
5
Entropy and Shannon’s Source Coding Theorem

Up to this point we have been concerned with coding theory. We have de-
scribed codes and given algorithms of how to design them. And we have eval-
uated the performance of some particular codes. Now we begin with informa-
tion theory, which will enable us to learn more about the fundamental proper-
ties of general codes without having actually to design them.

Basically, information theory is a part of physics and tries to describe what
information is and how we can work with it. Like all theories in physics it is a
model of the real world that is accepted as true as long as it predicts how nature
behaves accurately enough.

In the following we will start by giving some suggestive examples to mo-
tivate the definitions that follow. However, note that these examples are not a
justification for the definitions; they just try to shed some light on the reason
why we will define these quantities in the way we do. The real justification of
all definitions in information theory (or any other physical theory) is the fact
that they turn out to be useful.

5.1 Motivation

We start by asking the question: what is information?
Let us consider some examples of sentences that contain some “informa-

tion.”

• The weather will be good tomorrow.
• The weather was bad last Sunday.
• The president of Taiwan will come to you tomorrow and will give you one

million dollars.

The second statement seems not very interesting as you might already know

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


82 Entropy and Shannon’s Source Coding Theorem

what the weather was like last Sunday. The last statement is much more excit-
ing than the first two and therefore seems to contain much more information.
But, on the other hand, do you actually believe it? Do you think it is likely that
you will receive one million dollars tomorrow?

Let us consider some easier examples.

• You ask: “Is the temperature in Taiwan currently above 30 degrees?”
This question has only two possible answers: “yes” or “no.”

• You ask: “The president of Taiwan has spoken with a certain person from
Hsinchu today. With whom?”

Here, the question has about 400 000 possible answers (since Hsinchu has
about 400 000 inhabitants).

Obviously the second answer provides you with a much bigger amount of in-
formation than the first one. We learn the following.

The number of possible answers r should be linked to “information.”

Here is another example.

• You observe a gambler throwing a fair dice. There are six possible outcomes
{1,2,3,4,5,6}. You note the outcome and then tell it to a friend. By doing
so you give your friend a certain amount of information.

• Next you observe the gambler throwing the dice three times. Again, you note
the three outcomes and tell them to your friend. Obviously, the amount of
information that you give to your friend this time is three times as much as
the first time.

So we learn the following.

“Information” should be additive in some sense.

Now we face a new problem: regarding the example of the gambler above
we see that in the first case we have r = 6 possible answers, while in the second
case we have r = 63 = 216 possible answers. Hence in the second experiment
there are 36 times more possible outcomes than in the first experiment! But we
would like to have only a three times larger amount of information. So how do
we solve this?

Idea: use a logarithm. Then the exponent 3 will become a factor exactly as
we wish: logb 63 = 3 · logb 6.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


5.1 Motivation 83

Exactly these observations have been made by the researcher Ralph Hartley
in 1928 in Bell Labs [Har28]. He gave the following definition.

Definition 5.1 We define the following measure of information:

Ĩ(U), logb r, (5.1)

where r is the number of all possible outcomes of a random message U .

Using this definition we can confirm that it has the wanted property of addi-
tivity:

Ĩ(U1,U2, . . . ,Un) = logb rn = n · logb r = n · Ĩ(U). (5.2)

Hartley also correctly noted that the basis b of the logarithm is not really impor-
tant for this measure. It only decides on the unit of information. So, similarly
to the fact that 1 km is the same distance as 1000 m, b is only a change of units
without actually changing the amount of information it describes.

For two important and one unimportant special cases of b it has been agreed
to use the following names for these units:

b = 2 (log2): bit,

b = e (ln): nat (natural logarithm),

b = 10 (log10): Hartley.

Note that the unit Hartley has been chosen in honor of the first researcher who
made the first (partially correct) attempt at defining information. However, as
nobody in the world ever uses the basis b = 10 for measuring information, this
honor is questionable.

The measure Ĩ(U) is the right answer to many technical problems.

Example 5.2 A village has eight telephones. How long must the phone num-
ber be? Or, asked differently: how many bits of information do we need to send
to the central office so that we are connected to a particular phone?

8 phones =⇒ log2 8 = 3 bits. (5.3)

We choose the following phone numbers:

{000, 001, 010, 011, 100, 101, 110, 111}. (5.4)

♦

In spite of its usefulness, Hartley’s definition had no effect whatsoever in
the world. That’s life. . . On the other hand, it must be admitted that Hartley’s
definition has a fundamental flaw. To realize that something must be wrong,
note that according to (5.1) the smallest nonzero amount of information is

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


84 Entropy and Shannon’s Source Coding Theorem

A: B:

black and white balls

Figure 5.1 Two hats with four balls each.

log2 2 = 1 bit. This might sound like only a small amount of information, but
actually 1 bit can be a lot of information! As an example, consider the 1-bit
(yes or no) answer if a man asks a woman whether she wants to marry him. If
you still do not believe that one bit is a huge amount of information, consider
the following example.

Example 5.3 Currently there are 6 902 106 897 persons living on our planet
(U.S. Census Bureau, 25 February 2011, 13:43 Taiwan time). How long must
a binary telephone number U be if we want to be able to connect to every
person?

According to Hartley we need Ĩ(U) = log2(6902106897) ' 32.7 bits. So
with only 33 bits we can address every single person on this planet. Or, in
other words, we only need 33 times 1 bit in order to distinguish every human
being alive. ♦

We see that 1 bit is a lot of information and it cannot be that this is the
smallest amount of (nonzero) information.

To understand more deeply what is wrong, consider the two hats shown in
Figure 5.1. Each hat contains four balls, where the balls can be either white or
black. Let us draw one ball at random and let U be the color of the ball. In hat
A we have r = 2 colors: black and white, i.e. Ĩ(UA) = log2 2 = 1 bit. In hat B
we also have r = 2 colors and hence also Ĩ(UB) = 1 bit. But obviously, we get
less information if in hat B black shows up, since we somehow expect black to
show up in the first place. Black is much more likely!

We realize the following.

A proper measure of information needs to take into account the proba-

bilities of the various possible events.

This was observed for the first time by Claude Elwood Shannon in 1948 in

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


5.1 Motivation 85

his landmark paper “A mathematical theory of communication” [Sha48]. This
paper has been like an explosion in the research community!1

Before 1948, the engineering community was mainly interested in the be-
havior of a sinusoidal waveform that is passed through a communication sys-
tem. Shannon, however, asked why we want to transmit a deterministic sinu-
soidal signal. The receiver already knows in advance that it will be a sinus, so
it is much simpler to generate one at the receiver directly rather than to trans-
mit it over a channel! In other words, Shannon had the fundamental insight
that we need to consider random messages rather than deterministic messages
whenever we deal with information.

Let us go back to the example of the hats in Figure 5.1 and have a closer
look at hat B.

