7
Approaching the Shannon limit by turbo coding

7.1 Information Transmission Theorem

The reliable transmission of information-bearing signals over a noisy commu-
nication channel is at the heart of what we call communication. Information
theory, founded by Claude E. Shannon in 1948 [Sha48], provides a mathemat-
ical framework for the theory of communication. It describes the fundamental
limits to how efficiently one can encode information and still be able to recover
it with negligible loss.

At its inception, the main role of information theory was to provide the en-
gineering and scientific communities with a mathematical framework for the
theory of communication by establishing the fundamental limits on the per-
formance of various communication systems. Its birth was initiated with the
publication of the works of Claude E. Shannon, who stated that it is possible to
send information-bearing signals at a fixed code rate through a noisy commu-
nication channel with an arbitrarily small error probability as long as the code
rate is below a certain fixed quantity that depends on the channel character-
istics [Sha48]; he “baptized” this quantity with the name of channel capacity
(see the discussion in Chapter 6). He further proclaimed that random sources
— such as speech, music, or image signals — possess an irreducible complexity
beyond which they cannot be compressed distortion-free. He called this com-
plexity the source entropy (see the discussion in Chapter 5). He went on to
assert that if a source has an entropy that is less than the capacity of a com-
munication channel, then asymptotically error-free transmission of the source
over the channel can be achieved. This result is usually referred to as the Infor-
mation Transmission Theorem or the Joint Source—Channel Coding Theorem.
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144 Approaching the Shannon limit by turbo coding

Theorem 7.1 (Information Transmission Theorem)

Consider the transmission of a source U* = (Uy,Us, ..., Uy) through
a channel with input X" = (X1,X5,...,X,) and outpur Y" =
1, Ya,...,Y,) as shown in Figure 7.1. Assume that both the source
sequence Uy,Us, ..., Uy and the noise sequence Ni,N,, . ..,N, are inde-
pendent and identically distributed. Then, subject to a fixed code rate
R = k/n, there exists a sequence of encoder-decoder pairs such that
the decoding error; i.e. Pr [ﬁk #* Uk], can be made arbitrarily small
(i.e. arbitrarily close to zero) by taking n sufficiently large if

1 1
—H(U) bits/second < — max1(X;Y) bits/second, (7.1)
Ts Tc Px

where the base-2 logarithm is adopted in the calculation of entropy
and mutual information (so they are in units of bits), and Ty and T, are,
respectively, the time (in units of second) to generate one source symbol
Uy and the time to transmit one channel symbol Xy. On the other hand,
if

1 . 1 .

—H(U) bits/second > —maxI(X;Y) bits/second, (7.2)

Ts Te P
then Pr [ﬁk * Uk] has a universal positive lower bound for all coding

schemes of any length k; hence, the error cannot be made arbitrarily
small.

Recall from Definition 6.20 that the rate of a code is defined as

log, M
R= 05 M bits per transmission. (7.3)
n

From Figure 7.1 we now see that here we have! M = 2% ie.

log,(2¥) &
R log(2) Kk (7.4)
n n
On the other hand, it is also apparent from Figure 7.1 that, due to timing rea-

sons, we must have
kT, =nT.. (7.5)

' The number of codewords M is given by the number of different source sequences U of
length k. For simplicity we assume here that the source is binary, i.e. |U| = 2. In general we
have M = |U|¥ and R = (k/n)log, [U|.
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7.2 The Gaussian channel 145

Transmitter Channel Receiver

Uka"'aUZle Xl‘l7~'~7X1 YII>'~'>Y1

Encoder Decoder

Np, ..., Na, Ny

Figure 7.1 Noisy information transmission system.

Combined with (7.4) we thus see that the code rate can also be represented as

Tc
R=—. 7.6
T (7.6)

In Sections 7.3 and 7.4, we will further explore the two situations corre-
sponding to whether condition (7.1) or (7.2) is valid.

7.2 The Gaussian channel

Figure 7.1 considers the situation of a binary source Uy, Ua, ..., Uy being trans-
mitted through a noisy channel that is characterized by

Yo=Xo+Ny, €=1,2,...,n, (1.7
where X1,Xo,...,X, and Y},Y>,....Y, are, respectively, the channel input and
channel output sequences, and Ny, N, ..., N, is the noise sequence.

Assume that Uy is either 0 or 1, and Pr[U; = 0] = Pr[U; = 1] = 1/2. Also
assume that Uy, Us, ..., Uy are all independent.” Hence, its average entropy is
equal to

1H(Uk) _1 Z Pr [Uk = uk] log <1> bits/source symbol
k . . 2\ Pr[U = u¥| Y
ute{0,1}
(7.8)
1 —k 1 .
=- Z 2" "log, (2k> bits/source symbol (7.9)
uke{0,1}4
= 1 bit/source symbol, (7.10)

where we abbreviate (U1, U, ..., Uy) as U,
In a practical communication system, there usually exists a certain constraint
2 This assumption is well justified in practice: were Uy not uniform and independent, then any

good data compression scheme could make them so. For more details on this, we refer to
Appendix 7.7.
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146 Approaching the Shannon limit by turbo coding

