
6
Mutual information and channel capacity

6.1 Introduction

We go on to take a closer look at a typical problem in communications: how
to send information reliably over a noisy communication channel. A commu-
nication channel can be thought of as the medium through which the message
signal propagates from the transmit end (the source) to the receive end (the
destination). A channel is said to be noisy if the data read at the channel output
is not necessarily the same as the input (due to, e.g., perturbation caused by the
ambient noise). Consider for example that Alice writes down a “7” on a paper
with a small font size, and uses a fax machine to transfer this page to Bob. Due
to limited resolution of electronic cable data transfer, Bob sees a “distorted 7”
on the faxed page and could decode it incorrectly as, say, “9” (see Figure 6.1).

Figure 6.1 Cable data transfer as a channel.

In this example the route of data transfer through the cable acts as the chan-
nel, which is noisy since it distorts the input alphabet and, in turn, leads to
possibly incorrect message decoding at the destination. It is still probable that
Bob reads the message correctly as “7.” The higher the probability of correct
message decoding is, the more reliable the communication will be.
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116 Mutual information and channel capacity
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Figure 6.2 Signaling model.

The general block diagram of a typical communication system is depicted
in Figure 6.2.

For a probabilistic message source, we are now able to quantify the amount
of its information content in terms of the entropy defined in Chapter 5. We
implicitly assume that the message has been compressed in order to remove
the inherent redundancy, if any; this can be done via data compression as in-
troduced in Chapter 4 (see also the discussion in Appendix 7.7). To combat
the detrimental effect induced by the channel, the source message is further
encoded with certain channel coding schemes, like the Hamming code intro-
duced in Chapter 3. The encoded data stream is then sent over the channel.
Message decoding is performed at the receiver based on the channel output.
We examine each of the following problems.

• How should we measure the amount of information that can get through the
channel, and what is the maximal amount?

• How can we use the channel to convey information reliably?

Note that if the channel is noiseless, i.e. the input is always reproduced at the
output without errors, the answers to the aforementioned problems are simple:
the maximal amount of information that can be conveyed over the channel
equals the source entropy, and this can be done without any data protection
mechanisms such as channel coding. If the channel is noisy, the answers turn
out to be rather nontrivial. Let us begin the discussions with the mathematical
model of a noisy communication channel.

6.2 The channel

Recall that in the example depicted in Figure 6.1, the input letter “7” can be ei-
ther correctly decoded or mis-recognized as some other letter. The uncertainty
in source symbol recovery naturally suggests a probabilistic characterization
of the input–output relation of a noisy channel; such a mathematical channel
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6.2 The channel 117

model is needed in order to pin down various intrinsic properties of a channel,
e.g. how much information can go through a channel.

Below is the formal definition for a channel.

Definition 6.1 (Channel) A channel (X,PY |X (y j|xi),Y) is given by

(1) an input alphabet X , {x1, . . . ,xs}, where s denotes the number of input
letters;

(2) an output alphabet Y, {y1, . . . ,yt}, where t denotes the number of output
letters; and

(3) a conditional probability distribution PY |X (y j|xi), which specifies the prob-
ability of observing Y = y j at the output given that X = xi is sent, 1≤ i≤ s,
1≤ j ≤ t.

Hence a channel with input X ∈ X and output Y ∈ Y is entirely specified by
a set of conditional probabilities PY |X (y j|xi). The size of the input and output
alphabets, namely s and t, need not be the same. A schematic description of
the channel is shown Figure 6.3.

X Y

PY |X (y j|xi)X=





x1

x2

x3

...

xs



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



y1

y2

y3

...

yt





= Y

Figure 6.3 Channel model.

In this model the channel is completely described by the matrix of condi-
tional probabilities, the so-called channel transition matrix:




PY |X (y1|x1) PY |X (y2|x1) . . . PY |X (yt |x1)

PY |X (y1|x2) PY |X (y2|x2) . . . PY |X (yt |x2)
...

...
. . .

...

PY |X (y1|xs) PY |X (y2|xs) . . . PY |X (yt |xs)



. (6.1)

The channel transition matrix has the following properties.

(1) The entries on the ith row consist of the probabilities of observing output
letters y1, . . . ,yt given that the ith input symbol xi is sent.

(2) The entries on the jth column consist of the probabilities of observing the
jth output letter y j given, respectively, the ith input symbols xi are sent,
i = 1, . . . ,s.
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118 Mutual information and channel capacity

(3) The sum of the entries in a row is always 1, i.e.
t

∑
j=1

PY |X (y j|xi) = 1. (6.2)

This merely means that for each input xi we are certain that something will
come out, and that the PY |X (y j|xi) give the distribution of these probabili-
ties.

(4) If PX (xi) is the probability of the input symbol xi, then

s

∑
i=1

t

∑
j=1

PY |X (y j|xi)PX (xi) = 1, (6.3)

meaning that when something is put into the system, then certainly some-
thing comes out.

The probabilities PY |X (y j|xi), 1 ≤ i ≤ s, 1 ≤ j ≤ t, characterize the channel
completely. We assume that the channel is stationary, i.e. the probabilities do
not change with time. We note that X is not a source but is an information-
carrying channel input, which is typically a stream of encoded data (see Fig-
ure 6.2; see Chapters 3 and 7 for more details).

