version, depending on which version of Windows
it detects)
Linux 32-bit and 64-bit
Mac OS X 64-bit

Because package support for Python 3.5 has gotten better than
previous 3.x versions, you see both Python 3.x and 2.x equally
supported on the Analytics site. This book uses Python 3.5
because the package support is now substantial enough and
stable enough to support all the programming examples, and
because Python 3.x represents the future direction of Python.

 You can obtain Anaconda with older versions of Python. If
you want to use an older version of Python, click the installer
archive link near the bottom of the page. You should use an
older version of Python only when you have a pressing need
to do so.

The Miniconda installer can potentially save time by limiting the
number of features you install. However, trying to figure out
precisely which packages you do need is an error-prone and time-
consuming process. In general, you want to perform a full
installation to ensure that you have everything needed for your
projects. Even a full install doesn’t require much time or effort to
download and install on most systems.
The free product is all you need for this book. However, when you
look on the site, you see that many other add-on products are
available. These products can help you create robust applications.
For example, when you add Accelerate to the mix, you obtain the
capability to perform multicore and GPU-enabled operations. The

use of these add-on products is outside the scope of this book,
but the Anaconda site provides details on using them.

Considering Enthought Canopy
Express
Enthought Canopy Express is a free product for producing both
technical and scientific applications using Python. You can obtain
it at https://www.enthought.com/canopy-express/ . Click Download
Free on the main page to see a listing of the versions that you can
download. Only Canopy Express is free; the full Canopy product
comes at a cost. However, you can use Canopy Express to work
with the examples in this book. Canopy Express supports the
following platforms:

Windows 32-bit and 64-bit
Linux 32-bit and 64-bit
Mac OS X 32-bit and 64-bit

Choose the platform and version you want to download. When
you click Download Canopy Express, you see an optional form for
providing information about yourself. The download starts
automatically, even if you don’t provide personal information to the
company.
One of the advantages of Canopy Express is that Enthought is
heavily involved in providing support for both students and
teachers. People also can take classes, including online classes,
that teach the use of Canopy Express in various ways (see
https://training.enthought.com/courses).

Considering pythonxy
The pythonxy Integrated Development Environment (IDE) is a
community project hosted on Google at http://python-
xy.github.io/ . It’s a Windows-only product, so you can’t easily
use it for cross-platform needs. (In fact, it supports only Windows
Vista, Windows 7, and Windows 8.) However, it does come with a

https://www.enthought.com/canopy-express/
https://training.enthought.com/courses
http://python-xy.github.io/

full set of packages, and you can easily use it for this book if you
want.
Because pythonxy uses the GNU General Public License (GPL)
v3 (see http://www.gnu.org/licenses/gpl.html), you have no
add-ons, training, or other paid features to worry about. No one
will come calling at your door hoping to sell you something. In
addition, you have access to all the source code for pythonxy, so
you can make modifications if you want.

Considering WinPython
The name tells you that WinPython is a Windows-only product
that you can find at http://winpython.sourceforge.net/ . This
product is actually a spin-off of pythonxy and isn’t meant to
replace it. Quite the contrary: WinPython is simply a more flexible
way to work with pythonxy. You can read about the motivation for
creating WinPython at
http://sourceforge.net/p/winpython/wiki/Roadmap/ .
The bottom line for this product is that you gain flexibility at the
cost of friendliness and a little platform integration. However, for
developers who need to maintain multiple versions of an IDE,
WinPython may make a significant difference. When using
WinPython with this book, make sure to pay particular attention to
configuration issues or you’ll find that even the downloadable
code has little chance of working.

Installing Python on Linux
You use the command line to install Anaconda on Linux — you’re
given no graphical installation option. Before you can perform the
install, you must download a copy of the Linux software from the
Continuum Analytics site. You can find the required download
information in the “Obtaining Analytics Anaconda ” section, earlier
in this chapter. The following procedure should work fine on any
Linux system, whether you use the 32-bit or 64-bit version of
Anaconda:

http://www.gnu.org/licenses/gpl.html
http://winpython.sourceforge.net/
http://sourceforge.net/p/winpython/wiki/Roadmap/

1. Open a copy of Terminal.
The Terminal window appears.

2. Change directories to the downloaded copy of
Anaconda on your system.
The name of this file varies, but normally it
appears as Anaconda3-4.2.0-Linux-x86.sh for 32-
bit systems and Anaconda3-4.2.0-Linux-
x86_64.sh for 64-bit systems. The version number
is embedded as part of the filename. In this case,
the filename refers to version 4.2.0, which is the
version used for this book. If you use some other
version, you may experience problems with the
source code and need to make adjustments when
working with it.

3. Type bash Anaconda3-4.2.0-Linux-x86.sh (for
the 32-bit version) or bash Anaconda3-4.2.0-
Linux-x86_64.sh (for the 64-bit version) and
press Enter.
An installation wizard starts that asks you to
accept the licensing terms for using Anaconda.

4. Read the licensing agreement and accept the
terms using the method required for your
version of Linux.
The wizard asks you to provide an installation
location for Anaconda. The book assumes that
you use the default location of ~/anaconda. If you
choose some other location, you may have to

modify some procedures later in the book to work
with your setup.

5. Provide an installation location (if necessary)
and press Enter (or click Next).
The application extraction process begins. After
the extraction is complete, you see a completion
message.

6. Add the installation path to your PATH
statement using the method required for your
version of Linux.
You’re ready to begin using Anaconda.

Installing Python on MacOS
The Mac OS X installation comes in only one form: 64-bit. Before
you can perform the install, you must download a copy of the Mac
software from the Continuum Analytics site. You can find the
required download information in the “Obtaining Analytics
Anaconda ” section, earlier in this chapter.
The installation files come in two forms. The first depends on a
graphical installer; the second relies on the command line. The
command-line version works much like the Linux version
described in the “Installing Python on Linux ” section of this
chapter. The following steps help you install Anaconda 64-bit on a
Mac system using the graphical installer:

1. Locate the downloaded copy of Anaconda on
your system.
The name of this file varies, but normally it
appears as Anaconda3-4.2.0-MacOSX-x86_64.pkg .

The version number is embedded as part of the
filename. In this case, the filename refers to
version 4.2.0, which is the version used for this
book. If you use some other version, you may
experience problems with the source code and
need to make adjustments when working with it.

2. Double-click the installation file.
An introduction dialog box appears.

3. Click Continue.
The wizard asks whether you want to review the
Read Me materials. You can read these materials
later. For now, you can safely skip the
information.

4. Click Continue.
The wizard displays a licensing agreement. Be
sure to read through the licensing agreement so
that you know the terms of usage.

5. Click I Agree if you agree to the licensing
agreement.
The wizard asks you to provide a destination for
the installation. The destination controls whether
the installation is for an individual user or a group.

 You may see an error message stating that
you can’t install Anaconda on the system. The
error message occurs because of a bug in the
installer and has nothing to do with your system.
To get rid of the error message, choose the Install
Only for Me option. You can’t install Anaconda for
a group of users on a Mac system.

6. Click Continue.
The installer displays a dialog box containing
options for changing the installation type. Click
Change Install Location if you want to modify
where Anaconda is installed on your system.
(The book assumes that you use the default path
of ~/anaconda.) Click Customize if you want to
modify how the installer works. For example, you
can choose not to add Anaconda to your PATH
statement. However, the book assumes that you
have chosen the default install options, and no
good reason exists to change them unless you
have another copy of Python 3.5 installed
somewhere else.

7. Click Install.
The installation begins. A progress bar tells you
how the installation process is progressing. When
the installation is complete, you see a completion
dialog box.

8. Click Continue.
You’re ready to begin using Anaconda.

Installing Python on Windows
Anaconda comes with a graphical installation application for
Windows, so getting a good install means using a wizard, as you
would for any other installation. Of course, you need a copy of the
installation file before you begin, and you can find the required
download information in the “Obtaining Analytics Anaconda ”
section, earlier in this chapter. The following procedure should
work fine on any Windows system, whether you use the 32-bit or
the 64-bit version of Anaconda:

1. Locate the downloaded copy of Anaconda on
your system.
The name of this file varies, but normally it
appears as Anaconda3-4.2.0-Windows-x86.exe for
32-bit systems and Anaconda3-4.2.0-Windows-
x86_64.exe for 64-bit systems. The version
number is embedded as part of the filename. In
this case, the filename refers to version 4.2.0,
which is the version used for this book. If you use
some other version, you may experience
problems with the source code and need to make
adjustments when working with it.

2. Double-click the installation file.
(You may see an Open File – Security Warning
dialog box that asks whether you want to run this
file. Click Run if you see this dialog box pop up.)

You see an Anaconda 4.2.0 Setup dialog box
similar to the one shown in Figure 3-1 . The exact
dialog box that you see depends on which
version of the Anaconda installation program you
download. If you have a 64-bit operating system,
using the 64-bit version of Anaconda is always
best so that you obtain the best possible
performance. This first dialog box tells you when
you have the 64-bit version of the product.

3. Click Next.
The wizard displays a licensing agreement. Be
sure to read through the licensing agreement so
that you know the terms of usage.

4. Click I Agree if you agree to the licensing
agreement.
You’re asked what sort of installation type to
perform, as shown in Figure 3-2 . In most cases,
you want to install the product just for yourself.
The exception is if you have multiple people using
your system and they all need access to
Anaconda.

5. Choose one of the installation types and then
click Next.
The wizard asks where to install Anaconda on
disk, as shown in Figure 3-3 . The book assumes
that you use the default location. If you choose
some other location, you may have to modify

some procedures later in the book to work with
your setup.

6. Choose an installation location (if necessary)
and then click Next.
You see the Advanced Installation Options,
shown in Figure 3-4 . These options are selected
by default, and no good reason exists to change
them in most cases. You might need to change
them if Anaconda won’t provide your default
Python 3.5 (or Python 2.7) setup. However, the
book assumes that you’ve set up Anaconda using
the default options.

7. Change the advanced installation options (if
necessary) and then click Install.
You see an Installing dialog box with a progress
bar. The installation process can take a few
minutes, so get yourself a cup of coffee and read
the comics for a while. When the installation
process is over, you see a Next button enabled.

8. Click Next.
The wizard tells you that the installation is
complete.

9. Click Finish.
You’re ready to begin using Anaconda.

FIGURE 3-1: The setup process begins by telling you whether you have the 64-bit version.

FIGURE 3-2: Tell the wizard how to install Anaconda on your system.

FIGURE 3-3: Specify an installation location.

FIGURE 3-4: Configure the advanced installation options.

A WORD ABOUT THE
SCREENSHOTS

As you work your way through the book, you use an IDE of your choice to
open the Python and Jupyter Notebook files containing the book’s source
code. Every screenshot that contains IDE-specific information relies on
Anaconda because Anaconda runs on all three platforms supported by the
book. The use of Anaconda doesn’t imply that it’s the best IDE or that the
authors are making any sort of recommendation for it; Anaconda simply works
well as a demonstration product.

When you work with Anaconda, the name of the graphical (GUI) environment,
Jupyter Notebook, is precisely the same across all three platforms, and you
won’t even see any significant difference in the presentation. (Jupyter
Notebook is an evolution of IPython, so you may see online resources refer to
IPython Notebook.) The differences that you do see are minor, and you should
ignore them as you work through the book. With this in mind, the book does
rely heavily on Windows 7 screenshots. When working on a Linux, Mac OS X,
or other Windows version platform, you should expect to see some differences
in presentation, but these differences shouldn’t reduce your ability to work with
the examples.

Downloading the Datasets and
Example Code

This book is about using Python to perform machine learning
tasks. Of course, you can spend all your time creating the
example code from scratch, debugging it, and only then
discovering how it relates to machine learning, or you can take the
easy way and download the prewritten code from the Dummies
site (see the Introduction of this book for details) so that you can
get right to work. Likewise, creating datasets large enough for
algorithm learning purposes would take quite a while. Fortunately,
you can access standardized, precreated data sets quite easily by
using features provided in some of the data science packages
(which also work just fine for all sorts of purposes, including
learning to work with algorithms). The following sections help you

download and use the example code and datasets so that you
can save time and get right to work with algorithm-specific tasks.

Using Jupyter Notebook
To make working with the relatively complex code in this book
easier, you use Jupyter Notebook. This interface lets you easily
create Python notebook files that can contain any number of
examples, each of which can run individually. The program runs in
your browser, so which platform you use for development doesn’t
matter; as long as it has a browser, you should be okay.

Starting Jupyter Notebook
Most platforms provide an icon to access Jupyter Notebook. Just
click this icon to access Jupyter Notebook. For example, on a
Windows system, you choose Start ⇒   All Programs ⇒   Anaconda
3 ⇒   Jupyter Notebook. Figure 3-5 shows how the interface looks
when viewed in a Firefox browser. The precise appearance on
your system depends on the browser you use and the kind of
platform you have installed.

FIGURE 3-5: Jupyter Notebook provides an easy method to create machine learning
examples.

If you have a platform that doesn’t offer easy access through an
icon, you can use these steps to access Jupyter Notebook:

1. Open a Command Prompt or Terminal Window
on your system.
The window opens so that you can type
commands.

2. Change directories to the \Anaconda3\Scripts
directory on your machine.
Most systems let you use the CD command for this
task.

3. Type python jupyter-notebook-script.py and
press Enter.
The Jupyter Notebook page opens in your
browser.

Stopping the Jupyter Notebook server
No matter how you start Jupyter Notebook (or just Notebook, as it
appears in the remainder of the book), the system generally
opens a command prompt or terminal window to host Jupyter
Notebook. This window contains a server that makes the
application work. After you close the browser window when a
session is complete, select the server window and press Ctrl+C or
Ctrl+Break to stop the server.

Defining the code repository
The code you create and use in this book will reside in a
repository on your hard drive. Think of a repository as a kind of
filing cabinet where you put your code. Notebook opens a drawer,
takes out the folder, and shows the code to you. You can modify
it, run individual examples within the folder, add new examples,

and simply interact with your code in a natural manner. The
following sections get you started with Notebook so that you can
see how this whole repository concept works.

Defining the book’s folder
It pays to organize your files so that you can access them easier
later. This book keeps its files in the A4D (Algorithms For
Dummies) folder. Use these steps within Notebook to create a
new folder.

1. Choose New ⇒   Folder.
Notebook creates a new folder named Untitled
Folder, as shown in Figure 3-6 . The file appears
in alphanumeric order, so you may not initially
see it. You must scroll down to the correct
location.

2. Select the box next to the Untitled Folder
entry.

3. Click Rename at the top of the page.
You see a Rename Directory dialog box like the
one shown in Figure 3-7 .

4. Type A4D and click OK.
Notebook changes the name of the folder for you.

5. Click the new A4D entry in the list.
Notebook changes the location to the A4D folder
in which you perform tasks related to the
exercises in this book.

FIGURE 3-6: New folders appear with a name of Untitled Folder.

FIGURE 3-7: Rename the folder so that you remember the kinds of entries it contains.

Creating a new notebook
Every new notebook is like a file folder. You can place individual
examples within the file folder, just as you would sheets of paper
into a physical file folder. Each example appears in a cell. You can
put other sorts of things in the file folder, too, but you see how
these things work as the book progresses. Use these steps to
create a new notebook:

1. Click New ⇒   Python (default).
A new tab opens in the browser with the new
notebook, as shown in Figure 3-8 . Notice that the

notebook contains a cell and that Notebook has
highlighted the cell so that you can begin typing
code in it. The title of the notebook is Untitled
right now. That’s not a particularly helpful title, so
you need to change it.

2. Click Untitled on the page.
Notebook asks what you want to use as a new
name, as shown in Figure 3-9 .

3. Type A4D; 03; Sample and press Enter.
The new name tells you that this is a file for
Algorithms For Dummies, Chapter 3 ,
Sample.ipynb. Using this naming convention lets
you easily differentiate these files from other files
in your repository.

FIGURE 3-8: A notebook contains cells that you use to hold code.

FIGURE 3-9: Provide a new name for your notebook.

Of course, the Sample notebook doesn’t contain anything just yet.
Place the cursor in the cell, type print('Python is really cool!') ,
and then click the Run button (the button with the right-pointing
arrow on the toolbar). You see the output shown in Figure 3-10 .
The output is part of the same cell as the code. (The code resides
in a square box and the output resides outside that square box,
but both are within the cell.) However, Notebook visually
separates the output from the code so that you can tell them
apart. Notebook automatically creates a new cell for you.

FIGURE 3-10: Notebook uses cells to store your code.

When you finish working with a notebook, shutting it down is
important. To close a notebook, choose File ⇒   Close and Halt.
You return to the Home page, where you can see that the
notebook you just created is added to the list, as shown in Figure
3-11 .

FIGURE 3-11: Any notebooks you create appear in the repository list.

Exporting a notebook

Creating notebooks and keeping them all to yourself isn’t much
fun. At some point, you want to share them with other people. To
perform this task, you must export your notebook from the
repository to a file. You can then send the file to someone else,
who will import it into his or her repository.
The previous section shows how to create a notebook named
A4D; 03; Sample. You can open this notebook by clicking its entry
in the repository list. The file reopens so that you can see your
code again. To export this code, choose File ⇒   Download As ⇒   
Notebook (.ipynb). What you see next depends on your browser,
but you generally see some sort of dialog box for saving the
notebook as a file. Use the same method for saving the IPython
Notebook file as you use for any other file you save using your
browser.

Removing a notebook
Sometimes notebooks get outdated or you simply don’t need to
work with them any longer. Rather than allow your repository to
get clogged with files you don’t need, you can remove these
unwanted notebooks from the list. Use these steps to remove the
file:

1. Select the box next to the A4D; 03;
Sample.ipynb entry.

2. Click the trash can icon (Delete) at the top of
the page.
You see a Delete notebook warning message like
the one shown in Figure 3-12 .

3. Click Delete.
The file gets removed from the list.

FIGURE 3-12: Notebook warns you before removing any files from the repository.

Importing a notebook
To use the source code from this book, you must import the
downloaded files into your repository. The source code comes in
an archive file that you extract to a location on your hard drive.
The archive contains a list of .ipynb (IPython Notebook) files
containing the source code for this book (see the Introduction for
details on downloading the source code). The following steps tell
how to import these files into your repository:

1. Click Upload at the top of the page.
What you see depends on your browser. In most
cases, you see some type of File Upload dialog
box that provides access to the files on your hard
drive.

2. Navigate to the directory containing the files
that you want to import into Notebook.

3. Highlight one or more files to import and click
the Open (or other, similar) button to begin
the upload process.
You see the file added to an upload list, as shown
in Figure 3-13 . The file isn’t part of the repository
yet — you’ve simply selected it for upload.

 When you export a file, Notebook converts
any special characters to a form that your system
will accept with greater ease. Figure 3-13 shows
this conversion in action. The semicolons appear
as %3B, and spaces appear as a + (plus sign).
You must change these characters to their
Notebook form to see the title as you expect it.

4. Click Upload.
Notebook places the file in the repository so that
you can begin using it.

FIGURE 3-13: The files that you want to add to the repository appear as part of an upload
list consisting of one or more filenames.

Understanding the datasets used in
this book
This book uses a number of datasets, all of which appear in the
scikit-learn package. These datasets demonstrate various ways in
which you can interact with data, and you use them in the
examples to perform a variety of tasks. The following list provides
a quick overview of the function used to import each of the
datasets into your Python code:

load_boston() : Regression analysis with the Boston house-
prices dataset
load_iris() : Classification with the iris dataset
load_diabetes() : Regression with the diabetes dataset
load_digits([n_class]) : Classification with the digits dataset
fetch_20newsgroups(subset='train'): Data from 20
newsgroups
fetch_olivetti_faces() :Olivetti faces dataset from AT&T

The technique for loading each of these datasets is the same
across examples. The following example shows how to load the
Boston house-prices dataset. You can find the code in the A4D;
03; Dataset Load.ipynb notebook.

from sklearn.datasets import load_boston

Boston = load_boston()

print(Boston.data.shape)

(506, 13)

To see how the code works, click Run Cell. The output from the
print() call is (506, 13) . You can see the output shown in Figure
3-14 .

FIGURE 3-14: The Boston object contains the loaded dataset.

Chapter 4
Introducing Python for

Algorithm Programming
IN THIS CHAPTER

 Performing numeric and logic-based tasks
 Working with strings
 Performing tasks with dates
 Packaging code by using functions
 Making decisions and repeating steps
 Managing data in memory
 Reading data in storage objects
 Finding data faster by using dictionaries

A recipe is a kind of algorithm because it helps you cook tasty
food by using a series of steps (and thereby get rid of your
hunger). You can devise many ways to create a sequence of
steps that solve a problem. Procedures of every variety and
description abound, all of which describe a sequence of steps
used to solve a problem. Not every sequence of steps is concrete.
Mathematical notations present a series of steps to solve a
numeric problem, but many people view them as so many oddly
shaped symbols in an arcane language that few can understand.
A computer language can turn the arcane language into a
concrete form of English-like statements that solve the problem in
a manner that works for most humans.
The previous chapter in this book, Chapter 3 , helps you install a
copy of Python to work with the examples in this book. You use
Python throughout the book to solve numeric problems using

algorithms that you can also express in mathematical notation.
The reason that this book uses a programming language is to turn
those oddly shaped abstract symbols into something that most
people can understand and use to solve real-world problems.
Before you can use Python to perform tasks with algorithms, you
need at least a passing knowledge of how Python works. This
chapter isn’t designed to make you a Python expert. However, it
does provide you with enough information to make sense of the
example code with the commentary provided. The various
sections help you understand how Python performs tasks in a
concrete manner. For example, you need to know how Python
works with various kinds of data in order to determine what the
example code is doing with that data. You find the essentials of
working with numeric, logical, string, and date data in the first
three sections.
Imagine a cookbook, or any book for that matter, that provided
steps for performing every task that the book tells you how to
perform as one long narrative without any breaks. Trying to find a
specific recipe (or other procedure) would become impossible and
the book would be useless. In fact, no one would write such a
book. The fourth section of the chapter discusses functions, which
are akin to the individual recipes in a cookbook. You can combine
functions to create an entire program, much as you would
combine recipes to create an entire dinner.
The next four sections discuss various ways to manage data,
which means reading, writing, modifying, and erasing it as
needed. You also need to know how to make decisions and what
to do when you need to perform the same set of steps more than
one time. Data is a resource, just as flour, sugar, and other
ingredients are resources you use when working with a recipe.
The different kinds of data require different techniques to make
them into an application that solves the problem proposed by an
algorithm. These sections tell you about the various ways to
manipulate data and work with it to solve problems.

Working with Numbers and
Logic

Interacting with algorithms involves working with data of various
sorts, but much of the work involves numbers. In addition, you use
logical values to make decisions about the data you use. For
example, you might need to know whether two values are equal
or whether one value is greater than another value. Python
supports these number and logic value types:

Any whole number is an integer. For example, the value 1 is a
whole number, so it’s an integer. On the other hand, 1.0 isn’t a
whole number; it has a decimal part to it, so it’s not an integer.
Integers are represented by the int data type. On most
platforms, you can store numbers between –
9,223,372,036,854,775,808 and 9,223,372,036,854,775,807
within an int (which is the maximum value that fits in a 64-bit
variable).
Any number that includes a decimal portion is a floating-point
value. For example, 1.0 has a decimal part, so it’s a floating-
point value. Many people get confused about whole numbers
and floating-point numbers, but the difference is easy to
remember. If you see a decimal in the number, it’s a floating-
point value. Python stores floating-point values in the float data
type. The maximum value that a floating point variable can
contain is ±1.7976931348623157 × 10308 and the minimum
value that a floating point variable can contain is
±2.2250738585072014 × 10–308 on most platforms.
A complex number consists of a real number and an imaginary
number that are paired together. In case you’ve completely
forgotten about complex numbers, you can read about them at
http://www.mathsisfun.com/numbers/complex-numbers.html . The
imaginary part of a complex number always appears with a j
after it. So if you want to create a complex number with 3 as the

http://www.mathsisfun.com/numbers/complex-numbers.html

real part and 4 as the imaginary part, you make an assignment
like this: myComplex = 3 + 4j .
Logical arguments require Boolean values, which are named
after George Bool. When using a Boolean value in Python, you
rely on the bool type. A variable of this type can contain only two
values: True or False . You can assign a value by using the True
or False keywords, or you can create an expression that defines
a logical idea that equates to true or false. For example, you
could say myBool = 1 > 2 , which would equate to False
because 1 is most definitely not greater than 2.

Now that you have the basics down, it’s time to see the data types
in action. The following paragraphs provide a quick overview of
how you can work with both numeric and logical data in Python.

Performing variable assignments
When working with applications, you store information in
variables. A variable is a kind of storage box. Whenever you want
to work with the information, you access it using the variable. If
you have new information that you want to store, you put it in a
variable. Changing information means accessing the variable first
and then storing the new value in the variable. Just as you store
things in boxes in the real world, so you store things in variables
(a kind of storage box) when working with applications. To store
data in a variable, you assign the data to it using any of a number
of assignment operators (special symbols that tell how to store the
data). Table 4-1 shows the assignment operators that Python
supports.

TABLE 4-1 Python Assignment Operators

Operator Description Example

= Assigns the value found in the right operand to the left operand MyVar = 5 results in
MyVar containing 5

+= Adds the value found in the right operand to the value found in the left operand
and places the result in the left operand

MyVar += 2 results
in MyVar containing
7

Operator Description Example

-= Subtracts the value found in the right operand from the value found in the left
operand and places the result in the left operand

MyVar -= 2 results
in MyVar containing
3

*= Multiplies the value found in the right operand by the value found in the left
operand and places the result in the left operand

MyVar *= 2 results
in MyVar containing
10

/= Divides the value found in the left operand by the value found in the right
operand and places the result in the left operand

MyVar /= 2 results
in MyVar containing
2.5

%= Divides the value found in the left operand by the value found in the right
operand and places the remainder in the left operand

MyVar %= 2 results
in MyVar containing
1

**=
Determines the exponential value found in the left operand when raised to the
power of the value found in the right operand and places the result in the left
operand

MyVar ** 2 results
in MyVar containing
25

//= Divides the value found in the left operand by the value found in the right
operand and places the integer (whole number) result in the left operand

MyVar //= 2 results
in MyVar containing
2

Doing arithmetic
Storing information in variables makes it easily accessible.
However, to perform any useful work with the variable, you usually
perform some type of arithmetic operation on it. Python supports
the common arithmetic operators you use to perform tasks by
hand. They appear in Table 4-2 .

TABLE 4-2 Python Arithmetic Operators

Operator Description Example

+ Adds two values together 5 + 2 = 7

- Subtracts the right operand from the left operand 5 – 2 = 3

* Multiplies the right operand by the left operand 5 * 2 =
10

/ Divides the left operand by the right operand 5 / 2 =
2.5

% Divides the left operand by the right operand and returns the remainder 5 % 2 = 1

** Calculates the exponential value of the right operand by the left operand 5 ** 2 =
25

// Performs integer division, in which the left operand is divided by the right operand and
only the whole number is returned (also called floor division) 5 // 2 = 2

Sometimes you need to interact with just one variable. Python
supports a number of unary operators, those that work with just
one variable, as shown in Table 4-3 .

TABLE 4-3 Python Unary Operators

Operator Description Example

~ Inverts the bits in a number so that all the 0 bits become 1 bits and vice
versa ~4 results in a value of –5

- Negates the original value so that positive becomes negative and vice
versa

–(–4) results in 4 and –4
results in –4

+ Is provided purely for the sake of completeness; returns the same value
that you provide as input +4 results in a value of 4

Computers can perform other sorts of math tasks because of the
way in which the processor works. It’s important to remember that
computers store data as a series of individual bits. Python lets you
access these individual bits by using bitwise operators, as shown
in Table 4-4 .

TABLE 4-4 Python Bitwise Operators

Operator Description Example

& (And) Determines whether both individual bits within two operators are true and sets the
resulting bit to true when they are.

0b1100 &
0b0110 =
0b0100

| (Or) Determines whether either of the individual bits within two operators are true and
sets the resulting bit to true when they are.

0b1100 |
0b0110 =
0b1110

^ (Exclusive
or)

Determines whether just one of the individual bits within two operators is true and
sets the resulting bit to true when one is. When both bits are true or both bits are
false, the result is false.

0b1100 ^
0b0110 =
0b1010

~ (One’s
complement) Calculates the one’s complement value of a number.

~0b1100 = –
0b1101
~0b0110 = –
0b0111

<< (Left
shift)

Shifts the bits in the left operand left by the value of the right operand. All new bits
are set to 0 and all bits that flow off the end are lost.

0b00110011
<< 2 =
0b11001100

>> (Right
shift)

Shifts the bits in the left operand right by the value of the right operand. All new
bits are set to 0 and all bits that flow off the end are lost.

0b00110011
>> 2 =
0b00001100

Comparing data by using Boolean
expressions
Using arithmetic to modify the content of variables is a kind of
data manipulation. To determine the effect of data manipulation, a
computer must compare the current state of the variable against
its original state or the state of a known value. In some cases,
detecting the status of one input against another is also
necessary. All these operations check the relationship between
two variables, so the resulting operators are relational operators,
as shown in Table 4-5 .

TABLE 4-5 Python Relational Operators

Operator Description Example

==
Determines whether two values are equal. Notice that the relational operator uses two
equals signs. A mistake many developers make is using just one equals sign, which
results in one value being assigned to another.

1 == 2 is
False

!=
Determines whether two values are not equal. Some older versions of Python allowed
you to use the <> operator in place of the != operator. Using the <> operator results in an
error in current versions of Python.

1 != 2 is
True

> Verifies that the left operand value is greater than the right operand value. 1 > 2 is
False

< Verifies that the left operand value is less than the right operand value. 1 < 2 is
True

>= Verifies that the left operand value is greater than or equal to the right operand value. 1 >= 2 is
False

<= Verifies that the left operand value is less than or equal to the right operand value. 1 <= 2 is
True

Sometimes a relational operator can’t tell the whole story of the
comparison of two values. For example, you might need to check
a condition in which two separate comparisons are needed, such
as MyAge > 40 and MyHeight < 74 . The need to add conditions to
the comparison requires a logical operator of the sort shown in
Table 4-6 .

TABLE 4-6 Python Logical Operators

Operator Description Example

Operator Description Example

and Determines whether both operands are true.

True and True is
True
True and False is
False
False and True is
False
False and False is
False

or Determines when one of two operands is true.

True or True is
True
True or False is
True
False or True is
True
False or False is
False

not Negates the truth value of a single operand. A true value becomes false and a
false value becomes true.

not True is False
not False is True

Computers provide order to comparisons by making some
operators more significant than others. The ordering of operators
is operator precedence. Table 4-7 shows the operator precedence
of all the common Python operators, including a few you haven’t
seen as part of a discussion yet. When making comparisons,
always consider operator precedence because otherwise, the
assumptions you make about a comparison outcome will likely be
wrong.

TABLE 4-7 Python Operator Precedence

Operator Description

()
You use parentheses to group expressions and to override the default precedence so that you can
force an operation of lower precedence (such as addition) to take precedence over an operation of
higher precedence (such as multiplication).

** Exponentiation raises the value of the left operand to the power of the right operand.

~ + - Unary operators interact with a single variable or expression.

* / % // Multiply, divide, modulo, and floor division.

+ - Addition and subtraction.

>> << Right and left bitwise shift.

& Bitwise AND.

^ | Bitwise exclusive OR and standard OR.

<= < > >= Comparison operators.

Operator Description

== != Equality operators.

= %= /=
//= -= +=
*= **=

Assignment operators.

is
is not

Identity operators.

in
not in

Membership operators.

not or
and Logical operators.

Creating and Using Strings
Of all the data types, strings are the most easily understood by
humans and not understood at all by computers. A string is simply
any grouping of characters you place within double quotation
marks. For example, myString = "Python is a great language."
assigns a string of characters to myString .

STARTING IPython
Most of the book relies on Jupyter Notebook (see Chapter 3) because it
provides methods for creating, managing, and interacting with complex coding
examples. However, sometimes you need a simple interactive environment to
use for quick tests, which is the route this chapter uses. Anaconda comes with
two such environments, IPython and Jupyter QT Console. Of the two, IPython
is the simplest to use, but both environments provide similar functionality. To
start IPython, simply click its entry in the Anaconda3 folder on your system. For
example, when working with Windows, you choose Start ⇒    All Programs ⇒    
Anaconda3 ⇒    IPython. You can also start IPython in a console or terminal
window by typing IPython and pressing Enter.

 The main reason to use strings when working with
algorithms is to provide user interaction — either as requests
for input or as a means of making output easier to

understand. You can also perform analysis of string data as
part of working with algorithms, but the computer doesn’t
actually require strings as part of its sequence of steps to
obtain a solution to a problem. In fact, the computer doesn’t
see letters at all. Every letter you use is represented by a
number in memory. For example, the letter A is actually the
number 65. To see this for yourself, type ord("A") at the
Python prompt and press Enter. You see 65 as output. You
can convert any single letter to its numeric equivalent using
the ord() command.

Because the computer doesn’t really understand strings, but
strings are so useful in writing applications, you sometimes need
to convert a string to a number. You can use the int() and
float() commands to perform this conversion. For example, if
you type myInt = int("123") and press Enter at the Python
prompt, you create an int named myInt that contains the value
123 .

 You can convert numbers to a string as well by using the
str() command. For example, if you type myStr =
str(1234.56) and press Enter, you create a string containing
the value "1234.56" and assign it to myStr . The point is that
you can go back and forth between strings and numbers with
great ease. Later chapters demonstrate how these
conversions make many seemingly impossible tasks quite
doable.

As with numbers, you can use some special operators with strings
(and many objects). The member operators enable you to
determine when a string contains specific content. Table 4-8
shows these operators.

TABLE 4-8 Python Membership Operators

Operator Description Example

Operator Description Example

in Determines whether the value in the left operand appears in the
sequence found in the right operand

“Hello” in “Hello Goodbye”
is True

not in Determines whether the value in the left operand is missing from the
sequence found in the right operand

“Hello” not in “Hello
Goodbye” is False

The discussion in this section also makes it obvious that you need
to know the kind of data that variables contain. You use the
identity operators to perform this task, as shown in Table 4-9 .

TABLE 4-9 Python Identity Operators

Operator Description Example

is Evaluates to true when the type of the value or expression in the right operand points
to the same type in the left operand

type(2) is int
is True

is not Evaluates to true when the type of the value or expression in the right operand points
to a different type than the value or expression in the left operand

type(2) is not
int is False

Interacting with Dates
Dates and times are items that most people work with quite a bit.
Society bases almost everything on the date and time that a task
needs to be or was completed. We make appointments and plan
events for specific dates and times. Most of our day revolves
around the clock. When working with algorithms, the date or time
at which a particular step in a sequence occurs can be just as
important as how the step occurs and what happens as a result of
performing the step. Algorithms rely on date and time to organize
data so that humans can better understand the data and the
resulting output of the algorithm.
Because of the time-oriented nature of humans, it’s a good idea to
look at how Python deals with interacting with date and time
(especially storing these values for later use). As with everything
else, computers understand only numbers — date and time don’t
really exist. The algorithm, not the computer, relies on date and
time to help organize the series of steps performed to solve a
problem.

 To work with dates and times, you must issue a special
import datetime command. Technically, this act is called
importing a module. Don’t worry about how the command
works right now — just use it whenever you want to do
something with date and time.

Computers do have clocks inside them, but the clocks are for the
humans using the computer. Yes, some software also depends on
the clock, but again, the emphasis is on human needs rather than
anything the computer might require. To get the current time, you
can simply type datetime.datetime.now() and press Enter. You
see the full date and time information as found on your
computer’s clock, such as datetime.datetime(2016, 12, 20, 10,
37, 24, 460099) .
You may have noticed that the date and time are a little hard to
read in the existing format. Say that you want to get just the
current date, and in a readable format. To accomplish this task,
you access just the date portion of the output and convert it into a
string. Type str(datetime.datetime.now().date()) and press
Enter. You now have something a little more usable, such as
'2016-12-20' .
Interestingly enough, Python also has a time() command, which
you can use to obtain the current time. You can obtain separate
values for each of the components that make up date and time
using the day , month , year , hour , minute , second , and
microsecond values. Later chapters help you understand how to
use these various date and time features to make working with
algorithms easier.

Creating and Using Functions
Every step in an algorithm normally requires a single line of
Python code — an English-like instruction that tells the computer
how to move the problem solution one step closer to completion.

You combine these lines of code to achieve a desired result.
Sometimes you need to repeat the instructions with different data,
and in some cases your code becomes so long that it’s hard to
keep track of what each part does. Functions serve as
organization tools that keep your code neat and tidy. In addition,
functions make it easy to reuse the instructions you’ve created as
needed with different data. This section of the chapter tells you all
about functions. More important, in this section you start creating
your first serious applications in the same way that professional
developers do.

Creating reusable functions
You go to your closet, take out pants and shirt, remove the labels,
and put them on. At the end of the day, you take everything off
and throw it in the trash. Hmmm … that really isn’t what most
people do. Most people take the clothes off, wash them, and then
put them back into the closet for reuse. Functions are reusable,
too. No one wants to keep repeating the same task; it becomes
monotonous and boring. When you create a function, you define a
package of code that you can use over and over to perform the
same task. All you need to do is tell the computer to perform a
specific task by telling it which function to use. The computer
faithfully executes each instruction in the function absolutely every
time you ask it to do so.

 When you work with functions, the code that needs
services from the function is named the caller, and it calls
upon the function to perform tasks for it. Much of the
information you see about functions refers to the caller. The
caller must supply information to the function, and the
function returns information to the caller.

At one time, computer programs didn’t include the concept of
code reusability. As a result, developers had to keep reinventing
the same code. It didn’t take long for someone to come up with

the idea of functions, though, and the concept has evolved over
the years until functions have become quite flexible. You can
make functions do anything you want. Code reusability is a
necessary part of applications to

Reduce development time
Reduce programmer error
Increase application reliability
Allow entire groups to benefit from the work of one programmer
Make code easier to understand
Improve application efficiency

In fact, functions do a whole list of things for applications in the
form of reusability. As you work through the examples in this
book, you see how reusability makes your life significantly easier.
If not for reusability, you’d still be programming by plugging 0s and
1s into the computer by hand.
Creating a function doesn’t require much work. To see how
functions work, open a copy of IPython and type in the following
code (pressing Enter at the end of each line):

def SayHello():

print('Hello There!')

To end the function, you press Enter a second time after the last
line. A function begins with the keyword def (for define). You
provide a function name, parentheses that can contain function
arguments (data used in the function), and a colon. The editor
automatically indents the next line for you. Python relies on
whitespace to define code blocks (statements that are associated
with each other in a function).
You can now use the function. Simply type SayHello() and press
Enter. The parentheses after the function name are important
because they tell Python to execute the function rather than tell
you that you are accessing a function as an object (to determine
what it is). You see Hello There! as the output.

Calling functions
Functions can accept arguments (additional bits of data) and
return values. The capability to exchange data makes functions
far more useful than they otherwise might be. The following
sections describe how to call functions in a variety of ways to both
send and receive data.

Sending requirement arguments
A function can require the caller to provide arguments to it. A
required argument is a variable that must contain data for the
function to work. Open a copy of IPython and type the following
code:

def DoSum(Value1, Value2):

return Value1 + Value2

You have a new function, DoSum() . This function requires that you
provide two arguments to use it. At least, that’s what you’ve heard
so far. Type DoSum() and press Enter. You see an error message
like this one:

TypeError

Traceback (most recent call last)

<ipython-input-2-a37c1b30cd89> in <module>()

----> 1 DoSum()

TypeError: DoSum() missing 2 required positional

arguments: 'Value1' and 'Value2'

Trying DoSum() with just one argument would result in another
error message. To use DoSum() ,you must provide two arguments.
To see how this works, type DoSum(1, 2) and press Enter. You
see the expected result of 3 .

 Notice that DoSum() provides an output value of 3 when
you supply 1 and 2 as inputs. The return statement provides
the output value. Whenever you see return in a function, you
know that the function provides an output value.

Sending arguments by keyword
As your functions become more complex and the methods to use
them do as well, you may want to provide a little more control over
precisely how you call the function and provide arguments to it.
Until now, you have positional arguments, which means that you
have supplied values in the order in which they appear in the
argument list for the function definition. However, Python also has
a method for sending arguments by keyword. In this case, you
supply the name of the argument followed by an equals sign (=)
and the argument value. To see how this works, open a copy of
IPython and type the following code:

def DisplaySum(Value1, Value2):

print(str(Value1) + ' + ' + str(Value2) + ' = ' +

str((Value1 + Value2)))

 Notice that the print() function argument includes a list of
items to print and that those items are separated by plus
signs (+). In addition, the arguments are of different types, so
you must convert them using the str() function. Python
makes it easy to mix and match arguments in this manner.
This function also introduces the concept of automatic line
continuation. The print() function actually appears on two
lines, and Python automatically continues the function from
the first line to the second.

Next, it’s time to test DisplaySum() . Of course, you want to try the
function using positional arguments first, so type DisplaySum(2,
3) and press Enter. You see the expected output of 2 + 3 = 5 .
Now type DisplaySum(Value2 = 3, Value1 = 2) and press Enter.
Again, you receive the output 2 + 3 = 5 even though the position
of the arguments has been reversed.

Giving function arguments a default value
Whether you make the call using positional arguments or keyword
arguments, the functions to this point have required that you
supply a value. Sometimes a function can use default values
when a common value is available. Default values make the
function easier to use and less likely to cause errors when a
developer doesn’t provide an input. To create a default value, you
simply follow the argument name with an equals sign and the
default value. To see how this works, open a copy of IPython and
type the following code:

def SayHello(Greeting = "No Value Supplied"):

print(Greeting)

The SayHello() function provides an automatic value for Greeting
when a caller doesn’t provide one. When someone tries to call
SayHello() without an argument, it doesn’t raise an error. Type
SayHello() and press Enter to see for yourself — you see the
default message. Type SayHello("Howdy!") to see a normal
response.

Creating functions with a variable number of
arguments
In most cases, you know precisely how many arguments to
provide with your function. It pays to work toward this goal
whenever you can because functions with a fixed number of
arguments are easier to troubleshoot later. However, sometimes
you simply can’t determine how many arguments the function will
receive at the outset. For example, when you create a Python
application that works at the command line, the user might

provide no arguments, the maximum number of arguments
(assuming there is one), or any number of arguments in between.
Fortunately, Python provides a technique for sending a variable
number of arguments to a function. You simply create an
argument that has an asterisk in front of it, such as *VarArgs . The
usual technique is to provide a second argument that contains the
number of arguments passed as an input. To see how this works,
open a copy of IPython and type the following code:

def DisplayMulti(ArgCount = 0, *VarArgs):

print('You passed ' + str(ArgCount) + ' arguments.',

VarArgs)

Notice that the print() function displays a string and then the list
of arguments. Because of the way this function is designed, you
can type DisplayMulti() and press Enter to see that you can pass
zero arguments. To see multiple arguments at work, type
DisplayMulti(3, 'Hello', 1, True) and press Enter. The output of
('You passed 3 arguments.', ('Hello', 1, True)) shows that
you need not pass values of any particular type.

Using Conditional and Loop
Statements

Algorithms often require steps that make decisions or perform
some steps more than one time. For example, you might need to
throw out a value that doesn’t fit with the rest of the data, which
requires making a decision, or you might need to process the data
more than once to obtain a desired result, such as when you filter
the data. Python accommodates this need by providing special
statements that make decisions or let you perform steps more
than once, as described in the sections that follow.

Making decisions using the if
statement
You use if statements regularly in everyday life. For example, you
may say to yourself, “If it’s Wednesday, I’ll eat tuna salad for
lunch.” The Python if statement is a little less verbose, but it
follows precisely the same pattern. To see how this works, open a
copy of IPython and type the following code:

def TestValue(Value):

if Value == 5:

print('Value equals 5!')

elif Value == 6:

print('Value equals 6!')

else:

print('Value is something else.')

print('It equals ' + str(Value))

Every Python if statement begins, oddly enough, with the word if.
When Python sees if , it knows that you want it to make a
decision. After the word if comes a condition. A condition simply
states what sort of comparison you want Python to make. In this
case, you want Python to determine whether Value contains the
value 5 .

 Notice that the condition uses the relational equality
operator, == , and not the assignment operator, = . A common
mistake that developers make is to use the assignment
operator rather than the equality operator. Using the
assignment operator in place of the equality operator will
cause your code to malfunction.

The condition always ends with a colon (:). If you don’t provide a
colon, Python doesn’t know that the condition has ended and will

continue to look for additional conditions on which to base its
decision. After the colon comes any tasks you want Python to
perform.
You may need to perform multiple tasks using a single if
statement. The elif clause makes it possible to add an additional
condition and associated tasks. A clause is an addendum to a
previous condition, which is an if statement in this case. The elif
clause always provides a condition, just as the if statement does,
and it has its own associated set of tasks to perform.
Sometimes you need to do something no matter what the
condition might be. In this case, you add the else clause. The
else clause tells Python to do something in particular when the
conditions of the if statement aren’t met.

 Notice how indenting is becoming more important as the
functions become more complex. The function contains an if
statement. The if statement contains just one print()
statement. The else clause contains two print() statements.

To see this function in action, type TestValue(1) and press Enter.
You see the output from the else clause. Type TestValue(5) and
press Enter. The output now reflects the if statement output.
Type TestValue(6) and press Enter. The output now shows the
results of the elif clause. The result is that this function is more
flexible than previous functions in the chapter because it can
make decisions.

Choosing between multiple options
using nested decisions
Nesting is the process of placing a subordinate statement within
another statement. You can nest any statement within any other
statement, in most cases. To see how this works, open a copy of
IPython and type the following code:

def SecretNumber():

One = int(input("Type a number between 1 and 10: "))

Two = int(input("Type a number between 1 and 10: "))

if (One >= 1) and (One <= 10):

if (Two >= 1) and (Two <= 10):

 print('Your secret number is: ' + str(One * Two))

else:

print("Incorrect second value!")

else:

print("Incorrect first value!")

In this case, SecretNumber() asks you to provide two inputs. Yes,
you can get inputs from a user when needed by using the input()
function. The int() function converts the inputs to a number.
There are two levels of if statement this time. The first level
checks for the validity of the number in One . The second level
checks for the validity of the number in Two . When both One and
Two have values between 1 and 10, . SecretNumber() outputs a
secret number for the user.
To see SecretNumber() in action, type SecretNumber() and press
Enter. Type 20 and press Enter when asked for the first input
value, and type 10 and press Enter when asked for the second.
You see an error message telling you that the first value is
incorrect. Type SecretNumber() and press Enter again. This time,
use values of 10 and 20. The function will tell you that the second
input is incorrect. Try the same sequence again using input values
of 10 and 10.

Performing repetitive tasks using
the for loop

Sometimes you need to perform a task more than one time. You
use the for loop statement when you need to perform a task a
specific number of times. The for loop has a definite beginning
and a definite end. The number of times that this loop executes
depends on the number of elements in the variable you provide.
To see how this works, open a copy of IPython and type the
following code:

def DisplayMulti(*VarArgs):

for Arg in VarArgs:

if Arg.upper() == 'CONT':

continue

print('Continue Argument: ' + Arg)

elif Arg.upper() == 'BREAK':

break

print('Break Argument: ' + Arg)

print('Good Argument: ' + Arg)

In this case, the for loop attempts to process each element in
VarArgs . Notice that there is a nested if statement in the loop
and it tests for two ending conditions. In most cases, the code
skips the if statement and simply prints the argument. However,
when the if statement finds the words CONT or BREAK in the input
values, it performs one of these two tasks:

continue : Forces the loop to continue from the current point of
execution with the next entry in VarArgs.
break : Stops the loop from executing.

 The keywords can appear using any combination of
uppercase and lowercase letters, such as ConT, because the
upper() function converts them to uppercase. The
DisplayMulti() function can process any number of input

strings. To see it in action, type DisplayMulti('Hello',
'Goodbye', 'First', 'Last') and press Enter. You see each of
the input strings presented on a separate line in the output.
Now type DisplayMulti('Hello', 'Cont', 'Goodbye', 'Break',
'Last') and press Enter. Notice that the words Cont and Break
don’t appear in the output because they’re keywords. In
addition, the word Last doesn’t appear in the output because
the for loop ends before this word is processed.

Using the while statement
The while loop statement continues to perform tasks until such
time that a condition is no longer true. As with the for statement,
the while statement supports both the continue and break
keywords for ending the loop prematurely. To see how this works,
open a copy of IPython and type the following code:

def SecretNumber():

GotIt = False

while GotIt == False:

One = int(input("Type a number between 1 and 10: "))

Two = int(input("Type a number between 1 and 10: "))

if (One >= 1) and (One <= 10):

if (Two >= 1) and (Two <= 10):

print('Secret number is: ' + str(One * Two))

GotIt = True

continue

else:

print("Incorrect second value!")

else:

print("Incorrect first value!")

print("Try again!")

This is an expansion of the SecretNumber() function first described
in the “Choosing between multiple options using nested decisions
” section, earlier in this chapter. However, in this case, the addition
of a while loop statement means that the function continues to
ask for input until it receives a valid response.
To see how the while statement works, type SecretNumber() and
press Enter. Type 20 and press Enter for the first prompt. Type 10
and press Enter for the second prompt. The example tells you that
the first number is wrong and then tells you to try again. Try a
second time using values of 10 and 20. This time, the second
number is wrong and you still need to try again. On the third try,
use values of 10 and 10. This time, you get a secret number.
Notice that the use of a continue clause means that the
application doesn’t tell you to try again.

Storing Data Using Sets, Lists,
and Tuples

When working with algorithms, it’s all about the data. Python
provides a host of methods for storing data in memory. Each
method has advantages and disadvantages. Choosing the most
appropriate method for your particular need is important. The
following sections discuss three common techniques used for
storing data for data science needs.

Creating sets
Most people have used sets at one time or another in school to
create lists of items that belong together. These lists then became
the topic of manipulation using math operations such as
intersection, union, difference, and symmetric difference. Sets are
the best option to choose when you need to perform membership
testing and remove duplicates from a list. You can’t perform
sequence-related tasks using sets, such as indexing or slicing. To
see how you can work with sets, start a copy of IPython and type
the following code:

SetA = set(['Red', 'Blue', 'Green', 'Black'])

SetB = set(['Black', 'Green', 'Yellow', 'Orange'])

SetX = SetA.union(SetB)

SetY = SetA.intersection(SetB)

SetZ = SetA.difference(SetB)

You now have five different sets to play with, each of which has
some common elements. To see the results of each math
operation, type print(‘{0}\n{1}\n{2}'. format(SetX, SetY, SetZ))
and press Enter. You see one set printed on each line, like this:

{'Blue', 'Orange', 'Red', 'Green', 'Black', 'Yellow'}

{'Green', 'Black'}

{'Blue', 'Red'}

 The outputs show the results of the math operations:
union() , intersection() , and difference() . Python’s
fancier print formatting can be useful in working with
collections such as sets. The format() function tells Python
which objects to place within each of the placeholders in the
string. A placeholder is a set of curly brackets ({}) with an
optional number in it. The escape character (essentially a
kind of control or special character), /n , provides a newline
character between entries. You can read more about fancy
formatting at
https://docs.python.org/3/tutorial/inputoutput.html .

You can also test relationships between the various sets. For
example, type SetA.issuperset(SetY) and press Enter. The
output value of True tells you that SetA is a superset of SetY .
Likewise, if you type SetA.issubset(SetX) and press Enter, you
find that SetA is a subset of SetX .

https://docs.python.org/3/tutorial/inputoutput.html

It’s important to understand that sets are either mutable or
immutable. All the sets in this example are mutable, which means
that you can add or remove elements from them. For example, if
you type SetA.add('Purple') and press Enter, SetA receives a
new element. If you type SetA.issubset(SetX) and press Enter
now, you find that SetA is no longer a subset of SetX because SetA
has the 'Purple' element in it.

Creating lists
The Python specification defines a list as a kind of sequence.
Sequences simply provide some means of allowing multiple data
items to exist together in a single storage unit, but as separate
entities. Think about one of those large mail holders you see in
apartment buildings. A single mail holder contains a number of
small mailboxes, each of which can contain mail. Python supports
other kinds of sequences as well:

Tuples: A tuple is a collection that’s used to create complex, list-
like sequences. An advantage of tuples is that you can nest the
content of a tuple. This feature lets you create structures that
can hold employee records or x-y coordinate pairs.
Dictionaries: As with the real dictionaries, you create key/value
pairs when using the dictionary collection (think of a word and its
associated definition). A dictionary provides incredibly fast
search times and makes ordering data significantly easier.
Stacks: Most programming languages support stacks directly.
However, Python doesn’t support the stack, although a
workaround exists for that. A stack is a last in/first out (LIFO)
sequence. Think of a pile of pancakes: You can add new
pancakes to the top and also take them off the top. A stack is an
important collection that you can simulate in Python by using a
list.
Queues: A queue is a first in/first out (FIFO) collection. You use
it to track items that need to be processed in some way. Think of
a queue as a line at the bank. You go into the line, wait your
turn, and are eventually called to talk with a teller.

Deques: A double-ended queue (deque) is a queue-like
structure that lets you add or remove items from either end, but
not from the middle. You can use a deque as a queue or a stack
or any other kind of collection to which you’re adding and from
which you’re removing items in an orderly manner (in contrast to
lists, tuples, and dictionaries, which allow randomized access
and management).

Of all the sequences, lists are the easiest to understand and are
the most directly related to a real-world object. Working with lists
helps you become better able to work with other kinds of
sequences that provide greater functionality and improved
flexibility. The point is that the data is stored in a list much as you
would write it on a piece of paper: One item comes after another.
The list has a beginning, a middle, and an end. Python numbers
the items in the list. (Even if you might not normally number the
list items in real life, using a numbered list makes the items easy
to access.) To see how you can work with lists, start a copy of
IPython and type the following code:

ListA = [0, 1, 2, 3]

ListB = [4, 5, 6, 7]

ListA.extend(ListB)

ListA

When you type the last line of code, you see the output of [0, 1,
2, 3, 4, 5, 6, 7] . The extend() function adds the members of
ListB to ListA . Besides extending lists, you can also add to them
by using the append() function. Type ListA.append(-5) and press
Enter. When you type ListA and press Enter again, you see that
Python has added –5 to the end of the list. You may find that you
need to remove items again, and you do that by using the
remove() function. For example, type ListA.remove(-5) and press
Enter. When you list ListA again by typing ListA and pressing
Enter, you see that the added entry is gone.

 Lists also support concatenation by using the plus (+) sign
to add one list to another. For example, if you type ListX =
ListA + ListB and press Enter, you find that the newly
created ListX contains both ListA and ListB in it, with the
elements of ListA coming first.

Creating and using tuples
A tuple is a collection used to create complex lists, in which you
can embed one tuple within another. This embedding lets you
create hierarchies with tuples. A hierarchy can be something as
simple as the directory listing of your hard drive or an
organizational chart for your company. The idea is that you can
create complex data structures using a tuple.

 Tuples are immutable, which means that you can’t change
them. You can create a new tuple with the same name and
modify it in some way, but you can’t modify an existing tuple.
Lists are mutable, which means that you can change them.
So a tuple can seem at first to be at a disadvantage, but
immutability has all sorts of advantages, such as being more
secure as well as faster. In addition, immutable objects are
easier to use with multiple processors. To see how you can
work with tuples, start a copy of IPython and type the
following code:

MyTuple = (1, 2, 3, (4, 5, 6, (7, 8, 9)))

MyTuple is nested three levels deep. The first level consists of the
values 1, 2, 3, and a tuple. The second level consists of the
values 4, 5, 6, and yet another tuple. The third level consists of
the values 7, 8, and 9. To see how this works, type the following
code into IPython:

for Value1 in MyTuple:

if type(Value1) == int:

print(Value1)

else:

for Value2 in Value1:

if type(Value2) == int:

print("\t", Value2)

else:

for Value3 in Value2:

print("\t\t", Value3)

When you run this code, you find that the values really are at
three different levels. You can see the indentations showing the
level:

1

2

3

4

5

6

7

8

9

 It is possible to perform tasks such as adding new values,
but you must do it by adding the original entries and the new
values to a new tuple. In addition, you can add tuples to an
existing tuple only. To see how this works, type MyNewTuple
= MyTuple.__add__((10, 11, 12, (13, 14, 15))) and press
Enter. MyNewTuple contains new entries at both the first and

second levels, like this: (1, 2, 3, (4, 5, 6, (7, 8, 9)),
10, 11, 12, (13, 14, 15)) .

Defining Useful Iterators
The chapters that follow use all kinds of techniques to access
individual values in various types of data structures. For this
section, you use two simple lists, defined as the following:

ListA = ['Orange', 'Yellow', 'Green', 'Brown']

ListB = [1, 2, 3, 4]

The simplest method of accessing a particular value is to use an
index. For example, if you type ListA[1] and press Enter, you see
'Yellow' as the output. All indexes in Python are zero based,
which means that the first entry is 0, not 1.
Ranges present another simple method of accessing values. For
example, if you type ListB[1:3] and press Enter, the output is [2,
3] . You could use the range as input to a for loop, such as

for Value in ListB[1:3]:

print(Value)

Instead of the entire list, you see just 2 and 3 as outputs, printed
on separate lines. The range has two values separated by a
colon. However, the values are optional. For example, ListB[:3]
would output [1, 2, 3] . When you leave out a value, the range
starts at the beginning or the end of the list, as appropriate.
Sometimes you need to process two lists in parallel. The simplest
method of doing this is to use the zip() function. Here’s an
example of the zip() function in action:

for Value1, Value2 in zip(ListA, ListB):

print(Value1, '\t', Value2)

This code processes both ListA and ListB at the same time. The
processing ends when the for loop reaches the shortest of the
two lists. In this case, you see the following:

Orange 1

Yellow 2

Green 3

Brown 4

 This is the tip of the iceberg. You see a host of iterator
types used throughout the book. The idea is to enable you to
list just the items you want, rather than all the items in a list or
other data structure. Some of the iterators used in upcoming
chapters are a little more complicated than what you see
here, but this is an important start.

Indexing Data Using
Dictionaries

A dictionary is a special kind of sequence that uses a name and
value pair. The use of a name makes it easy to access particular
values with something other than a numeric index. To create a
dictionary, you enclose name and value pairs in curly brackets.
Create a test dictionary by typing MyDict = {'Orange':1, 'Blue':2,
'Pink':3} and pressing Enter.
To access a particular value, you use the name as an index. For
example, type MyDict[‘Pink'] and press Enter to see the output
value of 3 . The use of dictionaries as data structures makes it
easy to access incredibly complex data sets using terms that
everyone can understand. In many other respects, working with a
dictionary is the same as working with any other sequence.

Dictionaries do have some special features. For example, type
MyDict.keys() and press Enter to see a list of the keys. You can
use the values() function to see the list of values in the dictionary.

Chapter 5
Performing Essential Data

Manipulations Using Python
IN THIS CHAPTER

 Using matrixes and vectors to perform calculations
 Obtaining the correct combinations
 Employing recursive techniques to obtain specific results
 Considering ways to speed calculations

Chapter 4 discusses the use of Python as a means for expressing
in concrete terms those arcane symbols often used in
mathematical representations of algorithms. In that chapter, you
discover the various language constructs used to perform tasks in
Python. However, simply knowing how to control a language by
using its constructs to perform tasks isn’t enough. The goal of
mathematical algorithms is to turn one kind of data into another
kind of data. Manipulating data means taking raw input and doing
something with it to achieve a desired result. (As with data
science, this is a topic covered in Python for Data Science For
Dummies, by John Paul Mueller and Luca Massaron [Wiley].) For
example, until you do something with traffic data, you can’t see
the patterns that emerge that tell you where to spend additional
money in improvements. The traffic data in its raw form does
nothing to inform you — you must manipulate it to see the pattern
in a useful manner. Therefore, those arcane symbols are useful
after all. You use them as a sort of machine to turn raw data into
something helpful, which is what you discover in this chapter.
In times past, people actually had to perform the various
manipulations to make data useful by hand, which required
advanced knowledge of math. Fortunately, you can find Python

packages to perform most of these manipulations using a little
code. You don’t have to memorize arcane manipulations anymore
— just know which Python features to use. That’s what this
chapter helps you achieve. You discover the means to perform
various kinds of data manipulations using easily accessed Python
packages designed especially for the purpose. The chapter
begins with vector and matrix manipulations. Later sections
discuss techniques such as recursion that can make the tasks
even simpler and perform some tasks that are nearly impossible
using other means. You also discover how to speed up the
calculations so that you spend less time manipulating the data
and more time doing something really interesting with it, such as
discovering just how to keep quite so many traffic jams from
occurring.

Performing Calculations Using
Vectors and Matrixes

To perform useful work with Python, you often need to work with
larger amounts of data that comes in specific forms. These forms
have odd-sounding names, but the names are quite important.
The three terms you need to know for this chapter are as follows:

Scalar: A single base data item. For example, the number 2
shown by itself is a scalar.
Vector: A one-dimensional array (essentially a list) of data
items. For example, an array containing the numbers 2, 3, 4,
and 5 would be a vector. You access items in a vector using a
zero-based index, a pointer to the item you want. The item at
index 0 is the first item in the vector, which is 2 in this case.
Matrix: A two-or-more-dimensional array (essentially a table) of
data items. For example, an array containing the numbers 2, 3,
4, and 5 in the first row and 6, 7, 8, and 9 in the second row is a
matrix. You access items in a matrix using a zero-based row-
and-column index. The item at row 0, column 0 is the first item
in the matrix, which is 2 in this case.

Python provides an interesting assortment of features on its own,
as described in Chapter 4 , but you’d still need to do a lot of work
to perform some tasks. To reduce the amount of work you do, you
can rely on code written by other people and found in packages.
The following sections describe how to use the NumPy package
to perform various tasks on scalars, vectors, and matrixes.

Understanding scalar and vector
operations
The NumPy package provides essential functionality for scientific
computing in Python. To use numpy , you import it using a
command such as import numpy as np . Now you can access
numpy using the common two-letter abbreviation np .

 Python provides access to just one data type in any
particular category. For example, if you need to create a
variable that represents a number without a decimal portion,
you use the integer data type. Using a generic designation
like this is useful because it simplifies code and gives the
developer a lot less to worry about. However, in scientific
calculations, you often need better control over how data
appears in memory, which means having more data types,
something that numpy provides for you. For example, you
might need to define a particular scalar as a short (a value
that is 16 bits long). Using numpy , you could define it as
myShort = np.short(15) . You could define a variable of
precisely the same size using the np.int16 function. The
NumPy package provides access to a side assortment of
data types described at
https://docs.scipy.org/doc/numpy/reference/arrays.scalar

s.html .
Use the numpy array function to create a vector. For example,
myVect = np.array([1, 2, 3, 4]) creates a vector with four

https://docs.scipy.org/doc/numpy/reference/arrays.scalars.html

elements. In this case, the vector contains standard Python
integers. You can also use the arange function to produce vectors,
such as myVect = np.arange(1, 10, 2) , which fills myVect with
array([1, 3, 5, 7, 9]) . The first input tells the starting point, the
second the stopping point, and the third the step between each
number. A fourth argument lets you define the data type for the
vector. You can also create a vector with a specific data type. All
you need to do is specify the data type like this: myVect =
np.array(np.int16([1, 2, 3, 4])) to fill myVect with a vector like
this: array([1, 2, 3, 4], dtype=int16) .
In some cases, you need special numpy functions to create a
vector (or a matrix) of a specific type. For example, some math
tasks require that you fill the vector with ones. In this case, you
use the ones function like this: myVect = np.ones(4,
dtype=np.int16) to fill myVect with ones of specific data types like
this: array([1, 1, 1, 1], dtype=int16) . You can also use a
zeros function to fill a vector with zeros.

 You can perform basic math functions on vectors as a
whole, which makes this incredibly useful and less prone to
errors that can occur when using programming constructs
such as loops to perform the same task. For example, myVect
+ 1 produces an output of array([2, 3, 4, 5]) when working
with standard Python integers. If you choose to work with the
numpy int16 data type, myVect + 1 produces array([2, 3, 4,
5], dtype=int16) . Note that the output tells you specifically
which data type is in use. As you might expect, myVect - 1
produces an output of array([0, 1, 2, 3]) . You can even
use vectors in more complex math scenarios, such as 2 **
myVect , where the output is array([2, 4, 8, 16],
dtype=int32) . When used in this manner, however, numpy
often assigns a specific type to the output, even when you
define a vector using standard Python integers.

As a final thought on scalar and vector operations, you can also
perform both logical and comparison tasks. For example, the
following code performs comparison operations on two arrays:

a = np.array([1, 2, 3, 4])

b = np.array([2, 2, 4, 4])

a == b

array([False, True, False, True], dtype=bool)

a < b

array([True, False, True, False], dtype=bool)

Starting with two vectors, a and b , the code checks whether the
individual elements in a equal those in b. In this case, a[0]
doesn’t equal b[0] . However, a[1] does equal b[1] . The output
is a vector of type bool that contains true or false values based on
the individual comparisons. Likewise, you can check for instances
when a < b and produce another vector containing the truth-
values in this instance.
Logical operations rely on special functions. You check the logical
output of the Boolean operators AND, OR, XOR, and NOT. Here
is an example of the logical functions:

a = np.array([True, False, True, False])

b = np.array([True, True, False, False])

np.logical_or(a, b)

array([True, True, True, False], dtype=bool)

np.logical_and(a, b)

array([True, False, False, False], dtype=bool)

np.logical_not(a)

array([False, True, False, True], dtype=bool)

np.logical_xor(a, b)

array([False, True, True, False], dtype=bool)

You can also use numeric input to these functions. When using
numeric input, a 0 is false and a 1 is true. As with comparisons,
the functions work on an element-by-element basis even though
you make just one call. You can read more about the logic
functions at https://docs.scipy.org/doc/numpy-
1.10.0/reference/routines.logic.html .

Performing vector multiplication
Adding, subtracting, or dividing vectors occurs on an element-by-
element basis, as described in the previous section. However,
when it comes to multiplication, things get a little odd. In fact,
depending on what you really want to do, things can become quite
odd indeed. Consider the sort of multiplication discussed in the
previous section. Both myVect * myVect and np.multiply(myVect,
myVect) produce an element-by-element output of array([1, 4,
9, 16]) .

 Unfortunately, an element-by-element multiplication can
produce incorrect results when working with algorithms. In
many cases, what you really need is a dot product, which is
the sum of the products of two number sequences. When
working with vectors, the dot product is always the sum of the
individual element-by-element multiplications and results in a
single number. For example, myVect.dot(myVect) results in an
output of 30 . If you sum the values from the element-by-
element multiplication, you find that they do indeed add up to
30. The discussion at
https://www.mathsisfun.com/algebra/vectors-dot-

product.html tells you about dot products and helps you

https://docs.scipy.org/doc/numpy-1.10.0/reference/routines.logic.html
https://www.mathsisfun.com/algebra/vectors-dot-product.html

understand where they might fit in with algorithms. You can
learn more about the linear algebra manipulation functions for
numpy at
https://docs.scipy.org/doc/numpy/reference/routines.lina

lg.html .

Creating a matrix is the right way to
start
Many of the same techniques you use with vectors also work with
matrixes. To create a basic matrix, you simply use the array
function as you would with a vector, but you define additional
dimensions. A dimension is a direction in the matrix. For example,
a two-dimensional matrix contains rows (one direction) and
columns (a second direction). The array call myMatrix =
np.array([[1,2,3], [4,5,6], [7,8,9]]) produces a matrix
containing three rows and three columns, like this:

array([[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

Note how you embed three lists within a container list to create
the two dimensions. To access a particular array element, you
provide a row and column index value, such as myMatrix[0, 0] to
access the first value of 1 . You can produce matrixes with any
number of dimensions using a similar technique. For example,
myMatrix = np.array([[[1,2], [3,4]], [[5,6], [7,8]]])

produces a three-dimensional matrix with an x, y, and z axis that
looks like this:

array([[[1, 2],

[3, 4]],

[[5, 6],

[7, 8]]])

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

In this case, you embed two lists, within two container lists, within
a single container list that holds everything together. In this case,
you must provide an x, y, and z index value to access a particular
value. For example, myMatrix[0, 1, 1] accesses the value 4 .

