
4
Data compression: efficient coding of a

random message

In this chapter we will consider a new type of coding. So far we have con-
centrated on codes that can help detect or even correct errors; we now would
like to use codes to represent some information more efficiently, i.e. we try to
represent the same information using fewer digits on average. Hence, instead
of protecting data from errors, we try to compress it such as to use less storage
space.

To achieve such a compression, we will assume that we know the probabil-
ity distribution of the messages being sent. If some symbols are more probable
than others, we can then take advantage of this by assigning shorter code-
words to the more frequent symbols and longer codewords to the rare symbols.
Hence, we see that such a code has codewords that are not of fixed length.

Unfortunately, variable-length codes bring with them a fundamental prob-
lem: at the receiving end, how do you recognize the end of one codeword and
the beginning of the next? To attain a better understanding of this question and
to learn more about how to design a good code with a short average codeword
length, we start with a motivating example.

4.1 A motivating example

You would like to set up your own telephone system that connects you to your
three best friends. The question is how to design efficient binary phone num-
bers. In Table 4.1 you find six different ways of how you could choose them.

Note that in this example the phone number is a codeword for the person we
want to talk to. The set of all phone numbers is called code. We also assume
that you have different probabilities when calling your friends: Bob is your best
friend whom you will call in 50% of the times. Alice and Carol are contacted
with a frequency of 25% each.
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56 Efficient coding of a random message

Table 4.1 Binary phone numbers for a telephone system with three friends

Friend Probability Phone number

Alice 1/4 0011 001101 0 00 0 10

Bob 1/2 0011 001110 1 11 11 0

Carol 1/4 1100 110000 10 10 10 11

(i) (ii) (iii) (iv) (v) (vi)

Let us discuss the different designs in Table 4.1.

(i) In this design, Alice and Bob have the same phone number. The system
obviously will not be able to connect properly.

(ii) This is much better, i.e. the code will actually work. However, the phone
numbers are quite long and therefore the design is rather inefficient.

(iii) Now we have a code that is much shorter and, at the same time, we have
made sure that we do not use the same codeword twice. However, a closer
look reveals that the system will not work. The problem here is that this
code is not uniquely decodable: if you dial 10 this could mean “Carol”
or also “Bob, Alice.” Or, in other words, the telephone system will never
connect you to Carol, because once you dial 1, it will immediately connect
you to Bob.

(iv) This is the first quite efficient code that is functional. But we note some-
thing: when calling Alice, why do we have to dial two zeros? After the
first zero it is already clear to whom we would like to be connected! Let
us fix that in design (v).

(v) This is still uniquely decodable and obviously more efficient than (iv). Is
it the most efficient code? No! Since Bob is called most often, he should
be assigned the shortest codeword!

(vi) This is the optimal code. Note one interesting property: even though the
numbers do not all have the same length, once you finish dialing any of
the three numbers, the system immediately knows that you have finished
dialing. This is because no codeword is the prefix1 of any other codeword,
i.e. it never happens that the first few digits of one codeword are identical
to another codeword. Such a code is called prefix-free (see Section 4.2).
Note that (iii) was not prefix-free: 1 is a prefix of 10.

1 According to the Oxford English Dictionary, a prefix is a word, letter, or number placed before
another.
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4.2 Prefix-free or instantaneous codes 57

From this example we learn the following requirements that we impose on
our code design.

• A code needs to be uniquely decodable.
• A code should be short; i.e., we want to minimize the average codeword

length Lav, which is defined as follows:

Lav ,
r

∑
i=1

pili. (4.1)

Here pi denotes the probability that the source emits the ith symbol, i.e. the
probability that the ith codeword ci is selected; li is the length of the ith
codeword ci; and r is the number of codewords.

• We additionally require the code to be prefix-free. Note that this requirement
is not necessary, but only convenient. However, we will later see that we lose
nothing by asking for it.

Note that any prefix-free code is implicitly uniquely decodable, but not vice
versa. We will discuss this issue in more detail in Section 4.7.

4.2 Prefix-free or instantaneous codes

Consider the following code with four codewords:

c1 = 0

c2 = 10

c3 = 110

c4 = 111

(4.2)

Note that the zero serves as a kind of “comma”: whenever we receive a zero
(or the code has reached length 3), we know that the codeword has finished.
However, this comma still contains useful information about the message as
there is still one codeword without it! This is another example of a prefix-free
code. We recall the following definition.

Definition 4.1 A code is called prefix-free (sometimes also called instanta-
neous) if no codeword is the prefix of another codeword.