E on the transmission power (for example, in units of joule per transmission).
This power constraint can be mathematically modeled as

20020 .2

AIRTHH CE foralln, (7.11)

n

When being transformed into an equivalent statistical constraint, one can re-
place (7.11) by

XP+X3+-+ X7
n

E =E[X}] <E, (7.12)
where E[-] denotes the expected value of the target random variable, and equal-
ity holds because we assume E [X?] = E [X}] = --- = E[X?], i.e. the channel
encoder is expected to assign, on average, an equal transmission power to each
channel input. Note that the channel inputs are in general strongly dependent so
as to combat interference; what we assume here is that they have, on average,
equal marginal power. We further assume that the noise samples Ny, N,,...,N,
are independent in statistics and that the probability density function® of each
Ny is given by

1 2
fNé(I)zﬁexp <—2l!._2> y Z‘Eg{. (713)

This is usually termed the zero-mean Gaussian distribution, and the corre-
sponding channel (7.7) is therefore called the Gaussian channel.

7.3 Transmission at a rate below capacity

It can be shown that the channel capacity (i.e. the largest code rate below which
arbitrarily small error probability can be obtained) of a Gaussian channel as
defined in Section 7.2 is

C(E)= max I(X;Y) (7.14)
frE[X?]<E
1 E .
=3 log, { 1+ o2 bits/channel use, (7.15)

3 A probability density function is the density function for probability. Similar to the fact that
the density of a material describes its mass per unit volume, the probability density function
gives the probability of occurrence per unit point. Hence, integration of the material density
over a volume leads to the mass confined within it, and integration of the probability density
function over a range tells us the probability that one will observe a value in this range. The
Gaussian density function in (7.13) is named after the famous mathematician Carl Friedrich
Gauss, who used it to analyze astronomical data. Since it is quite commonly seen in practice, it
is sometimes named the normal distribution.
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7.4 Transmission at a rate above capacity 147

where the details can be found in [CT06, Eq. (9.16)]. Recall from the Informa-
tion Transmission Theorem (Theorem 7.1) that if the source entropy (namely,
1 bit/source symbol) is less than the capacity of a communication channel (i.e.
(1/2)log, (1+E/c?) bits per channel use), then reliable transmission becomes
feasible. Hence, in equation form, we can present the condition for reliable
transmission as follows:

1 1 E
i bits/second < Z—TC log, < 1+ 02) bits/second. (7.16)

Note that when comparing we have to represent the average source entropy
and channel capacity by the same units (here, bits/second). This is the reason
why we have introduced T and T..

7.4 Transmission at a rate above capacity

Now the question is what if

1 1 E
T bits/second > m log, (1 + 62) bits/second. (7.17)

In such a case, we know from the Information Transmission Theorem (Theo-
rem 7.1) that an arbitrarily small error probability cannot be achieved. How-
ever, can we identify the smallest error rate that can be possibly obtained?

Transmitter Channel Receiver
LSRN g;:::or Encoder Xy, X1 Va1 Decoder
Vi, .V Ny,...,N| V... Vi
Figure 7.2 Noisy information transmission system with incorporated com-
pressor.
A straightforward system design is to map each source sequence uj,...,u;

into a compressed binary sequence V¢ £ g(u) for transmission (see Fig-
ure 7.2), where the compressor function g(-) is chosen such that the resulting
average entropy is less than the channel capacity, i.e.

11 1 E
i%H(Vk) bits/second < m log, (1 + cﬂ) bits/second. (7.18)

Then, from Theorem 7.1 we know that V;, V5, ...,V can be transmitted through
the additive Gaussian noise channel with arbitrarily small error. This is to say,
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148 Approaching the Shannon limit by turbo coding

there exists a transmission scheme such that the decision at the channel out-
put v1,v,V3, ... is the same as the compressed channel input vi,v;,vs,... with
probability arbitrarily close to unity.* As a consequence, the error that is intro-
duced in this straightforward system design occurs only at those instances (i.e.
{s) where the compression is not reversible, i.e. u; cannot be recovered from
VK.

In the following, we will determine a minimum error probability that the
straightforward system in Figure 7.2 cannot beat even if we optimize over all
possible compressor designs subject to the average entropy of the compressor
output being smaller than the channel capacity. Before we come to this analy-
sis, we give several examples of how a compressor works and what is its error.

Example 7.2 For example, let g(-) map uy,up,us,... into vi,va,v3,... in a
fashion that

(V],V27V3,V4,..-) :g(u17u2au3au47"') = (u17u1,u3,u3,...), (7]9)

i.e. voy_1 = vop = uyy_1 (see Table 7.1). Since Vo = Vi for every £, no new
information is provided by V,, given V,,_ ;. The average entropy of V1, V,,...,
Vi, with k = 2m even, is then given by

1 1
—H(VY = —H(WV,V,,...,V. 7.20
k ( ) 2m ( 1,2, b Zm) ( )
1
=—HWVi,V3,....Vou_ 7.21
2m(1;37>2m1) (7.21)
1
= TH(U17U3;U57"’3U2m71) (722)
m
1
= 3 bits/source symbol, (7.23)
i.e.
llH(V") L bits/second (7.24)
Ts k 2T, ’ '