 In some cases, you need to create a matrix that has
certain start values. For example, if you need a matrix filled
with ones at the outset, you can use the ones function. The
call to myMatrix = np.ones([4,4], dtype=np.int32) produces
a matrix containing four rows and four columns filled with
int32 values, like this:

array([[1, 1, 1, 1],

[1, 1, 1, 1],

[1, 1, 1, 1],

[1, 1, 1, 1]])

Likewise, a call to myMatrix = np.ones([4,4,4], dtype=np.bool)
will create a three-dimensional array. This time, the matrix will
contain Boolean values of True . There are also functions for
creating a matrix filled with zeros, the identity matrix, and for
meeting other needs. You can find a full listing of vector and
matrix array-creation functions at
https://docs.scipy.org/doc/numpy/reference/routines.array-

creation.html .

 The NumPy package supports an actual matrix class. The
matrix class supports special features that make it easier to
perform matrix-specific tasks. You discover these features
later in the chapter. For now, all you really need to know is
how to create a matrix of the matrix data type. The easiest
method is to make a call similar to the one you use for the

https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html

array function, but using the mat function instead, such as
myMatrix = np.mat([[1,2,3], [4,5,6], [7,8,9]]) , which
produces the following matrix:

matrix([[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

You can also convert an existing array to a matrix using the
asmatrix function. Use the asarray function to convert a matrix
object back to an array form.

 The only problem with the matrix class is that it works on
only two-dimensional matrixes. If you attempt to convert a
three-dimensional matrix to the matrix class, you see an error
message telling you that the shape is too large to be a matrix.

Multiplying matrixes
Multiplying two matrixes involves the same concerns as
multiplying two vectors (as discussed in the “Performing vector
multiplication ” section, earlier in this chapter). The following code
produces an element-by-element multiplication of two matrixes.

a = np.array([[1,2,3],[4,5,6]])

b = np.array([[1,2,3],[4,5,6]])

a*b

array([[1, 4, 9],

[16, 25, 36]])

 Note that a and b are the same shape, two rows and three
columns. To perform an element-by-element multiplication,
the two matrixes must be the same shape. Otherwise, you
see an error message telling you that the shapes are wrong.
As with vectors, the multiply function also produces an
element-by-element result.

Dot products work completely differently with matrixes. In this
case, the number of columns in matrix a must match the number
of rows in matrix b . However, the number of rows in matrix a can
be any number, and the number of columns in matrix b can be any
number as long as you multiply a by b . For example, the following
code produces a correct dot product:

a = np.array([[1,2,3],[4,5,6]])

b = np.array([[1,2,3],[3,4,5],[5,6,7]])

a.dot(b)

array([[22, 28, 34],

[49, 64, 79]])

Note that the output contains the number of rows found in matrix a
and the number of columns found in matrix b . So how does this
all work? To obtain the value found in the output array at index
[0,0] of 22, you sum the values of a[0,0]*b[0,0] (which is 1),
a[0,1]*b[1,0] (which is 6), and a[0,2]*b[2,0] (which is 15) to obtain
the value of 22. The other entries work precisely the same way.

 An advantage of using the NumPy matrix class is that
some tasks become more straightforward. For example,
multiplication works precisely as you expect it should. The
following code produces a dot product using the matrix class:

a = np.mat([[1,2,3],[4,5,6]])

b = np.mat([[1,2,3],[3,4,5],[5,6,7]])

a*b

matrix([[22, 28, 34],

[49, 64, 79]])

The output with the * operator is the same as using the dot
function with an array . This example also points out that you
must know whether you’re using an array or a matrix object when
performing tasks such as multiplying two matrixes.

 To perform an element-by-element multiplication using two
matrix objects, you must use the numpy multiply function.

Defining advanced matrix operations
This book takes you through all sorts of interesting matrix
operations, but you use some of them commonly, which is why
they appear in this chapter. When working with arrays, you
sometimes get data in a shape that doesn’t work with the
algorithm. Fortunately, numpy comes with a special reshape
function that lets you put the data into any shape needed. In fact,
you can use it to reshape a vector into a matrix, as shown in the
following code:

changeIt = np.array([1,2,3,4,5,6,7,8])

changeIt

array([1, 2, 3, 4, 5, 6, 7, 8])

changeIt.reshape(2,4)

array([[1, 2, 3, 4],

[5, 6, 7, 8]])

 changeIt.reshape(2,2,2)

array([[[1, 2],

[3, 4]],

[[5, 6],

[7, 8]]])

 The starting shape of changeIt is a vector, but using the
reshape function turns it into a matrix. In addition, you can
shape the matrix into any number of dimensions that work
with the data. However, you must provide a shape that fits
with the required number of elements. For example, calling
changeIt.reshape(2,3,2) will fail because there aren’t enough
elements to provide a matrix of that size.

You may encounter two important matrix operations in some
algorithm formulations. They are the transpose and inverse of a
matrix. Transposition occurs when a matrix of shape n x m is
transformed into a matrix m x n by exchanging the rows with the
columns. Most texts indicate this operation by using the
superscript T, as in AT . You see this operation used most often for
multiplication in order to obtain the right dimensions. When
working with numpy , you use the transpose function to perform the
required work. For example, when starting with a matrix that has
two rows and four columns, you can transpose it to contain four
rows with two columns each, as shown in this example:

changeIt

array([[1, 2, 3, 4],

[5, 6, 7, 8]])

np.transpose(changeIt)

array([[1, 5],

[2, 6],

[3, 7],

[4, 8]])

You apply matrix inversion to matrixes of shape m x m, which are
square matrixes that have the same number of rows and columns.
This operation is quite important because it allows the immediate
resolution of equations involving matrix multiplication, such as
y=bX, where you have to discover the values in the vector b.
Because most scalar numbers (exceptions include zero) have a
number whose multiplication results in a value of 1, the idea is to
find a matrix inverse whose multiplication will result in a special
matrix called the identity matrix. To see an identity matrix in numpy
, use the identity function like this:

np.identity(4)

array([[1., 0., 0., 0.],

 [0., 1., 0., 0.],

[0., 0., 1., 0.],

[0., 0., 0., 1.]])

Note that an identity matrix contains all ones on the diagonal.
Finding the inverse of a scalar is quite easy (the scalar number n
has an inverse of n–1 that is 1/n). It’s a different story for a matrix.
Matrix inversion involves quite a large number of computations.
The inverse of a matrix A is indicated as A–1 . When working with
numpy , you use the linalg.inv function to create an inverse. The
following example shows how to create an inverse, use it to obtain
a dot product, and then compare that dot product to the identity
matrix by using the allclose function.

a = np.array([[1,2], [3,4]])

b = np.linalg.inv(a)

np.allclose(np.dot(a,b), np.identity(2))

True

 Sometimes, finding the inverse of a matrix is impossible.
When a matrix cannot be inverted, it is referred to as a
singular matrix or a degenerate matrix. Singular matrixes
aren’t the norm; they’re quite rare.

Creating Combinations the
Right Way

Shaping data often involves viewing the data in multiple ways.
Data isn’t simply a sequence of numbers — it presents a
meaningful sequence that, when ordered the proper way, conveys
information to the viewer. Creating the right data combinations by
manipulating data sequences is an essential part of making
algorithms do what you want them to do. The following sections
look at three data-shaping techniques: permutations,
combinations, and repetitions.

Distinguishing permutations
When you receive raw data, it appears in a specific order. The
order can represent just about anything, such as the log of a data
input device that monitors something like a production line.
Perhaps the data is a series of numbers representing the number
of products made at any particular moment in time. The reason
that you receive the data in a particular order is important, but
perhaps that order doesn’t lend itself to obtaining the output you
need from an algorithm. Perhaps creating a data permutation, a
reordering of the data so that it presents a different view, will help
achieve a desired result.

You can view permutations in a number of ways. One method of
viewing a permutation is as a random presentation of the
sequence order. In this case, you can use the numpy
random.permutation function, as shown here:

a = np.array([1,2,3])

np.random.permutation(a)

array([2, 3, 1])

The output on your system will likely vary from the output shown.
Each time you run this code, you receive a different random
ordering of the data sequence, which comes in handy with
algorithms that require you to randomize the dataset to obtain the
desired results. For example, sampling is an essential part of data
analytics, and the technique shown is an efficient way to perform
this task.
Another way to view the issue is the need to obtain all the
permutations for a dataset so that you can try each one in turn. To
perform this task, you need to import the itertools package. The
following code shows a technique you can use to obtain a list of
all the permutations of a particular vector:

from itertools import permutations

a = np.array([1,2,3])

for p in permutations(a):

print(p)

(1, 2, 3)

(1, 3, 2)

(2, 1, 3)

(2, 3, 1)

(3, 1, 2)

(3, 2, 1)

 To save the list of sets, you could always create a blank
list and rely on the append function to add each set to the list
instead of printing the items one at a time, as shown in the
code. The resulting list could serve as input to an algorithm
designed to work with multiple sets. You can read more about
itertools at
https://docs.python.org/3/library/itertools.html .

Shuffling combinations
In some cases, you don’t need an entire dataset; all you really
need are a few of the members in combinations of a specific
length. For example, you might have a dataset containing four
numbers and want only two number combinations from it. (The
ability to obtain parts of a dataset is a key function for generating
a fully connected graph, which is described in Part 3 of the book.)
The following code shows how to obtain such combinations:

from itertools import combinations

a = np.array([1,2,3,4])

for comb in combinations(a, 2):

print(comb)

(1, 2)

(1, 3)

(1, 4)

(2, 3)

(2, 4)

(3, 4)

https://docs.python.org/3/library/itertools.html

The output contains all the possible two-number combinations of a
. Note that this example uses the itertools combinations function
(the permutations function appears in the previous section). Of
course, you might not need all those combinations; perhaps a
random subset of them would work better. In this case, you can
rely on the random.sample function to come to your aid, as shown
here:

pool = []

for comb in combinations(a, 2):

pool.append(comb)

random.sample(pool, 3)

[(1, 4), (3, 4), (1, 2)]

The precise combinations you see as output will vary. However,
the idea is that you’ve limited your dataset in two ways. First,
you’re not using all the data elements all the time, and second,
you’re not using all the possible combinations of those data
elements. The effect is to create a relatively random-looking set of
data elements that you can use as input to an algorithm.

 Another variation of this theme is to create a complete list
but randomize the order of the elements. The act of
randomizing the list order is shuffling, and you use the
random.shuffle function to do it. In fact, Python provides a
whole host of randomizing methods that you can see at
https://docs.python.org/3/library/random.html . Many of
the later examples in this book also rely on randomization to
help obtain the correct output from algorithms.

https://docs.python.org/3/library/random.html

Facing repetitions
Repeated data can unfairly weight the output of an algorithm so
that you get inaccurate results. Sometimes you need unique
values to determine the outcome of a data manipulation.
Fortunately, Python makes it easy to remove certain types of
repeated data. Consider this example:

a = np.array([1,2,3,4,5,6,6,7,7,1,2,3])

b = np.array(list(set(a)))

b

array([1, 2, 3, 4, 5, 6, 7])

 In this case, a begins with an assortment of numbers in no
particular order and with plenty of repetitions. In Python, a set
never contains repeated data. Consequently, by converting
the list in a to a set and then back to a list , and then placing
that list in an array , you obtain a vector that has no repeats.

Getting the Desired Results
Using Recursion

Recursion is an elegant method of solving many computer
problems that relies on the capability of a function to continue
calling itself until it satisfies a particular condition. The term
recursion actually comes from the Latin verb recurrere, which
means to run back.
When you use recursion, you solve a problem by calling the same
function multiple times but modifying the terms under which you
call it. The main reason for using recursion is that it provides an
easier way to solve problems when working with some algorithms

because it mimics the way a human would solve it. Unfortunately,
recursion is not an easy tool because it requires some effort to
understand how to build a recursive routine and it can cause out-
of-memory problems on your computer if you don’t set some
memory settings. The following sections detail how recursion
works and give you an example of how recursion works in Python.

Explaining recursion
Many people have a problem using recursion because they can’t
easily visualize how it works. In most cases, you call a Python
function, it does something, and then it stops. However, in
recursion, you call a Python function, it does something, and then
it calls itself repeatedly until the task reaches a specific condition
— but all those previous calls are still active. The calls unwind
themselves one at a time until the first call finally ends with the
correct answer, and this unwinding process is where most people
encounter a problem. Figure 5-1 shows how recursion looks when
using a flow chart.

image
FIGURE 5-1: In the recursion process, a function continuously calls itself until it meets a
condition.

Notice the conditional in the center. To make recursion work, the
function must have such a conditional or it could become an
endless loop. The conditional determines one of two things:

The conditions for ending recursion haven’t been met, so the
function must call itself again.
The conditions for ending recursion have been met, so the
function returns a final value that is used to calculate the ending
result.

 When a function calls itself, it doesn’t use the same
arguments that were passed to it. If it continuously used the

same arguments, the condition would never change and the
recursion would never end. Consequently, recursion requires
that subsequent calls to the function must change the call
arguments in order to bring the function closer to an ending
solution.

One of the most common examples of recursion for all
programming languages is the calculation of a factorial. A factorial
is the multiplication of a series of numbers between a starting
point and an ending point in which each number in the series is
one less than the number before it. For example, to calculate 5!
(read as five factorial) you multiple 5 * 4 * 3 * 2 * 1. The
calculation represents a perfect and simple example of recursion.
Here’s the Python code you can use to perform the calculation.
(You can find this code in the A4D; 05; Recursion.ipynb file on the
Dummies site as part of the downloadable code; see the
Introduction for details.)

def factorial(n):

print("factorial called with n = ", str(n))

if n == 1 or n == 0:

print("Ending condition met.")

return 1

else:

return n * factorial(n-1)

print(factorial(5))

factorial called with n = 5

factorial called with n = 4

factorial called with n = 3

factorial called with n = 2

factorial called with n = 1

Ending condition met.

120

The code meets the ending condition when n == 1 . Each
successive call to factorial uses factorial(n-1) , which reduces
the starting argument by 1. The output shows each successive
call to factorial and the meeting of the final condition. The result,
120, equals 5! (five factorial).
It’s important to realize that there isn’t just one method for using
recursion to solve a problem. As with any other programming
technique, you can find all sorts of ways to accomplish the same
thing. For example, here’s another version of the factorial
recursion that uses fewer lines of code but effectively performs
the same task:

def factorial(n):

print("factorial called with n = ", str(n))

 if n > 1:

return n * factorial(n-1)

print("Ending condition met.")

return 1

print(factorial(5))

factorial called with n = 5

factorial called with n = 4

factorial called with n = 3

factorial called with n = 2

factorial called with n = 1

Ending condition met.

120

 Note the difference. Instead of checking the ending
condition, this version checks the continuation condition. As
long as n is greater than 1 , the code will continue to make
recursive calls. Even though this code is shorter than the
previous version, it’s also less clear because now you must
think about what condition will end the recursion.

Eliminating tail call recursion
Many forms of recursion rely on a tail call. In fact, the example in
the previous section does. A tail call occurs any time the recursion
makes a call to the function as the last thing before it returns. In
the previous section, the line return n * factorial(n-1) is the tail
call.
Tail calls aren’t necessarily bad, and they represent the manner in
which most people write recursive routines. However, using a tail
call forces Python to keep track of the individual call values until
the recursion rewinds. Each call consumes memory. At some
point, the system will run out of memory and the call will fail,
causing your algorithm to fail as well. Given the complexity and
huge datasets used by some algorithms today, tail calls can cause
considerable woe to anyone using them.
With a little fancy programming, you can potentially eliminate tail
calls from your recursive routines. You can find a host of truly
amazing techniques online, such as the use of a trampoline, as
explained at http://blog.moertel.com/posts/2013-06-12-
recursion-to-iteration-4-trampolines.html . However, the
simplest approach to take when you want to eliminate recursion is
to create an iterative alternative that performs the same task. For
example, here is a factorial function that uses iteration instead
of recursion to eliminate the potential for memory issues:

def factorial(n):

print("factorial called with n = ", str(n))

http://blog.moertel.com/posts/2013-06-12-recursion-to-iteration-4-trampolines.html

result = 1

while n > 1:

result = result * n

n = n - 1

print("Current value of n is ", str(n))

print("Ending condition met.")

return result

print(factorial(5))

factorial called with n = 5

Current value of n is 4

Current value of n is 3

Current value of n is 2

Current value of n is 1

Ending condition met.

120

The basic flow of this function is the same as the recursive
function. A while loop replaces the recursive call, but you still
need to check for the same condition and continue looping until
the data meets the condition. The result is the same. However,
replacing recursion with iteration is nontrivial in some cases, as
explored in the example at http://blog.moertel.com/posts/2013-
06-03-recursion-to-iteration-3.html .

Performing Tasks More Quickly
Obviously, getting tasks done as quickly as possible is always
ideal. However, you always need to carefully weigh the
techniques you use to achieve this. Trading a little memory to
perform a task faster is great as long as you have the memory to
spare. Later chapters in the book explore all sorts of ways to

http://blog.moertel.com/posts/2013-06-03-recursion-to-iteration-3.html

perform tasks faster, but you can try some essential techniques
no matter what sort of algorithm you’re working with at any given
time. The following sections explore some of these techniques.

Considering divide and conquer
Some problems look overwhelming when you start them. Take, for
example, writing a book. If you consider the entire book, writing it
is an overwhelming task. However, if you break the book into
chapters and consider just one chapter, the problem seems a little
more doable. Of course, an entire chapter can seem a bit
daunting, too, so you break the task down into first-level headings,
which seems even more doable, but still not quite doable enough.
The first-level headings could contain second-level headings and
so on until you have broken down the problem of writing about a
topic into short articles as much as you can. Even a short article
can seem too hard, so you break it down into paragraphs, then
into sentences, and finally into individual words. Writing a single
word isn’t too hard. So, writing a book comes down to writing
individuals words —lots of them. This is how divide and conquer
works. You break a problem down into smaller problems until you
find a problem that you can solve without too much trouble.
Computers can use the divide-and-conquer approach as well.
Trying to solve a huge problem with an enormous dataset could
take days — assuming that the task is even doable. However, by
breaking the big problem down into smaller pieces, you can solve
the problem much faster and with fewer resources. For example,
when searching for an entry in a database, searching the entire
database isn’t necessary if you use a sorted database. Say that
you’re looking for the word Hello in the database. You can begin
by splitting the database in half (letters A through M and letters N
through Z). The numeric value of the H in Hello (a value of 72
when using a standard ASCII table) is less than M (a value of 77)
in the alphabet, so you look at the first half of the database rather
than the second. Splitting the remaining half again (letters A
through G and letters H through M), you now find that you need
the second half of the remainder, which is now only a quarter of

the database. Further splits eventually help you find precisely
what you want by searching only a small fraction of the entire
database. You call this search approach a binary search. The
problem becomes one of following these steps:

1. Split the content in question in half.
2. Compare the keys for the content with the search

term.
3. Choose the half that contains the key.
4. Repeat Steps 1 through 3 until you find the key.

 Most divide-and-conquer problems follow a similar
approach, even though some of these approaches become
quite convoluted. For example, instead of just splitting the
database in half, you might split it into thirds in some cases.
However, the goal is the same in all cases: Divide the
problem into a smaller piece and determine whether you can
solve the problem using just that piece as a generalized case.
After you find the generalized case that you know how to
solve, you can use that piece to solve any other piece as
well. The following code shows an extremely simple version
of a binary search that assumes that you have the list sorted.
(You can find this code in the A4D; 05; Binary Search.ipynb
file on the Dummies site as part of the downloadable code;
see the Introduction for details.)

def search(searchList, key):

mid = int(len(searchList) / 2)

print("Searching midpoint at ", str(searchList[mid]))

if mid == 0:

print("Key Not Found!")

return key

elif key == searchList[mid]:

print("Key Found!")

return searchList[mid]

elif key > searchList[mid]:

print("searchList now contains ",

searchList[mid:len(searchList)])

search(searchList[mid:len(searchList)], key)

else:

print("searchList now contains ",

searchList[0:mid])

search(searchList[0:mid], key)

aList = list(range(1, 21))

search(aList, 5)

Searching midpoint at 11

searchList now contains [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Searching midpoint at 6

searchList now contains [1, 2, 3, 4, 5]

Searching midpoint at 3

searchList now contains [3, 4, 5]

Searching midpoint at 4

searchList now contains [4, 5]

Searching midpoint at 5

Key Found!

This recursive approach to the binary search begins with aList
containing the numbers 1 through 20. It searches for a value of 5
in aList . Each iteration of the recursion begins by looking for the
list’s midpoint, mid , and then using that midpoint to determine the
next step. When the key matches the midpoint, the value is found
in the list and the recursion ends.

 Note that this example makes one of two recursive calls.
When key is greater than the midpoint value of the existing
list, searchList[mid] , the code calls search again with just
the right side of the remaining list. In other words, every call
to search uses just half the list found in the previous call.
When key is less than or equal to searchList[mid] , search
receives the left half of the existing list.

 The list may not contain a search value, so you must
always provide an escape method for the recursion or the
stack will fill, resulting in an error message. In this case, the
escape occurs when mid == 0 , which means that there is no
more searchList to search. For example, if you change
search(aList, 5) to search(aList, 22) , you obtain the
following output instead:

Searching midpoint at 11

searchList now contains [11, 12, 13, 14, 15, 16, 17, 18,

19, 20]

Searching midpoint at 16

searchList now contains [16, 17, 18, 19, 20]

Searching midpoint at 18

searchList now contains [18, 19, 20]

Searching midpoint at 19

searchList now contains [19, 20]

Searching midpoint at 20

searchList now contains [20]

Searching midpoint at 20

Key Not Found!

Note also that the code looks for the escape condition before
performing any other work to ensure that the code doesn’t
inadvertently cause an error because of the lack of searchList
content. When working with recursion, you must remain proactive
or endure the consequences later.

Distinguishing between different
possible solutions
Recursion is part of many different algorithmic programming
solutions, as you see in the upcoming chapters. In fact, it’s hard to
get away from recursion in many cases because an iterative
approach proves nonintuitive, cumbersome, and time consuming.
However, you can create a number of different versions of the
same solution, each of which has its own characteristics, flaws,
and virtues.
The solution that this chapter doesn’t consider is sequential
search, because a sequential search generally takes longer than
any other solution you can employ. In a best-case scenario, a
sequential search requires just one comparison to complete the
search, but in a worst-case scenario, you find the item you want
as the last check. As an average, sequential search requires
(n+1)/2 checks or O(n) time to complete.
The binary search in the previous section does a much better job
than a sequential search does. It works on logarithmic time or
O(log n). In a best-case scenario, it takes only one check, as with
a sequential search, but the output from the example shows that
even a worst-case scenario, where the value doesn’t even appear
in the list, takes only six checks rather than the 21 checks that a
sequential search would require.

 This book covers a wide variety of search and sort
algorithms because searching and sorting represent two
major categories of computer processing. Think about how
much time you spend Googling data each day. In theory, you
might spend entire days doing nothing but searching for data.
Search routines work best with sorted data, so you see the
need for efficient search and sort routines. Fortunately, you
don’t have to spend hours trying to figure out which search
and sort routines work best. Sites such as Big-O Cheat
Sheet, http://bigocheatsheet.com/ , provide you with the
data needed to determine which solution performs best.

 If you look at performance times alone, however, the data
you receive can mislead you into thinking that a particular
solution will work incredibly well for your application when in
fact it won’t. You must also consider the kind of data you work
with, the complexity of creating the solution, and a host of
other factors. That’s why later examples in this book also
consider the pros and cons of each approach — the hidden
dangers of choosing a solution that seems to have potential
and then fails to produce the desired result.

http://bigocheatsheet.com/

Part 2
Understanding the Need to Sort

and Search

IN THIS PART …
Use various Python data structures.
Work with trees and graphs.
Sort data to make algorithms work faster.
Search data to locate precisely the right information quickly.
Employ hashing techniques to create smaller data indexes.

Chapter 6
Structuring Data

IN THIS CHAPTER
 Defining why data requires structure
 Working with stacks, queues, lists, and dictionaries
 Using trees to organize data
 Using graphs to represent data with relations

Raw data is just that: raw. It’s not structured or cleaned in any
way. You might find some parts of it missing or damaged in some
way, or simply that it won’t work for your problem. In fact, you’re
not entirely sure just what you’re getting because it’s raw.
Before you can do anything with most data, you must structure it
in some manner so that you can begin to see what the data
contains (and, sometimes, what it doesn’t). Structuring data
entails organizing it in some way so that all the data has the same
attributes, appearance, and components. For example, you might
get data from one source that contains dates in string form and
another source that uses date objects. To use the information, you
must make the kinds of data match. Data sources might also
structure the data differently. One source might have the last and
first name in a single field; another source might use individual
fields for the same information. An important part of structuring
data is organization. You aren’t changing the data in any way —
simply making the data more useful. (Structuring data contrasts
with remediating or shaping the data where you sometimes do
change values to convert one data type to another or experience
a loss of accuracy, such as with dates, when moving between
data sources.)

Python provides access to a number of organizational structures
for data. The book uses these structures, especially stacks,
queues, and dictionaries, for many of the examples. Each data
structure provides a different means of working with the data and
a different set of tools for performing tasks such as sorting the
data into a particular order. This chapter presents you with the
most common organizational methods, including both trees and
graphs (both of which are so important that they appear in their
own sections).

Determining the Need for
Structure

Structure is an essential element in making algorithms work. As
shown in the binary search example in Chapter 5 , implementing
an algorithm using structured data is much easier than trying to
figure out how to interpret the data in code. For example, the
binary search example relies on having the data in sorted order.
Trying to perform the required comparisons with unsorted data
would require a lot more effort and potentially prove impossible to
implement. With all this in mind, you need to consider the
structural requirements for the data you use with your algorithms,
as discussed in the following sections.

Making it easier to see the content
An essential need to meet as part of working with data is to
understand the data content. A search algorithm works only when
you understand the dataset so that you know what to search for
using the algorithm. Looking for words when the dataset contains
numbers is an impossible task that always results in errors. Yet,
search errors due to a lack of understanding of dataset content
are a common occurrence even with the best search engines.
Humans make assumptions about dataset content that cause
algorithms to fail. Consequently, the better you can see and

understand the content through structured formatting, the easier it
becomes to perform algorithm-based tasks successfully.
However, even looking at the content is often error prone when
dealing with humans and computers. For example, if you attempt
to search for a number formatted as a string when the dataset
contains the numbers formatted as integers, the search will fail.
Computers don’t automatically translate between strings and
integers as humans do. In fact, computers see everything as
numbers, and strings are only an interpretation imposed on the
numbers by a programmer. Therefore, when searching for "1" (the
string), the computer sees it as a request for the number 49 when
using ASCII characters. To find the numeric value 1, you must
search for a 1 as an integer value.

 Structure also enables you to discover nuanced data
details. For example, a telephone number can appear in the
form (555)555-1212. If you perform a search or other
algorithm task using the form 1(555)555-1212, the search
might fail because of the addition of a 1 at the beginning of
the search term. These sorts of issues cause significant
problems because most people see the two forms as equal,
but the computer doesn’t. The computer sees two completely
different forms and even sees them as being two different
lengths. Trying to impose form on humans rarely works and
generally results in frustration that makes using the algorithm
even harder, so structure imposed through data manipulation
becomes even more important.

Matching data from various sources
Interacting with data from a single source is one problem;
interacting with data from several sources is quite another.
However, datasets today generally come from more than one
source, so you need to understand the complications that using

multiple data sources can cause. When working with multiple data
sources, you must do the following:

Determine whether both datasets contain all the required data.
Two designers are unlikely to create datasets that contain
precisely the same data, in the same format, of the same type,
and in the same order. Consequently, you need to consider
whether the datasets provide the data you need or whether you
need to remediate the data in some way to obtain the desired
result, as discussed in the next section.
Check both datasets for data type issues. One dataset could
have dates input as strings, and another could have the dates
input as actual date objects. Inconsistencies between data types
will cause problems for an algorithm that expects data in one
form and receives it in another.
Ensure that all datasets place the same meaning on data
elements. Data created by one source might have a different
meaning than data created by another source. For example, the
size of an integer can vary across sources, so you might see a
16-bit integer from one source and a 32-bit integer from another.
Lower values have the same meaning, but the 32-bit integer can
contain larger values, which can cause problems with the
algorithm. Dates can also cause problems because they often
rely on storing so many milliseconds since a given date (such as
JavaScript, which stores the number of milliseconds since 01
January, 1970 UTC). The computer sees only numbers; humans
add meaning to these numbers so that applications interpret
them in specific ways.
Verify the data attributes. Data items have specific attributes,
which is why Chapter 4 tells you all about how Python interprets
various data types. Chapter 5 points out that this interpretation
can change when using numpy . In fact, you find that data
attributes change between environments, and developers can
change them even more by creating custom data types. To
combine data from various sources, you must understand these
attributes to ensure that you interpret the data correctly.

 The more time you spend verifying the compatibility of
data from each of the sources you want to use for a dataset,
the less likely you are to encounter problems when working
with an algorithm. Data incompatibility issues don’t always
appear as outright errors. In some cases, an incompatibility
can cause other issues, such as errant results that look
correct but provide misleading information.

Combining data from multiple sources may not always mean
creating a new dataset that looks precisely like the source
datasets, either. In some cases, you create data aggregates or
perform other forms of manipulation to create new data from the
existing data. Analysis takes all sorts of forms, and some of the
more exotic forms can produce terrible errors when used
incorrectly. For example, one data source could provide general
customer information and a second data source could provide
customer-buying habits. Mismatches between the two sources
might match customers with incorrect buying habit information
and cause problems when you try to market new products to
these customers. As an extreme example, consider what would
happen when combining patient information from several sources
and creating combined patient entries in a new data source with
all sorts of mismatches. A patient without a history of a particular
disease could end up with records showing diagnosis and care of
the disease.

Considering the need for
remediation
After you find problems with your dataset, you need to remediate
it so that the dataset works properly with the algorithms you use.
For example, when working with conflicting data types, you must
change the data types of each data source so that they match and
then create the single data source used with the algorithm. Most
of this remediation, although time consuming, is straightforward.

You simply need to ensure that you understand the data before
making changes, which means being able to see the content in
the context of what you plan to do with it. However, you need to
consider what to do in two special cases: data duplication and
missing data. The following sections show how to deal with these
issues.

Dealing with data duplication
Duplicated data occurs for a number of reasons. Some of them
are obvious. A user could enter the same data more than once.
Distractions cause people to lose their place in a list or sometimes
two users enter the same record. Some of the sources are less
obvious. Combining two or more datasets could create multiple
records when the data appears in more than one location. You
could also create data duplications when using various data-
shaping techniques to create new data from existing data
sources. Fortunately, packages such as Pandas let you remove
duplicate data, as shown in the following example. (You can find
this code in the A4D; 06; Remediation.ipynb file on the Dummies
site as part of the downloadable code; see the Introduction for
details.)

import pandas as pd

df = pd.DataFrame({'A': [0,0,0,0,0,1,0],

'B': [0,2,3,5,0,2,0],

'C': [0,3,4,1,0,2,0]})

 print(df, "\n")

df = df.drop_duplicates()

print(df)

A B C

0 0 0 0

1 0 2 3

2 0 3 4

3 0 5 1

4 0 0 0

5 1 2 2

6 0 0 0

A B C

0 0 0 0

1 0 2 3

2 0 3 4

3 0 5 1

5 1 2 2

The drop_duplicates function removes the duplicate records
found in rows 4 and 6 in this example. By reading your data from
a source into a pandas DataFrame , you can quickly remove the
extra entries so that the duplicates don’t unfairly weight the output
of any algorithms you use.

Dealing with missing values
Missing values can also skew the results of an algorithm’s output.
In fact, they can cause some algorithms to react oddly or even
raise an error. The point is that missing values cause problems
with your data, so you need to remove them. You do have many
options when working with missing values. For example, you
could simply set them to a standard value, such as 0 for integers.
Of course, using a standard setting could also skew the results.
Another approach is to use the mean of all the values, which
tends to make the missing values not count. Using a mean is the
approach taken in the following example

import pandas as pd

import numpy as np

df = pd.DataFrame({'A': [0,0,1,None],

'B': [1,2,3,4],

'C': [np.NAN,3,4,1]},

dtype=int)

 print(df, "\n")

values = pd.Series(df.mean(), dtype=int)

print(values, "\n")

df = df.fillna(values)

print(df)

A B C

0 0 1 NaN

1 0 2 3

2 1 3 4

3 None 4 1

A 0

B 2

C 2

dtype: int32

A B C

0 0 1 2

1 0 2 3

2 1 3 4

3 0 4 1

The fillna function enables you to get rid of the missing values
whether they’re not a number (NAN) or simply missing (None).

You can supply the missing data values in a number of forms.
This example relies on a series that contains the mean for each
separate column of data (much as you would do when working
with a database).

 Note that the code is careful not to introduce errors into
the output by ensuring that values is of the right data type.
Normally, the mean function outputs floating-point values, but
you can force the series it fills into the right type.
Consequently, the output not only lacks missing values but
also does contain values of the correct type.

Understanding other remediation issues
Remediation can take a number of other forms. Sometimes a user
provides inconsistent or incorrect input. Applications don’t always
enforce data input rules, so users can enter incorrect state or
region names. Misspellings also occur. Sometimes values are out
of range or are simply impossible in a given situation. You may
not always be able to clean your data completely on the first try.
Often, you become aware of a problem by running the algorithm
and noting that the results are skewed in some way or that the
algorithm doesn’t work at all (even if it did work on a subset of the
data). When in doubt, check your data for potential remediation
needs.

Stacking and Piling Data in
Order

Python provides a number of storage methodologies, as
discussed in Chapter 4 . As you’ve already seen in Chapter 5 ,
and this chapter, packages often offer additional storage methods.
Both NumPy and Pandas provide storage alternatives that you
might consider when working through various data structuring
problems.

 A common problem of data storage isn’t just the fact that
you need to store the data, but that you must store it in a
particular order so that you can access it when necessary.
For example, you may want to ensure that the first item you
place on a stack of items to process is also the first item you
actually do process. With this data-ordering issue in mind, the
following sections describe the standard Python methods for
ensuring orderly data storage that let you have a specific
processing arrangement.

Ordering in stacks
A stack provides last in/first out (LIFO) data storage. The NumPy
package provides an actual stack implementation. In addition,
Pandas associates stacks with objects such as the DataFrame .
However, both packages hide the stack implementation details,
and seeing how a stack works really does help. Consequently, the
following example implements a stack using a standard Python
list . (You can find this code in the A4D; 06; Stacks, Queues, and
Dictionaries.ipynb file on the Dummies site as part of the
downloadable code; see the Introduction for details.)

MyStack = []

StackSize = 3

def DisplayStack():

print("Stack currently contains:")

for Item in MyStack:

print(Item)

def Push(Value):

if len(MyStack) < StackSize:

MyStack.append(Value)

 else:

print("Stack is full!")

def Pop():

if len(MyStack) > 0:

print("Popping: ", MyStack.pop())

else:

print("Stack is empty.")

Push(1)

Push(2)

Push(3)

DisplayStack()

Push(4)

Pop()

DisplayStack()

Pop()

Pop()

Pop()

Stack currently contains:

1

2

3

Stack is full!

Popping: 3

Stack currently contains:

1

2

Popping: 2

Popping: 1

Stack is empty.

The example ensures that the stack maintains the integrity of the
data and works with it in the order you expect. The code relies on
simple list manipulation, but it’s effective in providing a stack
representation that you can use for any need.

 Python lists are ordered lists of data values that are easy
and intuitive to use. From an algorithm perspective, they
often don’t perform well because they store the list elements
in computer memory and access them using an index and
memory pointers (a number that provides the memory
address of the data). They work exactly the way a book index
or a package does. Lists don’t have knowledge of their
content. When your application makes a data request, the list
scans through all its items, which is even slower. When data
is scattered across your computer’s memory, lists must
gather the data from each location individually and slowing
access more.

Using queues
Unlike stacks, queues are first in/first out (FIFO) data structures.
As with stacks, you can find predefined implementations in many
packages, including both NumPy and Pandas. Fortunately, you
can also find a specific queue implementation in Python, which you
find demonstrated in the following code:

import queue

MyQueue = queue.Queue(3)

print("Queue empty: ", MyQueue.empty())

MyQueue.put(1)

MyQueue.put(2)

MyQueue.put(3)

print("Queue full: ", MyQueue.full())

print("Popping: ", MyQueue.get())

print("Queue full: ", MyQueue.full())

print("Popping: ", MyQueue.get())

print("Popping: ", MyQueue.get())

print("Queue empty: ", MyQueue.empty())

Queue empty: True

Queue full: True

Popping: 1

Queue full: False

Popping: 2

Popping: 3

Queue empty: True

Using the built-in queue requires a lot less code than building a
stack from scratch using a list , but notice how the two differ in
output. The stack example pushes 1, 2, and 3 onto the stack, so
the first value popped from the stack is 3. However, in this
example, pushing 1, 2, and 3 onto the queue results in a first
popped value of 1.

Finding data using dictionaries

Creating and using a dictionary is much like working with a list
except that you must now define a key and value pair. The great
advantage of this data structure is that dictionaries can quickly
provide access to specific data items using the key. There are
limits to the kinds of keys you can use. Here are the special rules
for creating a key:

The key must be unique. When you enter a duplicate key, the
information found in the second entry wins; the first entry
replaces the second.
The key must be immutable. This rule means that you can use
strings, numbers, or tuples for the key. You can’t, however, use
a list for a key.

 The difference between mutable and immutable values
is that immutable values can’t change. To change the value of a
string, for example, Python actually creates a new string that
contains the new value and gives the new string the same name
as the old one. It then destroys the old string.

 Python dictionaries are the software implementation of a
data structure called a hash table, an array that maps keys to
values. Chapter 7 explains hashes in detail and how using
hashes can help dictionaries perform faster. You have no
restrictions on the values you provide. A value can be any
Python object, so you can use a dictionary to access an
employee record or other complex data. The following
example helps you understand how to use dictionaries better:

Colors = {"Sam": "Blue", "Amy": "Red", "Sarah": "Yellow"}

print(Colors["Sarah"])

print(Colors.keys())

for Item in Colors.keys():

print("{0} likes the color {1}."

.format(Item, Colors[Item]))

Colors["Sarah"] = "Purple"

Colors.update({"Harry": "Orange"})

del Colors["Sam"]

print(Colors)

Yellow

dict_keys(['Sarah', 'Amy', 'Sam'])

Sarah likes the color Yellow.

Amy likes the color Red.

 Sam likes the color Blue.

{'Harry': 'Orange', 'Sarah': 'Purple', 'Amy': 'Red'}

As you can see, a dictionary always has a key and value pair
separated from each other by a colon (:). Instead of using an
index to access individual values, you use the key. The special
keys function lets you obtain a list of keys that you can manipulate
in various ways. For example, you can use the keys to perform
iterative processing of the data values that the dictionary contains.

 Dictionaries are a bit like individual tables within a
database. You can update, add, and delete records to a
dictionary as shown. The update function can overwrite or
add new entries to the dictionary.

Working with Trees
A tree structure looks much like the physical object in the natural
world. Using trees helps you organize data quickly and find it in a
shorter time than using other data-storage techniques. You
commonly find trees used for search and sort routines, but they
have many other purposes as well. The following sections help
you understand trees at a basic level. You find trees used in many
of the examples in upcoming chapters.

Understanding the basics of trees
Building a tree works much like building a tree in the physical
world. Each item you add to the tree is a node . Nodes connect to
each other using links. The combination of nodes and links forms
a structure that looks much like a tree, as shown in Figure 6-1 .

image
FIGURE 6-1: A tree in Python looks much like the physical alternative.

 Note that the tree has just one root node— just as with a
physical tree. The root node provides the starting point for the
various kinds of processing you perform. Connected to the
root node are either branches or leaves. A leaf node is
always an ending point for the tree. Branch nodes support
either other branches or leaves. The type of tree shown in
Figure 6-1 is a binary tree because each node has, at most,
two connections.

In looking at the tree, Branch B is the child of the Root node.
That’s because the Root node appears first in the list. Leaf E and
Leaf F are both children of Branch B, making Branch B the parent
of Leaf E and Leaf F. The relationship between nodes is important
because discussions about trees often consider the child/parent

relationship between nodes. Without these terms, discussions of
trees could become quite confusing.

Building a tree
Python doesn’t come with a built-in tree object. You must either
create your own implementation or use a tree supplied with a
package. A basic tree implementation requires that you create a
class to hold the tree data object. The following code shows how
you can create a basic tree class. (You can find this code in the
A4D; 06; Trees.ipynb file on the Dummies site as part of the
downloadable code; see the Introduction for details.)

class binaryTree:

def __init__(self, nodeData, left=None, right=None):

self.nodeData = nodeData

self.left = left

self.right = right

def __str__(self):

return str(self.nodeData)

All this code does is create a basic tree object that defines the
three elements that a node must include: data storage, left
connection, and right connection. Because leaf nodes have no
connection, the default value for left and right is None . The
class also includes a method for printing the content of nodeData
so that you can see what data the node stores.
Using this simple tree requires that you not try to store anything in
left or right other than a reference to another node. Otherwise,
the code will fail because there isn’t any error trapping. The
nodeData entry can contain any value. The following code shows
how to use the binaryTree class to build the tree shown in Figure
6-1 :

tree = binaryTree("Root")

BranchA = binaryTree("Branch A")

BranchB = binaryTree("Branch B")

tree.left = BranchA

tree.right = BranchB

LeafC = binaryTree("Leaf C")

LeafD = binaryTree("Leaf D")

LeafE = binaryTree("Leaf E")

LeafF = binaryTree("Leaf F")

BranchA.left = LeafC

BranchA.right = LeafD

BranchB.left = LeafE

BranchB.right = LeafF

You have many options when building a tree, but building it from
the top down (as shown in this code) or the bottom up (in which
you build the leaves first) are two common methods. Of course,
you don’t really know whether the tree actually works at this point.
Traversing the tree means checking the links and verifying that
they actually do connect as you think they should. The following
code shows how to use recursion (as described in Chapter 5) to
traverse the tree you just built.

def traverse(tree):

if tree.left != None:

traverse(tree.left)

if tree.right != None:

traverse(tree.right)

print(tree.nodeData)

traverse(tree)

Leaf C

Leaf D

Branch A

Leaf E

Leaf F

Branch B

Root

As the output shows, the traverse function doesn’t print anything
until it gets to the first leaf. It then prints both leaves and the
parent of those leaves. The traversal follows the left branch first,
and then the right branch. The root node comes last.

 There are different kinds of data storage structures. Here
is a quick list of the kinds of structures you commonly find:

Balanced trees: A kind of tree that maintains a balanced
structure through reorganization so that it can provide reduced
access times. The number of elements on the left size differs
from the number on the right side by at most one.
Unbalanced trees: A tree that places new data items wherever
necessary in the tree without regard to balance. This method of
adding items makes building the tree faster but reduces access
speed when searching or sorting.
Heaps: A sophisticated tree that allows data insertions into the
tree structure. The use of data insertion makes sorting faster.
You can further classify these trees as max heaps and min
heaps, depending on the tree’s capability to immediately provide
the maximum or minimum value present in the tree.

Later in the book, you find algorithms that use balanced trees,
unbalanced trees, and heaps. For instance, Chapter 9 discusses
the Dijkstra algorithm and Chapter 14 discusses Huffman
encoding. As part of these discussions, the book provides pictures

and code to explain how each data structure functions and its role
in making the algorithm work.

Representing Relations in a
Graph

Graphs are another form of common data structure used in
algorithms. You see graphs used in places like maps for GPS and
all sorts of other places where the top down approach of a tree
won’t work. The following sections describe graphs in more detail.

Going beyond trees
A graph is a sort of a tree extension. As with trees, you have
nodes that connect to each other to create relationships.
However, unlike binary trees, a graph can have more than one or
two connections. In fact, graph nodes often have a multitude of
connections. To keep things simple, though, consider the graph
shown in Figure 6-2 .

image
FIGURE 6-2: Graph nodes can connect to each other in myriad ways.

In this case, the graph creates a ring where A connects to both B
and F. However, it need not be that way. A could be a
disconnected node or could also connect to C. A graph shows
connectivity between nodes in a way that is useful for defining
complex relationships.
Graphs also add a few new twists that you might not have thought
about before. For example, a graph can include the concept of
directionality. Unlike a tree, which has parent/child relationships, a
graph node can connect to any other node with a specific
direction in mind. Think about streets in a city. Most streets are
bidirectional, but some are one-way streets that allow movement
in only one direction.

The presentation of a graph connection might not actually reflect
the realities of the graph. A graph can designate a weight to a
particular connection. The weight could define the distance
between two points, define the time required to traverse the route,
or provide other sorts of information.

Building graphs
Most developers use dictionaries (or sometimes lists) to build
graphs. Using a dictionary makes building the graph easy
because the key is the node name and the values are the
connections for that node. For example, here is a dictionary that
creates the graph shown in Figure 6-2 . (You can find this code in
the A4D; 06; Graphs.ipynb file on the Dummies site as part of the
downloadable code; see the Introduction for details.)

graph = {'A': ['B', 'F'],

'B': ['A', 'C'],

'C': ['B', 'D'],

'D': ['C', 'E'],

'E': ['D', 'F'],

'F': ['E', 'A']}

This dictionary reflects the bidirectional nature of the graph in
Figure 6-2 . It could just as easily define unidirectional
connections or provide nodes without any connections at all.
However, the dictionary works quite well for this purpose, and you
see it used in other areas of the book. Now it’s time to traverse
the graph using the following code:

def find_path(graph, start, end, path=[]):

path = path + [start]

if start == end:

print("Ending")

return path

for node in graph[start]:

print("Checking Node ", node)

if node not in path:

print("Path so far ", path)

newp = find_path(graph, node, end, path)

if newp:

return newp

find_path(graph, 'B', 'E')

Checking Node A

Path so far ['B']

Checking Node B

 Checking Node F

Path so far ['B', 'A']

Checking Node E

Path so far ['B', 'A', 'F']

Ending

['B', 'A', 'F', 'E']

Later chapters discuss how to find the shortest path. For now, the
code finds only a path. It begins by building the path node by
node. As with all recursive routines, this one requires an exit
strategy, which is that when the start value matches the end
value, the path ends.
Because each node in the graph can connect to multiple nodes,
you need a for loop to check each of the potential connections.

When the node in question already appears in the path, the code
skips it. Otherwise, the code tracks the current path and
recursively calls find_path to locate the next node in the path.

Chapter 7
Arranging and Searching Data
IN THIS CHAPTER

 Performing sorts using Mergesort and Quicksort
 Conducting searches using trees and the heap
 Considering the uses for hashing and dictionaries

Data surrounds you all the time. In fact, you really can’t get away
from it. Everything from the data needed to make business work
to the nutritional guide on the side of your box of cereal relies on
data. The four data operations are create, read, update, and
delete (CRUD), which focus on the need to access the data you
need to perform just about every task in life quickly and easily.
That’s why having the means to arrange and search data in a
number of ways is essential. Unless you can access the data
when you want in the manner you want, the CRUD required to
make your business work will become quite cruddy indeed.
Consequently, this is an especially important chapter for everyone
who wants to make an application shine.
The first section of this chapter focuses on sorting data. Placing
data in an order that makes it easy to perform CRUD operations is
important because the less code you need to make data access
work, the better. In addition, even though sorting data might not
seem particularly important, sorted data makes searches
considerably faster, as long as the sort matches the search.
Sorting and searching go together: You sort the data in a way that
makes searching faster.
The second section of the chapter discusses searching. You won’t
be surprised to learn that many different ways are available to
search for data. Some of these techniques are slower than others;
some have attributes that make them attractive to developers.

The fact is that no perfect search strategy exists, but the
exploration for such a method continues.
The final section of the chapter looks at hashing and dictionaries.
The use of indexing makes sorting and searching significantly
faster but also comes with trade-offs that you need to consider
(such as the use of additional resources). An index is a kind of
pointer or an address. It’s not the data, but it points to the data,
much as your address points to your home. A block-by-block
manual search for your home in the city would be time consuming
because the person looking for you would need to ask each
person at each address whether you’re there, but finding your
address in the phone book and then using that address to locate
your home is much faster.

Sorting Data Using Mergesort
and Quicksort

Sorting is one of the essentials of working with data.
Consequently, a lot of people have come up with a lot of different
ways in which to sort data over the years. All these techniques
result in ordered data, but some work better than others do, and
some work exceptionally well for specific tasks. The following
sections help you understand the need for searching as well as
consider the various search options.

Defining why sorting data is
important
A case can be made for not sorting data. After all, the data is still
accessible, even if you don’t sort it — and sorting takes time. Of
course, the problem with unsorted data is the same problem as
that junk drawer in your kitchen (or wherever you have your junk
drawer — assuming that you can find it at all). Looking for
anything in the junk drawer is time consuming because you can’t
even begin to guess where to find something. Rather than just

reach in and take what you want, you must take out myriad other
items that you don’t want in an effort to find the one item you
need. Unfortunately, the item you need might not be in the junk
drawer in the first place—you might have thrown it out or put it in
a different drawer.
The junk drawer in your home is just like unsorted data on your
system. When the data is unsorted, you need to search one item
at a time, and you don’t even know whether you’ll find what you
need without searching every item in the dataset first. It’s a
frustrating way to work with data. The binary search example in
the “Considering divide and conquer ” section of Chapter 5 points
out the need for sorting quite well. Imagine trying to find an item in
a list without sorting it first. Every search becomes a time-
consuming sequential search.

 Of course, simply sorting the data isn’t enough. If you have
an employee database sorted by last name, yet need to look
up an employee by birth date, the sorting isn’t useful. (Say
you want to find all of the employees who have a birthday on
a certain day.) To find the birth date you need, you must still
search the entire dataset one item at a time. Consequently,
sorting must focus on a particular need. Yes, you needed the
employee database sorted by department at one point and by
last name at another time, but now you need it sorted by birth
date in order to use the dataset effectively.

The need to maintain several sorted orders for the same data is
the reason that developers created indexes. Sorting a small index
is faster than sorting the entire dataset. The index maintains a
specific data order and points to the full dataset so that you can
find what you need extremely fast. By maintaining an index for
each sort requirement, you can effectively cut data access time
and allow several people to access the data at the same time in
the order in which they need to access it. The “Relying on
Hashing ” section, later in this chapter, gives you an idea of how

indexing works and why you really need it in some cases, despite
the additional time and resources needed to maintain the indexes.

 Many ways are available to categorize sorting algorithms.
One of these ways is the speed of the sort. When considering
how effective a particular sort algorithm is at arranging the
data, timing benchmarks typically look at two factors:

Comparisons: To move data from one location in a dataset to
another, you need to know where to move it, which means
comparing the target data to other data in the dataset. Having
fewer comparisons means better performance.
Exchanges: Depending on how you write an algorithm, the data
may not get to its final location in the dataset on the first try. The
data might actually move several times. The number of
exchanges affects speed considerably because now you’re
actually moving data from one location to another in memory.
Fewer and smaller exchanges (such as when using indexes)
means better performance.

Ordering data naïvely
Ordering data naively means to order it using brute-force methods
— without any regard whatsoever to making any kind of guess as
to where the data should appear in the list. In addition, these
techniques tend to work with the entire dataset instead of applying
approaches that would likely reduce sorting time (such as the
divide and conquer technique described in Chapter 5). However,
these searches are also relatively easy to understand, and they
use resources efficiently. Consequently, you shouldn’t rule them
out completely. Even though many searches fall into this category,
the following sections look at the two most popular approaches.

Using a selection sort

The selection sort replaced a predecessor, the bubble sort,
because it tends to provide better performance than the bubble
sort. Even though both sorts have a worst-case sort speed of
O(n2), the selection sort performs fewer exchanges. A selection
sort works in one of two ways: It either looks for the smallest item
in the list and places it in the front of the list (ensuring that the
item is in its correct location) or looks for the largest item and
places it in the back of the list. Either way, the sort is exceptionally
easy to implement and guarantees that items immediately appear
in the final location once moved (which is why some people call it
an in-place comparison sort). Here’s an example of a selection
sort. (You can find this code in the A4D; 07; Sorting
Techniques.ipynb file on the Dummies site as part of the
downloadable code; see the Introduction for details.)

data = [9, 5, 7, 4, 2, 8, 1, 10, 6, 3]

for scanIndex in range(0, len(data)):

minIndex = scanIndex

for compIndex in range(scanIndex + 1, len(data)):

if data[compIndex] < data[minIndex]:

minIndex = compIndex

if minIndex != scanIndex:

data[scanIndex], data[minIndex] = \

data[minIndex], data[scanIndex]

print(data)

[1, 5, 7, 4, 2, 8, 9, 10, 6, 3]

[1, 2, 7, 4, 5, 8, 9, 10, 6, 3]

[1, 2, 3, 4, 5, 8, 9, 10, 6, 7]

[1, 2, 3, 4, 5, 6, 9, 10, 8, 7]

[1, 2, 3, 4, 5, 6, 7, 10, 8, 9]

[1, 2, 3, 4, 5, 6, 7, 8, 10, 9]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Switching to an insertion sort
An insertion sort works by using a single item as a starting point
and adding items to the left or right of it based on whether these
items are less than or greater than the selected item. As the
number of sorted items builds, the algorithm checks new items
against the sorted items and inserts the new item into the right
position in the list. An insertion sort has a best-case sort speed of
O(n) and a worst case sort speed of O(n2).

 An example of best-case sort speed is when the entire
dataset is already sorted because the insertion sort won’t
have to move any values. An example of the worst-case sort
speed is when the entire dataset is sorted in reverse order
because every insertion will require moving every value that
already appears in the output. You can read more about the
math involved in this sort at
https://www.khanacademy.org/computing/computer-
science/algorithms/insertion-sort/a/analysis-of-

insertion-sort .
The insertion sort is still a brute-force method of sorting items, but
it can require fewer comparisons than a selection sort. Here’s an
example of an insertion sort:

data = [9, 5, 7, 4, 2, 8, 1, 10, 6, 3]

for scanIndex in range(1, len(data)):

temp = data[scanIndex]

minIndex = scanIndex

https://www.khanacademy.org/computing/computer-science/algorithms/insertion-sort/a/analysis-of-insertion-sort

while minIndex > 0 and temp < data[minIndex - 1]:

data[minIndex] = data[minIndex - 1]

minIndex -= 1

data[minIndex] = temp

print(data)

[5, 9, 7, 4, 2, 8, 1, 10, 6, 3]

[5, 7, 9, 4, 2, 8, 1, 10, 6, 3]

[4, 5, 7, 9, 2, 8, 1, 10, 6, 3]

[2, 4, 5, 7, 9, 8, 1, 10, 6, 3]

[2, 4, 5, 7, 8, 9, 1, 10, 6, 3]

[1, 2, 4, 5, 7, 8, 9, 10, 6, 3]

[1, 2, 4, 5, 7, 8, 9, 10, 6, 3]

[1, 2, 4, 5, 6, 7, 8, 9, 10, 3]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Employing better sort techniques
As sort technology improves, the sort algorithms begin taking a
more intelligent approach to getting data into the right order. The
idea is to make the problem smaller and easier to manage. Rather
than work with an entire dataset, smart sorting algorithms work
with individual items, reducing the work required to perform the
task. The following sections discuss two such smart sorting
techniques.

Rearranging data with Mergesort
A Mergesort works by applying the divide and conquer approach.
The sort begins by breaking the dataset into individual pieces and
sorting the pieces. It then merges the pieces in a manner that
ensures that it has sorted the merged piece. The sorting and
merging continues until the entire dataset is again a single piece.

The worst-case sort speed of the Mergesort is O(n log n), which
makes it considerably faster than the techniques used in the
previous section (because log n is always smaller than n). This
sort actually requires the use of two functions. The first function
works recursively to split the pieces apart and put them back
together again.

data = [9, 5, 7, 4, 2, 8, 1, 10, 6, 3]

def mergeSort(list):

Determine whether the list is broken into

individual pieces.

if len(list) < 2:

return list

Find the middle of the list.

middle = len(list)//2

Break the list into two pieces.

left = mergeSort(list[:middle])

right = mergeSort(list[middle:])

Merge the two sorted pieces into a larger piece.

print("Left side: ", left)

print("Right side: ", right)

merged = merge(left, right)

print("Merged ", merged)

return merged

The second function performs the actual task of merging the two
sides using an iterative process. Here’s the code used to merge
the two pieces:

def merge(left, right):

When the left side or the right side is empty,

it means that this is an individual item and is

already sorted.

if not len(left):

return left

if not len(right):

return right

 # Define variables used to merge the two pieces.

result = []

leftIndex = 0

rightIndex = 0

totalLen = len(left) + len(right)

Keep working until all of the items are merged.

while (len(result) < totalLen):

Perform the required comparisons and merge

the pieces according to value.

if left[leftIndex] < right[rightIndex]:

result.append(left[leftIndex])

leftIndex+= 1

else:

result.append(right[rightIndex])

rightIndex+= 1

When the left side or the right side is longer,

add the remaining elements to the result.

if leftIndex == len(left) or \

rightIndex == len(right):

result.extend(left[leftIndex:]

or right[rightIndex:])

break

return result

mergeSort(data)

The print statements in the code help you see how the merging
process works. Even though the process seems quite complex, it
really is relatively straightforward when you work through the
merging process shown here.

Left side: [9]

Right side: [5]

Merged [5, 9]

Left side: [4]

Right side: [2]

Merged [2, 4]

Left side: [7]

Right side: [2, 4]

Merged [2, 4, 7]

Left side: [5, 9]

 Right side: [2, 4, 7]

Merged [2, 4, 5, 7, 9]

Left side: [8]

Right side: [1]

Merged [1, 8]

Left side: [6]

Right side: [3]

Merged [3, 6]

Left side: [10]

Right side: [3, 6]

Merged [3, 6, 10]

Left side: [1, 8]

Right side: [3, 6, 10]

Merged [1, 3, 6, 8, 10]

Left side: [2, 4, 5, 7, 9]

Right side: [1, 3, 6, 8, 10]

Merged [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Solving sorting issues the best way using
Quicksort
The Quicksort is one of the fastest methods of sorting data. In
reading about Mergesort and Quicksort online, you find that some
people prefer to use one over the other in a given situation. For
example, most people feel that a Quicksort works best for sorting
arrays, and Mergesort works best for sorting linked lists (see the
discussion at http://www.geeksforgeeks.org/why-quick-sort-
preferred-for-arrays-and-merge-sort-for-linked-lists/). Tony
Hoare wrote the first version of Quicksort in 1959, but since that
time, developers have written many other versions of Quicksort.
The average sort time of a Quicksort is O(n log n), but the worst-
case sort time is O(n2).

 UNDERSTANDING QUICKSORT
WORST-CASE PERFORMANCE

Quicksort seldom incurs the worst-case sort time. However, even modified
versions of the Quicksort can have a worst-case sort time of O(n2) when one
of these events occurs:

http://www.geeksforgeeks.org/why-quick-sort-preferred-for-arrays-and-merge-sort-for-linked-lists/

The dataset is already sorted in the desired order.
The dataset is sorted in reverse order.
All the elements in the dataset are the same.

All these problems occur because of the pivot point that a less intelligent sort
function uses. Fortunately, using the right programming technique can mitigate
these problems by defining something other than the leftmost or rightmost
index as the pivot point. The techniques that modern Quicksort versions rely
on include:

Choosing a random index
Choosing the middle index of the partition
Choosing the median of the first, middle, and last element of
the partition for the pivot (especially for longer partitions)

The first part of the task is to partition the data. The code chooses
a pivot point that determines the left and right side of the sort.
Here is the partitioning code for this example:

data = [9, 5, 7, 4, 2, 8, 1, 10, 6, 3]

def partition(data, left, right):

pivot = data[left]

lIndex = left + 1

rIndex = right

 while True:

while lIndex <= rIndex and data[lIndex] <= pivot:

lIndex += 1

while rIndex >= lIndex and data[rIndex] >= pivot:

rIndex -= 1

if rIndex <= lIndex:

break

data[lIndex], data[rIndex] = \

data[rIndex], data[lIndex]

print(data)

data[left], data[rIndex] = data[rIndex], data[left]

print(data)

return rIndex

The inner loop of this example continuously searches for
elements that are in the wrong place and swaps them. When the
code can no longer swap items, it breaks out of the loop and sets
a new pivot point, which it returns to the caller. This is the iterative
part of the process. The recursive part of the process handles the
left and right side of the dataset, as shown here:

def quickSort(data, left, right):

if right <= left:

return

else:

pivot = partition(data, left, right)

quickSort(data, left, pivot-1)

quickSort(data, pivot+1, right)

return data

quickSort(data, 0, len(data)-1)

The amount of comparisons and exchanges for this example are
relatively small compared to the other examples. Here is the
output from this example:

[9, 5, 7, 4, 2, 8, 1, 3, 6, 10]

[6, 5, 7, 4, 2, 8, 1, 3, 9, 10]

[6, 5, 3, 4, 2, 8, 1, 7, 9, 10]

[6, 5, 3, 4, 2, 1, 8, 7, 9, 10]

[1, 5, 3, 4, 2, 6, 8, 7, 9, 10]

[1, 5, 3, 4, 2, 6, 8, 7, 9, 10]

[1, 2, 3, 4, 5, 6, 8, 7, 9, 10]

[1, 2, 3, 4, 5, 6, 8, 7, 9, 10]

[1, 2, 3, 4, 5, 6, 8, 7, 9, 10]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Using Search Trees and the
Heap

Search trees enable you to look for data quickly. Chapter 5
introduces you to the idea of a binary search, and the “Working
with Trees ” section of Chapter 6 helps you understand trees to
some extent. Obtaining data items, placing them in sorted order in
a tree, and then searching that tree is one of the faster ways to
find information.
A special kind of tree structure is the binary heap , which places
each of the node elements in a special order. The root node
always contains the smallest value. When viewing the branches,
you see that upper-level branches are always a smaller value
than lower-level branches and leaves. The effect is to keep the
tree balanced and in a predictable order so that searching
becomes extremely efficient. The cost is in keeping the tree
balanced. The following sections describe how search trees and
the heap work in detail.

Considering the need to search
effectively
Of all the tasks that applications do, searching is the more time
consuming and also the one required most. Even though adding
data (and sorting it later) does require some amount of time, the
benefit to creating and maintaining a dataset comes from using it

to perform useful work, which means searching it for important
information. Consequently, you can sometimes get by with less
efficient CRUD functionality and even a less-than-optimal sort
routine, but searches must proceed as efficiently as possible. The
only problem is that no one search performs every task with
absolute efficiency, so you must weigh your options based on
what you expect to do as part of the search routines.
Two of the more efficient methods of searching involve the use of
the binary search tree (BST) and binary heap. Both of the search
techniques rely on a tree-like structure to hold the keys used to
access data elements. However, the arrangement of the two
methods is different, which is why one has advantages over the
other when performing certain tasks. Figure 7-1 shows the
arrangement for a BST.

image
FIGURE 7-1: The arrangement of keys when using a BST.

Note how the keys follow an order in which lesser numbers
appear to the left and greater numbers appear to the right. The
root node contains a value that is in the middle of the range of
keys, giving the BST an easily understood balanced approach to
storing the keys. Contrast this arrangement to the binary heap
shown in Figure 7-2 .

image
FIGURE 7-2: The arrangement of keys when using a binary heap.

Each level contains values that are less than the previous level,
and the root contains the maximum key value for the tree. In
addition, in this particular case, the lesser values appear on the
left and the greater on the right (although this order isn’t strictly
enforced). The figure actually depicts a binary max heap. You can
also create a binary min heap in which the root contains the
lowest key value and each level builds to higher values, with the
highest values appearing as part of the leaves.

 As previously noted, BST has some advantages over
binary heap when used to perform a search. The following list
provides some of the highlights of these advantages:

Searching for an element requires O(log n) time, contrasted to
O(n) time for a binary heap.
Printing the elements in order requires only O(log n) time,
contrasted to O(n log n) time for a binary heap.
Finding the floor and ceiling requires O(log n) time.
Locating Kth smallest/largest element requires O(log n) time
when the tree is properly configured.

Whether these times are important depends on your application.
BST tends to work best in situations in which you spend more
time searching and less time building the tree. A binary heap
tends to work best in dynamic situations in which keys change
regularly. The binary heap also offers advantages, as described in
the following list:

Creating the required structures requires fewer resources
because binary heaps rely on arrays, making them cache
friendlier as well.
Building a binary heap requires O(n) time, contrasted to BST,
which requires O(n log n) time.
Using pointers to implement the tree isn’t necessary.
Relying on binary heap variations (for example, the Fibonacci
Heap) offers advantages such as increase and decrease key
times of O(1) time.

Building a binary search tree
You can build a BST using a variety of methods. Some people
simply use a dictionary; others use custom code (see the article at
https://interactivepython.org/courselib/static/pythonds/Trees

/SearchTreeImplementation.html and
http://code.activestate.com/recipes/577540-python-binary-

https://interactivepython.org/courselib/static/pythonds/Trees/SearchTreeImplementation.html
http://code.activestate.com/recipes/577540-python-binary-search-tree/

search-tree/ as examples). However, most developers don’t want
to reinvent the wheel when it comes to BST. With this in mind, you
need a package, such as bintrees , which provides all the
required functionality to create and interact with BST using a
minimum of code. To download and install bintrees , open a
command prompt, type pip install bintrees , and press Enter.
You see bintrees installed on your system. The documentation for
this package appears at
https://pypi.python.org/pypi/bintrees/2.0.6 .
You can use bintrees for all sorts of needs, but the example in
this section looks specifically at a BST. In this case, the tree is
unbalanced. The following code shows how to build and display a
BST using bintrees . (You can find this code in the A4D; 07;
Search Techniques.ipynb file on the Dummies site as part of the
downloadable code; see the Introduction for details.)

from bintrees import BinaryTree

data = {3:'White', 2:'Red', 1:'Green', 5:'Orange',

4:'Yellow', 7:'Purple', 0:'Magenta'}

tree = BinaryTree(data)

tree.update({6:'Teal'})

def displayKeyValue(key, value):

print('Key: ', key, 'Value: ', value)

tree.foreach(displayKeyValue)

print('Item 3 contains: ', tree.get(3))

print('The maximum item is: ', tree.max_item())

 Key: 0 Value: Magenta

http://code.activestate.com/recipes/577540-python-binary-search-tree/
https://pypi.python.org/pypi/bintrees/2.0.6

Key: 1 Value: Green

Key: 2 Value: Red

Key: 3 Value: White

Key: 4 Value: Yellow

Key: 5 Value: Orange

Key: 6 Value: Teal

Key: 7 Value: Purple

Item 3 contains: White

The maximum item is: (7, 'Purple')

To create a binary tree, you must supply key and value pairs. One
way to perform this task is to create a dictionary as shown. After
you create the tree, you can use the update function to add new
entries. The entries must include a key and value pair as shown.

 This example uses a function to perform a task with the
data in tree . In this case, the function merely prints the key
and value pairs, but you could use the tree as input to an
algorithm for analysis (among other tasks). The function,
displayKeyValue , acts as input to the foreach function, which
displays the key and value pairs as output. You also have
access to myriad other features, such as using get to obtain a
single item or max_item to obtain the maximum item stored in
tree .