The name instantaneous is motivated by the fact that for a prefix-free code
we can decode instantaneously once we have received a codeword and do not
need to wait for later until the decoding becomes unique. Unfortunately, in the
literature one also finds that people call a prefix-free code a prefix code. This
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58 Efficient coding of a random message

name is confusing because rather than having prefixes it is the point of the code
to have no prefix! We will stick to the name of prefix-free codes.

Consider next the following example:

c1 = 0

c2 = 01

c3 = 011

c4 = 111

(4.3)

This code is not prefix-free (0 is a prefix of 01 and 011; 01 is a prefix of 011),
but it is still uniquely decodable.

Exercise 4.2 Given the code in (4.3), split the sequence 0011011110 into
codewords. ♦

Note the drawback of the code design in (4.3): the receiver needs to wait and
see how the sequence continues before it can make a unique decision about the
decoding. The code is not instantaneously decodable.

Apart from the fact that they can be decoded instantaneously, another nice
property of prefix-free codes is that they can very easily be represented by
leaves of decision trees. To understand this we will next make a small detour
and talk about trees and their relation to codes.

4.3 Trees and codes

The following definition is quite straightforward.

Definition 4.3 (Trees) A rooted tree consists of a root with some branches,
nodes, and leaves, as shown in Figure 4.1. A binary tree is a rooted tree in
which each node (hence also the root) has exactly two children,2 i.e. two
branches stemming forward.

The clue to this section is to note that any binary code can be represented
as a binary tree. Simply take any codeword and regard each bit as a decision

2 The alert reader might wonder why we put so much emphasis on having exactly two children.
It is quite obvious that if a parent node only had one child, then this node would be useless and
the child could be moved back and replace its parent. The reason for our definition, however,
has nothing to do with efficiency, but is related to the generalization to D-ary trees where every
node has exactly D children. We do not cover such trees in this book; the interested reader is
referred to, e.g., [Mas96].
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4.3 Trees and codes 59

parent node with two children

root

leaves

nodes

branch

forward

Figure 4.1 A rooted tree (in this case a binary tree) with a root (the node
that is grounded), four nodes (including the root), and five leaves. Note that
in this book we will always clearly distinguish between nodes and leaves: a
node always has children, while a leaf always is an “end-point” in the tree.

whether to go up (“0”) or down3 (“1”). Hence, every codeword can be rep-
resented by a particular path traversing through the tree. As an example, Fig-
ure 4.2 shows the binary tree of a binary code with five codewords. Note that
on purpose we also keep branches that are not used in order to make sure that
the tree is binary.

In Figure 4.3, we show the tree describing the prefix-free code given in (4.2).
Note that here every codeword is a leaf. This is no accident.

Lemma 4.4 A binary code {c1, . . . ,cr} is prefix-free if, and only if, in its
binary tree every codeword is a leaf. (But not every leaf necessarily is a code-
word; see, e.g., code (iv) in Figure 4.4.)

Exercise 4.5 Prove Lemma 4.4.
Hint: Think carefully about the definition of prefix-free codes (see Defini-

tion 4.1). ♦

As mentioned, the binary tree of a prefix-free code might contain leaves that
are not codewords. Such leaves are called unused leaves.

Some more examples of trees of prefix-free and non-prefix-free codes are
shown in Figure 4.4.

3 It actually does not matter whether 1 means up and 0 down, or vice versa.
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60 Efficient coding of a random message

0

1

110

0010

001101

001110

110000

Figure 4.2 An example of a binary tree with five codewords: 110, 0010,
001101, 001110, and 110000. At every node, going upwards corresponds to
a 0, and going downwards corresponds to a 1. The node with the ground
symbol is the root of the tree indicating the starting point.

0

01

10

110

111

Figure 4.3 Decision tree corresponding to the prefix-free code given in (4.2).

00

1

00

10

10

10

11

11

(iii) (iv) (v)–(vi)

prefix-freeprefix-freenot prefix-free

Figure 4.4 Examples of codes and their corresponding trees. The examples
are taken from Table 4.1. The prefix-free code (iv) has one unused leaf.
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4.3 Trees and codes 61

An important concept of trees is the depths of their leaves.

Definition 4.6 The depth of a leaf in a binary tree is the number of steps it
takes when walking from the root forward to the leaf.

As an example, consider again Figure 4.4. Tree (iv) has four leaves, all of
them at depth 2. Both tree (iii) and tree (v)–(vi) have three leaves, one at depth
1 and two at depth 2.