4 What Shannon targeted in his theorem is the block error rate, not the bit error rate. Hence, his
theorem actually concludes that Pr[(V| Vo, Vi) =V, Vo, ,Vk)} ~ | when k is sufficiently
large since

T
T EH(V ) bits/second

S

is less than

1 E
m log, (l + ?> bits/second.

This is a very strong statement because, for example, vy = vy for | < ¢ < k— 1 and vy # ¥ will
be counted as one block error even though there is only one bit error among these k bits. Note

that Pr[(Vl,Vz,...,Vk) = (‘717\72,...,\71()} ~ 1 surely implies that Pr [Vg = V[] ~ 1 for most /£,
but not vice versa.
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7.4 Transmission at a rate above capacity 149

Table 7.1 The mapping g(-) from u* to v* defined in (7.19) in Example 7.2

uy,up,uz,ug,... V1,V2,V3,V4,...
0000. .. 0000. ..
0001... 0000...
0010... 0011...
0011... 0011...
0100... 0000. ..
0101... 0000. ..
0110... 0011...
O111... 0011...
1000. .. 1100...
1001... 1100...
1010... 1111...
1011... 1111...
1000. .. 1100...
1101... 1100...
1110... 1111...
1111... 1111...
Under the premise that
1 1 E .
. bits/second < 2—_l_clog2 (1 + 02> bits/second, (7.25)

the average “bit” error rate of the system is given by
1
- (Pr[Ul £ Vi] +Pt[Us # V3] +Pr[Us # V3] + Pr[Us # Vi)
+---+Pr[U; # Vk]>

L (Pe{U) # Vi) + PrlUs £ Va] 1 Pe{Us Vi) 4 Pr(Us £ V|

m

o+ Pr{Usy # Vo) (7.26)
_ ﬁ <0+Pr[U2 £ V] + 0 Pe{Us # Va] 4 -+ Pr[Usm % VM]) 727
_ ﬁ (Pr[U2 £ U] 4+ PrlUs # Us] + - + Pr[Usy # Uz,,,,g) (7.28)
- %Pr[Uz # U] (7.29)
= %(Pr[(UhUZ) = (01)]+Pr[(U1,U2) = (10)]) (7.30)
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150 Approaching the Shannon limit by turbo coding

1/1 1 1
:2<4+4> -1 (7.31)

In fact, the error rate of 1/4 can be obtained directly without computation by
observing that all the odd-indexed bits Uy, U3, Us, . .. can be correctly recovered
from Vi, V3, Vs,...; however, the sequence V¥ provides no information for all
the even-indexed bits U,, U,, U, ... Thus, we can infer that a zero error rate for
odd-indexed bits and a 1/2 error rate based on a pure guess for even-indexed
bits combine to a 1/4 error rate. O

Example 7.2 provides a compressor with average bit error rate (BER) of
1/4 between input U;,Us,...,Uy and output V;,V,, ..., V) subject to its aver-
age output entropy 1/2T bits/second being smaller than the channel capac-
ity C(E) = (1/2T.)log,(1 + E/0?). However, dropping all even-indexed bits
may not be a good compressor design because it is possible that half of the
bits in V|, V,,...,V} are different from Uy,U,,...,Uy; i.e., in the worst case,
the difference between compressor input Uy, Ua, ..., Uy and compressor output
Vi,Va,..., Vi will result in a large distortion of k/2 bits.

In Section 3.3.3 we saw that the (7,4) Hamming code is a perfect packing
of radius-one spheres in the 7-dimensional binary space. Using this property,
we can provide in Example 7.3 an alternative compressor design such that the
input and output are different in at most 1 bit with a (smaller) average BER of
1/8 and a (slightly larger) average output entropy of 4 /7T bits/second.

Example 7.3 A compressor g is defined based on the (7,4) Hamming code-
words listed in Table 3.2 as follows: g(u’) = v’ if v/ is a (7,4) Hamming code-
word and u’ is at Hamming distance at most one from v’. The perfect packing
of the 16 nonoverlapping radius-one spheres centered at the codewords for the
(7,4) Hamming code guarantees the existence and uniqueness of such a v’;
hence, the compressor function mapping is well defined.

The probability of each (7,4) Hamming codeword appearing at the output
is 8277 = 274 (since there are eight u’ mapped to the same v’). Hence,

1 4 1 4 1
?H(V ) = 5 72 2"*log, (2_4> (7.32)
v/ety
4 .
=5 bits/source symbol, (7.33)
where %31 denotes the set of the 16 codewords of the (7,4) Hamming code.
Hence,
L vty = 2 bitsisecond (7.34)
7T, - TT, ' '
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7.4 Transmission at a rate above capacity 151

Next, we note that Pr[U; # V;] = 1/8 because only one of the eight u’ that
are mapped to the same v’ results in a different first bit. Similarly, we can
obtain

1
Pr[U2 #* Vz] = PI‘[U3 =+ V3] =...= PI‘[U7 #* V7] = 3 (7.35)
Hence, the average BER is given by
1 1
BER = 7(Pr[U, #Vi|+Pr[Up # Vo] +---PrlU; # V7)) = 3 (7.36)