Performing specialized searches
using a binary heap
As with BST, you have many ways to implement a binary heap.
Writing one by hand or using a dictionary does work well, but
relying on a package makes things considerably faster and more
reliable. The heapq package comes with Python, so you don’t
even need to install it. You can find the documentation for this
package at https://docs.python.org/3/library/heapq.html . The

https://docs.python.org/3/library/heapq.html

following example shows how to build and search a binary heap
using heapq :

import heapq

data = {3:'White', 2:'Red', 1:'Green', 5:'Orange',

4:'Yellow', 7:'Purple', 0:'Magenta'}

heap = []

for key, value in data.items():

heapq.heappush(heap, (key, value))

heapq.heappush(heap, (6, 'Teal'))

heap.sort()

 for item in heap:

print('Key: ', item[0], 'Value: ', item[1])

print('Item 3 contains: ', heap[3][1])

print('The maximum item is: ', heapq.nlargest(1, heap))

Key: 0 Value: Magenta

Key: 1 Value: Green

Key: 2 Value: Red

Key: 3 Value: White

Key: 4 Value: Yellow

Key: 5 Value: Orange

Key: 6 Value: Teal

Key: 7 Value: Purple

Item 3 contains: White

The maximum item is: [(7, 'Purple')]

The example code performs the same tasks and provides the
same output as the example in the previous section, except that it
relies on a binary heap in this case. The dataset is the same as
before. However, note the difference in the way you add the data
to the heap using heappush . In addition, after adding a new item,
you must call sort to ensure that the items appear in sorted order.
Manipulating the data is much like manipulating a list, as
contrasted to the dictionary approach used for bintrees .
Whichever approach you use, it pays to choose an option that
works well with the application you want to create and provides
the fastest possible search times for the tasks you perform.

Relying on Hashing
A major problem with most sort routines is that they sort all the
data in a dataset. When the dataset is small, you hardly notice the
amount of data that the sort routine attempts to move. However,
as the dataset gets larger, the data movement becomes
noticeable as you sit staring at the screen for hours on end. A way
around this problem is to sort just the key information. A key is the
identifying data for a particular data record. When you interact
with an employee record, the employee name or number usually
serves as a key for accessing all the other information you have
about the employee. It’s senseless to sort all the employee
information when you really need only the keys sorted, which is
what using hashing is all about. When working with these data
structures, you gain a major speed advantage by sorting the
smaller amount of data presented by the keys, rather than the
records as a whole.

Putting everything into buckets
Until now, the search and sort routines in the book work by
performing a series of comparisons until the algorithm finds the
correct value. The act of performing comparisons slows the
algorithms because each comparison takes some amount of time
to complete.

A smarter way to perform the task involves predicting the location
of a particular data item in the data structure (whatever that
structure might be) before actually looking for it. That’s what a
hash table does —provides the means to create an index of keys
that points to individual items in a data structure so that an
algorithm can easily predict the location of the data. Placing keys
into the index involves using a hash function that turns the key
into a numeric value. The numeric value acts as an index into the
hash table, and the hash table provides a pointer to the full record
in the dataset. Because the hash function produces repeatable
results, you can predict the location of the required data. In many
cases, a hash table provides a search time of O(1). In other
words, you need only one comparison to find the data.

 A hash table contains a specific number of slots that you
can view as buckets for holding data. Each slot can hold one
data item. The number of filled slots when compared to the
number of available slots is the load factor. When the load
factor is high, the potential for collisions (where two data
entries have the same hash value) becomes greater as well.
The next section of the chapter discusses how to avoid
collisions, but all you really need to know for now is that they
can occur.

One of the more typical methods for calculating the hash value for
an input is to obtain the modulus of the value divided by the
number of slots. For example, if you want to store the number 54
into a hash table containing 15 slots, the hash value is 9.
Consequently, the value 54 goes into slot 9 of the hash table
when the slots are numbers from 0 through 14 (given that the
table has 15 slots). A real hash table will contain a considerably
greater number of slots, but 15 works fine for the purposes of this
section. After placing the item into the hash slot, you can use the
hash function a second time to find its location.

 Theoretically, if you have a perfect hash function and an
infinite number of slots, every value you present to the hash
function will produce a unique value. In some cases, the hash
calculation can become quite complex to ensure unique
values most of the time. However, the more complex the
hash calculation, the less benefit you receive from hashing,
so keeping things simple is the best way to go.

Hashing can work with all sorts of data structures. However, for
the purposes of demonstration, the following example uses a
simple list to hold the original data and a second list to hold the
resulting hash. (You can find this code in the A4D; 07;
Hashing.ipynb file on the Dummies site as part of the
downloadable code; see the Introduction for details.)

data = [22, 40, 102, 105, 23, 31, 6, 5]

hash_table = [None] * 15

tblLen = len(hash_table)

def hash_function(value, table_size):

return value % table_size

for value in data:

hash_table[hash_function(value, tblLen)] = value

print(hash_table)

[105, 31, None, None, None, 5, 6, 22, 23, None, 40, None,

102, None, None]

To find a particular value again, you just run it through
hash_function . For example,
print(hash_table[hash_function(102, tblLen)]) displays 102 as

output after locating its entry in hash_table . Because the hash
values are unique in this particular case, hash_function can locate
the needed data every time.

Avoiding collisions
A problem occurs when two data entries have the same hash
value. If you simply write the value into the hash table, the second
entry will overwrite the first, resulting in a loss of data. Collisions,
the use of the same hash value by two values, require you to
have some sort of strategy in mind for handling them. Of course,
the best strategy is to avoid the collision in the first place.
One of the methods for avoiding collisions is to ensure that you
have a large enough hash table. Keeping the load factor low is
your first line of defense against having to become creative in the
use of your hash table. However, even with a large table, you
can’t always avoid collisions. Sometimes the potential dataset is
so large, but the used dataset is so small, that avoiding the
problem becomes impossible. For example, if you have a school
with 400 children and rely on their social security number for
identification, collisions are inevitable because no one is going to
create a hash table with a billion entries for that many children.
The waste of memory would be enormous. Consequently, a hash
function may have to use more than just a simple modulus output
to create the hash value. Here are some techniques you can use
to avoid collisions:

Partial values: When working with some types of information,
part of that information repeats, which can create collisions. For
example, the first three digits of a telephone number can repeat
for a given area, so removing those numbers and using just the
remaining four may help solve a collision problem.
Folding: Creating a unique number might be as easy as
dividing the original number into pieces, adding the pieces
together, and using the result for the hash value. For example,
using the telephone number 555-1234, the hash could begin by
breaking it into pieces: 55 51 234, and then adding the result

together to obtain 340 as the number used to generate the
hash.
Mid-square: The hash squares the value in question, uses
some number of digits from the center of the resulting number,
and discards the rest of those digits. For example, consider the
value 120. When squared, you get 14,400. The hash could use
440 to generate the hash value and discard the 1 from the left
and the 0 from the right.

Obviously, there are as many ways to generate the hash as
someone has imagination to create them. Unfortunately, no
amount of creativity is going to solve every collision problem, and
collisions are still likely to occur. Therefore, you need another
plan. When a collision does occur, you can use one of the
following methods to address it:

Open addressing: The code stores the value in the next open
slot by looking through the slots sequentially until it finds an
open slot to use. The problem with this approach is that it
assumes an open slot for each potential value, which may not
be the case. In addition, open addressing means that the search
slows considerably after the load factor increases. You can no
longer find the needed value on the first comparison.
Rehashing: The code hashes the hash value plus a constant.
For example, consider the value 1,020 when working with a
hash table containing 30 slots and a constant of 100. The hash
value in this case is 22. However, if slot 22 already contains a
value, rehashing ((22 + 100) % 30) produces a new hash value
of 2. In this case, you don’t need to search the hash table
sequentially for a value. When implemented correctly, a search
might still include a low number of comparisons to find the target
value.
Chaining: Each slot in the hash table can hold multiple values.
You can implement this approach by using a list within a list.
Every time a collision occurs, the code simply appends the
value to the list in the target slot. This approach offers the
benefit of knowing that the hash will always produce the correct

slot, but the list within that slot will still require some sort of
sequential (or other) search to find the specific value.

Creating your own hash function
You may at times need to create custom hash functions in order
to meet the needs of the algorithm you use or to improve its
performance. Apart from cryptographic uses (which deserve a
book alone), Chapter 12 presents common algorithms that
leverage different hash functions, such as the Bloom Filter, the
HyperLogLog, and the Count-Min Sketch, that leverage the
properties of custom hash functions to extract information from
huge amounts of data.

DISCOVERING UNEXPECTED USES
OF HASHES

Apart from the algorithms detailed in this book, other important algorithms are
based on hashes. For instance, the Locality-sensitive Hashing (LSH) algorithm
relies on a large number of hash functions to stitch apparently separated
information together. If you wonder how marketing companies and intelligence
services put different chunks of information together based on names and
addresses that aren’t identical (for example, guessing that “Los Angels,” “Los
Angles,” and “Los Angleles” all refer to Los Angeles) the answer is LSH. LSH
chunks the information to check into parts and digests it using many hash
functions, resulting in the production of a special hash result, which is an
address for a bucket used to hold similar words. LSH is quite complex in its
implementation, but check out this material from the Massachusetts Institute of
Technology (MIT): http://www.mit.edu/~andoni/LSH/ .

You can find many examples of different hash functions in the
Python hashlib package. The hashlib package contains
algorithms such as these:

Secure Hash Algorithms (SHA): These algorithms include
SHA1, SHA224, SHA256, SHA384, and SHA512. Released by
the National Institute of Standards and Technology (NIST) as a
U.S. Federal Information Processing Standard (FIPS), SHA

http://www.mit.edu/~andoni/LSH/

algorithms provide support for security applications and
protocols.
RSA’s MD5 algorithm: Initially designed for security
applications, this hash turned into a popular way to checksum
files. Checksums reduce files to a single number that enables
you to determine whether the file was modified since hash
creation (it lets you determine whether the file you downloaded
wasn’t corrupted and hasn’t been altered by a hacker). To
ensure file integrity, just check whether the MD5 checksum of
your copy corresponds to the original one communicated by the
author of the file.

 If hashlib isn’t available on your Python installation, you
can install the package using the pip install hashlib
command from a command shell. The algorithms in hashlib
work well for simple applications when used alone.

However, you can combine the output of multiple hash functions
when working with complex applications that rely on a large
dataset. Simply sum the results of the various outputs after having
done a multiplication on one or more of them. The sum of two
hash functions treated in this way retains the qualities of the
original hash functions even though the result is different and
impossible to recover as the original elements of the sum. Using
this approach means that you have a brand-new hash function to
use as your secret hash recipe for algorithms and applications.
The following code snippet relies on the hashlib package and the
md5 and sha1 hash algorithms. You just provide a number to use
for the multiplication inside the hash sum. (Because numbers are
infinite, you have a function that can produce infinite hashes.)

from hashlib import md5, sha1

def hash_f(element, i, length):

""" Function to create many hash functions """

h1 = int(md5(element.encode('ascii')).hexdigest(),16)

h2 = int(sha1(element.encode('ascii')).hexdigest(),16)

return (h1 + i*h2) % length

print (hash_f("CAT", 1, 10**5))

64018

print (hash_f("CAT", 2, 10**5))

43738

 If you wonder where to find other uses of hash tables
around you, check out Python’s dictionaries. Dictionaries are,
in fact, hash tables, even though they have a smart way to
deal with collisions and you won’t lose your data because two
hashed keys casually have the same result. The fact that the
dictionary index uses a hash is also the reason for its speed
in checking whether a key is present. In addition, the use of a
hash explains why you can’t use every data type as a key.
The key you choose must be something that Python can turn
into a hash result. Lists, for instance, are unhashable
because they are mutable; you can change them by adding
or removing elements. Nevertheless, if you transform your list
into a string, you can use it as a key for a dictionary in
Python.

Part 3
Exploring the World of Graphs

IN THIS PART …
Discover graph essentials that help you draw, measure, and
analyze graphs.
Interact with graphs to locate nodes, sort graph elements, and find
the shortest path.
Work with social media in graph form.
Explore graphs to find patterns and make decisions based on
those patterns.
Use the PageRank algorithm to rate web pages.

Chapter 8
Understanding Graph Basics

IN THIS CHAPTER
 Defining why networks are important
 Demonstrating graph drawing techniques
 Considering graph functionality
 Using numeric formats to represent graphs

Graphs are structures that present a number of nodes (or
vertexes) connected by a number of edges or arcs (depending on
the representation). When you think about a graph, think about a
structure like a map, where each location on the map is a node
and the streets are the edges. This presentation differs from a
tree where each path ends up in a leaf node. Remember from
Chapter 7 that a tree could look like an organizational chart or a
family hierarchy. Most important, tree structures actually do look
like trees and have a definite start and a definite end. This chapter
begins by helping you understand the importance of networks,
which are a kind of graph commonly used for all sorts of
purposes.

 You can represent graphs in all sorts of ways, most of
them abstract. Unless you’re really good at visualizing things
in your mind (most people aren’t), you need to know how to
draw a graph so you can actually see it. People rely on their
vision to understand how things work. The act of turning the
numbers that represent a graph into a graphic visualization is
plotting. Languages like Python excel at plotting because it’s
such an incredibly important feature. In fact, it’s one of the

reasons that this book uses Python rather than another
language, such as C (which is good at performing a
completely different set of tasks).

After you can visualize a graph, it’s important to know what to do
with the graphic representation. This chapter starts you off by
measuring graph functionality. You do things like count the edges
and vertexes to determine things like graph complexity. Seeing a
graph also enables you to perform tasks like computing centrality
with greater ease. Of course, you build on what you discover in
this chapter in Chapter 9 .
The numeric presentation of a graph is important, even if it makes
understanding the graph hard. The plot is for you, but the
computer doesn’t really understand the plot (despite having drawn
it for you). Think of the computer as more of an abstract thinker.
With the need to present a graph in a form that the computer can
understand in mind, this chapter discusses three techniques for
putting a graph into numeric format: matrixes, sparse
representations, and lists. All these techniques have advantages
and disadvantages, and you use them in specific ways in future
chapters (beginning with Chapter 9). Other ways are also
available to put a graph in numeric format, but these three
methods will serve you well in communicating with the computer.

Explaining the Importance of
Networks

A network is a kind of graph that associates names with the
vertexes (nodes or points), edges (arcs or lines), or both.
Associating names with the graph features reduces the level of
abstraction and makes understanding the graph easier. The data
that the graph models becomes real in the mind of the person
viewing it, even though the graph truly is an abstraction of the real
world put into a form that both humans and computers can
understand in different ways. The following sections help you
understand the importance of networks better so that you can see

how their use in this book simplifies the task of discovering how
algorithms work and how you can benefit from their use.

Considering the essence of a graph
Graphs appear as ordered pairs in the form G = (V,E), where G is
the graph, V is a list of vertexes, and E is a list of edges that
connect the vertexes. An edge is actually a numeric pair that
expresses the two vertexes that it connects. Consequently, if you
have two vertexes that represent cities, Houston (which equals 1)
and Dallas (which equals 2), and you want to connect them with a
road, then you create an edge, Highway , that contains a pair of
vertex references, Highway = [Houston, Dallas] . The graph
would appear as G = [(Houston, Dallas)] , which simply says
that there is a first vertex, Houston, with a connection to Dallas,
the second vertex. Using the order of presentation of the vertexes,
Houston is adjacent to Dallas; in other words, a car would leave
Houston and enter Dallas.
Graphs come in several forms. An undirected graph (as shown in
Figure 8-1) is one in which the order of the edge entries doesn’t
matter. A road map would represent an undirected graph in most
cases because traffic can travel along the road in both directions.

image
FIGURE 8-1: Presenting a simple undirected graph.

A directed graph, like the one shown in Figure 8-2 , is one in
which the order of the edge entries does matter because the flow
is from the first entry to the second. In this case, most people call
the edges arcs to differentiate them from undirected entries.
Consider a graph representation of a traffic light sequence where
Red equals 1, Yellow equals 2, and Green equals 3. The three
arcs required to express the sequence are: Go = [Red, Green] ,
Caution = [Green, Yellow] , and Stop = [Yellow, Red] . The
order of the entries is important because the flow from Go, to
Caution, to Stop is important. Imagine the chaos that would result

if the signal light chose to ignore the directed graph nature of the
sequence.

image
FIGURE 8-2: Creating the directed version of the same graph.

A third essential kind of graph that you must consider is the mixed
graph. Think about the road map again. It isn’t always true that
traffic flows both ways on all roads. When creating some maps,
you must consider the presence of one-way streets.
Consequently, you need both undirected and directed subgraphs
in the same graph, which is what you get with a mixed graph.
Another graph type for your consideration is the weighted graph
(shown in Figure 8-3), which is a graph that has values assigned
to each of the edges or arcs. Think about the road map again.
Some people want to know more than simply the direction to
travel; they also want to know how far away the next destination is
or how much time to allocate for getting there. A weighted graph
provides this sort of information, and you use the weights in many
different ways when performing calculations using graphs.

image
FIGURE 8-3: Using a weighted graph to make things more realistic.

Along with the weighted graph, you might also need a vertex-
labeled graph when creating a road map. When working with a
vertex-labeled graph , each vertex has a name associated with it.
Consider looking at a road map where the mapmaker hasn’t
labeled the towns. Yes, you can see the towns, but you don’t
know which one is which without labels. You can find additional
graph types described at
http://web.cecs.pdx.edu/~sheard/course/Cs163/Doc/Graphs.html

.

Finding graphs everywhere
Graphs might seem like one of those esoteric math features that
you found boring in school, but graphs are actually quite exciting

http://web.cecs.pdx.edu/~sheard/course/Cs163/Doc/Graphs.html

because you use them all the time without really thinking about it.
Of course, it helps to know that you won’t normally deal with the
numbers behind the graphs. Think about a map. What you see is
a graph, but you see it in graphic format, with cities, roads, and all
sorts of other features. The thing is, when you see a map, you
think about a map, not a graph (but your GPS does see a graph,
which is why it can always suggest the shortest route to your
destination). If you were to start looking around, you’d find many
common items that are graphs but are called something else.

 Some graphs aren’t visual in nature, but you still don’t see
them as graphs. For example, telephone menu systems are a
form of directional graph. In fact, for their seeming simplicity,
telephone graphs are actually somewhat complex. They can
include loops and all sorts of other interesting structures.
Something you might try is to map out the graph for a menu
system at some point. You might be surprised at just how
complex some of them can be.

Another form of menu system appears as part of applications. To
perform tasks, most applications take you through a series of
steps in a special kind of subapplication called a wizard. The use
of wizards make seemingly complex applications much easier to
use, but to make the wizards work, the application developer must
create a graph depicting the series of steps.
It may surprise you to find that even recipes in cookbooks are a
kind of graph (and creating a pictorial representation of the
relationships between ingredients can prove interesting). Each
ingredient in the recipe is a node. The nodes connect using the
edges created by the instructions for mixing the ingredients. Of
course, a recipe is just a kind of chemistry, and chemical graphics
show the relationship between elements in a molecule. (Yes,
people actually are having this discussion; you can see one such
thread at

http://stackoverflow.com/questions/7749073/representing-a-cooking-recipe-in-a-graph-database

http://stackoverflow.com/questions/7749073/representing-a-

cooking-recipe-in-a-graph-database .)

 The point is that you see these graphs all the time, but you
don’t see them as graphs — you see them as something
else, such as a recipe or a chemical formula. Graphs can
represent many kinds of relationships between objects,
implying an order sequence, time dependence, or causality.

Showing the social side of graphs
Graphs have social implications because they often reflect
relationships between people in various settings. One of the most
obvious uses of graphs is the organizational chart. Think about it.
Each node is a different person in the organization, with edges
connecting the nodes to show the various relationships between
individuals. The same holds true for all sorts of graphs, such as
those that show family history. However, in the first case, the
graph is undirected because communication flows both ways
between managers and subordinates (although the nature of the
conversation differs based on direction). In the second case, the
graph is directed because two parents bear children. The flow
shows the direction of heredity from a founding member to the
current children.
Social media benefits from the use of graphs as well. For
example, a whole industry exists for analyzing the relationships
between tweets on Twitter (see http://twittertoolsbook.com/10-
awesome-twitter-analytics-visualization-tools/ for an example
of just some of these tools). The analysis relies on the use of
graphs to discover the relationships between individual tweets.
However, you don’t have to look at anything more arcane than
email to see graphs used for social needs. The Enron corpus
includes the 200,399 email messages of 158 senior executives,
dumped onto the Internet by the Federal Energy Regulatory
Commission (FERC). Scientists and scholars have used this

http://stackoverflow.com/questions/7749073/representing-a-cooking-recipe-in-a-graph-database
http://twittertoolsbook.com/10-awesome-twitter-analytics-visualization-tools/

corpus to create many social graphs to disclose how the seventh
largest company in the United States needed to file bankruptcy in
2001 (see https://www.technologyreview.com/s/515801/the-
immortal-life-of-the-enron-e-mails/ to learn how this corpus
has helped and is actually helping advance the analysis of
complex graphs).
Even your computer has social graphs on it. No matter which
email application you use, you can group emails in various ways,
and these grouping methods normally rely on graphs to provide a
structure. After all, trying to follow the flow of discussion without
knowing which messages are responses to other messages is a
lost cause. Yes, you could do it, but as the number of messages
increases, the effort requires more and more time until it’s wasted
because of time constraints most people have.

Understanding subgraphs
Relationships depicted by graphs can become quite complex. For
example, when depicting city streets, most streets allow traffic in
both directions, making an undirected graph perfect for
representation purposes. However, some streets allow traffic in
only one direction, which means that you need a directed graph in
this case. The combination of two-way and one-way streets
makes representation using a single graph type impossible (or at
least inconvenient). Mixing undirected and directed graphs in a
single graph means that you must create subgraphs to depict
each graph type and then connect the subgraphs in a larger
graph. Some graphs that contain subgraphs are so common that
they have specific names, which is a mixed graph in this case.
Subgraphs are useful for other purposes as well. For example,
you might want to analyze a loop within a graph, which means
describing that loop as a subgraph. You don’t need the entire
graph, just the nodes and edges required to perform the analysis.
All sorts of disciplines use this approach. Yes, developers use it to
ensure that parts of an application work as expected, but city
engineers also use it to understand the nature of traffic flow in a
particularly busy section of the city. Medical professionals also

https://www.technologyreview.com/s/515801/the-immortal-life-of-the-enron-e-mails/

use subgraphs to understand the flow of blood or other liquids
between organs in the body. The organs are the nodes and the
blood vessels are the edges. In fact, many of these graphs are
weighted — it’s essential to know how much blood is flowing, not
just that it’s flowing.
Complex graphs can also hide patterns that you need to know
about. For example, the same cycle can appear in multiple parts
of the graph, or you might see the same cycle within different
graphs. By creating a subgraph from the cycle, you can easily
perform comparisons within the same graph or between graphs to
see how they compare. For example, a biologist might want to
compare the cycle of mutation for one animal against the cycle of
mutation for another animal. To make this comparison, the
biologist would need to create the representation as a subgraph of
the processes for the entire animal. (You can see an interesting
view of this particular use of graphs at
http://www.sciencedirect.com/science/article/pii/S13590278960

00569 .). The graph appears near the beginning of the article as
Figure 1.

Defining How to Draw a Graph
A few people can visualize data directly in their minds. However,
most people really do need a graphic presentation of the data in
order to understand it. This point is made clear by the use of
graphics in business presentations. You could tell others about
last year’s sales by presenting tables of numbers. After a while,
most of your audience would nod off and you’d never get your
point across. The reason is simple: The tables of numbers are
precise and present a lot of information, but they don’t do it in a
way that people understand.

http://www.sciencedirect.com/science/article/pii/S1359027896000569

 Plotting the data and showing the sales numbers as a bar
chart helps people see the relationships between the
numbers with greater ease. If you want to point out that sales
are increasing each year, a bar chart with bars of increasing
length makes this point quickly. Interestingly enough, using
the plot actually presents the data in a less accurate way.
Trying to see that the company made $3,400,026.15 last year
and $3,552,215.82 this year when looking at a bar chart is
nearly impossible. Yes, the table would show this information,
but people don’t really need to know that level of detail —
they simply need to see the annual increase, the contrast in
earnings from year to year. However, your computer is
interested in details, which is why plots are for humans and
matrixes are for computers.

The following sections help you discover the wonders of plotting.
You get a quick overview of how plots work with Python. Of
course, these principles appear in later chapters in a more
detailed form. These sections provide a start so that you can more
easily understand the plots presented later.

Distinguishing the key attributes
Before you can draw a graph, you need to know about graph
attributes. As previously mentioned, graphs consist of nodes (or
vertexes) and either edges (for undirected graphs) or arcs (for
directed graphs). Any graph that you want to draw will contain
these elements. However, how you represent these elements
depends partly upon the package you choose to use. For the sake
of simplicity, the book relies on a combination of two packages:

NetworkX (https://networkx.github.io/): Contains code for
drawing graphs.
matplotlib (http://matplotlib.org/): Provides access to all
sorts of drawing routines, some of which can display graphs
created by NetworkX.

https://networkx.github.io/
http://matplotlib.org/

 To use packages in Python, you must import them. When
you need to use external packages, you must add special
code, such as the following lines of code that provide access
to matplotlib and networkx . (You can find this code in the
A4D; 08; Draw Graph.ipynb file on the Dummies site as part
of the downloadable code; see the Introduction for details.)

import networkx as nx

import matplotlib.pyplot as plt

%matplotlib inline

 The special %matplotlib inline entry lets you see your
plots directly in the Notebook rather than as an external
graphic. Using this entry means that you can create a
Notebook with graphics already included so that you don’t
have to run the code again to see the results you received in
the past.

Now that you have access to the packages, you create a graph. In
this case, a graph is a sort of container that holds the key
attributes that define the graph. Creating a container lets you draw
the graph so that you can see it later. The following code creates
a NetworkX Graph object.

AGraph = nx.Graph()

Adding the key attributes to AGraph comes next. You must add
both nodes and edges using the following code.

Nodes = range(1,5)

Edges = [(1,2), (2,3), (3,4), (4,5), (1,3), (1,5)]

As previously mentioned, Edges describe connections between
Nodes . In this case, Nodes contains values from 1 through 5, so
Edges contains connections between those values.
Of course, the Nodes and Edges are just sitting there now and won’t
appear as part of AGraph . You must put them into the container to
see them. Use the following code to add the Nodes and Edges to
AGraph .

AGraph.add_nodes_from(Nodes)

AGraph.add_edges_from(Edges)

The NetworkX package contains all sorts of functions you can use
to interact with individual nodes and edges, but the approach
shown here is the fastest way to do things. Even so, you might
find that you want to add additional edges later. For example, you
might want to add an edge between 2 and 4, in which case you
would call the AGraph.add_edge(2, 4) function.

Drawing the graph
You can interact in all sorts of ways with the AGraph container
object that you created in the previous section, but many of those
ways to interact are abstract and not very satisfying if you’re a
visually oriented person. Sometimes it’s just nice to see what an
object contains by looking at it. The following code displays the
graph contained in AGraph :

nx.draw(AGraph, with_labels=True)

The draw() function provides various arguments that you can use
to dress up the display, such as modifying the node color using
the node_color argument and the edge color using the edge_color
argument. Figure 8-4 shows the graph contained in AGraph .

FIGURE 8-4: Seeing what a graph contains makes it easier to understand.

DIFFERENCES IN FIGURE OUTPUT
Figure 8-4 shows typical output. However, your graph might appear to be
slightly different from the one shown. For example, the triangle could appear at
the bottom instead of the top, or the angles between the nodes could vary. The
connections between the nodes matter most, so slight differences in actual
appearance aren’t important. Running the code several times would
demonstrate that the orientation of the graph changes, along with the angles
between edges. You see this same difference in other screenshots in the book.
Always view the image with node connections in mind, rather than expecting a
precise match between your output and the book’s output.

Measuring Graph Functionality
After you can visualize and understand a graph, you need to
consider the question of which parts of the graph are important.
After all, you don’t want to spend your time performing analysis on
data that doesn’t really matter in the grand scheme of things.
Think about someone who is analyzing traffic flow to improve the
street system. The intersections represent vertexes and the
streets represent edges along which the traffic flows. By knowing
how the traffic flows, that is, which vertexes and edges see the

most traffic, you can start thinking about which roads to widen and
which need more repair because more traffic uses them.
However, just looking at individual streets isn’t enough. A new
skyscraper may bring with it a lot of traffic that affects an entire
area. The skyscraper represents a central point around which
traffic flow becomes more important. The most important vertexes
are those central to the new skyscraper. Calculating centrality, the
most important vertexes in a graph, can help you understand
which parts of the graph require more attention. The following
sections discuss the basic issues you must consider when
measuring graph functionality, which is the capability of the graph
to model a specific problem.

Counting edges and vertexes
As graphs become more complex, they convey more information,
but they also become harder to understand and manipulate. The
number of edges and vertexes in a graph determines graph
complexity. However, you use the combination of edges and
vertexes to tell the full story. For example, you can have a node
that isn’t connected to the other nodes in any way. It’s legal to
create such a node in a graph to represent a value that lacks
connections to the others. Using the following code, you can
easily determine that node 6 has no connections to the others
because it lacks any edge information. (You can find this code in
the A4D; 08; Graph Measurements.ipynb file.)

import networkx as nx

import matplotlib.pyplot as plt

%matplotlib inline

AGraph = nx.Graph()

Nodes = range(1,5)

Edges = [(1,2), (2,3), (3,4), (4,5), (1,3), (1,5)]

AGraph.add_nodes_from(Nodes)

AGraph.add_edges_from(Edges)

AGraph.add_node(6)

sorted(nx.connected_components(AGraph))

[{1, 2, 3, 4, 5}, {6}]

The output from this code shows that nodes 1 through 5 are
connected and that node 6 lacks a connection. Of course, you can
remedy this situation by adding another edge by using the
following code and then checking again:

AGraph.add_edge(1,6)

sorted(nx.connected_components(AGraph))

[{1, 2, 3, 4, 5, 6}]

The output now shows that every one of the nodes connects to at
least one other node. However, you don’t know which nodes have
the most connections. The count of edges to a particular node is
the degree. The higher the degree, the more complex the node
becomes. By knowing the degree, you can develop an idea of

which nodes are most important. The following code shows how
to obtain the degree for the example graph.

nx.degree(AGraph).values()

dict_values([4, 2, 3, 2, 2, 1])

The degree values appear in node order, so node 1 has four
connections and node 6 has only one connection. Consequently,
node 1 is the most important, followed by node 3, which has three
connections.
When modeling real-world data, such as the tweets about a
particular topic, the nodes also tend to cluster. You might think of
this tendency as a kind of trending — what people feel is
important now. The fancy math term for this tendency is
clustering, and measuring this tendency helps you understand
which group of nodes is most important in a graph. Here is the
code you use to measure clustering for the example graph:

nx.clustering(AGraph)

{1: 0.16666666666666666, 2: 1.0, 3: 0.3333333333333333,

4: 0.0, 5: 0.0, 6: 0.0}

The output shows that the nodes are most likely to cluster around
node 2 even though node 1 has the highest degree. That’s
because both nodes 1 and 3 have high degrees and node 2 is
between them.

USE OF WHITESPACE IN OUTPUT

The output for this example appears on two lines in the book, even though it
appears on just one line in Jupyter Notebook. The addition of whitespace helps
the output appear in a readable size on the page — it doesn’t affect the actual
information. Other examples in the book also show output on multiple lines,
even when it appears on a single line in Jupyter Notebook.

 Clustering graphs helps aid understanding data. The
technique helps show that there are nodes in the graph that
are better connected and nodes that risk isolation. When you
understand how elements connect in a graph, you can
determine how to strengthen its structure or, on the contrary,
destroy it. During the Cold war, military scientists from both
the United States and the Soviet bloc studied graph
clustering to better understand how to disrupt the other side’s
supply chain in case of a conflict.

Computing centrality
Centrality comes in a number of different forms because
importance often depends on different factors. The important
elements of a graph when analyzing tweets will differ from the
important elements when analyzing traffic flow. Fortunately,
NetworkX provides you with a number of methods for calculating
centrality. For example, you can calculate centrality based on
node degrees. The following code uses the modified graph from
the previous section of the chapter. (You can find this code in the
A4D; 08; Graph Centrality.ipynb file.)

import networkx as nx

import matplotlib.pyplot as plt

%matplotlib inline

AGraph = nx.Graph()

Nodes = range(1,6)

Edges = [(1,2), (2,3), (3,4), (4,5), (1,3), (1,5), (1,6)]

AGraph.add_nodes_from(Nodes)

AGraph.add_edges_from(Edges)

nx.degree_centrality(AGraph)

{1: 0.8, 2: 0.4, 3: 0.6000000000000001, 4: 0.4, 5: 0.4,

6: 0.2}

The values differ by the number of connections for each node.
Because node 1 has four connections (it has the highest degree),
it also has the highest centrality. You can see how this works by
plotting the graph using a call to nx.draw(AGraph,
with_labels=True) , as shown in Figure 8-5 .

FIGURE 8-5: Plotting the graph can help you see degree centrality with greater ease.

Node 1 is indeed in the center of the graph with the most
connections. The node 1 degree ensures that it’s the most
important based on the number of connections. When working
with directed graphs, you can also use the
in_degree_centrality() and out_degree_centrality() functions to
determine degree centrality based on connection type rather than
just the number of connections.
When working with traffic analysis, you might need to determine
which locations are central based on their distance to other
nodes. Even though a shopping center in the suburbs may have
all sorts of connections to it, the fact that it is in the suburbs may
reduce its impact on traffic. Yet, a supermarket in the center of the
city with few connections might have a great impact on traffic
because it’s close to so many other nodes. To see how this works,
add another node, 7, that is disconnected to the graph. The
centrality of that node is infinite because no other node can reach
it. The following code shows how to calculate the closeness
centrality for the various nodes in the example graph:

AGraph.add_node(7)

nx.closeness_centrality(AGraph)

{1: 0.6944444444444445,

2: 0.5208333333333334,

3: 0.5952380952380952,

4: 0.462962962962963,

5: 0.5208333333333334,

6: 0.4166666666666667,

7: 0.0}

The output shows the centrality of each node in the graph based
on its closeness to every other node. Notice that node 7 has a
value of 0, which means that it’s an infinite distance to every other
node. On the other hand, node 1 has a high value because it’s
close to every node to which it has a connection. By calculating
the closeness centrality, you can determine which nodes are the
most important based on their location.
Another form of distance centrality is betweenness. Say that
you’re running a company that transfers goods throughout the
city. You’d like to know which nodes have the greatest effect on
these transfers. Perhaps you can route some traffic around this
node to make your operation more specific. When calculating
betweenness centrality, you determine the node that has the
highest number of short paths coming to it. Here’s the code used
to perform this calculation (with the disconnected node 7 still in
place):

nx.betweenness_centrality(AGraph)

{1: 0.36666666666666664,

 2: 0.0,

3: 0.13333333333333333,

4: 0.03333333333333333,

5: 0.06666666666666667,

6: 0.0,

7: 0.0}

As you might expect, node 7 has no effect on transfer between
other nodes because it has no connections to the other nodes.
Likewise, because node 6 is a leaf node with only one connection
to another node, it has no effect on transfers. Look again at Figure
8-5 . The subgraph consisting of nodes 1, 3, 4, and 5 have the
greatest effect on the transfer of items in this case. No connection
exists between nodes 1 and 4, so nodes 3 and 5 act as
intermediaries. In this case, node 2 acts like a leaf node.

 NetworkX provides you with a number of other centrality
functions. You find a complete list of these functions at
http://networkx.readthedocs.io/en/stable/reference/algor

ithms.centrality.html . The important consideration is
determining how you want to calculate importance.
Considering centrality in light of the kind of importance you
want to attach to the vertexes and edges in a graph is
essential.

Putting a Graph in Numeric
Format

Precision is an important part of using algorithms. Even though
too much precision hides the overall pictures from humans,
computers thrive on detail. Often, the more detail you can provide,
the better the results you receive. However, the form of that detail
is important. To use certain algorithms, the data you provide must

http://networkx.readthedocs.io/en/stable/reference/algorithms.centrality.html

appear in certain forms or the result you receive won’t make
sense (it will contain errors or have other issues).
Fortunately, NetworkX provides a number of functions to convert
your graph into forms that other packages and environments can
use. These functions appear at
http://networkx.readthedocs.io/en/stable/reference/convert.ht

ml . The following sections show how to present graph data as a
NumPy (http://www.numpy.org/) matrix, SciPy (
https://www.scipy.org/) sparse representation, and a standard
Python list. You use these presentations as the book progresses
to work with the various algorithms. (The code in the following
sections appears in the A4D; 08; Graph Conversion.ipynb file and
relies on the graph you created in the “Counting edges and
vertexes ” section of the chapter.)

Adding a graph to a matrix
Using NetworkX, you can easily move your graph to a NumPy
matrix and back again as needed to perform various tasks. You
use NumPy to perform all sorts of data manipulation tasks. By
analyzing the data in a graph, you might see patterns that
wouldn’t ordinarily be visible. Here’s the code used to convert the
graph into a matrix that NumPy can understand:

import networkx as nx

import matplotlib.pyplot as plt

%matplotlib inline

AGraph = nx.Graph()

Nodes = range(1,6)

http://networkx.readthedocs.io/en/stable/reference/convert.html
http://www.numpy.org/
https://www.scipy.org/

Edges = [(1,2), (2,3), (3,4), (4,5), (1,3), (1,5), (1,6)]

AGraph.add_nodes_from(Nodes)

AGraph.add_edges_from(Edges)

nx.to_numpy_matrix(AGraph)

matrix([[0., 1., 1., 0., 1., 1.],

[1., 0., 1., 0., 0., 0.],

[1., 1., 0., 1., 0., 0.],

[0., 0., 1., 0., 1., 0.],

[1., 0., 0., 1., 0., 0.],

[1., 0., 0., 0., 0., 0.]])

The resulting rows and columns show where connections exist.
For example, there is no connection between node 1 and itself, so
row 1, column 1, has a 0 in it. However, there is a connection
between node 1 and node 2, so you see a 1 in row 1, column 2,
and row 2, column 1 (which means that the connection goes both
ways as an undirected connection).
The size of this matrix is affected by the number of nodes (the
marix has as many rows and columns as nodes), and when it
grows huge, it has many nodes to represent because the total
number of cells is the square of the number of nodes. For
instance, you can’t represent the Internet using such a matrix
because a conservative estimate calculates that at 10^10
websites, you’d need a matrix with 10^20 cells to store its

structure, something impossible with the present computing
capacity.
In addition, the number of nodes affects its content. If n is number
of nodes, you find a minimum of (n-1) ones and a maximum of
n(n-1) ones. The fact that the number of ones is few or large
makes the graph dense or sparse, and that’s relevant because if
the connection between nodes are few, such as in the case of
websites, more efficient solutions exist for storing graph data.

Using sparse representations
The SciPy package also performs various math, scientific, and
engineering tasks. When using this package, you can rely on a
sparse matrix to hold the data. A sparse matrix is one in which
only the actual connections appear in the matrix; all other entries
don’t exist. Using a sparse matrix saves resources because the
memory requirements for a sparse matrix are small. Here is the
code you use to create a SciPy sparse matrix from a NetworkX
graph:

print(nx.to_scipy_sparse_matrix(AGraph))

(0, 1) 1

(0, 2) 1

(0, 4) 1

(0, 5) 1

(1, 0) 1

(1, 2) 1

(2, 0) 1

(2, 1) 1

(2, 3) 1

(3, 2) 1

(3, 4) 1

(4, 0) 1

(4, 3) 1

(5, 0) 1

As you can see, the entries show the various edge coordinates.
Each active coordinate has a 1 associated with it. The coordinates
are 0 based. This means that (0, 1) actually refers to a
connection between nodes 1 and 2.

Using a list to hold a graph
Depending on your needs, you might find that you also require the
ability to create a dictionary of lists. Many developers use this
approach to create code that performs various analysis tasks on
graphs. You can see one such example at
https://www.python.org/doc/essays/graphs/ . The following code
shows how to create a dictionary of lists for the example graph:

nx.to_dict_of_lists(AGraph)

{1: [2, 3, 5, 6], 2: [1, 3], 3: [1, 2, 4], 4: [3, 5],

5: [1, 4], 6: [1]}

Notice that each node represents a dictionary entry, followed by a
list of the nodes to which it connects. For example, node 1
connects to nodes 2, 3, 5, and 6.

https://www.python.org/doc/essays/graphs/

Chapter 9
Reconnecting the Dots

IN THIS CHAPTER
 Working with graphs
 Performing sorting tasks
 Reducing the tree size
 Locating the shortest route between two points

This chapter is about working with graphs. You use graphs every
day to perform a range of tasks. A graph is simply a set of
vertexes, nodes, or points connected by edges, arcs, or lines.
Putting this definition in simpler terms, every time you use a map,
you use a graph. The starting point, intermediate points, and
destination are all nodes. These nodes connect to each other with
streets, which represent the lines. Using graphs enables you to
describe relationships of various sorts. The reason that Global
Positioning System (GPS) setups work is that you can use math
to describe the relationships between points on the map and the
streets that connect them. In fact, by the time you finish this
chapter, you understand the basis used to create a GPS (but not
necessarily the mechanics of making it happen). Of course, the
fundamental requirement for using a graph to create a GPS is the
capability to search for connections between points on the map,
as discussed in the first section of the chapter.
To make sense of a graph, you need to sort the nodes, as
described in the second section of the chapter, to create a specific
organization. Without organization, making any sort of decision
becomes impossible. An algorithm might end up going in circles
or giving inconvenient output. For example, some early GPS
setups didn’t correctly find the shortest distance between two
points, or sometimes ended up sending someone to the wrong

place. Part of the reason for these problems is the need to sort
the data so that you can view it in the same manner each time the
algorithm traverses the nodes (providing you with a route between
your home and your business).
When you view a map, you don’t look at the information in the
lower-right corner when you actually need to work with locations
and roads in the upper-left corner. A computer doesn’t know that it
needs to look in a specific place until you tell it to do so. To focus
attention in a specific location, you need to reduce the graph size,
as described in the third section of the chapter.
Now that the problem is simplified, an algorithm can find the
shortest route between two points, as described in the fourth
section of the chapter. After all, you don’t want to spend any more
time than is necessary in traffic fighting your way from home to
the office (and back again). The concept of finding the shortest
route is a bit more convoluted than you might think, so the fourth
section looks at some of the specific requirements for performing
routing tasks in detail.

Traversing a Graph Efficiently
Traversing a graph means to search (visit) each vertex (node) in a
specific order. The process of visiting a vertex can include both
reading and updating it. As you traverse a graph, an unvisited
vertex is undiscovered. After a visit, the vertex becomes
discovered (because you just visited it) or processed (because the
algorithm tried all the edges departing from it). The order of the
search determines the kind of search performed, and many
algorithms are available to perform this task. The following
sections discuss two such algorithms.

CONSIDERING REDUNDANCY
When traversing a tree, every path ends in a leaf node so that you know that
you have reached the end of that path. However, when working with a graph,
the nodes interconnect such that you might have to traverse some nodes more

than once to explore the entire graph. As the graph becomes denser, the
possibility of visiting the same node more than once increases. Dense graphs
can greatly increase both computational and storage requirements.

To reduce the negative effects of visiting a node more than once, it’s common
to mark each visited node in some manner to show that the algorithm has
visited it. When the algorithm detects that it has visited a particular node, it can
simply skip that node and move onto the next node in the path. Marking visited
nodes decreases the performance penalties inherent in redundancy.

Marking visited nodes also enables verification that the search is complete.
Otherwise, an algorithm can end up in a loop and continue to make the rounds
through the graph indefinitely.

Creating the graph
To see how traversing a graph might work, you need a graph. The
examples in this section rely on a common graph so that you can
see how the two techniques work. The following code shows the
adjacency list found at the end of Chapter 8 . (You can find this
code in the A4D; 09; Graph Traversing.ipynb file on the Dummies
site as part of the downloadable code; see the Introduction for
details.)

graph = {'A': ['B', 'C'],

'B': ['A', 'C', 'D'],

'C': ['A', 'B', 'D', 'E'],

'D': ['B', 'C', 'E', 'F'],

'E': ['C', 'D', 'F'],

'F': ['D', 'E']}

The graph features a bidirectional path that goes from A, B, D,
and F on one side (starting at the root) and A, C, E, and F along
the second side (again, starting at the root). There are also
connections (that act as possible shortcuts) going from B to C,
from C to D, and from D to E. Using the NetworkX package
presented in Chapter 8 lets you display the adjacency as a picture
so that you can see how the vertexes and edges appear (see
Figure 9-1) by using the following code:

import numpy as np

import networkx as nx

import matplotlib.pyplot as plt

%matplotlib inline

Graph = nx.Graph()

for node in graph:

Graph.add_nodes_from(node)

for edge in graph[node]:

Graph.add_edge(node,edge)

pos = { 'A': [0.00, 0.50], 'B': [0.25, 0.75],

'C': [0.25, 0.25], 'D': [0.75, 0.75],

'E': [0.75, 0.25], 'F': [1.00, 0.50]}

nx.draw(Graph, pos, with_labels=True)

nx.draw_networkx(Graph, pos)

plt.show()

image
FIGURE 9-1: Representing the example graph by NetworkX.

Applying breadth-first search
A breadth-first search (BFS) begins at the graph root and explores
every node that attaches to the root. It then searches the next
level — exploring each level in turn until it reaches the end.
Consequently, in the example graph, the search explores from A

to B and C before it moves on to explore D. BFS explores the
graph in a systematic way, exploring vertexes all around the
starting vertex in a circular fashion. It begins by visiting all the
vertexes a single step from the starting vertex; it then moves two
steps out, then three steps out, and so on. The following code
demonstrates how to perform a breadth-first search.

def bfs(graph, start):

queue = [start]

queued = list()

path = list()

while queue:

print ('Queue is: %s' % queue)

vertex = queue.pop(0)

print ('Processing %s' % vertex)

for candidate in graph[vertex]:

if candidate not in queued:

queued.append(candidate)

queue.append(candidate)

path.append(vertex+'>'+candidate)

print ('Adding %s to the queue'

% candidate)

return path

steps = bfs(graph, 'A')

print ('\nBFS:', steps)

Queue is: ['A']

Processing A

Adding B to the queue

Adding C to the queue

Queue is: ['B', 'C']

Processing B

Adding A to the queue

Adding D to the queue

Queue is: ['C', 'A', 'D']

Processing C

Adding E to the queue

Queue is: ['A', 'D', 'E']

Processing A

Queue is: ['D', 'E']

Processing D

Adding F to the queue

Queue is: ['E', 'F']

Processing E

Queue is: ['F']

Processing F

BFS: ['A>B', 'A>C', 'B>A', 'B>D', 'C>E', 'D>F']

 The output shows how the algorithm searches. It’s in the
order that you expect — one level at a time. The biggest
advantage of using BFS is that it’s guaranteed to return the
shortest path between two points as the first output when
used to find paths.

 The example code uses a simple list as a queue. As
described in Chapter 4 , a queue is a first in/first out (FIFO)
data structure that works like a line at a bank, where the first
item put into the queue is also the first item that comes out.
For this purpose, Python provides an even better data
structure called a deque (pronounced deck). You create it
using the deque function from the collections package. It
performs insertions and extractions in linear time, and you
can use it as both a queue and a stack. You can discover
more about the deque function at
https://pymotw.com/2/collections/deque.html .

Applying depth-first search
In addition to BFS, you can use a depth-first search (DFS) to
discover the vertexes in a graph. When performing a DFS, the
algorithm begins at the graph root and then explores every node
from that root down a single path to the end. It then backtracks
and begins exploring the paths not taken in the current search
path until it reaches the root again. At that point, if other paths to
take from the root are available, the algorithm chooses one and
begins the same search again. The idea is to explore each path
completely before exploring any other path. To make this search
technique work, the algorithm must mark each vertex it visits. In
this way, it knows which vertexes require a visit and can
determine which path to take next. Using BFS or DFS can make a
difference according to the way in which you need to traverse a
graph. From a programming point of view, the difference between
the two algorithms is how each one stores the vertexes to explore
the following:

A queue for BFS, a list that works according to the FIFO
principle. Newly discovered vertexes don’t wait long for
processing.

https://pymotw.com/2/collections/deque.html

A stack for DFS, a list that works according to the last in/first out
(LIFO) principle.

The following code shows how to create a DFS:

def dfs(graph, start):

stack = [start]

parents = {start: start}

path = list()

while stack:

print ('Stack is: %s' % stack)

vertex = stack.pop(-1)

print ('Processing %s' % vertex)

for candidate in graph[vertex]:

if candidate not in parents:

parents[candidate] = vertex

stack.append(candidate)

print ('Adding %s to the stack'

% candidate)

path.append(parents[vertex]+'>'+vertex)

return path[1:]

steps = dfs(graph, 'A')

print ('\nDFS:', steps)

Stack is: ['A']

Processing A

Adding B to the stack

Adding C to the stack

 Stack is: ['B', 'C']

Processing C

Adding D to the stack

Adding E to the stack

Stack is: ['B', 'D', 'E']

Processing E

Adding F to the stack

Stack is: ['B', 'D', 'F']

Processing F

Stack is: ['B', 'D']

Processing D

Stack is: ['B']

Processing B

DFS: ['A>C', 'C>E', 'E>F', 'C>D', 'A>B']

The first line of output shows the actual search order. Note that
the search begins at the root, as expected, but then follows down
the left side of the graph around to the beginning. The final step is
to search the only branch off the loop that creates the graph in
this case, which is D.
Note that the output is not the same as for the BFS. In this case,
the processing route begins with node A and moves to the
opposite side of the graph, to node F. The code then retraces
back to look for overlooked paths. As discussed, this behavior
depends on the use of a stack structure in place of a queue.
Reliance on a stack means that you could also implement this
kind of search using recursion. The use of recursion would make
the algorithm faster, so you could obtain results faster than when

using a BFS. The trade-off is that you use more memory when
using recursion.

 When your algorithm uses a stack, it’s using the last result
available (as contrasted to a queue, where it would use the
first result placed in the queue). Recursive functions produce
a result and then apply themselves using that same result. A
stack does exactly the same thing in an iteration: The
algorithm produces a result, the result is put on a stack, and
then the result is immediately taken from the stack and
processed again.

Determining which application to
use
The choice between BFS and DFS depends on how you plan to
apply the output from the search. Developers often employ BFS to
locate the shortest route between two points as quickly as
possible. This means that you commonly find BFS used in
applications such as GPS, where finding the shortest route is
paramount. For the purposes of this book, you also see BFS used
for spanning tree, shortest path, and many other minimization
algorithms.
A DFS focuses on finding an entire path before exploring any
other path. You use it when you need to search in detail, rather
than generally. For this reason, you often see DFS used in
games, where finding a complete path is important. It’s also an
optimal approach to perform tasks such as finding a solution to a
maze.

 Sometimes you have to decide between BFS and DFS
based on the limitations of each technique. BFS needs lots of
memory because it systematically stores all the paths before
finding a solution. On the other hand, DFS needs less
memory, but you have no guarantee that it’ll find the shortest
and most direct solution.

Sorting the Graph Elements
The ability to search graphs efficiently relies on sorting. After all,
imagine going to a library and finding the books placed in any
order the library felt like putting them on the shelves. Locating a
single book would take hours. A library works because the
individual books appear in specific locations that make them easy
to find.
Libraries also exhibit another property that’s important when
working with certain kinds of graphs. When performing a book
search, you begin with a specific category, then a row of books,
then a shelf in that row, and finally the book. You move from less
specific to more specific when performing the search, which
means that you don’t revisit the previous levels. Therefore, you
don’t end up in odd parts of the library that have nothing to do with
the topic at hand.
The following sections review Directed Acyclic Graphs (DAGs) ,
which are finite directed graphs that don’t have any loops in them.
In other words, you start from a particular location and follow a
specific route to an ending location without ever going back to the
starting location. When using topological sorting, a DAG always
directs earlier vertexes to later vertexes. This kind of graph has all
sorts of practical uses, such as schedules, with each milestone
representing a particular milestone.

GRAPHS WITH LOOPS
Sometimes you need to express a process in such a manner that a set of
steps repeats. For example, when washing your car, you rinse, soap down,
and then rinse again. However, you find a dirty spot, an area that the soap
didn’t clean the first time. To clean that spot, you soap it again and rinse it
again to verify that the spot is gone. Unfortunately, it’s a really stubborn spot,
so you repeat the process again. In fact, you repeat the soap and rinse steps
until the spot is clean. That’s what a loop does; it creates a situation in which a
set of steps repeats in one of two ways:

Meets a specific condition: The spot on the car is gone.
Performs a specific number of times: This is the number
of repetitions you perform during the exercise.

Working on Directed Acyclic Graphs
(DAGs)
DAGs are one of the most important kinds of graphs because they
see so many practical uses. The basic principles of DAGs are that
they

Follow a particular order so that you can’t get from one vertex to
another and back to the beginning vertex using any route.
Provide a specific path from one vertex to another so that you
can create a predictable set of routes.

You see DAGs used for many organizational needs. For example,
a family tree is an example of a DAG. Even when the activity
doesn’t follow a chronological or other overriding order, the DAG
enables you to create predictable routes, which makes DAGs
easier to process than many other kinds of graphs you work with.
However, DAGs can use optional routes. Imagine that you’re
building a burger. The menu system starts with a bun bottom. You
can optionally add condiments to the bun bottom, or you can
move directly to the burger on the bun. The route always ends up

with a burger, but you have multiple paths for getting to the
burger. After you have the burger in place, you can choose to add
cheese or bacon before adding the bun top. The point is that you
take a specific path, but each path can connect to the next level in
several different ways.

 So far, the chapter has shown you a few different kinds of
graph configurations, some of which can appear in
combination, such as a directed, weighted, dense graph:

Directed: Edges have a single direction and can have these
additional properties:

Cyclic: The edges form a cycle that take you back to the
initial vertex after having visited the intermediary vertexes.
A-cyclic: This graph lacks cycles.

Undirected: Edges connect vertexes in both directions.
Weighted: Each edge has a cost associated with it, such as
time, money, or energy, which you must pay to pass through it.
Unweighted: All the edges have no cost or the same cost.
Dense: A graph that has a large number of edges when
compared to the number of vertexes.
Sparse: A graph that has a small number of edges when
compared to the number of vertexes.

Relying on topological sorting
An important element of DAGs is that you can represent a myriad
of activities using them. However, some activities require that you
approach tasks in a specific order. This is where topological
sorting comes into play. Topological sorting orders all the vertexes
of a graph on a line with the direct edges pointing from left to right.
Arranged in such a fashion, the code can easily traverse the
graph and process the vertexes one after the other, in order.
When you use topological sorting, you organize the graph so that
every graph vertex leads to a later vertex in the sequence. For

example, when creating a schedule for building a skyscraper, you
don’t start at the top and work your way down. You begin with the
foundation and work your way up. Each floor can represent a
milestone. When you complete the second floor, you don’t go to
the third and then redo the second floor. Instead, you move on
from the third floor to the fourth floor, and so on. Any sort of
scheduling that requires you to move from a specific starting point
to a specific ending point can rely on a DAG with topological
sorting.
Topological sorting can help you determine that your graph has no
cycles (because otherwise, you can’t order the edges connecting
the vertexes from left to right; at least one node will refer to a
previous node). In addition, topological sorting also proves helpful
in algorithms that process complex graphs because it shows the
best order for processing them.
You can obtain topological sorting using the DFS traversal
algorithm. Simply note the processing order of the vertexes by the
algorithm. In the previous example, the output appears in this
order: A, C, E, F, D, and B. Follow the sequence in Figure 9-1 and
you notice that the topological sorting follows the edges on the
external perimeter of graph. It then makes a complete tour: After
reaching the last node of the topological sort, you’re just a step
away from A, the start of the sequence.

Reducing to a Minimum
Spanning Tree

Many problems that algorithms solve rely on defining a minimum
of resources to use, such as defining an economical way to reach
all the points on a map. This problem was paramount in the late
nineteenth and early twentieth centuries when railway and
electricity networks started appearing in many countries,
revolutionizing transportation and ways of living. Using private
companies to build such networks was expensive (it took a lot of

time and workers). Using less material and a smaller workforce
offered savings by reducing redundant connections.

 Some redundancy is desirable in critical transportation or
energy networks even when striving for economical solutions.
Otherwise, if only one method connects the network, it’s
easily disrupted accidentally or by a voluntary act (such as an
act of war), interrupting services to many customers.

In Moravia, the eastern part of Czech Republic, the Czech
mathematician Otakar Borůvka found a solution in 1926 that
allows constructing an electrical network using the least amount of
wire possible. His solution is quite efficient because it not only
allows finding a way to connect all the towns in Moravia in the
most economical way possible, but it had a time complexity of
O(m*log n), where m is the number of edges (the electrical cable)
and n the number of vertexes (the towns). Others have improved
Borůvka’s solution since then. (In fact, algorithm experts partially
forgot and then rediscovered it.) Even though the algorithms you
find in books are better designed and easier to grasp (those from
Prim and Kruskal), they don’t achieve better results in terms of
time complexity.
A minimal spanning tree defines the problem of finding the most
economical way to accomplish a task. A spanning tree is the list of
edges required to connect all the vertexes in an undirected graph.
A single graph could contain multiple spanning trees, depending
on the graph arrangement, and determining how many trees it
contains is a complex issue. Each path you can take from start to
completion in a graph is another spanning tree. The spanning tree
visits each vertex only once; it doesn’t loop or do anything to
repeat path elements.
When you work on an unweighted graph, the spanning trees are
the same length. In unweighted graphs, all edges have the same
length, and the order you visit them in doesn’t matter because the
run path is always the same. All possible spanning trees have the

same number of edges, n-1 edges (n is the number of vertexes),
of the same exact length. Moreover, any graph traversal
algorithm, such as BFS or DFS, suffices to find one of the
possible spanning trees.
Things become tricky when working with a weighted graph with
edges of different lengths. In this case, of the many possible
spanning trees, a few, or just one, have the minimum length
possible. A minimum spanning tree is the one spanning tree that
guarantees a path with the least possible edge weight. An
undirected graph generally contains just one minimum spanning
tree, but, again, it depends on the configuration. Think about
minimum spanning trees this way: When looking at a map, you
see a number of paths to get from point A to point B. Each path
has places where you must turn or change roads, and each of
these junctions is a vertex. The distance between vertexes
represents the edge weight. Generally, one path between point A
and point B provides the shortest route.
However, minimum spanning trees need not always consider the
obvious. For example, when considering maps, you might not be
interested in distance; you might instead want to consider time,
fuel consumption, or myriad other needs. Each of these needs
could have a completely different minimum spanning tree. With
this in mind, the following sections help you understand minimum
spanning trees better and demonstrate how to solve the problem
of figuring out the smallest edge weight for any given problem. To
demonstrate a minimum spanning tree solution using Python, the
following code updates the previous graph by adding edge
weights. (You can find this code in the A4D; 09; Minimum Spanning
Tree.ipynb file on the Dummies site as part of the downloadable
code; see the Introduction for details.)

import numpy as np

import networkx as nx

import matplotlib.pyplot as plt

%matplotlib inline

graph = {'A': {'B':2, 'C':3},

'B': {'A':2, 'C':2, 'D':2},

'C': {'A':3, 'B':2, 'D':3, 'E':2},

'D': {'B':2, 'C':3, 'E':1, 'F':3},

'E': {'C':2, 'D':1, 'F':1},

'F': {'D':3, 'E':1}}

Graph = nx.Graph()

for node in graph:

Graph.add_nodes_from(node)

for edge, weight in graph[node].items():

Graph.add_edge(node,edge, weight=weight)

pos = { 'A': [0.00, 0.50], 'B': [0.25, 0.75],

'C': [0.25, 0.25], 'D': [0.75, 0.75],

'E': [0.75, 0.25], 'F': [1.00, 0.50]}

labels = nx.get_edge_attributes(Graph,'weight')

nx.draw(Graph, pos, with_labels=True)

 nx.draw_networkx_edge_labels(Graph, pos,

edge_labels=labels)

nx.draw_networkx(Graph,pos)

plt.show()

Figure 9-2 shows that all edges have a value now. This value can
represent something like time, fuel, or money. Weighted graphs
can represent many possible optimization problems that occur in
geographical space (such as movement between cities) because
they represent situations in which you can come and go from a
vertex.

FIGURE 9-2: The example graph becomes weighted.

Interestingly, all edges have positive weights in this example.
However, weighted graphs can have negative weights on some
edges. Many situations take advantage of negative edges. For
instance, they’re useful when you can both gain and lose from
moving between vertexes, such as gaining or losing money when
transporting or trading goods, or releasing energy in a chemical
process.

 Not all algorithms are well suited for handling negative
edges. It’s important to note those that can work with only
positive weights.

Discovering the correct algorithms
to use
You can find many different algorithms to use to create a minimum
spanning tree. The most common are greedy algorithms, which
run in polynomial time. Polynomial time is a power of the number
of edges, such as O(n2) or O(n3) (see Part 5 for additional
information about polynomial time). The major factors that affect
the running speed of such algorithms involve the decision-making
process — that is, whether a particular edge belongs in the
minimum spanning tree or whether the minimum total weight of
the resulting tree exceeds a certain value. With this in mind, here
are some of the algorithms available for solving a minimum
spanning tree:

Borůvka’s: Invented by Otakar Borůvka in 1926 to solve the
problem of finding the optimal way to supply electricity in
Moravia. The algorithm relies on a series of stages in which it
identifies the edges with the smallest weight in each stage. The
calculations begin by looking at individual vertexes, finding the
smallest weight for that vertex, and then combining paths to
form forests of individual trees until it creates a path that
combines all the forests with the smallest weight.
Prim’s: Originally invented by Jarnik in 1930, Prim rediscovered
it in 1957. This algorithm starts with an arbitrary vertex and
grows the minimum spanning tree one edge at a time by always
choosing the edge with the least weight.
Kruskal’s: Developed by Joseph Kruskal in 1956, it uses an
approach that combines Borůvka’s algorithm (creating forests of
individual trees) and Prim’s algorithm (looking for the minimum
edge for each vertex and building the forests one edge at a
time).
Reverse-delete: This is actually a reversal of Kruskal’s
algorithm. It isn’t commonly used.

 These algorithms use a greedy approach. Greedy
algorithms appear in Chapter 2 among the families of
algorithms, and you see them in detail in Chapter 15 . In a
greedy approach, the algorithm gradually arrives at a solution
by taking, in an irreversible way, the best decision available at
each step. For instance, if you need the shortest path
between many vertexes, a greedy algorithm takes the
shortest edges among those available between all vertexes.

Introducing priority queues
Later in this chapter, you see how to implement Prim’s and
Kruskal’s algorithm for a minimum spanning tree, and Dijkstra’s
algorithm for the shortest path in a graph using Python. However,
before you can do that, you need a method to find the edges with
the minimum weight among a set of edges. Such an operation
implies ordering, and ordering elements costs time. It’s a complex
operation, as described in Chapter 7 . Because the examples
repeatedly reorder edges, a data structure called the priority
queue comes in handy.
Priority queues rely on heap tree-based data structures that allow
fast element ordering when you insert them inside the heap. Like
the magician’s magic hat, priority heaps store edges with their
weights and are immediately ready to provide you with the
inserted edge whose weight is the minimum among those stores.
This example uses a class that allows it to perform priority-queue
comparisons that determine whether the queue contains elements
and when those elements contain a certain edge (avoiding double
insertions). The priority queue has another useful characteristic
(whose usefulness is explained when working on Dijkstra’s
algorithm): If you insert an edge with a different weight than
previously stored, the code updates the edge weight and
rearranges the edge position in the heap.

from heapq import heapify, heappop, heappush

class priority_queue():

def __init__(self):

self.queue = list()

heapify(self.queue)

self.index = dict()

def push(self, priority, label):

if label in self.index:

self.queue = [(w,l)

for w,l in self.queue if l!=label]

heapify(self.queue)

heappush(self.queue, (priority, label))

self.index[label] = priority

def pop(self):

if self.queue:

return heappop(self.queue)

def __contains__(self, label):

return label in self.index

def __len__(self):

return len(self.queue)

Leveraging Prim’s algorithm
Prim’s algorithm generates the minimum spanning tree for a
graph by traversing the graph vertex by vertex. Starting from any
chosen vertex, the algorithm adds edges using a constraint in
which, if one vertex is currently part of the spanning tree and the
second vertex isn’t part of it, the edge weight between the two
must be the least possible among those available. By proceeding

in this fashion, creating cycles in the spanning tree is impossible
(it could happen only if you add an edge whose vertexes are
already both in the spanning tree) and you’re guaranteed to obtain
a minimal tree because you add the edges with the least weight.
In terms of steps, the algorithm includes these three phases, with
the last one being iterative:

1. Track both the edges of the minimum spanning
tree and the used vertexes as they become part
of the solution.

2. Start from any vertex in the graph and place it
into the solution.

3. Determine whether there are still vertexes that
aren’t part of the solution:

Enumerate the edges that touch the vertexes
in the solution.
Insert the edge with the minimum weight into
the spanning tree. (This is the greedy principle
at work in the algorithm: Always choose the
minimum at each step to obtain an overall
minimum result.)

By translating these steps into Python code, you can test the
algorithm on the example weighted graph using the following
code:

def prim(graph, start):

treepath = {}

total = 0

queue = priority_queue()

queue.push(0 , (start, start))

while queue:

weight, (node_start, node_end) = queue.pop()

if node_end not in treepath:

treepath[node_end] = node_start

if weight:

print("Added edge from %s" \

" to %s weighting %i"

% (node_start, node_end, weight))

total += weight

for next_node, weight \

in graph[node_end].items():

queue.push(weight , (node_end, next_node))

print ("Total spanning tree length: %i" % total)

return treepath

treepath = prim(graph, 'A')

Added edge from A to B weighting 2

Added edge from B to C weighting 2

Added edge from B to D weighting 2

Added edge from D to E weighting 1

Added edge from E to F weighting 1

Total spanning tree length: 8

The algorithm prints the processing steps, showing the edge it
adds at each stage and the weight the edge adds to the total. The
example displays the total sum of weights and the algorithm
returns a Python dictionary containing the ending vertex as key
and the starting vertex as value for each edge of the resulting

spanning tree. Another function, represent_tree , turns the key
and value pairs of the dictionary into a tuple and then sorts each
of the resulting tuples for better readability of the tree path:

def represent_tree(treepath):

progression = list()

for node in treepath:

if node != treepath[node]:

progression.append((treepath[node], node))

return sorted(progression, key=lambda x:x[0])

print (represent_tree(treepath))

[('A','B'), ('B','C'), ('B','D'), ('D','E'), ('E','F')]

 The represent_tree function reorders the output of Prim’s
algorithm for better readability. However, the algorithm works
on an undirected graph, which means that you can traverse
the edges in both directions. The algorithm incorporates this
assumption because there is no edge directionality check to
add to the priority queue for later processing.

Testing Kruskal’s algorithm
Kruskal’s algorithm uses a greedy strategy, just as Prim’s does,
but it picks the shortest edges from a global pool containing all the
edges (whereas Prim’s evaluates the edges according to the
vertexes in the spanning tree). To determine whether an edge is a
suitable part of the solution, the algorithm relies on an aggregative

process in which it gathers vertexes together. When an edge
involves vertexes already in the solution, the algorithm discards it
to avoid creating a cycle. The algorithm proceeds in the following
fashion:

1. Put all the edges into a heap and sort them so
that the shortest edges are on top.

2. Create a set of trees, each one containing only
one vertex (so that the number of trees is the
same number as the vertexes). You connect trees
as an aggregate until the trees converge into a
unique tree of minimal length that spans all the
vertexes.

3. Repeat the following operations until the solution
doesn’t contain as many edges as the number of
vertexes in the graph:
1. Choose the shortest edge from the heap.
2. Determine whether the two vertexes

connected by the edge appear in different
trees from among the set of connected trees.