6.3 The channel relationships

At the transmit end we have s possible input symbols {x1, . . . ,xs}. If the ith
symbol xi is selected and sent over the channel, the probability of observing the
jth channel output letter y j is given by the conditional probability PY |X (y j|xi).
This means that the probability that the input–output pair (xi,y j) simultane-
ously occurs, i.e. the joint probability of X = xi and Y = y j, is given by

PX ,Y (xi,y j), PY |X (y j|xi)PX (xi). (6.4)

Let us go one step further by asking the question of how to determine the
probability that the jth letter y j will occur at the channel output, hereafter
denoted by PY (y j). A simple argument, taking into account that each input
symbol occurs with probability PX (xi), yields

PY (y j) = PY |X (y j|x1)PX (x1)+ · · ·+PY |X (y j|xs)PX (xs) (6.5)

=
s

∑
i=1

PY |X (y j|xi)PX (xi), 1≤ j ≤ t. (6.6)

The above “channel equation” characterizes the input–output relation of a chan-
nel. Note that in terms of the joint probability PX ,Y (xi,y j) in (6.4), we can
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6.4 The binary symmetric channel 119

rewrite (6.6) in a more compact form:

PY (y j) =
s

∑
i=1

PX ,Y (xi,y j), 1≤ j ≤ t. (6.7)

Now take a further look at (6.4), which relates the probability of a joint oc-
currence of the symbol pair (xi,y j) with the input distribution via the forward
conditional probability PY |X (y j|xi) (starting from the input front with xi given
and expressing the probability that y j is the resultant output). We can alterna-
tively write PX ,Y (xi,y j) as

PX ,Y (xi,y j) = PX |Y (xi|y j)PY (y j), (6.8)

which evaluates the joint probability PX ,Y (xi,y j) based on the output distri-
bution and the backward conditional probability PX |Y (xi|y j) (given that y j is
received, the probability that xi is sent). Equating (6.4) with (6.8) yields

PX |Y (xi|y j) =
PY |X (y j|xi)PX (xi)

PY (y j)
, (6.9)

which is the well known Bayes’ Theorem on conditional probabilities [BT02].
In the Bayes’ formula (6.9) we can write PY (y j) in the denominator in terms

of (6.6) to get the equivalent expression

PX |Y (xi|y j) =
PY |X (y j|xi)PX (xi)

∑
s
i′=1 PY |X (y j|xi′)PX (xi′)

. (6.10)

Summing (6.10) over all the xi clearly gives
s

∑
i=1

PX |Y (xi|y j) =
s

∑
i=1

PY |X (y j|xi)PX (xi)

∑
s
i′=1 PY |X (y j|xi′)PX (xi′)

(6.11)

=
∑

s
i=1 PY |X (y j|xi)PX (xi)

∑
s
i′=1 PY |X (y j|xi′)PX (xi′)

(6.12)

= 1, (6.13)

which means that, given output y j, some xi was certainly put into the channel.

6.4 The binary symmetric channel

A simple special case of a channel is the binary channel, which has two input
symbols, 0 and 1, and two output symbols, 0 and 1; a schematic description is
depicted in Figure 6.4.

The binary channel is said to be symmetric if

PY |X (0|0) = PY |X (1|1), PY |X (0|1) = PY |X (1|0). (6.14)
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120 Mutual information and channel capacity

x1 = 0

x2 = 1

y1 = 0

y2 = 1

PY |X (0|0)

PY |X (1|0)

PY |X (0|1)

PY |X (1|1)

Figure 6.4 The binary channel.

Usually we abbreviate binary symmetric channel to BSC.
Let the probabilities of the input symbols be

PX (0) = δ , (6.15)

PX (1) = 1−δ , (6.16)

and let the BSC probabilities be

PY |X (0|0) = PY |X (1|1) = 1− ε, (6.17)

PY |X (1|0) = PY |X (0|1) = ε. (6.18)

The channel matrix is therefore
(

1− ε ε

ε 1− ε

)
(6.19)

and the channel relationships (6.6) become

PY (0) = (1− ε)δ + ε(1−δ ), (6.20)

PY (1) = εδ +(1− ε)(1−δ ). (6.21)

Note that these equations can be simply checked by computing their sum:

PY (0)+PY (1) = (1− ε + ε)δ +(1− ε + ε)(1−δ ) = δ +1−δ = 1. (6.22)

Given that we know what symbol we received, what are the probabilities for
the various symbols that might have been sent?
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6.4 The binary symmetric channel 121

We first compute the two denominators in Equation (6.10):
2

∑
i=1

PY |X (y1|xi)PX (xi) = (1− ε)δ + ε(1−δ ), (6.23)

2

∑
i=1

PY |X (y2|xi)PX (xi) = εδ +(1− ε)(1−δ ), (6.24)

which of course are the same as (6.20) and (6.21). We then have

PX |Y (0|0) =
(1− ε)δ

(1− ε)δ + ε(1−δ )
, (6.25)

PX |Y (1|0) =
ε(1−δ )

(1− ε)δ + ε(1−δ )
, (6.26)

PX |Y (0|1) =
εδ

εδ +(1− ε)(1−δ )
, (6.27)

PX |Y (1|1) =
(1− ε)(1−δ )

εδ +(1− ε)(1−δ )
. (6.28)

Note that this involves the choice of the probabilities of the channel input.
In the special case of equally likely input symbols (δ = 1/2) we have the

very simple equations

PX |Y (0|0) = PX |Y (1|1) = 1− ε, (6.29)

PX |Y (1|0) = PX |Y (0|1) = ε. (6.30)

As a more peculiar example, suppose that 1− ε = 9/10 and ε = 1/10 for
the BSC, but suppose also that the probability of the input x = 0 being sent is
δ = 19/20 and x = 1 being sent is 1−δ = 1/20. We then have

PX |Y (0|0) =
171
172

, (6.31)

PX |Y (1|0) =
1

172
, (6.32)

PX |Y (0|1) =
19
28

, (6.33)

PX |Y (1|1) =
9

28
. (6.34)

Thus if we receive y = 0, it is more likely that x = 0 was sent because 171/172
is much larger than 1/172. If, however, y= 1 is received, we still have 19/28>
9/28, and hence x = 0 has a higher probability of being the one that has been
sent. Therefore, x = 0 is always claimed regardless of the symbol received. As
a result, if a stream of n binary bits is generated according to the probability
law PX (0) = δ = 19/20, then there are about n(1−δ ) = n/20 1s in the input
sequence that will be decoded incorrectly as 0s at the channel output. Hence,
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122 Mutual information and channel capacity

the above transmission scheme does not use the channel properly, since irre-
spective of n it will incur an average decoding error of about 1/20, significantly
away from zero.