This example again shows that data compression can be regarded as the oppo-
site operation of error correction coding, where the former removes the redun-
dancy (or even some information such as in this example) while the latter adds
controlled redundancy to combat the channel noise effect. O

Exercise 7.4 Design a compressor mapping by reversing the roles of encoder
and decoder of the three-times repetition code. Prove that the average BER is
1/4 and the average output entropy equals 1/3 bits per source symbol. O

Readers may infer that one needs to know the best compressor design, which
minimizes the BER subject to the average output entropy less than C(E), in or-
der to know what will be the minimum BER attainable for a given channel
(or more specifically for a given C(E)). Ingeniously, Shannon identifies this
minimum BER without specifying how it can be achieved. We will next de-
scribe his idea of a converse proof that shows that the minimum BER cannot
be smaller than some quantity, but that does not specify g(-).

We can conceptually treat the compressor system as a channel with input
Uy,U,,...,U, and output Vi, Vs, ..., V. Then, by

H(VH|UY) = H(g(U")|UY) =0, (7.37)
we derive from (6.85) that
1(UK; VK = H(UY) — H(UY|VY) = H(V}) — H(VKU*) = H(V5).  (7.38)

This implies that the average entropy of the compressor output is equal to

1 1 1 1
EH(V") = %H(U") - EH(U"\V") =1- %H(U"\V") bits. (7.39)
By the chain rule for entropy,’
1 1
%H(V") =1- %H(U"|V") (7.40)

> The chain rule for entropy is
H(UY) = H(U)) + H(U2|U)) + H (U3 |Uy, Up) + -+ + H(Ug|UL ... Up 1)

This is a generalized form of Proposition 6.4 and can be proven similarly.
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152 Approaching the Shannon limit by turbo coding

1
—1- %(H(U1|Vk) + H(Us|Uy, V¥) 4+ H (U3 |Uy, Uy, VF)
+o A+ HUU, .. Uiy, VD) (7.41)
1
>1-— %(H(U1|V1)+H(U2\V2)+H(U3|V3)+---+H(Uk|Vk)),
(7.42)
where (7.42) holds because additional information always helps to decrease
entropy; i.e., H({Uy|U1,...,Ur—1,V1,..., Vi) < H(U;|Vy) since the former has
additional information (Uy,...,Up—1,V1,...,Vi—1,Viy1,..., Vi) (see Corollar-
y 6.10).
We proceed with the derivation by pointing out that
H(Uy|Vy) =Pr[Vy, =0|H(Uy |V, = 0) + Pr[V, = 1]H(Uf|V, = 1) (7.43)
= Pr[V, = 0] Hy (Pr[Uy = 1|V, =0])
+Pr[V, = 1] Hy (Pr[U; = 0| V, = 1]) (7.44)
<H, (Pr[Vg — 0]Pr[U; = 1]V, = 0]
L PV, = 1]Pr[U, = 0|V, = 1]) (7.45)
= Hy(BER)), (7.46)

where BER, = Pr[U; # V/];

1 1
Hy(p) & plogy -+ (1= p)logy g—,  for0<p<1, (7:47)

is the so-called binary entropy function (see Section 5.2.2); and (7.45) follows
from the concavity® of the function Hy (-). We then obtain the final lower bound
of the output average entropy:

%H(V") >1— %(Hb(BERl) + Hy(BERy) + - - + Hp (BERy)) (7.48)
1 k
— %; »(BERy) (7.49)
1 k
>1—H, (kz ERg) (7.50)
= 1 — Hy(BER). (7.51)

Here, (7.50) follows again from concavity.
In conclusion, the Information Transmission Theorem (Theorem 7.1) iden-
tifies the achievable bit error rate (BER) for the target additive Gaussian noise

6 For a definition of concavity see Appendix 7.8.
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7.4 Transmission at a rate above capacity 153

channel as follows:

Tis(l — Hy,(BER)) < TLS%H(VIC) < %Tclogz (1 + ;) ) (7.52)
where the first inequality follows from (7.51) and the second follows from
our assumption (7.18). In usual communication terminologies, people denote
R =T./Ts = k/n (information bit carried per channel use) as the channel code
rate; No £ 267 (joule) as the noise energy level; Ep, = ETs/T. (joule) as the
equivalent transmitted energy per information bit; and %, = Ep/No as the
signal-to-noise power ratio per information bit. This transforms the above in-
equality to

1
Hy(BER) > 1 — = log, (14 2Rp). (7.53)

Equation (7.53) clearly indicates that the BER cannot be made smaller than
1
H,' (1 —plo: (1 +2Ryb)>, (7.54)

where H~ I(-) is the inverse function of the binary entropy function Hy, (&) (see
Section 5.2.2) for £ € [0,1/2]. Shannon also proved the (asymptotic) achiev-
ability of this lower bound. Hence, (7.53) provides the exact margin on what
we can do and what we cannot do when the amount of information to be trans-
mitted is above the capacity.