3. When the trees differ, connect the trees using
the edge (defining an aggregation).

4. When the vertexes appear in the same tree,
discard the edge.

5. Repeat steps a through d for the remaining
edges on the heap.

The following example demonstrates how to turn these steps into
Python code:

def kruskal(graph):

priority = priority_queue()

print ("Pushing all edges into the priority queue")

treepath = list()

connected = dict()

for node in graph:

connected[node] = [node]

for dest, weight in graph[node].items():

priority.push(weight, (node,dest))

print ("Totally %i edges" % len(priority))

print ("Connected components: %s"

% connected.values())

total = 0

while len(treepath) < (len(graph)-1):

(weight, (start, end)) = priority.pop()

if end not in connected[start]:

treepath.append((start, end))

print ("Summing %s and %s components:"

% (connected[start],connected[end]))

print ("\tadded edge from %s " \

"to %s weighting %i"

% (start, end, weight))

total += weight

connected[start] += connected[end][:]

for element in connected[end]:

connected[element]= connected[start]

print ("Total spanning tree length: %i" % total)

return sorted(treepath, key=lambda x:x[0])

print ('\nMinimum spanning tree: %s' % kruskal(graph))

Pushing all edges into the priority queue

Totally 9 edges

Connected components: dict_values([['A'], ['E'], ['F'],

['B'], ['D'], ['C']])

 Summing ['E'] and ['D'] components:

added edge from E to D weighting 1

Summing ['E', 'D'] and ['F'] components:

added edge from E to F weighting 1

Summing ['A'] and ['B'] components:

added edge from A to B weighting 2

Summing ['A', 'B'] and ['C'] components:

added edge from B to C weighting 2

Summing ['A', 'B', 'C'] and ['E', 'D', 'F'] components:

added edge from B to D weighting 2

Total spanning tree length: 8

Minimum spanning tree:

[('A','B'), ('B','C'), ('B','D'), ('E','D'), ('E','F')]

 Kruskal’s algorithm offers a solution that’s similar to the
one proposed by Prim’s algorithm. However, different graphs
may provide different solutions for the minimum spanning
tree when using Prim’s and Kruskal’s algorithms because
each algorithm proceeds in different ways to reach its
conclusions. Different approaches often imply different
minimal spanning trees as output.

Determining which algorithm works
best
Both Prim’s and Kruskal’s algorithms output a single connected
component, joining all the vertexes in the graph by using the least
(or one of the least) long sequences of edges (a minimum
spanning tree). By summing the edge weights, you can determine
the length of the resulting spanning tree. Because both algorithms
always provide you with a working solution, you must rely on
running time and decide whether they can take on any kind of
weighted graph to determine which is best.
As for running time, both algorithms provide similar results with
Big-O complexity rating of O(E*log(V)), where E is the number of
edges and V the number of vertexes. However, you must account
for how they solve the problem because there are differences in
the average expected running time.
Prim’s algorithm incrementally builds a single solution by adding
edges, whereas Kruskal’s algorithm creates an ensemble of
partial solutions and aggregates them. In creating its solution,
Prim’s algorithm relies on data structures that are more complex
than Kruskal’s because it continuously adds potential edges as
candidates and keeps picking the shortest edge to proceed
toward its solution. When operating on a dense graph, Prim’s
algorithm is preferred over Kruskal’s because its priority queue
based on heaps does all the sorting jobs quickly and efficiently.

 The example uses a priority queue based on a binary
heap for the heavy job of picking up the shortest edges, but
there are even faster data structures, such as the Fibonacci
heap, which can produce faster results when the heap
contains many edges. Using a Fibonacci heap, the running
complexity of Prim’s algorithm can mutate to O(E +V*log(V)),
which is clearly advantageous if you have a lot of edges (the
E component is now summed instead of multiplied) compared
to the previous reported running time O(E*log(V)).

Kruskal’s algorithm doesn’t much need a priority queue (even
though one of the examples uses one) because the enumeration
and sorting of edges happens just once at the beginning of the
process. Being based on simpler data structures that work
through the sorted edges, it’s the ideal candidate for regular,
sparse graphs with fewer edges.

Finding the Shortest Route
The shortest route between two points isn’t necessarily a straight
line, especially when a straight line doesn’t exist in your graph.
Say that you need to run electrical lines in a community. The
shortest route would involve running the lines as needed between
each location without regard to where those lines go. However,
real life tends not to allow a simple solution. You may need to run
the cables beside roads and not across private property, which
means finding routes that reduce the distances as much as
possible.

Defining what it means to find the
shortest path
Many applications exist for shortest-route algorithms. The idea is
to find the path that offers the smallest distance between point A
and point B. Finding the shortest path is useful for both

transportation (how to arrive at a destination consuming the least
fuel) and communication (how to route information to allow it to
arrive earlier). Nevertheless, unexpected applications of the
shortest-path problem may also arise in image processing (for
separating contours of images), gaming (how to achieve certain
game goals using the fewest moves), and many other fields in
which you can reduce the problem to an undirected or directed
weighted graph.
The Dijkstra algorithm can solve the shortest-path problem and
has found the most uses. Edsger W. Dijkstra, a Dutch computer
scientist, devised the algorithm as a demonstration of the
processing power of a new computer called ARMAC (http://www-
set.win.tue.nl/UnsungHeroes/machines/armac.html) in 1959. The
algorithm initially solved the shortest distance between 64 cities in
the Netherlands based on a simple graph map.

 Other algorithms can solve the shortest-path problem. The
Bellman-Ford and Floyd-Warshall are more complex but can
handle graphs with negative weights. (Negative weights can
represent some problems better.) Both algorithms are beyond
the scope of this book, but the site at
https://www.hackerearth.com/ja/practice/algorithms/graph

s/shortest-path-algorithms/tutorial/ provides additional
information about them. Because the shortest-path problem
involves graphs that are both weighted and directed, the
example graph requires another update before proceeding
(you can see the result in Figure 9-3). (You can find this code
in the A4D; 09; Shortest Path.ipynb file on the Dummies
site as part of the downloadable code; see the Introduction
for details.)

import numpy as np

import networkx as nx

import matplotlib.pyplot as plt

http://www-set.win.tue.nl/UnsungHeroes/machines/armac.html
https://www.hackerearth.com/ja/practice/algorithms/graphs/shortest-path-algorithms/tutorial/

%matplotlib inline

graph = {'A': {'B':2, 'C':3},

'B': {'C':2, 'D':2},

'C': {'D':3, 'E':2},

'D': {'F':3},

'E': {'D':1,'F':1},

'F': {}}

Graph = nx.DiGraph()

for node in graph:

Graph.add_nodes_from(node)

for edge, weight in graph[node].items():

Graph.add_edge(node,edge, weight=weight)

pos = { 'A': [0.00, 0.50], 'B': [0.25, 0.75],

'C': [0.25, 0.25], 'D': [0.75, 0.75],

'E': [0.75, 0.25], 'F': [1.00, 0.50]}

labels = nx.get_edge_attributes(Graph,'weight')

nx.draw(Graph, pos, with_labels=True)

nx.draw_networkx_edge_labels(Graph, pos,

edge_labels=labels)

nx.draw_networkx(Graph,pos)

plt.show()

FIGURE 9-3: The example graph becomes weighted and directed.

Explaining Dijkstra’s algorithm
Dijkstra’s algorithm requires a starting and (optionally) ending
vertex as input. If you don’t provide an ending vertex, the
algorithm computes the shortest distance between the starting
vertex and any other vertexes in the graph. When you define an
ending vertex, the algorithm stops upon reading that vertex and
returns the result up to that point, no matter how much of the
graph remains unexplored.
The algorithm starts by estimating the distance of the other
vertexes from the starting point. This is the starting belief it
records in the priority queue and is set to infinity by convention.
Then the algorithm proceeds to explore the neighboring nodes,
similar to a BFS. This allows the algorithm to determine which
nodes are near and that their distance is the weight of the
connecting edges. It stores this information in the priority queue
by an appropriate weight update.

 Naturally, the algorithm explores the neighbors because a
directed edge connects them with the starting vertex.
Dijkstra’s algorithm accounts for the edge direction.

At this point, the algorithm moves to the nearest vertex on the
graph based on the shortest edge in the priority queue.
Technically, the algorithm visits a new vertex. It starts exploring
the neighboring vertexes, excluding the vertexes that it has
already visited, determines how much it costs to visit each of the
unvisited vertexes, and evaluates whether the distance to visit
them is less than the distance it recorded in the priority queue.
When the distance in the priority queue is infinite, this means that
it’s the algorithm’s first visit to that vertex, and the algorithm
records the shorter distance. When the distance recorded in the
priority queue isn’t infinite, but it’s more than the distance that the
algorithm has just calculated, it means that the algorithm has
found a shortcut, a shorter way to reach that vertex from the
starting point, and it stores the information in the priority queue. Of
course, if the distance recorded in the priority queue is shorter
than the one just evaluated by the algorithm, the algorithm
discards the information because the new route is longer. After
updating all the distances to the neighboring vertexes, the
algorithm determines whether it has reached the end vertex. If
not, it picks the shortest edge present in the priority queue, visits
it, and starts evaluating the distance to the new neighboring
vertexes.

 As the narrative of the algorithm explained, Dijikstra’s
algorithm keeps a precise accounting of the cost to reach
every vertex that it encounters, and it updates its information
only when it finds a shorter way. The running complexity of
the algorithm in Big-O notation is O(E*log(V)), where E is the
number of edges and V the number of vertexes in the graph.
The following code shows how to implement Dijikstra’s
algorithm using Python:

def dijkstra(graph, start, end):

inf = float('inf')

known = set()

priority = priority_queue()

path = {start: start}

for vertex in graph:

if vertex == start:

priority.push(0, vertex)

else:

priority.push(inf, vertex)

 last = start

while last != end:

(weight, actual_node) = priority.pop()

if actual_node not in known:

for next_node in graph[actual_node]:

upto_actual = priority.index[actual_node]

upto_next = priority.index[next_node]

to_next = upto_actual + \

graph[actual_node][next_node]

if to_next < upto_next:

priority.push(to_next, next_node)

print("Found shortcut from %s to %s"

% (actual_node, next_node))

print ("\tTotal length up so far: %i"

 % to_next)

path[next_node] = actual_node

last = actual_node

known.add(actual_node)

return priority.index, path

dist, path = dijkstra(graph, 'A', 'F')

Found shortcut from A to C

Total length up so far: 3

Found shortcut from A to B

Total length up so far: 2

Found shortcut from B to D

Total length up so far: 4

Found shortcut from C to E

Total length up so far: 5

Found shortcut from D to F

Total length up so far: 7

Found shortcut from E to F

Total length up so far: 6

The algorithm returns a couple of useful pieces of information: the
shortest path to destination and the minimum recorded distances
for the visited vertexes. To visualize the shortest path, you need a
reverse_path function that rearranges the path to make it
readable:

def reverse_path(path, start, end):

progression = [end]

while progression[-1] != start:

progression.append(path[progression[-1]])

return progression[::-1]

print (reverse_path(path, 'A', 'F'))

['A', 'C', 'E', 'F']

You can also know the shortest distance to every node
encountered by querying the dist dictionary:

print (dist)

{'D': 4, 'A': 0, 'B': 2, 'F': 6, 'C': 3, 'E': 5}

Chapter 10
Discovering Graph Secrets

IN THIS CHAPTER
 Seeing social networks in graph form
 Interacting with graph content

Chapter 8 helps you understand the foundations of graphs as they
apply to mathematics. Chapter 9 increases your knowledge by
helping you see the relationship of graphs to algorithms. This
chapter helps you focus on applying the theories of these
previous two chapters to interact with graphs in practical ways.
The first section conveys the character of social networks by
using graphs. Considering the connections created by social
networks is important. For example, conversation analysis can
reveal patterns that help you understand the underlying topic
better than simply reading the conversations would do. A
particular conversation branch might attract greater attention
because it’s more important than another conversation branch. Of
course, you must perform this analysis while dealing with issues
such as spam. Analysis of this sort can lead to all sorts of
interesting conclusions, such as where to spend more advertising
money in order to attract the most attention and, therefore, sales.
The second section looks at navigating graphs to achieve specific
results. For example, when driving, you might need to know the
best route to take between two points given that, even though one
route is shorter, it also has construction that makes a second
route better. Sometimes you need to randomize your search to
discover a best route or a best conclusion. This section of the
chapter also discusses that issue.

Envisioning Social Networks as
Graphs

Every social interaction necessarily connects with every other
social interaction of the same type. For example, consider a social
network such as Facebook. The links on your page connect with
family members, but they also connect with outside sources that
in turn connect with other outside sources. Each of your family
members also has external links. Direct and indirect connections
between various pages eventually link every other page together,
even though the process of getting from one page to another may
require the use of myriad links. Connectivity occurs in all sorts of
other ways as well. The point is that studying social networks
simply by viewing a Facebook page or other source of information
is hard. Social Network Analysis (SNA) is the process of studying
the interactions in social networks using graphs called
sociograms, in which nodes (such as a Facebook page) appear
as points, and ties (such as external page links) appear as lines.
The following sections discuss some of the issues surrounding the
study of social networks as graphs.

Clustering networks in groups
People tend to form communities — clusters of other people who
have like ideas and sentiments. By studying these clusters,
attributing certain behaviors to the group as a whole becomes
easier (although attributing the behavior to an individual is both
dangerous and unreliable). The idea behind the study of clusters
is that if a connection exists between people, they often have a
common set of ideas and goals. By finding clusters, you can
determine these ideas by inspecting group membership. For
instance, it’s common to try to find clusters of people in insurance
fraud detection and tax inspection. Unexpected groups of people
might raise suspicion that they’re part of a group of fraudsters or
tax evaders because they lack the usual reasons for people to
gather in such circumstances.

Friendship graphs can represent how people connect with each
other. The vertexes represent individuals and the edges represent
their connections, such as family relationships, business contacts,
or friendship ties. Typically, friendship graphs are undirected
because they represent mutual relationships, and sometimes
they’re weighted to represent the strength of the bond between
two persons.

 Many studies focus on undirected graphs that concentrate
solely on associations. You can also use directed graphs to
show that Person A knows about Person B, but Person B
doesn’t even know that Person A exists. In this case, you
actually have 16 different kinds of triads to consider. For the
sake of simplicity, this chapter focuses solely on these four
types: closed, open, connected pair, and unconnected.

When looking for clusters in a friendship graph, the connections
between nodes in these clusters depend on triads — essentially,
special kinds of triangles. Connections between three people can
fall into these categories:

Closed: All three people know each other. Think about a family
setting in this case, in which everyone knows everyone else.
Open: One person knows two other people, but the two other
people don’t know each other. Think about a person who knows
an individual at work and another individual at home, but the
individual at work doesn’t know anything about the individual at
home.
Connected pair: One person knows one of the other people in
a triad but doesn’t know the third person. This situation involves
two people who know something about each other meeting
someone new — someone who potentially wants to be part of
the group.
Unconnected: The triad forms a group, but no one in the group
knows each other. This last one might seem a bit odd, but think
about a convention or seminar. The people at these events form

a group, but they may not know anything about each other.
However, because they have similar interests, you can use
clustering to understand the behavior of the group.

Triads occur naturally in relationships, and many Internet social
networks have leveraged this idea to accelerate the connections
between participants. The density of connections is important for
any kind of social network because a connected network can
spread information and share content more easily. For instance,
when LinkedIn, the professional social network (
https://www.linkedin.com/), decided to increase the connection
density of its network, it started by looking for open triads and
trying to close them by inviting people to connect. Closing triads is
at the foundation of LinkedIn’s Connection Suggestion algorithm.
You can discover more about how it works by reading the Quora’s
answer at: https://www.quora.com/How-does-LinkedIns-People-
You-May-Know-work .
The example in this section relies on the Zachary's Karate Club
sample graph described at
https://networkdata.ics.uci.edu/data.php?id=105 . It’s a small
graph that lets you see how networks work without spending a lot
of time loading a large dataset. Fortunately, this dataset appears
as part of the networkx package introduced in Chapter 8 . The
Zachary’s Karate Club network represents the friendship
relationships between 34 members of a karate club from 1970 to
1972. Sociologist Wayne W. Zachary used it as a topic of study.
He wrote a paper on it entitled “An Information Flow Model for
Conflict and Fission in Small Groups.” The interesting fact about
this graph and its paper is that in those years, a conflict arose in
the club between one of the karate instructors (node number 0)
and the president of the club (node number 33). By clustering the
graph, you can almost perfectly predict the split of the club into
two groups shortly after the occurrence.
Because this example also draws a graph showing the groups (so
that you can visualize them easier), you also need to use the
matplotlib package. The following code shows how to graph the

https://www.linkedin.com/
https://www.quora.com/How-does-LinkedIns-People-You-May-Know-work
https://networkdata.ics.uci.edu/data.php?id=105

nodes and edges of the dataset. (You can find this code in the
A4D; 10; Social Networks.ipynb file on the Dummies site as part
of the downloadable code; see the Introduction for details.)

import networkx as nx

import matplotlib.pyplot as plt

%matplotlib inline

graph = nx.karate_club_graph()

pos=nx.spring_layout(graph)

nx.draw(graph, pos, with_labels=True)

plt.show()

To display the graphic onscreen, you also need to provide a layout
that determines how to position the nodes onscreen. This
example uses the Fruchterman-Reingold force-directed algorithm
(the call to nx.spring_layout). However, you can choose one of
the other layouts described in the Graph Layout section at
https://networkx.github.io/documentation/networkx-

1.9/reference/drawing.html . Figure 10-1 shows the output from
the example. (Your output may look slightly different.)

https://networkx.github.io/documentation/networkx-1.9/reference/drawing.html

FIGURE 10-1: A graph showing the network clusters of relationships between friends.

 The Fruchterman-Reingold force-directed algorithm for
generating automatic layouts of graphs creates
understandable layouts with separated nodes and edges that
tend not to cross by mimicking what happens in physics
between electrically charged particles or magnets bearing the
same sign. In looking at the graph output, you can see that
some nodes have just one connection, some two, and some
more than two. The edges form triads, as previously
mentioned. However, the most important consideration is that
Figure 10-1 clearly shows the clustering that occurs in a
social network.

Discovering communities
A group of tightly associated people often defines a community. In
fact, the term clique applies to a group whose membership to the
group is exclusive and everyone knows everyone else quite well.
Most people have childhood memories of a tight group of friends

at school or in the neighborhood who always spent their time
together. That’s a clique.

 You can find cliques in undirected graphs. Directed graphs
distinguish strongly between connected components when a
direct connection exists between all the node pairs in the
component itself. A city is an example of a strongly
connected component because you can reach any
destination from any starting point by following one-way and
two-way streets.

Mathematically, a clique is even more rigorous because it implies
a subgraph (a part of a network graph that you can separate from
other parts as a complete element in its own right) that has
maximum connectivity. In looking at various kinds of social
networks, picking out the clusters is easy, but what can prove
difficult is finding the cliques — the groups with maximum
connectivity — within the clusters. By knowing where cliques
exist, you can begin to understand the cohesive nature of a
community better. In addition, the exclusive nature of cliques
tends to create a group that has its own rules outside of those that
might exist in the social network as a whole. The following
example shows how to extract cliques and communities from the
karate club graph used in the previous section:

graph = nx.karate_club_graph()

Finding and printing all cliques of four

cliques = nx.find_cliques(graph)

print ('All cliques of four: %s'

% [c for c in cliques if len(c)>=4])

Joining cliques of four into communities

communities = nx.k_clique_communities(graph, k=4)

communities_list = [list(c) for c in communities]

nodes_list = [node for community in communities_list for

node in community]

print ('Found these communities: %s' % communities_list)

Printing the subgraph of communities

subgraph = graph.subgraph(nodes_list)

nx.draw(subgraph, with_labels=True)

plt.show()

All cliques of four: [[0, 1, 2, 3, 13], [0, 1, 2, 3, 7],

[33, 32, 8, 30], [33, 32, 23, 29]]

Found these communities: [[0, 1, 2, 3, 7, 13],

[32, 33, 29, 23], [32, 33, 8, 30]]

The example begins by extracting just the nodes in the karate
club dataset that have four or more connections, and then prints
the cliques with a minimum size of four. Of course, you can set
any level of connections needed to obtain the desired resource.
Perhaps you consider a clique a community in which each node
has twenty connections, but other people might see a clique as a
community where each node has just three connections.
The list of cliques doesn’t really help you much, though, if you
want to see the communities. To see them, you need to rely on
specialized and complex algorithms to merge overlapping cliques
and find clusters, such as the clique percolation method described
at https://gaplogs.net/2012/04/01/simple-community-detection-

https://gaplogs.net/2012/04/01/simple-community-detection-algorithms/

algorithms/ . The NetworkX package offers k_clique_communities
, an implementation of the clique percolation algorithm, which
results in the union of all the cliques of a certain size (the k
parameter). These cliques of a certain size share k-1 elements
(that is, they differ by just one component, a truly strict rule).
Clique percolation provides you with a list of all the communities
found. In this example, one clique revolves around the karate
instructor and another revolves around the president of the club.
In addition, you can extract all the nodes that are part of a
community into a single set, which helps you create a subgraph
made of just communities.
Finally, you can draw the subgraph and display it. Figure 10-2
shows the output of this example, which displays the ensemble of
cliques with four or more connections.

FIGURE 10-2: Communities often contain cliques that can prove useful for SNA.

Finding cliques in graphs is a complex problem requiring many
computations (it’s a difficult problem) that an algorithm solves
using a brute-force search, which means trying all possible
subsets of vertexes to determine whether they’re cliques. With
some luck, because some randomization is needed for the
algorithm to succeed, you can find a large clique using a simple
approach whose complexity is O(n+m), where n is the number of

https://gaplogs.net/2012/04/01/simple-community-detection-algorithms/

vertexes and m the edges. The following steps describe this
process.

1. Sort the vertexes by degree (which is the number
of vertex connections), from the highest to the
lowest.

2. Place the vertex with the highest degree into the
clique (or as an alternative, randomly choose
from one of the highest-degree vertexes).

3. Repeat Steps 1 and 2 until you have no more
vertexes to test.

4. Verify the next vertex as being part of the clique:
If it’s part of the clique, add it to the clique.
If it isn’t part of the clique, repeat the test on
the remaining vertexes.

At the end, after a few algorithm trials, you should have a list of
vertexes that constitutes the largest clique present in the graph.

Navigating a Graph
Navigating or traversing a graph means visiting each of the graph
nodes. The purpose of navigating a graph can include
determining node content or updating it as needed. When
navigating a graph, it’s entirely possible that you visit particular
nodes more than once because of the connectivity that graphs
provide. Consequently, you also need to consider marking nodes
as visited after you see their content. The act of navigating a
graph is important in determining how the nodes connect so that
you can perform various tasks. Previous chapters discuss basic
graph navigation techniques. The following sections help you
understand a few of the more advanced graph navigation
techniques.

Counting the degrees of separation
The term degrees of separation defines the distance between
nodes in a graph. When working with an undirected graph without
weighted edges, each edge counts for a value of one degree of
separation. However, when working with other sorts of graphs,
such as maps, where each edge can represent a distance or time
value, the degrees of separation can become quite different. The
point is that degrees of separation indicate some sort of distance.
The example in this section (and the one that follows) relies on
the following graph data. (You can find this code in the A4D; 10;
Graph Navigation.ipynb file on the Dummies site as part of the
downloadable code; see the Introduction for details.)

import networkx as nx

import matplotlib.pyplot as plt

%matplotlib inline

data = {'A': ['B', 'F', 'H'],

'B': ['A', 'C'],

'C': ['B', 'D'],

'D': ['C', 'E'],

'E': ['D', 'F', 'G'],

'F': ['E', 'A'],

'G': ['E', 'H'],

'H': ['G', 'A']}

graph = nx.DiGraph(data)

pos=nx.spring_layout(graph)

nx.draw_networkx_labels(graph, pos)

nx.draw_networkx_nodes(graph, pos)

nx.draw_networkx_edges(graph, pos)

plt.show()

This is an expansion of the graph used in Chapter 6 . Figure 10-3
shows how this graph appears so that you can visualize what the
function call is doing. Note that this is a directed graph (networkx
DiGraph) because using a directed graph has certain advantages
when determining degrees of separation (and performing a wealth
of other calculations).

FIGURE 10-3: A sample graph used for navigation purposes.

To discover the degrees of separation between two items, you
must have a starting point. For the purpose of this example, you
can use node 'A'. The following code shows the required networkx
package function call and output:

nx.shortest_path_length(graph, 'A')

{'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 2, 'F': 1, 'G': 2,

'H': 1}

The distance between node A and node A is 0, of course. The
greatest degree of separation comes from node A to node D,
which is 3. You can use this kind of information to determine
which route to take or to perform an analysis of the cost in gas
versus the cost in time of various paths. The point is that knowing
the shortest distance between two points can be quite important.
The networkx package used for this example comes in a wide
array of distance-measuring algorithms, as described at
https://networkx.github.io/documentation/development/referenc

e/algorithms.shortest_paths.html .

 To see how using a directed graph can make a big
difference when performing degrees-of-separation
calculations, try removing the connection between nodes A
and F. Change the data so that it looks like this:

data = {'A': ['B', 'H'],

'B': ['A', 'C'],

'C': ['B', 'D'],

'D': ['C', 'E'],

'E': ['D', 'F', 'G'],

'F': ['E', 'A'],

'G': ['E', 'H'],

'H': ['G', 'A']}

When you perform the call to nx.shortest_path_length this time,
the output becomes quite different because you can no longer go
from A to F directly. Here’s the new output from the call:

{'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 3, 'F': 4, 'G': 2,

https://networkx.github.io/documentation/development/reference/algorithms.shortest_paths.html

'H': 1}

Notice that the loss of the path has changed some of the degrees
of separation. The distance to node F is now the longest at 4.

Walking a graph randomly
You might find a need to walk a graph randomly. The act of
walking the graph randomly, rather than look for a specific path,
can simulate natural activities, such as an animal foraging for
food. It also plays in to all sorts of other interesting activities, such
as playing games. However, random graph walking can have
practical aspects. For example, a car is held up in traffic because
of an accident, so the shortest path is no longer available. In
some cases, choosing a random alternative might work best
because traffic along the second shortest route could be heavy as
a result of the traffic jam along the shortest route.

 The networkx package doesn’t provide the means for
obtaining a random path directly. However, it does provide
the means for finding all available paths, after which you can
select a path from the list randomly. The following code
shows how this process might work using the graph from the
previous section.

import random

random.seed(0)

paths = nx.all_simple_paths(graph, 'A', 'H')

path_list = []

for path in paths:

path_list.append(path)

print("Path Candidate: ", path)

sel_path = random.randint(0, len(path_list) - 1)

print("The selected path is: ", path_list[sel_path])

Path Candidate: ['A', 'B', 'C', 'D', 'E', 'G', 'H']

Path Candidate: ['A', 'H']

Path Candidate: ['A', 'F', 'E', 'G', 'H']

The selected path is: ['A', 'H']

The code sets the seed to a specific value to ensure that you get
the same result every time. However, by changing the seed value,
you can see different results from the example code. The point is
that even the simple graph shown in Figure 10-3 offers three ways
to get from node A to node H (two of which are definitely longer
than the selected path in this case). Choosing just one of them
ensures that you get from one node to the other, albeit by a
potentially roundabout way.

Chapter 11
Getting the Right Web page

IN THIS CHAPTER
 Understanding why finding what you want on the web is

hard
 Reviewing problems that PageRank solves
 Implementing the PageRank algorithm with teleporting
 Learning how PageRank usage is evolving

The last few chapters review graphs at length. The web is one of
the most interesting examples because of its extent and
complexity. After providing an understanding of the basic
algorithms that allow graph traversal and extraction of useful
structures (such as the presence of clusters or communities), this
chapter concludes the discussion of graphs by presenting the
PageRank algorithm that has revolutionized people’s lives as
much as the web and Internet did because it makes the web
usable. PageRank isn’t only the engine behind Google and many
other search engines, but it’s also a smart way to derive latent
information, such as relevance, importance, and reputation, from
a graph structure.
Libraries rely on catalogues and librarians to offer an easy way to
find particular texts or explore certain subjects. Books aren’t all
the same: Some are good at presenting certain kinds of
information; some are better. Scholar recommendations make a
book an authoritative source because these recommendations
often appear in other books as quotes and citations. This sort of
cross-reference didn’t exist on the web initially. The presence of
certain words in the title or in the text of the body recommended a
particular web page. This approach is practically like judging a
book by its title and the number of words it contains.

The PageRank algorithm changes all that by transforming the
presence of the links on pages and turning them into
recommendations, akin to the input of expert scholars. The
growing scale of the web also plays a role in the success of the
algorithm. Good signals are easy to find and distinguished from
noise because they appear regularly. Noise, though confounding,
is naturally casual. The larger the web, the more likely you are to
get good signals for a smart algorithm like PageRank.

Finding the World in a Search
Engine

For many people, their personal and professional lives are
unthinkable without the Internet and the web. The Internet
network is composed of interconnected pages (among other
things). The web is composed of sites that are reachable by
domains, each one composed of pages and hyperlinks that
connect sites internally and with other sites externally. Service
and knowledge resources are available through the web if you
know exactly where to look. Accessing the web is unthinkable
without search engines, those sites that allow you to find anything
on the web using a simple query.

Searching the Internet for data
With an estimated size of almost 50 billion pages (
http://www.worldwidewebsize.com/), the web isn’t easy to
represent. Studies describe the web as a bowtie shaped graph
(see http://www.immorlica.com/socNet/broder.pdf and
http://vigna.di.unimi.it/ftp/papers/GraphStructureRevisited.p

df). The web mainly consists of an interconnected core and other
parts that link to that core. However, some parts are completely
unreachable. By taking any road in the real world, you can go
anywhere (you may have to cross the oceans to do it). On the
web, you can’t touch all the sites just by following its structure;
some parts aren’t easily accessible (they are disconnected or
you’re on the wrong side to reach them). If you want to find

http://www.worldwidewebsize.com/
http://www.immorlica.com/socNet/broder.pdf
http://vigna.di.unimi.it/ftp/papers/GraphStructureRevisited.pdf

something on the web, even when time isn’t a problem, you still
need an index.

URLs WITH .PDF EXTENSIONS
Many of the resource URLs found in this book have a .pdf extension. When
you attempt to open the link, you may see a warning from your browser
indicating that the .pdf file could contain a virus. It’s entirely possible for a .pdf
file to contain a virus (see
http://security.stackexchange.com/questions/64052/can-a-pdf-file-
contain-a-virus for a discussion of the topic). However, the research .pdf file
links provided in this book are unlikely to contain viruses, so you can download
them safely and then use a scanner to verify the content. As with any online
content, you’re always better off to be safe than sorry when it comes to files.
Please do let us know if any of the .pdfs referenced in the book actually do
contain viruses by writing to John@JohnMuellerBooks.com . In addition, please
contact the webmaster for the site hosting the file.

Considering how to find the right
data
Finding the right data has been a problem since the early years of
the web, but the first search engines didn’t appear until the 1990s.
Search engines weren’t thought of earlier because other
solutions, such as simple domain listings or specialized site
catalogues, worked fine. Only when these solutions stopped
scaling well because of the rapidly growing size of the web did
search engines such as Lycos, Magellan, Yahoo, Excite, Inktomi,
and Altavista appear.
All these search engines worked by having specialized software
autonomously visit the web, using domain lists and testing
hyperlinks found on the visited pages. These spiders explored
each new link in a process called crawling. Spiders are pieces of
software that read the pages as plain text (they can’t understand
images or other nontextual content).
Early search engines worked by crawling the web, collecting the
information from spiders, and processing it in order to create

http://security.stackexchange.com/questions/64052/can-a-pdf-file-contain-a-virus
mailto:John@JohnMuellerBooks.com

inverted indexes. The indexes allowed retracing pages based on
the words they contained. When you made a query, such inverted
indexes reported all the pages containing the terms and helped
score the pages, thus creating a ranking that turned into a search
result (a list of ordered pages, ranging from the anticipated most
useful page to the least useful page).
The scoring was quite naive because it often counted how
frequently the keywords appeared on pages or whether they
appeared in the titles or in the header of the page itself.
Sometimes keywords were even scored more if they mixed or
clustered together. Clearly, such simple indexing and scoring
techniques allowed some web users to take advantage by using
various tricks:

Web spammers: Used their ability to fill the search results with
pages containing poor content and a lot of advertising.
Black Hat search engine optimization (Black Hat SEO):
Used by people who employ their knowledge of search engines
to make the search engine ranking higher for pages they
manipulated despite their poor quality. Unfortunately, these
issues still persist because every search engine, even the most
evolved ones, aren’t immune to people who want to game the
system to obtain a higher search engine ranking. The PageRank
algorithm may eliminate many of the older spammers and Black
Hat SEO people, but it’s not a panacea.

 It’s essential to distinguish Black Hat SEO from White
Hat SEO (usually simply SEO). People who use White Hat SEO
are professionals who employ their knowledge of search
engines to better promote valid and useful pages in a legal and
ethical way.

The emergence of such actors and the possibility of manipulating
search engines’ results created the need for better ranking

algorithms in search engines. One such result is the PageRank
algorithm.

Explaining the PageRank
Algorithm

The PageRank algorithm is named after Google cofounder Larry
Page. It made its first public appearance in a 1998 paper entitled
“The Anatomy of a LargeScale Hypertextual Web Search Engine,”
by Sergey Brin and Larry Page, published by the journal
Computer Networks and ISDN Systems (
http://ilpubs.stanford.edu:8090/361/1/1998-8.pdf). At that
time, both Brin and Page were PhD candidates, and the
algorithm, the very foundation of Google’s search technology, was
initially a research project at Stanford University.
Simply stated, PageRank scores the importance of each node in a
graph in such a way that the higher the score the more important
the node in a graph. Determining the node importance in a graph
like the web means computing whether a page is relevant as part
of a query’s results, thus better servicing users looking for good
web content.
A page is a good response to a query when it matches the query’s
criteria and has prominence in the system of hyperlinks that ties
pages together. The logic behind prominence is that because
users build the web, a page has importance in the network for
good reason (the quality and authority of the page’s content is
assessed by its importance in the web’s network of hyperlinks).

Understanding the reasoning behind
the PageRank algorithm
In 1998, when both Brin and Page were still students at Stanford,
the quality of search results was an issue for anyone using the
web. Mainstream search engines of the time struggled both with
an ever-growing web structure (the next part of the book

http://ilpubs.stanford.edu:8090/361/1/1998-8.pdf

discusses algorithm scaling issues and how to make them work
with big data) and with a myriad of spammers.

 The use of spammers in this case doesn’t refer to email
spammers (those spammers who send unrequested emails
to your Inbox) but rather to web spammers (those who know
the economic importance of having pages at the top of
search results). This group devised sophisticated and
malicious tricks in order to fool search results. Popular hacks
by web spammers of the day include:

Keyword stuffing: Implies overusing particular keywords in a
page to trick the search engine into thinking the page seriously
discusses the keyword topic.
Invisible text: Requires copying the content of a page result on
top of a query into a different page using the same color for both
characters and background. The copied content is invisible to
users but not to the search engine’s spiders (which were, and
still are, just scanning textual data) and to its algorithms. The
trick ranks the page with invisible text as high as the originating
page in a search.
Cloaking: Defines a more sophisticated variant of invisible text
where, instead of text, scripts or images provide different
content to search engine spiders than users actually see.

Web spammers use such tricks to trick search engines to rank
pages highly, even though the page content is poor and, at best,
misleading. These tricks have consequences. For instance, a user
might look for information relating to university research and
instead be exposed to commercial advertising or inappropriate
content. Users became disappointed because they often ended
up at pages unrelated to their needs, requiring them to restate
their queries and to spend time digging for useful information
among pages of results, wasting energy in distinguishing good
references from bad ones. Scholars and experts, noting the need

to cope with spam results and fearing that the development of the
web could halt because users had difficulties finding what they
really wanted, started working on possible solutions.
As Brin and Page worked on their solving algorithm, other ideas
were drafted and publicized, or developed in parallel. One such
idea is Hyper Search, by Massimo Marchiori, who first pointed out
the importance of web links in determining the prominence of a
web page as a factor to consider during a search:
https://www.w3.org/People/Massimo/papers/WWW6/). Another
interesting solution is a web search engine project called HITS
(Hypertext-Induced Topic Search), also based on the web links
structure and developed by Jon Kleinberg, a young scientist
working at IBM Almaden in Silicon Valley. The interesting fact
about HITS is that it classifies pages into hubs (a page with many
links to authoritative pages) and authorities (pages considered
authoritative by many links from hubs), something that PageRank
doesn’t do explicitly (but implicitly does in computations) (
http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lectu

re4/lecture4.html).

 When the time is ripe, the same idea or something similar
often sprouts in different places. Sometimes sharing of basic
ideas occurs between researchers and scientists; sometimes
ideas are developed in a completely independent way (see
the history of Japanese mathematician Takakazu Seki
http://www-history.mcs.st-

andrews.ac.uk/history/Biographies/Seki.html , who
independently discovered many of the same things as
European mathematicians such as Newton, Leibniz, and
Bernoulli did around the same period). In 1998, only Brin and
Page took steps to create a search engine company based
on their algorithm by taking a leave from Stanford University
and their doctoral studies to focus on making their algorithm
work with more than a billion web pages.

https://www.w3.org/People/Massimo/papers/WWW6/
http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture4/lecture4.html
http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Seki.html

Explaining the nuts and bolts of
PageRank
The innovation brought about by PageRank is that an inverted
index of terms isn’t enough to determine whether a page matches
a user’s information query. Matching words (or meaning, the
semantic query match discussed at the end of the chapter)
between a query and the page text is a prerequisite, but it isn’t
sufficient because hyperlinks are necessary to assess whether
the page offers quality content and is authoritative.
When discussing sites, distinguishing between inbound and
outbound links is important, and you shouldn’t consider internal
links that connect within the same site. The links you see on a
page are outbound when they lead to another page on another
site. The links that bring someone to your page from another page
on another site are inbound links (backlinks). As the page creator,
you use outbound links to provide additional information to the
page content. You presumably won’t use random links on your
page (or links pointing to useless or bad content) because that
would spoil the page quality. As you point to good content using
links, other page creators use links on their pages to point to your
page when your page is interesting and of high quality.
It’s a chain of trust. Hyperlinks are like endorsements or
recommendations for pages. Inbound links show that other page
creators trust you, and you share part of that trust by adding
outbound links on your pages to point to other pages.

Implementing PageRank
Representing this chain of trust mathematically requires
simultaneously determining how much authority your page has, as
measured by inbound links, and how much it donates to other
pages by outbound links. You can achieve such computations in
two ways:

Simulation: Uses the behavior of a web surfer who browses
randomly on the web (a random surfer). This approach requires
that you recreate the web structure and run the simulation.
Matrix computation: Replicates the behavior of a random
surfer using a sparse matrix (a matrix in which most data is
zero) replicating the web structure. This approach requires
some matrix operations, as explained in Chapter 5 , and a
series of computations that reach a result by successive
approximation.

Even though it’s more abstract, using the matrix computation for
PageRank requires fewer programming instructions, and you can
easily implement it using Python. (You can try the PageRank
algorithm on real-world sites using an automatic PageRank
checker, such as http://checkpagerank.net/index.php .
Unfortunately, the program may produce inaccurate results for
newer sites because they haven’t been crawled properly yet, it
can give you an idea of what PageRank is like in practice.)

Implementing a Python script
PageRank is a function that scores the nodes in a graph with a
number (the higher the number, the more important the node).
When scoring a web page, the number could represent the
probability of a random surfer visit. You express probabilities
using a number from 0.0 to a maximum 1.0 and, ideally, when
representing the probability of being on a particular site among all
available sites, the sum of all the probabilities of the pages on the
web should equal 1.0.

 Many versions of PageRank exist, each one changing its
recipe a little to fit the kind of graph it has to score. The
example in this section presents you with the original version
for the web presented in the previously mentioned paper by
Brin and Page and in the paper “PageRank: Bringing Order to

http://checkpagerank.net/index.php

the Web” (http://ilpubs.stanford.edu:8090/422/1/1999-
66.pdf).

The example creates three different web networks made of six
nodes (web pages). The first one is a good working network, and
the other two demonstrate problems that a random surfer may
encounter because of the web structure or a web spammer’s
actions. This example also uses the NetworkX commands
discussed in Chapter 8 . (You can find this code in the A4D; 11;
PageRank.ipynb file on the Dummies site as part of the
downloadable code; see the Introduction for details.)

import numpy as np

import networkx as nx

import matplotlib.pyplot as plt

%matplotlib inline

Graph_A = nx.DiGraph()

Graph_B = nx.DiGraph()

Graph_C = nx.DiGraph()

Nodes = range(1,6)

Edges_OK = [(1,2),(1,3),(2,3),(3,1),(3,2),(3,4),(4,5),

(4,6),(5,4),(5,6),(6,5),(6,1)]

Edges_dead_end = [(1,2),(1,3),(3,1),(3,2),(3,4),(4,5),

(4,6),(5,4),(5,6),(6,5),(6,1)]

Edges_trap = [(1,2),(1,3),(2,3),(3,1),(3,2),(3,4),(4,5),

(4,6),(5,4),(5,6),(6,5)]

Graph_A.add_nodes_from(Nodes)

Graph_A.add_edges_from(Edges_OK)

Graph_B.add_nodes_from(Nodes)

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

Graph_B.add_edges_from(Edges_dead_end)

Graph_C.add_nodes_from(Nodes)

Graph_C.add_edges_from(Edges_trap)

This code displays the first network, the good one, as shown in
Figure 11-1 .

np.random.seed(2)

pos=nx.shell_layout(Graph_A)

nx.draw(Graph_A, pos, arrows=True, with_labels=True)

plt.show()

FIGURE 11-1: A strongly connected network.

 All nodes connect with each other. This is an example of a
strongly connected graph, which contains no isolated nodes
or single nodes and enclaves that act as dead ends. A
random surfer can freely run through it and never stop, and
any node can reach any other node. In the NetworkX
representation of a directed graph, there are no arrows, but
the direction of an edge is represented by a thicker line
entering a node. For example, a surfer can go from node 4 to
node 6 because there is a thick line entering node 6 from

node 4. However, the surfer can’t go from node 6 to node 4
because the line entering node 4 from node 6 is thin.

The second graph isn’t strongly connected. It presents a trap for a
random surfer because the second node has no outbound links,
and a user visiting the page could stop there and find no way out.
This isn’t an unusual event considering the structure of the web,
but it could also show a spammer artifact, such that the spammer
created a spam factory with many links that direct to a dead end
site in order to trap web surfers. Figure 11-2 shows the output of
the following code, which was used to display this graph.

np.random.seed(2)

pos=nx.shell_layout(Graph_B)

nx.draw(Graph_B, pos, arrows=True, with_labels=True)

plt.show()

FIGURE 11-2: A dead end.

Another situation that may be natural or the result of a spammer’s
action is a spider trap. It’s another dead end for a surfer, this time
not on a single page but on a closed site that lacks links to an
outside network of pages. Figure 11-3 shows the output of the
following code, which was used to display this graph.

np.random.seed(2)

pos=nx.shell_layout(Graph_C)

nx.draw(Graph_C, pos, arrows=True, with_labels=True)

plt.show()

FIGURE 11-3: A spider trap.

 It’s called a spider trap because spammers devised it as a
way to catch search engine software spiders in a loop and let
them believe that the only websites were the ones inside the
closed network.

Struggling with a naive
implementation
Given a graph made by using Python and NetworkX, you can
extract its structure and render it as a transition matrix, a matrix
that represents nodes in columns and rows:

Columns: Contain the node a web surfer is on
Rows: Contain the probability that the surfer will visit other
nodes because of outbound links

In the real web, the transition matrix that feeds the PageRank
algorithm is built by spiders’ continuous exploration of links.

def initialize_PageRank(graph):

nodes = len(graph)

M = nx.to_numpy_matrix(graph)

outbound = np.squeeze(np.asarray(np.sum(M, axis=1)))

prob_outbound = np.array(

[1.0/count

if count>0 else 0.0 for count in outbound])

G = np.asarray(np.multiply(M.T, prob_outbound))

p = np.ones(nodes) / float(nodes)

if np.min(np.sum(G,axis=0)) < 1.0:

print ('Warning: G is substochastic')

return G, p

The Python code creates the function initialize_PageRank that
extracts both the transition matrix and the initial vector of default
PageRank scores.

G, p = initialize_PageRank(Graph_A)

print (G)

[[0. 0. 0.33333333 0. 0. 0.5]

[0.5 0. 0.33333333 0. 0. 0.]

[0.5 1. 0. 0. 0. 0.]

[0. 0. 0.33333333 0. 0.5 0.]

[0. 0. 0. 0.5 0. 0.5]

[0. 0. 0. 0.5 0.5 0.]]

The printed transition matrix G represents the transition matrix of
the network described in Figure 11-1 . Each column represents a
node in the sequence 1 through 6. For instance, the third column
represents node 3. Each row in the column shows the
connections with other nodes (outbound links toward nodes 1, 2,
and 4) and values that define the probability of a random surfer
using any of the outbound links (that is, 1/3, 1/3, 1/3).

 The diagonal of the matrix is always zero unless a page
has an outbound link toward itself (it is a possibility).

The matrix contains more zeros than values. This is also true in
reality because estimates show that each site has only ten
outbound links on average. Because billions of sites exist, the
nonzero values in a transition matrix representing the web are
minimal. In this case, it’s helpful to use a data structure such as
an adjacency list (explained in Chapter 8) to represent data
without wasting disk or memory space with zero values:

from scipy import sparse

sG = sparse.csr_matrix(G)

print (sG)

(0, 2) 0.333333333333

(0, 5) 0.5

(1, 0) 0.5

(1, 2) 0.333333333333

(2, 0) 0.5

(2, 1) 1.0

(3, 2) 0.333333333333

(3, 4) 0.5

(4, 3) 0.5

(4, 5) 0.5

(5, 3) 0.5

(5, 4) 0.5

This example has just 12 links out of 30 possible (without counting
links to self, which is the current site). Another particular aspect of
the transition matrix to note is that if you sum the columns, the
result should be 1.0. If it is a value less than 1.0, the matrix is
substochastic (which means that the matrix data isn’t representing
probabilities properly because probabilities should sum to 1.0)
and cannot work perfectly with PageRank estimations.
Accompanying G is a vector p , the initial estimate of the total
PageRank score, equally distributed among the nodes. In this
example, because the total PageRank is 1.0 (the probability of a
random surfer being in the network, which is 100 percent), it’s
distributed as 1/6 among the six nodes:

print(p)

[0.16666667 0.16666667 0.16666667 0.16666667

0.16666667 0.16666667]

To estimate the PageRank, take the initial estimate for a node in
the vector p , multiply it by the corresponding column in the
transition matrix, and determine how much of its PageRank (its
authority) transfers to other nodes. Repeat for all nodes and you’ll
know how PageRank transfers between nodes because of the
network structure. You can achieve this computation using a
matrix-vector multiplication:

print(np.dot(G,p))

[0.13888889 0.13888889 0.25 0.13888889

0.16666667 0.16666667]

After the first matrix-vector multiplication, you obtain another
estimate of PageRank that you use for redistribution among the
nodes. By redistributing multiple times, the PageRank estimate
stabilizes (results won’t change), and you’ll have the score you
need. Using a transition matrix containing probabilities and
estimation by successive approximation using matrix-vector
multiplication obtains the same results as a computer simulation
with a random surfer:

def PageRank_naive(graph, iters = 50):

G, p = initialize_PageRank(graph)

for i in range(iters):

p = np.dot(G,p)

return np.round(p,3)

print(PageRank_naive(Graph_A))

[0.154 0.154 0.231 0.154 0.154 0.154]

The new function PageRank_naive wraps all the previously
described operations and emits a vector of probabilities (the
PageRank score) for each node in the network. The third node
emerges as the one with most importance. Unfortunately, the
same function doesn’t work with the other two networks:

print(PageRank_naive(Graph_B))

Warning: G is substochastic

[0. 0. 0. 0. 0. 0.]

print(PageRank_naive(Graph_C))

[0. 0. 0. 0.222 0.444 0.333]

In the first case, the probabilities seem to drain out of the network
— the effect of a dead-end website and the resulting
substochastic transition matrix. In the second case, the bottom
half of the network unfairly gets all the importance, leaving the top
part as insignificant.

Introducing boredom and teleporting
Both dead ends (rank sinks) and spider traps (cycles) are
common situations on the web because of users’ choices and
spammers’ actions. The problem, however, is easily solved by
making the random surfer randomly jump to another network node
(teleporting, as in the sci-fi devices that take you instantaneously
from one place to another). The theory is that a surfer will get
bored at one point or another and move away from deadlocking
situations. Mathematically, you define an alpha value representing
the probability of continuing the random journey on the graph by
the surfer. The alpha value redistributes the probability of being on
a node independently of the transition matrix.

 The value originally suggested by Brin and Page for alpha
(also called the damping factor) is 0.85, but you can change it
according to your needs. For the web, it works the best
between 0.8 and 0.9 and you can read why this is the best

value range at
https://www.cise.ufl.edu/~adobra/DaMn/talks/damn05-

santini.pdf . The smaller the alpha value, the shorter the trip
of the surfer on the network, on average, before restarting
somewhere else.

def PageRank_teleporting(graph, iters = 50, alpha=0.85,

rounding=3):

G, p = initialize_PageRank(graph)

u = np.ones(len(p)) / float(len(p))

for i in range(iters):

p = alpha * np.dot(G,p) + (1.0 - alpha) * u

return np.round(p / np.sum(p), rounding)

print('Graph A:', PageRank_teleporting(Graph_A,

rounding=8))

print('Graph B:', PageRank_teleporting(Graph_B,

rounding=8))

print('Graph C:', PageRank_teleporting(Graph_C,

rounding=8))

Graph A: [0.15477863 0.15346061 0.22122243 0.15477863

0.15787985 0.15787985]

Warning: G is substochastic

Graph B: [0.16502904 0.14922238 0.11627717 0.16502904

0.20222118 0.20222118]

Graph C: [0.0598128 0.08523323 0.12286869 0.18996342

https://www.cise.ufl.edu/~adobra/DaMn/talks/damn05-santini.pdf

0.30623677 0.23588508]

After applying the modifications to a new function,
PageRank_teleporting , you can get similar estimates for the first
graph and much more realistic (and useful) estimates for both the
second and third graphs, without falling into the traps of dead
ends or rank sinks. Interestingly, the function is equivalent to the
one provided by NetworkX:
http://networkx.readthedocs.io/en/networkx-
1.11/reference/generated/networkx.algorithms.link_analysis.pa

gerank_alg.pagerank.html .

nx.pagerank(Graph_A, alpha=0.85)

{1: 0.15477892494151968,

2: 0.1534602056628941,

3: 0.2212224378270561,

4: 0.15477892494151968,

5: 0.1578797533135051,

6: 0.15787975331350507}

Looking inside the life of a search
engine
Though it only reports on the web hyperlink structure, PageRank
reveals how authoritative a page can become. However, Google
isn’t composed only of PageRank. The algorithm provides solid
foundations for any query, and it initially bootstrapped Google’s
fame as a reliable search engine. Today, PageRank is just one of
the many ranking factors that intervene when processing a query.
Specialized sources in SEO knowledge quote more than 200
factors as contributing to the results that Google provides. To see
what other sorts of ranking factors Google considers, consult the

http://networkx.readthedocs.io/en/networkx-1.11/reference/generated/networkx.algorithms.link_analysis.pagerank_alg.pagerank.html

list at https://moz.com/search-ranking-factors (made by MOZ, a
U.S. company). You can also download the yearly reports from
http://www.searchmetrics.com/knowledge-base/ranking-factors/

, by Searchmetrics, a German company from Berlin specializing in
SEO software.
You must also consider that the Google algorithm has received
many updates, and at this point, it’s more of an ensemble of
different algorithms, each one named with a fantasy name
(Caffeine, Panda, Penguin, Hummingbird, Pigeon, Mobile
Update). Many of these updates have caused shake-ups of
previous search rankings and were motivated by the need to fix
spamming techniques or make the surfing the web more useful for
users (for instance, the Mobile Update induced many sites to
render their interfaces mobile-phone friendly).

Considering other uses of PageRank
Although PageRank provides better search results, its applicability
isn’t limited to Google or search engines. You can use PageRank
anywhere you can reduce your problem to a graph. Just modify
and tune the algorithm to your needs. Cornell University has
enumerated some other potential uses of PageRank in different
sectors (https://blogs.cornell.edu/info2040/2014/11/03/more-
than-just-a-web-search-algorithm-googles-pagerank-in-non-

internet-contexts/), and surprising reports have emerged of the
algorithm being successfully used in computational biology (
https://www.wired.com/2009/09/googlefoodwebs/). By creating a
teleportation tied to specific nodes that you want to explore, you
see the algorithm shining at diverse applications such as the
following:

Fraud detection: Revealing how certain persons and facts are
related in unexpected ways
Product recommendation: Suggesting products that a person
with a certain affinity might like

https://moz.com/search-ranking-factors
http://www.searchmetrics.com/knowledge-base/ranking-factors/
https://blogs.cornell.edu/info2040/2014/11/03/more-than-just-a-web-search-algorithm-googles-pagerank-in-non-internet-contexts/
https://www.wired.com/2009/09/googlefoodwebs/

Going Beyond the PageRank
Paradigm

In recent years, Google has done more than introduce more
ranking factors that modify the original PageRank algorithm. It has
introduced some radical changes that leverage page content
better (to avoid being fooled by the presence of certain keywords)
and has adopted AI algorithms that rank the relevance of a page
in a search result autonomously. These changes have led some
search experts to declare that PageRank doesn’t determine the
position of a page in a search any longer (see
https://www.entrepreneur.com/article/269574). They still debate
the question, but it’s most likely safe to assume that PageRank is
still powering the Google engine as a ranking factor, albeit not
sufficiently to enlist a page into the best results after a query.

Introducing semantic queries
If you currently try to pose questions, not just chains of keywords,
to Google, you’ll notice that it tends to answer smartly and gets
the sense of question. Since 2012, Google became better able to
understand synonyms and concepts. However, after August 2013,
with the Hummingbird update (
http://searchengineland.com/google-hummingbird-172816), the
search engine became capable of understanding conversational
searches (queries in which you ask something as you would say it
to another person) as well as the semantics behind queries and a
page’s contents.
Since this update, the Google algorithm works by disambiguating
both users’ intentions and the meanings expressed by pages, not
just by the keywords. Now, the search engine works more in a
semantic way, which means understanding what words imply on
both sides: the query and resulting web pages. In this sense, it
can’t be tricked anymore by playing with keywords. Even without
much support from PageRank, it can look at how a page is written

https://www.entrepreneur.com/article/269574
http://searchengineland.com/google-hummingbird-172816

and get a sense of whether the page contains good enough
content for inclusion in the results of a query.

Using AI for ranking search results
PageRank is still at the core, but the results have less weight
because of the introduction of machine learning technology into
ranking, the so-called RankBrain. According to some sources (see
https://www.bloomberg.com/news/articles/2015-10-26/google-

turning-its-lucrative-web-search-over-to-ai-machines), the
machine learning algorithm now examines all Google queries and
directly handles 15 percent of the volume of search queries it
receives every day, specializing in

Ambiguous and unclear search queries
Queries expressed in slang or colloquial terms
Queries expressed as though they were occurring in a
conversation with the search engine

Even though RankBrain is still cloaked in secrecy, the algorithm
seems to be capable of guessing, with much higher accuracy than
performed by a human being, whether the contents of a page can
appear in search results. It replaces all other ranking factors in
cases that are difficult to judge. This is another example of an
additional algorithm that limits the role played by the original
PageRank algorithm.

https://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web-search-over-to-ai-machines

Part 4
Struggling with Big Data

IN THIS PART …
Interact with large datasets.
Work with streamed data to use even larger datasets.
Perform tasks in parallel to perform management and analysis
tasks faster.
Encode data to reduce redundancies and to keep data safe.
Compress and decompress data using the LZW algorithm.

Chapter 12
Managing Big Data

IN THIS CHAPTER
 Realizing why big data is a driving force of our times
 Becoming familiar with Moore’s Law and its implications
 Understanding big data and its 4 Vs
 Discovering how to deal with infinite streaming data
 Leveraging sampling, hashing, and sketches for stream

data

More than a buzzword used by vendors to propose innovative
ways to store data and analyze it, big data is a reality and a
driving force of our times. You may have heard it mentioned in
many specialized scientific and business publications and even
wondered what big data really means. From a technical point of
view, big data refers to large and complex amounts of computer
data, so large (as the name implies) and intricate that the data
cannot be dealt with by making more storage available on your
computers or by making new computers more powerful and faster
in their computations. Big data implies a revolution in the way you
store and deal with data.
However, this copious and sophisticated store of data didn’t
appear suddenly. It took time to develop the technology to store
this amount of data. In addition, it took time to spread the
technology that generates and delivers data, namely computers,
sensors, smart mobile phones, the Internet, and its World Wide
Web services. This chapter discusses what drives this huge data
production.
Even though it took time to build this much data, technology
changes in recent years have finally helped people realize the

potential game changer that having huge amounts of data (of any
nature) at hand represents. For centuries, humans have
emphasized the power of the human intellect in determining the
causes and forces driving the natural world using a few accurate
observations (small data). Humans also developed a method, the
scientific method, that is at the foundation of our modern world
based on scientific discovery. Suddenly people have found (with a
certain surprise) that they can solve problems earlier and more
successfully by learning the solution from large amounts of data
rather than spending long years developing and elaborating
theories using well-designed tests and experiments.
Simply having data won’t find solutions to the many problems still
afflicting civilization. However, having enough data, which actually
equates to incredible amounts of it, and the right algorithm
enables people to connect the dots between thousands and
thousands of hints. Big data and algorithms enable access to
wondrous new scientific (but also practical and business)
discoveries.

Transforming Power into Data
In 1965, Gordon Moore, cofounder of Intel and Fairchild
Semiconductor (two giant companies that produce electronic
components for electronics and computers), stated in an
Electronics magazine paper entitled “Cramming More
Components Onto Integrated Circuits” that the number of
components found in integrated circuits would double every year
for the next decade. At that time, transistors dominated
electronics. Being able to stuff more transistors into a circuit using
a single electronic component that gathered the functionalities of
many of them (an integrated circuit), meant being able to make
electronic devices more capable and useful. This process is
integration and implies a strong process of electronics
miniaturization (making the same circuit much smaller, which
makes sense because the same volume should contain double
the circuitry as the previous year).

As miniaturization proceeds, electronic devices, the final product
of the process, become smaller or simply more powerful. For
instance, today’s computers aren’t all that much smaller than
computers of a decade ago, yet they are decisively more
powerful. The same goes for mobile phones. Even though they’re
the same size as their predecessors, they have become able to
perform more tasks. Other devices, such as sensors, are simply
smaller, which means that you can put them everywhere.

Understanding Moore’s implications
What Moore stated in that article actually proved true for many
years, and the semiconductor industry calls it Moore’s Law (see
http://www.mooreslaw.org/ for details). Doubling did occur for the
first ten years, as predicted. In 1975, Moore corrected his
statement, forecasting a doubling every two years. Figure 12-1
shows the effects of this doubling. This rate of doubling is still
valid, although now it’s common opinion that it won't hold longer
than the end of the present decade (up to about 2020). Starting in
2012, a mismatch occurs between the expectation of cramming
more transistors into a component to make it faster and what
semiconductor companies can achieve with regard to
miniaturization. In truth, physical barriers exist to integrating more
circuitry into an integrated circuit using the present silica
components. (However, innovation will continue; you can read the
article at http://www.nature.com/news/the-chips-are-down-for-
moore-s-law-1.19338 for more details.) In addition, Moore’s Law
isn’t actually a law. Physical laws, such as the law of universal
gravitation (which explains why things are attracted to the ground
as discovered by Newton), are based on proofs of various sorts
that have received peer review for their accuracy. Moore’s Law
isn’t anything more than mere observation, or even a tentative
goal for the industry to strive to achieve (a self-fulfilling prophecy,
in a certain sense).

http://www.mooreslaw.org/
http://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338

FIGURE 12-1: Stuffing more and more transistors into a CPU.

In the future, Moore's Law may not apply anymore because
industry will switch to new technology (such as making
components by using optical lasers instead of transistors; see the
article at http://www.extremetech.com/extreme/187746-by-2020-
you-could-have-an-exascale-speed-of-light-optical-computer-

on-your-desk for details about optical computing). What matters is
that since 1965, about every two years the computer industry
experienced great advancements in digital electronics that had
consequences.

CONSIDERING THE POLITICAL
ASPECTS OF VARIOUS LAWS

Depending on whom you talk with, the whole issue of whether a law will stand
the test of time can look different because that person will have a different
perspective. This book isn’t here to convince you of one point of view or
another, but simply reports the prevalent view. For example, it’s possible to
argue that Moore’s Law is every bit proven as the laws of thermodynamics. If

http://www.extremetech.com/extreme/187746-by-2020-you-could-have-an-exascale-speed-of-light-optical-computer-on-your-desk

you look into conventional physics more, you can find many discrepancies with
its laws and many of its assumptions. It’s not a matter of devaluing science in
any way — just pinpointing the fact that everything in science, including its
laws, is a work in progress.

As to whether Moore’s Law will cease to exist, generally speaking, laws don’t
stop applying; scientists refurbish them so that they are more general. Moore’s
Law may undergo the same transformation. Linear or overly simplistic laws
rarely apply in a general sense because there are no straight lines anywhere in
nature, including its temporal models. Therefore, the most likely scenario is
that Moore’s Law will change into a more sigmoidal function in an attempt to
adhere to reality.

 Some advocate that Moore’s Law already no longer holds.
The chip industry has kept up the promise so far, but now it’s
lowering expectations. Intel has already increased the time
between its generations of CPUs, saying that in five years,
chip miniaturization will hit a wall. You can read this
interesting story on the MIT Technology Review at
https://www.technologyreview.com/s/601441/moores-law-is-

dead-now-what/ .
Moore’s Law has a direct effect on data. It begins with smarter
devices. The smarter the devices, the more diffusion (electronics
are everywhere in our day and age). The greater the diffusion, the
lower the price becomes, creating an endless loop that drove and
is driving the use of powerful computing machines and small
sensors everywhere. With large amounts of computer memory
available and larger storage disks for data, the consequences are
an expansion of the availability of data, such as websites,
transaction records, a host of various measurements, digital
images, and other sorts of data flooding from everywhere.

Finding data everywhere
Scientists began fighting against impressive amounts of data for
years before anyone coined the term big data. At this point, the
Internet didn’t produce the vast sums for data that it does today.

https://www.technologyreview.com/s/601441/moores-law-is-dead-now-what/

It’s useful to remember that big data is not just simply a fad
created by software and hardware vendors but has a basis in
many of the following fields:

Astronomy: Consider the data received from spacecraft on a
mission (such as Voyager or Galileo) and all the data received
from radio telescopes, which are specialized antennas used to
receive radio waves from astronomical bodies. A common
example is the Search for Extraterrestrial Intelligence (SETI)
project (http://www.seti.org/), which looks for extraterrestrial
signals by observing radio frequencies arriving from space. The
amount of data received and the computer power used to
analyze a portion of the sky for a single hour is impressive (
http://www.setileague.org/askdr/howmuch.htm). If aliens are
out there, it’s very hard to spot them. (The movie Contact
https://www.amazon.com/exec/obidos/ASIN/B002GHHHKQ/datacser

vip0f-20/ explores what could happen should humans actually
intercept a signal.)
Meteorology: Think about trying to predict weather for the near
term given the large number of required measures, such as
temperature, atmospheric pressure, humidity, winds, and
precipitation at different times, locations, and altitudes. Weather
forecasting is really one of the first problems in big data and
quite a relevant one. According to Weather Analytics, a
company that provides climate data, more than 33 percent of
Worldwide Gross Domestic Product (GDP) is determined by
how weather conditions affect agriculture, fishing, tourism, and
transportation, just to name a few. Dating back to the 1950s, the
first supercomputers of the time were used to crunch as much
data as possible because, in meteorology, the more data, the
more accurate the forecast. That’s the reason everyone is
amassing more storage and processing capacity, as you can
read in this story regarding the Korean Meteorological
Association https://www.wired.com/insights/2013/02/how-big-
data-can-boost-weather-forecasting/ for weather forecasting
and studying climate change.

http://www.seti.org/
http://www.setileague.org/askdr/howmuch.htm
https://www.amazon.com/exec/obidos/ASIN/B002GHHHKQ/datacservip0f-20/
https://www.wired.com/insights/2013/02/how-big-data-can-boost-weather-forecasting/

Physics: Consider the large amounts of data produced by
experiments using particle accelerators in an attempt to
determine the structure of matter, space, and time. For example,
the Large Hadron Collider (https://home.cern/topics/large-
hadron-collider), the largest particle accelerator ever created,
produces 15PB (petabytes) of data every year as a result of
particle collisions (http://home.web.cern.ch/about/computing).
Genomics: Sequencing a single DNA strand, which means
determining the precise order of the many combinations of the
four bases — adenine, guanine, cytosine, and thymine — that
constitute the structure of the molecule, requires quite a lot of
data. For instance, a single chromosome, a structure containing
the DNA in the cell, may require from 50MB to 300MB. A human
being has 46 chromosomes, and the DNA data for just one
person consumes an entire DVD. Just imagine the massive
storage required to document the DNA data of a large number
of people or to sequence other life forms on earth (
https://www.wired.com/2013/10/big-data-biology/).
Oceanography: Because of the many sensors placed in the
oceans to measure temperature, currents, and, using
hydrophones, even sounds for acoustic monitoring for scientific
purposes (discovering about fish, whales, and plankton) and
military defense purposes (finding sneaky submarines from
other countries). You can have a sneak peek at this old
surveillance problem, which is turning more complex and digital,
by reading this article:
http://www.theatlantic.com/technology/archive/2014/08/liste

ning-in-the-navy-is-tracking-ocean-sounds-collected-by-

scientists/378630/ .
Satellites: Recording images from the entire globe and sending
them back to earth in order to monitor the Earth’s surface and its
atmosphere isn’t a new business (TIROS 1, the first satellite to
send back images and data, dates back to 1960). Over the
years, however, the world has launched more than 1,400 active
satellites that provide earth observation. The amount of data
arriving on earth is astonishing and serves both military
(surveillance) and civilian purposes, such as tracking economic

https://home.cern/topics/large-hadron-collider
http://home.web.cern.ch/about/computing
https://www.wired.com/2013/10/big-data-biology/
http://www.theatlantic.com/technology/archive/2014/08/listening-in-the-navy-is-tracking-ocean-sounds-collected-by-scientists/378630/

development, monitoring agriculture, and monitoring changes
and risks. A single European Space Agency’s satellite, Sentinel
1A, generates 5PB of data during two years of operation, as you
can read at https://spaceflightnow.com/2016/04/28/europes-
sentinel-satellites-generating-huge-big-data-archive/).

Accompanying these older data trends, new amounts of data are
now generated or carried about by the Internet, creating new
issues and requiring solutions in terms of both data storage and
algorithms for processing:

As reported by the National Security Agency (NSA), the amount
of information flowing through the Internet every day from all
over the world amounted to 1,826PB of data in 2013, and 1.6
percent of it consisted of e-mails and telephone calls. To assure
national security, the NSA must verify the content of at least
0.025 percent of all emails and phone calls (looking for key
words that could signal something like a terrorist plot). That still
amounts to 25PB per year, which equates to 37,500 CD-ROMs
every year of data stored and analyzed (and that’s growing).
You can read the full story at http://www.business-
standard.com/article/news-ani/nsa-claims-analysts-look-at-

only-0-00004-of-world-s-internet-traffic-for-surveillance-

113081100075_1.html .
The Internet of Things (IoT) is becoming a reality. You may have
heard the term many times in the last 15 years, but now the
growth of the stuff connected to the Internet is going to explode.
The idea is to put sensors and transmitters on everything and
use the data to both better control what happens in the world
and to make objects smarter. Transmitting devices are getting
tinier, cheaper and less power demanding; some are already so
small that they can be put everywhere. (Just look at the ant-
sized radio developed by Stanford engineers at
http://news.stanford.edu/news/2014/september/ant-radio-

arbabian-090914.html .) Experts estimate that by 2020, there will
be six times as many connected things on earth as there will be
people, but many research companies and think tanks are

https://spaceflightnow.com/2016/04/28/europes-sentinel-satellites-generating-huge-big-data-archive/
http://www.business-standard.com/article/news-ani/nsa-claims-analysts-look-at-only-0-00004-of-world-s-internet-traffic-for-surveillance-113081100075_1.html
http://news.stanford.edu/news/2014/september/ant-radio-arbabian-090914.html

already revisiting those figures (
http://www.gartner.com/newsroom/id/3165317).