This situation arises whenever both following conditions are valid:

PX |Y (0|0)> PX |Y (1|0), (6.35)

PX |Y (0|1)> PX |Y (1|1). (6.36)

From (6.25)–(6.28) we see that for the binary symmetric channel these condi-
tions are

(1− ε)δ > ε(1−δ ), (6.37)

εδ > (1− ε)(1−δ ), (6.38)

or equivalently

δ > ε, (6.39)

δ > 1− ε; (6.40)

i.e., the bias in the choice of input symbols is greater than the bias of the chan-
nel. This discussion shows that it is possible, for given values of the channel
transition probabilities, to come up with values for the channel input probabil-
ities that do not make much sense in practice. As will be shown below, we can
improve this if we can learn more about the fundamental characteristics of the
channel and then use the channel properly through a better assignment of the
input distribution.1 To this end, we leverage the entropy defined in Chapter 5
to define the notion of “capability of a channel for conveying information” in
a precise fashion.

6.5 System entropies

We can regard the action of a channel as “transferring” the probabilistic in-
formation-carrying message X into the output Y by following the conditional
probability law PY |X (y j|xi). Both the input and output ends of the channel are
thus uncertain in nature: we know neither exactly which input symbol will be
selected nor which output letter will be certainly seen at the output (rather,
only probabilistic characterizations of various input–output events in terms of
PX (·) and PY |X (·|·) are available). One immediate question to ask is: how much

1 Note that, whereas the source is assumed to be given to us and therefore cannot be modified,
we can freely choose the channel input probabilities by properly designing the channel encoder
(see Figure 6.2).
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6.5 System entropies 123

“aggregate” information, or amount of uncertainty, is contained in the overall
channel system? From Chapter 5, we know that the average amount of uncer-
tainty of the input is quantified by the entropy as

H(X) =
s

∑
i=1

PX (xi) log2

(
1

PX (xi)

)
. (6.41)

We have shown that H(X)≥ 0, and H(X) = 0 if the input is certain; also, H(X)

is maximized when all xi are equally likely.2 We can also likewise define the
entropy of the output as

H(Y ) =
t

∑
j=1

PY (y j) log2

(
1

PY (y j)

)
, (6.42)

which, as expected, measures the uncertainty of the channel output. If we look
at both the input and the output, the probability of the event that X = xi and
Y = y j simultaneously occur is given by the joint probability PX ,Y (xi,y j) (see
(6.4)). Analogous to the entropy of X (or Y ), we have the following definition
of the entropy when both X and Y are simultaneously taken into account.

Definition 6.2 The joint entropy of X and Y , defined as

H(X ,Y ),
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j) log2

(
1

PX ,Y (xi,y j)

)
, (6.43)

measures the total amount of uncertainty contained in the channel input and
output, hence the overall channel system.

One might immediately ask about the relation between H(X ,Y ) and the in-
dividual entropies, in particular whether H(X ,Y ) just equals the sum of H(X)

and H(Y ). This is in general not true, unless X and Y are statistically indepen-
dent, meaning that what comes out does not depend on what goes in. More
precisely, independence among X and Y is characterized by [BT02]

PX ,Y (xi,y j) = PX (xi)PY (y j). (6.44)

Based on (6.43) and (6.44), we have the following proposition.

Proposition 6.3 If X and Y are statistically independent, then

H(X ,Y ) = H(X)+H(Y ). (6.45)

2 As noted in Lemma 5.11, H(X)≤ log2 s bits, with equality if PX (xi) = 1/s for all i.
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124 Mutual information and channel capacity

Proof With (6.44), we have

H(X ,Y ) =
s

∑
i=1

t

∑
j=1

PX (xi)PY (y j) log2

(
1

PX (xi)PY (y j)

)
(6.46)

=
s

∑
i=1

t

∑
j=1

PX (xi)PY (y j)

(
log2

(
1

PX (xi)

)
+ log2

(
1

PY (y j)

))
(6.47)

=
s

∑
i=1

t

∑
j=1

PX (xi)PY (y j) log2

(
1

PX (xi)

)

+
s

∑
i=1

t

∑
j=1

PX (xi)PY (y j) log2

(
1

PY (y j)

)
(6.48)

=
t

∑
j=1

PY (y j)
s

∑
i=1

PX (xi) log2

(
1

PX (xi)

)

︸ ︷︷ ︸
H(X)

+
s

∑
i=1

PX (xi)
t

∑
j=1

PY (y j) log2

(
1

PY (y j)

)

︸ ︷︷ ︸
H(Y )

(6.49)

= H(X)+H(Y ), (6.50)

where the last equality follows since

t

∑
j=1

PY (y j) =
s

∑
i=1

PX (xi) = 1. (6.51)

In Proposition 6.4 we derive the relation that links the joint entropy H(X ,Y )
with the individual H(X) (or H(Y )) when X and Y are dependent, which is
typically true since the channel output depends at least partly on the channel
input (otherwise no information can be conveyed through the channel).

Proposition 6.4 (Chain rule) The following result holds:

H(X ,Y ) = H(X)+H(Y |X), (6.52)

where

H(Y |X),
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j) log2

(
1

PY |X (y j|xi)

)
(6.53)

is the conditional entropy associated with Y given X.