We plot the curves corresponding to R = 1/2 and R = 1/3 in Figure 7.3.
The figure indicates that there exists a rate-1/2 system design that can achieve
BER = 107 at 48 = 10log;(Ep/No) close to 0 dB, i.e. for E, ~ Ny. On
the other hand, no system with a rate R = 1/2 can yield a BER less than 107>
if the signal energy per information bit Ey is less than the noise energy level
No. Information theorists therefore call this threshold the Shannon limit.

For decades (ever since Shannon ingeniously drew such a sacred line in
1948 simply by analysis), researchers have tried to find a good design that can
achieve the Shannon limit. Over the years, the gap between the real transmis-
sion scheme and this theoretical limit has been gradually closed. For example, a
concatenated code [For66] proposed by David Forney can reach BER = 107>
at about Y, g >~ 2 dB. However, no schemes could push their performance
curves within 1 dB of the Shannon limit until the invention of turbo codes in
1993 [BGT93]. Motivated by the turbo coding idea, the low-density parity-
check (LDPC) codes were subsequently rediscovered’ in 1998; these could
7 We use “rediscover” here because the LDPC code was originally proposed by Robert G. Gal-

lager in 1962 [Gal62]. However, due to its high complexity, computers at that time could not
perform any simulations on the code; hence, nobody realized the potential of LDPC codes. It
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Shannon limit

BER

—_
9
93
1
aal

1070 - L
-6 -5 —4 -3 -2 —-1-050 1 2
Th,dB [dB]

Figure 7.3 The Shannon limits for rates 1/2 and 1/3 codes on continuous-
input AWGN channels. Decibel (abbreviated as dB) is a logarithmic scaling
of a given quantity; i.e., we first take the base-10 logarithm and then multiply

by 10. So, e.g., %4 = 101log;o (1) = 10log;o(Ep/No).

reduce the performance gap (between the LDPC codes and the Shannon limit)
within, e.g., 0.1 dB. This counts 50 years of efforts (from 1948 to 1998) until
we finally caught up with the pioneering prediction of Shannon in the classical
additive Gaussian noise channel.

With excitement, we should realize that this is just the beginning of closing
the gap, not the end of it. Nowadays, the channels we face in reality are much
more complicated than the simple additive Gaussian noise channel. Multipath
and fading effects, as well as channel nonlinearities, make the Shannon-limit
approaching mission in these channels much more difficult. New ideas other
than turbo and LDPC coding will perhaps be required in the future. So we are
waiting for some new exciting results, similar to the discovery of turbo codes
in 1993.

was Matthew Davey and David MacKay who rediscovered and examined the code, and con-
firmed its superb performance in 1998 [DM9S].
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7.5 Turbo coding: an introduction

Of all error-correcting codes to date, the turbo code was the first that could
approach the Shannon limit within 1 dB, at BER = 107>, over the additive
Gaussian noise channel. It is named the furbo code because the decoder func-
tions iteratively like a turbo machine, where two turbo engines take turns to
refine the previous output of the other until a certain number of iterations is
reached.

X1

Y

! : f — I\
| information seq. |- > 1]

15)

X

s : : ———— 7\
o\ 7\
| interleaved seq. |—» > 1

15) ;3

14 |

Y

3

Y
Y

17

Y
Y
Y

> X3

Figure 7.4 Exemplified turbo encoder from [BGT93]. An example of how a
length-5 input sequence passes through this encoder is depicted in Figure 7.5.
The complete list of all length-5 input sequences with their corresponding
codewords is given in Table 7.2.

As an example, an information sequence (s1,52,53,54,55) = (10100) is fed
into the turbo encoder shown in Figure 7.4, where s is inserted first. In this
figure, the squares marked with ¢, 1, t3, and #4 are clocked memory elements,
usually named flip-flops or simply registers, which store the coming input
binary data and, at the same time, output its current content according to a
clocked timer. The square marked with 7 is the interleaver that permutes the
input sequence into its interleaved counterpart. The notation “@®” denotes the
modulo-2 addition.

This figure then indicates that the output sequence from node x; will be the
original information sequence (s1,s2,53,54,55) = (10100). Since the contents
of all four registers are initially zero, and since

l‘](f—Fl):Sg@l‘l(e)@lz(f)@tg,(é)@lﬁ(f), (7.55)

Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:44, subject to the Cambridge Core terms of
use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CB0O9781139059534.008


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.008
https:/www.cambridge.org/core

156 Approaching the Shannon limit by turbo coding

input register output
sequence contents sequence

5554835281 — n 15 13 7 — XQ(S)XQ (4)X2(3)XZ (2))&?2(1)

00101 0 O O O

0010 1 0 O 0 1
o6or 1 1 0 0 11
o0 1 1 1 0 111

o 1 1 1 1 1111
o 1 1 1 11111

Figure 7.5 The snap show of the input and output sequences of the turbo
encoder from Figure 7.4 at node x,. Note that we have mirrored the sequences
to match the direction of the register placement in Figure 7.4.

n(l+1)=n(), (7.56)
B(l+1)=n(l), (7.57)
t(C+1)=13(0), (7.58)
nl)=nl+1)oul)=scon(l)on()onl),  (7.59)

where ¢ represents the clocked time instance, we obtain the output sequence
from node x; as 11111 (see Figure 7.5). Note that in order to start indexing
all sequences from 1, we re-adjust the index at the output such that x,(¢) is
actually outputted at clocked time instance ¢+ 1.