Getting algorithms into business
The human race is now at an incredible intersection of
unprecedented volumes of data, generated by increasingly
smaller and powerful hardware, and analyzed by algorithms that
this same process helped develop. It’s not simply a matter of
volume, which by itself is a difficult challenge. As formalized by
the research company Gartner in 2001 and then reprised and
expanded by other companies, such as IBM, big data can be
summarized by four V s representing its key characteristics (you
can read more on this topic at
http://www.ibmbigdatahub.com/infographic/four-vs-big-data):

Volume: The amount of data
Velocity: The speed of data generation
Variety: The number and types of data sources
Veracity: The quality and authoritative voice of the data
(quantifying errors, bad data, and noise mixed with signals), a
measure of the uncertainty of the data

 Each big data characteristic offers a challenge and an
opportunity. For instance, volume considers the amount of
useful data. What one organization considers big data could
be small data for another one. The inability to process the
data on a single machine doesn’t make the data big. What
differentiates big data from the business-as-usual data is that
it forces an organization to revise its prevalent methods and
solutions, and pushes present technologies and algorithms to
look ahead.

Variety enables the use of big data to challenge the scientific
method, as explained by this milestone and much discussed
article written by Chris Anderson, Wired ’s editor-in-chief at the

http://www.gartner.com/newsroom/id/3165317
http://www.ibmbigdatahub.com/infographic/four-vs-big-data

time, on how large amounts of data can help scientific discoveries
outside the scientific method: https://www.wired.com/2008/06/pb-
theory/ . The author relies on the example of Google in the
advertising and translation business sectors, where the company
could achieve prominence without using specific models or
theories, but by applying algorithms to learn from data. As in
advertising, science (physics, biology) data can support
innovation that allows scientists to approach problems without
hypotheses but by considering the variations found in large
amounts of data and by discovery algorithms.
The veracity characteristic helps the democratization of data itself.
In the past, organizations hoarded data because it was precious
and difficult to obtain. At this point, various sources create data in
such growing amounts that hoarding it is meaningless (90 percent
of the world’s data has been created in the last two years), so
there is no reason to limit access. Data is turning into such a
commodity that there are many open data programs going all
around the world. (The United States has a long tradition of open
access; the first open data programs date back to the 1970s when
the National Oceanic and Atmospheric Administration, NOAA,
started releasing weather data freely to the public.) However,
because data has become a commodity, the uncertainty of that
data has become an issue. You no longer know whether the data
is completely true because you may not even know its source.

 Data has become so ubiquitous that its value is no longer
in the actual information (such as data stored in a firm’s
database). The value of data exists in how you use it. Here
algorithms come into play and change the game. A company
like Google feeds itself from freely available data, such as the
content of websites or the text found in publicly available
texts and books. Yet, the value Google extracts from the data
mostly derives from its algorithms. As an example, data value
resides in the PageRank algorithm (illustrated in Chapter 11),
which is the very foundation of Google’s business. The value

https://www.wired.com/2008/06/pb-theory/

of algorithms is true for other companies as well. Amazon’s
recommendation engine contributes a significant part of the
company’s revenues. Many financial firms use algorithmic
trading and robo-advice, leveraging freely available stock
data and economic information for investments.

Streaming Flows of Data
When data flows in huge amounts, storing it all may be difficult or
even impossible. In fact, storing it all might not even be useful.
Here are some figures of just some of what you can expect to
happen within a single minute on the Internet:

150 million e-mails sent
350,000 new tweets sent on Twitter
2.4 million queries requested on Google
700,000 people logged in to their account on Facebook

Given such volumes, accumulating the data all day for
incremental analysis might not seem efficient. You simply store it
away somewhere and analyze it on the following or on a later day
(which is the widespread archival strategy that’s typical of
databases and data warehouses). However, useful data queries
tend to ask about the most recent data in the stream, and data
becomes less useful when it ages (in some sectors, such as
financial, a day can be a lot of time).
Moreover, you can expect even more data to arrive tomorrow (the
amount of data increases daily) and that makes it difficult, if not
impossible, to pull data from repositories as you push new data in.
Pulling old data from repositories as fresh data pours in is akin to
the punishment of Sisyphus. Sisyphus, as a Greek myth narrates,
received a terrible punishment from the god Zeus: Being forced to
eternally roll an immense boulder up on the top of a hill, only to
watch it roll back down each time (see
http://www.mythweb.com/encyc/entries/sisyphus.html for
additional details).

http://www.mythweb.com/encyc/entries/sisyphus.html

Sometimes, rendering things even more impossible to handle,
data can arrive so fast and in such large quantities that writing it to
disk is impossible: New information arrives faster than the time
required to write it to the hard disk. This is a problem typical of
particle experiments with particle accelerators such as the Large
Hadron Collider, requiring scientists to decide what data to keep (
http://home.cern/about/computing/processing-what-record). Of
course, you may queue data for some time, but not for too long,
because the queue will quickly grow and become impossible to
maintain. For instance, if kept in memory, queue data will soon
lead to an out-of-memory error.
Because new data flows may render the previous processing on
old data obsolete, and procrastination is not a solution, people
have devised multiple strategies to deal instantaneously with
massive and changeable data amounts. People use three ways to
deal with large amounts of data:

Stored: Some data is stored because it may help answer
unclear questions later. This method relies on techniques to
store it immediately and analyze it later very fast, no matter how
massive it is.
Summarized: Some data is summarized because keeping it all
as it is makes no sense; only the important data is kept.
Consumed: The remaining data is consumed because its
usage is predetermined. Algorithms can instantly read, digest,
and turn the data into information. After that, the system forgets
the data forever.

The book deals with the first point in Chapter 13 , which is about
distributing data among multiple computers and understanding the
algorithms used to deal with it (a divide-and-conquer strategy).
The following sections address the second and third points,
applying them to data that streams in systems.

http://home.cern/about/computing/processing-what-record

 When talking of massive data arriving into a computer
system, you will often hear it compared to water: streaming
data, data streams, data fire hose.

You discover how data streams is like consuming tap water:
Opening the tap lets you store the water in cups or drinking
bottles, or you can use it for cooking, scrubbing food, cleaning
plates, or washing hands. In any case, most or all of the water is
gone, yet it proves very useful and indeed vital.

Analyzing streams with the right
recipe
Streaming data needs streaming algorithms, and the key thing to
know about streaming algorithms is that, apart a few measures
that it can compute exactly, a streaming algorithm necessarily
provides approximate results. The algorithm output is almost
correct, guessing not the precisely right answer, but close to it.
When dealing with streams, you clearly have to concentrate only
on the measures of interest and leave out many details. You could
be interested in a statistical measurement, such as mean,
minimum, or maximum. Moreover, you could want to count
elements in the stream or distinguish old information from new.
There are many algorithms to use, depending on the problem, yet
the recipes always use the same ingredients. The trick of cooking
the perfect stream is to use one or all of these algorithmic tools as
ingredients:

Sampling: Reduce your stream to a more manageable data
size; represent the entire stream or the most recent
observations using a shifting data window.
Hashing: Reduce infinite stream variety to a limited set of
simple integer numbers (as seen in the “Relying on Hashing ”
section of Chapter 7).

Sketching: Create a short summary of the measure you need,
removing the less useful details. This approach lets you
leverage a simple working storage, which can be your
computer's main memory or its hard disk.

Another characteristic to keep in mind about algorithms operating
on streams is their simplicity and low computational complexity.
Data streams can be quite fast. Algorithms that require too many
calculations can miss essential data, which means that the data is
gone forever. When you view the situation in this light, you can
appreciate how hash functions prove useful because they’re
prompt in transforming inputs into something easier to handle and
search because for both operations, complexity is O(1). You can
also appreciate the sketching and sampling techniques, which
bring about the idea of lossy compression (more on compression
in Chapter 14). Lossy compression enables you to represent
something complex by using a simpler form. You lose some detail
but save a great deal of computer time and storage.
Sampling means drawing a limited set of examples from your
stream and treating them as if they represented the entire stream.
It is a well-known tool in statistics through which you can make
inferences on a larger context (technically called the universe or
the population) by using a small part of it.

Reserving the right data
Statistics was born in a time when obtaining a census was
impossible. A census is a systematic investigation on a
population, counting it, and acquiring useful data from it. The
government asks all the people in a country about where they live,
their family, their daily life, and their work. The census has its
origins in ancient times. In the Bible, a census occurs in the book
of Numbers; the Israelite population is counted after the exodus
from Egypt. For tax purposes, the ancient Romans periodically
held a census to count the population of their large empire.
Historical documents provide accounts of similar census activities
in ancient Egypt, Greece, India, and China.

Statistics, in particular the branch of statistics called inferential
statistics, can achieve the same outcome as a census, with an
acceptable margin of error, by interrogating a smaller number of
individuals (called a sample). Thus, by querying a few people,
pollsters can determine the general opinion of a larger population
on a variety of issues, such as who will win an election. In the
United States, for instance, the statistician Nate Silver made news
by predicting the winner of the 2012 presidential election in all 50
states, using data from samples (
https://www.cnet.com/news/obamas-win-a-big-vindication-for-

nate-silver-king-of-the-quants/).
Clearly, holding a census implies huge costs (the larger the
population, the greater the costs) and requires a lot of
organization (which is why censuses are infrequent), whereas a
statistical sample is faster and cheaper. Reduced costs and lower
organizational requirements also make statistics ideal for big data
streaming: Users of big data streaming don’t need every scrap of
information and they can summarize the data’s complexity.
However, there’s a problem with using statistical samples. At the
core of statistics is sampling, and sampling requires randomly
picking a few examples from the pool of the entire population. The
key element of the recipe is that every element from the
population has exactly the same probability of being part of the
sample. If a population consists of a million people and your
sample size is one, each person’s probability of being part of the
sample is one out of a million. In mathematical terms, if you
represent the population using the variable N and the sample size
is n, the probability of being part of a sample is n/N, as shown in
Figure 12-2 . The represented sample is a simple random sample.
(Other sample types have greater complexity; this is the simplest
sample type and all the others build upon it.)

https://www.cnet.com/news/obamas-win-a-big-vindication-for-nate-silver-king-of-the-quants/

FIGURE 12-2: How sampling from an urn works.

Using a simple random sample is just like playing the lottery, but
you need to have all the numbers inside an urn in order to extract
a few to represent the whole. You can’t easily put data streams
into a repository from which you can extract a sample; instead,
you have to extract your sample on the fly. What you really need
is another sample type named reservoir sampling. Just as a
reservoir retains water for later use, yet its water isn’t still because
some enters and some leaves, so this algorithm works by
randomly choosing elements to keep as samples until other
elements arrive to replace them.
The reservoir sampling algorithm is more sophisticated than
another algorithmic strategy, called windowing, in which you
create a queue and let new elements enter the queue (see Figure
12-3). Older elements leave the queue based on a trigger. This
method applies when you want reports from the stream at exact
time intervals. For instance, you may want to know how many
pages users request from an Internet server each minute. Using
windowing, you start queuing page requests a minute of time,

count the elements in the queue, report the number, discard the
content of the queue, and start queuing again.
Another motivation for using windowing is to have a fixed amount
of the most recent data. In that case, every time you insert an
element into the queue, the oldest element leaves. A queue is a
First In, First Out (FIFO) structure discussed in Chapter 6 .

image
FIGURE 12-3: An example of windowing a stream of DNA data.

Windowing looks at samples using a sliding window — it shows
the elements under the window, which represent a certain time
slice or a certain segment of the stream. Reservoir sampling
represents the entire stream scope instead by offering a
manageable amount of data, which is a statistical sample of the
stream.
Here is how reservoir sample works: Given a stream of data,
containing many elements, you initialize the reservoir sample with
elements taken from the stream until the sample is complete. For
instance, if the sample contains 1,000 elements, a number that
usually fits in the computer's internal memory, you start by picking
the first 1,000 stream elements. The number of elements you
want in the sample is k, and k implies a sample that fits into the
computer’s memory. At the point when you reserve the first k
stream elements, the algorithm starts making its selections:

1. From the beginning of the stream, the algorithm
counts every new element that arrives. It tracks
the counting using the variable named as n.
When the algorithm gets into action, the value of
n is equivalent to k.

2. Now, new elements arrive, and they increment
the value of n. A new element arriving from the
stream has a probability of being inserted into the

reservoir sample of k/n and probability of not
being inserted equal to (1 – k/n).

3. The probability is verified for each new element
arriving. It’s like a lottery: If the probability is
verified, the new element is inserted. On the other
hand, if it isn’t inserted, the new element is
discarded. If it’s inserted, the algorithm discards
an old element in the sample according to some
rule (the easiest being to pick an old element at
random) and replaces it with the new element.

The following code shows a simple example in Python so that you
can see this algorithm in action. The example relies on a
sequence of alphabet letters (pretend that they are a data stream)
and creates a sample of five elements. (You can find this code in
the A4D; 12; Managing Big Data.ipynb file on the Dummies site
as part of the downloadable code; see the Introduction for details.)

import string

datastream = list(string.ascii_uppercase) + list(

string.ascii_lowercase)

print(datastream)

['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L',

'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',

'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',

'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v',

'w', 'x', 'y', 'z']

Apart from strings, the example uses functions from the random
package to create a seed (for stable and replicable solutions) and,
drawing a random integer number, it checks whether it needs to
change an element in the reservoir. Apart from the seed value,
you can experiment with modifying the sample size or even
feeding the algorithm a different stream (it should be in a Python
list for the example to work correctly).

from random import seed, randint

seed(9) # change this value for different results

sample_size = 5

sample = []

for index, element in enumerate(datastream):

Until the reservoir is filled, we add elements

if index < sample_size:

sample.append(element)

else:

Having filled the reservoir, we test a

random replacement based on the elements

seen in the data stream

drawn = randint(0, index)

If the drawn number is less or equal the

sample size, we replace a previous

element with the one arriving from the

stream

if drawn < sample_size:

sample[drawn] = element

print (sample)

['y', 'e', 'v', 'F', 'i']

This procedure assures you that, at any time, your reservoir
sample is a good sample representing the overall data stream. In
this implementation, the variable index plays the role of n and the
variable sample_size acts as k. Note two particular aspects of this
algorithm:

As the variable index grows, because the stream floods with
data, the probability of being part of the sample decreases.
Consequently, at the beginning of the stream, many elements
enter and leave the sample, but the rate of change decreases
as the stream continues to flow.
If you check the probability at which each element present in the
sample enters, and you average them all, the average will
approximate the probability of an element of a population’s
being picked into a sample, which is k/n.

Sketching an Answer from
Stream Data

Sampling is an excellent strategy for dealing with streams but it
doesn’t answer all the questions you may have from your data
stream. For instance, a sample can’t tell you when you’ve already
seen a stream element because the sample doesn’t contain all
the stream information. The same holds true for problems such as
counting the distinct number of elements in a stream or computing
element frequency.
To achieve such results, you need hash functions (as seen in
Chapter 7) and sketches, which are simple and approximate data
summaries. The following sections start with hashes, and you
discover how to be correct in finding when an arriving stream
element has appeared before, even if your stream is infinite and
you cannot keep exact memory of everything that flowed before.

Filtering stream elements by heart
At the heart of many streaming algorithms are Bloom filters.
Created almost 50 years ago by Burton H. Bloom, at a time when
computer science was still quite young, the original intent of this
algorithm's creator was to trade space (memory) and/or time
(complexity) against what he called allowable errors. His original
paper is entitled Space/Time Trade-offs in Hash Coding with
Allowable Errors (see:
http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.20.2080&rank=2 for details).
You may wonder about the space and time that Bloom considers
motivators for his algorithm. Imagine that you need to determine
whether an element has already appeared in a stream using
some previously discussed data structure. Finding something in a
stream implies recording and searching are fast, thus a hash table
seems an ideal choice. Hash tables, as discussed in Chapter 7 ,
simply require adding the elements that you want to record and
storing them. Recovering an element from a hash table is fast
because the hash table uses easily manipulated values to
represent the element, rather than the element itself (which could
be quite complex). Yet, storing both elements and an index to
those elements has limitations. If a hash table faces more
elements than it can handle, such as the elements in a continuous
and potentially infinite stream, you’ll end up incurring memory
problems at some point.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.2080&rank=2

 An essential consideration for Bloom filters is that false
positives can occur, but false negatives can’t. For example, a
data stream might contain real-time monitoring data for a
power plant. When using a Bloom filter, the analysis of the
data stream would show that expected readings are probably
part of the set of allowed readings, with some errors allowed.
However, when an error occurs in the system, the same
analysis shows that the readings aren’t part of the set of
allowed readings. The false positives are unlikely to cause
problems, but the absence of false negatives means that
everyone remains safe. Because of the potential for false
positives, filters such as the Bloom filter are probabilistic data
structures — they don’t provide a certain answer but a
probable one.

 Hashes, the individual entries in a hash table, are fast
because they act like the index of a book. You use a hash
function to produce the hash; the input is an element
containing complex data, and the output is a simple number
that acts as an index to that element. A hash function is
deterministic because it produces the same number every
time you feed it a specific data input. You use the hash to
locate the complex information you need. Bloom filters are
helpful because they are a frugal way to record traces of
many elements without having to store them away as a hash
table does. They work in a simple way and use the following
as main ingredients:

A bit vector: A list of bit elements, where each bit in the
element can have a value of 0 or 1. The list is a long number of
bits called m. The greater m is, the better, though there are
ways of optimally defining its size.

A series of hash functions: Each hash function represents a
different value. The hash functions can quickly crunch data and
produce uniformly distributed results, which are results equally
ranging from the minimum to the maximum output values of the
hash.

Adding elements to Bloom filters
Generally, you create Bloom filters of a fixed size (recently
developed versions allow you to resize the filter). You operate
them by adding new elements to the filter and looking them up
when already present. It’s not possible to remove an element from
the filter after adding it (the filter has an indelible memory). When
adding an element to a bit vector, the bit vector has some bits set
to 1, as shown in Figure 12-4 . In this case, the Bloom filter adds
X to the bit vector.

image
FIGURE 12-4: Adding a single element to a bit vector.

You can add as many elements as is necessary to the bit vector.
For example, Figure 12-5 shows what happens when adding
another element, Y, to the bit vector. Note that bit 7 is the same for
both X and Y. Consequently, bit 7 represents a collision between
X and Y. These collisions are the source of the potential false
positives; because of them, the algorithm could say that an
element is already added to the bit vector when it isn’t. Using a
larger bit vector makes collisions less likely and improves the
performance of the Bloom filter, but does so at the cost of both
space and time.

image
FIGURE 12-5: Adding a second element can cause collisions.

Searching a Bloom filter for an element
Searching a Bloom filter lets you determine whether a particular
element appears in the bit vector. During the search process, the
algorithm looks for the presence of a 0 in the bit vector. For

example, the previous section added elements X and Y to the bit
vector. In searching for element Z, the algorithm finds a 0 in the
second bit, as shown in Figure 12-6 . The presence of a 0 means
that Z isn’t part of the bit vector.

image
FIGURE 12-6: Locating an element and determining that it exists means searching for 0s in
the bit vector.

Demonstrating the Bloom filter
This example uses Python to demonstrate a Bloom filter and
shows the result with a graphical visualization. Say that you’re
using a crawler, which is specialized software that journeys the
web to check whether something has changed in the monitored
websites (which may imply copying part of the website’s data, an
activity known as scraping). The example uses a short bit vector
and three hash functions, which isn’t the best setting for handling
a large number of elements (the bit vector will get filled quickly),
but enough for a working example.

hash_functions = 3

bit_vector_length = 10

bit_vector = [0] * bit_vector_length

from hashlib import md5, sha1

def hash_f(element, i, length):

""" This is a magic function """

h1 = int(md5(element.encode('ascii')).hexdigest(),16)

h2 = int(sha1(element.encode('ascii')).hexdigest(),16)

return (h1 + i*h2) % length

def insert_filter(website):

 result = list()

for hash_number in range(hash_functions):

position = hash_f(website, hash_number,

bit_vector_length)

result.append(position)

bit_vector[position] = 1

print ('Inserted in positions: %s' % result)

def check_filter(website):

result = list()

for hash_number in range(hash_functions):

 position = hash_f(website, hash_number,

bit_vector_length)

result.append((position,bit_vector[position]))

print ('Bytes in positions: %s' % result)

The code begins by creating a bit vector and some functions that
can do the following:

Generate multiple hash functions (using the double hash trick
mentioned in Chapter 7) based on the md5 and sha1 hashing
algorithms
Insert an object into the bit vector
Check whether the bytes relative to an object in the bit vector
are turned on

All these elements together constitute a Bloom filter (though the
bit vector is the key part of it). This example has the crawler first
visiting the website wikipedia.org to take some information from a
few pages:

insert_filter('wikipedia.org')

print (bit_vector)

Inserted in positions: [0, 8, 6]

[1, 0, 0, 1, 0, 0, 1, 1, 1, 0]

That activity turns on the bits in positions 0, 6, and 8 of the bit
vector. The example now crawls the youtube.com website (which
has some new videos of kittens) and so it inserts the information
of the visit into the Bloom filter:

insert_filter('youtube.com')

print (bit_vector)

Inserted in positions: [3, 0, 7]

[1, 0, 0, 1, 0, 0, 1, 1, 1, 0]

Here the Bloom filter is activated on positions 0, 3, and 7. Given
the short length of the bit vector, there is already a collision on
position 0, but positions 3 and 7 are completely new. At this point,
because the algorithm can’t remember what it visited before (but
visited sites can be verified using the Bloom filter), the example
verifies that it hasn’t visited yahoo.com in order to avoid redoing
things, as shown in Figure 12-7 :

check_filter('yahoo.com')

Bytes in positions: [(7, 1), (5, 0), (3, 1)]

image
FIGURE 12-7: Testing membership of a website using a Bloom filter.

As graphically represented, in this case you can be sure that the
example never visited yahoo.com because the Bloom filter reports
at least one position, position 5, whose bit was never set on.

 A crawler is often concerned with getting new content from
websites and not copying data that it has already recorded
and transmitted. Instead of hashing the domain or the
address of a single page, you can directly populate a Bloom
filter using part of the website content, and you can use it to
check the same website for changes later.

There is a simple and straightforward way of decreasing the
probability of having a false positive. You just increase the size of
the bit vector that is the core of a Bloom filter. More addresses
equate fewer chances for a collision by the hash functions’
results. Ideally, the size m of the bit vector can be calculated
estimating n, the number of distinct objects that you expect to add
by keeping m much larger than n. The ideal number k of hash
functions to use to minimize collisions can then be estimated
using the following formula (ln is the natural logarithm):

k = (m/n)*ln(2)

After you have m, n, and k defined, this second formula helps you
estimate the probability of a collision (a false positive rate) using a
Bloom filter:

false positive rate = (1-exp(-kn/m))^k

If you can’t determine n due to the variety of the data in the
stream, you have to change m, the bit vector size (which equates
to memory space), or k, the number of hash functions (which
equates to time), to adjust the false positive rate. The trade-off
reflects the relationships that Bloom considers in the original
paper between space, time, and probability of an error.

Finding the number of distinct
elements
Even though a Bloom filter can track objects arriving from a
stream, it can’t tell how many objects are there. A bit vector filled
by ones can (depending on the number of hashes and the
probability of collision) hide the true number of objects being
hashed at the same address.
Knowing the distinct number of objects is useful in various
situations, such as when you want to know how many distinct
users have seen a certain website page or the number of distinct
search engine queries. Storing all the elements and finding the
duplicates among them can’t work with millions of elements,
especially coming from a stream. When you want to know the
number of distinct objects in a stream, you still have to rely on a
hash function, but the approach involves taking a numeric sketch.
Sketching means taking an approximation, that is an inexact yet
not completely wrong value as an answer. Approximation is
acceptable because the real value is not too far from it. In this
smart algorithm, HyperLogLog, which is based on probability and
approximation, you observe the characteristics of numbers
generated from the stream. HyperLogLog derives from the studies
of computer scientists Nigel Martin and Philippe Flajolet. Flajolet
improved their initial algorithm, Flajolet–Martin (or the LogLog
algorithm), into the more robust HyperLogLog version, which
works like this:

1. A hash converts every element received from the
stream into a number.

2. The algorithm converts the number into binary,
the base 2 numeric standard that computers use.

3. The algorithm counts the number of initial zeros
in the binary number and tracks of the maximum
number it sees, which is n.

4. The algorithm estimates the number of distinct
elements passed in the stream using n. The
number of distinct elements is 2^n.

For instance, the first element in the string is the word dog. The
algorithm hashes it into an integer value and converts it to binary,
with a result of 01101010. Only one zero appears at the beginning
of the number, so the algorithm records it as the maximum
number of trailing zeros seen. The algorithm then sees the words
parrot and wolf, whose binary equivalents are 11101011 and
01101110, leaving n unchanged. However, when the word cat
passes, the output is 00101110, so n becomes 2. To estimate the
number of distinct elements, the algorithm computes 2^n, that is,
2^2=4. Figure 12-8 shows this process.

image
FIGURE 12-8: Counting only leading zeros.

The trick of the algorithm is that if your hash is producing random
results, equally distributed (as in a Bloom filter), by looking at the
binary representation, you can calculate the probability that a
sequence of zeros appeared. Because the probability of a single
binary number to be 0 is one in two, for calculating the probability
of sequences of zeros, you just multiply that 1/2 probability as
many times as the length of the sequence of zeros:

50 percent (1/2) probability for numbers starting with 0

25 percent (1/2 * 1/2) probability for numbers starting with 00
12.5 percent (1/2 * 1/2 * 1/2) probability for numbers starting
with 000
(1/2)^k probability for numbers starting with k zeros (you use
powers for faster calculations of many multiplications of the
same number)

 The fewer the numbers that HyperLogLog sees, the
greater the imprecision. Accuracy increases when you use
the HyperLogLog calculation many times using different hash
functions and average together the answers from each
calculation, but hashing many times takes time, and streams
are fast. As an alternative, you can use the same hash but
divide the stream into groups (such as by separating the
elements into groups as they arrive based on their arrival
order) and for each group, you keep track of the maximum
number of trailing zeros. In the end, you compute the distinct
element estimate for each group and compute the arithmetic
average of all the estimates. This approach is stochastic
averaging and provides more precise estimates than applying
the algorithm to the entire stream.

Learning to count objects in a
stream
This last algorithm in the chapter also leverages hash functions
and approximate sketches. It does so after filtering duplicated
objects and counting distinct elements that have appeared in the
data stream. Learning to count objects in a stream can help you
find the most frequent items or rank usual and unusual events.
You use this technique to solve problems like finding the most
frequent queries in a search engine, the bestselling items from an
online retailer, the highly popular pages in a website, or the most
volatile stocks (by counting the times a stock is sold and bought).

You apply the solution to this problem, Count-Min Sketch , to a
data stream. It requires just one data pass and stores as little
information as possible. This algorithm is applied in many real-
world situations (such as analyzing network traffic or managing
distributed data flows). The recipe requires using a bunch of hash
functions, each one associated with a bit vector, in a way that
resembles a Bloom filter, as shown in Figure 12-9 :

1. Initialize all the bit vectors to zeroes in all
positions.

2. Apply the hash function for each bit vector when
receiving an object from a stream. Use the
resulting numeric address to increment the value
at that position.

3. Apply the hash function to an object and retrieve
the value at the associated position when asked
to estimate the frequency of an object. Of all the
values received from the bit vectors, you take the
smallest as the frequency of the stream.

image
FIGURE 12-9: How values are updated in a Count-Min Sketch.

 Because collisions are always possible when using a hash
function, especially if the associated bit vector has few slots,
having multiple bit vectors at hand assures you that at least
one of them keeps the correct value. The value of choice
should be the smallest because it isn’t mixed with false
positive counts due to collisions.

Chapter 13
Parallelizing Operations

IN THIS CHAPTER
 Understanding why simply bigger, larger, and faster isn’t

always the right solution
 Looking inside the storage and computational

approaches of Internet companies
 Figuring out how using clusters of commodity hardware

reduces costs
 Reducing complex algorithms into separable parallel

operations by MapReduce

Managing immense amounts of data using streaming or sampling
strategies has clear advantages (as discussed in Chapter 12)
when you have to deal with massive data processing. Using
streaming and sampling algorithms helps you obtain a result even
when your computational power is limited (for instance, when
using your own computer). However, some costs are associated
with these approaches:

Streaming: Handles infinite amounts of data. Yet your
algorithms perform at low speed because they process
individual pieces of data and the stream speed rules the pace.
Sampling: Applies any algorithms on any machine. Yet the
obtained result is imprecise because you have only a probability,
not a certainty, of getting the right answer. Most often, you just
get something plausible.

Some problems require that you handle great amounts of data in
a both precise and timely fashion. Examples abound in the digital
world, such as making a keyword query among billions of

websites or processing multiple pieces of information (searching
for an image in a video repository or a match in multiple DNA
sequences). Doing such calculations sequentially would take a
lifetime. The solution is using distributed computing, which means
interconnecting many computers in a network and using their
computational capabilities together, combined with algorithms
running on them in an independent, parallel manner.

Managing Immense Amounts of
Data

The use of the Internet to perform a wide range of tasks and the
increase in popularity of its most successful applications, such as
search engines or social networking, has required professionals in
many fields to rethink how to apply algorithms and software
solutions to cope with a deluge of data. Searching for topics and
connecting people drive this revolution.
Just imagine the progression, in terms of available websites and
pages, that has occurred in the last 15 years. Even if you use a
smart algorithm, such as PageRank (discussed and explored in
Chapter 11), coping with ever larger and changeable data is still
hard. The same goes for social networking services offered by
companies such as Facebook, Twitter, Pinterest, LinkedIn, and so
on. As the number of users increases and their reciprocal
relationships unfold, the underlying graph connecting them turns
massive in scale. With large scale, handling nodes and links to
find groups and connections becomes incredibly difficult. (Part 3
of the book discusses graphs in detail.)
In addition to communication-based data, consider online retailers
that provide virtual warehouses of thousands and thousands of
products and services (books, films, games, and so on). Even
though you understand why you bought something, the retailer
sees the items in your basket as small pieces of a purchase
decision-making puzzle to solve to understand buying

preferences. Solving the puzzle enables a retailer to suggest and
sell alternative or supplementary products.

Understanding the parallel paradigm
CPU makers found a simple solution when challenged to stuff
more computing power into microprocessors (as forecasted and
partially prescribed by Moore’s law, discussed in Chapter 12).
Yet, bigger, larger, and faster isn’t always the right solution. When
they found that power absorption and heat generation limited the
addition of more CPUs to a single chip, engineers compromised
by creating multicore processing units, which are CPUs made by
stacking two or more CPUs together. The use of multicore
technology gave raise to parallel computing to a larger audience.
Parallel computing has existed for a long time, but it mainly
appeared in high-performance computers, such as the Cray
super-computers created by Seymour Cray at Control Data
Corporation (CDC) starting in the 1960s. Simply stated, the
associative and commutative properties in math express the core
idea of parallelism. In a math addition, for instance, you can group
part of the sums together or you can add the parts in a different
order than the one shown by the formulas:

Associative property

2 + (3 + 4) = (2 + 3) + 4

Commutative property

2 + 3 + 4 = 4 + 3 + 2

The same concepts apply to computing algorithms, regardless of
whether you have a series of operations or a mathematical
function. Most often, you can reduce the algorithm to a simpler
form when you apply associative and commutative properties, as
shown in Figure 13-1 . Then you can split the parts and have

different units perform atomic operations separately, summing the
result at the end.

image
FIGURE 13-1: Associative and commutative properties allow parallelism.

In this example, two CPUs split a simple function with three inputs
(x, y, and z) by leveraging both associative and commutative
properties. The equation solution requires sharing common data
(CPU1 needs x and y values; CPU2 needs y and z values
instead), but the processing proceeds in parallel until the two
CPUs emit their results, which are summed to obtain the answer.
Parallelism allows processing of large numbers of calculations
simultaneously. The more processes, the higher the speed of
computation execution, although the time spent is not linearly
proportional to the number of parallel executors. (It is not
completely true that two CPUs imply double speed, three CPUs
imply three times the speed, and so on.) In fact, you can’t expect
the associative or commutative properties to work on every part of
your algorithm or computer instructions. The algorithm simply
can’t make some parts parallel as stated by Amdahl's law, which
helps determine the parallelism speed advantage of your
computation (for details, see
http://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.h

tml). In addition, other aspects can dampen the positive effect of
parallelism:

Overhead: You can’t sum the results in parallel.
Housekeeping: The underlying conversion from a human-
readable language to machine language requires time. Keeping
the processors working together increases the conversion costs,
making it impossible to see a doubling effect from two
processors even if you can perform every part of the task in
parallel.
Asynchronous Outputs: Because parallel executors don’t
perform tasks at the same exact speed, the overall speed is

http://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html

bound to the slowest one. (As with a fleet, the speed of the fleet
is determined by the slowest boat.)

Even if not always as beneficial as expected, parallelism can
potentially address the problem of handling a massive number of
operations faster than using a single processor (if a massive
number of executors can process them in parallel). Yet,
parallelism can’t address the massive amounts of data behind the
computations without another solution: distributed computing on
distributed systems.

 When you buy a new computer, the seller likely tells you
about cores and threads. Cores are the CPUs that are
stacked inside the single CPU chip and that work in a parallel
fashion using multiprocessing. Because each core is
independent, the tasks occur simultaneously. Threads refer
instead to the capability of a single core to split its activity
between multiple processes, in an almost parallel way.
However, in this case, each thread takes its turn with the
processor, so the tasks don’t occur simultaneously. This is
called multithreading.

Distributing files and operations
Large graphs, huge amounts of text files, images, and videos, and
immense adjacency relation matrices call forth the parallel
approach. Fortunately, you no longer need a supercomputer to
deal with them, but can instead rely on parallelism by a bunch of
much less powerful computers. The fact that these large data
sources keep growing means that you need a different approach
than using a single computer specially designed to handle them.
The data grows so fast that when you finish designing and
producing a supercomputer for crunching the data, it may well no
longer be suitable because the data has already grown too large.
The solution starts with an online service such as Google,
Microsoft Azure, or Amazon Web Services (AWS). The first step

to solve the problem is deciding where to put the data. The
second step is to decide how to compute efficiently without
moving the data around too much (because large data transfers
take a lot of time to transit from one computer to another over a
network or the Internet).
Most of these services work in a similar fashion. Engineers put
many existing technological ideas together and create a
Distributed File System (DFS) of some sort. When using a DFS,
data isn’t stored in a single powerful computer with a giant hard
disk; instead, the DFS spreads it among multiple smaller
computers, similar to a personal computer. The engineers arrange
the computers into a cluster, a physical system of racks and cable
connections. Racks are the true backbone of the network, in
which multiple computers are stored next to each other. In a
single rack of the network, you may find a variable number of
computers, from eight to 64, each one connected to the other.
Each rack connects to other racks by means of a cable network,
created by interconnecting the racks not directly between
themselves, but to various layers of switches, which are
computer-networking devices able to efficiently handle and
manage the data exchange between racks, as shown in Figure
13-2 .

FIGURE 13-2: A schema representing a computing cluster.

You can find all this hardware at any computer store, yet it’s
exactly what makes the DFS infrastructure viable. Theoretically,
you could find a million or more computers interconnected in a
network. (You can read about the Google version of this setup at
http://www.datacenterknowledge.com/archives/2011/08/01/report

-google-uses-about-900000-servers/ .) The interesting point is
that these services increase computational power when needed
by adding more computers, not by creating new networks.
In this system, as data arrives, the DFS splits it into chunks (each
one up to 64MB in size). The DFS copies the chunks into multiple
duplicates and then distributes each copy to a computer part on
the network. The action of splitting data into chunks, duplicating it,
and distributing it is quite fast, no matter how the data is
structured (tidy and ordered information or messy ensemble). The
only requirement pertains to the recording of the chunks’ address
in the DFS, which is achieved by an index for each file (itself
replicated and distributed), called the master node. The DFS
execution speed is due to how the DFS handles the data.
Contrary to previous storage techniques (such as data
warehouses), a DFS doesn’t require any particular sorting,

http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/

ordering, or cleaning operation on the data itself; on the contrary,
it does the following:

Handles data of any size because the data is split into
manageable chunks
Stores new data by piling it next to the old data; a DFS never
updates any previously received data
Replicates data redundantly so that you don’t need to back it up;
duplication is in itself a backup

 Computers fail in a number of ways: hard disk, CPU,
power system, or some other component. Statistically, you
can expect a computer serving in a network to work for about
1,000 days (about three years). Consequently, a service with
a million computers, can expect 1,000 of its computers to fail
every day. That is why the DFS spreads three or more copies
of your data inside multiple computers in the network.
Replication reduces the likelihood of losing data because of a
failure. The probability of having a failure that involves only
computers where the same chunk of data is stored is about
one out of a billion (assuming that the DFS replicates the
data three times), making this a tiny, acceptable risk.

Employing the MapReduce solution
Even though distributed systems store data quickly, retrieving
data is much slower, especially when performing analysis and
applying algorithms. The same sort of problem occurs when you
break a jigsaw puzzle into pieces and scatter the pieces around
(easy). You must then pick the pieces up and recreate the original
image (hard and time consuming). When working with data in a
DFS:

1. Get the master node and read it to determine the
location of the file parts.

2. Dispatch a fetch order to the computers in the
network to obtain the previously stored data
chunks.

3. Gather the data chunks stored on multiple
computers onto a single computer (if doing so is
possible; some files may be too large to store on
a single machine).

Obviously, this process can become complex, so web service
engineers have decided that it’s better not to recompose files
before processing them. A smarter solution is to leave them in
chunks on the source computer and let the hosting computer
process them. Only a reduce version, which is already almost
completely processed, would have to move across the network,
limiting the data transmission. MapReduce is the solution that
provides the means to process algorithms in parallel in a data-
distributed system. As an algorithm itself, MapReduce consists of
just two parts, map and reduce .

USING A PACKAGE SOLUTION FOR
MAPREDUCE

Even though the book demonstrates how to create a MapReduce solution from
scratch, you don’t need to reinvent the wheel every time you want to perform
this task. Packages such as MrJob (https://pythonhosted.org/mrjob/)
enable you to perform MapReduce tasks quickly and easily. In addition, by
using a package, you can make it easy to execute the task using cloud-based
resources, such as Amazon Web Services using Elastic MapReduce (EMR) (
https://aws.amazon.com/emr/) or with Hadoop (http://hadoop.apache.org/).
The point is that you do need to know how the algorithm works, which is the
point of this book, but having to write all the required code may be
unnecessary in the right situation.

Explaining map

https://pythonhosted.org/mrjob/
https://aws.amazon.com/emr/
http://hadoop.apache.org/

The first phase of the MapReduce algorithm is the map part, a
function found in many functional programming languages (a style
of programming that treats computing as a mathematical
function).  map is straightforward: You begin with a one-
dimensional array (which, in Python, could be a list) and a
function. By applying the function on each array element, you
obtain an identically shaped array whose values are transformed.
The following example contains a list of ten numbers that the
function transforms into their power equivalent:

L = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

m = list(map(lambda x: x**2, L))

 print(m)

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

The map function applies the Python lambda function (a lambda
function is a function defined on the fly) to transform each element
in the initial list into a resulting element. Figure 13-3 shows the
result of this mapping process.

image
FIGURE 13-3: Mapping a list of numbers by a square function.

Note that each list element transformation is independent of the
others. You can apply the function to the list elements in any
order. (However, you must store the result in the right position in
the final array.) The capability to process the list elements in any
order creates a scenario that is naturally parallelized without any
particular effort.

 Not all problems are naturally parallel, and some will never
be. However, sometimes you can rethink or redefine your
problem in order to achieve a set of computations that the
computer can deal with in a parallel way.

Explaining reduce
The second phase of the MapReduce algorithm is the reduce part
(there is also an intermediate step, Shuffle and Sort, explained
later but not important for now). When given a list, reduce applies
a function in a sequence that cumulates the results. Thus, when
using a summation function, reduce applies the summation to all
the input list elements. reduce takes the first two array elements
and combines them. Then it combines this partial result with the
next array element and so on until it completes the array.

 You can also supply a starting number. When you supply a
starting number, reduce starts by combining the starting
number with the first list element to obtain the first partial
result. The following example uses the result from the
mapping phase and reduces it using a summation function
(as displayed in Figure 13-4):

from functools import reduce

L = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

m = list(map(lambda x: x**2, L))

r = reduce(lambda x, y: x+y, m)

print(r)

285

image
FIGURE 13-4: Reducing a list of numbers to its sum.

 The reduce function operates on the input array as if it
were a data stream (as discussed in Chapter 12). It usually
works with one element at a time and tracks the intermediate
results.

Distributing operations
Between the map and reduce phases is an intermediate phase,
shuffling and sorting. As soon as a map task completes, the host
redirects the resulting tuples of key and value pairs to the right
computer on the network to apply the reduce phase. This is
typically done by grouping matching key pairs into a single list and
using a hash function on the key in a manner similar to Bloom
filters (see Chapter 12). The output is an address in the
computing cluster for transferring the lists.
On the other end of the transmission, the computer performing the
reduce phase starts receiving lists of tuples of one or multiple
keys. Multiple keys occur when a hash collision occurs, which
happens when different keys result in the same hashed value, so
they end up to the same computer. The computer performing the
reduce phase sorts them into lists containing the same key before
feeding each list into the reduce phase, as shown in Figure 13-5 .

FIGURE 13-5: An overview of the complete MapReduce computation.

As shown in the figure, MapReduce takes multiple inputs at each
computer in the computing cluster where they are stored, maps
the data, and transforms it into tuples of key and value pairs.
Arranged into lists, the host transmits these tuples to other
computers over the network, where the receiving computers
operate sort and reduce operations that lead to a result.

Working Out Algorithms for
MapReduce

Contrary to other examples in this book, you can think of
MapReduce as more of a style of computing or a Big Data
framework than an algorithm. As a framework, it enables you to
combine different distributed algorithms (parallel algorithms that
spread computations across different computers) and allow them
to work efficiently and successfully with large amounts of data.
You can find MapReduce algorithms in many applications, and
you can read about them at the Apache wiki regarding Hadoop,
detailing the company that uses it, how it is used, and on what
kind of computing cluster:

http://wiki.apache.org/hadoop/PoweredBy . Even though
possibilities are many, you most often find MapReduce used to
perform these tasks:

Text algorithms for splitting the text into elements (tokens),
creating indexes, and searching for relevant words and phrases
Graph creation and graph algorithms
Data mining and learning new algorithms from data (machine
learning)

One of the most common MapReduce algorithm uses is to
process text. The example in this section demonstrates how to
solve a simple task, counting certain words in a text passage
using a map and reduce approach, and leveraging multithreading
or multiprocessing (depending on the operating system installed
on your computer).

 The Python programming language is not the ideal
computer language for parallel operations. Technically,
because of synchronization and shared memory access
problems, the Python interpreter isn’t thread safe, which
means that it can experience errors when executing
applications using multiple processes or threads on multiple
cores. Consequently, Python limits multithreading to a single
thread (code is distributed but no performance increase
occurs) and multicore parallelism by multiple processes is
indeed tricky to achieve, especially on computers running on
Windows. You can learn more about the difference in threads
and processes by reading the Microsoft article at
https://msdn.microsoft.com/en-

us/library/windows/desktop/ms681917(v=vs.85).aspx .

Setting up a MapReduce simulation
This example processes text that is in the public domain, obtained
from the non-profit Project Gutenberg organization (

http://wiki.apache.org/hadoop/PoweredBy
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681917(v=vs.85).aspx

https://www.gutenberg.org/) site. The first text processed is the
novel War and Peace, by Leo Tolstoy (who is also known by other
names in other languages, such as Lev Tolstoj). The following
code loads the data into memory:

import urllib.request

url = '

http://gutenberg.readingroo.ms/2/6/0/2600/2600.txt

 '

response = urllib.request.urlopen(url)

data = response.read()

text = data.decode('utf-8')[627:]

print (text[:37])

WAR AND PEACE

By Leo Tolstoy/Tolstoi

Be patient! Loading the book takes time (just try reading it in as
short a time as the computer does). When complete, the code
displays the first few lines with the title. The code stores the data
in the text variable. Part of the process splits the text into words
and stores them in a list, as shown in the following code:

words = text.split()

print ('Number of words: %i' % len(words))

https://www.gutenberg.org/
http://gutenberg.readingroo.ms/2/6/0/2600/2600.txt

Number of words: 566218

The words variable now contains individual words from the book.
It’s time to import the necessary Python packages and the
functions for the example using the following code:

import os

if os.name == "nt":

#Safer multithreading on Windows

from multiprocessing.dummy import Pool

else:

#Multiprocessing on Linux,Mac

from multiprocessing import Pool

from multiprocessing import cpu_count

from functools import partial

Depending on your operating system, the example relies on
multiprocessing or multithreading. Windows uses multithreading,
which splits the task into multiple threads processed at the same
time by the same core. On Linux and Mac systems, the code
executes in parallel instead, and each operation is taken care of
by a different computer core.
The code that comes next counts words from a list that
corresponds to a set of keywords. After removing any
punctuation, the code compares words, and if it finds any match
with a keyword, the function returns a tuple consisting of a key,
the matched keyword, and a unit value, which is a count. This
output represents the core of the MapReduce map:

def remove_punctuation(text):

return ''.join([l for l in text if l not in ['.',

',', '!', '?', '"']])

def count_words(list_of_words, keywords):

results = list()

for word in list_of_words:

for keyword in keywords:

if keyword == remove_punctuation(

word.upper()):

results.append((keyword,1))

return results

The functions that follow partition the data. This approach is
similar to the way in which a distributed system partitions the data.
The code distributes the computation and gathers the results:

def Partition(data, size):

return [data[x:x+size] for x in range(0, len(data),

size)]

def Distribute(function, data, cores):

pool = Pool(cores)

results = pool.map(function, data)

pool.close()

return results

Finally, the following functions shuffle and order the data to
reduce the results. This step represents the last two phases of a
MapReduce job:

def Shuffle_Sort(L):

Shuffle

Mapping = dict()

for sublist in L:

for key_pair in sublist:

key, value = key_pair

if key in Mapping:

Mapping[key].append(key_pair)

else:

Mapping[key] = [key_pair]

return [Mapping[key] for key in Mapping]

def Reduce(Mapping):

return (Mapping[0][0], sum([value for (key, value

) in Mapping]))

Inquiring by mapping
The following code simulates a distributed environment using
multiple processor cores. It begins by requesting the number of
available cores from the operating system. The number of cores
you see will vary by the number of cores available in your
computer. Most modern computers provide four or eight cores.

n = cpu_count()

print ('You have %i cores available for MapReduce' % n)

You have 4 cores available for MapReduce

 If you’re running the code on Windows, for technical
reasons you work with a single core, so you won’t take
advantage of the total number of available cores. The
simulation still appears to work, but you won’t see any
increase in speed.

In order to start, the code first defines the map operation. It then
distributes the map function to threads, each of which processes a
partition of the initial data (the list containing the words from War
and Peace). The map operation finds the words peace, war (is
there more war or peace in War and Peace ?), Napoleon, and
Russia:

Map = partial(count_words,

keywords=['WAR', 'PEACE', 'RUSSIA',

'NAPOLEON'])

map_result = Distribute(Map,

Partition(

words,len(words)//n+1), n)

print ('map_result is a list made of %i elements' %

len(map_result))

print ('Preview of one element: %s]'% map_result[0][:5])

Map is a list made of 4 elements

Preview of one element: [('WAR', 1), ('PEACE', 1), ('WAR', 1),

('WAR', 1), ('RUSSIA', 1)]]

After a while, the code prints the results. In this case, the resulting
list contains four elements because the host system has four
cores (you may see greater or fewer elements, depending on the
number of cores on your machine). Each element in the list is

another list containing the results of the mapping on that part of
the word data. By previewing one of these lists, you can see that
it’s a sequence of coupled keys (depending on the keyword
found) and unit values. The keys aren’t in order; they appear in
the order in which the code generated them. Consequently, before
passing the lists to the reduce phase for summing the total results,
the code arranges the keys in order and sends them to the
appropriate core for reducing:

Shuffled = Shuffle_Sort(map_result)

print ('Shuffled is a list made of %i elements' %

len(Shuffled))

print ('Preview of first element: %s]'% Shuffled[0][:5])

print ('Preview of second element: %s]'% Shuffled[1][:5])

Shuffled is a list made of 4 elements

Preview of first element: [('RUSSIA', 1), ('RUSSIA', 1),

('RUSSIA', 1), ('RUSSIA', 1), ('RUSSIA', 1)]]

Preview of second element: [('NAPOLEON', 1), ('NAPOLEON',

1), ('NAPOLEON', 1), ('NAPOLEON', 1), ('NAPOLEON', 1)]]

As shown in the example, the Shuffle_Sort function creates a list
of four lists, each one containing tuples featuring one of the four
keywords. In a cluster setting, this processing equates to having
each mapping node pass through the emitted results, and, by
using some kind of addressing (for instance, using a hash
function, as seen in the bit vector of a Bloom filter Chapter 12),
they send (shuffle phase) the tuple data to the appropriate
reducing node. The receiving node places each key in the
appropriate list (order phase):

result = Distribute(Reduce, Shuffled, n)

print ('Emitted results are: %s' % result)

Emitted results are: [('RUSSIA', 156), ('NAPOLEON', 469), ('WAR', 288),

('PEACE', 111)]

The reduce phase sums the distributed and ordered tuples and
reports the total summation for each key, as seen in the result
printed by the code that replicates a MapReduce. Reading the
results, you can see that Tolstoy mentions war more than peace in
War and Peace, but he mentions Napoleon even more often.
You can easily repeat the experiment on other texts or, even hack
the map function in order to apply a different function to the text.
For instance, you could choose to analyze some of the most
famous novels by Sir Arthur Conan Doyle and try to discover how
many times Sherlock Holmes used the phrase “Elementary,
Watson”:

import urllib.request

url = "

http://gutenberg.pglaf.org/1/6/6/1661/1661.txt

 "

text = urllib.request.urlopen(url).read().decode(

'utf-8')[723:]

words = text.split()

print (text[:65])

print ('\nTotal words are %i' % len(words))

http://gutenberg.pglaf.org/1/6/6/1661/1661.txt

Map = partial(count_words,

keywords=['WATSON', 'ELEMENTARY'])

result = Distribute(Reduce,

Shuffle_Sort(Distribute(Map,

Partition(words,len(words)//n), n)),

1)

print ('Emitted results are: %s' % result)

THE ADVENTURES OF SHERLOCK HOLMES

by

SIR ARTHUR CONAN DOYLE

Total words are 107431

Emitted results are: [('WATSON', 81), ('ELEMENTARY', 1)]

The result may be surprising! You never actually find that phrase
in the novels; it’s a catchphrase that authors inserted later into the
film screenplays:
http://www.phrases.org.uk/meanings/elementary-my-dear-

watson.html .

http://www.phrases.org.uk/meanings/elementary-my-dear-watson.html

Chapter 14
Compressing Data

IN THIS CHAPTER
 Understanding how computers can store information in

order to save space
 Creating efficient and smart encodings
 Leveraging statistics and building Huffman trees
 Compressing and decompressing on the fly using the

Lempel-Ziv-Welch (LZW) algorithm

The last decade has seen the world flooded by data. In fact, data
is the new oil, and specialists of all sorts hope to extract new
knowledge and richness from it. As a result, you find data piled
everywhere and often archived as soon as it arrives. The
sometimes careless storage of data comes from an increased
capacity to store information; it has become cheap to buy larger
drives to store everything, useful or not. Chapters 12 and 13
discuss the drivers behind this data deluge, how to deal with
massive data streams, methods used to distribute it over clusters
of connected computers, and techniques you can use to process
data rapidly and efficiently.
Data hasn’t always been readily available, however. In previous
decades, storing data required large investments in expensive
mass-storage devices (hard disk, tapes, floppy disks, CDs) that
couldn’t store much data. Storing data required a certain
efficiency (saving disk space meant saving money), and data
compression algorithms offered the solution of compacting data to
store more of it on a single device at the cost of computer
processing time. Trading disk space for computer time reduced
costs.

Compression algorithms have long been a topic of study and are
now considered classics in computer knowledge. Even though
storage disks are larger and cheaper today, these algorithms still
play a role in mobile data transmission and see use anywhere
there is a data stream bottleneck or high memory costs.
Compression is also handy in situations in which data
infrastructure growth doesn’t match data growth, which is
especially true of both wireless and mobile bandwidth in
developing countries. In addition, compression helps deliver
complex web pages faster, stream videos efficiently, store data on
a mobile device, or reduce mobile phone data transmission costs.
This chapter helps you understand how data compression works
and when you need to use it.

Making Data Smaller
Computer data is made of bits — sequences of zeros and ones.
This chapter explains the use of zeros and ones to create data in
more depth than previous chapters because compression
leverages these zeros and ones in multiple ways. To understand
compression, you must know how a computer creates and stores
binary numbers. The following sections discuss the use of binary
numbers in computers.

Understanding encoding
Zeros and ones are the only numbers in the binary system. They
represent the two possible states in an electric circuit: absence
and presence of electricity. Computers started as simple circuits
made of tubes or transistors; using the binary system instead of
the human decimal system made things easier. Humans use ten
fingers to count numbers from 0 to 9. When they have to count
more, they add a unit number to the left. You may never have
thought about it, but you can express counting by using powers of
ten. Therefore a number such as 199 can be expressed as 102 *1
+ 101 *9 +100 *9 = 199; that is, you can separate hundreds from
tens and units by multiplying each figure by the power of ten

relative to its position: 100 for units, 101 for tens, 102 for hundreds,
and so on.

 Knowing this information helps you understand binary
numbers better because they actually work in exactly the
same way. However, binary numbers use powers of two
rather than powers of ten. For instance, the number 11000111
is simply

27

 *1+26

 *1+25

 *0+24

 *0+23

 *0+22

 *1+21

 *1+20
 *1 =

128*1+64*1+32*0+16*0+8*0+4*1+2*1+1*1 =

128+64+4+2+1 = 199

You can represent any number as a binary value in a computer. A
value occupies the memory space required by its total length. For
example, binary 199 is 8 figures, each figure is a bit, and 8 bits
are called a byte. The computer hardware knows data only as bits
because it has only circuitry to store bits. However, from a higher
point of view, computer software can interpret bits as letters,
ideograms, pictures, films, and sounds, which is where encoding
comes into play.
Encoding uses a sequence of bits to represent something other
than the number expressed by the sequence itself. For instance,
you can represent a letter using a particular sequence of bits.
Computer software commonly represents the letter A using the
number 65, or binary 01000001 when working with the American
Standard Code for Information Interchange (ASCII) encoding
standard. You can see sequences used by ASCII system at

http://www.asciitable.com/ . ASCII uses just 7 bits for its
encoding (8 bits, or a byte, in the extended version), which means
that you can represent 128 different characters (the extended
version has 256 characters). Python can represent the string
“Hello World” using bytes:

print (''.join(['{0:08b}'.format(ord(l))

for l in "Hello World"]))

0100100001100101011011000110110001101111001000000101011101

101111011100100110110001100100

When using extended ASCII, a computer knows that a sequence
of exactly 8 bits represent a character. It can separate each
sequence into 8-bit bytes and, using a conversion table called a
symbolic table, it can turn these bytes into characters.

 ASCII encoding can represent the standard Western
alphabet, but it doesn’t support the variety of accented
European characters or the richness of non-European
alphabets, such as the ideograms used by the Chinese and
Japanese languages. Chances are that you’re using a robust
encoding system such as UTF-8 or another form of Unicode
encoding (see http://unicode.org/ for more information).
Unicode encoding is the default encoding in Python 3.

Using a complex encoding system requires that you use longer
sequences than those required by ASCII. Depending on the
encoding you choose, defining a character may require up to 4
bytes (32 bits). When representing textual information, a computer
creates long bit sequences. It decodes each letter easily because
encoding uses fixed-length sequences in a single file. Encoding
strategies, such as Unicode Transformation Format 8 (UTF-8),

http://www.asciitable.com/
http://unicode.org/

can use variable numbers of bytes (1 to 4 in this case). You can
read more about how UTF-8 works at
http://www.fileformat.info/info/unicode/utf8.htm .

Considering the effects of
compression
The use of fixed-sized character sequences leaves a lot of room
for improvement. You may not use all the letters in an alphabet, or
you use some letters more than others. This is where
compression comes into play. By using variable-length character
sequences, you can greatly reduce the size of a file. However, the
file also requires additional processing to turn it back into an
uncompressed format that applications understand. Compression
removes space in an organized and methodical manner;
decompression adds the space back into the character strings.
When it’s possible to compress and decompress data in a manner
that doesn’t result in any data loss, you’re using lossless
compression.
The same idea behind compression goes for images and sounds
that involve framing sequences of bits of a certain size in order to
represent video details or to reproduce a second of a sound using
the computer’s speakers. Videos are simply sequences of bits,
and each bit sequence is a pixel, which is composed of small
points that constitute an image. Likewise, audio is composed of
sequences of bits that represent an individual sample. Audio files
store a certain number of samples per second to recreate a
sound. The discussion at http://kias.dyndns.org/comath/44.html
provides more information about both video and audio storage.
Computers store data in many predefined formats of long
sequences of bits (commonly called bit streams). Compression
algorithms can exploit the way each format works to obtain the
same result using a shorter, custom format.
You can compress data that represents images and sounds
further by eliminating details that you can’t process. Humans have
both visual and aural limits, so they aren’t likely to notice the loss

http://www.fileformat.info/info/unicode/utf8.htm
http://kias.dyndns.org/comath/44.html

of detail imposed by compressing the data in specific ways. You
may have heard of MP3 compression that allows you to store
entire collections of CDs on your computer or on a portable
reader. The MP3 file format simplifies the original cumbersome
WAV format used by computers. WAV files contain all the sound
waves received by the computer, but MP3 saves space by
removing and compacting waves that you can’t hear. (For more
more about MP3, see the article at
http://arstechnica.com/features/2007/10/the-audiofile-

understanding-mp3-compression/).

 Removing details from data creates lossy compression.
JPEG, DjVu, MPEG, MP3, and WMA are all lossy
compression algorithms specialized in a particular kind of
media data (images, video, sound), and there are many
others. Lossy compression is fine for data meant for human
input; however, by removing the details, you can’t revert to
the original data structure. Thus, you can get good digital
photo compression and represent it in a useful way on a
computer’s screen. Yet when you print the compressed photo
on paper, you may notice that the quality, though acceptable,
is not as good as the original picture. The display provides
output at 96 dots per inch (dpi), but a printer typically
provides output at 300 to 1200 dpi (or higher). The effects of
lossy compression become obvious because a printer is able
to display them in a manner that humans can see.

AN EXAMPLE OF LOSSY
COMPRESSION BENEFITS

An example of the difference that lossy compression can make is in
photography. A raw formatted picture file contains all the information originally
provided by the camera’s sensor, so it doesn’t include any sort of compression.
When working with a certain camera, you might find that this file consumes
29.8MB of hard drive space. A raw file often uses the .raw file extension to

http://arstechnica.com/features/2007/10/the-audiofile-understanding-mp3-compression/

show that no processing has occurred. Opening the file and saving it as a
lossy .jpeg might result in a file size of only 3.7 MB, but with a corresponding
loss of detail. To save some of the detail but obtain some savings in file size as
well, you might choose to use the .jpeg file format. In this case, the file size
might be 12.4MB, which represents a good compromise in file size savings to
loss of image data.

 Choosing between lossless and lossy compression is
important. Discarding details is a good strategy for media, but
it doesn’t work so well with text, because losing words or
letters may change the meaning of the text. (Discarding
details doesn’t work for programming languages or computer
instructions for the same reason.) Even though lossy
compression is an effective compression solution when
details aren’t as important, it doesn’t work in situations in
which precise meaning must be retained.

Choosing a particular kind of
compression
Lossless algorithms simply compress data to reduce its size and
decompress it to its original state. Lossless algorithms have more
general applications than lossy compression because you can
use them for any data problem. (Even when using lossy
compression, you remove some detail and further compress what
remains using lossless compression.) Just as you can find many
lossy algorithms that are specialized for use with different media,
so can you find many lossless algorithms, each one adept at
exploiting some data characteristics. (To get an idea of how large
the lossless algorithm family is, read more details at
http://ethw.org/History_of_Lossless_Data_Compression_Algorith

ms).

http://ethw.org/History_of_Lossless_Data_Compression_Algorithms

 It’s essential to remember that the goal of both lossy and
lossless compression is to reduce the redundancy contained
in data. The more redundancies the data contains, the more
effective the compression.

Chances are that you have many lossless data compression
programs installed on your computer that output files such as ZIP,
LHA, 7-Zip, and RAR, and you aren’t sure which one is better. A
“best” option may not exist, because you can use bit sequences in
many different ways to represent information on a computer; also,
different compression strategies work better with different bit
sequences. This is the no-free-lunch problem discussed in
Chapter 1 . The option you choose depends on the data content
you need to compress.
To see how compression varies by the sample you provide, you
should try various text samples using the same algorithm. The
following Python example uses the ZIP algorithm to compress the
text of The Adventures of Sherlock Holmes, by Arthur Conan
Doyle, and then to reduce the size of a randomly generated
sequence of letters. (You can find the complete code for this
example in the Compression Performances section of the A4D;
14; Compression.ipynb file of the downloadable source code for
this book; see the Introduction for details).

import urllib.request

import zlib

from random import randint

url = "

http://gutenberg.pglaf.org/1/6/6/1661/1661.txt

 "

sh = urllib.request.urlopen(url).read().decode('utf-8')

sh_length = len(sh)

http://gutenberg.pglaf.org/1/6/6/1661/1661.txt

rnd = ''.join([chr(randint(0,126)) for k in

range(sh_length)])

def zipped(text):

return len(zlib.compress(text.encode("ascii")))

print ("Original size for both texts: %s characters" %

sh_length)

print ("The Adventures of Sherlock Holmes to %s" %

zipped(sh))

print ("Random file to %s " % zipped(rnd))

Original size for both texts: 594941 characters

The Adventures of Sherlock Holmes to 226824

Random file to 521448

The output of the example is enlightening. Even though the
example application can reduce the size of the short story to less
than half of its original size, the size reduction for the random text
is much less (both texts have the same original length). The
output implies that the ZIP algorithm leverages the characteristics
of the written text but doesn’t do as well on random text that lacks
a predictable structure.

 When performing data compression, you can measure
performance by calculating the compression ratio: Just divide

the new compressed size of the file by the original size of the
file. The compression ratio can tell you about algorithm
efficiency in saving space, but high-performance algorithms
also require time to perform the task. In case time is your
concern, most algorithms let you trade some compression
ratio for speedier compression and decompression. In the
preceding example for the Sherlock Holmes text, the
compression ratio is 226824 / 594941, that is, about 0.381.
The compress method found in the example has a second
optional parameter, level , which controls the level of
compression. Changing this parameter controls the ratio
between the time to perform the task and the amount of
compression achieved.

Choosing your encoding wisely
The example in the preceding section shows what happens when
you apply the ZIP algorithm to random text. The results help you
understand why compression works. Boiling down all the available
compression algorithms, you discover four main reasons:

Shrinking character encoding: Compression forces
characters to use fewer bits by coding them according to some
feature, such as commonality of use. For example, if you use
only some of the characters in a character set, you can reduce
the number of bits to reflect that level of usage. It’s the same
difference that occurs between ASCII, which uses 7 bits, and
extended ASCII, which uses 8 bits. This solution is particularly
effective with problems like DNA encoding, in which you can
devise a better encoding than the standard one.
Shrinking long sequences of identical bits: Compression
uses a special code to identify multiple copies of the same bits
and replaces those copies with just one copy, along with the
number of times to repeat it. This option is very effective with
images (it works fine with fax black and white images) or with
any data that you can rearrange in order to group similar
characters together (DNA data is one of this kind).

Leveraging statistics: Compression encodes frequently used
characters in a shorter way. For example, the letter E appears
commonly in English, so if the letter E uses only 3 bits, rather
than a full 8 bits, you save considerable space. This is the
strategy used by Huffman encoding, in which you recreate the
symbolic table and save space, on average, because common
characters are shorter.
Encoding frequent long sequences of characters efficiently:
This is similar to shrinking long sequences of identical bits, but it
works with character sequences rather than single characters.
This is the strategy used by LZW, which learns data patterns on
the fly and creates a short encoding for long sequences of
characters.

To understand how rethinking encoding can help in compression,
start with the first reason. Scientists working on the Genome
Project around 2008 (https://www.genome.gov/10001772/all-
about-the--human-genome-project-hgp/) managed to drastically
reduce the size of their data using a simple encoding trick. Using
this trick made the task of mapping the entire human DNA
simpler, helping the scientists understand more about the life,
disease, and death scripted into our body cells.
Scientists describe DNA using sequences of the letters A, C, T,
and G (representing the four nucleotides present in all living
beings). The human genome contains six billion nucleotides (you
find them associated in couples, called bases) that add up to
more than 50GB using ASCII encoding. In fact, you can represent
A, C, T, and G in ASCII encoding as follows:

print (' '.join(['{0:08b}'.format(ord(l))

for l in "ACTG"]))

01000001 01000011 01010100 01000111

https://www.genome.gov/10001772/all-about-the--human-genome-project-hgp/

The sum of the preceding line is 32 bits, but because DNA maps
just four characters, you can use 2 bits each, saving 75 percent of
the previously used bits:

00 01 10 11

 Such a gain demonstrates the reason to choose the right
encoding. The encoding works fine in this case because the
DNA alphabet is made of four letters, and using a full ASCII
table based on 8 bits is overkill. If a problem requires that you
use the complete ASCII alphabet, you can’t compress the
data by redefining the encoding used. Instead, you have to
approach the problem using Huffman compression.

If you can’t shrink the character encoding (or you have already
done it), you can still shrink long sequences, reducing them to a
simpler encoding. Observe how binary data can repeat long
sequences of ones and zeros:

00000000 00000000 01111111 11111111 10000011 11111111

In this case, the sequence starts from zero. You can therefore
count the number of zeros, and then count the number of ones
that follow, and then repeat with the next count of zeros, and so
on. Because the sequence has only zeros and ones, you can
count them and obtain sequence of counts to compress the data.
In this case, the data compresses into values of 17 15 5 10.
Translating these counts into bytes shortens the initial data in an
easily reversible way:

00010001 00001111 00000101 00001010

Instead of using 6 bytes to represent the data, you now need only
4 bytes. To use this approach, you limit the maximum count to 255
consecutive values, which means:

You can encode each sequence in a byte.
The first value is a zero when the sequence starts from 1
instead of 0.
When a block of values is longer than 255 elements, you insert
a 0 value (so the decoder switches to the other value for 0
counts and then starts counting the first value again).

This algorithm, run-length encoding (RLE), is very effective if your
data has many long repetitions. This algorithm enjoyed great
success in the 1980s because it could reduce fax transmission
times. Fax machines worked on just black-and-white images, and
by land-line telephone, shrinking the long sequences of zeros and
ones that made up images and text proved to be convenient.
Though businesses seldom use fax machines now, scientists still
use RLE for DNA compression in combination with the Burrows-
Wheeler Transform (an advanced algorithm that you can read
about at http://marknelson.us/1996/09/01/bwt/), which
rearranges (in a reversible way) the genome sequence in long
runs of the same nucleotide. You also find RLE used for
compression of other data formats, such as JPEG and MPEG
(see http://motorscript.com/mpeg-jpeg-compression/ for
additional details).

 Data characteristics rule the success of a compression
algorithm. By knowing how algorithms work and exploring
your data characteristics, you can choose the best-
performing algorithm or combine more algorithms in an
effective way. Using multiple algorithms together creates an
ensemble of algorithms.