We now will derive some interesting properties of trees. Since codes can be
represented as trees, we will then be able to apply these properties directly to
codes.

Lemma 4.7 (Leaf-Counting and Leaf-Depth Lemma) The number of
leaves n and their depths l1, l2, . . . , ln in a binary tree satisfy:

n = 1+N, (4.4)

n

∑
i=1

2−li = 1, (4.5)

where N is the number of nodes (including the root).

Proof By extending a leaf we mean changing a leaf into a node by adding
two branches that stem forward. In that process

• we reduce the number of leaves by 1,
• we increase the number of nodes by 1, and
• we increase the number of leaves by 2,

i.e. in total we gain one node and one leaf. This process is depicted graphically
in Figure 4.5.

=⇒

−1 leaf +1 node

+2 leaves

Figure 4.5 Extending a leaf: both the total number of nodes and the total
number of leaves is increased by 1.
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62 Efficient coding of a random message

To prove the first statement (4.4), we start with the extended root; i.e., at the
beginning we have the root and n = 2 leaves. In this case we have N = 1 and
(4.4) is satisfied. Now we can grow any tree by continuously extending some
leaf, every time increasing the number of leaves and nodes by one each. We
see that (4.4) remains valid. By induction this proves the first statement.

We will prove the second statement (4.5) also by induction. We again start
with the extended root.

(1) An extended root has two leaves, all at depth 1: li = 1. Hence,

n

∑
i=1

2−li =
2

∑
i=1

2−1 = 2 ·2−1 = 1; (4.6)

i.e., for the extended root, (4.5) is satisfied.
(2) Suppose ∑

n
i=1 2−li = 1 holds for an arbitrary binary tree with n leaves. Now

we extend one leaf, say the nth leaf.4 We get a new tree with n′ = n+ 1
leaves, where

n′

∑
i=1

2−li =
n−1

∑
i=1

2−li

︸ ︷︷ ︸
unchanged

leaves

+2 ·2−(ln+1)
︸ ︷︷ ︸
new leaves

at depth
ln +1

(4.7)

=
n−1

∑
i=1

2−li +2−ln (4.8)

=
n

∑
i=1

2−li = 1. (4.9)

Here the last equality follows from our assumption that ∑
n
i=1 2−li = 1.

Hence, by extending one leaf, the second statement continues to hold.
(3) Since any tree can be grown by continuously extending some leaves, the

proof follows by induction.

We are now ready to apply our first insights about trees to codes.

4.4 The Kraft Inequality

The following theorem is very useful because it gives us a way of finding out
whether a prefix-free code exists or not.

4 Since the tree is arbitrary, it does not matter how we number the leaves!

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.005
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:32, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.005
https:/www.cambridge.org/core


4.4 The Kraft Inequality 63

Theorem 4.8 (Kraft Inequality) There exists a binary prefix-free code with
r codewords of lengths l1, l2, . . . , lr if, and only if,

r

∑
i=1

2−li ≤ 1. (4.10)

If (4.10) is satisfied with equality, then there are no unused leaves in the tree.

Example 4.9 Let l1 = 3, l2 = 4, l3 = 4, l4 = 4, l5 = 4. Then

2−3 +4 ·2−4 =
1
8
+

4
16

=
3
8
≤ 1; (4.11)

i.e., there exists a binary prefix-free code consisting of five codewords with the
given codeword lengths.

On the other hand, we cannot find any prefix-free code with five codewords
of lengths l1 = 1, l2 = 2, l3 = 3, l4 = 3, and l5 = 4 because

2−1 +2−2 +2 ·2−3 +2−4 =
17
16

> 1. (4.12)

These two examples are shown graphically in Figure 4.6. ♦

1

2

3

3

3

4

4

4

4

4?

Figure 4.6 Examples of the Kraft Inequality.

Proof of the Kraft Inequality We prove the two directions separately.

=⇒: Suppose that there exists a binary prefix-free code with the given code-
word lengths. From Lemma 4.4 we know that all r codewords of a binary
prefix-free code are leaves in a binary tree. The total number n of (used
and unused) leaves in this tree can therefore not be smaller than r, i.e.

r ≤ n. (4.13)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.005
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:32, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.005
https:/www.cambridge.org/core


64 Efficient coding of a random message

Hence,
r

∑
i=1

2−li ≤
n

∑
i=1

2−li = 1, (4.14)

where the last equality follows from the Leaf-Depth Lemma (Lem-
ma 4.7).