An important feature of the turbo code design is the incorporation of an
interleaver 7 that permutes the input sequence. For example,

T(85152535455) = $452515553. (7.60)

In concept, the purpose of adding an interleaver is to introduce distant depen-
dencies into the codewords. Notably, a strong dependency among the code bits
can greatly enhance their capability against local noisy disturbance. A good
example is a code of two codewords, i.e.

000000000000000 and 111111111111111,

where the code bits are all the same and hence are strongly dependent. Since
the receiver knows all code bits should be the same, the local noisy distur-
bances that alter, for example, code bits 3, 7, and 10, yielding

001000100100000,
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Table 7.2 The information sequences of length 5 and their respective turbo
codewords of length 15 for the turbo code in Figure 7.4 with interleaver
717(S1S2S3S4S5) = 5452515553

Information Codewords
sequences
S X1 X2 X3

s152535285 X1 =5 x(1)x2(2)x2(3)x2(4)x2(5)  x3(1)x3(2)x3(3)x3(4)x3(5)
00000 — 00000 00000
00001 — 00001 00011
00010 — 00011 11001
00011 — 00010 11010
00100 — 00110 00001
00101 — 00111 00010
00110 — 00101 11000
00111 — 00100 11011
01000 — 01100 01100
01001 — 01101 01111
01010 — 01111 10101
01011 — 01110 10110
01100 — 01010 01101
01101 — 01011 01110
01110 — 01001 10100
01111 — 01000 10111
10000 — 11001 00110
10001 — 11000 00101
10010 — 11010 11111
10011 — 11011 11100
10100 — 11111 00111
10101 — 11110 00100
10110 — 11100 11110
10111 — 11101 11101
11000 — 10101 01010
11001 — 10100 01001
11010 — 10110 10011
11011 — 10111 10000
11100 — 10011 01011
11101 — 10010 01000
11110 — 10000 10010
11111 — 10001 10001
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can be easily recovered back to the transmitted codeword
000000000000000.

By interleaving the information bits, s; may now affect distant code bits such
as x3(¢), where £ can now be much larger than the number of registers, 4. This
is contrary to the conventional coding scheme for which the code bit is only a
function of several recent information bits. For example, without interleaving,
s1 can only affect x,(4) but not any x, (¢) with £ > 4 according to (7.55)—(7.59).
We can of course purposely design a code such that each code bit is a function
of more distant information bits, but the main problem here is that the strong
dependency of code bits on distant information bits will make the decoder
infeasibly complex.

This leads to another merit of using the interleaver: it helps structure a fea-
sible decoding scheme, i.e. turbo decoding. In short, the sub-decoder based
on x; and x, will deal with a code that only has local dependencies as each
code bit only depends on the previous four information bits. The second sub-
decoder based on interleaved x; and x3 similarly handles a code with only local
dependencies. By this design, the task of decoding the code with distant depen-
dencies can be accomplished by the cooperation of two feasible sub-decoders.

To be specific, the practice behind turbo decoding is to first decode the in-
formation sequence based on the noisy receptions due to the transmission of
sequences x| and x; (in terms of the above example, 10100 and 11111). Since
the code bits generated at node x, depend on previous information bits only
through the contents of four registers, the sub-decoding procedure is feasi-
ble. The decoding output sequence, however, is not the final estimate about
the information sequence 10100, but a sequence of real numbers that repre-
sent the probability for each bit to be, e.g. 1, calculated based on the noisy
receptions due to the transmission of x; and x,. Continuing with the exam-
ple of the simple 5-bit input sequence, the decoding output sequence might
be (0.8,0.2,0.7,0.1,0.1). Based on these numbers, we know that with 80%
probability the first bit is 1. Also, we assert with only 20% confidence that
the second information bit is 1. Please note that if there is no noise during the
transmission, the five real numbers in the decoding output sequence should be
(1.0,0.0,1.0,0.0,0.0). It is due to the noise that the receiver can only approxi-
mate the sequence that the transmitter sends. In terminology, we call these real
numbers the soft decoding outputs in contrast to the conventional zero—one
hard decoding outputs.

After obtaining the real-valued decoding output based on the noisy recep-
tions due to the transmission of x; and X,, one can proceed to refine these
numbers by performing a similar decoding procedure based on the noisy re-
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ceptions due to the transmission of x; and x3 as well as the interleaved soft de-
coding output from the previous step, e.g. (0.1,0.2,0.8,0.1,0.7) subject to the
interleaver 7 (s52535455) = 545251 8553. With the additional knowledge from the
noisy receptions due to the transmission of x3, these numbers may be refined
to, e.g., (0.05,0.1,0.9,0.05,0.8); hence, the receiver is more certain (here, 90%
sure) that s should be 1.