• There is one chance out of four possibilities that we draw a white ball.
Since we would like to use Hartley’s measure here, we recall that the

quantity r inside the logarithm in (5.1) is “the number of all possible out-
comes of a random message.” Hence, from Hartley’s point of view, we will
see one realization out of r possible realizations. Translated to the case of
the white ball, we see that we have one realization out of four possible real-
izations, i.e.

log2 4 = 2 bits (5.5)

of information.
• On the other hand, there are three chances out of four that we draw a black

ball.
Here we cannot use Hartley’s measure directly. But it is possible to trans-

late the problem into a form that makes it somehow accessible to Hartley: we
need to “normalize” the statement into a form that gives us one realization
out of r. This can be done if we divide everything by 3, the number of black
balls: we have one chance out of 4/3 possibilities (whatever this means), or,
stated differently, we have one realization out of 4/3 possible “realizations,”
i.e.

log2
4
3
= 0.415 bits (5.6)

of information.

1 Besides the amazing accomplishment of inventing information theory, at the age of 21 Shan-
non also “invented” the computer in his Master thesis [Sha37]! He proved that electrical circuits
can be used to perform logical and mathematical operations, which was the foundation of dig-
ital computer and digital circuit theory. It is probably the most important Master thesis of the
twentieth century! Incredible, isn’t it?

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


86 Entropy and Shannon’s Source Coding Theorem

So now we have two different values depending on what color we get. How
shall we combine them to one value that represents the information? The most
obvious choice is to average it, i.e. we weight the different information values
according to their probabilities of occurrence:

1
4
·2 bits+

3
4
·0.415 bits = 0.811 bits (5.7)

or
1
4

log2 4+
3
4

log2
4
3
= 0.811 bits. (5.8)

We see the following.

Shannon’s measure of information is an “average Hartley information”:

r

∑
i=1

pi log2

1

pi

=−
r

∑
i=1

pi log2 pi, (5.9)

where pi denotes the probability of the ith possible outcome.

We end this introductory section by pointing out that the given three moti-
vating ideas, i.e.

(1) the number of possible answers r should be linked to “information”;
(2) “information” should be additive in some sense; and
(3) a proper measure of information needs to take into account the probabili-

ties of the various possible events,

are not sufficient to exclusively specify (5.9). The interested reader can find in
Appendix 5.8 some more information on why Shannon’s measure should be
defined like (5.9) and not differently.

5.2 Uncertainty or entropy

5.2.1 Definition

We now formally define the Shannon measure of “self-information of a source.”
Due to its relationship with a corresponding concept in different areas of phys-
ics, Shannon called his measure entropy. We will stick to this name as it is
standard in the whole literature. However, note that uncertainty would be a far
more precise description.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


5.2 Uncertainty or entropy 87

Definition 5.4 (Entropy) The uncertainty or entropy of a random message
U that takes on r different values with probability pi, i = 1, . . . ,r, is defined as

H(U),−
r

∑
i=1

pi logb pi. (5.10)

Remark 5.5 What happens if pi = 0? Remember that logb 0=−∞. However,
also note that pi = 0 means that the symbol i never shows up. It therefore
should not contribute to the uncertainty. Luckily this is the case:

lim
t→0

t logb t = 0, (5.11)

i.e. we do not need to worry about this case.
So we note the following.

Whenever we sum over pi logb pi, we implicitly assume that we exclude

all indices i with pi = 0.

As in the case of the Hartley measure of information, b denotes the unit of
uncertainty:

b = 2 : bit, (5.12)

b = e : nat, (5.13)

b = 10 : Hartley. (5.14)

If the base of the logarithm is not specified, then we can choose it freely. How-
ever, note that the units are very important. A statement “H(U) = 0.43” is
completely meaningless: since

logb ξ =
log2 ξ

log2 b
, (5.15)

0.43 could mean anything as, e.g.,

if b = 2 : H(U) = 0.43 bits, (5.16)

if b = e : H(U) = 0.43 nats' 0.620 bits, (5.17)

if b = 256 = 28 : H(U) = 0.43 “bytes” = 3.44 bits. (5.18)

Note that the term bits is used in two ways: its first meaning is the unit of
entropy when the base of the logarithm is chosen to be 2; its second meaning
is binary digits, i.e. in particular the number of digits of a binary codeword.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


88 Entropy and Shannon’s Source Coding Theorem

Remark 5.6 It is worth mentioning that if all r events are equally likely,
Shannon’s definition of entropy reduces to Hartley’s measure:

pi =
1
r
, ∀ i : H(U) =−

r

∑
i=1

1
r

logb
1
r
=

1
r

logb r ·
r

∑
i=1

1

︸︷︷︸
=r

= logb r. (5.19)

Remark 5.7 Be careful not to confuse uncertainty with information. For
motivation purposes, in Section 5.1 we talked a lot about “information.” How-
ever, what we actually meant there is “self-information” or, more nicely put,
“uncertainty.” You will learn in Chapter 6 that information is what you get by
reducing uncertainty and see a formal definition of information there.

Another important observation is that the entropy of U does not depend on
the different possible values that U can take on, but only on the probabilities
of these values. Hence,

U ∈
{

1︸︷︷︸
with

prob. 1
2

, 2︸︷︷︸
with

prob. 1
3

, 3︸︷︷︸
with

prob. 1
6

}
(5.20)

and

V ∈
{

34︸︷︷︸
with

prob. 1
2

, 512︸︷︷︸
with

prob. 1
3

, 981︸︷︷︸
with

prob. 1
6

}
(5.21)

have both the same entropy, which is

H(U) = H(V ) =−1
2

log2
1
2
− 1

3
log2

1
3
− 1

6
log2

1
6
' 1.46 bits. (5.22)

5.2.2 Binary entropy function

One special case of entropy is so important that we introduce a specific name.

Definition 5.8 (Binary entropy function) If U is binary with two possible
values u1 and u2 such that Pr[U = u1] = p and Pr[U = u2] = 1− p, then

H(U) = Hb(p), (5.23)

where Hb(·) is called the binary entropy function and is defined as

Hb(p),−p log2 p− (1− p) log2(1− p), p ∈ [0,1]. (5.24)

The function Hb(·) is shown in Figure 5.2.

Exercise 5.9 Show that the maximal value of Hb(p) is 1 bit and is taken on
for p = 1/2. ♦

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


5.2 Uncertainty or entropy 89

p

H
b
(p
)

[b
it

s]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.2 Binary entropy function Hb(p) as a function of the probability p.

5.2.3 The Information Theory Inequality

The following inequality does not really have a name, but since it is so impor-
tant in information theory, we will follow James Massey, retired professor at
ETH in Zurich, and call it the Information Theory Inequality or the IT Inequal-
ity.

Lemma 5.10 (IT Inequality) For any base b > 0 and any ξ > 0,
(

1− 1
ξ

)
logb e≤ logb ξ ≤ (ξ −1) logb e (5.25)

with equalities on both sides if, and only if, ξ = 1.