Proof By means of the relation PX ,Y (xi,y j) = PY |X (y j|xi)PX (xi) (see (6.4)) it
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6.5 System entropies 125

follows that

H(X ,Y ) =
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j) log2

(
1

PY |X (y j|xi)PX (xi)

)
(6.54)

=
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j) log2

(
1

PX (xi)

)

+
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j) log2

(
1

PY |X (y j|xi)

)
(6.55)

=
s

∑
i=1

log2

(
1

PX (xi)

) t

∑
j=1

PX ,Y (xi,y j)

︸ ︷︷ ︸
PX (xi)

+
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j) log2

(
1

PY |X (y j|xi)

)
(6.56)

=
s

∑
i=1

PX (xi) log2

(
1

PX (xi)

)

+
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j) log2

(
1

PY |X (y j|xi)

)
(6.57)

= H(X)+H(Y |X). (6.58)

The joint entropy H(X ,Y ) is thus the sum of the input entropy H(X) and
the conditional entropy H(Y |X), which measures the uncertainty remaining in
Y , given that X is known. Note that if X and Y are independent, i.e. one can
infer nothing about Y even if X is already known, we have H(Y |X) = H(Y )
and Proposition 6.4 reduces to Proposition 6.3.

Another interpretation of H(Y |X) is that it represents how much must be
added to the input entropy to obtain the joint entropy; in this regard, H(Y |X)

is called the equivocation of the channel. We can again use (6.4) to rewrite
H(Y |X) as

H(Y |X) =
s

∑
i=1

t

∑
j=1

PY |X (y j|xi)PX (xi) log2

(
1

PY |X (y j|xi)

)
(6.59)

=
s

∑
i=1

PX (xi)H(Y |xi), (6.60)

where

H(Y |xi),
t

∑
j=1

PY |X (y j|xi) log2

(
1

PY |X (y j|xi)

)
(6.61)
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126 Mutual information and channel capacity

is the conditional entropy of Y given a particular X = xi. Finally, we remark
that, starting from the alternative expression for PX ,Y (xi,y j) given in (6.8),
H(X ,Y ) can be accordingly expressed as

H(X ,Y ) = H(Y )+H(X |Y ). (6.62)

Exercise 6.5 Let (X ,Y ) have the joint distribution given in Table 6.1. Com-
pute H(X), H(X ,Y ), and H(X |Y ). ♦

Table 6.1 A joint distribution of (X ,Y )

X

1 2 3 4

Y

1 1
8

1
16

1
32

1
32

2 1
16

1
8

1
32

1
32

3 1
16

1
16

1
16

1
16

4 1
4 0 0 0

Exercise 6.6 Verify that H(Y |X) = H(Y ) if X and Y are independent. ♦

6.6 Mutual information

Consider again the transmission system shown in Figure 6.3. We wish to de-
termine how much information about the input can be gained based on some
particular received output letter Y = y j; this is the first step toward quantifying
the amount of information that can get through the channel.

At the transmit side, the probability that the ith input symbol xi occurs is
PX (xi), which is called the a priori3 probability of xi. Upon receiving Y =

y j, one can try to infer which symbol probably has been sent based on the
information carried by y j. In particular, given y j is received, the probability that
xi has been sent is given by the backward conditional probability PX |Y (xi|y j),
which is commonly termed the a posteriori4 probability of xi. The change
of probability (from a priori to a posteriori) is closely related to how much
information one can learn about xi from the reception of y j. Specifically, the
difference between the uncertainty before and after receiving y j measures the

3 From the Latin, meaning “from what comes first” or “before.”
4 From the Latin, meaning “from what comes after” or “afterwards.”
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6.6 Mutual information 127

gain in information due to the reception of y j. Such an information gain is
called the mutual information and is naturally defined to be

I(xi;y j)︸ ︷︷ ︸
information gain

or uncertainty loss
after receiving y j

, log2

(
1

PX (xi)

)

︸ ︷︷ ︸
uncertainty

before receiving y j

− log2

(
1

PX |Y (xi|y j)

)

︸ ︷︷ ︸
uncertainty

after receiving y j

(6.63)

= log2

(
PX |Y (xi|y j)

PX (xi)

)
. (6.64)

Note that if the two events X = xi and Y = y j are independent, thereby

PX |Y (xi|y j) = PX (xi), (6.65)

we have I(xi;y j) = 0, i.e. no information about xi is gained once y j is received.
For the noiseless channel, thus y j = xi, we have PX |Y (xi|y j) = 1 since, based

on what is received, we are completely certain about which input symbol has
been sent. In this case, the mutual information attains the maximum value
log2(1/PX (xi)); this means that all information about xi is conveyed without
any loss over the channel.

Since

PX |Y (xi|y j)PY (y j) = PX ,Y (xi,y j) = PY |X (y j|xi)PX (xi), (6.66)

we have

I(xi;y j) = log2

(
PX ,Y (xi,y j)

PX (xi)PY (y j)

)
= I(y j;xi). (6.67)

Hence, we see that xi provides the same amount of information about y j as y j

does about xi. This is why I(xi;y j) has been coined “mutual information.”
We have now characterized the mutual information with respect to a partic-

ular input–output event. Owing to the random nature of the source and channel
output, the mutual information should be averaged with respect to both the
input and output in order to account for the true statistical behavior of the
channel. This motivates the following definition.

Definition 6.7 The system mutual information, or average mutual informa-
tion, is defined as

I(X ;Y ),
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j)I(xi;y j) (6.68)

=
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j) log2

(
PX ,Y (xi,y j)

PX (xi)PY (y j)

)
. (6.69)
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128 Mutual information and channel capacity

The average mutual information I(X ;Y ) has the following properties (the
proofs are left as exercises).

Lemma 6.8 The system mutual information has the following properties:

(1) I(X ;Y )≥ 0;
(2) I(X ;Y ) = 0 if, and only if, X and Y are independent;
(3) I(X ;Y ) = I(Y ;X).

Exercise 6.9 Prove Lemma 6.8.
Hint: For the first and second property use the IT Inequality (Lemma 5.10).