By performing the decoding procedure based on the noisy receptions due to
x; and x; as well as the de-interleaved soft decoding output (e.g. (0.9, 0.1, 0.8,
0.03, 0.05)), these numbers are refined again. Then, in terms of these re-refined
numbers, the decoding procedure based on the noisy receptions due to x; and
X3 is re-performed.

Because the repetitive decoding procedures are similar to running two turbo
pistons alternatively, it is named turbo coding. Simulations show that after 18
iterations we can make the final hard decisions (i.e. 0 and 1 on each bit) based
on the repeatedly refined soft decoding outputs yielding a bit error rate almost
achieving the Shannon limit.

Ever since the publication of turbo coding, iterative decoding schemes have
become a new research trend, and codes similar to the rediscovered LDPC
code have subsequently been proposed. In this way the Shannon limit finally
has become achievable after 50 years of research efforts!

7.6 Further reading

In this chapter we introduced the Information Transmission Theorem (Theo-
rem 7.1) as a summary of what we have learned in this book. In order to appre-
ciate the beauty of the theorem, we then examined it under a specific case when
the coded information is corrupted by additive Gaussian noise. Two scenarios
followed in a straightforward manner: transmission at a rate below capacity and
transmission at a rate above capacity. The former directed us to reliable trans-
mission where decoding errors can be made arbitrarily small, while the latter
gave the (in principle) required Ey, /Ny to achieve an acceptable BER. Infor-
mation theorists have baptized this minimum Ey,/Ng the Shannon limit. Since
this is the center of information theory, most advanced textbooks in this area
cover the subject extensively. For readers who are interested in learning more
about the theorem, [CT06] could be a good place to start. The long-standing
bible-like textbook [Gal68] by Robert G. Gallager, who was also the inventor
of the Shannon-limit-achieving low-density parity-check (LDPC) codes, can
also serve as a good reference. Some advanced topics in information theory,
such as the channel reliability function, can be found in [Bla88].
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160 Approaching the Shannon limit by turbo coding

As previously mentioned, the turbo code was the first empirically confirmed
near-Shannon-limit error-correcting code. It is for this reason that the turbo
code was introduced briefly at the end of this chapter. The two books [HW99]
and [VYO00] may be useful for those who are specifically interested in the prac-
tice and principle of turbo codes. Due to their significance, Shu Lin and Daniel
Costello also devote one chapter for each of turbo coding and LDPC coding in
their book in the new 2004 edition [LCO04]. For general readers, the material
in these two chapters should suffice for a comprehensive understanding of the
related subjects.

7.7 Appendix: Why we assume uniform and independent
data at the encoder

It is very common to assume that the input Sy of a channel encoder comprise
independent binary data bits of uniform distribution

1
=5
The reason for this lies in the observation that, under the assumption of in-
dependence with uniform marginal distribution, no data compression can be
performed further on the sequence Sy,S57,...,S; since every binary combina-
tion of length k has the same probability 2% (or specifically, (1/k)H(S¥) =1
bit per source symbol). Note that any source that is compressed by an opfi-
mal data compressor should in principle produce a source output of this kind,
and we can regard this assumption as that Sy, 53, ...,S are the output from an
optimal data compressor.

For a better understanding of this notion, consider the following example.
Assume that we wish to compress the sequence Uy,U;,Us,... to the binary

Pr[S; = 0] = Pr[S; = 1] (7.61)

sequence S1,52,953,..., and that each source output U, is independent of all
others and has the probability distribution
1
Pr[U; = q] Pr[U; = b] =Pr[U; = (] (7.62)

=3 =7

We then use the single-letter (i.e. v = 1) Huffman code that maps as follows:
a—0, b — 10, c—11. (7.63)

Note that (7.63) is also a Fano code (see Definition 5.17); in fact, when the
source probabilities are reciprocals of integer powers of 2, both the Huffman
code and the Fano code are optimal compressors with average codeword length
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Lay equal to the source entropy, H(U) bits. This then results in

Pr[SgH:O‘SZ:s[}

Pr [Ué/+1 =a ‘Uﬂ = ué,} if code(u”) =,
- oy ' 0y 1 (7.64)
Pr [Uﬂ/+1 =b ‘UZ —uw’ andUp,, #a if code(u” ) =s
and sy = 1.

Here ¢’ denotes the symbol-timing at the input of the Huffman encoder (or,
equivalently, the Fano encoder), and ¢ is the corresponding timing of the output
of the Huffman encoder (equivalently, the Fano encoder).

We can now conclude by the independence of the sequence U;y,U,,Us, ...
that

Pr[S“l =0 ‘S[:sé}

Pr|Up, | = if code(u’) = st
_ ) PrlUesy =d] ( ,) (7.65)
Pr[Up =b|Upy #da] ifcode(u’) =s""ands, =1
1
= 7.66
5 (7.66)
Since the resultant quantity 1/2 is irrespective of the s given, we must have
1
Pr[sg+1 —0 ’s‘ :sﬂ —Pr{Se1 =0] = 5. (7.67)

Hence, Sy, is independent of S’ and is uniform in its statistics. Since this is
true for every positive integer ¢, S1,52, 53, ... is an independent sequence with
uniform marginal distribution.