⇐=: Suppose that ∑
r
i=1 2−li ≤ 1. We now can construct a prefix-free code as

follows:

Step 1 Start with the extended root, i.e. a tree with two leaves, set i = 1,
and assume, without loss of generality, that l1 ≤ l2 ≤ ·· · ≤ lr.

Step 2 If there is an unused leaf at depth li, put the ith codeword there.
Note that there could be none because li can be strictly larger
than the current depth of the tree. In this case, extend any unused
leaf to depth li, and put the ith codeword to one of the new leaves.

Step 3 If i = r, stop. Otherwise i→ i+1 and go to Step 2.

We only need to check that Step 2 is always possible, i.e. that there is
always some unused leaf available. To that goal, note that if we get to
Step 2, we have already put i−1 codewords into the tree. From the Leaf-
Depth Lemma (Lemma 4.7) we know that

1 =
n

∑
j=1

2−l̃ j =
i−1

∑
j=1

2−l j

︸ ︷︷ ︸
used leaves

+
n

∑
j=i

2−l̃ j

︸ ︷︷ ︸
unused leaves

, (4.15)

where l̃ j are the depths of the leaves in the tree at that moment; i.e.,
(l̃1, . . . , l̃i−1) = (l1, . . . , li−1) and l̃i, . . . , l̃n are the depths of the (so far)
unused leaves. Now note that in our algorithm i≤ r, i.e.

i−1

∑
j=1

2−l j <
r

∑
j=1

2−l j ≤ 1, (4.16)

where the last inequality follows by assumption. Hence,

i−1

∑
j=1

2−l j

︸ ︷︷ ︸
<1

+
n

∑
j=i

2−l̃ j = 1 =⇒
n

∑
j=i

2−l̃ j > 0 (4.17)

and there still must be some unused leaves available!
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1

0.1

0.2

0.2

0.3

0.5

0.8

node 1

node 2

node 3

leaf 1

leaf 3

leaf 4

leaf 2

Figure 4.7 Rooted tree with probabilities.

4.5 Trees with probabilities

We have seen already in Section 4.1 that for codes it is important to consider
the probabilities of the codewords. We therefore now introduce probabilities in
our trees.

Definition 4.10 A rooted tree with probabilities is a finite rooted tree with
probabilities assigned to each node and leaf such that

• the probability of a node is the sum of the probabilities of its children, and

• the root has probability 1.

An example of a rooted tree with probabilities is given in Figure 4.7. Note
that the probabilities can be seen as the overall probability of passing through
a particular node (or reaching a particular leaf) when making a random walk
from the root to a leaf. Since we start at the root, the probability that our path
goes through the root is always 1. Then, in the example of Figure 4.7, we have
an 80% chance that our path will go through node 2 and a 10% chance to end
up in leaf 4.

Since in a prefix-free code all codewords are leaves and we are particularly
interested in the average codeword length, we are very much interested in the
average depth of the leaves in a tree (where for the averaging operation we use
the probabilities in the tree). Luckily, there is an elegant way to compute this
average depth, as shown in the following lemma.

Lemma 4.11 (Path Length Lemma) In a rooted tree with probabilities, the
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66 Efficient coding of a random message

average depth Lav of the leaves is equal to the sum of the probabilities of all
nodes (including the root).

To clarify our notation we refer to leaf probabilities by small pi while node
probabilities are denoted by capital P̀ .

Example 4.12 Consider the tree of Figure 4.7. We have four leaves: one at
depth l1 = 1 with a probability p1 = 0.2, one at depth l2 = 2 with a probability
p2 = 0.5, and two at depth l3 = l4 = 3 with probabilities p3 = 0.2 and p4 = 0.1,
respectively. Hence, the average depth of the leaves is given by

Lav =
4

∑
i=1

pili = 0.2 ·1+0.5 ·2+0.2 ·3+0.1 ·3 = 2.1. (4.18)

According to Lemma 4.11, this must be equal to the sum of the node probabil-
ities:

Lav = P1 +P2 +P3 = 1+0.8+0.3 = 2.1. (4.19)

♦

Proof of Lemma 4.11 The lemma is easiest understood when looking at a par-
ticular example. Let us again consider the tree of Figure 4.7: the probability
p1 = 0.2 of leaf 1 needs to be counted once only, which is the case as it is only
part of the probability of the root P1 = 1. The probability p2 = 0.5 must be
counted twice. This is also the case because it is contained in the root proba-
bility P1 = 1 and also in the probability of the second node P2 = 0.8. Finally,
the probabilities of leaf 3 and leaf 4, p3 = 0.2 and p4 = 0.1, are counted three
times: they are part of P1, P2, and P3:

Lav = 2.1 (4.20)

= 1 ·0.2+2 ·0.5+3 ·0.2+3 ·0.1 (4.21)

= 1 · (0.2+0.5+0.2+0.1)+1 · (0.5+0.2+0.1)

+1 · (0.2+0.1) (4.22)

= 1 ·P1 +1 ·P2 +1 ·P3 (4.23)

= P1 +P2 +P3. (4.24)

4.6 Optimal codes: Huffman code

Let us now connect the probabilities in the tree with the probabilities of the
code, or actually, more precisely, the probabilities of the random messages that
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4.6 Optimal codes: Huffman code 67

shall be represented by the code. We assume that we have in total r different
message symbols. Let the probability of the ith message symbol be pi and let
the length of the corresponding codeword representing this symbol be li. Then
the average length of the code is given by

Lav =
r

∑
i=1

pili. (4.25)

With no loss in generality, the pi may be taken in nonincreasing order. If the
lengths li are then not in the opposite order, i.e. we do not have both

p1 ≥ p2 ≥ p3 ≥ ·· · ≥ pr (4.26)

and

l1 ≤ l2 ≤ l3 ≤ ·· · ≤ lr, (4.27)

then the code is not optimal in the sense that we could have a shorter average
length by reassigning the codewords to different symbols. To prove this claim,
suppose that for some i and j with i < j we have both

pi > p j and li > l j. (4.28)

In computing the average length, originally, the sum in (4.25) contains, among
others, the two terms

old: pili + p jl j. (4.29)

By interchanging the codewords for the ith and jth symbols, we get the terms

new: pil j + p jli, (4.30)

while the remaining terms are unchanged. Subtracting the old from the new we
see that

new−old: (pil j + p jli)− (pili + p jl j) = pi(l j− li)+ p j(li− l j) (4.31)

= (pi− p j)(l j− li) (4.32)

< 0. (4.33)

From (4.28) this is a negative number, i.e. we can decrease the average code-
word length by interchanging the codewords for the ith and jth symbols. Hence
the new code with exchanged codewords for the ith and jth symbols is better
than the original code – which therefore cannot have been optimal.

We will now examine the optimal binary code which is called the Huffman
code due to its discoverer. The trick of the derivation of the optimal code is the
insight that the corresponding code tree has to be grown backwards, starting
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68 Efficient coding of a random message

tree

rest of tree

unused leaf

Figure 4.8 Code performance and unused leaves: by deleting the unused leaf
and moving its sibling to the parent, we can improve on the code’s perfor-
mance.

0.2

0.2

0.3

0.3

0.5 0.5

(i) (ii)

Figure 4.9 Improving a code by removing an unused leaf.

from the leaves (and not, as might be intuitive at a first glance, starting from
the root).

The clue of binary Huffman coding lies in two basic observations. The first
observation is as follows.

Lemma 4.13 In a binary tree of an optimal binary prefix-free code, there is
no unused leaf.

Proof Suppose that the tree of an optimal code has an unused leaf. Then we
can delete this leaf and move its sibling to the parent node; see Figure 4.8.
By doing so we reduce Lav, which contradicts our assumption that the original
code was optimal.
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4.6 Optimal codes: Huffman code 69

Example 4.14 As an example consider the two codes given in Figure 4.9,
both of which have three codewords. Code (i) has an average length5 of Lav =

2, and code (ii) has an average length of Lav = 1.5. Obviously, code (ii) per-
forms better. ♦

The second observation basically says that the two most unlikely symbols
must have the longest codewords.

Lemma 4.15 There exists an optimal binary prefix-free code such that the
two least likely codewords only differ in the last digit, i.e. the two most unlikely
codewords are siblings.

Proof Since we consider an optimal code, the codewords that correspond to
the two least likely symbols must be the longest codewords (see our discussion
after (4.27)). If they have the same parent node, we are done. If they do not
have the same parent node, this means that there exist other codewords of the
same length (because we know from Lemma 4.13 that there are no unused
leaves). In this case, we can simply swap two codewords of equal maximum
length in such a way that the two least likely codewords have the same parent,
and we are done.

Because of Lemma 4.13 and the Path Length Lemma (Lemma 4.11), we see
that the construction of an optimal binary prefix-free code for an r-ary random
message U is equivalent to constructing a binary tree with r leaves such that the
sum of the probabilities of the nodes is minimum when the leaves are assigned
the probabilities pi for i = 1,2, . . . ,r:

Lav =
N

∑
`=1

P̀

︸ ︷︷ ︸
−→minimize!