Encoding using Huffman
compression
Redefining an encoding, such as when mapping nucleotides in
DNA, is a smart move that works only when you use a part of the

http://marknelson.us/1996/09/01/bwt/
http://motorscript.com/mpeg-jpeg-compression/

alphabet that the encoding represents. When you use all the
symbols in the encoding, you can’t use this solution. David A.
Huffman discovered another way to encode letters, numbers, and
symbols efficiently even when using all of them. He achieved this
accomplishment when he was a student at MIT in 1952 as part of
a term paper required by his professor, Prof. Robert M. Fano. His
professor and another famous scientist, Claude Shannon (the
father of information theory), had struggled with the same
problem.
In his paper, “A Method for the Construction of Minimum-
Redundancy Codes,” Huffman describes in just three pages his
mind-blowing encoding method. It changed the way we stored
data until the end of 1990s. You can read the details about this
incredible algorithm in a September 1991 Scientific American
article at http://www.huffmancoding.com/my-uncle/scientific-
american . Huffman codes have three key ideas:

Encode frequent symbols with shorter sequences of bits.
For instance, if your text uses the letter a often, but rarely uses
the letter z, you can encode a using a couple of bits and reserve
an entire byte (or more) for z . Using shorter sequences for
common letters means that overall your text requires fewer
bytes than when you rely on ASCII encoding.
Encode shorter sequences using a unique series of bits.
When using variable length bit sequences, you have to ensure
that you can’t misinterpret a shorter sequence in place of a
longer one because they are similar. For instance, if the letter a
in binary is 110 and z is 110110, you could misinterpret the letter
z as a series of two-letter a characters. Huffman encoding
avoids this problem by using prefix-free codes: The algorithm
never reuses shorter sequences as initial parts of longer
sequences. For example, if a is 110, then z will be 101110 and
not 110110.
Manage prefix-free coding using a specific strategy.
Huffman encoding manages prefix-free codes by using binary
trees in a smart way. Binary trees are a data structure discussed
in Chapters 6 and 7 . The Huffman algorithm uses binary trees

http://www.huffmancoding.com/my-uncle/scientific-american

(called Huffman trees) in an advanced fashion. You can read
more about the internals of the algorithm in the tutorial at
https://www.siggraph.org/education/materials/HyperGraph/vid

eo/mpeg/mpegfaq/huffman_tutorial.html .

 The algorithm used to perform Huffman encoding uses an
iterative process that relies on heaps, which are specialized
tree-based data structures (mentioned in Chapter 6). A heap
is a complex data structure. Because of the manner in which
you use a heap to arrange data, it’s useful for achieving a
greedy strategy. In the next chapter, which is devoted to
greedy algorithms, you test Huffman encoding yourself, using
the working examples in the downloadable code
accompanying the book (the Huffman Compression example
in the A4D; 15; Greedy Algorithms.ipynb file; see the
Introduction for details).

For the moment, as an example of a Huffman encoding output,
Figure 14-1 shows the Huffman encoding binary tree used to
encode a long sequence of ABCDE letters distributed in a way
that A is more frequent than B, B more than C, C more than D,
and D more than E.

image
FIGURE 14-1: A Huffman tree and its symbolic table of conversion.

The square nodes represent branch nodes, where the algorithm
places the number of the remaining letters it distributes to the
child nodes (those that are below the branch nodes in the
hierarchy). The round nodes represent leaf nodes, where you find
the successfully encoded letters. The tree starts at the root with
300 letters left to distribute (the length of the text). It distributes
the letters by branching the 0 and 1 bits, respectively, on the left
and on the right branches until it reaches all the leaves necessary
for encoding. By reading from the top of the sequence of

https://www.siggraph.org/education/materials/HyperGraph/video/mpeg/mpegfaq/huffman_tutorial.html

branches to a specific letter, you determine the binary sequence
representing that letter. Less frequent letters (D and E) get the
longest binary sequences.

 Following the Huffman tree from bottom to top lets you
compress a symbol into a binary sequence. By following the
tree from top to bottom, you can decompress a binary
sequence into a symbol (as represented by the first leaf node
you encounter).

 For decompression, you need to store both the
compressed binary sequence and the Huffman tree that
made the compression possible. When your text or data is
too short, the Huffman tree could require more space than
the compressed data, thus making compression ineffective.
Huffman code works best on larger data files.

Remembering sequences with LZW
Huffman encoding takes advantage of the most frequent
characters, numbers, or symbols in data and shortens their
encoding. The LZW algorithm performs a similar task but extends
the encoding process to the most frequent sequences of
characters. The LZW algorithm dates to 1984 and was created by
Abraham Lempel, Jacob Ziv, and Terry Welch based on an earlier
LZ78 algorithm (developed in 1978 by Lempel and Ziv alone).
Both Unix compression and the GIF image format rely on this
algorithm. LZW leverages repetitions, so it’s also ideal for
document and book text compression because humans often use
the same words when writing. In addition, LZW can operate on
streaming data, but Huffman can’t; Huffman needs the full dataset
to build its mapping table.

As the algorithm skims through the data-bit stream, it learns
sequences of characters from it and assigns each sequence to a
short code. Thus, when later reencountering the same series of
characters, LZW can compress them using a simpler encoding.
The interesting aspect of this algorithm is that it starts from a
symbolic table made of single characters (usually the ASCII table)
and then it enlarges that table using the character sequences it
learns from the data it compresses.
Moreover, LZW doesn’t need to store the learned sequences in a
table for decompression; it can rebuild them easily by reading the
compressed data. LZW can reconstruct the steps it took when
compressing the original data and the sequences it encoded. This
capability comes at a price; LZW isn’t efficient at first. It works
best with large pieces of data or text (a characteristic common to
other compression algorithms).
LZW isn’t a complex algorithm, but you need to see a number of
examples to understand it fully. You can find quite a few good
tutorials at http://marknelson.us/2011/11/08/lzw-revisited/ and
http://www.matthewflickinger.com/lab/whatsinagif/lzw_image_da

ta.asp . The second tutorial explains how to use LZW to
compress images. The following example shows a Python
implementation. (You can find the complete code for this example
in the LZW section of the A4D; 14; Compression.ipynb file of the
downloadable source code for this book; see the Introduction for
details).

def lzw_compress(text):

dictionary = {chr(k): k for k in range(256)}

encoded = list()

s = text[0]

for c in text[1:]:

if s+c in dictionary:

s = s+c

else:

http://marknelson.us/2011/11/08/lzw-revisited/
http://www.matthewflickinger.com/lab/whatsinagif/lzw_image_data.asp

print ('> %s' %s)

encoded.append(dictionary[s])

print ('found: %s compressed as %s' %

(s,dictionary[s]))

dictionary[s+c] = max(dictionary.values()) + 1

print ('New sequence %s indexed as %s' %

(s+c, dictionary[s+c]))

s = c

 encoded.append(dictionary[s])

print ('found: %s compressed as %s'

%(s,dictionary[s]))

return encoded

In this example, the algorithm scans the text by checking the text
a character at a time. It begins by encoding characters using the
initial symbolic table, which is actually the ASCII table in this case.
The best way to see how this code works is to see a series of
output messages and then analyze what has taken place, as
shown here:

text = "ABABCABCABC"

compressed = lzw_compress(text)

print('\nCompressed: %s \n' % compressed)

> A

found: A compressed as 65

New sequence AB indexed as 256

> B

found: B compressed as 66

New sequence BA indexed as 257

> AB

found: AB compressed as 256

New sequence ABC indexed as 258

> C

found: C compressed as 67

New sequence CA indexed as 259

> ABC

found: ABC compressed as 258

New sequence ABCA indexed as 260

found: ABC compressed as 258

Here is a quick synopsis of what these output messages mean:

1. The first letter, A, appears in the initial symbolic
table, so the algorithm encodes it as 65.

2. The second letter, B, is different from A but also
appears in the initial symbolic table, so the
algorithm encodes it as 66.

3. The third letter is another A, so the algorithm
reads the next letter, which is a B, and encodes
the two-letter combination, AB, as 256.

4. The fourth letter, a C, is different from any of the
previous letters and also appears in the initial
symbolic table, so the algorithm encodes it as 67.

5. The next letter has already appeared before; it’s
an A. The next letter is a B, which makes the AB
letter combination; this also appears in the
symbolic table. However, the next letter is a C,
which makes a new sequence and which the
algorithm now encodes as 258.

6. The final three letters are another set of ABC, so
the code for them is 258 again. Consequently, the
encoded output for ABABCABCABC is

Compressed: [65, 66, 256, 67, 258, 258]

All the learning and encoding operations translated into final
compression data consisting of just six numeric codes (costing 8
bits each) against the initial 11 test letters. The encoding results in
a good compression ratio of about half the initial data: 6/11 = 0.55.
Retrieving the original text from the compressed data requires a
different, inverse procedure, which accounts for the only situation
when LZW decoding may fail to reconstruct the symbolic table
when a sequence starts and ends with the same character. This
particular case is taken care of by Python using an if-then-else
command block, so you can safely use the algorithm to encode
and decode anything:

def lzw_decompress(encoded):

reverse_dictionary = {k:chr(k) for k in range(256)}

current = encoded[0]

output = reverse_dictionary[current]

print ('Decompressed %s ' % output)

print ('>%s' % output)

for element in encoded[1:]:

previous = current

current = element

if current in reverse_dictionary:

s = reverse_dictionary[current]

print ('Decompressed %s ' % s)

output += s

print ('>%s' % output)

new_index = max(reverse_dictionary.keys()) + 1

reverse_dictionary[new_index

] = reverse_dictionary[previous] + s[0]

print ('New dictionary entry %s at index %s' %

(reverse_dictionary[previous] + s[0],

new_index))

 else:

print ('Not found:',current,'Output:',

reverse_dictionary[previous

] + reverse_dictionary[previous][0])

s = reverse_dictionary[previous

] + reverse_dictionary[previous][0]

print ('New dictionary entry %s at index %s' %

(s, max(reverse_dictionary.keys())+1))

reverse_dictionary[

max(reverse_dictionary.keys())+1] = s

print ('Decompressed %s' % s)

output += s

print ('>%s' % output)

return output

Running the function on the previously compressed sequence
recovers the original information by scanning through the
symbolic table, as shown here:

print ('\ndecompressed string : %s' %

lzw_decompress(compressed))

print ('original string was : %s' % text)

Decompressed A

> A

Decompressed B

> AB

New dictionary entry AB at index 256

Decompressed AB

> ABAB

New dictionary entry BA at index 257

Decompressed C

> ABABC

New dictionary entry ABC at index 258

Decompressed ABC

> ABABCABC

New dictionary entry CA at index 259

Decompressed ABC

> ABABCABCABC

New dictionary entry ABCA at index 260

decompressed string : ABABCABCABC

original string was : ABABCABCABC

Part 5
Challenging Difficult Problems

IN THIS PART …
Use greedy programming techniques to obtain results faster.
Perform dynamic programming to perform tasks using a smart
approach.
Randomize your results to solve problems where a
straightforward approach doesn’t work well.
Search locally to final solutions that are good enough in a short
time.
Use linear programming techniques to perform scheduling and
planning tasks.
Employ heuristics and interact with robots.

Chapter 15
Working with Greedy

Algorithms
IN THIS CHAPTER

 Understanding how to design new algorithms and use
solving paradigms

 Explaining how an algorithm can act greedy and get great
results

 Drafting a greedy algorithm of your own
 Revisiting Huffman coding and illustrating some other

classical examples

After taking your first steps into the world of algorithms by
presenting what algorithms are and discussing ordering,
searching, graphs, and big data, it’s time to enter a more general
part of the book. In this latter part of the book, you deal with some
difficult examples and see general algorithmic approaches that
you can use under different circumstances when solving real-
world problems.
By taking new routes and approaches, this chapter goes well
beyond the divide-and-conquer recursion approach that
dominates in most sorting problems. Some of the discussed
solutions aren’t completely new; you’ve seen them in previous
chapters. However, this chapter discusses those previous
algorithms in greater depth, under the new paradigms (a
consideration of application rules and conditions, general
approach and steps to the solution of a problem, and analysis of
problem complexity, limitations, and caveats) that the chapter
illustrates.

Making some solutions general and describing them as widely
applicable paradigms is a way to offer hints to solve new practical
problems and is part of the analysis and design of algorithms. The
remainder of this book discusses the following general
approaches:

Greedy algorithms (explained in this chapter)
Dynamic programming
Randomization, local search, and farsighted heuristics
Linear programming and optimization problems

Deciding When It Is Better to Be
Greedy

When faced with difficult problems, you quickly discover that no
magic potion exists for making wishes come true or silver bullets
to dispel bad things. Similarly, no algorithmic technique saves the
day every time. That’s the no-free-lunch principle often quoted in
the book. The good news is, you can arm yourself with different
general techniques and test them all on your problem, because
you have a good chance that something will work well.
Greedy algorithms come in handy for solving a wide array of
problems, especially when drafting a global solution is difficult.
Sometimes, it’s worth giving up complicated plans and simply
start looking for low-hanging fruit that resembles the solution you
need. In algorithms, you can describe a shortsighted approach
like this as greedy. Looking for easy-to-grasp solutions constitutes
the core distinguishing characteristic of greedy algorithms. A
greedy algorithm reaches a problem solution using sequential
steps where, at each step, it makes a decision based on the best
solution at that time, without considering future consequences or
implications.

 Two elements are essential for distinguishing a greedy
algorithm:

At each turn, you always make the best decision you can at that
particular instant.
You hope that making a series of best decisions results in the
best final solution.

Greedy algorithms are simple, intuitive, small, and fast because
they usually run in linear time (the running time is proportional to
the number of inputs provided). Unfortunately, they don’t offer the
best solution for all problems, but when they do, they provide the
best results quickly. Even when they don’t offer the top answers,
they can give a nonoptimal solution that may suffice or that you
can use as a starting point for further refinement by another
algorithmic strategy.
Interestingly, greedy algorithms resemble how humans solve
many simple problems without using much brainpower or with
limited information. For instance, when working as cashiers and
making change, a human naturally uses a greedy approach. You
can state the make-change problem as paying a given amount
(the change) using the least number of bills and coins among the
available denominations. The following Python example
demonstrates the make-change problem is solvable by a greedy
approach. It uses the 1, 5, 10, 20, 50, and 100 USD bills, but no
coins.

def change(to_be_changed, denomination):

resulting_change = list()

for bill in denomination:

while to_be_changed >= bill:

resulting_change.append(bill)

to_be_changed = to_be_changed - bill

return resulting_change, len(resulting_change)

currency = [100, 50, 20, 10, 5, 1]

amount = 367

print ('Change: %s (using %i bills)'

% (change(amount, currency)))

Change: [100, 100, 100, 50, 10, 5, 1, 1] (using 8 bills)

The algorithm, encapsulated in the change() function, scans the
denominations available, from the largest to the smallest. It uses
the largest available currency to make change until the amount
due is less than the denomination. It then moves to the next
denomination and performs the same task until it finally reaches
the lowest denomination. In this way, change() always provides
the largest bill possible given an amount to deliver. (This is the
greedy principle in action.)
Greedy algorithms are particularly appreciated for scheduling
problems, optimal caching, and compression using Huffman
coding. They also work fine for some graph problems. For
instance, Kruskal’s and Prim’s algorithms for finding a minimum-
cost spanning tree and Dijkstra’s shortest-path algorithm are all
greedy ones (see Chapter 9 for details). A greedy approach can
also offer a nonoptimal, yet an acceptable first approximation,
solution to the traveling salesman problem (TSP) and solve the
knapsack problem when quantities aren’t discrete. (Chapter 16
discusses both problems.)

Understanding why greedy is good
It shouldn’t surprise you that a greedy strategy works so well in
the make-change problem. In fact, some problems don’t require

farsighted strategies: The solution is built using intermediate
results (a sequence of decisions), and at every step the right
decision is always the best one according to an initially chosen
criteria.
Acting greedy is also a very human (and effective) approach to
solving economic problems. In the 1987 film Wall Street, Gordon
Gecko, the protagonist, declares that “Greed, for lack of a better
word, is good” and celebrates greediness as a positive act in
economics. Greediness (not in the moral sense, but in the sense
of acting to maximize singular objectives, as in a greedy
algorithm) is at the core of the neoclassical economy. Economists
such as Adam Smith, in the eighteenth century, theorized that the
individual’s pursuit of self-interest (without a global vision or
purpose) benefits society as a whole greatly and renders it
prosperous in economy (it’s the theory of the invisible hand:
https://plus.maths.org/content/adam-smith-and-invisible-hand

).
Detailing how a greedy algorithm works (and under what
conditions it can work correctly) is straightforward, as explained in
the following four steps:

1. You can divide the problem into partial problems.
The sum (or other combination) of these partial
problems provides the right solution. In this
sense, a greedy algorithm isn’t much different
from a divide-and-conquer algorithm (like
Quicksort or Mergesort, both of which appear in
Chapter 7).

2. The successful execution of the algorithm
depends on the successful execution of every
partial step. This is the optimal substructure
characteristic because an optimal solution is
made only of optimal subsolutions.

https://plus.maths.org/content/adam-smith-and-invisible-hand

3. To achieve success at each step, the algorithm
considers the input data only at that step. That is,
situation status (previous decisions) determines
the decision the algorithm makes, but the
algorithm doesn’t consider consequences. This
complete lack of a global strategy is the greedy
choice property because being greedy at every
phase is enough to offer ultimate success. As an
analogy, it’s akin to playing the game of chess by
not looking ahead more than one move, and yet
winning the game.

4. Because the greedy choice property provides
hope for success, a greedy algorithm lacks a
complex decision rule because it needs, at worst,
to consider all the available input elements at
each phase. There is no need to compute
possible decision implications; consequently, the
computational complexity is at worst linear O(n).
Greedy algorithms shine because they take the
simple route to solving highly complex problems
that other algorithms take forever to compute
because they look too deep.

Keeping greedy algorithms under
control
When faced with a new difficult problem, it’s not hard to come up
with a greedy solution using the four steps described in the
previous section. All you have to do is divide your problems into

phases and determine which greedy rule to apply at each step.
That is, you do the following:

Choose how to make your decision (determine which approach
is the simplest, most intuitive, smallest, and fastest)
Start solving the problem by applying your decision rule
Record the result of your decision (if needed) and determine the
status of your problem
Repeatedly apply the same approach at every step until
reaching the problem conclusion

No matter how you apply the previous steps, you must determine
whether you’re accomplishing your goal by relying on a series of
myopic decisions. The greedy approach works for some problems
and sometimes for specific cases of some problems, but it doesn’t
work for every problem. For instance, the make-change problem
works perfectly with U.S. currency but produces less-than-optimal
results with other currencies. For example, using a fictional
currency (call it credits, using a term in many sci-fi games and
fiction) with denominations of 1, 15, and 25 credits, the previous
algorithm fails to deliver the optimal change for a due sum of 30
credits:

print ('Change: %s (using %i bills)'

% (change(30, [25, 15, 1])))

Change: [25, 1, 1, 1, 1, 1] (using 6 bills)

Clearly, the optimal solution is to return two 15 credit bills, but the
algorithm, being shortsighted, started with the highest
denomination available (25 credits) and then used five 1 credit
bills to make up the residual 5 credits.

 Some complex mathematical frameworks called matroids
(read the article at https://jeremykun.com/2014/08/26/when-
greedy-algorithms-are-perfect-the-matroid/ for details) can
help verify whether you can use a greedy solution to optimally
solve a particular problem. If phrasing a problem using a
matroid framework is possible, a greedy solution will provide
an optimal result. Yet there are problems that have optimal
greedy solutions that don’t abide by the matroid framework.
(You can read about matroid structures being sufficient, but
not necessary for an optimal greedy solution in the article
found at
http://cstheory.stackexchange.com/questions/21367/does-

every-greedy-algorithm-have-matroid-structure .)
The greedy algorithms user should know that greedy algorithms
do perform well but don’t always provide the best possible results.
When they do, it’s because the problem consists of known
examples or because the problem is compatible with matroid
mathematical framework. Even when a greedy algorithm works
best in one setting, changing the setting may break the toy and
generate just good or acceptable solutions. In fact, the cases of
just good or acceptable results are many, because greedy
algorithms don’t often outperform other solutions, as shown by

The make-change problem solutions demonstrated earlier in this
chapter show how a change in setting can cause a greedy
algorithm to stop working.
The scheduling problem (described in the “Finding Out How
Greedy Can Be Useful ” section, later in this chapter) illustrates
how a greedy solution works perfectly with one worker, but don’t
expect it to work with more than one.
The Dijkstra shortest-path algorithm works only with edges
having positive weights. (Negative weights will cause the
algorithm to loop around some nodes indefinitely.)

https://jeremykun.com/2014/08/26/when-greedy-algorithms-are-perfect-the-matroid/
http://cstheory.stackexchange.com/questions/21367/does-every-greedy-algorithm-have-matroid-structure

Demonstrating that a greedy algorithm works the best is a hard
task, requiring a solid knowledge of mathematics. Otherwise, you
can devise a proof in a more empirical way by testing the greedy
solution against one of the following:

Against a known optimal solution, when the greedy algorithm
produces the optimal solution or you can change such a solution
by exchanging its elements into an equivalent best solution
(without any loss of performance or success). When a greedy
solution matches the result of an optimal solution, you know that
the greedy solution is equivalent and that it works best (this is
the exchange proof).
Against another algorithm when, as you see the greedy solution
unfolding, you notice that the greedy solution stays ahead of the
other algorithm; that is, the greedy solution always provides a
better solution at every step than is provided by another
algorithm.

 Even considering that it’s more the exception than a rule
that a successful greedy approach will determine the top
solution, greedy solutions often outperform other tentative
solutions. You may not always get the top solution, but the
solution will provide results that are good enough to act as a
starting point (as a minimum), which is why you should start
by trying greedy solutions first on new problems.

Considering NP complete problems
Usually you think of a greedy algorithm because other choices
don’t compute the solution you need in a feasible time. The
greedy approach suits problems for which you have many choices
and have to combine them. As the number of possible
combinations increases, complexity explodes and even the most
powerful computer available fails to provide an answer in a
reasonable time. For example, when attempting to solve a puzzle,
you could try to solve it by determining all the possible ways you

can fit the available pieces together. A more reasonable way is to
start solving the problem by choosing a single location and then
finding the best-fitting piece for it. Solving the puzzle this way
means using time to find the best fitting piece, but you don’t have
to consider that location again, reducing the total number of
pieces for each iteration.
Puzzle problems, in which the number of possible decisions can
become huge, are more frequent than you expect. Some
problems of this type have already been solved, but many others
aren’t, and we can’t even transform them (yet) into versions we
know how to solve. Until someone is smart enough to find a
generic solution for these problems, a greedy approach may be
the easiest way to approach them, provided that you accept that
you won’t always be getting the best solution but a roughly
acceptable one instead (in many cases).
These difficult problems vary in characteristics and problem
domain. Different examples of difficult problems are protein
unfolding (which can help cure cancer) or breaking strong
password encryption, such as the popular RSA cryptosystem (
http://blogs.ams.org/mathgradblog/2014/03/30/rsa/). In the
1960s, researchers found a common pattern for all of them: They
are all equally difficult to solve. This pattern is called the NP-
completeness theory (NP stands for nondeterministic polynomial).
In a sense, these problems distinguish themselves from others
because it’s not yet possible to find a solution in a reasonable
time —that is, in polynomial time.
Polynomial time means that an algorithm runs in powers of the
number of inputs (known as P problems). Linear time is
polynomial time because it runs O(n1). Also quadratic O(n2) and
cubic O(n3) complexities are polynomial time, and though they
grow quite fast, they don’t compare to NP-complete complexity,
which is usually exponential time, that is, O(cn). Exponential time
complexity makes it impossible to find a reasonable solution for
any of these problems using brute force. In fact if n is large
enough, you may easily have to try a number of solutions larger

http://blogs.ams.org/mathgradblog/2014/03/30/rsa/

than the number of atoms present in the known universe. The
hope of algorithm experts is that someone will find a way to solve
any of these problems in the future, thus opening the door to
solving all the NP-complete problems at one time. Solving NP-
complete problems is one of the “Millennium Prize Problems”
proposed by the Clay Mathematics Institute, which offers an
award of one million USD to anyone who can devise a solution (
http://www.claymath.org/millennium-problems/p-vs-np-problem).

 NP is a broad class of algorithmic problems that comprises
both P and NP-complete problems. Generally, NP problems
are difficult (the ones that require you to devise a smart
algorithm). P problems are solvable in polynomial time; NP-
complete problems are so hard to solve that the associated
algorithms run in exponential time. Fortunately, if you have a
solution for an NP-complete problem, you can easily check its
validity.

 Maybe you won’t solve any NP-complete problem using an
algorithm specifically designed to find an optimal solution.
However, you can still find a reasonable solution using
greedy algorithms.

Finding Out How Greedy Can
Be Useful

After discussing greedy algorithms generally, it’s illuminating to
describe some of them in detail, understanding how they work
and determine how to reuse their strategies for solving other
problems. The following sections review the Huffman coding
algorithm to provide more insight on the way it works to create
new efficient encoding systems. These sections also describe

http://www.claymath.org/millennium-problems/p-vs-np-problem

how a computer cache (an algorithm always found under the hood
of any computer) works. In addition, you discover how to schedule
tasks correctly to achieve deadlines and priorities. Production of
material goods strongly relies on greedy algorithms to schedule
resources and activities. Usually, activity algorithms appear at the
core of Material Requirements Planning (MRP) software, and they
help run a factory efficiently (
http://searchmanufacturingerp.techtarget.com/definition/Mater

ial-requirements-planning-MRP).

Arranging cached computer data
Computers are often processing the same data multiple times.
Obtaining data from disk or the Internet requires times and costs
computational time. Consequently, it’s useful to store often-used
data in local storage where it’s easier to access (and maybe
already preprocessed). A cache, which is usually a series of
memory slots or space on disk reserved for that need, fulfills the
purpose.
For instance, when reviewing your web browser’s history, you
likely notice that only a part of traffic is made of new websites,
whereas you spend a large amount of time and page requests on
sites you know well. Storing in cache some parts of commonly
seen websites (such as the header, background, some pictures,
and some pages that seldom change) can really improve your
web experience because it reduces the need to download data
again. All you need is the new data from the Internet because
most of what you want to see is already somewhere in your
computer. (The cache of a web browser is a disk directory.)
The problem isn’t new. In the 1960s, László Bélády, a Hungarian
computer scientist working at IBM Research, hypothesized that
the best way to store information in a computer for prompt reuse
is to know what data is needed in the future and for how long. It
isn’t possible to implement such forecasting in practice because
computer usage can be unpredictable and not predetermined.
Yet, as a principle, the idea of anticipating the future can inspire
an optimal replacement strategy, a greedy choice based on the

http://searchmanufacturingerp.techtarget.com/definition/Material-requirements-planning-MRP

idea of keeping the pages that you expect to use soon based on
previous requests to the cache. Bélády's optimal page
replacement policy (also known as the clairvoyant replacement
algorithm) works on a greedy principle: to discard data from the
cache whose next use will likely occur farthest in the future in
order to minimize the chance of discarding something you need
soon. To implement this idea, the algorithm follows these steps:

1. Fill the computer cache by recording data from
every request made. Only when the cache is full
do you start discarding past stuff to make room
for new data.

2. Define a method for determining recent usage.
This algorithm can use file date stamps or a
system of memory flags (which flags recently
used pages and clears all the flags after a certain
time) to make the determination.

3. When you have to fit new data, you discard data
that hasn’t been used recently from the cache.
The algorithm picks one piece of data randomly
among the ones not used.

For instance, if your cache has only four memory slots, and it is
filled by four alphabet letters that arrive in the following order:

A B C D

when a new letter is processed, such as the letter E, the computer
makes space for it by removing one of the letters that are less
likely to be requested at this point. In this example, good
candidates are A, B, or C (D is the most recent addition). The
algorithm will pick one slot randomly and evict its data from the
cache in order to let E in.

Competing for resources
When you want to achieve an objective, such as to create a
service or produce a material object, a common problem is
scheduling several competing activities that require exclusive
access to resources. Resources can include time or a production
machine. Examples of such situations abound in the real world,
ranging from scheduling your attendance at university courses to
arranging the supplies of an army, or from assembling a complex
product such as a car to organizing a computational job sequence
in a data center. Invariably, common goals in such situations are
to

Achieve getting the most jobs done in a certain amount of time
Manage jobs as quickly as possible, on average
Respect some strict priorities (hard deadlines)
Respect some priority indications (soft deadlines)

Job scheduling falls into two categories:

Jobs that are hard to solve properly and require advanced
algorithms to solve
Jobs that are easier to deal with and that can be solved by
simple greedy algorithms

Most of the scheduling you perform actually falls among those
solvable by greedy algorithms. For instance, managing jobs as
quickly as possible is a common requirement for industrial
production or the service industry when each job serves the
needs of a client and you want to do your best for all your clients.
Here’s how you can determine a context for such an algorithm:

You have a single machine (or worker) that can work out orders.
Orders arrive in batches, so you have many to choose from at a
time.
Orders differ in length, each requiring a different execution time.

For instance, you receive four jobs from four business customers
requiring eight, four, 12, and three hours, respectively, to execute.
Even though the total execution time remains the same, changing
the job-execution order changes the time when you complete the
jobs and dictates how long each business customer has to wait
before having its job done. The following sections consider
different methods for meeting business customer needs given
specific goals.

Addressing customer satisfaction
Business is about keeping customers happy. If you execute the
jobs in the order presented, the work takes 8+4+12+3=27 hours to
execute completely. Yet, the first customer will receive its job after
eight hours, the last one after 27 hours. In fact, the first job
completes in eight hours, the second in 8+4=12 hours, the third in
8+4+12=24 hours, the last in 8+4+12+3=27 hours.
If you aim at having all your customers happy and satisfied, you
should strive to minimize the average waiting time for each of
them. This measure is given by the average of the delivery times:
(8+12+24+27)/4=17.75 hours on average to wait for a job. To
reduce the average wait time, you could start simulating all the
possible combinations of order execution and recalculate the
estimate. This is feasible for a few jobs on a single machine, but if
you have hundreds of them on multiple machines, that becomes a
very heavy computational problem. A greedy algorithm can save
the day without much planning: just execute the shortest first. The
resulting average will be the smallest possible: (3+(3+4)+
(3+4+8)+(3+4+8+12))/4=13 hours on average.

 To obtain the average wait time, you take the average of
the cumulated sums of runtimes. If you instead take the
average of raw times, you obtain the average length of a
task, which doesn’t represent the customer’s waiting time.

The greedy principle is simple: Because you sum cumulative
times, if you start by running the longest tasks, you extend the
longest run to all successive execution times (because it is a
cumulative sum). If instead you start with the shortest jobs, you
draw the smallest times first, positively affecting the average (and
your customers’ level of satisfaction).

Meeting deadlines
Sometimes, more than just wanting to make your customers wait
less time, you also have to respect their time requirements,
meaning that you have deadlines. When you have deadlines, the
greedy mechanism changes. Now you don’t start from the
shortest task but with the task that you must deliver the earliest,
according to the principle the earliest, the better . This is the
problem of hard deadlines, and it’s a problem you can actually fail
to solve. (Some deadlines are simply impossible to meet.)

 If you try a greedy strategy and can’t solve the problem,
you can acknowledge that no solution to the required
deadline exists. When hard deadlines can’t work, you can try
to solve the problem using soft deadlines instead, meaning
that you have to respect a priority (executing certain tasks
first).

In this example, you have both the lengths of the tasks, as
discussed in the previous section, and you have a value (a weight
) that defines the task importance (larger weights, higher priority).
It’s the same problem, but this time you must minimize the
weighted average completion time. To achieve this goal, you
create a priority score by dividing the time lengths by the weights,
and you start with the tasks that have the lowest score. If a task
has the lowest score, it’s because it is high priority or very short.
For instance, reprising the previous example, you now have
tuples of both weights and lengths: (40,8), (30,4), (20,12), (10,3),
where 40 in the first tuple is a weight and 8 is a length. Divide

each length by the weight and you get priority scores of: 0.20,
0.13, 0.60, and 0.30. Start from the lowest-priority score and,
adding the lowest left priority score, you obtain a best schedule
that assures that you both minimize times and respect priorities:
(30,4), (40,8), (10,3), (20,12).

Revisiting Huffman coding
As seen in the previous chapter, Huffman coding can represent
data content in a more compact form by exploiting the fact that
some data (for instance certain characters of the alphabet) appear
more frequently in a data stream. By using encodings of different
length (shorter for the most frequent characters, longer for the
least frequent ones), the data consumes less space. Prof. Robert
M. Fano (Huffman’s professor) and Claude Shannon already
envisioned such a compression strategy but couldn’t find an
efficient way to determine an encoding arrangement that would
make it impossible to mistake one character for another.

 Prefix-free codes are necessary in order to avoid errors
when decoding the message. It means that no previously
used bit encoding should be used as the starting point of
another bit encoding. Huffman found a simple and workable
solution for implementing prefix-free codes using a greedy
algorithm. The solution to the prefix-free problem found by
Huffman is to transform the originally balanced tree (a data
structure discussed in Chapter 6) containing the fixed-length
encoding into an unbalanced tree, as shown in Figure 15-1 .

FIGURE 15-1: From a balanced tree (left) to an unbalanced tree (right).

An unbalanced tree has a special characteristic that each node
has only one branch that keeps on developing in other nodes and
branches, whereas the other branch terminates with an encoded
character. This characteristic assures that no previously used
encoding sequence can start a new sequence (graphically, a
branch terminating with an encoded character is a dead end).
Apart from graphically drafting the unbalanced structure, a greedy
algorithm can also construct an unbalanced tree. The idea is to
build the structure up from the root, starting with the least
frequently used characters. The algorithm creates the upper
levels of the tree by aggregating less frequent characters in
sequence until there are no more characters and you reach the
top.
To demonstrate the greedy recipe behind the algorithm, this
section provides a Python code example based on DNA. DNA is
represented as a sequence of the letters A, C, T, and G (the four
nucleotides present in all living beings). A good trick is to use just
two bits in order to represent each of the four letters, which is
already a good memory-saving strategy when compared to using
a full ASCII encoding (which is at least 7 bits).
The nucleotides aren’t uniformly distributed. The distribution
varies depending on what genes you study. The following table
shows a gene with an uneven distribution, allowing for a
predominance of A and C nucleotides.

Nucleotides Percentage Fixed Encoding Huffman EncodingNucleotides Percentage Fixed Encoding Huffman Encoding

A 40.5% 00 0

C 29.2% 01 10

G 14.5% 10 110

T 15.8% 11 111

Weighted bit average 2.00 1.90

By multiplying the number of bits of the two encodings by their
percentage and summing everything, you obtain the weighted
average of bits used by each of them. In this case, the result is
1.9 for the Huffman encoding versus 2.0 for the fixed encoding. It
means that you obtain a five percent bit saving in this example.
You could save even more space when having genes with an
even more unbalanced distribution in favor of some nucleotide.
The following example generates a random DNA sequence and
shows how the code systematically generates the encoding. (If
you change the seed value, the random generation of the DNA
sequences may lead to a different result, both in the distribution of
nucleotides and Huffman encoding.)

from heapq import heappush, heappop, heapify

from collections import defaultdict, Counter

from random import shuffle, seed

generator = ["A"]*6+["C"]*4+["G"]*2+["T"]*2

text = ""

seed(4)

for i in range(1000):

shuffle(generator)

text += generator[0]

print(text)

frequencies = Counter(list(text))

print(frequencies)

CAACCCCGACACGCCTCCATAGCCACAACAAGCAAAAAAGGC …

Counter({'A': 405, 'C': 292, 'T': 158, 'G': 145})

After making the data inputs ready to compress, the code
prepares a heap data structure (see the “Performing specialized
searches using a binary heap” section of Chapter 7 for details) to
arrange the results efficiently along the steps the algorithm takes.
The elements in the heap contain the frequency number of
nucleotides, the nucleotide characters, and its encoding. With a
log-linear time complexity, O(n*log(n)), a heap is the right
structure to use to order the results and allow the algorithm to
draw the two smallest elements quickly.

heap = ([[freq, [char, ""]] for char, freq in

frequencies.items()])

heapify(heap)

print(heap)

[[145, ['G', '']], [158, ['T', '']], [405, ['A', '']], [292, ['C', '']]]

When you run the algorithm, it picks the nucleotides with fewer
frequencies from the heap (the greedy choice). It aggregates
these nucleotides into a new element, replacing the previous two.
The process continues until the last aggregation reduces the
number of elements in the heap to one.

iteration = 0

while len(heap) > 1:

iteration += 1

lo = heappop(heap)

hi = heappop(heap)

print ('Step %i 1st:%s 2nd:%s' % (iteration, lo,hi))

for pair in lo[1:]:

pair[1] = '0' + pair[1]

for pair in hi[1:]:

 pair[1] = '1' + pair[1]

heappush(heap, [lo[0] + hi[0]] + lo[1:] + hi[1:])

Step 1 1st:[145, ['G', '']] 2nd:[158, ['T', '']]

Step 2 1st:[292, ['C', '']] 2nd:[303, ['G', '0'],

['T', '1']]

Step 3 1st:[405, ['A', '']] 2nd:[595, ['C', '0'],

['G', '10'], ['T', '11']]

As the aggregations put the nucleotides together, which
constitutes different levels of the unbalanced tree, their Huffman
encoding is systematically modified; adding a zero in front of the
encoding of the lowest frequent aggregate and adding one to the
second-lowest frequent one. In this way, the algorithm efficiently
replicates the unbalanced tree structure previously illustrated.

tree = sorted(heappop(heap)[1:], key=lambda p: (len(p[-

1]), p))

print ("Symbol\tWeight\tCode")

for e in tree:

print ("%s\t%s\t%s" % (e[0], frequencies[e[0]], e[1]))

Symbol Weight Code

A 405 0

C 292 10

G 145 110

T 158 111

The final step is to print the result, sorting it by the bit encoding
and showing the final symbol table generated.

Chapter 16
Relying on Dynamic

Programming
IN THIS CHAPTER

 Understanding what dynamic means when used with
programming

 Using memoization effectively for dynamic programming
 Discovering how the knapsack problem can be useful for

optimization
 Working with the NP-complete traveling salesman

problem

Instead of using brute force, which implies trying all possible
solutions to a problem, greedy algorithms provide an answer that
is quick and often satisfying. In fact, a greedy algorithm can
potentially solve the problem fully. Yet, greedy algorithms are also
limited because they make decisions that don’t consider the
consequences of their choices. Chapter 15 shows that you can’t
always solve a problem using a greedy algorithm. Therefore, an
algorithm may make an apparently optimal decision at a certain
stage, which later appears limiting and suboptimal for achieving
the best solution. A better algorithm, one that doesn’t rely on the
greedy approach, can revise past decisions or anticipate that an
apparently good decision is not as promising as it might seem.
This is the approach that dynamic programming takes.
Dynamic programming is an algorithm approach devised in the
1950s by Richard Ernest Bellman (an applied mathematician also
known for other discoveries in the field of mathematics and
algorithms, you can read more at
https://en.wikipedia.org/wiki/Richard_E._Bellman) that tests

https://en.wikipedia.org/wiki/Richard_E._Bellman

more solutions than a corresponding greedy approach. Testing
more solutions provides the ability to rethink and ponder the
consequences of decisions. Dynamic programming avoids
performing heavy computations thanks to a smart caching system
(a cache is a storage system collecting data or information) called
memoization, a term defined later in the chapter.
This chapter offers you more than a simple definition of dynamic
programming. It also explains why dynamic programming has
such a complicated name and how to transform any algorithm
(especially recursive ones) into dynamic programming using
Python and its function decorators (powerful tools in Python that
allow changing an existing function without rewriting its code). In
addition, you discover applications of dynamic programming to
optimize resources and returns, creating short tours between
places and comparing strings in an approximate way. Dynamic
programming provides a natural approach to dealing with many
problems you encounter while journeying through the world of
algorithms.

Explaining Dynamic
Programming

Dynamic programming is as effective as an exhaustive algorithm
(thus providing correct solutions), yet it is often as efficient as an
approximate solution (the computational time of many dynamic
programming algorithms is polynomial). It seems to work like
magic because the solution you need often requires the algorithm
to perform the same calculations many times. By modifying the
algorithm and making it dynamic, you can record the computation
results and reuse them when needed. Reusing takes little time
when compared to recalculating, thus the algorithm finishes the
steps quickly. The following sections discuss what dynamic
programming involves in more detail.

Obtaining a historical basis

You can boil dynamic programming down to having an algorithm
remember the previous problem results where you’d otherwise
have to perform the same calculation repeatedly. Even though
dynamic programming might appear to be quite complex, the
implementation is actually straightforward. However, it does have
some interesting historical origins.
Bellman described the name as the result of necessity and
convenience in his autobiography, In the Eye of the Hurricane. He
writes that the name choice was a way to hide the true nature of
his research at the RAND Corporation (a research and
development institution funded by both the U.S. government and
private financers) from Charles Erwin Wilson, the Secretary of
Defense under the Eisenhower presidency. Cloaking the true
nature of his research helped Bellman remain employed at the
RAND Corporation. You can read his explanation in more detail in
the excerpt at: http://smo.sogang.ac.kr/doc/dy_birth.pdf . Some
researchers don’t agree about the name source. For example,
Stuart Russell and Peter Norvig, in their book Artificial
Intelligence: A Modern Approach, argue that Bellman actually
used the term dynamic programming in a paper dating 1952,
which is before Wilson became Secretary in 1953 (and Wilson
himself was CEO of General Motors before becoming an engineer
involved in research and development).
Computer programming languages weren’t widespread during the
time that Bellman worked in operations research, a discipline that
applies mathematics to make better decisions when approaching
mainly production or logistic problems (but is also used for other
practical problems). Computing was at the early stages and used
mostly for planning. The basic approach of dynamic programming
is the same as linear programming, another algorithmic technique
(see Chapter 19) defined in those years when programming
meant planning a specific process to find an optimal solution. The
term dynamic reminds you that the algorithm moves and stores
partial solutions. Dynamic programming is a complex name for a
smart and effective technique to improve algorithm running times.

http://smo.sogang.ac.kr/doc/dy_birth.pdf

Making problems dynamic
Because dynamic programming takes advantage of repeated
operations, it operates well on problems that have solutions built
around solving subproblems that the algorithm later assembles to
provide a complete answer. In order to work effectively, a dynamic
programming approach uses subproblems nested in other
subproblems. (This approach is akin to greedy algorithms, which
also require an optimal substructure, as explained in Chapter 15 .)
Only when you can break down a problem into nested
subproblems can dynamic programming beat brute-force
approaches that repeatedly rework the same subproblems.

 As a concept, dynamic programming is a huge umbrella
covering many different applications because it isn’t really a
specific algorithm for solving a specific problem. Rather, it’s a
general technique that supports problem solving.

You can trace dynamic programming to two large families of
solutions:

Bottom-up: Builds an array of partial results that aggregate into
a complete solution
Top-down: Splits the problem into subproblems, starting from
the complete solution (this approach is typical of recursive
algorithms) and using memoization (defined in the next section)
to avoid repeating computations more than once

Typically, the top-down approach is more computationally efficient
because it generates only the subproblems necessary for the
complete solution. The bottom-up approach is more explorative
and, using trial and error, often obtains partial results that you
won’t use later. On the other hand, bottom-up approaches better
reflect the approach that you’d take in everyday life when facing a
problem (thinking recursively, instead, needs abstraction and
training before application). Both top-down and bottom-up

approaches aren’t all that easy to understand at times. That’s
because using dynamic programming transforms the way you
solve problems, as detailed in these steps:

1. Create a working solution using brute-force or
recursion. The solution works but it takes a long
time or won’t finish at all.

2. Store the results of subproblems to speed your
computations and reach a solution in a
reasonable time.

3. Change the way you approach the problem and
gain even more speed.

4. Redefine the problem approach, in a less intuitive
but more efficient way to obtain the greatest
advantage from dynamic programming.

Transforming algorithms using dynamic programming to make
them work efficiently makes them harder to understand. In fact,
you might look at the solutions and think they work by magic.
Becoming proficient in dynamic programming requires repeated
observations of existing solutions and some practical exercise.
This proficiency is worth the effort, however, because dynamic
programming can help you solve problems for which you have to
systematically compare or compute solutions.

 Dynamic programming is especially known for helping
solve (or at least make less time demanding) combinatorial
optimization problems, which are problems that require
obtaining combinations of input elements as a solution.
Examples of such problems solved by dynamic programming
are the traveling salesman and the knapsack problems,
described later in the chapter.

Casting recursion dynamically
The basis of dynamic programming is to achieve something as
effective as brute-force searching without actually spending all the
time doing the computations required by a brute-force approach.
You achieve the result by trading time for disk space or memory,
which is usually done by creating a data structure (a hash table,
an array, or a data matrix) to store previous results. Using lookup
tables allows you to access results without having to perform a
calculation a second time.

 The technique of storing previous function results and
using them instead of the function is memoization, a term you
shouldn’t confuse with memorization. Memoization derives
from memorandum, the Latin word for “to be remembered.”

 Caching is another term that you find used when talking
about memoization. Caching refers to using a special area of
computer memory to serve data faster when required, which
has more general uses than memoization.

To be effective, dynamic programming needs problems that
repeat or retrace previous steps. A good example of a similar
situation is using recursion, and the landmark of recursion is

calculating Fibonacci numbers. The Fibonacci sequence is simply
a sequence of numbers in which the next number is the sum of
the previous two. The sequence starts with 0 followed by 1. After
defining the first two elements, every following number in the
sequence is the sum of the previous ones. Here are the first
eleven numbers:

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

As with indexing in Python, counting starts from the zero position,
and the last number in the sequence is the tenth position. The
inventor of the sequence, the Italian mathematician Leonardo
Pisano, known as Fibonacci, lived in 1200. Fibonacci thought that
the fact that each number is the sum of the previous two should
have made the numbers suitable for representing the growth
patterns of a group of rabbits. The sequence didn’t work great for
rabbit demographics, but it offered unexpected insights into both
mathematics and nature itself because the numbers appear in
botany and zoology. For instance, you see this progression in the
branching of trees, in the arrangements of leaves in a stem, and
of seeds in a sunflower (you can read about this arrangement at
https://www.goldennumber.net/spirals/).

 Fibonacci was also the mathematician who introduced
Hindu-Arabic numerals to Europe, the system we daily use
today. He described both the numbers and the sequence in
his masterpiece, the Liber Abaci, in 1202.

You can calculate a Fibonacci number sequence using recursion.
When you input a number, the recursion splits the number into the
sum of the previous two Fibonacci numbers in the sequence. After
the first split, the recursion proceeds by performing the same task
for each element of the split, splitting each of the two numbers
into the previous two Fibonacci numbers. The recursion continues
splitting numbers into their sums, until it finally finds the roots of
the sequence, the numbers 0 and 1. Reviewing the two types of

https://www.goldennumber.net/spirals/

dynamic programming algorithm described in the previous
paragraph, this solution uses a top-down approach. The following
code shows the recursive approach in Python. (You can find this
code in the A4D; 16; Fibonacci.ipynb file on the Dummies site as
part of the downloadable code; see the Introduction for details.)

def fib(n, tab=0):

if n==0:

return 0

 elif n == 1:

return 1

else:

print ("lvl %i, Summing fib(%i) and fib(%i)" %

(tab, n-1, n-2))

return fib(n-1,tab+1) + fib(n-2,tab+1)

The code prints the splits generated by each recursion level. The
following output shows what happens when you call fib() with an
input value of 7 :

fib(7)

lvl 0, Summing fib(6) and fib(5)

lvl 1, Summing fib(5) and fib(4)

lvl 2, Summing fib(4) and fib(3)

lvl 3, Summing fib(3) and fib(2)

lvl 4, Summing fib(2) and fib(1)

lvl 5, Summing fib(1) and fib(0)

lvl 4, Summing fib(1) and fib(0)

lvl 3, Summing fib(2) and fib(1)

lvl 4, Summing fib(1) and fib(0)

lvl 2, Summing fib(3) and fib(2)

lvl 3, Summing fib(2) and fib(1)

lvl 4, Summing fib(1) and fib(0)

lvl 3, Summing fib(1) and fib(0)

lvl 1, Summing fib(4) and fib(3)

lvl 2, Summing fib(3) and fib(2)

lvl 3, Summing fib(2) and fib(1)

lvl 4, Summing fib(1) and fib(0)

lvl 3, Summing fib(1) and fib(0)

lvl 2, Summing fib(2) and fib(1)

lvl 3, Summing fib(1) and fib(0)

13

The output shows 20 splits. Some numbers appear more than
once as part of the splits. It seems like an ideal case for applying
dynamic programming. The following code adds a dictionary,
called memo , which stores previous results. After the recursion
splits a number, it checks whether the result already appears in
the dictionary before starting the next recursive branch. If it finds
the result, the code uses the precomputed result, as shown here:

memo = dict()

def fib_mem(n, tab=0):

 if n==0:

return 0

elif n == 1:

return 1

else:

if (n-1, n-2) not in memo:

print ("lvl %i, Summing fib(%i) and fib(%i)" %

(tab, n-1, n-2))

memo[(n-1,n-2)] = fib_mem(n-1,tab+1

) + fib_mem(n-2,tab+1)

return memo[(n-1,n-2)]

Using memoization, the recursive function doesn’t compute 20
additions but rather uses just six, the essential ones used as
building blocks to solve the initial requirement for computing a
certain number in the sequence:

fib_mem(7)

lvl 0, Summing fib(6) and fib(5)

lvl 1, Summing fib(5) and fib(4)

lvl 2, Summing fib(4) and fib(3)

lvl 3, Summing fib(3) and fib(2)

lvl 4, Summing fib(2) and fib(1)

lvl 5, Summing fib(1) and fib(0)

13

Looking inside the memo dictionary, you can find the sequence of
sums that define the Fibonacci sequence starting from 1 :

memo

{(1, 0): 1, (2, 1): 2, (3, 2): 3, (4, 3): 5, (5, 4): 8,

(6, 5): 13}

Leveraging memoization

Memoization is the essence of dynamic programming. You often
find the need to use it when scripting an algorithm yourself. When
creating a function, whether recursive or not, you can easily
transform it using a simple command, a decorator, which is a
special Python function that transforms functions. To see how to
work with a decorator, start with a recursive function, stripped of
any print statement:

def fib(n):

if n==0:

return 0

elif n == 1:

return 1

else:

return fib(n-1) + fib(n-2)

When using Jupyter, you use IPython built-in magic commands,
such as timeit , to measure the execution time of a command on
your computer:

%timeit -n 1 -r 1 print(fib(36))

14930352

1 loop, best of 1: 15.5 s per loop

The output shows that the function requires about 15 seconds to
execute. However, depending on your machine, function
execution may require more or less time. No matter the speed of
your computer, it will certainly take a few seconds to complete,
because the Fibonacci number for 36 is quite huge: 14930352.
Testing the same function for higher Fibonacci numbers takes
even longer.

Now it’s time to see the effect of decorating the function. Using
the lru_cache function from the functools package can radically
reduce execution time. This function is available only when using
Python3. It transforms a function by automatically adding a cache
to hold its results. You can also set the cache size by using the
maxsize parameter (lru_cache uses a cache with an optimal
replacement strategy, as explained in the Chapter 15). If you set
maxsize=None , the cache uses all the available memory, without
limits.

from functools import lru_cache

@lru_cache(maxsize=None)

def fib(n):

if n==0:

return 0

elif n == 1:

return 1

else:

return fib(n-1) + fib(n-2)

Note that the function is the same as before. The only addition is
the imported lru_cache (
https://docs.python.org/3.5/library/functools.html), which
you call by putting an @ symbol in front of it. Any call with the @
symbol in front is an annotation and calls the lru_cache function
as a decorator of the following function.

 Using decorators is an advanced technique in Python.
Decorators don’t need to be explained in detail in this book,
but you can still take advantage of them because they are so

https://docs.python.org/3.5/library/functools.html

easy to use. (You can find additional information about
decorators at
http://simeonfranklin.com/blog/2012/jul/1/python-

decorators-in-12-steps/ and
https://www.learnpython.org/en/Decorators .) Just
remember that you call them using annotations (@ +
decorator function’s name) and that you put them in front of
the function you want to transform. The original function is fed
into the decorator and comes out transformed. In this
example of a simple recursive function, the decorator outputs
a recursion function enriched by memoization.

It’s time to test the function speed, as before:

%timeit -n 1 -r 1 print(fib(36))

14930352

1 loop, best of 1: 60.6 µs per loop

Even if your execution time is different, it should decrease from
seconds to milliseconds. Such is the power of memoization. You
can also explore how your function uses its cache by calling the
cache_info method from the decorated function:

fib.cache_info()

CacheInfo(hits=34, misses=37, maxsize=None, currsize=37)

The output tells you that there are 37 function calls that don’t find
an answer in the cache. However, 34 other calls did find a useful
answer in the cache.

http://simeonfranklin.com/blog/2012/jul/1/python-decorators-in-12-steps/
https://www.learnpython.org/en/Decorators

 Just by importing lru_cache from functools and using it in
annotations in front of your heavy-duty algorithms in Python,
you will experience a great increase in performance (unless
they are greedy algorithms).

Discovering the Best Dynamic
Recipes

Even dynamic programming has limitations. The biggest limitation
of all relates to its main strength: If you keep track of too many
partial solutions to improve running time, you may run out of
memory. You may have too many partial solutions in store
because the problem is complex, or simply because the order you
use to produce partial solutions is not an optimal one and too
many of the solutions don’t fit the problem requirements.
The order used to solve subproblems is something you must
track. The order you choose should make sense for the efficient
progression of the algorithm (you solve something that you’re
going to reuse immediately) because the trick is in smart reuse of
previously built building blocks. Therefore, using memoization
may not provide enough benefit. Rearranging your problems in
the right order can improve the results. You can learn how to
correctly order your subproblems by learning directly from the
best dynamic programming recipes available: knapsack, traveling
salesman, and approximate string search, as described in the
sections that follow.

Looking inside the knapsack
The knapsack problem has been around since at least 1897 and
is likely the work of Tobias Dantzig (
https://www.britannica.com/biography/Tobias-Dantzig). In this
case, you have to pack up your knapsack with as many items as

https://www.britannica.com/biography/Tobias-Dantzig

possible. Each item has a value, so you want maximize the total
value of the items you carry. The knapsack has a threshold
capacity or you have a limit of weight you can carry, so you can’t
carry all the items.
The general situation fits any problem that involves a budget and
resources, and you want to allocate them in the smartest way
possible. This problem setting is so common that many people
consider the knapsack problem to be one of the most popular
algorithmic problems. The knapsack problem finds applications in
computer science, manufacturing, finance, logistics, and
cryptography. For instance, real-world applications of the
knapsack problem are how to best load a cargo ship with goods
or how to optimally cut raw materials, thus creating the least
waste possible.

 Even though it’s such a popular problem, this book doesn’t
explore the knapsack problem again because the dynamic
approach is incontestably one of the best solving
approaches. It’s important to remember, though, that in
specific cases, for such as when the items are quantities,
other approaches, such as using greedy algorithms, may
work equally well (or even better).

This section shows how to solve the 1-0 knapsack problem . In
this case, you have a finite number of items and can put each of
them into the knapsack (the one status) or not (the zero status).
It’s useful to know there are other possible variants of the
problem:

Fractional knapsack problem: Deals with quantities. For
example, an item could be kilograms of flour, and you must pick
the best quantity. You can solve this version using a greedy
algorithm.
Bounded knapsack problem: Puts one or more copies of the
same item into the knapsack. In this case, you must deal with

minimum and maximum number requirements for each item you
pick.
Unbounded knapsack problem: Puts one or more copies of
the same item into the knapsack without constraints. The only
limit is that you can’t put a negative number of items into the
knapsack.

The 1-0 knapsack problem relies on a dynamic programming
solution and runs in pseudo-polynomial time (which is worse than
just polynomial time) because the running time depends on the
number of items (n) multiplied by the number of fractions of the
knapsack capacity (W) that you use on building your partial
solution. When using big-O notation, you can say that the running
time is O(nW) . The brute-force version of the algorithm instead
runs in O(2 n) . The algorithm works like this:

1. Given the knapsack capacity, test a range of
smaller knapsacks (subproblems). In this case,
given a knapsack capable of carrying 20
kilograms, the algorithm tests a range of
knapsacks carrying from 0 kilograms to 20
kilograms.

2. For each item, test how it fits in each of the
knapsacks, from the smallest knapsack to the
largest. At each test, if the item can fit, choose
the best value from the following:
1. The solution offered by the previous smaller

knapsack
2. The test item, plus you fill the residual space

with the best valued solution previously that
filled that space

The code runs the knapsack algorithm and solves the problem
with a set of six items of different weight and value combinations
as well as a 20-kg knapsack:

Item 1 2 3 4 5 6

Weight in kg 2 3 4 4 5 9

Profit in 100 USD 3 4 3 5 8 10

Here is the code to execute the dynamic programming procedure
described. (You can find this code in the A4D; 16; Knapsack.ipynb
file on the Dummies site as part of the downloadable code; see
the Introduction for details.)

import numpy as np

values = np.array([3,4,3,5,8,10])

weights = np.array([2,3,4,4,5,9])

items = len(weights)

capacity = 20

memo = dict()

for size in range(0, capacity+1, 1):

memo[(-1, size)] = ([], 0)

for item in range(items):

for size in range(0, capacity+1, 1):

if the object doesn't fit in the knapsack

if weights[item] > size:

memo[item, size] = memo[item-1, size]

else:

if the objcts fits, we check what can best fit

in the residual space

previous_row, previous_row_value = memo[

item-1, size-weights[item]]

if memo[item-1, size][1] > values[item

] + previous_row_value:

memo[item, size] = memo[item-1, size]

else:

memo[item, size] = (previous_row + [item

], previous_row_value + values[item])

The best solution is the cached result when the code tests
inserting the last item with the full capacity (20 kg) knapsack:

best_set, score = memo[items-1, capacity]

print ('The best set %s weights %i and values %i'

% (best_set, np.sum((weights[best_set])), score))

The best set [0, 3, 4, 5] weights 20 and values 26

You may be curious to know what happened inside the
memoization dictionary:

print (len(memo))

147

print (memo[2, 10])

([0, 1, 2], 10)

It contains 147 subproblems. In fact, six items multiplied by 21
knapsacks is 126 solutions, but you have to add another 21 naive
solutions to allow the algorithm to work properly (naive means
leaving the knapsack empty), which increases the number of
subproblems to 147.
You may find solving 147 subproblems daunting (even though
they’re blazingly fast to solve). Using brute force alone to solve
the problem means solving fewer subproblems in this particular
case. Solving fewer subproblems requires less time, a fact you
can test by solving the accounts using Python and the comb
function:

from scipy.misc import comb

objects = 6

np.sum([comb(objects,k+1) for k in range(objects)])

It takes testing 63 combinations to solve this problem. However, if
you try using more objects, say, 20, running times look much
different because there are now 1,048,575 combinations to test.
Contrast this huge number with dynamic programming, which
requires solving just 20*21+21 = 441 subproblems.

 This is the difference between quasi-polynomial and
exponential time. (As a reminder, the book discusses
exponential complexity in Chapter 2 when illustrating the Big
O Notation. In Chapter 15 , you discover polynomial time as
part of the discussion about NP complete problems.) Using
dynamic programming becomes fruitful when your problems

are complex. Toy problems are good for learning but they
can’t demonstrate the full extent of employing smart algorithm
techniques such as dynamic programming. Each solution
tests what happens after adding a certain item when the
knapsack has a certain size. The preceding example adds
item 2 (weight=4, value=3) and outputs a solution that puts
items 0, 1, and 2 into the knapsack (total weight 9 kg) for a
value of 10. This intermediate solution leverages previous
solutions and is the basis for many of the following solutions
before the algorithm reaches its end.

 You may wonder whether the result offered by the script is
really the best one achievable. Unfortunately, the only way to
be sure is to know the right answer, which means running a
brute-force algorithm (when feasible in terms of running time
on your computer). This chapter doesn’t use brute force for
the knapsack problem but you’ll see a brute-force approach
used in the traveling salesman problem that follows.

Touring around cities
The traveling salesman problem (TSP for short) is at least as
widely known as the knapsack problem. You use it mostly in
logistics and transportation (such as the derivative Vehicle
Routing Problem shown at http://neo.lcc.uma.es/vrp/vehicle-
routing-problem/), so it doesn’t see as much use as the
knapsack problem. The TSP problem asks a traveling
salesperson to visit a certain number of cities and then come back
to the initial starting city (because it’s circular, it’s called a tour)
using the shortest path possible.
TSP is similar to graph problems, but without the edges because
the cities are all interconnected. For this reason, TSP usually
relies on a distance matrix as input, which is a table listing the
cities on both rows and columns. The intersections contain the
distance from a row city to a column city. TSP problem variants

http://neo.lcc.uma.es/vrp/vehicle-routing-problem/

may provide a matrix containing time or fuel consumption instead
of distances.
TSP is an NP-hard problem, but you can solve the problem using
various approaches, some approximate (heuristic) and some
exact (dynamic programming). The problem, as with any other
NP-hard problem, is the running time. Although you can count on
solutions that you presume optimally solve the problem (you can’t
be certain except when solving short tours), you can’t know for
sure with problems as complex as touring the world:
http://www.math.uwaterloo.ca/tsp/world/ . The following
example tests various algorithms, such as brute force, greedy,
and dynamic programming, on a simple tour of six cities,
represented as a weighted graph (see Figure 16-1). (You can find
this code in the A4D; 16; TSP.ipynb file on the Dummies site as
part of the downloadable code; see the Introduction for details.)

import numpy as np

import networkx as nx

import matplotlib.pyplot as plt

%matplotlib inline

D = np.array([[0,20,16,25,24],[20,0,12,12,27],

[16,12,0,10,14],[25,12,10,0,20],

[24,27,14,20,0]])

Graph = nx.Graph()

Graph.add_nodes_from(range(D.shape[0]))

for i in range(D.shape[0]):

for j in range(D.shape[0]):

http://www.math.uwaterloo.ca/tsp/world/

Graph.add_edge(i,j,weight=D[i,j])

np.random.seed(2)

pos=nx.shell_layout(Graph)

nx.draw(Graph, pos, with_labels=True)

labels = nx.get_edge_attributes(Graph,'weight')

nx.draw_networkx_edge_labels(Graph,pos,

edge_labels=labels)

plt.show()

FIGURE 16-1: Cities represented as nodes in a weighted graph.

After defining the D (distance) matrix, the example tests the first,
simplest solution to determine the shortest tour starting and
ending from city zero. This solution relies on brute force, which
generates all the possible order permutations between the cities,
leaving out zero. The distance from zero to the first city and from
the last city of the tour to zero is added after the total distance of
each solution is calculated. When all the solutions are available,
you simply choose the shortest.

from itertools import permutations

best_solution = [None, np.sum(D)]

for solution in list(permutations(range(1,D.shape[0]))):

 start, distance = (0,0)

for next_one in solution:

distance += D[start, next_one]

start = next_one

distance += D[start,0]

if distance <= best_solution[1]:

best_solution = [[0]+list(solution)+[0], distance]

print ('Best solution so far: %s kms' %

str(best_solution)[1:-1])

Best solution so far: [0, 1, 2, 3, 4, 0], 86 kms

Best solution so far: [0, 1, 3, 2, 4, 0], 80 kms

Best solution so far: [0, 4, 2, 3, 1, 0], 80 kms

The brute-force algorithm quickly determines the best solution and
its symmetric path. However, as a result of the small problem size,
you obtain a prompt answer because, given four cities, just 24
possible solutions exist. As the number of cities increases, the
number of permutations to test becomes intractable, even after
removing the symmetric paths (which halves the permutations)
and using a fast computer. For example, consider the number of
computations when working with 13 cities plus the starting/ending
point:

from scipy.special import perm

print (perm(13,13)/2)

3113510400.0

Dynamic programming can simplify the running time. The Held–
Karp algorithm (also known as the Bellman–Held–Karp algorithm
because Bellman published it in 1962, the same year as Michael
Held and Richard Karp) can cut time complexity to O(2 n n 2) . It’s
still exponential complexity, yet it requires less time than applying
the exhaustive enumeration of all tours by brute force.

 Approximate and heuristic algorithms can provide fast and
useful results (even though the result may not always reflect
the optimal solution, it’s usually good enough). You see TSP
again later in the book (see Chapters 18 and 20), when
dealing with local search and heuristics.

To find the best TSP solution for n cities, starting and ending from
city 0, the algorithm proceeds from city 0 and keeps records of the
shortest path possible, considering different settings. It always
uses a different ending city and touches only a city subset. As the
subsets become larger, the algorithm learns how to solve the
problem efficiently. Therefore, when solving TSP for five cities, the
algorithm first considers solutions involving two cities, then three
cities, then four, and finally five (sets have dimensions 1 to n).
Here are the steps the algorithm uses:

1. Initialize a table to track the distances from city 0
to all other cities. These sets contain only the
initial city and a destination city because they
represent the initial step.

2. Consider every possible set size, from two to the
number of tour cities. This is a first iteration, the
outer loop.

3. Inside the outer loop, for each set size, consider
every possible combination of cities of that size,
not containing the initial city. This is an inner
iteration.

4. Inside the inner iteration (Step 3), for every
available combination, consider each city inside
the combination as the ending city. This is
another inner iteration.

5. Inside the inner iteration (Step 4), given a
different destination city, determine the shortest
path connecting the cities in the set from the city
that starts the tour (city 0). In finding the shortest
path, use any useful, previously stored
information, thus applying dynamic programming.
This step saves computations and provides the
rationale for working by growing subsets of cities.
Reusing previously solved subproblems, you find
the shorter tours by adding to a previous shortest
path the distance necessary to reach the
destination city. Given a certain set of cities, a
specific initial city, and a specific destination city,
the algorithm stores the best path and its length.

6. When all the iterations end, you have as many
different shortest solutions as n-1 cities, with each
solution covering all the cities but ending at a
different city. Add a closing point, the city 0, to
each one to conclude the tour.

7. Determine the shortest solution and output it as
the result.

 The Python implementation of this algorithm isn’t very
simple because it involves some iterations and manipulating
sets. It’s an exhaustive search reinforced by dynamic
programming and relies on an iterative approach with subsets
of cities and with candidates to add to them. The following
commented Python example explores how this solution
works. You can use it to calculate customized tours (possibly
using cities in your region or county as entries in the distance
matrix). The script uses advanced commands such as
frozenset (a command that makes a set usable as a
dictionary key) and operators for sets in order to achieve the
solution.

from itertools import combinations

memo = {(frozenset([0, idx+1]), idx+1): (dist, [0,idx+1])

 for idx,dist in enumerate(D[0][1:])}

cities = D.shape[0]

for subset_size in range(2, cities):

Here we define the size of the subset of cities

new_memo = dict()

for subset in [frozenset(comb) | {0} for comb in

combinations(range(1, cities),

subset_size)]:

We enumerate the subsets having a certain subset

size

for ending in subset - {0}:

We consider every ending point in the subset

all_paths = list()

for k in subset:

We check the shortest path for every

element in the subset

if k != 0 and k!=ending:

length = memo[(subset-{ending},k)][0

] + D[k][ending]

index = memo[(subset-{ending},k)][1

] + [ending]

all_paths.append((length, index))

new_memo[(subset, ending)] = min(all_paths)

In order to save memory, we just record the previous

subsets since we won't use shorter ones anymore

memo = new_memo

Now we close the cycle and get back to the start of the

tour, city zero

tours = list()

for distance, path in memo.values():

distance += D[path[-1],0]

tours.append((distance, path+[0]))

We can now declare the shortest tour

distance, path = min(tours)

print ('Shortest dynamic programming tour is: %s, %i kms'

% (path, distance))

 Shortest dynamic programming tour is:

[0, 1, 3, 2, 4, 0], 80 kms

Approximating string search
Determining when one word is similar to another isn’t always
simple. Words may differ slightly because of misspelling or
different ways of writing the word itself, thus rendering any exact
match impossible. This isn’t just a problem that raises interesting
issues during a spell check, though. For example, putting similar
text strings together (such as names, addresses, or code
identifiers) that refer to the same person may help create a one-
customer view of a firm’s customer base or help a national
security agency locate a dangerous criminal.

 Approximating string searches has many applications in
machine translation, speech recognition, spell checking and
text processing, computational biology, and information
retrieval. Thinking about the manner in which sources input
data into databases, you know there are many mismatches
between data fields that a smart algorithm must solve.
Matching a similar, but not precisely equal, series of letters is
an ability that finds uses in fields such as genetics when
comparing DNA sequences (expressed by letters
representing nucleotides G,A,T, and C) to determine whether
two sequences are similar and how they resemble each
other.