Sometimes, the output from an optimal compressor can only approach as-
ymptotic independence with asympftotic uniform marginal distribution. This
occurs when the probabilities of U are not reciprocals of powers of 2, i.e. dif-
ferent from what we have assumed in the previous derivation. For example,
assume

Pr[U = df :% and PrlU—b|=PiU=c|=~.  (7.68)

Then S1,52,53,. .. can only be made asymptotically independent with asymp-
totic uniform marginal distribution in the sense that a multiple-letter code (i.e.
a code that encodes several input letters at once; see Figure 5.12 in Section 5.5)
needs to be used with the number of letters per compression growing to infinity.
For example, the double-letter Huffman code in Table 7.3 gives

2 4

2
Pr[S; = 0] = Pr[U* = aa] = (3) =5 (7.69)
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Table 7.3 Double-letter and triple-letter Huffman codes for source statistics
PrlU =a]=2/3 and Pr[lU =b] =Pr[U =c|=1/6

Letters Code Letters Code Letters Code Letters Code
aa 0 aaa 00 baa 0111 caa 1110
ab 100 aab 1100 bab 10100 cab 10110
ac 110 aac 0100 bac 10101 cac 10111
bb 11100 aba 0101 bba 110100 cha 110110
ba 1010 abb 10000 bbb 1111000 cbb 1111100
bc 11101 abc 10001 bbc 1111001 cbc 1111101
ca 1011 aca 0110 bca 110101 cca 110111

cb 11110 acb 10010 beb 1111010 cch 1111110
cc 11111 acc 10011 bce 1111011 cce 1111111

and

Pr[S; = 0] = Pr[(U? = ab or ba or ca) or U* = aaad (1.70)

21 12 12 /2\*
3.6+6.3+6.3+<3) (7.71)
43
- 7.72
o (7.72)

These two numbers are closer to 1/2 than those from the single-letter Huffman
code that maps a,b,c to 0,10, 11, respectively, which gives

Pr[S; = 0] = Pr[U) #a] = % (1.73)

and

33
=3
Note that the approximation from the triple-letter Huffman code may be tran-
siently less “accurate” to the uniform distribution than the double-letter Huff-
man code (in the current example we have Pr[S; = 0] = 16/27, which is less
close to 1/2 than Pr[S; = 0] = 4/9 from (7.69)). This complements what has
been pointed out in Section 5.4.2, namely that it is rather difficult to analyze
(and also rather operationally intensive to examine numerically®) the average

Pr[S, = 0] = Pr[(U; = b) or (U* = aa)] (7.74)

8 As an example, when v (the number of source letters per compression) is only moderately large,
such as 20, you can try to construct a Huffman code with source alphabet of size |{a,b,c} |20 =
320 using Huffman’s Algorithm from Section 4.6. Check how many iterations are required to
root a tree with 32 leaves.
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Table 7.4 Double-letter and triple-letter Fano codes for source statistics
PrlU =a]=2/3 and Pr[lU =b] =Pr[U =c|=1/6

Letters Code

aa 00

ab 01

ac 100

bb 11100

ba 101

bc 11101

ca 110

cb 11110

cc 11111

Letters Code Letters Code Letters Code

aaa 00 baa 1001 caa 1010
aab 0100 bab 110011 cab 110101
aac 0111 bac 110100 cac 11011
aba 011 bba 111000 cba 11101
abb 1011 bbb 1111010 cbb 1111101
abc 110000 bbc 1111011 cbe 11111100
aca 1000 bca 111001 cca 111100

acb 110001 beb 11111000 cch 11111101
acc 110010 bce 11111001 cce 11111111

codeword length of Huffman codes. However, we can anticipate that better ap-
proximations to the uniform distribution can be achieved by Huffman codes if
the number of letters per compression further increases.

In comparison with the Huffman code, the Fano code is easier in both
analysis and implementation. As can be seen from Table 7.4 and Figure 7.6,
Pr[S; = 0] quickly converges to 1/2, and the assumption that the compressor
output 51,952,853, .. is independent with uniform marginal distribution can be
acceptable when v is moderately large.

Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:44, subject to the Cambridge Core terms of
use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CB0O9781139059534.008


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.008
https:/www.cambridge.org/core

164 Approaching the Shannon limit by turbo coding
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Figure 7.6 Asymptotics of v-letter Fano codes.

7.8 Appendix: Definition of concavity
Definition 7.5 A real-valued function k(+) is concave if

h(Api+ (1=2A)p2) > Ah(p1)+ (1= 2A)h(p2) (1.75)
for all real numbers p; and p;, and all 0 < A < 1.

Geometrically, this means that the line segment that connects two points of
the curve h(-) will always lie below the curve; see Figure 7.7 for an illustration.

p1 P2

Figure 7.7 Example of a concave function.
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The concavity of a function can be verified by showing that its second
derivative is nonpositive. By this approach, we can prove that the binary en-
tropy function is concave, as this can also be observed from Figure 5.2. By
induction, a concave function satisfies

1 & 1 &
h(k;] ) E):: (7.76)

hence, (7.50) is also confirmed.
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