Proof Actually, Figure 5.3 can be regarded as a proof. For those readers who
would like a formal proof, we provide a mathematical derivation. We start with
the upper bound. First note that

logb ξ
∣∣
ξ=1 = 0 = (ξ −1) logb e

∣∣
ξ=1. (5.26)

Then have a look at the derivatives:

d
dξ

logb ξ =
1
ξ

logb e

{
> logb e if 0 < ξ < 1,

< logb e if ξ > 1,
(5.27)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


90 Entropy and Shannon’s Source Coding Theorem

 

 

ξ

logb ξ
(ξ−1) logb e

(1−1/ξ ) logb e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−5

−4

−3

−2

−1

0

1

2

3

4

Figure 5.3 Illustration of the IT Inequality.

and
d

dξ
(ξ −1) logb e = logb e. (5.28)

Hence, the two functions coincide at ξ = 1, and the linear function is above
the logarithm for all other values.

To prove the lower bound again note that
(

1− 1
ξ

)
logb e

∣∣∣∣
ξ=1

= 0 = logb ξ
∣∣
ξ=1 (5.29)

and

d
dξ

(
1− 1

ξ

)
logb e =

1
ξ 2 logb e

{
> d

dξ
logb ξ = 1

ξ
logb e if 0 < ξ < 1,

< d
dξ

logb ξ = 1
ξ

logb e if ξ > 1,
(5.30)

similarly to above.

5.2.4 Bounds on the entropy

Lemma 5.11 If U has r possible values, then

0≤ H(U)≤ log2 r bits, (5.31)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


5.2 Uncertainty or entropy 91

where

H(U) = 0 if, and only if, pi = 1 for some i, (5.32)

H(U) = log2 r bits if, and only if, pi =
1
r
∀ i. (5.33)

Proof Since 0≤ pi ≤ 1, we have

−pi log2 pi

{
= 0 if pi = 1,

> 0 if 0 < pi < 1.
(5.34)

Hence, H(U) ≥ 0. Equality can only be achieved if −pi log2 pi = 0 for all i,
i.e. pi = 1 for one i and pi = 0 for the rest.

To derive the upper bound, we use a trick that is quite common in informa-
tion theory: we take the difference and try to show that it must be nonpositive.
In the following we arrange the probabilities in descending order and assume
that r′ (r′ ≤ r) of the r values of the probabilities pi are strictly positive, i.e.
pi > 0 for all i = 1, . . . ,r′, and pi = 0 for i = r′+1, . . . ,r. Then

H(U)− log2 r =−
r

∑
i=1

pi log2 pi− log2 r (5.35)

=−
r′

∑
i=1

pi log2 pi− log2 r ·
r′

∑
i=1

pi

︸ ︷︷ ︸
=1

(5.36)

=−
r′

∑
i=1

pi log2 pi−
r′

∑
i=1

pi log2 r (5.37)

=−
r′

∑
i=1

pi log2(pi · r) (5.38)

=
r′

∑
i=1

pi log2

(
1

pi · r︸︷︷︸
,ξ

)
(5.39)

≤
r′

∑
i=1

pi

(
1

pi · r
−1
)
· log2 e (5.40)

=

(
r′

∑
i=1

1
r
−

r′

∑
i=1

pi

︸ ︷︷ ︸
=1

)
· log2 e (5.41)

=

(
r′

r
−1
)
· log2 e (5.42)

≤ (1−1) · log2 e = 0. (5.43)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


92 Entropy and Shannon’s Source Coding Theorem

Here, (5.40) follows from the IT Inequality (Lemma 5.10), and (5.43) follows
because r′ ≤ r. Hence, H(U)≤ log2 r.

Equality can only be achieved if both

(1) in the IT Inequality ξ = 1, i.e. if 1/pir = 1 for all i, i.e. if pi = 1/r for all
i; and

(2) r′ = r.

Note that if the first condition is satisfied, then the second condition is auto-
matically satisfied.

5.3 Trees revisited

The most elegant way to connect our new definition of entropy with the codes
introduced in Chapter 4 is to rely again on trees with probabilities.

Consider a binary tree with probabilities. We remind the reader of our nota-
tion:

• n denotes the total number of leaves;
• pi, i = 1, . . . ,n, denote the probabilities of the leaves;
• N denotes the number of nodes (including the root, but excluding the leaves);

and
• P̀ , ` = 1, . . . ,N, denote the probabilities of the nodes, where by definition

P1 = 1 is the root probability.

Moreover, we will use q`, j to denote the probability of the jth node/leaf that is
one step forward from node ` (the jth child of node `), where j = 0,1. That is,
we have

q`,0 +q`,1 = P̀ . (5.44)

Now we give the following definitions.

Definition 5.12 The leaf entropy is defined as

Hleaf ,−
n

∑
i=1

pi log2 pi. (5.45)

Definition 5.13 Denoting by P1,P2, . . . ,PN the probabilities of all nodes (in-
cluding the root) and by q`, j the probability of the nodes and leaves one step
forward from node `, we define the branching entropy H` of node ` as

H` ,−
q`,0
P̀

log2
q`,0
P̀
− q`,1

P̀
log2

q`,1
P̀

. (5.46)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


5.3 Trees revisited 93

0

1

0.6

0.5

0.4

0.1

0.1

H1

H2

H3

Figure 5.4 An example of a binary tree with probabilities to illustrate the
calculations of the leaf entropy and the branching entropies.

Note that following Remark 5.5 we implicitly assume that the sum is only over
those j for which q`, j > 0, i.e. we have H` = 0 if one of the q`, j is zero. Note
further that q`, j/P̀ is the conditional probability of going along the jth branch
given that we are at node ` (normalization!).

Example 5.14 As an example consider the tree in Figure 5.4. We have

Hleaf =−0.4log2 0.4−0.1log2 0.1−0.5log2 0.5' 1.361 bits; (5.47)

H1 =−
0.4
1

log2
0.4
1
− 0.6

1
log2

0.6
1
' 0.971 bits; (5.48)

H2 =−
0.1
0.6

log2
0.1
0.6
− 0.5

0.6
log2

0.5
0.6
' 0.650 bits; (5.49)

H3 =−
0.1
0.1

log2
0.1
0.1

= 0 bits. (5.50)

♦

We will next prove a very interesting relationship between the leaf entropy
and the branching entropy that will turn out to be fundamental for the under-
standing of codes.