Vladimir Levenshtein, a Russian scientist expert in information
theory (see http://ethw.org/Vladimir_I._Levenshtein for details),
devised a simple measure (named after him) in 1965 that
computes the grade of similarity between two strings by counting
how many transformations it takes to change the first string into
the second. The Levenshtein distance (also known as edit
distance) counts how many changes are necessary in a word:

Deletion: Removing a letter from a word

http://ethw.org/Vladimir_I._Levenshtein

Insertion: Inserting a letter into a word and obtaining another
word
Substitution: Replacing one letter with another, such as
changing the p letter into an f letter and obtaining fan from pan

 Each edit has a cost, which Levenshtein defines as 1 for
each transformation. However, depending on how you apply
the algorithm, you could set the cost differently for deletion,
insertion, and substitution. For example, when searching for
similar street names, misspellings are more common than
outright differences in lettering, so substitution might incur
only a cost of 1, and deletion or insertion might incur a cost of
2. On the other hand, when looking for monetary amounts,
similar values quite possibly will have different numbers of
numbers. Someone could enter $123 or $123.00 into the
database. The numbers are the same, but the number of
numbers is different, so insertion and deletion might cost less
than substitution (a value of $124 is not quite the same as a
value of $123, so substituting 3 for 4 should cost more).

You can render the counting algorithm as a recursion or an
iteration. However, it works much faster using a bottom-up
dynamic programming solution, as described in the 1974 paper
“The String-to-string Correction Problem,” by Robert A. Wagner
and Michael J. Fischer (
http://www.inrg.csie.ntu.edu.tw/algorithm2014/homework/Wagner

-74.pdf). The time complexity of this solution is O(mn) , where n
and m are the lengths in letter of the two words being compared.
The following code computes the number of changes required to
turn the word Saturday into Sunday by using dynamic
programming with a matrix (see Figure 16-2) to store previous
results (the bottom-up approach). (You can find this code in the
A4D; 16; Levenshtein.ipynb file on the Dummies site as part of the
downloadable code; see the Introduction for details.)

http://www.inrg.csie.ntu.edu.tw/algorithm2014/homework/Wagner-74.pdf

import numpy as np

import pandas as pd

s1 = 'Saturday'

s2 = 'Sunday'

m = len(s1)

n = len(s2)

D = np.zeros((m+1,n+1))

D[0,:] = list(range(n+1))

D[:,0] = list(range(m+1))

for j in range(1, n+1):

for i in range(1, m+1):

if s1[i-1] == s2[j-1]:

D[i, j] = D[i-1, j-1]

else:

D[i, j] = np.min([

D[i-1, j] + 1, # a deletion

D[i, j-1] + 1, # an insertion

D[i-1, j-1] + 1 # a substitution

])

print ('Levenshtein distance is %i' % D[-1,-1])

Levenshtein distance is 3

image
FIGURE 16-2: Transforming Sunday into Saturday.

You can plot or print the result using the following command:

pd.DataFrame(D,index=list(' '+s1), columns=list(' '+s2))

The algorithm builds the matrix, placing the best solution in the
last cell. After building the matrix using the letters of the first string
as rows and the letters of the second one as columns, it proceeds
by columns, computing the differences between each letter in the
rows compared to those in the columns. In this way, the algorithm
makes a number of comparisons equivalent to the multiplication of
the number of the letters in the two strings. As the algorithm
continues, it accounts for the result of previous comparisons by
looking at the solutions present in the previous matrix cells and
choosing the solution with the least number of edits.
When the matrix iteration completes, the resulting number
represents the minimum number of edits necessary for the
transformation to occur — the smaller the number, the more
similar the two strings. Retracing from the last cell to the first one
by moving to the previous cell with the least value (if more
directions are available, it prefers to move diagonally) hints at
what transformations to execute (see Figure 16-3):

A diagonal backward movement hints at a substitution in the first
string if the letters on the row and column differ (otherwise, no
edit needs to be done)
An upward movement dictates a deletion of a letter in the first
string
A left backward move indicates that an insertion of a new letter
should be done on the first string

FIGURE 16-3: Highlighting what transformations are applied.

In this example, the backtracking points out the following
transformations (two deletions and one substitution):

Saturday => Sturday => Surday => Sunday

Chapter 17
Using Randomized Algorithms
IN THIS CHAPTER

 Understanding how randomness can prove smarter than
more reasoned ways

 Introducing key ideas about probability and its
distributions

 Discovering how a Monte Carlo simulation works
 Learning about Quickselect and revisiting Quicksort

algorithms

Random number generators are a key function in computing and
play an important role in the algorithmic techniques discussed in
this part of the book. Randomization isn’t just for gaming or for
gambling, but people employ it to solve a large variety of
problems. Randomization sometimes proves more effective
during optimization than other techniques and in obtaining the
right solution than more reasoned ways. It helps different
techniques work better, from local search and simulated annealing
to heuristics, cryptography, and distributed computing (with
cryptography for concealing information being the most critical).
You can find randomization embedded into unexpected everyday
tools. The robot vacuum cleaner Roomba (designed by a
company founded by the Massachusetts Institute of Technology
[MIT]) cleans rooms without having a precise plan and a blueprint
of the place. The tool works most of the time by wandering
randomly around the room and, according to the original patent,
after hitting an obstacle, it turns a random number of degrees and
starts in a new direction. Yet Roomba always completes its
cleaning chores. (If you are curious about how it operates, you

can consult http://www.explainthatstuff.com/how-roomba-
works.html .)
From a historical perspective, randomized algorithms are a recent
innovation, because the first algorithm of this kind, the closest-pair
algorithm (which determines the pair of points, among many on a
geometric plane, with the smallest distance between the points
without having to compare them all) was developed by Michael
Rabin in 1976. That first algorithm was followed the next year by
the randomized primality test (an algorithm for determining
whether a number is a composite or a probable prime number), by
Robert M. Solovay and Volker Strassen. Soon after, applications
in cryptography and distributed computing made randomization
more popular and the subject of intense research, although the
field is still new and uncharted.
Randomization makes finding a solution simpler, trading time
against complexity. Simplifying tasks isn’t its only advantage:
Randomization saves resources and operates in a distributed way
with a reduced need for communication and coordination. This
chapter introduces you to the information needed to understand
how enriching your algorithms with randomness can help solve
problems (the chapter uses the term injecting randomness, as if it
were a cure). Even more applications wait in the following
chapters, so this chapter also discusses key topics such as
probability basics, probability distributions, and Monte Carlo
simulations.

Defining How Randomization
Works

Randomization relies on the capability by your computer to
generate random numbers, which means creating the number
without a plan. Therefore, a random number is unpredictable, and
as you generate subsequent random numbers, they shouldn’t
relate to each other.

http://www.explainthatstuff.com/how-roomba-works.html

 However, randomness is hard to achieve. Even when you
throw dice, the result can’t be completely unexpected
because of the way you hold the dice, the way you throw
them, and the fact that the dice aren’t perfectly shaped.
Computers aren’t good at creating random numbers, either.
They generate randomness by using algorithms or
pseudorandom tables (which work by using a seed value as a
starting point, a number equivalent to an index) because a
computer can’t create a truly random number. Computers are
deterministic machines; everything inside them responds to a
well-defined response pattern, which means that it imitates
randomness in some way.

Considering why randomization is
needed
Even if a computer can’t create true randomness, streams of
pseudorandom numbers (numbers that appear as random but that
are somehow predetermined) can still make the difference in
many computer science problems. Any algorithm that employs
randomness in its logic can appear as a randomized algorithm, no
matter whether randomness determines its results, improves
performance, or mitigates the risk of failing by providing a solution
in certain cases.
Usually you find randomness employed in selecting input data,
the start point of the optimization, or the number and kind of
operations to apply to the data. When randomness is a core part
of the algorithm logic and not just an aid to its performance, the
expected running time of the algorithm and even its results may
become uncertain and subject to randomness, too; for instance,
an algorithm may provide different, though equally good, results
during each run. It’s therefore useful to distinguish between kinds
of randomized solutions, each one named after iconic gambling
locations:

Las Vegas: These algorithms are notable for using random
inputs or resources to provide the correct problem answer every
time. Obtaining a result may take an uncertain amount of time
because of its random procedures. An example is the Quicksort
algorithm.
Monte Carlo: Because of their use of randomness, Monte Carlo
algorithms may not provide a correct answer or even an answer
at all, although these outcomes seldom happen. Because the
result is uncertain, a maximum number of trials in their running
time may bind them. Monte Carlo algorithms demonstrate that
algorithms do not necessarily always successfully solve the
problems they are supposed to. An example is the Solovay–
Strassen primality test.
Atlantic City: These algorithms run in polynomial time,
providing a correct problem answer at least 75 percent of the
time. Monte Carlo algorithms are always fast but not always
correct, and Las Vegas algorithms are always correct but not
always fast. People therefore think of Atlantic City algorithms as
halfway between the two because they are usually both fast and
correct. This class of algorithms was introduced in 1982 by J.
Finn in an unpublished manuscript entitled Comparison of
Probabilistic Test for Primality. Created for theoretical reasons to
test for prime numbers, this class comprises hard-to-design
solutions, thus very few of them exist today.

Understanding how probability
works
Probability tells you the likelihood of an event, which you normally
express as a number. In this book, and generally in the field of
probabilistic studies, the probability of an event is measured in the
range between 0 (no probability that an event will occur) and 1
(certainty that an event will occur). Intermediate values, such as
0.25 or 0.75, indicate that the event will happen with a certain
frequency under conditions that should lead to that event (referred
to as trials). Even if a numeric range from 0 to 1 doesn’t seem
intuitive at first, working with probability over time makes the

reason for using such a range easier to understand. When an
event occurs with probability 0.25, you know that out of 100 trials,
the event will happen 0.25 * 100 = 25 times.
For instance, when the probability of your favorite sports team
winning is 0.75, you can use the number to determine the
chances of success when your team plays a game against
another team. You can even get more specific information, such
as the probability of winning a certain tournament (your team has
a 0.65 probability of winning a match in this tournament) or
conditioned by another event (when a visitor, the probability of
winning for your team decreases to 0.60).
Probabilities can tell you a lot about an event, and they’re helpful
for algorithms, too. In a randomized algorithmic approach, you
may wonder when to stop an algorithm because it should have
reached a solution. It’s good to know how long to look for a
solution before giving up. Probabilities can help you determine
how many iterations you may need. The discussion of the 2-
satisfiability (o 2-SAT) algorithm in Chapter 18 provides a working
example of using probabilities as stopping rules for an algorithm.

 You commonly hear about probabilities as percentages in
sports and economics, telling you that an event occurs a
certain number of times after 100 trials. It’s exactly the same
probability no matter whether you express it as 0.25 or 25
percent. That’s just a matter of conventions. In gambling, you
even hear about odds, which is another way of expressing
probability, where you compare the likelihood of an event (for
example, having a certain horse win the race) against not
having the event happen at all. In this case, you express 0.25
as 25 against 75 or in any other way resulting in the same
ratio.

You can multiply a probability for a number of trials and get an
estimated number of occurrences of the event, but by doing the
inverse, you can empirically estimate a probability. Perform a

certain number of trials, observe each of them, and count the
number of times an event occurs. The ratio between the number
of occurrences and the number of trials is your probability
estimate. For instance, the probability 0.25 is the probability of
picking a certain suit when choosing a card randomly from a deck
of cards. French playing cards (the most widely used deck; it also
appears in America and Britain) provide a classic example for
explaining probabilities. (The Italians, Germans, and Swiss, for
example, use decks with different suits, which you can read about
at
http://healthy.uwaterloo.ca/museum/VirtualExhibits/Playing%20

Cards/decks/index.html .) The deck contains 52 cards equally
distributed into four suits: clubs and spades, which are black, and
diamonds and hearts, which are red. If you want to determine the
probability of picking an ace, you must consider that, by picking
cards from a deck, you will observe four aces. Your trials at
picking the cards are 52 (the number of cards), therefore the
answer in terms of probability is 4/52 = 0.077.

 You can get a more reliable estimate of an empirical
probability by using a larger number of trials. When using a
few trials, you may not get a correct estimate of the event
probability because of the influence of chance. As the
number of trials grows, event observations will get nearer to
the true probability of the event itself. The principle there is a
generating process behind events. To understand how the
generating process works, you need many trials. Using trials
in such a way is also known as sampling from a probabilistic
distribution.

Understanding distributions
Probability distribution is another idea that is important for working
out better algorithms. A distribution is a table of values or a
mathematical function that links every possible value of an input
to the probability that such values could occur. Probability

http://healthy.uwaterloo.ca/museum/VirtualExhibits/Playing%20Cards/decks/index.html

distributions are usually (but not solely) represented in charts
whose abscissa axis represents the possible values of an input
and whose ordinal axis represents the probability of occurrence.
Most statistical models rely on the normal distributions, a
distribution which is symmetric and has a characteristic bell
shape. Representing a normal distribution in Python (as shown in
Figure 17-1) requires a few lines of code. (You can find this code
in the A4D; 17; Probability.ipynb file on the Dummies site as part
of the downloadable code; see the Introduction for details.)

import numpy as np

from numpy.random import normal, uniform

import matplotlib.pyplot as plt

%matplotlib inline

normal_distribution = normal(size=10000) * 25 + 100

weights = np.ones_like(normal_distribution

) / len(normal_distribution)

plt.hist(normal_distribution, bins=20, weights=weights)

plt.xlabel("Value")

plt.ylabel("Probability")

plt.show()

FIGURE 17-1: A histogram of a normal distribution.

The plotted distribution represents an input of 10,000 numbers
whose average is about 100. Each bar in the histogram
represents the probability that a certain range of values will
appear in the input. If you sum all the bars, you obtain the value of
1, which comprises all the probabilities expressed by the
distribution.
In a normal distribution, most of the values are around the mean
value. Therefore, if you pick a random number from the input, you
most likely get a number around the center of the distribution.
However; though less likely, you may also draw a number far from
the center. If your algorithm works better by using the mean than it
does with any other number, picking a number at random makes
sense and may be less trouble than devising a smarter way to
draw values from your input.
Another important distribution mentioned in this chapter is the
uniform distribution. You can represent it using some Python code
(the output appears in Figure 17-2), too:

uniform_distribution = uniform(size=10000) * 100

weights = np.ones_like(uniform_distribution

) / len(uniform_distribution)

plt.hist(uniform_distribution, bins=20, weights=weights)

plt.xlabel("Value")

plt.ylabel("Probability")

plt.show()

FIGURE 17-2: A histogram of a uniform distribution.

The uniform distribution is noticeably different from the normal
distribution because each number has the same probability of
being in the input as any other. Consequently, the histogram bars
are all roughly of the same size, and picking a number in a
uniform distribution means giving all the numbers the same
chance to appear. It’s a way to avoid systematically picking the
same groups of numbers when your algorithm works better with
varied inputs. For instance, uniform distributions work well when
your algorithm works fine with certain numbers, so-so with most,

and badly with a few others, and you prefer to pick numbers
randomly to avoid picking a series of bad numbers. This is the
strategy used by the Quickselect and randomized Quicksort
algorithms, described later in the chapter.
Because algorithms need numeric inputs, knowing their
distribution can help make them work smarter. It’s not just the
initial distribution that counts. You can also take advantage of how
data distribution changes as the algorithm proceeds. As an
example of how a changing distribution can improve your
algorithm, the following code shows how to guess a card in a
French deck by random choice:

numbers = ['Ace','2','3','4','5','6','7','8','9','10',

'Jack','Queen','King']

seeds = ['Clubs','Spades','Diamonds','Hearts']

deck = [s+'_'+n for n in numbers for s in seeds]

from random import choice

my_cards = deck.copy()

guessed = 0

for card in deck:

if card == choice(my_cards):

guessed += 1

print ('Guessed %i card(s)' % guessed)

Guessed 1 card(s)

This strategy brings few results, and on average, you’ll guess a
single card in all 52 trials. In fact, for each trial, you have a 1/52
probability of guessing the correct card, which amounts to 1 after

picking all the cards: (1/52) * 52 = 1. Instead, you can change this
simple random algorithm by discarding the cards that you’ve seen
from your possible choices:

from random import choice

my_cards = deck.copy()

guessed = 0

for card in deck:

if card == choice(my_cards):

guessed += 1

else:

my_cards.pop(my_cards.index(card))

print ('Guessed %i card(s)' % guessed)

Guessed 1 card(s)

Now, on average, you’ll guess the right card more often because
as the deck decreases, your chances of guessing increases and
you’ll likely guess correctly more often when nearing the end of
the game. (Your chances are 1 divided by the number of cards left
in the deck).

 Counting cards can provide an advantage in card games.
A team of MIT students used card counting and probability
estimates to win huge amounts in Las Vegas until the
practice was banned from Casinos. The story even inspired a
2008 film entitled 21, starring Kevin Spacey. You can read
more about the story at: http://www.bbc.com/news/magazine-
27519748 .

http://www.bbc.com/news/magazine-27519748

Simulating the use of the Monte
Carlo method
Calculating probabilities, apart from the operations discussed
earlier in this chapter, is beyond the scope of this book.
Understanding how an algorithm incorporating randomness works
is not an easy task, even when you know how to compute
probabilities because it may be the result of blending many
different probability distributions. However, a discussion of the
Monte Carlo method casts light on the results of the most complex
algorithms and helps you understand how they work. This method
sees use in both mathematics and physics to solve many
problems. For instance, scientists such as Enrico Fermi and
Edward Teller used Monte Carlo simulations on specially devised
supercomputers during the Manhattan project (which developed
the atomic bomb during World War II) to accelerate their
experiments. You can read more about this use at
http://www.atomicheritage.org/history/computing-and-

manhattan-project .

 Don’t confuse the Monte Carlo method with the Monte
Carlo algorithm. The Monte Carlo method is a way to
understand how a probability distribution affects a problem,
whereas, as discussed previously, the Monte Carlo algorithm
is a randomized algorithm that isn’t guaranteed to reach a
solution.

In a Monte Carlo simulation, you repeatedly sample the algorithm
results. You store a certain number of results and then calculate
statistics, such as the mean, and visualize them as a distribution.
For instance, if you want to understand better how reducing the
size of the deck you’re drawing from can help you achieve better
results (as in the previous Python script), you iterate the algorithm
a few times and record the success rate:

http://www.atomicheritage.org/history/computing-and-manhattan-project

import numpy as np

samples = list()

for trial in range(1000):

my_cards = deck.copy()

guessed = 0

for card in deck:

if card == choice(my_cards):

guessed += 1

else:

my_cards.pop(my_cards.index(card))

samples.append(guessed)

Running a Monte Carlo simulation may take a few seconds. The
time required depends on the speed of the algorithm, the size of
the problem, and the number of trials. However, when sampling
from distributions, the more trials you make, the more stable the
result. This example performs 1,000 trials. You can both estimate
and visualize the expected result (see Figure 17-3) using the
following code:

plt.hist(samples, bins=8)

plt.xlabel("Guesses")

plt.ylabel("Frequency")

plt.show()

print ('On average you can expect %0.2f guesses each run'

% np.mean(samples))

On average you can expect 3.15 guesses each run

FIGURE 17-3: Displaying the results of a Monte Carlo simulation.

Observing the resulting histogram, you can determine that you get
a result of three in about 300 runs out of the 1,000 trials, which
gives three the highest probability of happening. Interestingly you
never got a result of zero, but it is also rare to score seven or
more hits. Later examples in the chapter use Monte Carlo
simulations to understand how more sophisticated randomized
algorithms work.

Putting Randomness into your
Logic

Here are some of many reasons to include randomness in the
logic of your algorithm:

It makes algorithms work better and provide smarter solutions.
It requires fewer resources, in terms of memory and
computations.

It creates algorithms that have a distributed output with little or
no supervision.

In the next chapter, which is dedicated to local search, you see
how randomization and probability can prove helpful when it’s
difficult to determine what direction your algorithm should take.
The examples in the sections that follow demonstrate how
randomization helps to quickly find values in a certain position in
your data input and how relying on randomness can speed up
sorting.

Calculating a median using
Quickselect
Calculating a statistical measure, the median, can prove
challenging when you work on unsorted input lists. In fact, a
median relies on the position of your data when it is ordered:

If the data inputs have an odd number of elements, the median
is exactly the middle value.
If the data inputs have an even number of elements, the median
is the average of the pair of middle numbers in the ordered input
list.

 A median is like a mean, a single value that can represent
a distribution of values. The median, based on the input
vector element order, isn’t influenced much by the values
present in your list. It’s simply the middle value. Instead, the
values present at the head and tail of the input can influence
the mean when they’re extremely small or large. This
robustness makes the median very helpful in many situations
when using statistics. A simple example of a median
calculation using Python functions helps you understand this
measure. (You can find this code in the A4D; 17;
Quickselect.ipynb file on the Dummies site as part of the
downloadable code; see the Introduction for details.)

from random import randint, random, choice

import numpy as np

import sys

sys.setrecursionlimit(1500)

n = 501

series = [randint(1,25) for i in range(n)]

print ('Median is %0.1f' % np.median(series))

Median is 14.0

The code creates a list of 501 elements and obtains the list
median using the median function from the NumPy package. The
reported median is actually the middle point of the ordered list,
which is the 251st element:

print ('251st element of the ordered series is %0.1f' %

sorted(series)[250])

251st element of the ordered series is 14.0

Ordering the list and extracting the necessary element
demonstrates how median works. Because ordering is involved in
calculating a median, you can expect a best running time of
O(n*log(n)) . By using randomization provided by the Quickselect
algorithm, you can get an even better result, a running time of
O(n) . Quickselect works recursively, which is why you must set a
higher recursion limit in Python, given a list and the position of the
value needed from an ordered list. The value index is called k,
and the algorithm is also known as the largest kth value algorithm.
It uses the following steps to obtain a result:

1. Determine a pivot number in the data list and split
the list into two parts, a left list whose numbers
are less than the pivot number, and a right list
whose numbers are higher.

2. Determine the length of each list. When the
length of the left list is larger than the kth position,
the median value is inside the left part. The
algorithm applies itself recursively to just that list.

3. Compute the number of pivot number duplicates
in the list (subtract from the length of the list the
length of the left and right sides).

4. Determine whether the number of duplicates is
more than k.

1. When this condition is true, it means that the
algorithm has found the solution because the
kth position is contained in the duplicates (it’s
the pivot number).

2. When this condition isn’t true, remove the
number of duplicates from k and apply the
result recursively to the right side, which must
contain the value of the kth position.

Now that you understand the process, you can look at some code.
The following example shows how to implement a Quickselect
algorithm.

def quickselect(series, k):

pivot = choice(series)

left, right = list(),list()

for item in series:

if item < pivot:

left.append(item)

if item > pivot:

right.append(item)

length_left = len(left)

if length_left > k:

return quickselect(left, k)

k -= length_left

duplicates = len(series) - (length_left + len(right))

if duplicates > k:

return float(pivot)

k -= duplicates

 return quickselect(right, k)

quickselect(series, 250)

14.0

The algorithm works well because it keeps reducing the problem
size. It works best when the random pivot number is drawn nearer
to the kth position (the stopping rule is that the pivot number is the
value in the kth position). Unfortunately, because you can’t know
the kth position in the unordered list, drawing randomly by using a
uniform distribution (each element in the list has the same chance
of being chosen) is the best solution because the algorithm
eventually finds the right solution. Even when random chance
doesn’t work in the algorithm’s favor, the algorithm keeps on
reducing the problem, thus getting more chances to find the
solution, as demonstrated earlier in the chapter when guessing
the cards randomly picked from a deck. As the deck gets smaller,
guessing the answer gets easier. The following code shows how
to use Quickselect to determine the median of a list of numbers:

def median(series):

if len(series) % 2 != 0:

return quickselect(series, len(series)//2)

else:

left = quickselect(series, (len(series)-1) // 2)

right = quickselect(series, (len(series)+1) // 2)

return (left + right) / 2

median(series)

14.0

Doing simulations using Monte
Carlo
As part of understanding the Quickselect algorithm, it pays to
know how it works internally. By setting a counter inside the
quickselect function, you can check performance under different
conditions using a Monte Carlo simulation:

def quickselect(series, k, counter=0):

pivot = choice(series)

left, right = list(),list()

for item in series:

if item < pivot:

 left.append(item)

if item > pivot:

right.append(item)

counter += len(series)

length_left = len(left)

if length_left > k:

return quickselect(left, k, counter)

k -= length_left

duplicates = series.count(pivot)

if duplicates > k:

return float(pivot), counter

k -= duplicates

return quickselect(right, k, counter)

The first experiment tries to determine how many operations the
algorithm needs, on average, to find the median of an input list of
1001 numbers:

results = list()

for run in range(1000):

n = 1001

series = [randint(1,25) for i in range(n)]

median,count = quickselect(series, n//2)

assert(median==np.median(series))

results.append(count)

print ("Mean operations: %i" % np.mean(results))

Mean operations: 2764

Displaying the results on a histogram (see Figure 17-4) reveals
that the algorithm computes from two to four times the size of the
input, with three times being the most likely number of processed
computations.

import matplotlib.pyplot as plt

%matplotlib inline

plt.hist(results, bins='auto')

plt.xlabel("Computations")

plt.ylabel("Frequency")

plt.show()

FIGURE 17-4: Displaying the results of a Monte Carlo simulation on Quickselect.

If on average it takes about three times the size of the input,
Quickselect is providing good performance. However, you may
wonder whether the proportion between inputs and computations
will hold when the input size grows. As seen when studying NP-
complete problems, many problems explode when the input size
grows. You can prove this theory by using another Monte Carlo
simulation on top of the previous one and plotting the output, as
shown in Figure 17-5 .

input_size = [501, 1001, 5001, 10001, 20001, 50001]

computations = list()

for n in input_size:

results = list()

for run in range(1000):

series = [randint(1, 25) for i in range(n)]

median,count = quickselect(series, n//2)

assert(median==np.median(series))

results.append(count)

computations.append(np.mean(results))

plt.plot(input_size, computations, '-o')

plt.xlabel("Input size")

plt.ylabel("Number of computations")

plt.show()

FIGURE 17-5: Displaying Monte Carlo simulations as input grows.

 Completing the computations from this example may take
up to ten minutes (some Monte Carlo simulations may be
quite time consuming), but the result helps you visualize what
it means to work with an algorithm that works with linear time.
As the input grows (represented in abscissa), the
computations (represented on the ordinal axis) grow
proportionally, making the growth curve a perfect line.

Ordering faster with Quicksort
Chapter 7 explains ordering algorithms, the true foundations of all
the modern computer-based algorithmic knowledge. The
Quicksort algorithm, which can run in logarithmic time but
sometimes fails and produces results in quadratic time under ill-
conditioned inputs, will surely amaze you. This section explores
the reasons why this algorithm may fail and provides an effective

solution by injecting randomness into it. You start by examining
the following code:

def quicksort(series, get):

try:

global operations

operations += len(series)

except:pass

if len(series) <= 3:

return sorted(series)

pivot = get(series)

duplicates = series.count(pivot)

left, right = list(),list()

for item in series:

if item < pivot:

left.append(item)

 if item > pivot:

right.append(item)

return quicksort(left, get) + [pivot

] * duplicates + quicksort(right, get)

This is another implementation of the algorithm from Chapter 7 .
However, this time the code extracts the function that decides the
pivot the algorithm uses to recursively split the initial list. The
algorithm decides the split by taking the first list value. It also
tracks how many operations it takes to complete the ordering
using the operations global variable, which is defined, reset, and

accessed as a counter outside the function. The following code
tests the algorithm, under unusual conditions, requiring it to
process an already ordered list. Note its performance:

series = list(range(25))

operations = 0

sorted_list = quicksort(series, choose_leftmost)

print ("Operations: %i" % operations)

Operations: 322

In this case, the algorithm takes 322 operations to order a list of
25 elements, which is horrid performance. Using an already
ordered list causes the problem because the algorithm splits the
list into two lists: an empty one and another one with the residual
values. It has to repeat this unhelpful split for all the unique values
present in the list. Usually the Quicksort algorithm works fine
because it works with unordered lists, and picking the leftmost
element is equivalent to randomly drawing a number as the pivot.
To avoid this problem, you can use a variation of the algorithm
that provides a true random draw of the pivot value.

def choose_random(l): return choice(l)

series = [randint(1,25) for i in range(25)]

operations = 0

sorted_list = quicksort(series, choose_random)

print ("Operations: %i" % operations)

Operations: 81

Now the algorithm performs its task using a lower number of
operations, which is exactly the running time n * log(n) that is 25
* log(25) = 80.5 .

Chapter 18
Performing Local Search

IN THIS CHAPTER
 Determining how to perform a local search on an NP-hard

problem
 Working with heuristics and neighboring solutions
 Solving the 2-SAT problem with local search and

randomization
 Discovering that you have many tricks to apply to a local

search

When dealing with an NP-hard problem, a problem for which no
known solution has a running complexity less than exponential
(see the NP-completeness theory discussion in Chapter 15), you
have a few alternatives worth trying. Based on the idea that NP-
class problems require some compromise (such as accepting
partial or nonoptimal results), the following options offer a solution
to this otherwise intractable problem:

Identify special cases under which you can solve the problem
efficiently in polynomial time using an exact method or a greedy
algorithm. This approach simplifies the problem and limits the
number of solution combinations to try.
Employ dynamic programming techniques (described in Chapter
16) that improve on brute-force search and reduce the
complexity of the problem.
Compromise and sketch an approximate algorithm that finds a
partial, close-to-optimal solution. When you’re satisfied with a
partial solution, you cut the algorithm’s running time short.
Approximate algorithms can be

Greedy algorithms (as discussed in Chapter 15)

Local search using randomization or some other heuristic
technique (the topic of the present chapter)
Linear programming (the topic of Chapter 19)

Choose a heuristic or a meta-heuristic (a heuristic that helps you
determine which heuristic to use) that works well for your
problem in practice. However, it has no theoretical guarantee
and tends to be empiric.

Understanding Local Search
Local search is a general approach to solving problems that
comprises a large range of algorithms, which will help you escape
the exponential complexities of many NP problems. A local search
starts from an imperfect problem solution and moves away from it,
a step at a time. It determines the viability of nearby solutions,
potentially leading to a perfect solution, based on random choice
or an astute heuristic (no exact method is involved).

 A heuristic is an educated guess about a solution, such as
a rule of thumb that points to the direction of a desired
outcome but can’t tell exactly how to reach it. It’s like being
lost in an unknown city and having people tell you to go a
certain way to reach your hotel (but without precise
instructions) or just how far you are from it. Some local
search solutions use heuristics, so you find them in this
chapter. Chapter 20 delves into the full details of using
heuristics to perform practical tasks.

You have no guarantee that a local search will arrive at a problem
solution, but your chances do improve from the starting point
when you provide enough time for the search to run its
computations. It stops only after it can’t find any further way to
improve the solution it has reached.

Knowing the neighborhood

Local search algorithms iteratively improve from a starting
solution, moving one step at a time through neighboring solutions
until they can’t improve the solution any further. Because local
search algorithms are as simple and intuitive as greedy
algorithms, designing a local search approach to an algorithmic
problem is not difficult. The key is defining the correct procedure:

1. Start with an existing solution (usually a random
solution or a solution from another algorithm).

2. Search for a set of possible new solutions within
the current solution’s neighborhood, which
constitutes the candidates’ list .

3. Determine which solution to use in place of the
current solution based on the output of a heuristic
that accepts the candidates’ list as input.

4. Continue performing Steps 2 and 3 until you see
no further improvement on the solution, which
means that you have the best solution available.

 Although easy to design, local search solutions may not
find a solution in a reasonable time (you can stop the process
and use the current solution) or produce a minimum quality
solution. You can employ some tricks of the trade to ensure
that you get the most out of this approach.

At the start of the local search, you pick an initial solution. If you
decide on a random solution, it’s helpful to wrap the search in
repeated iterations in which you generate different random start
solutions. Sometimes, arriving at a good final solution depends on
the starting point. If you start from an existing solution to be
refined, plugging the solution into a greedy algorithm may prove to

be a good compromise in fitting a solution that doesn’t take too
long to produce.
After choosing a starting point, define the neighborhood and
determine its size. Defining a neighborhood requires figuring the
smallest change you can impose on your solution. If a solution is
a set of elements, all the neighboring solutions are the sets in
which one of the elements mutates. For instance, in the traveling
salesman problem (TSP), neighboring solutions could involve
changing the ending cities of two (or more) trips, as shown in
Figure 18-1 .

FIGURE 18-1: Switching ending trips in a TSP problem may bring better results.

Based on how you create the neighborhood, you may have a
smaller or a larger candidates’ list. Larger lists require more time
and computations but, contrary to short lists, may offer more
opportunities for the process to end earlier and better. List length
involves a trade-off that you refine by using experimentation after
each test to determine whether enlarging or shrinking the
candidate list brings an advantage or a disadvantage in terms of
time to complete and solution quality.

Base the choice of the new solution on a heuristic and, given the
problem, decide on the best solution. For instance, in the TSP
problem, use the trip switches that shorten the total tour length the
most. In certain cases, you can use a random solution in place of
a heuristic (as you discover in the SAT-2 problem in this chapter).
Even when you have a clear heuristic, the algorithm could find
multiple best solutions. Injecting some randomness could make
your local search more efficient. When faced with many solutions,
you can safely choose one randomly.

 Ideally, in a local search, you get the best results when
you run multiple searches, injecting randomness as much as
you can into the start solution and along the way as you
decide the next process step. Let the heuristic decide only
when you see a clear advantage to doing so. Local search
and randomness are good friends.

Your search has to stop at a certain point, so you need to choose
stopping rules for the local search. When your heuristic can’t find
good neighbors anymore or it can’t improve solution quality (for
instance, computing a cost function, as it happens in TSP, by
measuring the total length of the tour). Depending on the problem,
if you don’t create a stopping rule, your search may go on forever
or take an unacceptably long time. In case you can’t define a
stopping, just limit the time spent looking for solutions or count the
number of trials. When counting trials, you can decide that it’s not
worth going on because you calculate the probability of success
and at a certain point, the probability of success becomes too
small.

Presenting local search tricks
Local search tracks the current solution and moves to neighboring
solutions one at a time until it finds a solution (or can’t improve on

the present solution). It presents some key advantages when
working on NP-hard problems because it

Is simple to devise and execute
Uses little memory and computer resources (but searches
require running time)
Finds acceptable or even good problem solutions when starting
from a less-than-perfect solution (neighboring solutions should
create a path to the final solution)

 You can see the problems that a local search can solve as
a graph of interconnected solutions. The algorithm traverses
the graph, moving from node to node looking for the node
that satisfies the task requirements. Using this perspective, a
local search takes advantage of graph exploration algorithms
such as depth-first search (DFS) or breadth-first search
(BFS), both discussed in Chapter 9 .

Local search provides a viable way to find acceptable solutions to
NP-hard problems. However, it can’t work properly without the
right heuristic. Randomization can provide a good match with
local search, and it helps by using

Random sampling: Generating solutions to start
Random walk: Picking a random solution that neighbors the
current one. (You find more on random walks in the “Solving 2-
SAT using randomization ” section, later in this chapter.)

Randomization isn’t the only heuristic available. A local search
can rely on a more reasoned exploration of solutions using an
objective function to get directions (as in hill-climbing optimization)
and avoid the trap of so-so solutions (as in simulated annealing
and Tabu Search). An objective function is a computation that
can assess the quality of your solution by outputting a score
number. If you need higher scores in hill climbing, you have a

maximization problem; if you are looking for smaller score
numbers, you have a problem of minimization.

Explaining hill climbing with n-
queens
You can easily find analogies of the techniques employed by local
search because many phenomena imply a gradual transition from
one situation to another. Local search isn’t just a technique
devised by experts on algorithms but is actually a process that
you see in both nature and human society. In society and science,
for instance, you can view innovation as a local search of the next
step among the currently available technologies:
https://www.technologyreview.com/s/603366/mathematical-model-

reveals-the-patterns-of-how-innovations-arise/ . Many
heuristics derive from the physical world, taking inspiration from
the force of gravity, the fusion of metals, the evolution of DNA in
animals, and the behavior of swarms of ants, bees, and fireflies
(the paper at https://arxiv.org/pdf/1003.1464.pdf explains the
Lévy-Flight Firefly algorithm).
Hill climbing takes inspiration from the force of gravity. It relies on
the observation that as a ball rolls down a valley, it takes the
steepest descent, and when it climbs a hill, it tends to take the
most direct upward direction to reach the top. Gradually, one step
after the other, no matter whether it’s climbing up or down, the ball
arrives at its destination, where proceeding higher or lower isn’t
possible.
In local search, you can mimic the same procedure successfully
using an objective function, a measurement that evaluates the
neighboring solutions and determines which one improves on the
current one. Using the hill-climbing analogy, having an objective
function is like feeling the inclination of the terrain and determining
the next best move. From the current position, a hiker evaluates
each direction to determine the terrain’s slope. When the goal is
to reach the top, the hiker chooses the direction with the greatest
upward slope to reach the top. However, that’s just the ideal

https://www.technologyreview.com/s/603366/mathematical-model-reveals-the-patterns-of-how-innovations-arise/
https://arxiv.org/pdf/1003.1464.pdf

situation; hikers often encounter problems during a climb and
must use other solutions to circumnavigate them.
An objective function is similar to a greedy criterion (see Chapter
5). It’s blind with respect to its final destination, so it can
determine direction but not detect obstacles. Think about the
effect of blindness when climbing the mountains — it’s difficult to
say when a hiker reaches the top. Flat terrain that lacks any
opportunities for upward movement could indicate that the hiker
reached the top. Unfortunately, a flat spot can also be a plain, an
elbow, or even a hole the hiker happened to fall into. You can’t be
sure because the hiker can’t see.
The same problem happens when using a local search guided by
a hill-climbing heuristic: It pursues progressively better neighbor
solutions until it can’t find a better solution by checking the
solutions that exist around the current one. At this point, the
algorithm declares it found the solution. It also says that it has
found a global solution, even though, as illustrated in Figure 18-2 ,
it may have simply found a local maximum, a solution that’s the
best around because it’s surrounded by worse solutions. It’s still
possible to find a better solution through further exploration.

FIGURE 18-2: Local search explores the landscape by hill climbing.

An example of hill climbing in action (and of the risks of getting
stuck in a local maximum or in a local minimum when you’re
descending, as in this example) is the n-queens puzzle, first
created by the chess expert Max Bezzel, in 1848, as a challenge
for chess lovers. In this problem, you have a number of queens
(this number is n) to place on a chessboard of n x n dimensions.
You must place them so that no queen is threatened by any other.
(In chess, a queen can attack by any direction by row, column, or
diagonal.)

 This is really a NP-hard problem. If you have eight queens
to place on a 8 x 8 chessboard, there are 4,426,165,368
different ways to place them but only 92 configurations solve
the problem. Clearly, you can’t solve this problem using brute
force or luck alone. Local search solves this problem in a very
simple way using hill climbing:

1. Place the n queens randomly on the chessboard
so that each one is on a different column (no two
queens on the same column).

2. Evaluate the next set of solutions by moving each
queen one square up or down in its column. This
step requires 2*n moves.

3. Determine how many queens are attacking each
other after each move.

4. Determine which solution has the fewest queens
attacking each other and use that solution for the
next iteration.

5. Perform Steps 4 and 5 until you find a solution.

Unfortunately, this approach works only about 14 percent of the
time because it gets stuck in a chessboard configuration that
won’t allow any further improvement 86 percent of the time. (The
number of queens under attack won’t diminish for all 2*n moves
available as next solutions.) The only way you get away from such
a block is to restart the local search from scratch by choosing
another random starting configuration of the queens on the
chessboard. Figure 18-3 shows a successful solution.

FIGURE 18-3: An 8-queen puzzle solved.

In spite of this weakness, hill-climbing algorithms are used
everywhere, especially in artificial intelligence and machine
learning. Neural networks that recognize sounds or images,
power mobile phones, and motivate self-driving cars mostly rely
on a hill-climbing optimization called gradient descent.
Randomized starts and random injections in the hill-climbing
procedure make it possible to escape any local solution and reach
the global maximum. Both simulated annealing and Tabu Search
are smart ways to use random decisions in hill climbing.

Discovering simulated annealing
At a certain point in the search, if your objective function stops
giving you the right indications, you can use another heuristic to
control the situation and try to find a better path to a better task
solution. This is how both simulated annealing and Tabu Search
work: They provide you with an emergency exit when needed.
Simulated annealing take its name from a technique in metallurgy,
which heats the metal to a high temperature and then slowly cools

it to soften the metal for cold working and to remove internal
crystalline defects (see
http://www.brighthubengineering.com/manufacturing-

technology/30476-what-is-heat-treatment/ for details on this
metal-working process). Local search replicates this idea by
viewing the solution search as an atomic structure that changes to
improve its workability. The temperature is the game changer in
the optimization process. Just as high temperatures make the
structure of a material relax (solids melt and liquid evaporate at
high temperatures), so high temperatures in a local search
algorithm induce relaxation of the objective function, allowing it to
prefer worse solutions to better ones. Simulated annealing
modifies the hill-climbing procedure, keeping the objective
function for neighbor solution evaluation but allowing it to
determine the search solution choice in a different way:

1. Obtain a temperature expressed as probability.
(The Gibbs-Boltzmann physics function is a
formula that converts temperature to probability.
An explanation of this function is beyond the
scope of this book, but you can explore it at:
http://www.iue.tuwien.ac.at/phd/binder/node87.

html .)
2. Set a temperature schedule. The temperature

decreases at a certain rate as time passes and
the search runs.

3. Define a starting solution (using random sampling
or another algorithm) and start a loop. As the loop
proceeds, the temperature decreases.

4. Stop the optimization when the temperature is
zero.

5. Propose the current result as the solution.

http://www.brighthubengineering.com/manufacturing-technology/30476-what-is-heat-treatment/
http://www.iue.tuwien.ac.at/phd/binder/node87.html

At this point, you must iterate the search for solutions. For each
step in the previous iteration, between the preceding Steps 3 and
4, do the following:

1. List the neighboring solutions and choose one at
random.

2. Set the neighboring solution as the current
solution when the neighboring solution is better
than the current one.

3. Otherwise, pick a random number between 0 and
1 based on a threshold probability associated
with the actual temperature and determine
whether it’s less than the threshold probability:

If it’s less, set the neighboring solution as the
current solution (even if it’s worse than the
current solution, according to the objective
function).
If it’s more, keep the current solution.

Simulated annealing is a smart way to improve hill climbing
because it avoids having the search stopped at a local solution.
When the temperature is high enough, the search might use a
random solution and find another way to a better optimization.
Because the temperature is higher at the beginning of the search,
the algorithm has a chance of injecting randomness into the
optimization. As the temperature cools to zero, less and less
chance exists for picking a random solution, and the local search
proceeds as in hill climbing. In TSP, for instance, the algorithm
achieves simulated annealing by challenging the present solution
at high temperatures by

Choosing a segment of the tour randomly and traversing it in the
opposite direction

Visiting a city earlier or afterward in the tour, leaving the order of
visit to the other cities the same

If the resulting adjustments worsen the tour’s length, the algorithm
keeps or rejects them according to the temperature in the
simulated annealing process.

Avoiding repeats using Tabu Search
Tabu is an ancient word from Polynesian Tongan that says certain
things can’t be touched because they’re sacred. The word tabu
(which is spelled as taboo in English) passed from anthropological
studies to the everyday language to indicate something that is
prohibited. In local search optimization, it’s common to become
stuck in a neighborhood of solutions that don’t offer any
improvement; that is, it’s a local solution that appears as the best
solution but is far from being the solution you want. Tabu search
relaxes some rules and enforces others to offer a way out of local
minima and help you reach better solutions.
The Tabu Search heuristics wraps objective functions and works
its way along many neighboring solutions. It intervenes when you
can’t proceed because the next solutions don’t improve on your
objective. When such happens, Tabu Search does the following:

Allows use of a pejorative solution for a few times to see
whether moving away from the local solution can help the
search find a better path to the best solution.
Remembers the solutions that the search tries and forbids it
from using them anymore, thus assuring that the search doesn’t
loop between the same solutions around the local solution
without finding an escape route.
Creates a long-term or short-term memory of Tabu solutions by
modifying the length of the queue used to store past solutions.
When the queue is full, the heuristic drops the oldest Tabu to
make space for the new one.

You can relate Tabu Search to caching and memoization (see
Chapter 16) because it requires the algorithm to track its steps to

save time and avoid retracing previously used solutions. In the
TSP, it can help when you try optimizing your solution by
swapping the visit order of two or more cities by avoiding repeat
solution sets.

Solving satisfiability of Boolean
circuits

As a practical view of how a local search works, this example
delves into circuit satisfiability, a classical NP-complete problem. It
uses a randomization and Monte Carlo algorithm approach. As
seen in Chapter 17 , a Monte Carlo algorithm relies on random
choices during its optimization process and isn’t guaranteed to
succeed in its task, although it has a high likelihood of completing
the task successfully. The problem isn’t merely theoretical,
though, because it tests how electronic circuits work, optimizing
them by removing circuits that can’t transport electric signals.
Moreover, the solving algorithm sees use in other applications:
automatic labeling on maps and charts, discrete tomography,
scheduling with constraints, data clustering into groups, and other
problems for which you have to make conflicting choices.
Computer circuits are composed of a series of connected
components, each one opening or closing a circuit based on its
inputs. Such elements are called logic gates (physically, their role
is played by transistors) and if you build a circuit with many logic
gates, you need to understand whether electricity can pass
through it and under what circumstances.
Chapter 14 discusses the internal representation of a computer,
based on zeros (absence of electricity in the circuit) or ones
(presence of electricity). You can render this 0/1 representation
from a logical perspective, turning signals into False (there isn’t
electricity in the circuit) or True (there is indeed electricity)
conditions. Chapter 4 examines the Boolean operators (AND , OR ,
and NOT), as shown in Figure 18-4 , which work on True and False
conditions as inputs and transform them into a different output. All

these concepts help you represent a physical electric circuit as a
sequence of Boolean operators defining logic gates. The
combination of all their conditions determines whether the circuit
can carry electricity.

FIGURE 18-4: Symbols and truth tables of logic operators AND , OR , and NOT .

This logic representation is a Boolean combinational circuit, and
the test to verify its functionality is the circuit satisfiability. In the
easiest scenario, the circuit consists of only NOT conditions (called
inverters) that accept one wire input, and OR conditions that
accept two wires as inputs. This is a satisfiability-two (2-SAT)
scenario, and if the algorithm were to go through it using an
exhaustive search, it would take at worst 2 k trials (having k as the
number of input wires) to find a set of conditions that makes
electricity pass through the whole circuit. There are even more
complex versions of the problem, accepting more inputs for each
OR logic gate and using AND gates, but they are beyond the
scope of this book.

Solving 2-SAT using randomization
No matter the electronic circuit you have to test using a Boolean
representation, you can render it as a vector of Boolean variables.
You can also create another vector to contain the clauses, the set
of conditions the circuit needs to satisfy (for example, that wire A
and wire B should both be True). This isn’t the only way to
represent the problem; in fact, there are other solutions involving

the use of graphs. However, for this example, these two vectors
are enough.
You solve the problem using a randomized local search in
polynomial time. Professor Christos H. Papadimitriou, teaching at
the University of California at Berkeley (
https://people.eecs.berkeley.edu/~christos/), devised this
algorithm, called RandomWalkSAT . He presented it in his paper
“On Selecting a Satisfying Truth Assignment,” published in 1991
on the Proceedings of the 32nd IEEE Symposium on the
Foundations of Computer Science. The algorithm is competitive
when compared to more reasoned ways, and it is an exemplary
local search approach because it makes just one change at a time
on the current solution. It uses two nested loops, one for trying the
starting solution multiple times and one for randomly amending
the initial random solution. Repeat the outer loop log 2 (k) times
(where k is the number of wires). The inner loop uses the
following steps:

1. Pick a random problem solution.
2. Repeat the following steps 2*k 2 times:

1. Determine whether the current solution is the
right one. When it is the correct solution,
break free of all the loops and report the
solution.

2. Pick an unsatisfied clause at random. Choose
one of the conditions in it at random and
amend it.

Implementing the Python code
To solve the 2-SAT problem using Python and the
RandomWalkSAT algorithm, you need to set a few helpful
functions. The create_clauses and signed functions help generate

https://people.eecs.berkeley.edu/~christos/

a circuit problem to solve by handling the OR and NOT gates,
respectively. Using these functions, you specify the number of OR
gates and provide a seed number that guarantees that you can
recreate the resulting problem later (allowing you to try the
problem multiple times and on different computers).
The create_random_solutions function provides a cold problem
start by providing a random solution that sets the inputs. The
chances of finding the right solution using random luck is slim
(one out of the power of two to the number of gates), but on
average, you can expect that three quarters of the gates are
correctly set (because, as seen using the truth table for the OR
function, three inputs out of four possible are True). The
check_solution function determines when the circuit is satisfied
(indicating a correct solution). Otherwise, it outputs what
conditions aren’t satisfied. (You can find this code in the A4D; 18;
Local Search.ipynb file on the Dummies site as part of the
downloadable code; see the Introduction for details.)

import numpy as np

import random

from math import log2

import matplotlib.pyplot as plt

% matplotlib inline

def signed(v):

return v if np.random.random()<0.5 else -v

def create_clauses(i, seed=1):

np.random.seed(seed)

return [(signed(np.random.randint(i)), signed(

np.random.randint(i))) for j in range(i)]

def create_random_solution(i, *kwargs):

return {j:signed(1)==1 for j in range(i)}

def check_solution(solution, clauses):

violations = list()

for k,(a,b) in enumerate(clauses):

if not (((solution[abs(a)]) == (a>0)) |

((solution[abs(b)]) == (b>0))):

violations.append(k)

return violations

After setting these functions, you have all the building blocks for a
sat2 function to solve the problem. This solution uses two nested
iterations: The first replicates many starts; the second picks
unsatisfied conditions at random and makes them true. The
solution runs in polynomial time. The function isn’t guaranteed to
find a solution, if one exists, but chances are, it will provide a
solution when one exists. In fact, the internal iteration loop makes
2*k 2 random attempts to solve the circuit, which usually proves
enough for a random walk on a line to reach its destination.

 A random walk is a series of computations representing an
object that moves away from its initial position by taking a
random direction at every step. You might imagine a random
walk as the journey of a drunken person from one light pole
to the next. Random walks are useful for representing a
mathematical model of many real-world aspects. They find
applications in biology, physics, chemistry, computer science,
and economics, especially in stock market analysis. If you
want to know more about random walks, go to
http://www.mit.edu/~kardar/teaching/projects/chemotaxis(

AndreaSchmidt)/random.htm .
A random walk on a line is the easiest example of a random walk.
On average, k 2 steps of a random walk are required to arrive at a
k distance from the starting point. This expected effort explains
why RandomWalkSAT requires 2*k 2 random chances to amend
the starting solution. The number of chances provides a high
probability that the algorithm will fix the k clauses. Moreover, it
works as the random card guessing game discussed in the
previous chapter. As the algorithm proceeds, choosing the right
answer becomes easier. The external replications guarantee an
escape from unfortunate internal-loop random choices that may
stop the process in a local solution.

def sat2(clauses, n, start=create_random_solution):

for external_loop in range(round(log2(n))):

solution = start(n, clauses)

history = list()

for internal_loop in range(2*n**2):

response = check_solution(solution, clauses)

unsatisfied = len(response)

history.append(unsatisfied)

if unsatisfied==0:

http://www.mit.edu/~kardar/teaching/projects/chemotaxis(AndreaSchmidt)/random.htm

print ("Solution in %i external loops," %

(external_loop+1), end=" ")

print ("%i internal loops" %

(internal_loop+1))

break

else:

r1 = random.choice(response)

r2 = np.random.randint(2)

clause_to_fix = clauses[r1][r2]

solution[abs(clause_to_fix)] = (

clause_to_fix>0)

else:

continue

break

return history, solution

Now that all the functions are correctly set, you can run the code
to solve a problem. Here’s the first example, which tries the circuit
created by seed 0 and uses 1,000 logic gates.

n = 1000

Solvable seeds with n=1000 : 0,1,2,3,4,5,6,9,10

Unsolvable seeds with n=1000 : 8

clauses = create_clauses(n, seed=0)

history, solution = sat2(clauses, n,

start=create_random_solution)

Found solution in 1 external loops, 1360 internal loops

Plotting the solution, as a chart representing the number of steps
on the abscissa (random emendations of the solution) and the

clauses left to fix on the ordinal axis, you can verify that the
algorithm tends to find the correct solution in the long run, as
shown in Figure 18-5 .

plt.plot(np.array(history), 'b-')

plt.xlabel("Random adjustments")

plt.ylabel("Unsatisfied clauses")

plt.grid(True)

plt.show()

FIGURE 18-5: The number of unsatisfiable clauses decreases after random adjustments.

If you try the circuit with 1,000 gates and seed equal to 8, you will
notice that it seems to never end. This is because the circuit is not
solvable, and making all the random choices and attempts takes a
long time. In the end, the algorithm won't provide you with any
solution.

Realizing that the starting point is
important
Even though the RandomWalkSAT algorithm has a runtime
complexity of O(log 2 k * k 2) at worst, with k the number of
inputs, you can speed it up by hacking the starting point. In fact,
even though starting with a random configuration means that a
quarter of the clauses remains unsatisfied at the start on average,
you can fix many of them using a pass over the data.
The problem with clauses is that many require a true input, and
simultaneously, many others require a false input. When all
clauses require an input to be true or false, you can set it to the
required condition, which satisfies a large number of clauses and
makes solving the residual ones easier. The following new
RandomWalkSAT implementation includes a start phase that
immediately solves the situations in which an input requires a
specific true or false setting by all the clauses they interact with:

def better_start(n, clauses):

clause_dict = dict()

for pair in clauses:

for clause in pair:

if abs(clause) in clause_dict:

clause_dict[abs(clause)].add(clause)

else:

clause_dict[abs(clause)] = {clause}

solution = create_random_solution(n)

for clause, value in clause_dict.items():

if len(value)==1:

solution[clause] = value.pop() > 0

return solution

The code defines a new function for the cold start where, after
generating a random solution, it scans through the solution and
finds all the inputs associated with a single state (true or false). By
setting them immediately to the required state, you can reduce the
number of clauses requiring amendment, and have the local
search do less work and complete earlier.

n = 1000

Solvable seeds = 0,1,2,3,4,5,6,9,10

Unsolvable seeds = 8

clauses = create_clauses(n, seed=0)

 history, solution = sat2(clauses, n, start=better_start)

Found solution in 1 external loops, 393 internal loops

By providing this new, simplified starting point, after charting the
results you can immediately see an improvement because on
average, fewer operations are needed to complete the task.

 In a local search, always consider that the starting point is
important to allow the algorithm to complete earlier and more
successfully, as shown in Figure 18-6 . In sum, try to provide
the best-quality start for your search as possible.

FIGURE 18-6: Execution is speedier because the starting point is better.

Chapter 19
Employing Linear Programming
IN THIS CHAPTER

 Discovering how optimization happens using linear
programming

 Transforming real-world problems into math and
geometry ones

 Learning how to use Python to solve linear programming
problems

Linear programming made a first appearance during World War II
when logistics proved critical in maneuvering armies of millions of
soldiers, weapons, and supplies across geographically variegated
battlefields. Tanks and airplanes needed to refuel and rearm,
which required a massive organizational effort to succeed in spite
of limitations in time, resources, and actions from the enemy.
You can express most of these military problems in mathematical
form. Mathematician George Bernard Dantzig, who was employed
in the U.S. Air Force Office of Statistical Control, devised a smart
way to solve these problems using the simplex algorithm. Simplex
is the core idea that created interest in numerical optimization
after the war and gave birth to the promising field of linear
programming. The availability of the first performing computers of
the time also increased interest, rendering complex computations
solvable in a new and fast way. You can view the early history of
computing in the 1950s and 1960s as a quest to optimize
logistical problems using the simplex method and applying both
high-speed computers and specialized programming languages.
Dantzig died in 2005, and the field he inaugurated is still under
constant development. In the recent years, fresh ideas and

methods related to linear programming continue to make
successful appearances, such as the following:

Constrain programming: Expresses the relationships between
the variables in a computer program as constraints in linear
programming.
Genetic algorithms: Considers the idea that math formulas can
replicate and mutate in order to solve problems in the same
manner as DNA does in nature by evolution. Genetic algorithms
also appear in Chapter 20 because of their heuristic approach to
optimization.

This chapter helps you understand linear programming. In
addition, you see how to apply linear programming to real-world
problems by using Python as the tool to express those problems
in code.

Using Linear Functions as a
Tool

This section shows how to address a problem where someone
transforms the objective (the representation of cost, profit, or
some other quantity to maximize or minimize subject to the
constraints) and constraints (linear inequalities derived from the
application, such as the limit of a 40-hour work week) of that
problem into linear functions. The purpose of linear programming
is to provide an optimum numeric solution, which could be a
maximum or a minimum value, and the set of conditions to obtain
it.
This definition may sound a little bit tricky because both math and
some abstraction is involved (objective and constraints as linear
functions), but things become clearer after considering what a
function is and when we can determine whether a function is
linear or not. Beyond the math jargon, linear programming is just a
different point of view when dealing with algorithmic problems,
where you trade operations and manipulations of data inputs with

mathematical functions and you perform calculations using a
software program called an optimizer .
You can’t use linear programming to solve all problems, but a
large number of them fit linear programming requirements,
especially problems requiring optimization using previously
defined limits. Previous chapters discuss how dynamic
programming is the best approach when you need to optimize
problems subject to constraints. Dynamic programming works
with problems that are discrete, that is the numbers you work with
are whole numbers. Linear programming mainly works with
decimal numbers, although special optimization algorithms are
available that provide solutions as integer numbers (for instance
you can solve the traveling salesman problem using integer linear
programming). Linear programming has a wider scope, because it
can cope with almost any polynomial time problem.
Linear programming sees use for needs such as manufacturing,
logistics, transportation (especially for airlines, for defining routes,
timetables, and the cost of tickets), marketing, finance, and
telecommunications. All these applications require that you obtain
a maximum economic result and minimum cost while optimizing
available resource allocation and satisfying all constraints and
limitations. In addition, you can apply linear programming to
common applications such as video games and computer
visualization, because games require dealing with bidimensional
and tridimensional complex shapes, and you need to determine
whether any shapes collide as well as ensure that they respect
the rules of the game. You achieve these aims via the convex hull
algorithm powered by linear programming (see
http://www.tcs.fudan.edu.cn/rudolf/Courses/Algorithms/Alg_ss_

07w/Webprojects/Chen_hull/applications.htm). Finally, linear
programming is at work in search engines for document-retrieval
problems; you can transform words, phrases, and documents into
functions and determine how to maximize your search result
(getting the documents you need in order to answer your query)
when you look for documents with certain mathematical
characteristics.

http://www.tcs.fudan.edu.cn/rudolf/Courses/Algorithms/Alg_ss_07w/Webprojects/Chen_hull/applications.htm

Grasping the basic math you need
In computer programming, functions provide the means for
packaging code that you intend to use more than once. Functions
turn code into a black box, an entity to which you provide inputs
and expect certain outputs. Chapter 4 discusses how to create
functions in Python. Mathematics uses functions in a similar
manner to programming; they are set of mathematical operations
that transform some input into an output. The input can include
one or more variables, resulting in a unique output based on the
input. Usually a function has this form:

f (x) = x*2

f: Determines the function name. It can be anything; you can
use any letter of the alphabet or even a word.
(x): Specifies the input. In this example, the input is the variable
x, but you can use more inputs and of any complexity, including
multiple variables or matrices.
x*2: Defines the set of operations that the function performs
after receiving the input. The result is the function output in the
form of a number.

If you plug the input 2 as x in this example, you obtain:

f(2) = 4

In math terms, by calling this function, you mapped the input 2 to
the output 4.

 Functions can be simple or complex, but every function
has one and only one result for every set of inputs that you
provide (even when the input is made of multiple variables).

Linear programming leverages functions to render the objectives it
has to reach in a mathematical way to solve the problem at hand.

When you turn objectives into a math function, the problem
translates into determining the input to the function that maps the
maximum output (or the minimum, depending on what you want to
achieve). The function representing the optimization objective is
the objective function. In addition, linear programming uses
functions and inequalities to express constraints or bounds that
keep you from plugging just any input you want into the objective
function. For instance, inequalities are

0 <= x <= 4

y + x < 10

The first of these inequalities translates into limiting the input of
the objective function to values between 0 and 4. Inequalities can
involve more input variables at a time. The second of these
inequalities ties the values of an input to other values because
their sum can’t exceed 10.

 Bounds imply an input limitation between values, as in the
first example. Constraints always involve a math expression
comprising more than one variable, as in the second
example.

The final linear programming requirement is for both the objective
function and the inequalities to be linear expressions. This means
that the objective function and inequalities can’t contain variables
that multiply each other, or contain variables raised to a power
(squared or cubed, for instance).

 All the functions in an optimization should be linear
expressions because the procedure represents them as lines
in a Cartesian space. (If you need to review the concept of a
Cartesian space, you can find useful information at

http://www.mathsisfun.com/data/cartesian-coordinates.html

http://www.mathsisfun.com/data/cartesian-

coordinates.html .) As explained in the “Using Linear
Programming in Practice ” section, later in this chapter, you
can imagine working with linear programming more as
solving a geometric problem than a mathematical one.

Learning to simplify when planning
The problems that the original simplex algorithm solved were all of
the kind that you usually read as math problems in a textbook. In
such problems, all the data, information, and limitations are stated
clearly, there is no irrelevant or redundant information, and you
clearly have to apply a math formula (and most likely the one you
just studied) to solve the problem.
In the real world, solutions to problems are never so nicely hinted
at. Instead, they often appear in a confused way, and any
necessary information isn’t readily available for you to process.
Yet, you can analyze the problem and locate required data and
other information. In addition, you can discover limitations such as
money, time, or some rule or order that you must consider. When
solving the problem, you gather the information and devise the
means to simplify it.
Simplification implies some loss of realism but renders things
simpler, which can highlight the underlying processes that make
things move, thereby helping you decide what happens. A simpler
problem allows you to develop a model representing the reality. A
model can approximate what happens in reality, and you can use
it for both managing simulations and linear programming.
For instance, if you work in a factory and have to plan a
production schedule, you know that the more people you add, the
speedier production will be. However, you won’t always obtain the
same gain with the same addition of people. For example, the
skills of the operators you add to the job affects results. In
addition, you may find that adding more people to the job brings
decreasing results when those people spend more time
communicating and coordinating between themselves than
performing useful work. Yet, you can make the model easier by

http://www.mathsisfun.com/data/cartesian-coordinates.html

pretending that every person you add to the task will produce a
certain amount of final or intermediate goods.

Working with geometry using
simplex
Classic examples of linear programming problems imply
production of goods using limited resources (time, workers, or
materials). As an example for depicting how linear programming
approaches such challenges, imagine a factory that assembles
two or more products that it must deliver in a certain time. The
factory workers produce two products, x and y, during an eight-
hour shift. For each product, they get a different profit (that you
compute by subtracting costs from revenue), different hourly
production rates, and different daily demands from the market:

Revenue in USD for each product: x=15, y=25
Production rate per hour: x=50, y=40
Daily demand per product: x=300, y=200

In essence, the business problem is to decide whether to produce
more x, which is easier to assemble but pays less, or y, which
guarantees more revenue but less production. To solve the
problem, first determine the objective function. Express it as the
sum of the quantities of the two products, multiplied by their
expected unit revenue, which you know you have to maximize
(only if the problem is about costs do you have to minimize the
objective function):

f(x,y) = 15 * x + 25 * y

This problem has inequalities, which are bounded by x and y
values that have to hold true to obtain a valid result from the
optimization:

0 <= x <= 300

0 <= y <= 200

In fact, you can’t produce a negative number of products, nor
does it make sense to produce more products than the market
demands. Another important limitation is available time, because
you can’t exceed eight hours for each work shift. This means
calculating the time to produce both x and y products and
constraining the total time to less than or equal to eight hours.

x/40 + y/50 <= 8

You can represent functions on a Cartesian plane. (For a
refresher on plotting functions, consult
http://www.mathplanet.com/education/pre-algebra/graphing-and-

functions/linear-equations-in-the-coordinate-plane .) Because
you can express everything using functions in this problem, you
can also solve the linear programming problems as geometry
problems on a Cartesian coordinate space. If the problem doesn’t
involve more than two variables, you can plot the two functions
and their constraints as lines on a plane, and determine how they
delimit a geometric shape. You’ll discover that the lines delimit an
area, shaped as a polygon, called the feasible region. This region
is where you find the solution, which contains all the valid
(according to constraints) inputs for the problem.

 When the problem deals with more than two variables, you
can still imagine it using lines intersecting in a space, but you
can’t represent this visually because each input variable
needs a dimension in the graph, and graphs are bound to the
three dimensions of the world we live in.

At this point, the linear programming algorithm explores the
delimited feasible region in a smart way and reports back with the
solution. In fact, you don’t need to check every point in the
delimited area to determine the best problem solution. Imagine
the objective function as another line that you represent on the
plane (after all, even the objective function is a linear function).
You can see that the solution you are looking for is the coordinate

http://www.mathplanet.com/education/pre-algebra/graphing-and-functions/linear-equations-in-the-coordinate-plane

points where the feasible area and the objective function line first
touch each other (see Figure 19-1). When the objective function
line descends from above (arriving from outside the feasible
region, where results occur that you can’t accept because of the
constraints), at a certain point it will touch the area. This contact
point is usually a vertex of the area, but it could be an entire side
of the polygon (in which case each point on that side is an optimal
solution).

FIGURE 19-1: Looking where the objective function is going to touch the feasible area.

As a practical matter, the simplex algorithm can’t make lines
visually descend, as in this example. Instead, it walks along the
border of the feasible area (by enumerating the vertexes) and
tests the resulting objective function values at each vertex until it
finds the solution. Consequently, the effective running time
depends on the number of vertexes, which for its part depends on
the number of constraints and variables involved in the solution.
(More variables mean more dimensions and more vertexes.)

Understanding the limitations

As you gain more confidence with linear programming and the
problems become more challenging, you require more complex
approaches than the basic simplex algorithm presented in this
chapter. In fact, the simplex isn’t used anymore because more
sophisticated algorithms have replaced it —algorithms that
geometrically cut through the interior of the feasible region instead
of walking along it. These newer algorithms take a shortcut when
the algorithm is clearly looking for the solution at the wrong side of
the region.
You can also find working with floating-point numbers limiting
because many problems require a binary (1/0) or integer answer.
Moreover, other problems may require using curves, not lines, to
represent the problem space and feasible region correctly. You
find integer linear programming and nonlinear programming
algorithms implemented in commercial software. Just be aware
that both integer and nonlinear programming are NP-complete
problems and may require as much, if not more, time than other
algorithms you know.

Using Linear Programming in
Practice

The best way to start in linear programming is to use predefined
solutions, rather than create custom applications on your own.
The first section that follows helps you install a predefined solution
used for the examples that follow.

 When working with a software product, you may find
significant differences between open source software and
commercial packages. Although open source software offers
a wide spectrum of algorithms, performance could be
disappointing on large and complex problems. Much art is still
involved in implementing linear programming algorithms as
part of working software, and you can’t expect open source
software to run as fast and smoothly as commercial offerings.

Even so, open source provides some nice options for learning
linear program. The following sections use an open source Python
solution named PuLP that allows you to create linear
programming optimizations after defining a cost function and
constraints as Python functions. It’s mostly a didactical solution,
suitable to help you test how linear programming works on some
problems and get insight on formulating problems in math terms.

 PuLP provides an interface to the underlying solver
programs. Python comes with a default, open source, solver
program that PuLP helps you access. The performance
(speed, accuracy, and scalability) that PuLP provides
depends almost entirely on the solver and optimizer that the
user chooses. The best solvers are commercial products,
such as CPLEX (https://en.wikipedia.org/wiki/CPLEX),
XPRESS (https://en.wikipedia.org/wiki/FICO_Xpress),
and GuRoBi (https://en.wikipedia.org/wiki/Gurobi),
which provide a huge speed advantage when compared to
open source solvers.