You may proceed similarly to the proof of Lemma 5.11. The third property can
be proven based on the formula of the mutual information, i.e. (6.69). ♦

Starting from (6.68), we have

I(X ;Y ) =
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j)I(xi;y j) (6.70)

=
s

∑
i=1

t

∑
j=1

PX |Y (xi|y j)PY (y j)I(xi;y j) (6.71)

=
t

∑
j=1

PY (y j)I(X ;y j), (6.72)

where

I(X ;y j),
s

∑
i=1

PX |Y (xi|y j)I(xi;y j) (6.73)

measures the information about the entire input X provided by the reception of
the particular y j. In an analogous way we can obtain

I(X ;Y ) =
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j)I(xi;y j) (6.74)

=
s

∑
i=1

t

∑
j=1

PY |X (y j|xi)PX (xi)I(xi;y j) (6.75)

=
s

∑
i=1

PX (xi)I(xi;Y ), (6.76)

where

I(xi;Y ),
t

∑
j=1

PY |X (y j|xi)I(xi;y j) (6.77)

represents the information about the output Y given that we know the input
letter xi is sent.
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6.6 Mutual information 129

Let us end this section by specifying the relation between the average mutual
information I(X ;Y ) and various information quantities introduced thus far, e.g.
input entropy H(X), output entropy H(Y ), joint entropy H(X ,Y ), and condi-
tional entropies H(X |Y ) and H(Y |X). To proceed, let us use (6.69) to express
I(X ;Y ) as

I(X ;Y ) =
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j) log2

(
PX ,Y (xi,y j)

PX (xi)PY (y j)

)
(6.78)

=
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j)
(

log2 PX ,Y (xi,y j)− log2 PX (xi)

− log2 PY (y j)
)

(6.79)

=−
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j) log2

(
1

PX ,Y (xi,y j)

)

+
s

∑
i=1

PX (xi) log2

(
1

PX (xi)

)
+

t

∑
j=1

PY (y j) log2

(
1

PY (y j)

)
(6.80)

= H(X)+H(Y )−H(X ,Y )≥ 0. (6.81)

Since

H(X ,Y ) = H(X)+H(Y |X) (6.82)

= H(Y )+H(X |Y ), (6.83)

we also have

I(X ;Y ) = H(X)−H(X |Y ) (6.84)

= H(Y )−H(Y |X). (6.85)

We have the following corollary (the proof is left as an exercise).

Corollary 6.10 (Conditioning reduces entropy) The following inequalities
hold:

(a) 0≤ H(X |Y )≤ H(X), (6.86)

0≤ H(Y |X)≤ H(Y ); (6.87)

(b) H(X ,Y )≤ H(X)+H(Y ). (6.88)

Part (a) of Corollary 6.10 asserts that conditioning cannot increase entropy,
whereas Part (b) shows that the joint entropy H(X ,Y ) is maximized when X
and Y are independent.

Exercise 6.11 Prove Corollary 6.10.
Hint: Use known properties of I(X ;Y ) and H(X). ♦
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130 Mutual information and channel capacity

To summarize: the average mutual information is given by

I(X ;Y ) =





H(X)+H(Y )−H(X ,Y ),

H(X)−H(X |Y ),
H(Y )−H(Y |X);

(6.89)

the equivocation is given by

H(X |Y ) = H(X)− I(X ;Y ), (6.90)

H(Y |X) = H(Y )− I(X ;Y ); (6.91)

the joint entropy is given by

H(X ,Y ) =





H(X)+H(Y )− I(X ;Y ),

H(X)+H(Y |X),

H(Y )+H(X |Y ).
(6.92)

A schematic description of the relations between various information quanti-
ties is given by the Venn diagram in Figure 6.5.

I(X ;Y )
H(X |Y )

H(Y |X)

H(X) H(Y )

H(X ,Y )

Figure 6.5 Relation between entropy, conditional entropy, and mutual infor-
mation.

6.7 Definition of channel capacity

Given the conditional probabilities PY |X (y j|xi), which define a channel, what is
the maximum amount of information we can send through the channel? This
is the main question attacked in the rest of this chapter.
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6.8 Capacity of the binary symmetric channel 131

The mutual information connects the two ends of the channel together. It is
defined by (6.84) as

I(X ;Y ) = H(X)−H(X |Y ), (6.93)

where the entropy H(X) is the uncertainty of the channel input before the re-
ception of Y , and H(X |Y ) is the uncertainty that remains after the reception of
Y . Thus I(X ;Y ) is the change in the uncertainty. An alternative expression for
I(X ;Y ) is

I(X ;Y ) =
s

∑
i=1

t

∑
j=1

PX (xi)PY |X (y j|xi) log2

(
PY |X (y j|xi)

∑
s
i′=1 PX (xi′)PY |X (y j|xi′)

)
. (6.94)

This formula involves the input symbol frequencies PX (xi); in particular, for
a given channel law PY |X (y j|xi), I(X ;Y ) depends completely on PX (xi). We
saw in the example of a binary symmetric channel (Section 6.4) how a poor
match of PX (xi) to the channel can ruin a channel. Indeed, we know that if the
probability of one symbol is PX (xi) = 1, then all the others must be zero and
the constant signal contains no information.

How can we best choose the PX (xi) to get the most through the channel, and
what is that amount?

Definition 6.12 (Capacity) For a given channel, the channel capacity, de-
noted by C, is defined to be the maximal achievable system mutual information
I(X ;Y ) among all possible input distributions PX (·):

C,max
PX (·)

I(X ;Y ). (6.95)

Finding a closed-form solution to the channel capacity is in general difficult,
except for some simple channels, e.g. the binary symmetric channel defined in
Section 6.4 (see also Section 6.8 below).

We would like to point out that even though this definition of capacity is
intuitively quite pleasing, at this stage it is a mere mathematical quantity, i.e.
a number that is the result of a maximization problem. However, we will see
in Section 6.11 that it really is the capacity of a channel in the sense that it is
only possible to transmit signals reliably (i.e. with very small error probability)
through the channel as long as the transmission rate is below the capacity.