Theorem 5.15 (Leaf Entropy Theorem) In any tree with probabilities we
have that

Hleaf =
N

∑
`=1

P̀ H`. (5.51)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


94 Entropy and Shannon’s Source Coding Theorem

Proof Recall that by the definition of trees and trees with probabilities we
have, for every node `,

P̀ = q`,0 +q`,1. (5.52)

Using the definition of branching entropy, we obtain

P̀ H` = P̀ ·
(
−q`,0

P̀
log2

q`,0
P̀
− q`,1

P̀
log2

q`,1
P̀

)
(5.53)

=−q`,0 log2
q`,0
P̀
−q`,1 log2

q`,1
P̀

(5.54)

=−q`,0 log2 q`,0−q`,1 log2 q`,1 +q`,0 log2 P̀ +q`,1 log2 P̀ (5.55)

=−q`,0 log2 q`,0−q`,1 log2 q`,1 +
(
q`,0 +q`,1

)
︸ ︷︷ ︸

=P̀

log2 P̀ (5.56)

=−q`,0 log2 q`,0−q`,1 log2 q`,1 + P̀ log2 P̀ , (5.57)

where the last equality follows from (5.52).

1

+1log2 1 = 0

−0.6log2 0.6

−0.4log2 0.4

0.6

+0.6log2 0.6

−0.1log2 0.1

−0.5log2 0.5

0.1

+0.1log2 0.1

−0.05log2 0.05

−0.05log2 0.05

0.5

0.4

0.05

0.05

contribution of P1H1

contribution of P2H2

contribution of P3H3

Figure 5.5 Graphical proof of the Leaf Entropy Theorem. There are three
nodes: we see that all contributions cancel apart from the root node (whose
contribution is 0) and the leaves.

Hence, for every node ˜̀, we see that it will contribute to ∑
N
`=1 P̀ H` twice:

• firstly it will add P˜̀ log2 P˜̀ when the node counter ` passes through ˜̀; but
• secondly it will subtract q`, j log2 q`, j = P˜̀ log2 P˜̀ when the node counter `

points to the parent node of ˜̀.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


5.4 Bounds on the efficiency of codes 95

Hence, the contributions of all nodes will be canceled out – apart from the
root that does not have a parent! The root only contributes P1 log2 P1 for `= 1.
However, since P1 = 1, we have P1 log2 P1 = 1log2 1 = 0. So the root does not
contribute either.

It only remains to consider the leaves. Note that the node counter ` will
not pass through leaves by definition. Hence, a leaf only contributes when the
node counter points to its parent node and its contribution is −q`, j log2 q`, j =
−pi log2 pi. Since the sum of all −pi log2 pi equals the leaf entropy by defini-
tion, this proves the claim.

In Figure 5.5 we have tried to depict this proof graphically.

Example 5.16 (Continuation from Example 5.14) Using the values from
(5.47)–(5.50) we obtain

P1H1 +P2H2 +P3H3 = 1 ·0.971+0.6 ·0.650+0.1 ·0 bits (5.58)

= 1.361 bits = Hleaf (5.59)

as expected. ♦

5.4 Bounds on the efficiency of codes

The main strength of information theory is that it can provide some fundamen-
tal statements about what is possible and what is not possible to achieve. So a
typical information theoretic result will consist of an upper bound and a lower
bound or, in general, an achievability part and a converse part. The achievabil-
ity part of a theorem tells us what we can do, and the converse part tells us
what we cannot do.

Sometimes, the theorem will also tell us how to do it, but usually the result
is theoretic in the sense that it only proves what is possible without actually
saying how it could be done. To put it pointedly: information theory tells us
what is possible; coding theory tells us how to do it.

5.4.1 What we cannot do: fundamental limitations of
source coding

Let us quickly summarize what we know about codes and their corresponding
trees.

• The most efficient codes can always be chosen to be prefix-free (Theo-
rem 4.19).

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


96 Entropy and Shannon’s Source Coding Theorem

• Every prefix-free code can be represented by a tree where every codeword
corresponds to a leaf in the tree.

• Every codeword has a certain probability corresponding to the probability
of the symbol it represents.

• Unused leaves can be regarded as symbols that never occur, i.e. we assign
probability zero to them.

Hence, from these observations we immediately see that the entropy H(U) of
a random message U with probabilities p1, . . . , pr and the leaf entropy of the
corresponding tree are the same:

Hleaf = H(U). (5.60)

Note that the unused leaves do not contribute to Hleaf since they have zero
probability.

Moreover, the average codeword length Lav is equivalent to the average
depth of the leaves. (Again we can ignore the unused leaves, since they have
probability zero and therefore do not contribute to the average.)

Now note that since we consider binary trees where each node branches into
two different children, we know from Lemma 5.11 that the branching entropy
can be upper-bounded as follows:

H` ≤ log2 2 = 1 bit. (5.61)

Hence, using this together with the Leaf Entropy Theorem (Theorem 5.15) and
the Path Length Lemma (Lemma 4.11) we obtain the following:

H(U) = Hleaf =
N

∑
`=1

P̀ H` ≤
N

∑
`=1

P̀ ·1 bit =
N

∑
`=1

P̀ = Lav bits. (5.62)

In other words,

Lav ≥ H(U) bits. (5.63)

This is the converse part of the Coding Theorem for a Single Random Mes-
sage. It says that whatever code you try to design, the average codeword length
of any binary code for an r-ary random message U cannot be smaller than the
entropy of U (using the correct unit of bits)!

Note that to prove this statement we have not designed any code, but instead
we have been able to prove something that holds for every code that exists!

When do we have equality? From the above derivation we see that we have
equality if the branching entropy is always 1 bit, H` = 1 bit, i.e. the branching
probabilities are all uniform. This is only possible if pi is a negative integer
power of 2 for all i:

pi = 2−νi (5.64)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


5.4 Bounds on the efficiency of codes 97

with νi a natural number (and, of course, if we design an optimal code).

5.4.2 What we can do: analysis of the best codes

In practice, it is not only important to know where the limitations are, but also
perhaps even more so to know how close we can get to these limitations. So
as a next step we would like to analyze the best codes (i.e. the Huffman codes
derived in Section 4.6) and see how close they get to the limitations shown in
Section 5.4.1.

Unfortunately, it is rather difficult to analyze Huffman codes. To circumvent
this problem, we will design a new code, called the Fano code, and analyze
its performance instead. Fano codes are not optimal in general, i.e. their per-
formance is worse than the performance of Huffman codes. Therefore any up-
per bound on Lav that can be achieved by a Fano code can definitely also be
achieved by a Huffman code.

Definition 5.17 (Fano code) The Fano code2 is generated according to the
following algorithm:

Step 1 Arrange the symbols in order of nonincreasing probability.
Step 2 Divide the list of ordered symbols into two parts, with the total proba-

bility of the left part being as close to the total probability of the right
part as possible.

Step 3 Assign the binary digit 0 to the left part of the list, and the digit 1 to
the right part. This means that the codewords for the symbols in the
first part will all start with 0, and the codewords for the symbols in the
second part will all start with 1.

Step 4 Recursively apply Step 2 and Step 3 to each of the two parts, subdi-
viding into further parts and adding bits to the codewords until each
symbol is the single member of a part.