. (4.34)

But Lemma 4.15 tells us how we may choose one node in an optimal code tree,
namely as the parent of the two least likely leaves pr−1 and pr:

PN = pr−1 + pr. (4.35)

So we have fixed one P̀ in (4.34) already. But, if we now pruned our binary
tree at this node to make it a leaf with probability p = pr−1 + pr, it would
become one of (r−1) leaves in a new tree. Completing the construction of the
optimal code would then be equivalent to constructing a binary tree with these

5 Remember Lemma 4.11 to compute the average codeword length: summing the node probabil-
ities. In code (i) we have P1 = 1 and P2 = P3 = 0.5 (note that the unused leaf has, by definition,
zero probability), and in code (ii) P1 = 1 and P2 = 0.5.
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70 Efficient coding of a random message

(r−1) leaves such that the sum of the probabilities of the nodes is minimum:

Lav =
N−1

∑
`=1

P̀

︸ ︷︷ ︸
−→minimize!

+ PN︸︷︷︸
optimally

chosen

. (4.36)

Again Lemma 4.15 tells us how to choose one node in this new tree, and so on.
We have thus proven the validity of the following algorithm.

Huffman’s Algorithm for Optimal Binary Codes

Step 1 Create r leaves corresponding to the r possible symbols and

assign their probabilities p1, . . . , pr. Mark these leaves as active.

Step 2 Create a new node that has the two least likely active leaves

or nodes as children. Activate this new node and deactivate its

children.

Step 3 If there is only one active node left, root it. Otherwise, go to

Step 2.

Example 4.16 In Figure 4.10 we show the procedure of producing a Huffman
code for the example of a random message with four possible symbols with
probabilities p1 = 0.4, p2 = 0.3, p3 = 0.2, p4 = 0.1. We see that the average
codeword length of this Huffman code is

Lav = 0.4 ·1+0.3 ·2+0.2 ·3+0.1 ·3 = 1.9. (4.37)

Using Lemma 4.11 this can be computed much easier as follows:

Lav = P1 +P2 +P3 = 1+0.6+0.3 = 1.9. (4.38)

♦

Note that the code design process is not unique in several respects. Firstly,
the assignment of the 0 or 1 digits to the codewords at each forking stage is
arbitrary, but this produces only trivial differences. Usually, we will stick to the
convention that going upwards corresponds to 0 and downwards to 1. Secondly,
when there are more than two least likely (active) nodes/leaves, it does not
matter which we choose to combine. The resulting codes can have codewords
of different lengths; however, the average codeword length will always be the
same.

Example 4.17 As an example of different Huffman encodings of the same
random message, let p1 = 0.4, p2 = 0.2, p3 = 0.2, p4 = 0.1, p5 = 0.1. Fig-
ure 4.11 shows three different Huffman codes for this message: the list of
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Figure 4.10 Creation of a binary Huffman code. Active nodes and leaves are
shaded.
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Figure 4.11 Different binary Huffman codes for the same random message.
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codeword lengths are (1,2,3,4,4), (1,3,3,3,3), and (2,2,2,3,3), respectively.
But all of these codes have the same performance, Lav = 2.2. ♦

Exercise 4.18 Try to generate all three codes of Example 4.17 (see Fig-
ure 4.11) yourself. ♦

4.7 Types of codes

Note that in Section 4.1 we have restricted ourselves to prefix-free codes. So,
up to now we have only proven that Huffman codes are the optimal codes under
the assumption that we restrict ourselves to prefix-free codes. We would now
like to show that Huffman codes are actually optimal among all useful codes.

To reach that goal, we need to come back to a more precise definition of
“useful codes,” i.e. we continue the discussion that we started in Section 4.1.
Let us consider an example with a random message U with four different sym-
bols and let us design various codes for this message as shown in Table 4.2.

Table 4.2 Various codes for a random message with four possible values

U Code (i) Code (ii) Code (iii) Code (iv)

a 0 0 10 0
b 0 010 00 10
c 1 01 11 110
d 1 10 110 111

We discuss these different codes.

Code (i) is useless because some codewords are used for more than one sym-
bol. Such a code is called singular.