6.8 Capacity of the binary symmetric channel

Consider again the binary symmetric channel (BSC), with the probability of
transmission error equal to ε , as depicted in Figure 6.6.
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132 Mutual information and channel capacity

PX (0) 0

PX (1) 1

0 PY (0)

1 PY (1)

1− ε

ε

ε

1− ε

Figure 6.6 Binary symmetric channel (BSC).

The channel matrix is given by
(

1− ε ε

ε 1− ε

)
. (6.96)

Exercise 6.13 For the BSC, show that

H(Y |X = 0) = H(Y |X = 1) = Hb(ε), (6.97)

where Hb(·) is the binary entropy function defined in (5.24). ♦

We start from the definition of mutual information (6.85) to obtain the fol-
lowing set of relations:

I(X ;Y ) = H(Y )−H(Y |X) (6.98)

= H(Y )− ∑
x∈X

PX (x)H(Y |X = x) (6.99)

= H(Y )−
(
PX (0)H(Y |X = 0)+PX (1)H(Y |X = 1)

)
(6.100)

= H(Y )−Hb(ε) (6.101)

≤ 1−Hb(ε) bits, (6.102)

where (6.102) follows since Y is a binary random variable (see Lemma 5.11).
Since equality in (6.102) is attained if Y is uniform, which will hold if input X
is uniform, we conclude that the capacity of the BSC is given by

C= 1−Hb(ε) bits, (6.103)

and that the achieving input distribution is PX (0) = PX (1) = 1/2. Alternatively,
we can find the capacity of a BSC by starting from PX (0) = δ = 1−PX (1) and
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6.8 Capacity of the binary symmetric channel 133

expressing I(X ;Y ) as

I(X ;Y ) = H(Y )−H(Y |X) (6.104)

=−
(
δ (1− ε)+(1−δ )ε

)
log2

(
δ (1− ε)+(1−δ )ε

)

−
(
δε +(1−δ )(1− ε)

)
log2

(
δε +(1−δ )(1− ε)

)

+(1− ε) log2(1− ε)+ ε log2 ε. (6.105)

If we now maximize the above quantity over δ ∈ [0,1], we find that the optimal
δ is δ = 1/2, which immediately yields (6.103).

Figure 6.7 depicts the mutual information in (6.105) versus δ with respect
to three different choices of the error probability ε . As can be seen from the
figure, the peak value of each curve is indeed attained by δ = 1/2.

 

 

δ

I(
X

;Y
)

[b
it

s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ε = 0.0625
ε = 0.125
ε = 0.25

Figure 6.7 Mutual information over the binary symmetric channel (BSC):
(6.105) as a function of δ , for various values of ε .

Figure 6.8 plots the capacity C in (6.103) versus the cross-over probability
ε . We see from the figure that C attains the maximum value 1 bit when ε = 0
or ε = 1, and attains the minimal value 0 when ε = 1/2.

When ε = 0, it is easy to see that C = 1 bit is the maximum rate at which
information can be communicated through the channel reliably. This can be
achieved simply by transmitting uncoded bits through the channel, and no de-
coding is necessary because the bits are received unchanged. When ε = 1 the
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ε

C
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0.7

0.8

0.9

1

Figure 6.8 Capacity of the binary symmetric channel (BSC).

same can be achieved with the additional decoding step which complements
all the received bits. By doing so, the bits transmitted through the channel can
be recovered without error. Thus from a communications point of view, for
binary channels, a channel which never makes an error and a channel which
always makes an error are equally good.

When ε = 1/2, the channel output is independent of the channel input.
Therefore, no information can possibly be communicated through the chan-
nel.

6.9 Uniformly dispersive channel

Recall that the channel transition matrix for the BSC is
(

1− ε ε

ε 1− ε

)
, (6.106)

in which the second row is a permutation of the first row. In fact, the BSC
belongs to the class of uniformly dispersive channels.

Definition 6.14 A channel is said to be uniformly dispersive if the set

A(x), {PY |X (y1|x), . . . ,PY |X (yt |x)} (6.107)

is identical for each input symbol x. Hence a uniformly dispersive channel has
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6.9 Uniformly dispersive channel 135

a channel matrix 


P11 P12 · · · P1t

P21 P22 · · · P2t
...

...
. . .

...

Ps1 Ps2 · · · Pst




(6.108)

such that each row is a permutation of the first row.

According to the definition, for a uniformly dispersive channel the entropy
of the output conditioned on a particular input alphabet x being sent, namely

H(Y |X = x) = ∑
y∈Y

PY |X (y|x) log2

(
1

PY |X (y|x)

)
, (6.109)

is thus identical for all x. By means of (6.109), the mutual information between
the channel input and output reads

I(X ;Y ) = H(Y )−H(Y |X) (6.110)

= H(Y )− ∑
x∈X

PX (x)H(Y |X = x) (6.111)

= H(Y )−H(Y |X = x) ∑
x∈X

PX (x)

︸ ︷︷ ︸
=1

(6.112)

= H(Y )−H(Y |X = x). (6.113)

Equations (6.110)–(6.113) should be reminiscent of (6.98)–(6.101). This is no
surprise since the BSC is uniformly dispersive.