Note that effectively this algorithm constructs a tree. Hence, the Fano code is
prefix-free.

Example 5.18 Let us generate the Fano code for a random message with five
symbols having probabilities

p1 = 0.35, p2 = 0.25, p3 = 0.15,

p4 = 0.15, p5 = 0.1.
(5.65)

2 Note that this code is usually known as the Shannon–Fano code. However, this is a misnaming
because it was Fano’s invention. Shannon proposed a slightly different code, which unfortu-
nately is also known as the Shannon–Fano code. For more details on this confusion, we refer
to the discussion in Section 5.6.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


98 Entropy and Shannon’s Source Coding Theorem

Since the symbols are already ordered in decreasing order of probability, Step 1
can be omitted. We hence want to split the list into two parts, both having as
similar total probability as possible. If we split {1} and {2,3,4,5}, we have
a total probability 0.35 on the left and 0.65 on the right; the split {1,2} and
{3,4,5} yields 0.6 and 0.4; and {1,2,3} and {4,5} gives 0.75 and 0.25. We
see that the second split is best. So we assign 0 as a first digit to {1,2} and 1
to {3,4,5}.

Now we repeat the procedure with both subgroups. Firstly, we split {1,2}
into {1} and {2}. This is trivial. Secondly, we split {3,4,5} into {3} and {4,5}
because 0.15 and 0.25 is closer than 0.3 and 0.1 that we would have obtained
by dividing into {3,4} and {5}. Again we assign the corresponding second
digits.

Finally, we split the last group {4,5} into {4} and {5}. We end up with
the five codewords {00,01,10,110,111}. This whole procedure is shown in
Figure 5.6. ♦

p1 p2 p3 p4 p5

0.35 0.25 0.15 0.15 0.1
0.6 0.4

0 1

0.35 0.25 0.15 0.15 0.1
0.15 0.25

0 1 0 1

0.15 0.1
0 1

00 01 10 110 111

Figure 5.6 Construction of the Fano code of Example 5.18.

Exercise 5.19 Construct the Fano code for the random message U of Exam-
ple 4.16 with four symbols having probabilities

p1 = 0.4, p2 = 0.3, p3 = 0.2, p4 = 0.1, (5.66)

and show that it is identical to the corresponding Huffman code. ♦

Remark 5.20 We would like to point out that there are cases where the algo-
rithm given in Definition 5.17 does not lead to a unique design: there might be
two different ways of dividing the list into two parts such that the total proba-
bilities are as similar as possible. Since the algorithm does not specify what to

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


5.4 Bounds on the efficiency of codes 99

do in such a case, you are free to choose any possible way. Unfortunately, how-
ever, these different choices can lead to codes with different performance.3 As
an example, consider a random message U with seven possible symbols having
the following probabilities:

p1 = 0.35, p2 = 0.3, p3 = 0.15, p4 = 0.05,

p5 = 0.05, p6 = 0.05, p7 = 0.05.
(5.67)

Figures 5.7 and 5.8 show two different possible Fano codes for this random
message. The first has an average codeword length of Lav = 2.45, while the
latter’s performance is better with Lav = 2.4.

p1 p2 p3 p4 p5 p6 p7

0.35 0.3 0.15 0.05 0.05 0.05 0.05
0.65 0.35

0 1

0.35 0.3 0.15 0.05 0.05 0.05 0.05
0.2 0.15

0 1 0 1

0.15 0.05 0.05 0.05 0.05
0.1 0.05

0 1 0 1

0.05 0.05
0 1

00 01 100 101 1100 1101 111

Figure 5.7 One possible Fano code for the random message given in (5.67).

Exercise 5.21 In total there are six different possible designs of a Fano code
for the random message given in Remark 5.20. Design all of them and compare
their performances. ♦

We next prove a simple property of the Fano code.

Lemma 5.22 The codeword lengths li of a Fano code satisfy the following:

li ≤
⌈

log2
1
pi

⌉
, (5.68)

where dξe denotes the smallest integer not smaller than ξ .
3 This cannot happen in the case of a Huffman code! Even though the algorithm of the Huffman

code is not unique either, it always will result in codes of equal (optimal) performance. The
reason for this is clear: we have proven that the Huffman algorithm results in an optimal code.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


100 Entropy and Shannon’s Source Coding Theorem

p1 p2 p3 p4 p5 p6 p7

0.35 0.3 0.15 0.05 0.05 0.05 0.05
0.35 0.65

0 1

0.3 0.15 0.05 0.05 0.05 0.05
0.3 0.35

0 1

0.15 0.05 0.05 0.05 0.05
0.15 0.2

0 1

0.05 0.05 0.05 0.05
0.1 0.1

0 1

0.05 0.05 0.05 0.05
0 1 0 1

0 10 110 11100 11101 11110 11111

Figure 5.8 A second possible Fano code for the random message given in
(5.67).

Proof By construction, any symbol with probability pi ≥ 1/2 will be alone
in one part in the first round of the algorithm. Hence,

li = 1 =

⌈
log2

1
pi

⌉
. (5.69)

If 1/4≤ pi < 1/2, then at the latest in the second round of the algorithm the
symbol will occupy one partition. (Note that it is possible that the symbol is
already the single element of one partition in the first round. For example, for
p1 = 3/4 and p2 = 1/4, p2 will have l2 = 1.) Hence, we have

li ≤ 2 =

⌈
log2

1
pi

⌉
. (5.70)

In the same fashion we show that for 1/8≤ pi < 1/4,

li ≤ 3 =

⌈
log2

1
pi

⌉
; (5.71)

for 1/16≤ pi < 1/8,

li ≤ 4 =

⌈
log2

1
pi

⌉
; (5.72)

etc.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


5.4 Bounds on the efficiency of codes 101

Next, let us see how efficient the Fano code is. To that goal, we note that
from (5.68) we have

li ≤
⌈

log2
1
pi

⌉
< log2

1
pi

+1. (5.73)

We get

Lav =
r

∑
i=1

pili (5.74)

<
r

∑
i=1

pi

(
log2

1
pi

+1
)

(5.75)

=
r

∑
i=1

pi log2
1
pi

+
r

∑
i=1

pi (5.76)

=−
r

∑
i=1

pi log2 pi +1 (5.77)

= H(U)+1 bits, (5.78)

where the entropy is based on the binary logarithm, i.e. it is measured in bits.
Hence, the Fano code (even though it is not an optimal code) approaches the
ultimate lower bound (5.63) by less than 1 bit! A Huffman code will be even
better than that.

5.4.3 Coding Theorem for a Single Random Message

We summarize this so far most important result of this chapter.

Theorem 5.23 (Coding Theorem for a Single Random Message)

For an optimal binary prefix-free code (i.e. a binary Huffman code) for

an r-ary random message U, the average codeword length Lav satisfies

H(U) bits ≤ Lav < H(U)+1 bits (5.79)

(where the entropy is measured in bits). We have equality on the left if,

and only if, pi is a negative integer power of 2, ∀ i.