Code (ii) is nonsingular. But we have another problem: if we receive 010 we
have three different possibilities how to decode it: it could be (010)
giving us b, or it could be (0)(10) leading to ad, or it could be
(01)(0) corresponding to ca. Even though nonsingular, this code
is not uniquely decodable and therefore in practice is as useless as
code (i).6

6 Note that adding a comma between the codewords is not allowed because in this case we change
the code to be ternary, i.e. the codewords contain three different letters “0”, “1”, and “,” instead
of only two “0” and “1”. By the way, it is not very difficult to generalize all results given in this
chapter to D-ary codes. See, for example, [Mas96]. In this book, we will stick to binary codes.
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all codes

nonsingular codes

uniquely decodable codes

prefix-free codes

Figure 4.12 Set of all codes.

Code (iii) is uniquely decodable, even though it is not prefix-free! To see this,
note that in order to distinguish between c and d we only need to
wait for the next 1 to show up: if the number of 0s in between is
even, we decode 11, otherwise we decode 110. Example:

11000010 = (11)(00)(00)(10) =⇒ cbba, (4.39)

110000010 = (110)(00)(00)(10) =⇒ dbba. (4.40)

So in a uniquely decodable but not prefix-free code we may have to
delay the decoding until later.

Code (iv) is prefix-free and therefore trivially uniquely decodable.

We see that the set of all possible codes can be grouped as shown in Fig-
ure 4.12. We are only interested in the uniquely decodable codes. But so far
we have restricted ourselves to prefix-free codes. So the following question
arises: is there a uniquely decodable code that is not prefix-free, but that has a
better performance than the best prefix-free code (i.e. the corresponding Huff-
man code)?

Luckily the answer to this question is No, i.e. the Huffman codes are the
best uniquely decodable codes. This can be seen from the following theorem.

Theorem 4.19 (McMillan’s Theorem) The codeword lengths li of any
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uniquely decodable code must satisfy the Kraft Inequality
r

∑
i=1

2−li ≤ 1. (4.41)

Why does this help to answer our question about the most efficient uniquely
decodable code? Well, note that we know from Theorem 4.8 that every prefix-
free code also satisfies (4.41). So, for any uniquely decodable, but non-prefix-
free code with given codeword lengths, one can find another code with the
same codeword lengths that is prefix-free. But if the codeword lengths are the
same, the performance is identical! Hence, there is no gain in designing a non-
prefix-free code.

Proof of Theorem 4.19 Suppose we are given a random message U that takes
on r possible values u ∈ U (here the set U denotes the message alphabet).
Suppose further that we have a uniquely decodable code that assigns to every
possible symbol u ∈ U a certain codeword of length l(u).

Now choose an arbitrary positive integer ν and design a new code for a
vector of ν symbols u = (u1,u2, . . . ,uν) ∈ Uν = U× ·· ·×U by simply con-
catenating the original codewords.

Example 4.20 Consider a ternary message with the possible values u = a,
u = b, or u = c, i.e. U = {a,b,c}. If the probabilities of these possible values
are

Pr[U = a] =
1
2
, Pr[U = b] = Pr[U = c] =

1
4
, (4.42)

a binary (single-letter) Huffman code would map

a 7→ 0, b 7→ 10, c 7→ 11. (4.43)

If we now choose ν = 3, we get a new source with 33 = 27 possible symbols,
namely

U3 = {aaa,aab,aac,aba,abb,abc,aca,acb,acc,

baa,bab,bac,bba,bbb,bbc,bca,bcb,bcc,

caa,cab,cac,cba,cbb,cbc,cca,ccb,ccc}. (4.44)

The corresponding 27 codewords are then as follows (given in the same order):

{000,0010,0011,0100,01010,01011,0110,01110,01111,

1000,10010,10011,10100,101010,101011,10110,101110,101111,

1100,11010,11011,11100,111010,111011,11110,111110,111111}.
(4.45)

♦
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76 Efficient coding of a random message

The clue observation now is that because the original code was uniquely
decodable, it immediately follows that this new concatenated code also must
be uniquely decodable.

Exercise 4.21 Explain this clue observation, i.e. explain why the new con-
catenated code is also uniquely decodable.