Recall also from (6.102) that the capacity of the BSC is attained with a uni-
form output, which can be achieved by a uniform input. At a first glance one
might expect that a similar argument can be directly applied to the uniformly
dispersive case to find the capacity of an arbitrary uniformly dispersive chan-
nel. However, for a general uniformly dispersive channel, the uniform input
does not necessarily result in the uniform output, and neither can the capacity
necessarily be achieved with the uniform output. For example, consider the bi-
nary erasure channel (BEC) depicted in Figure 6.9. In this channel, the input
alphabet is X= {0,1}, while the output alphabet is Y= {0,1,?}. With proba-
bility γ , the erasure symbol ? is produced at the output, which means that the
input bit is lost; otherwise the input bit is reproduced at the output without er-
ror. The parameter γ is thus called the erasure probability. The BEC has the
channel transition matrix (

1− γ γ 0

0 γ 1− γ

)
(6.114)
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136 Mutual information and channel capacity

and is thus, by definition, uniformly dispersive (the second row is a permuta-
tion of the first row). However, with the input distribution PX (0) = PX (1) =
1/2, the output is, in general, not uniform (PY (?) = γ and PY (0) = PY (1) =
(1− γ)/2). Despite this, the uniform input remains as the capacity-achieving
input distribution for the BEC.

0 0

1 1

?

1− γ

γ

γ

1− γ

Figure 6.9 Binary erasure channel (BEC).

Exercise 6.15 Based on (6.113), show that the capacity of the BEC is

C= 1− γ bits, (6.115)

which is attained with PX (0) = PX (1) = 1/2. The result is intuitively reason-
able: since a proportion γ of the bits are lost in the channel, we can recover
(at most) a proportion (1− γ) of the bits, and hence the capacity is (1− γ). ♦

6.10 Characterization of the capacity-achieving
input distribution

Even though it is, in general, difficult to find the closed-form capacity formula
and the associated capacity-achieving input distribution, it is nonetheless pos-
sible to specify some underlying properties of the optimal PX (·). The following
theorem, which is stated without proof, provides one such characterization in
terms of I(x;Y ), i.e. the information gain about Y given that X = x is sent (see
(6.77)).
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6.10 Capacity-achieving input distribution 137

Theorem 6.16 (Karush–Kuhn–Tucker (KKT) conditions) An input distri-
bution PX (·) achieves the channel capacity C if, and only if,

I(x;Y )

{
= C for all x with PX (x)> 0;

≤ C for all x with PX (x) = 0.
(6.116)

Remark 6.17 The KKT conditions were originally named after Harold W.
Kuhn and Albert W. Tucker, who first published the conditions in 1951 [KT51].
Later, however, it was discovered that the necessary conditions for this problem
had already been stated by William Karush in his master’s thesis [Kar39].

The assertion of Theorem 6.16 is rather intuitive: if PX (·) is the capacity-
achieving input distribution and PX (x) > 0, i.e. the particular letter x will be
used with a nonvanishing probability to convey information over the channel,
then the contribution of the mutual information due to this x must attain the
capacity; otherwise there will exist another PX ′(·) capable of achieving the
capacity by just disregarding this x (thus, PX ′(x) = 0) and using more often
input letters other than x.

Theorem 6.16 can also be exploited for finding the capacity of some chan-
nels. Consider again the BSC case; the capacity should satisfy one of the fol-
lowing three cases:

C= I(0;Y ) = I(1;Y ) for PX (0)> 0 and PX (1)> 0 (6.117)

or

C= I(0;Y )≥ I(1;Y ) for PX (0) = 1 and PX (1) = 0 (6.118)

or

C= I(1;Y )≥ I(0;Y ) for PX (0) = 0 and PX (1) = 1. (6.119)

Since (6.118) and (6.119) only yield uninteresting zero capacity, it remains to
verify whether or not (6.117) can give a positive capacity. By rearrangement
(6.117) implies

C= I(0;Y ) (6.120)

=
1

∑
y=0

PY |X (y|0) log2
PY |X (y|0)

PY (y)
(6.121)

=−
1

∑
y=0

PY |X (y|0) log2 PY (y)+
1

∑
y=0

PY |X (y|0) log2 PY |X (y|0) (6.122)

=−(1− ε) log2 PY (0)− ε log2 PY (1)−Hb(ε) (6.123)
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138 Mutual information and channel capacity

and

C= I(1;Y ) (6.124)

=
1

∑
y=0

PY |X (y|1) log2
PY |X (y|1)

PY (y)
(6.125)

=−
1

∑
y=0

PY |X (y|1) log2 PY (y)+
1

∑
y=0

PY |X (y|1) log2 PY |X (y|1) (6.126)

=−ε log2 PY (0)− (1− ε) log2 PY (1)−Hb(ε), (6.127)

which yields

−(1− ε) · log2 PY (0)− ε · log2 PY (1)−Hb(ε)

=−ε · log2 PY (0)− (1− ε) · log2 PY (1)−Hb(ε). (6.128)

This can only be satisfied if PY (0) = PY (1) (= 1/2). Thus

C=−ε · log2

(
1
2

)
− (1− ε) · log2

(
1
2

)
−Hb(ε) (6.129)

= 1−Hb(ε) bits. (6.130)

Exercise 6.18 Repeat the above arguments to derive the capacity of the BEC.
♦

6.11 Shannon’s Channel Coding Theorem

The channel capacity measures the amount of information that can be carried
over the channel; in fact, it characterizes the maximal amount of transmis-
sion rate for reliable communication. Prior to the mid 1940s people believed
that transmitted data subject to noise corruption can never be perfectly recov-
ered unless the transmission rate approaches zero [Gal01]. Shannon’s land-
mark work [Sha48] in 1948 disproved this thinking and established the well
known Channel Coding Theorem: as long as the transmission rate in the same
units as the channel capacity, e.g. information bits per channel use, is below
(but can be arbitrarily close to) the channel capacity, the error can be made
smaller than any given number (which we term arbitrarily small) by some
properly designed coding scheme.

In what follows are some definitions that are required to state the theorem
formally; detailed mathematical proofs can be found in [CT06] and [Gal68].