Moreover, this statement also holds true for Fano coding.

Example 5.24 We consider a random message U with seven symbols having
probabilities

p1 = 0.4, p2 = 0.1, p3 = 0.1, p4 = 0.1,

p5 = 0.1, p6 = 0.1, p7 = 0.1,
(5.80)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


102 Entropy and Shannon’s Source Coding Theorem

i.e. H(U) ' 2.52 bits. We firstly design a Fano code; see Figure 5.9. The cor-
responding tree is shown in Figure 5.10. Note that the construction algorithm
is not unique in this case: in the second round we could split the second group
either to {3,4} and {5,6,7} or {3,4,5} and {6,7}. In this case, both ways will
result in a code of identical performance. The same situation occurs in the third
round.

p1 p2 p3 p4 p5 p6 p7

0.4 0.1 0.1 0.1 0.1 0.1 0.1
0.5 0.5

0 1

0.4 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0.3

0 1 0 1

0.1 0.1 0.1 0.1 0.1
0.2 0.1

0 1 0 1

0.1 0.1
0 1

00 01 100 101 1100 1101 111

Figure 5.9 Construction of the Fano code of Example 5.24.

The efficiency of this Fano code is given by

Lav = 1+0.5+0.5+0.2+0.3+0.2 = 2.7 bits, (5.81)

which satisfies, as predicted,

2.52 bits≤ 2.7 bits < 3.52 bits. (5.82)

A corresponding Huffman code for U is shown in Figure 5.11. Its perfor-
mance is Lav = 2.6 bits, i.e. it is better than the Fano code, but of course it still
holds that

2.52 bits≤ 2.6 bits < 3.52 bits. (5.83)

♦

Exercise 5.25 Design a Huffman code and a Fano code for the random mes-
sage U with probabilities

p1 = 0.25, p2 = 0.2, p3 = 0.2, p4 = 0.1,

p5 = 0.1, p6 = 0.1, p7 = 0.05,
(5.84)

and compare their performances. ♦

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


5.5 Coding of an information source 103

0

1

1 00

01

100

101

1100

1101

111

0.4

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.3

0.5

0.5

Figure 5.10 A Fano code for the message U of Example 5.24.

We have seen in the above examples and exercises that, even though the
Fano code is not optimal, its performance is usually very similar to the optimal
Huffman code. In particular, we know from Theorem 5.23 that the performance
gap is less than one binary digit.

We are going to see next that once we start encoding not a single random
message, but a sequence of such messages emitted by a random source, this
difference becomes negligible.

5.5 Coding of an information source

So far we have only considered a single random message, but in reality we are
much more likely to encounter a situation where we have a stream of messages

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


104 Entropy and Shannon’s Source Coding Theorem

0
0

1

1

100

101

1100

1101

1110

1111

0.6

0.4

0.4

0.2

0.2

0.2

0.1

0.1

0.1

0.1

0.1

0.1

Figure 5.11 A Huffman code for the message U of Example 5.24.

that should be encoded continuously. Luckily we have prepared ourselves for
this situation already by considering prefix-free codes only, which make sure
that a sequence of codewords can be separated easily into the individual code-
words.

In the following we will consider only the simplest case where the random
source is memoryless, i.e. each symbol that is emitted by the source is inde-
pendent of all past symbols. A formal definition is given as follows.

Definition 5.26 (DMS) An r-ary discrete memoryless source (DMS) is a de-
vice whose output is a sequence of random messages U1,U2,U3, . . ., where

• each U` can take on r different values with probability p1, . . . , pr, and
• the different messages U` are independent of each other.

The obvious way of designing a compression system for such a source is to
design a Huffman code for U , continuously use it for each message U`, and
concatenate the codewords together. The receiver can easily separate the code-

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


5.5 Coding of an information source 105

words (because the Huffman code is prefix-free) and decode them to recover
the sequence of messages {U`}.

However, the question is whether this is the most efficient approach. Note
that it is also possible to combine two or more messages

(U`,U`+1, . . . ,U`+ν)

together and design a Huffman code for these combined messages! We will
show below that this latter approach is actually more efficient. But before doing
so, we need to think about such random vector messages.

Remark 5.27 Note that a random vector message V = (U1, . . . ,Uν) is, from
the mathematical point of view, no different from any other random message: it
takes on a certain finite number of different values with certain probabilities. If
U` is r-ary, then V is rν -ary, but otherwise there is no fundamental difference.

We can even express the entropy of V as a function of the entropy of U . Let
q j denote the probability of the jth symbol of V. Since the different messages
U` are independent, we have

q j = pi1 · pi2 · · · piν , (5.85)

where pi` denotes the probability of the i`th symbol of U`. Hence,

H(V) =−
rν

∑
j=1

q j log2 q j (5.86)

=−
r

∑
i1=1
· · ·

r

∑
iν=1

(pi1 · pi2 · · · piν ) log2(pi1 · pi2 · · · piν ) (5.87)

=−
r

∑
i1=1
· · ·

r

∑
iν=1

(pi1 · pi2 · · · piν )
(

log2 pi1 + · · ·+ log2 piν
)

(5.88)

=−
r

∑
i1=1
· · ·

r

∑
iν=1

pi1 · pi2 · · · piν · log2 pi1

−·· ·−
r

∑
i1=1
· · ·

r

∑
iν=1

pi1 · pi2 · · · piν · log2 piν (5.89)

=−
(

r

∑
i1=1

pi1 log2 pi1

)
·
(

r

∑
i2=1

pi2

)

︸ ︷︷ ︸
=1

· · ·
(

r

∑
iν=1

piν

)

︸ ︷︷ ︸
=1

−·· ·−
(

r

∑
i1=1

pi1

)

︸ ︷︷ ︸
=1

· · ·
(

r

∑
iν−1=1

piν−1

)

︸ ︷︷ ︸
=1

·
(

r

∑
iν=1

piν log2 piν

)
(5.90)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


106 Entropy and Shannon’s Source Coding Theorem

=−
(

r

∑
i1=1

pi1 log2 pi1

)
−·· ·−

(
r

∑
iν=1

piν log2 piν

)
(5.91)

= H(U1)+ · · ·+H(Uν) (5.92)

= νH(U). (5.93)

Here the last equality follows because the entropy of all U` is identical.
In other words, since V consists of ν independent random messages U , its

uncertainty is simply ν times the uncertainty of U .

Cℓ′

codewordsmessagessymbols

Vℓ′Uℓ Source

parser

r-ary

DMS

Message

encoder

Figure 5.12 A coding scheme for an information source: the source parser
groups the source output sequence {U`} into messages {V`′ }. The message
encoder then assigns a codeword C`′ to each possible message V`′ .