Setting up PuLP at home
PuLP is a Python open source project created by Jean-Sebastien
Roy, later modified and maintained by Stuart Antony Mitchell. The

https://en.wikipedia.org/wiki/CPLEX
https://en.wikipedia.org/wiki/FICO_Xpress
https://en.wikipedia.org/wiki/Gurobi

PuLP package helps you define linear programming problems and
solve them using the internal solver (which relies on the simplex
algorithm). You can also use other solvers that are available on
public domain repositories or by paying for a license. The project
repository (containing all the source code and many examples) is
at https://github.com/coin-or/pulp . The complete
documentation is located at https://pythonhosted.org/PuLP/ .
PuLP isn’t readily available as part of the Anaconda distribution,
thus you have to install it yourself. You must use the Anaconda3
(or above) command prompt to install PuLP because the older
versions of the Anaconda command prompt won’t work. Open a
command-line shell, type pip install pulp and press Enter. If you
have Internet access, the pip command downloads the PuLP
package and installs it in Python. (The version used by the
examples in this chapter is PuLP 1.6.1, but later versions should
provide the same functionality.)

Optimizing production and revenue
The problem in this section is another optimization related to
production. You work with two products (because this implies just
two variables that you can represent on a bidimensional chart),
product A and B, which have to undergo a series of
transformations through three stages. Each stage requires a
number of operators (the value n), which could be workers or
robots, and each stage is operative at most for a number of days
in the month (represented by the value t). Each stage operates
differently on each product, requiring a different number of days
before completion. For instance, a worker in the first stage (called
‘res_1’) takes two days to finish product A but three days for
product B. Finally, each product has a different profit: product A
brings $3,000 USD each and product B $2,500 USD each. The
following table summarizes the problem:

Production
Stage

Time for Product A per Worker
(Days)

Time for Product B per Worker
(Days)

Uptime
(Days) Workers

res_1 2 3 30 2

res_2 3 2 30 2

https://github.com/coin-or/pulp
https://pythonhosted.org/PuLP/

Production
Stage

Time for Product A per Worker
(Days)

Time for Product B per Worker
(Days)

Uptime
(Days) Workers

res_3 3 3 22 3

To find the objective function, compute the sum of each product
quantity multiplied by its profit. It has to be maximized. Although
not stated explicitly by the problem, some constraints exist. First is
the fact that uptime limits productivity at each stage. Second is the
number of workers. Third is productivity relative to the processed
product type. You can restate the problem as the sum of the time
used to process each product at each stage, which can’t exceed
the uptime multiplied by the number of workers available. The
number of workers multiplied by number of working days provides
you the time resources you can use. These resources can’t be
less than the time it takes to produce all the products you plan to
deliver. Here are the resulting formulations with constraints for
each stage:

objective = 3000 * qty_A + 2500 * qty_B

production_rate_A * qty_A + production_rate_B * qty_B

<= uptime_days * workers

You can express each constraint using the quantity of one product
to determine the other (in fact, if you produce A, you can’t produce
B when A’s production leaves no time):

qty_B <= ((uptime_days * workers) –

(production_rate_A * qty_A)) / production_rate_B

You can record all the values relative to each stage for
production_rate_A , production_rate_B , uptime_days , and
workers for easier access into a Python dictionary. Keep profits in
variables instead. (You can find this code in the A4D; 19; Linear
Programming.ipynb file on the Dummies site as part of the
downloadable code; see the Introduction for details.)

import numpy as np

import matplotlib.pyplot as plt

import pulp

%matplotlib inline

res_1 = {'A':2, 'B':3, 't':30, 'n':2}

res_2 = {'A':3, 'B':2, 't':30, 'n':2}

res_3 = {'A':3, 'B':3, 't':22, 'n':3}

res = {'res_1':res_1, 'res_2':res_2, 'res_3':res_3}

profit_A = 3000

profit_B = 2500

Having framed the problem in a suitable data structure, try to
visualize it using the Python plotting functions. Set product A as
the abscissa and, because you don’t know the solution, represent
the production of product A as a vector of quantities ranging from
0 to 30 (quantities can’t be negative). As for product B (as seen in
the formulations above), derive it from the production remaining
after A is done. Formulate three functions, one for each stage, so
that as you decide the quantity for A, you get the consequent
quantity of B — considering the constraints.

a = np.linspace(0, 30, 30)

c1 = ((res['res_1']['t'] * res['res_1']['n'])-

res['res_1']['A']*a) / res['res_1']['B']

c2 = ((res['res_2']['t'] * res['res_2']['n'])-

res['res_2']['A']*a) / res['res_2']['B']

c3 = ((res['res_3']['t'] * res['res_3']['n'])-

res['res_3']['A']*a) / res['res_3']['B']

plt.plot(a, c1, label='constrain #1')

plt.plot(a, c2, label='constrain #2')

plt.plot(a, c3, label='constrain #3')

axes = plt.gca()

axes.set_xlim([0,30])

axes.set_ylim([0,30])

plt.xlabel('qty model A')

plt.ylabel('qty model B')

border = np.array((c1,c2,c3)).min(axis=0)

plt.fill_between(a, border, color='yellow', alpha=0.5)

plt.scatter(*zip(*[(0,0), (20,0),

(0,20), (16,6), (6,16)]))

plt.legend()

plt.show()

The constraints turn into three lines on a chart, as shown in Figure
19-2 . The lines intersect among themselves, showing the feasible
area. This is the area delimited by the three lines whose A and B
values are always inferior or equal compared to the values on any
of the constraint lines. (The constraints represent a frontier; you
can’t have A or B values beyond them.)

FIGURE 19-2: Wondering which vertex is the right one.

According to the simplex method, the optimal solution is one of
the five vertexes of the polygon (which are (0,0), (20,0), (0,20),
(16,6), and (6,16)). You can discover which one is the solution by
setting the necessary functions from the PuLP package. First,
define the problem and call it model. By doing so, you determine
that it’s a maximization problem and that both A and B should be
positive.

model = pulp.LpProblem("Max profit", pulp.LpMaximize)

A = pulp.LpVariable('A', lowBound=0)

B = pulp.LpVariable('B', lowBound=0)

 The PuLP solver can also look for integer solutions,
something the original simplex can’t do. Just add
cat='Integer' as a parameter when defining a variable: A =
pulp.LpVariable('A', lowBound=0, cat='Integer') , and you

get only whole numbers as a solution. Be aware that in
certain problems, integer number results may prove less
optimal than the decimal number results; therefore, use an
integer solution only if it makes sense for your problem (for
instance, you can’t produce a fraction of a product).

Next, add the objective function by summing the sum of the two
variables defined by pulp.LpVariable and representing the ideal
quantities of products A and B, multiplied by each unit profit value.

model += profit_A * A + profit_B * B

Finally, add the constraints, in exactly the same way as the
objective function. You create the formulation by using the
appropriate values (taken from the data dictionary) and the
predefined A and B variables.

model += res['res_1']['A'] * A + res['res_1']['B'

] * B <= res['res_1']['t'] * res['res_1']['n']

model += res['res_2']['A'] * A + res['res_2']['B'

] * B <= res['res_2']['t'] * res['res_2']['n']

model += res['res_3']['A'] * A + res['res_3']['B'

] * B <= res['res_3']['t'] * res['res_3']['n']

The model is ready to optimize (it has ingested both the objective
function and the constraints). Call the solve method and then
check its status. (Sometimes a solution may prove impossible to
find or may not be optimal.)

model.solve()

print ('Completion status: %s'

% pulp.LpStatus[model.status])

Completion status: Optimal

Having received confirmation that the optimizer found the optimal
solution, you print the related quantities of product A and B.

print ("Production of model A = %0.1f" % A.varValue)

print ("Production of model B = %0.1f" % B.varValue)

Production of model A = 16.0

Production of model B = 6.0

In addition, you print the resulting total profit achievable by this
solution.

print ('Maximum profit achieved: %0.1f'

% pulp.value(model.objective))

Maximum profit achieved: 63000.0

Chapter 20
Considering Heuristics

IN THIS CHAPTER
 Understanding when heuristics are useful to algorithms
 Discovering how pathfinding can be difficult for a robot
 Getting a fast start using the Best-first search
 Improving on Dijkstra’s algorithm and taking the best

heuristic route using A*

As a concluding topic, this chapter completes the overview of
heuristics started in Chapter 18 that describes heuristics as an
effective means of using a local search to navigate neighboring
solutions. Chapter 18 defines heuristics as educated guesses
about a solution — that is, they are sets of rules of thumb pointing
to the desired outcome, thus helping algorithms take the right
steps toward it; however, heuristics alone can’t tell you exactly
how to reach the solution.
There are shades of heuristics, just as there can be shades to the
truth. Heuristics touch the fringes of algorithm development today.
The AI revolution builds on the algorithms presented so far in the
book that order, arrange, search, and manipulate data inputs. At
the top of the hierarchy are heuristic algorithms that power
optimization, as well as searches that determine how machines
learn from data and become capable of solving problems
autonomously from direct intervention.
Heuristics aren’t silver bullets; no solution solves every problem.
Heuristic algorithms have serious drawbacks, and you need to
know when to use them. In addition, heuristics can lead to wrong
conclusions, both for computers and humans. As for humans,
biases that save time when evaluating a person or situation can

often prove wrong, and even rules of conduct taken from
experience obtain the right solution only under certain
circumstances. For instance, consider the habit of hitting electric
appliances when they don’t work. If the problem is a loose
connection, hitting the appliance may prove beneficial by
reestablishing the electric connection, but you can’t make it a
general heuristic because in other cases, that “solution” may
prove ineffective or even cause serious damage to the appliance.

Differentiating Heuristics
The word heuristic comes from the ancient Greek heuriskein,
which meant to invent or discover. Its original meaning underlines
the fact that employing heuristics is a practical means of finding a
solution that isn’t well defined, but that is found through
exploration and an intuitive grasp of the general direction to take.
Heuristics rely on the lucky guess or a trial-and-error approach of
trying different solutions. A heuristic algorithm, which is an
algorithm powered by heuristics, solves a problem faster and
more efficiently in terms of computational resources by sacrificing
solution precision and completeness, in contrast to most
algorithms, which have certain output guarantees. When a
problem becomes too complex, a heuristic algorithm can
represent the only way to obtain a solution.

Considering the goals of heuristics
Heuristics can speed the long, exhaustive searches performed by
other solutions, especially with NP-hard problems that require an
exponential number of attempts based on the number of their
inputs. For example, consider the traveling salesman problem or
variants of the SAT problem, such as the MAX-3SAT (both
problems appear in Chapter 18). Heuristics determine the search
direction using an estimation, which eliminates a large number of
the combinations it would have to test otherwise.
Because a heuristic is an estimate or a guess, it can lead the
algorithm that relies on it to a wrong conclusion, which could be

an inexact solution or just a suboptimal solution, which is a
solution that works but is far from being the best possible. For
example, in a numerical estimation, a heuristic might answer that
the solution is 41 instead of 42. Other problems often associated
with heuristics are the impossibility of finding all best solutions and
the variability of time and computations required to reach a
solution.
A heuristic provides a perfect match when working with algorithms
that would otherwise incur a higher cost when running using other
algorithmic techniques. For instance, you can’t solve certain
problems without heuristics because of the poor quality and
overwhelming number of data inputs. The traveling salesman
problem (TSP) is one of these: If you have to tour a large number
of cities, you cannot use any exact method. TSP and other
problems exclude any exact solution. AI applications fall into this
category because many AI problems, such as recognizing spoken
words or the content of an image, aren’t solvable in an exact
sequence of steps and rules.

Going from genetic to AI
The Chapter 18 local search discussion presents heuristics such
as simulated annealing and tabu search, which helps with hill-
climbing optimization (not getting stuck with solutions that are less
than ideal). Apart from these, the family of heuristics comprises
many different applications, among which are the following:

Swarm intelligence: A set of heuristics based on the study of
the behavior of insect swarms (such as bees, ants, or fireflies)
or particles. The method uses multiple attempts to find a
solution using agents (such as running several instances of the
same algorithm) that interact cooperatively between themselves
and the problem setting. Professor Marco Dorigo, one of the top
experts and contributors on the study of swarm intelligence
algorithms, provides more information on this topic at
http://www.aco-metaheuristic.org/ .
Metaheuristics: Heuristics that help you determine (or even
generate) the right heuristic for your problem. Among

http://www.aco-metaheuristic.org/

metaheuristics, the most widely known are genetic algorithms,
inspired by natural evolution. Genetic algorithms start with a
pool of possible problem solutions and then generate new
solutions using mutation (they add or remove something in the
solution) and cross-over (they mix parts of different solutions
when a solution is divisible). For instance, in the n-Queen
problem (Chapter 18), you see that you can split a
checkerboard vertically into parts because the Queens do not
move horizontally, making it a problem suitable for cross-over.
When the pool is enough large, genetic algorithms select the
surviving solutions by ruling out those that don’t work or lack
promise. The selected pool then undergoes another iteration of
mutation, cross-over, and selection. After enough time and
iterations, genetic algorithms can find solutions that perform
better and are completely different from the initial ones.
Machine learning: Approaches such as neuro-fuzzy systems,
support vector machines, and neural networks, which are the
foundation of how a computer learns to estimate and classify
from training examples that are provided as part of datasets of
data. Similar to how a child learns by experience, machine
learning algorithms determine how to deliver the most plausible
answer without using precise rules and detailed rules of
conduct. (See Machine Learning For Dummies, by John Paul
Mueller and Luca Massaron [Wiley], for details on how machine
learning works.)
Heuristic routing: A set of heuristics that helps robots (but also
found in network telecommunications and logistic
transportations) to choose the best path to avoid obstacles
when moving around.

Routing Robots Using
Heuristics

Guiding a robot in an unknown environment means avoiding
obstacles and reaching a specific target. It’s both a fundamental
and challenging task in artificial intelligence. Robots can rely on

laser rangefinder, lidar (devices that allow you to determine the
distance to an object by means of a laser ray), or sonar arrays
(devices that use sounds to see their environment) to navigate
their surroundings. Yet, no matter the sophisticated hardware they
are equipped with, robots still need proper algorithms to

Find the shortest path to a destination (or at least a reasonably
short one)
Avoid obstacles on the way
Perform custom behaviors such as minimizing turning or braking

A pathfinding (also called path planning or simply pathing)
algorithm helps a robot start in one location and reach a goal
using the shortest path between the two, anticipating and avoiding
obstacles along the way (it isn’t enough to react after hitting a
wall). Pathfinding is also useful when moving any other device to
a target in space, even a virtual one, such as in a video game or
the pages in the World Wide Web.

 Routing autonomously is a key capability of self-driving
cars (SDC), vehicles that can sense the road environment
and drive to the destination without any human intervention.
(You still need to tell the car where to go; it can’t read minds.)
This recent article from the Guardian newspaper provides a
good overview about the developments and expectations for
self-driving cars:
https://www.theguardian.com/technology/2015/sep/13/self-

driving-cars-bmw-google-2020-driving .

Scouting in unknown territories
Pathfinding algorithms achieve all the previously discussed tasks
to achieve shortest routing, obstacle avoidance, and other desired
behaviors. Algorithms work by using basic schematic maps of
their surroundings. These maps are of two kinds:

https://www.theguardian.com/technology/2015/sep/13/self-driving-cars-bmw-google-2020-driving

Topological maps: Simplified diagrams that remove every
unnecessary detail. The maps retain key landmarks, correct
directions, and some scale proportions for distances. Real-life
examples of topological maps include subway maps of Tokyo (
http://www.tokyometro.jp/en/subwaymap/) and London (
https://tfl.gov.uk/maps/track/tube).
Occupancy grid maps: These maps divide the surroundings
into small, empty squares or hexagons, filling them in when the
robot’s sensors find an obstacle on the spot they represent. You
can see an example of such a map at the Czech Technical
University in Prague:
http://cmp.felk.cvut.cz/cmp/demos/Omni/mobil/ . In addition,
check out the videos showing how a robot builds and visualizes
such a map at https://www.youtube.com/watch?v=zjl7NmutMIc
and https://www.youtube.com/watch?v=RhPlzIyTT58 .

You can visualize both topological and occupancy grid maps as
graphic diagrams. However, they’re best understood by
algorithms when rendered into an appropriate data structure. The
best data structure for this purpose is the graph because vertexes
can easily represent squares, hexagons, landmarks, and
waypoints. Edges can connect vertexes in the same way that
road, passages, and paths do.

 Your GPS navigation device operates using graphs.
Underlying the continuous, detailed, colorful map that the
device displays on screen, road maps are elaborated behind
the scenes as sets of vertexes and edges traversed by
algorithms helping you find the way while avoiding traffic
jams.

Representing the robot’s territory as a graph re-introduces
problems discussed in Chapter 9 , which examines how to travel
from one vertex to another using the shortest path. The shortest
path can be the path that touches the fewest vertexes or the path
that costs less (given the sum of the cost of the crossed edge

http://www.tokyometro.jp/en/subwaymap/
https://tfl.gov.uk/maps/track/tube
http://cmp.felk.cvut.cz/cmp/demos/Omni/mobil/
https://www.youtube.com/watch?v=zjl7NmutMIc
https://www.youtube.com/watch?v=RhPlzIyTT58

weights, which may represent the length of the edge or some
other cost). As when driving your car, you decide not only on the
distance driven to reach your destination but also on traffic (roads
crowded with traffic or blocked by traffic jams), road conditions,
and speed limits that may influence the quality of your journey.
When finding the shortest path to a destination in a graph, the
simplest and most basic algorithms in graph theory are depth-first
search and Dijkstra’s algorithm (described in Chapter 9). Depth-
first search explores the graph by going as far as possible from
the start and then retracing its steps to explore other paths until it
finds the destination. Dijkstra’s algorithm explores the graph in a
smart and greedy way, considering only the shortest paths.
Despite their simplicity, both algorithms are extremely effective
when evaluating a simple graph, as in a bird’s- eye view, with
complete knowledge of the directions you must take to reach the
destination and little cost in evaluating the various possible paths.
The situation with a robot is slightly different because it can’t
perceive all the possible paths at one time, being limited in both
visibility and range of sight (obstacles may hide the path or the
target may be too far). A robot discovers its environment as it
moves and, at best, can assess the distance and direction of its
final destination. It’s like solving a maze, though not as when
playing in a puzzle maze but more akin to immersion in a hedge
maze, where you can feel the direction you are taking or you can
spot the destination in the distance.

 Hedges are found everywhere in the world. Some of the
most famous were built in Europe from the mid-sixteenth
century to eighteenth century. In a hedge maze, you can’t see
where you’re going because the hedges are too high. You
can perceive direction (if you can see the sun) and even spot
the target (see https://www.venetoinside.com/hidden-
treasures/post/maze-of-villa-pisani-in-stra-venice/ as an
example). There are also famous hedge mazes in films such

https://www.venetoinside.com/hidden-treasures/post/maze-of-villa-pisani-in-stra-venice/

as The Shining by Stanley Kubrick and in Harry Potter and
the Goblet of Fire .

Using distance measures as
heuristics
When you can’t solve real-life problems in a precise algorithmic
way because their input is confused, missing, or unstable, using
heuristics can help. When performing path finding using
coordinates in a Cartesian plane (flat maps that rely on a set of
horizontal and vertical coordinates), two simple measures can
provide the distances between two points in that plane: the
Euclidean distance and the Manhattan distance.
People commonly use the Euclidean distance because it derives
from the Pythagorean Theorem on triangles. If you want to know
the distance in line of sight between two points in a plane, say, A
and B, and you know their coordinates, you can pretend they’re
the extremes of the hypotenuse (the longest side in a triangle). As
depicted in Figure 20-1 , you calculate distance based on the
length of the other two sides by creating a third point, C, whose
horizontal coordinate is derived from B and whose vertical
coordinate is from A.

FIGURE 20-1: A and B are points on a map’s coordinates.

This process translates into taking the difference between the
horizontal and vertical coordinates of your two points, squaring
both the differences (so that they both become positive), sum
them, and finally taking the square root of the result. In this
example, going from A to B uses coordinates of (1,2) and (3,3):

sqrt((1-3)2

 + (2-3)2

) = sqrt(22

 +12

) = sqrt(5) = 2.236

The Manhattan distance works differently. You begin by summing
the lengths of the sides B and C, which equates summing the
absolute value of the differences between the horizontal and
vertical coordinates of the points A and B.

|(1-3)| + |(2-3)| = 2 + 1 = 3

The Euclidean distance marks the shortest route, and the
Manhattan distance provides the longest yet most plausible route
if you expect obstacles when taking a direct route. In fact, the

movement represents the trajectory of a taxi in Manhattan (hence
the name), moving along a city block to reach its destination
(taking the short route through buildings would never work). Other
names for this approach are the city block distance or the taxicab
distance. Consequently, if you have to move from A to B but you
don’t know whether you’ll find obstacles between them, taking a
detour through point C is a good heuristic because that’s the
distance you expect at worst.

Explaining Path Finding
Algorithms

This last part of the chapter concentrates on explaining two
algorithms, best-first search and A* (read as “A star”), both based
on heuristics. The following sections demonstrate that both these
algorithms provide a fast solution to a maze problem representing
a topological or occupancy grid map that’s represented as a
graph. Both algorithms are widely used in robotics and video
gaming.

Creating a maze
A topological or occupancy grid map resembles a hedge maze, as
mentioned previously, especially if obstacles exist between the
start and the end of the route. There are specialized algorithms for
both creating and processing mazes, most notably the Wall
Follower (known since antiquity: You place your hand on a wall
and never pull it away until you get out of the maze) or the Pledge
algorithm (read more about the seven maze classifications at
http://www.astrolog.org/labyrnth/algrithm.htm). However,
pathfinding is fundamentally different from maze solving because
in pathfinding, you know where the target should be, whereas
maze-solving algorithms try to solve the problem in complete
ignorance of where the exit is.
Consequently, the procedure for simulating a maze of obstacles
that a robot has to navigate takes a different and simpler

http://www.astrolog.org/labyrnth/algrithm.htm

approach. Instead of creating a riddle of obstacles, you create a
graph of vertexes arranged in a grid (resembling a map) and
randomly remove connections to simulate the presence of
obstacles. The graph is undirected (you can traverse each edge in
both directions) and weighted because it takes time to move from
one vertex to another. In particular, it takes longer to move
diagonally than to move upward/downward or left/right.
The first step is to import the necessary Python packages. The
code defines the Euclidean and the Manhattan distance functions
next. (You can find this code in the A4D; 20; Heuristic
Algorithms.ipynb file on the Dummies site as part of the
downloadable code; see the Introduction for details.)

import numpy as np

import string

import networkx as nx

import matplotlib.pyplot as plt

%matplotlib inline

def euclidean_dist(a, b, coord):

(x1, y1) = coord[a]

(x2, y2) = coord[b]

return np.sqrt((x1-x2)**2+(y1-y2)**2)

def manhattan_dist(a, b, coord):

(x1, y1) = coord[a]

(x2, y2) = coord[b]

return abs(x1 - x2) + abs(y1 - y2)

def non_informative(a,b):

return 0

The next step creates a function to generate random mazes. It’s
based on an integer number seed of your choice that allows you
to recreate the same maze every time you provide the same
number. Otherwise, maze generation is completely random.

def create_maze(seed=2, drawing=True):

np.random.seed(seed)

letters = [l for l in string.ascii_uppercase[:25]]

checkboard = np.array(letters[:25]).reshape((5,5))

 Graph = nx.Graph()

for j, node in enumerate(letters):

Graph.add_nodes_from(node)

x, y = j // 5, j % 5

x_min = max(0, x-1)

x_max = min(4, x+1)+1

y_min = max(0, y-1)

y_max = min(4, y+1)+1

adjacent_nodes = np.ravel(

checkboard[x_min:x_max,y_min:y_max])

exits = np.random.choice(adjacent_nodes,

size=np.random.randint(1,4), replace=False)

for exit in exits:

if exit not in Graph.edge[node]:

Graph.add_edge(node, exit)

spacing = np.arange(0.0, 1.0, 0.2)

coordinates = [[x,y] for x in spacing \

for y in spacing]

position = {l:c for l,c in zip(letters, coordinates)}

for node in Graph.edge:

for exit in Graph.edge[node]:

length = int(round(

euclidean_dist(

node, exit, position)*10,0))

Graph.add_edge(node,exit,weight=length)

if drawing:

nx.draw(Graph, position, with_labels=True)

labels = nx.get_edge_attributes(Graph,'weight')

nx.draw_networkx_edge_labels(Graph, position,

edge_labels=labels)

plt.show()

return Graph, position

The functions return a NetworkX graph (Graph), a favorite data
structure for representing graphs, which contains 25 vertexes (or
nodes, if you prefer) and a Cartesian map of points (position). The
vertexes are placed on a 5 x 5 grid, as shown in Figure 20-2 . The
output also applies distance functions and calculates the position
of vertexes.

graph, coordinates = create_maze(seed=3)

FIGURE 20-2: A maze representing a topological map with obstacles.

 In the maze generated by a seed value of 2, every vertex
connects with the others. Because the generation process is
random, some maps may contain disconnected vertexes,
which precludes going between the disconnected vertexes.
To see how this works, try a seed value of 13. This actually
happens in reality; for example, sometimes a robot can’t
reach a particular destination.

Looking for a quick best-first route
The depth-first search algorithm explores the graph by moving
from vertex to vertex and adding directions to a stack data
structure. When it’s time to move, the algorithm moves to the first
direction found on the stack. It’s like moving through a maze of
rooms by taking the first exit you see. Most probably, you arrive at
a dead end, which isn’t your destination. You then retrace your
steps to the previously visited rooms to see whether you
encounter another exit, but it takes a long time when you’re far
from your target.

Heuristics can greatly help with the repetition created by a depth-
first search strategy. Using heuristics can tell you whether you’re
getting nearer or farther from your target. This combination is
called the best-first search algorithm (BFS). In this case, the best
in the name hints at the fact that, as you explore the graph, you
don’t take the first edge in sight, but rather evaluate which edge to
take and choose the one that, based on the heuristic, should take
you closer to your desired outcome. This behavior resembles
greedy optimization (the best first), and some people also call this
algorithm greedy best-first search . BFS will probably miss the
target at first, but because of heuristics, it won’t end up far from
target and will retrace less than it would if using depth-first search
alone.

 You use the BFS algorithm principally in web crawlers that
look for certain information on the web. In fact, BFS allows a
software agent to move in a mostly unknown graph, using
heuristics to detect how closely the content of the next page
resembles the initial one (to explore for better content). The
algorithm is also widely used in video games, helping
characters controlled by the computer move in search of
enemies and bounties, thereby resembling a greedy, target-
oriented behavior.

Demonstrating BFS in Python using the previously built maze
illustrates how a robot can move in a space by seeing it as a
graph. The following code shows some general functions, which
are also used for the next algorithm in this section. These two
functions provide the directions to take from a vertex (
node_neighbors) and determines the cost of going from one
vertex to another (graph_weight). Weight represents distance or
time.

def graph_weight(graph, a, b):

return graph.edge[a][b]['weight']

def node_neighbors(graph, node):

return graph.edge[node]

The path-planning algorithm simulates robot movement in a
graph. When it found a solution, the plan translates into
movement. Therefore, path-planning algorithms provide an output
telling you how to best move from one vertex to another, you still
need a function to translate the information and determine the
route to take and calculate trip length. The functions
reconstruct_path and compute_path provide the plan in terms of
steps and expected cost when provided with the result from the
path-planning algorithm.

def reconstruct_path(connections, start, goal):

if goal in connections:

current = goal

path = [current]

while current != start:

current = connections[current]

path.append(current)

return path[::-1]

def compute_path_dist(path, graph):

if path:

run = 0

for step in range(len(path)-1):

A = path[step]

B = path[step+1]

 run += graph_weight(graph, A, B)

return run

else:

return 0

Having prepared all the basic functions, the example creates a
maze using a seed value of 30. This maze presents two main
routes going from vertex A to vertex Y because there are some
obstacles in the middle of the map (as shown in Figure 20-3).
There are also some dead ends on the way (such as vertexes E
and O).

graph, coordinates = create_maze(seed=30)

start = 'A'

goal = 'Y'

scoring=manhattan_dist

FIGURE 20-3: An intricate maze to be solved by heuristics.

The BFS implementation is a bit more complex than the depth-
first search code found in Chapter 9 . It uses two lists: one to hold
the never-visited vertexes (called open_list), and another to hold
the visited ones (closed_list). The open_list list acts as a

priority queue, one in which a priority determines the first element
to extract. In this case, the heuristic provides the priority, thus the
priority queue provides a direction that’s closer to the target. The
Manhattan distance heuristic works best because of the obstacles
obstructing the way to the destination:

Best-first search

path = {}

open_list = set(graph.nodes())

 closed_list = {start: manhattan_dist(start, goal,

coordinates)}

while open_list:

candidates = open_list&closed_list.keys()

if len(candidates)==0:

print ("Cannot find a way to the goal %s" % goal)

break

frontier = [(closed_list[node],

node) for node in candidates]

score, min_node =sorted(frontier)[0]

if min_node==goal:

print ("Arrived at final vertex %s" % goal)

print ('Unvisited vertices: %i' % (len(

open_list)-1))

break

else:

print("Processing vertex %s, " % min_node, end="")

open_list = open_list.difference(min_node)

neighbors = node_neighbors(graph, min_node)

to_be_visited = list(neighbors-closed_list.keys())

if len(to_be_visited) == 0:

print ("found no exit, retracing to %s"

% path[min_node])

else:

print ("discovered %s" % str(to_be_visited))

for node in neighbors:

if node not in closed_list:

closed_list[node] = scoring(node, goal,

coordinates)

path[node] = min_node

print ('\nBest path is:', reconstruct_path(

path, start, goal))

print ('Length of path: %i' % compute_path_dist(

reconstruct_path(path, start, goal), graph))

Processing vertex A, discovered ['F', 'G']

Processing vertex G, discovered ['K', 'H']

Processing vertex H, discovered ['B', 'D']

Processing vertex D, discovered ['E', 'J', 'C']

Processing vertex J, discovered ['O', 'I', 'N']

Processing vertex O, found no exit, retracing to J

Processing vertex N, discovered ['R']

Processing vertex R, discovered ['M', 'X']

Processing vertex X, discovered ['T', 'W', 'Y']

Arrived at final vertex Y

Unvisited vertices: 15

Best path is: ['A', 'G', 'H', 'D', 'J', 'N', 'R', 'X',

'Y']

Length of path: 22

The verbose output from the example tells you how the algorithm
works. BFS keeps moving until it runs out of vertexes to explore.
When it exhausts the vertexes without reaching the target, the
code tells you that it can’t reach the target and the robot won’t
budge. When the code does find the destination, it stops
processing vertexes, even if open_list still contains vertexes,
which saves time.
Finding a dead end, such as ending up in vertex O, means
looking for a previously unused route. The best alternative
immediately pops up thanks to the priority queue, and the
algorithm takes it. In this example, BFS efficiently ignores 15
vertexes and takes the upward route in the map, completing its
journey from A to Y in 22 steps.

 You can test other mazes by setting a different seed
number and comparing the BFS results with the A* algorithm
described in the next section. You’ll find that sometimes BFS
is both fast and accurate in choosing the best way,
sometimes not. If you need a robot that searches quickly,
BFS is the best choice.

Going heuristically around by A*
The A* algorithm speedily produces best shortest paths in a graph
by combining the Dijikstra greedy search discussed in Chapter 9
with an early stop (the algorithm stops when it reaches its
destination vertex) and a heuristic estimate (usually based on the
Manhattan distance) that hints at the graph area to explore first.
A* was developed at the Artificial Intelligence Center of Stanford
Research Institute (now called SRI International) in 1968 as part
of the Shakey the robot project. Shakey was the first mobile robot
to autonomously decide how to go somewhere (although it was
limited to wandering around a few rooms in the labs). To render
Shakey fully autonomous, its developers came up with the A*
algorithm, the Hough transform (an image-processing
transformation to detect the edges of an object), and the visibility
graph method (a way to represent a path as a graph). The article
at http://www.ai.sri.com/shakey/ describes Shakey in more
detail and even shows it in action. It is still surprising watching
what Shakey was capable of doing; go to
https://www.youtube.com/watch?v=qXdn6ynwpiI to take a look. The
A* algorithm is currently the best available algorithm when you’re
looking for the shortest route in a graph and you must deal with
partial information and expectations (as captured by the heuristic
function guiding the search). A* is able to

Find the shortest path solution every time: The algorithm can
do this if such a path exists and if A* is properly informed by the

http://www.ai.sri.com/shakey/
https://www.youtube.com/watch?v=qXdn6ynwpiI

heuristic estimate. A* is powered by the Dijkstra algorithm,
which guarantees always finding the best solution.
Find the solution faster than any other algorithm: A* can do
this if given access to a fair heuristic — one that provides the
right directions to reach the target proximity in a similar, though
even smarter, way as BFS.
Computes weights when traversing edges: Weights account
for the cost of moving in a certain direction. For example, turning
may take longer than going straight, as in the case of Shakey
the robot.

 A proper, fair, admissible heuristic provides useful
information to A* about the distance to the target by never
overestimating the cost of reaching it. Moreover, A* makes
greater use of its heuristic than BFS, therefore the heuristic
must perform calculations quickly or the overall processing
time will be too long.

The Python implementation in this example uses the same code
and data structures used for BFS, but there are differences
between them. The main differences are that as the algorithm
proceeds, it updates the cost of reaching from the start vertex to
each of the explored vertexes. In addition, when it decides on a
route, A* considers the shortest path from the start to the target,
passing by the current vertex, because it sums the estimate from
the heuristic with the cost of the path computed to the current
vertex. This process allows the algorithm to perform more
computations than BFS when the heuristic is a proper estimate
and to determine the best path possible.

 Finding the shortest path possible in cost terms is the core
Dijkstra algorithm function. A* is simply a Dijkstra algorithm in
which the cost of reaching a vertex is enhanced by the

heuristic of the expected distance to the target. Chapter 9
describes the Dijkstra algorithm in detail. Revisiting the
Chapter 9 discussion will help you better understand how A*
operates in leveraging heuristics.

A*

open_list = set(graph.nodes())

closed_list = {start: manhattan_dist(

start, goal, coordinates)}

visited = {start: 0}

path = {}

while open_list:

candidates = open_list&closed_list.keys()

if len(candidates)==0:

print ("Cannot find a way to the goal %s" % goal)

break

frontier = [(closed_list[node],

node) for node in candidates]

score, min_node =sorted(frontier)[0]

if min_node==goal:

print ("Arrived at final vertex %s" % goal)

print ('Unvisited vertices: %i' % (len(

open_list)-1))

break

else:

print("Processing vertex %s, " % min_node, end="")

open_list = open_list.difference(min_node)

current_weight = visited[min_node]

neighbors = node_neighbors(graph, min_node)

to_be_visited = list(neighbors-visited.keys())

for node in neighbors:

new_weight = current_weight + graph_weight(

graph, min_node, node)

if node not in visited or \

new_weight < visited[node]:

visited[node] = new_weight

closed_list[node] = manhattan_dist(node, goal,

coordinates) + new_weight

path[node] = min_node

if to_be_visited:

print ("discovered %s" % to_be_visited)

else:

print ("getting back to open list")

print ('\nBest path is:', reconstruct_path(

path, start, goal))

print ('Length of path: %i' % compute_path_dist(

reconstruct_path(path, start, goal), graph))

Processing vertex A, discovered ['F', 'G']

Processing vertex F, discovered ['B', 'K']

Processing vertex G, discovered ['H']

Processing vertex K, discovered ['Q', 'P']

Processing vertex H, discovered ['D']

Processing vertex B, discovered ['C']

Processing vertex P, discovered ['L', 'U', 'V']

Processing vertex Q, discovered ['M', 'W']

Processing vertex C, getting back to open list

Processing vertex U, getting back to open list

Processing vertex D, discovered ['E', 'J']

Processing vertex V, getting back to open list

Processing vertex L, getting back to open list

Processing vertex W, discovered ['X']

Processing vertex E, getting back to open list

Processing vertex M, discovered ['R']

Processing vertex J, discovered ['O', 'I', 'N']

Processing vertex X, discovered ['T', 'Y']

Processing vertex R, getting back to open list

Processing vertex O, getting back to open list

Processing vertex I, getting back to open list

Arrived at final vertex Y

Unvisited vertices: 3

Best path is: ['A', 'F', 'K', 'Q', 'W', 'X', 'Y']

Length of path: 14

When the A* has completed analyzing the maze, it outputs a best
path that’s much shorter than the BFS solution. This solution
comes at a cost: A* explores almost all the present vertexes,
leaving just three vertexes unconsidered. As with Dijkstra, its
worst running time is O(v2), where v is the number of vertexes in
the graph; or O(e + v*log(v)), where e is the number of edges,
when using min-priority queues, an efficient data structure when
you need to obtain the minimum value for a long list. The A*
algorithm is not different in its worst running time than Dijkstra’s,
though on average, it performs better on large graphs because it
first finds the target vertex when correctly guided by the heuristic
measurement (in the case of a routing robot, the Manhattan
distance).

Part 6

The Part of Tens

IN THIS PART …
Consider how algorithms are changing the world.
Discover the future of algorithms.
Define problems that algorithms haven’t solved.
Learn how games help people solve algorithms.

Chapter 21
Ten Algorithms That Are

Changing the World
IN THIS CHAPTER

 Considering sort and search routines
 Using random numbers
 Making data smaller
 Ensuring that data remains secret, and more …

It’s hard to imagine an algorithm doing much of anything, much
less changing the world. However, algorithms today appear
everywhere, and you might not even realize just how much effect
they have on your life.
Most people realize that online stores and other sales venues rely
on algorithms to determine which add-on products to suggest
based on previous purchases. However, most people are
unaware of the uses of algorithms in medicine, many of which
help a doctor decide what diagnosis to provide.
Algorithms appear in the oddest places. The timing of traffic lights
often depends on the calculations of algorithms. Algorithms will
help your smartphone talk to you today, and you see algorithms at
work in making your television do more than any television has
done in the past. Consequently, it’s not all that impossible to
believe that algorithms are poised to change the world. This
chapter highlights ten of them.

 For algorithm purists, you can say that the algorithm has
changed the world throughout the centuries, so nothing has
really changed for thousands of years. The Babylonians used
algorithms to perform factorization and find square roots as
early as 1600 BC. Al-Khawarizmi described algorithms to
solve both linear and quadratic equations around 820. This
chapter focuses on computer-based algorithms, but
algorithms have been around for a long time.

Using Sort Routines
Without ordered data, most of the world would come to a stop. To
use data, you must be able to find it. You can find hundreds of
sort algorithms explained on sites such as
https://betterexplained.com/articles/sorting-algorithms/ and
as part of this book (see Chapter 7).
However, the three most common sort routines are Mergesort,
Quicksort, and Heapsort because of the superior speed they
provide (see the time comparisons at
http://www.cprogramming.com/tutorial/computersciencetheory/so

rtcomp.html). The sort routine that works best for your application
depends on the following:

What you expect the application to do
The kind of data you work with
The computing resources you have available

The point is that the capability to sort data into whatever form an
application needs to accomplish a task makes the world run, and
this capability is changing how the world works.
Some businesses today thrive as a result of the sort algorithm.
For example, consider the fact that Google exists because it helps
people find things, and this ability resides substantially in the
capability to sort data to make it readily accessible. Consider just

https://betterexplained.com/articles/sorting-algorithms/
http://www.cprogramming.com/tutorial/computersciencetheory/sortcomp.html

how hard it would be to find an item on Amazon without the sort
routine. Even that recipe application on your computer at home
relies heavily on sort routines to keep the data it contains in order.
In fact, it probably wouldn’t be too much of a stretch to say that
any substantial application relies heavily on sort routines.

Looking for Things with Search
Routines

As with sort routines, search routines appear in nearly every
application of any size today. The applications appear
everywhere, even in places that you might not think too much
about, such as your car. Finding information quickly is an
essential part of daily life. For example, imagine being late for an
appointment and suddenly discovering that your GPS can’t find
the address you need. As with sort routines, search routines come
in all shapes and sizes, and you can find them described on sites
such as https://tekmarathon.com/2012/10/05/best-searching-
algorithm-2/ and
http://research.cs.queensu.ca/home/cisc121/2006s/webnotes/sea

rch.html . In fact, if anything, there are more search routines than
sort routines because search requirements are often more
strenuous and complex. You find a lot of search routines
discussed in this book as well (see Chapter 7).

Shaking Things Up with
Random Numbers

All sorts of things would be a lot less fun without randomness. For
example, imagine starting Solitaire and seeing precisely the same
game every time you start it. No one would play such a game.
Consequently, random number generation is an essential part of
the gaming experience. In fact, as expressed in a number of
chapters in this book, some algorithms actually require some level

https://tekmarathon.com/2012/10/05/best-searching-algorithm-2/
http://research.cs.queensu.ca/home/cisc121/2006s/webnotes/search.html

of randomness to work properly (see the “Arranging caching
computer data” section of Chapter 15 as an example). You also
find that testing works better when using random values in some
cases (see the “Choosing a particular kind of compression ”
section of Chapter 14 as an example).

 The numbers that you obtain from an algorithm are
actually pseudo-random, which means that you can
potentially predict the next number in a series by knowing the
algorithm and the seed value used to generate the number.
That’s why this information is so closely guarded.

 Not all applications and not all computers rely on pseudo-
random numbers generated by algorithms (the vast majority
do, however). Computer hardware-based methods of creating
random numbers exist, such as relying on atmospheric noise
or temperature changes (see
http://engineering.mit.edu/ask/can-computer-generate-

truly-random-number for details). In fact, you can get a
hardware-based random number solution, such as ChaosKey
(http://altusmetrum.org/ChaosKey/) and plug it into your
USB slot to generate what likely are true random numbers.
The interesting thing about the ChaosKey site is that it
provides you with a schematic to show how it collects random
noise and changes it into a random number.

Performing Data Compression
Chapter 14 discusses data compression techniques and uses the
kind of compression that you normally find used for files.
However, data compression affects every aspect of computing
today. For example, most graphics, video, and audio files rely on

http://engineering.mit.edu/ask/can-computer-generate-truly-random-number
http://altusmetrum.org/ChaosKey/

data compression. Without data compression, you couldn’t
possibly obtain the required level of throughput to make tasks
such as streamed movies work.
However, data compression finds even more uses than you might
expect. Just about every Database Management System (DBMS)
relies on data compression to make data fit in a reasonable
amount of space on disk. Cloud computing wouldn’t work without
data compression because it downloading items from the cloud to
local machines would take too long. Even web pages often rely on
data compression to get information from one place to another.

Keeping Data Secret
The concept of keeping data secret isn’t new. In fact, it’s one of
the oldest reasons to use an algorithm of some sort. The word
cryptography actually comes from two Greek words: kryptós
(hidden or secret) and graphein (writing). In fact, the Greeks were
probably the first users of cryptography, and ancient texts report
that Julius Caesar used encrypted missives to communicate with
his generals. The point is, keeping data secret is one of the
longest running battles in history. The moment one party finds a
way to keep a secret, someone else finds a way to make the
secret public by breaking the cryptography. General uses for
computer-driven cryptography today include:

Confidentiality: Ensuring that no one can see information
exchanged between two parties.
Data integrity: Reducing the likelihood that someone or
something can change the content of data passed between two
parties.
Authentication: Determining the identity of one or more parties.
Nonrepudiation: Reducing the ability of a party to say he or
she didn’t commit a particular act.

 Because keeping a secret when using computers, the
history of computer-based cryptographic algorithms is long
and interesting. You can find a list of commonly used
algorithms (both present and historical) at
http://www.cryptographyworld.com/algo.htm and
https://www.dwheeler.com/secure-programs/Secure-

Programs-HOWTO/crypto.html . The guide at
https://www.owasp.org/index.php/Guide_to_Cryptography

provides additional details on how cryptography works.

Changing the Data Domain
The Fourier Transform and Fast Fourier Transform (FFT) make a
huge difference in how applications perceive data. These two
algorithms transform data from the frequency domain (how fast a
signal oscillates) to the time domain (the time differential between
signal changes). In fact, it’s impossible to get any sort of computer
hardware degree without having spent time working with these
two algorithms extensively. Timing is everything.

 By knowing how often something changes, you can figure
out the time interval between changes and therefore know
how long you have to perform a task before a change in state
requires that you do something else. These algorithms
commonly see use in filters of all sorts. Without the filtering
effects of these algorithms, reproducing video and audio
faithfully through a streamed connection would be impossible.
All these applications sound rather advanced, and they are,
but some amazing tutorials give you a better sense of how
these algorithms work (see the tutorial at
http://w.astro.berkeley.edu/~jrg/ngst/fft/fft.html as an
example). The tutorial at
https://betterexplained.com/articles/an-interactive-

http://www.cryptographyworld.com/algo.htm
https://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/crypto.html
https://www.owasp.org/index.php/Guide_to_Cryptography
http://w.astro.berkeley.edu/~jrg/ngst/fft/fft.html
https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/

guide-to-the-fourier-transform/ is possibly the most
interesting and especially entertaining if you like smoothies.

Analyzing Links
The capability to analyze relationships is something that has
made modern computing unique. In fact, the capability to first
create a representation of these relationships and then analyze
them is the subject of Part III of this book. The whole idea of the
web, in fact, is to create connections, and connectivity was a
consideration at the start of what has become a worldwide
phenomenon. Without the capability to analyze and utilize links,
applications such as databases and e-mail wouldn’t work. You
couldn’t communicate well with friends on Facebook.
As the web has matured and people have become more in tune
with devices that make connectivity both simpler and ubiquitous,
applications such as Facebook and sales sites such as Amazon
have made greater use of link analysis to do things like sell you
more products. Of course, some of this connectivity has a
negative outcome (see
http://www.pcmag.com/commentary/351623/facebook-a-tool-for-

evil as an example), but for the most part, link analysis does
make it possible for people to remain better informed and in better
contact with the world around them.
Of course, link analysis does more than inform in a connected sort
of way. Consider the use of link analysis to provide driving
directions or to find casual links between human activity and
disease. Link analysis enables you to see the connection between
things that you might not ordinarily consider but that do have an
impact on your daily live. Because of link analysis, you might live
longer because a doctor can advise you on which habits to
change to correct issues that could become problems later. The
point is that connections exist everywhere, and link analysis offers
a method to determine where these connections exist and
whether they’re actually important.

https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/
http://www.pcmag.com/commentary/351623/facebook-a-tool-for-evil

Spotting Data Patterns
Data doesn’t exist in a vacuum. All sorts of factors affect data,
including biases that color how humans perceive data. Chapter 10
starts a discussion of how data tends to cluster in certain
environments and how analysis of these clusters can tell you all
sorts of things about the data.

 Pattern analysis is at the forefront of some of the more
amazing uses of computers today. For example, the Viola–
Jones object detection framework makes real-time facial
recognition possible. This algorithm could enable people to
create better security in places like airports where nefarious
individuals currently ply their trade. Similar algorithms could
help your doctor detect cancers of various sorts long before
the cancer is actually visible to the human eye. Earlier
detection makes a full recovery a higher probability. The
same holds true for all sorts of other medical problems (such
as finding bone fractures that are currently too small to see
but cause pain nonetheless).

You also find pattern recognition used for more mundane
purposes. For example, pattern analysis lets people detect
potential traffic problems before they occur. It’s also possible to
use pattern analysis to help farmers grow more food at a lower
cost by applying water and fertilizer only when necessary. The
use of pattern recognition can also help move drones around
fields so that the farmer becomes more time efficient and can
work more land at a lower cost. Without algorithms, these sorts of
patterns, which have such a high impact on daily life, can’t be
recognized.

Dealing with Automation and
Automatic Responses

The proportional integral derivative algorithm is quite a mouthful.
Just try saying it three times fast! However, it’s one of the most
important secret algorithms you’ve never heard about, yet rely on
every day. This particular algorithm relies on a control loop
feedback mechanism to minimize the error between the desired
output signal and the real output signal. You see it used all over
the place to control automation and automatic responses. For
example, when your car goes into a skid because you break too
hard, this algorithm helps ensure that the Automatic Breaking
System (ABS) actually works as intended. Otherwise, the ABS
could overcompensate and make matters worse.
Just about every form of machinery today uses the proportional
integral derivative algorithm. In fact, robotics wouldn’t be possible
without it. Imagine what would happen to a factory if all of the
robots constantly overcompensated for every activity in which
they engaged. The resulting chaos would quickly convince owners
to stop using machines for any purpose whatsoever.

Creating Unique Identifiers
It seems as if we’re all just a number. Actually, not just one
number — lots and lots of numbers. Each of our credit cards has
a number, as does our driver license, as does our government
identifier, as do all sorts of other businesses and organizations.
People actually have to keep lists of all of the numbers because
they simply have too many to track. Yet, each of these numbers
must identify the person uniquely to some party. Behind all of this
uniqueness are various kinds of algorithms.
Chapter 7 discusses hashes, which are one way to ensure
uniqueness. Underlying both hashes and cryptography is integer
factorization, a kind of algorithm that breaks really large numbers

into prime numbers. In fact, integer factorization is one of the
hardest kinds of problems to solve with algorithms, but people are
working on the problem all the time. So much of society today
depends on your ability to identify yourself uniquely that the
hidden secrets of creating these identifiers is an essential part of a
modern world.

Chapter 22
Ten Algorithmic Problems Yet

to Solve
IN THIS CHAPTER

 Performing text searches easily
 Detecting differences in individual words
 Considering the feasibility of hypercomputers
 Employing one-way functions, and more …

Algorithms have indeed been around for centuries, so you’d think
that scientists would have discovered and solved every algorithm
by now. Unfortunately, the opposite is true. Solving a particular
algorithm often presents a few more questions that the algorithm
doesn’t solve and that didn’t seem apparent until someone did
come up with the solution. In addition, changes in technologies
and lifestyle often present new challenges that call for yet more
algorithms. For example, the connected nature of society and the
use of robots have both increased the need for new algorithms.
As presented in Chapter 1 , algorithms are a series of steps used
to solve a problem, and you shouldn’t confuse them with other
entities, such as equations. An algorithm is never a solution in
search of a problem. No one would create a series of steps to
solve a problem that doesn’t yet exist (or may never exist). In
addition, many problems are interesting but have no pressing
need for a solution. Consequently, even though everyone knows
about the problem and understands that someone might want a
solution for it, no one is in a hurry to create the solution.
This chapter is about algorithmic problems that would serve a
purpose should someone find a solution for them. In short, the

reason you need to care about this chapter is that you might find a
problem that you’d really like to solve and might even decide to
become part of the team that solves it.

Dealing with Text Searches
Many text searches involve the use of regular expressions — a
sort of shorthand that tells the computer what to find. The
grammar used for the regular expression depends on the
language or application, but you find regular expressions used in
a number of places, including word processors, email
applications, search dialogs, and in all sorts of other places where
you need to provide precise search terms for a range of text
items. You can read more about regular expressions at
http://www.regular-expressions.info/ .

 One of the current problems with regular expressions is
that it seems as if every application environment has a similar
set of rules, but with just enough differences to make creating
a search term hard. The generalized star-height problem
seeks to discover whether a generalized regular expression
syntax exists. If so, the resulting algorithm would make it
possible for someone to learn just one method of creating
regular expressions to perform searches. You can read more
about this problem at
https://www.irif.fr/~jep/Problemes/starheight.html .

Differentiating Words
When working with characters, a computer sees numbers, not
letters. The numbers are actually just a series of 0s and 1s to the
computer and don’t actually have any meaning. Combining
characters into strings just makes the series of 0s and 1s longer.
Consequently, comparing two strings, something that a human

http://www.regular-expressions.info/
https://www.irif.fr/~jep/Problemes/starheight.html

can do at a glance, can take time within a computer, and
confusion is likely between conjugates. For example, unless
you’re careful in constructing the algorithm, a computer could
confuse enlist and listen. More important, the computer would
require time to discern the difference between the two. The
separating words problem seeks to find the smallest (and fastest)
possible algorithm (a deterministic finite automaton, DFN, in this
case) to perform word separation. The goal is to accept one word
and reject another, given two words of a particular length.

Determining Whether an
Application Will End

One of the problems that Alan Turing proposed in 1936 is the
issue of whether an algorithm, given a description of a program
and an input, could determine whether the program would
eventually halt (the halting problem). When working with a simple
application, it’s easy to determine in many cases whether the
program will halt or continue running in an endless loop. However,
as program complexity increases, determining the result of
running the program with any given input becomes harder. A
Turing machine can’t make this determination; the result is buggy
code with infinite loops. No amount of testing that uses current
technology can solve this issue.

 A hypercomputer is a computing model that goes beyond
the Turing machine to solve problems such as the halting
problem. However, such machines aren’t possible using
current technology. If they were possible, you would be able
to ask them all kinds of imponderables that computers can’t
currently answer. The article at
https://www.newscientist.com/article/mg22329781-500-
what-will-hypercomputers-let-us-do-good-question/

https://www.newscientist.com/article/mg22329781-500-what-will-hypercomputers-let-us-do-good-question/

provides you with a good idea of what would happen if
someone were able to solve this problem.

Creating and Using One-Way
Functions

A one-way function is a function that is easy to use to obtain an
answer in one direction, but nearly impossible to use with the
inverse of that answer. In other words, you use a one-way
function to create something like a hash that would appear as part
of a solution for cryptography, personal identification,
authentication, or other data security needs.

 The existence of a one-way function is less mystery and
more a matter of proof. Many telecommunications, e-
commerce, and e-banking systems currently rely on functions
that are purportedly one way, but no one truly knows whether
they really are one way. The existence of a one-way function
is currently a hypothesis, not a theory (see an explanation of
the difference between the two at
http://www.diffen.com/difference/Hypothesis_vs_Theory). If
someone were able to prove that a one-way function exists,
data security issues would be easier to solve from a
programming perspective.

Multiplying Really Large
Numbers

Really large numbers exist in many places. For example, consider
performing the calculations involving distances to Mars, or
perhaps Pluto. Methods currently do exist for performing
multiplication on really large numbers, but they tend to be slow

http://www.diffen.com/difference/Hypothesis_vs_Theory

because they require multiple operations to complete. The
problem occurs when the numbers are too large to fit in the
processor’s registers. At that point, the multiplication must occur
in more than one step, which slows things considerably. The
current solutions include:

Gauss's complex multiplication algorithm
Karatsuba multiplication
Toom-Cook
Fourier transform methods

Even though many of the methods currently available produce
acceptable results, they all take time, and when you have a lot of
calculations to perform, the time problem can become critical.
Consequently, large number multiplication is one of those
problems that requires a better solution than those available
today.

Dividing a Resource Equally
Dividing resources equally may not seem hard, but humans, being
the envious sort, might see the resource as being unequally
divided unless you can find a way to assure everyone that the
division is indeed fair. This is the envy-free cake-cutting problem.
Of course, when you cut a cake, no matter how fairly you attempt
to do it, there is always the perception that the division is unfair.
Creating a fair division of resources is important in daily life to
minimize strife between stakeholders in any organization, making
everyone more efficient.

 Two solutions already exist for the envy-free cake-cutting
problem with a specific number of people, but no general
solution exists. When there are two people involved, the first
cuts the cake and the second chooses the first piece. In this
way, both parties are assured of an equal division. The

problem becomes harder with three people, but you can find
the Selfridge-Conway solution for the problem at
https://ochronus.com/cutting-the-pie (even though the site
discusses pie, the process is the same). However, after you
get to four people, no solution exists.

Reducing Edit Distance
Calculation Time

The edit distance between two strings is the number of operations
required to transform one string into the other string. The distance
calculation revolves around the Levenshtein distance operations,
which are the removal, insertion, or substitution of a character in
the string. This particular technique sees use in natural language
interfaces, DNA sequence quantification, and all sorts of other
places where you can have two similar strings that require some
sort of comparison or modification.
A number of solutions for this problem currently exist, all of them
quite slow. In fact, most of them take exponential time, so the time
required to perform a transformation quickly adds up to the point
where humans can see pauses in the processing of input. The
pause isn’t quite so bad when using a word processor that
performs automatic word checks and changes a misspelled word
into the correct one. However, when using voice interfaces, the
pause can become quite noticeable and cause the human
operator to make mistakes. The current goal is to allow edit
distance calculation in subquadratic time: O(n2-ϵ).

Solving Problems Quickly
As machine learning takes off and we count more and more on
computers to solve problems, the issue of how quickly a computer
can solve a problem becomes critical. The P versus NP problem
simply asks whether a computer can solve a problem quickly
when it can verify the solution to the problem quickly. In other

https://ochronus.com/cutting-the-pie

words, if the computer can reasonably ascertain that a human
response to a problem is correct in polynomial time or less, can it
also solve the problem itself in polynomial time or less?
This question was originally discussed in the 1950s by John Nash
in letters to the National Security Agency (NSA) and again in
letters between Kurt Gödel and John von Neumann. In addition to
machine learning (and AI in general), this particular problem is a
concern to many other fields, including mathematics,
cryptography, algorithm research, game theory, multimedia
processing, philosophy, and economics.

Playing the Parity Game
At first, solving a game might not seem all that useful in real life.
Yes, games are fun and interesting, but they don’t really provide a
background for doing anything useful — at least, that’s the
general theory. However, game theory does come into play in a
large number of real-life scenarios, many of which involve
complex processes that someone can understand more easily as
games than as actual processes. In this case, the game helps
people understand automated verification and controller
synthesis, among other things. You can read more about the
parity game at
http://www.sciencedirect.com/science/article/pii/S08905401150

00723 . In fact, you can play it if you’d like at
https://www.abefehr.com/parity/ .

Understanding Spatial Issues
To put this particular problem into context, think about moving
boxes around in a warehouse or some other situations in which
you need to consider the space in which things move. Obviously,
if you have many boxes in a big warehouse and they all require a
forklift to pick up, you don’t want to try to figure out how to store
them optimally by physically rearranging them. This is where you
need to work through the problem by visualizing a solution.

http://www.sciencedirect.com/science/article/pii/S0890540115000723
https://www.abefehr.com/parity/

However, the question is whether all spatial problems have a
solution. In this case, think about one of those kids’ puzzles that
has you putting a picture together by sliding the little tiles around.
It seems as if a solution should exist in all cases, but in some
situations, a bad starting point can result in a situation that has no
solution. You can find a discussion of such a problem at
http://math.stackexchange.com/questions/754827/does-a-15-

puzzle-always-have-a-solution .

 Mathematicians such as Sam Loyd (see
https://www.mathsisfun.com/puzzles/sam-loyd-puzzles-

index.html) often use puzzles to demonstrate complex math
problems, some of which have no solution today. Visiting
these sites is fun because you not only get some free
entertainment but also, food for thought. The issues that
these puzzles raise do have practical applications, but they’re
presented in a fun way.

http://math.stackexchange.com/questions/754827/does-a-15-puzzle-always-have-a-solution
https://www.mathsisfun.com/puzzles/sam-loyd-puzzles-index.html

About the Authors
John Mueller is a freelance author and technical editor. He has
writing in his blood, having produced 102 books and more than
600 articles to date. The topics range from networking to artificial
intelligence and from database management to heads-down
programming. Some of his current books include a book on
Python for beginners, Python for data science, and a book about
MATLAB. He has also written books about Amazon Web Services
for Administrators, web application security, HTML5 development
with JavaScript, and CSS3. His technical editing skills have
helped more than 63 authors refine the content of their
manuscripts. John has provided technical editing services to
various technical magazines as well. It was during his time with
Data Based Advisor that John was first exposed to MATLAB, and
he has continued to follow the progress in MATLAB development
ever since. During his time at Cubic Corporation, John was
exposed to reliability engineering and has continued his interest in
probability. Be sure to read John’s blog at
http://blog.johnmuellerbooks.com/ .
When John isn’t working at the computer, you can find him
outside in the garden, cutting wood, or generally enjoying nature.
John also likes making wine, baking cookies, and knitting. You
can reach John on the Internet at John@JohnMuellerBooks.com .
John is also setting up a website at
http://www.johnmuellerbooks.com/ . Feel free to take a look and
make suggestions on how he can improve it.
Luca Massaron is a data scientist and marketing research
director who is specialized in multivariate statistical analysis,
machine learning, and customer insight, with more than a decade
of experience in solving real-world problems and generating value
for stakeholders by applying reasoning, statistics, data mining,
and algorithms. Passionate about everything regarding data and
analysis and about demonstrating the potentiality of data-driven
knowledge discovery to both experts and non-experts, Luca is the

http://blog.johnmuellerbooks.com/
mailto:John@JohnMuellerBooks.com
http://www.johnmuellerbooks.com/

coauthor of Python for Data Science For Dummies and Machine
Learning For Dummies. Favoring simplicity over unnecessary
sophistication, he believes that a lot can be achieved by
understanding in simple terms and practicing the essentials of any
discipline.

John’s Dedication
This book is dedicated to Julie Thrond, a friend who is both faithful
and kind. May she always win out against the struggles in life.

Luca’s Dedication
I dedicate this book to my wife, Yukiko, whom I always find
curious and ready to marvel at the wonders of this amazing and
baffling world. Stay curious. Enjoy the surprise of both little and
great things alike. Do not have fear of anything or let foolish
details bother you. Stay young at heart forever. With love.

John’s Acknowledgments
Thanks to my wife, Rebecca. Even though she is gone now, her
spirit is in every book I write, in every word that appears on the
page. She believed in me when no one else would.
Russ Mullen deserves thanks for his technical edit of this book.
He greatly added to the accuracy and depth of the material you
see here. Russ worked exceptionally hard helping with the
research for this book by locating hard-to-find URLs and also
offering a lot of suggestions.
Matt Wagner, my agent, deserves credit for helping me get the
contract in the first place and taking care of all the details that
most authors don’t really consider. I always appreciate his
assistance. It’s good to know that someone wants to help.
A number of people read all or part of this book to help me refine
the approach, test scripts, and generally provide input that all
readers wish they could have. These unpaid volunteers helped in
ways too numerous to mention here. I especially appreciate the
efforts of Eva Beattie, Glenn A. Russell, Alberto Boschetti,
Cristian Mastrofrancesco, Diego Paladini, Dimitris Papadopoulos,
Matteo Malosetti, Sebastiano Di Paola, Warren B, and Zacharias
Voulgaris, who provided general input, read the entire book, and
selflessly devoted themselves to this project.
Finally, I would like to thank Katie Mohr, Susan Christophersen,
and the rest of the Wiley editorial and production staff for their
unparalleled support of this writing effort.

Luca’s Acknowledgments
My first greatest thanks to my family, Yukiko and Amelia, for their
support, sacrifices, and loving patience during the long
days/nights, weeks, and months I’ve been involved in working on
this book.
I thank all the editorial and production staff at Wiley, in particular
Katie Mohr and Susan Christophersen, for their great
professionalism and support in all the phases of writing this book
of the For Dummies series.

Publisher’s Acknowledgments
Acquisitions Editor: Katie Mohr
Project and Copy Editor: Susan Christophersen
Technical Editor: Russ Mullen
Editorial Assistant: Serena Novosel
Sr. Editorial Assistant: Cherie Case
Production Editor: Selvakumaran Rajendiran
Cover Image: © Nobi_Prizue/iStockphoto

Take Dummies with you
everywhere you go!

Go to our Website

Like us on Facebook

Follow us on Twitter

Watch us on YouTube

Join us on LinkedIn

Pin us on Pinterest

http://www.dummies.com/
http://www.dummies.com/
http://www.facebook.com/fordummies
http://www.facebook.com/fordummies
http://www.twitter.com/fordummies
http://www.twitter.com/fordummies
http://www.youtube.com/user/fordummies
http://www.youtube.com/user/fordummies
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://pinterest.com/fordummies/
http://pinterest.com/fordummies/

Circle us on google+

Subscribe to our newsletter

Create your own Dummies book cover

Shop Online

https://plus.google.com/105265587979403653723
https://plus.google.com/105265587979403653723
http://www.dummies.com/go/newsletter
http://www.dummies.com/go/newsletter
http://covers.dummies.com/
http://covers.dummies.com/
http://dummiesmerchandise.com/
http://dummiesmerchandise.com/

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1: Getting Started
	Chapter 1: Introducing Algorithms
	Describing Algorithms
	Using Computers to Solve Problems
	Distinguishing between Issues and Solutions
	Structuring Data to Obtain a Solution

	Chapter 2: Considering Algorithm Design
	Starting to Solve a Problem
	Dividing and Conquering
	Learning that Greed Can Be Good
	Computing Costs and Following Heuristics
	Evaluating Algorithms

	Chapter 3: Using Python to Work with Algorithms
	Considering the Benefits of Python
	Looking at the Python Distributions
	Installing Python on Linux
	Installing Python on MacOS
	Installing Python on Windows
	Downloading the Datasets and Example Code

	Chapter 4: Introducing Python for Algorithm Programming
	Working with Numbers and Logic
	Creating and Using Strings
	Interacting with Dates
	Creating and Using Functions
	Using Conditional and Loop Statements
	Storing Data Using Sets, Lists, and Tuples
	Defining Useful Iterators
	Indexing Data Using Dictionaries

	Chapter 5: Performing Essential Data Manipulations Using Python
	Performing Calculations Using Vectors and Matrixes
	Creating Combinations the Right Way
	Getting the Desired Results Using Recursion
	Performing Tasks More Quickly

	Part 2: Understanding the Need to Sort and Search
	Chapter 6: Structuring Data
	Determining the Need for Structure
	Stacking and Piling Data in Order
	Working with Trees
	Representing Relations in a Graph

	Chapter 7: Arranging and Searching Data
	Sorting Data Using Mergesort and Quicksort
	Using Search Trees and the Heap
	Relying on Hashing

	Part 3: Exploring the World of Graphs
	Chapter 8: Understanding Graph Basics
	Explaining the Importance of Networks
	Defining How to Draw a Graph
	Measuring Graph Functionality
	Putting a Graph in Numeric Format

	Chapter 9: Reconnecting the Dots
	Traversing a Graph Efficiently
	Sorting the Graph Elements
	Reducing to a Minimum Spanning Tree
	Finding the Shortest Route

	Chapter 10: Discovering Graph Secrets
	Envisioning Social Networks as Graphs
	Navigating a Graph

	Chapter 11: Getting the Right Web page
	Finding the World in a Search Engine
	Explaining the PageRank Algorithm
	Implementing PageRank
	Going Beyond the PageRank Paradigm

	Part 4: Struggling with Big Data
	Chapter 12: Managing Big Data
	Transforming Power into Data
	Streaming Flows of Data
	Sketching an Answer from Stream Data

	Chapter 13: Parallelizing Operations
	Managing Immense Amounts of Data
	Working Out Algorithms for MapReduce

	Chapter 14: Compressing Data
	Making Data Smaller

	Part 5: Challenging Difficult Problems
	Chapter 15: Working with Greedy Algorithms
	Deciding When It Is Better to Be Greedy
	Finding Out How Greedy Can Be Useful

	Chapter 16: Relying on Dynamic Programming
	Explaining Dynamic Programming
	Discovering the Best Dynamic Recipes

	Chapter 17: Using Randomized Algorithms
	Defining How Randomization Works
	Putting Randomness into your Logic

	Chapter 18: Performing Local Search
	Understanding Local Search
	Presenting local search tricks
	Solving satisfiability of Boolean circuits

	Chapter 19: Employing Linear Programming
	Using Linear Functions as a Tool
	Using Linear Programming in Practice

	Chapter 20: Considering Heuristics
	Differentiating Heuristics
	Routing Robots Using Heuristics
	Explaining Path Finding Algorithms

	Part 6: The Part of Tens
	Chapter 21: Ten Algorithms That Are Changing the World
	Using Sort Routines
	Looking for Things with Search Routines
	Shaking Things Up with Random Numbers
	Performing Data Compression
	Keeping Data Secret
	Changing the Data Domain
	Analyzing Links
	Spotting Data Patterns
	Dealing with Automation and Automatic Responses
	Creating Unique Identifiers

	Chapter 22: Ten Algorithmic Problems Yet to Solve
	Dealing with Text Searches
	Differentiating Words
	Determining Whether an Application Will End
	Creating and Using One-Way Functions
	Multiplying Really Large Numbers
	Dividing a Resource Equally
	Reducing Edit Distance Calculation Time
	Solving Problems Quickly
	Playing the Parity Game
	Understanding Spatial Issues

	About the Authors
	Connect with Dummies
	End User License Agreement