Hint: Note that the codewords of the new code consist of a sequence of
uniquely decodable codewords. ♦

The lengths of the new codewords are given by

l̃(u) =
ν

∑
j=1

l(u j). (4.46)

Let lmax be the maximal codeword length of the original code. Then the new
code has a maximal codeword length l̃max satisfying

l̃max = ν lmax. (4.47)

We now compute the following:
(

∑
u∈U

2−l(u)

)ν

=

(
∑

u1∈U
2−l(u1)

)(
∑

u2∈U
2−l(u2)

)
· · ·
(

∑
uν∈U

2−l(uν )

)
(4.48)

= ∑
u1∈U

∑
u2∈U
· · · ∑

uν∈U
2−l(u1)2−l(u2) · · ·2−l(uν ) (4.49)

= ∑
u∈Uν

2−l(u1)−l(u2)−···−l(uν ) (4.50)

= ∑
u∈Uν

2−∑
ν
j=1 l(u j) (4.51)

= ∑
u∈Uν

2−l̃(u). (4.52)

Here (4.48) follows by writing the exponentiated sum as a product of ν sums;
in (4.50) we combine the ν sums over u1, . . . ,uν into one huge sum over the
ν-vector u; and (4.52) follows from (4.46).

Next we will rearrange the order of the terms by collecting all terms with
the same exponent together:

∑
u∈Uν

2−l̃(u) =
l̃max

∑
m=1

w(m)2−m, (4.53)

where w(m) counts the number of such terms with equal exponent, i.e. w(m)

denotes the number of codewords of length m in the new code.
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Example 4.22 (Continuation from Example 4.20) We see from (4.45) that the
new concatenated code has one codeword of length 3, six codewords of length
4, twelve codewords of length 5, and eight codewords of length 6. Hence,

∑
u∈Uν

2−l̃(u) = 1 ·2−3 +6 ·2−4 +12 ·2−5 +8 ·2−6, (4.54)

i.e.

w(m) =





1 for m = 3,

6 for m = 4,

12 for m = 5,

8 for m = 6,

0 otherwise.

(4.55)

Also note that l̃max = 6 = ν · lmax = 3 ·2 in this case. ♦

We combine (4.53) and (4.52) and use (4.47) to write
(

∑
u∈U

2−l(u)

)ν

=
ν lmax

∑
m=1

w(m)2−m. (4.56)

Note that since the new concatenated code is uniquely decodable, every
codeword of length m is used at most once. But in total there are only 2m

different sequences of length m, i.e. we know that

w(m)≤ 2m. (4.57)

Thus,
(

∑
u∈U

2−l(u)

)ν

=
ν lmax

∑
m=1

w(m)2−m ≤
ν lmax

∑
m=1

2m2−m = ν lmax (4.58)

or

∑
u∈U

2−l(u) ≤ (ν lmax)
1/ν . (4.59)

At this stage we are back to an expression that depends only on the original
uniquely decodable code. So forget about the trick with the new concatenated
code, but simply note that we have shown that for any uniquely decodable code
and any positive integer ν , expression (4.59) must hold! Also note that we can
choose ν freely here.

Note further that for any finite value of lmax one can show that

lim
ν→∞

(ν lmax)
1/ν = 1. (4.60)
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78 Efficient coding of a random message

Hence, by choosing ν extremely large (i.e. we let ν tend to infinity) we have

∑
u∈U

2−l(u) ≤ 1 (4.61)

as we wanted to prove.

4.8 Some historical background

David A. Huffman had finished his B.S. and M.S. in electrical engineering
and also served in the U.S. Navy before he became a Ph.D. student at the
Massachusetts Institute of Technology (MIT). There, in 1951, he attended an
information theory class taught by Professor Robert M. Fano who was working
at that time, together with Claude E. Shannon, on finding the most efficient
code, but could not solve the problem. So Fano assigned the question to his
students in the information theory class as a term paper. Huffman tried for a
long time to find a solution and was about to give up when he had the sudden
inspiration to start building the tree backwards from leaves to root instead from
root to leaves. Once he had understood this, he was quickly able to prove that
his code was the most efficient one. Naturally, Huffman’s term paper was later
published.

Huffman became a faculty member of MIT in 1953, and later, in 1967, he
moved to the University of California, Santa Cruz, where he stayed until his
retirement in 1994. He won many awards for his accomplishments, e.g. in 1988
the Richard Hamming Medal from the Institute of Electrical and Electronics
Engineers (IEEE). Huffman died in 1998. See [Sti91] and [Nor89].

4.9 Further reading

For an easy-to-read, but precise, introduction to coding and trees, the lecture
notes [Mas96] of Professor James L. Massey from ETH Zurich are highly rec-
ommended. There the interested reader will find a straightforward way to gen-
eralize the concept of binary codes to general D-ary codes using D-ary trees.
Moreover, in [Mas96] one also finds the concept of block codes, i.e. codes with
a fixed codeword length. Some of the best such codes are called Tunstall codes
[Tun67].
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