Now our compression system looks as shown in Figure 5.12. The source
parser is a device that groups ν incoming source symbols (U1, . . . ,Uν) together
to a new message V. Note that because the source {U`} is memoryless, the
different messages {V`′ } are independent. Therefore we only need to look at
one such message V (where we omit the time index `′).

So let us now use an optimal code (i.e. a Huffman code) or at least a good
code (e.g. a Fano code) for the message V. Then from the Coding Theorem for
a Single Random Message (Theorem 5.23) we know that

H(V) bits≤ Lav < H(V)+1 bits, (5.94)

where Lav denotes the average codeword length for the codewords describing
the vector messages V.

Next note that it is not really fair to compare different Lav because, for larger
ν , Lav also will be larger. So, to be correct we should compute the average
codeword length necessary to describe one source symbol. Since V contains ν

source symbols U`, the correct measure of performance is Lav/ν .
Hence, we divide the whole expression (5.94) by ν :

H(V)

ν
bits≤ Lav

ν
<

H(V)

ν
+

1
ν

bits, (5.95)

and make use of (5.93),

νH(U)

ν
bits≤ Lav

ν
<

νH(U)

ν
+

1
ν

bits; (5.96)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


5.5 Coding of an information source 107

i.e.,

H(U) bits≤ Lav

ν
< H(U)+

1
ν

bits. (5.97)

Note that again we assume that the entropies are measured in bits.
We immediately get the following main result, also known as Shannon’s

Source Coding Theorem.

Theorem 5.28 (Coding Theorem for a DMS)

There exists a binary prefix-free code of a ν-block message from a dis-

crete memoryless source (DMS) such that the average number Lav/ν

of binary code digits per source letter satisfies

Lav

ν
< H(U)+

1

ν
bits, (5.98)

where H(U) is the entropy of a single source letter measured in bits.

Conversely, for every binary code of a ν-block message,

Lav

ν
≥ H(U) bits. (5.99)

Note that everywhere we need to choose the units of the entropy to be in
bits.

We would like to discuss this result briefly. The main point to note here
is that by choosing ν large enough, we can approach the ultimate limit of
compression H(U) arbitrarily closely when using a Huffman or a Fano code.
Hence, the entropy H(U) is the amount of information that is packed in the
output of the discrete memoryless source U! In other words, we can compress
any DMS to H(U) bits on average, but not less. This is the first real justification
of the usefulness of Definition 5.4.

We also see that in the end it does not make much difference whether we
use a Huffman code or a suboptimal Fano code as both approach the ultimate
limit for ν large enough.

On the other hand, note the price we have to pay: by making ν large, we
not only increase the number of possible messages, and thereby make the code
complicated, but also we introduce delay into the system as the encoder can
only encode the message after it has received a complete block of ν source
symbols! Basically, the more closely we want to approach the ultimate limit of
entropy, the larger is our potential delay in the system.

We would like to mention that our choice of a source parser that splits the

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


108 Entropy and Shannon’s Source Coding Theorem

source sequence into blocks of equal length is not the only choice. It is actually
possible to design source parsers that will choose blocks of varying length
depending on the arriving source symbols and their probabilities. By trying to
combine more likely source symbols to larger blocks, while less likely symbols
are grouped to smaller blocks, we can further improve on the compression
rate of our system. A parser that is optimal in a specific sense is the so-called
Tunstall source parser [Tun67], [Mas96]. The details are outside the scope
of this introduction. However, note that whatever source parser and whatever
message encoder we choose, we can never beat the lower bound in (5.99).

All the systems we have discussed here contain one common drawback:
we always have assumed that the probability statistics of the source is known
in advance when designing the system. In a practical situation this is often
not the case. What is the probability distribution of a digitized speech in a
telephone system? Or of English ASCII text in comparison to French ASCII
text?4 Or of different types of music? A really practical system should work
independently of the source; i.e., it should estimate the probabilities of the
source symbols on the fly and adapt to it automatically. Such a system is called
a universal compression scheme. Again, the details are outside of the scope of
this introduction, but we would like to mention that such schemes exist and that
commonly used compression algorithms like, e.g., ZIP successfully implement
such schemes.

5.6 Some historical background

The Fano code is in the literature usually known as the Shannon–Fano code,
even though it is an invention of Professor Robert Fano from MIT [Fan49]
and not of Shannon. To make things even worse, there exists another code
that is also known as the Shannon–Fano code, but actually should be called
the Shannon code because it was proposed by Shannon [Sha48, Sec. 9]: the
construction of the Shannon code also starts with the ordering of the symbols
according to decreasing probability. The ith codeword with probability pi is
then obtained by writing the cumulative probability

Fi ,
i−1

∑
j=1

p j (5.100)

in binary form. For example, Fi = 0.625 in binary form is .101 yielding a
codeword 101, or Fi = 0.3125 is written in binary as .0101, which then results

4 Recall the definition of ASCII given in Table 2.2.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


5.6 Some historical background 109

in a codeword 0101. Since in general this binary expansion might be infinitely
long, Shannon gave the additional rule that the expansion shall be carried out
to exactly li positions, where

li ,
⌈

log2
1
pi

⌉
. (5.101)

So if Fi = 0.625 (with binary form .101) and pi is such that li = 5, then the
resulting codeword is 10100, or if Fi = 0.6, which in binary form is

.10011001100 . . . ,

and pi is such that li = 3, then the resulting codeword is 100.
It is not difficult to show that this code is prefix-free. In particular it is

straightforward to show that the Kraft Inequality (Theorem 4.8) is satisfied:

r

∑
i=1

2−li =
r

∑
i=1

2−
⌈

log2
1
pi

⌉
≤

r

∑
i=1

2− log2
1
pi =

r

∑
i=1

pi = 1, (5.102)

where we have used that

li =
⌈

log2
1
pi

⌉
≥ log2

1
pi
. (5.103)

Shannon’s code performs similarly to the Fano code of Definition 5.17, but
Fano’s code is in general slightly better, as can be seen by the fact that in
(5.68) we have an inequality while in (5.101) we have, by definition, equal-
ity always. However – and that is probably one of the reasons5 why the two
codes are mixed up and both are known under the same name Shannon–Fano
code – both codes satisfy the Coding Theorem for a Single Random Message
(Theorem 5.23).