Definition 6.19 An (M,n) coding scheme for the channel (X,PY |X (y|x),Y)
consists of the following.
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6.11 Shannon’s Channel Coding Theorem 139

(1) A message set {1,2, . . . ,M}.
(2) An encoding function φ : {1,2, . . . ,M} → Xn, which is a rule that asso-

ciates message m with a channel input sequence of length n, called the mth
codeword and denoted by xn(m). The set of all codewords

{xn(1),xn(2), . . . ,xn(M)}

is called the codebook (or simply the code).

(3) A decoding function ψ : Yn→{1,2, . . . ,M}, which is a deterministic rule
that assigns a guess to each possible received vector.

Definition 6.20 (Rate) The rate R of an (M,n) coding scheme is defined to
be

R,
log2M

n
bits per transmission. (6.131)

In (6.131), log2M describes the number of digits needed to write the num-
bers 0, . . . ,M− 1 in binary form. For example, for M = 8 we need three bi-
nary digits (or bits): 000, . . . ,111. The denominator n tells how many times the
channel is used for the total transmission of a codeword (recall that n is the
codeword length). Hence the rate describes how many bits are transmitted on
average in each channel use.

Definition 6.21 Let

λm , Pr[ψ(Yn) 6= m | Xn = xn(m)] (6.132)

be the conditional probability that the receiver makes a wrong guess given that
the mth codeword is sent. The average error probability λ (n) for an (M,n)
coding scheme is defined as

λ
(n) ,

1
M

M

∑
m=1

λm. (6.133)

Now we are ready for the famous Channel Coding Theorem due to Shannon.
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140 Mutual information and channel capacity

Theorem 6.22 (Shannon’s Channel Coding Theorem)

For a discrete-time information channel, it is possible to transmit mes-

sages with an arbitrarily small error probability (i.e. we have so-called

reliable communication), if the communication rate R is below the

channel capacity C. Specifically, for every rate R < C, there exists a

sequence of (2nR,n) coding schemes5 with average error probability

λ (n) → 0 as n → ∞.

Conversely, any sequence of (2nR,n) coding schemes with λ (n) → 0

must have R ≤ C. Hence, any attempt of transmitting at a rate larger

than capacity will for sure fail in the sense that the average error prob-

ability is strictly larger than zero.

Take the BSC for example. If the cross-over probability is ε = 0.1, the result-
ing capacity is C= 0.531 bits per channel use. Hence reliable communication
is only possible for coding schemes with a rate smaller than 0.531 bits per
channel use.

Although the theorem shows that there exist good coding schemes with arbi-
trarily small error probability for long blocklength n, it does not provide a way
of constructing the best coding schemes. Actually, the only knowledge we can
infer from the theorem is perhaps “a good code favors a large blocklength.”
Ever since Shannon’s original findings, researchers have tried to develop prac-
tical coding schemes that are easy to encode and decode; the Hamming code
we discussed in Chapter 3 is the simplest of a class of algebraic error-correcting
codes that can correct one error in a block of bits. Many other techniques have
also been proposed to construct error-correcting codes, among which the turbo
code – to be discussed in Chapter 7 – has come close to achieving the so-called
Shannon limit for channels contaminated by Gaussian noise.

6.12 Some historical background

In his landmark paper [Sha48], Shannon only used H, R, and C to denote en-
tropy, rate, and capacity, respectively. The first to use I for information were
5 In Theorem 6.22, 2nR is a convenient expression for the code size and should be understood as

either the smallest integer no less than its value or the largest integer no greater than its value.
Researchers tend to drop the ceiling or flooring function applying to it, because the ratio of
2nR, against the integer it is understood to be, will be very close to unity as n is large. Since the
theorem actually deals with very large codeword lengths n (note that λ (n) approaches zero only
when n is very large), the slack use of 2nR as an integer is somehow justified in concept.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.007
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:44, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.007
https:/www.cambridge.org/core


6.13 Further reading 141

Philip M. Woodward and Ian L. Davies in [WD52]. This paper is a very good
read and gives an astoundingly clear overview of the fundamentals of informa-
tion theory only four years after the theory had been established by Shannon.
The authors give a slightly different interpretation of Shannon’s theory and
redevelop it using two additivity axioms. However, they did not yet use the
name “mutual information.” The name only starts to appear between 1954 and
1956. In 1954, Mark Pinsker published a paper in Russian [Pin54] with the title
“Mutual information between a pair of stationary Gaussian random processes.”
However, depending on the translation, the title also might read “The quantity
of information about a Gaussian random stationary process, contained in a sec-
ond process connected with it in a stationary manner.” Shannon certainly used
the term “mutual information” in a paper about the zero-error capacity in 1956
[Sha56].

By the way, Woodward is also a main pioneer in modern radar theory. He
had the insight to apply probability theory and statistics to the problem of re-
covering data from noisy samples. Besides this, he is a huge clock fan and
made many contributions to horology; in particular, he built the world’s most
precise mechanical clock, the Clock W5, inventing a completely new mecha-
nism.6

6.13 Further reading

Full discussions of the mutual information, channel capacity, and Shannon’s
Channel Coding Theorem in terms of probability theory can be found in many
textbooks, see, e.g., [CT06] and [Gal68]. A unified discussion of the capacity
results of the uniformly dispersive channel is given in [Mas96]. Further gener-
alizations of uniformly dispersive channels are quasi-symmetric channels, dis-
cussed in [CA05, Chap. 4], and T-symmetric channels, described in [RG04].
The proof of Theorem 6.16 is closely related to the subject of constrained op-
timization, which is a standard technique for finding the channel capacity; see,
e.g., [Gal68] and [CT06]. In addition to the Source Coding Theorem (Theo-
rem 5.28 introduced in Chapter 5) and the Channel Coding Theorem (The-
orem 6.22), Shannon’s third landmark contribution is the development of the
so-called rate distortion theory, which describes how to represent a continuous
source with good fidelity using only a finite number of “representation levels”;
for more details, please also refer to [CT06] and [Gal68].

6 To see some amazing videos of this, search on http://www.youtube.com for “clock W5.”
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