Actually, one also finds that any code that satisfies (5.101) is called a Shan-
non–Fano code! And to complete the confusion, sometimes the Shannon–Fano
code is also known as Shannon–Fano–Elias code [CT06, Sec. 5.9]. The rea-
son is that the Shannon code was the origin of arithmetic coding, which is an
elegant and efficient extension of Shannon’s idea, applied to the compression
of the output sequence of a random source. It is based on the insight that it
is not necessary to order the output sequences u according to their probabili-
ties, but that it is sufficient to have them ordered lexicographically (according
to the alphabet). The codeword for u is then the truncated binary form of the

5 Another reason is that Shannon, when introducing his code in [Sha48, Sec. 9], also refers to
Fano’s code construction.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


110 Entropy and Shannon’s Source Coding Theorem

cumulative probability

Fu , ∑
all sequences ũ

that are alphabetically
before u

pũ, (5.104)

where pũ is the probability of ũ. However, in order to guarantee that the code is
prefix-free and because the output sequences are ordered lexicographically and
not according to probability, it is necessary to increase the codeword length by
1; i.e., for arithmetic coding we have the rule that the codeword length is

lu ,
⌈

log2
1
pu

⌉
+1. (5.105)

Note further that, since the sequences are ordered lexicographically, it is also
possible to compute the cumulative probability (5.104) of a particular source
output sequence u iteratively without having to know the probabilities of all
other source sequences. These ideas have been credited to the late Professor
Peter Elias from MIT (hence the name Shannon–Fano–Elias coding), but ac-
tually Elias denied this. The concept has probably come from Shannon himself
during a talk that he gave at MIT.

For an easy-to-read introduction to arithmetic coding including its history,
the introductory chapter of [Say99] is highly recommended.

5.7 Further reading

For more information about data compression, the lecture notes [Mas96] of
Professor James L. Massey from ETH, Zurich, are highly recommended. They
read very easily and are very precise. The presentation of the material in Chap-
ters 4 and 5 is strongly inspired by these notes. Besides the generalization of
Huffman codes to D-ary alphabets and the variable-length–to–block Tunstall
codes, one also finds there details of a simple, but powerful, universal data
compression scheme called Elias–Willems coding.

For the more commonly used Lempel–Ziv universal compression scheme we
refer to [CT06]. This is also a good place to learn more about entropy and its
properties.

One of the best books on information theory is by Robert Gallager [Gal68];
however, it is written at an advanced level. It is fairly old and therefore does
not cover more recent discoveries, but it gives a very deep treatment of the
foundations of information theory.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


5.8 Appendix: Uniqueness of the definition of entropy 111

5.8 Appendix: Uniqueness of the definition of entropy

In Section 5.1 we tried to motivate the definition of entropy. Even though we
partially succeeded, we were not able to provide a full justification of Def-
inition 5.4. While Shannon did provide a mathematical justification [Sha48,
Sec. 6], he did not consider it very important. We omit Shannon’s argument,
but instead we will now quickly summarize a slightly different result that was
presented in 1956 by Aleksandr Khinchin. Khinchin specified four properties
that entropy is supposed to have and then proved that, given these four proper-
ties, (5.10) is the only possible definition.

We define Hr(p1, . . . , pr) to be a function of r probabilities p1, . . . , pr that
sum up to 1:

r

∑
i=1

pi = 1. (5.106)

We ask this function to satisfy the following four properties.

(1) For any r, Hr(p1, . . . , pr) is continuous (i.e. a slight change to the values of
pi will only cause a slight change to Hr) and symmetric in p1, . . . , pr (i.e.
changing the order of the probabilities does not affect the value of Hr).

(2) Any event of probability zero does not contribute to Hr:

Hr+1(p1, . . . , pr,0) = Hr(p1, . . . , pr). (5.107)

(3) Hr is maximized by the uniform distribution:

Hr(p1, . . . , pr)≤ Hr

(
1
r
, . . . ,

1
r

)
. (5.108)

(4) If we partition the m · r possible outcomes of a random experiment into m
groups, each group containing r elements, then we can do the experiment
in two steps:

(i) determine the group to which the actual outcome belongs,
(ii) find the outcome in this group.

Let p j,i, 1≤ j ≤ m, 1≤ i≤ r, be the probabilities of the outcomes in this
random experiment. Then the total probability of all outcomes in group j
is given by

q j =
r

∑
i=1

p j,i, (5.109)

and the conditional probability of outcome i from group j is then given by
p j,i

q j
. (5.110)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


112 Entropy and Shannon’s Source Coding Theorem

Now Hm·r can be written as follows:

Hm·r(p1,1, p1,2, . . . , pm,r)

= Hm(q1, . . . ,qm)+
m

∑
j=1

q jHr

(
p j,1

q j
, . . . ,

p j,r

q j

)
; (5.111)

i.e., the uncertainty can be split into the uncertainty of choosing a group
and the uncertainty of choosing one particular outcome of the chosen
group, averaged over all groups.

Theorem 5.29 The only functions Hr that satisfy the above four conditions
are of the form

Hr(p1, . . . , pr) =−c
r

∑
i=1

pi log2 pi, (5.112)

where the constant c > 0 decides about the units of Hr.

Proof This theorem was proven by Aleksandr Khinchin in 1956, i.e. af-
ter Shannon had defined entropy. The article was first published in Russian
[Khi56], and then in 1957 it was translated into English [Khi57]. We omit the
details.

References
[CT06] Thomas M. Cover and Joy A. Thomas, Elements of Information Theory,

2nd edn. John Wiley & Sons, Hoboken, NJ, 2006.
[Fan49] Robert M. Fano, “The transmission of information,” Research Laboratory of

Electronics, Massachusetts Institute of Technology (MIT), Technical Report
No. 65, March 17, 1949.

[Gal68] Robert G. Gallager, Information Theory and Reliable Communication. John
Wiley & Sons, New York, 1968.

[Har28] Ralph Hartley, “Transmission of information,” Bell System Technical Journal,
vol. 7, no. 3, pp. 535–563, July 1928.

[Khi56] Aleksandr Y. Khinchin, “On the fundamental theorems of information theory,”
(in Russian), Uspekhi Matematicheskikh Nauk XI, vol. 1, pp. 17–75, 1956.

[Khi57] Aleksandr Y. Khinchin, Mathematical Foundations of Information Theory.
Dover Publications, New York, 1957.

[Mas96] James L. Massey, Applied Digital Information Theory I and II, Lecture notes,
Signal and Information Processing Laboratory, ETH Zurich, 1995/1996.
Available: http://www.isiweb.ee.ethz.ch/archive/massey scr/

[Say99] Jossy Sayir, “On coding by probability transformation,” Ph.D. dissertation,
ETH Zurich, 1999, Diss. ETH No. 13099. Available: http://e-collection.ethbi
b.ethz.ch/view/eth:23000

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


References 113

[Sha37] Claude E. Shannon, “A symbolic analysis of relay and switching circuits,”
Master’s thesis, Massachusetts Institute of Technology (MIT), August 1937.

[Sha48] Claude E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 379–423 and 623–656, July and October 1948.
Available: http://moser.cm.nctu.edu.tw/nctu/doc/shannon1948.pdf

[Tun67] Brian P. Tunstall, “Synthesis of noiseless compression codes,” Ph.D. disserta-
tion, Georgia Institute of Technology, September 1967.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core


use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.006
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:34:47, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.006
https:/www.cambridge.org/core



