
3
Repetition and Hamming codes

The theory of error-correcting codes comes from the need to protect informa-
tion from corruption during transmission or storage. Take your CD or DVD as
an example. Usually, you might convert your music into MP3 files1 for stor-
age. The reason for such a conversion is that MP3 files are more compact and
take less storage space, i.e. they use fewer binary digits (bits) compared with
the original format on CD. Certainly, the price to pay for a smaller file size is
that you will suffer some kind of distortion, or, equivalently, losses in audio
quality or fidelity. However, such loss is in general indiscernible to human au-
dio perception, and you can hardly notice the subtle differences between the
uncompressed and compressed audio signals. The compression of digital data
streams such as audio music streams is commonly referred to as source coding.
We will consider it in more detail in Chapters 4 and 5.

What we are going to discuss in this chapter is the opposite of compression.
After converting the music into MP3 files, you might want to store these files
on a CD or a DVD for later use. While burning the digital data onto a CD, there
is a special mechanism called error control coding behind the CD burning pro-
cess. Why do we need it? Well, the reason is simple. Storing CDs and DVDs in-
evitably causes small scratches on the disk surface. These scratches impair the
disk surface and create some kind of lens effect so that the laser reader might
not be able to retrieve the original information correctly. When this happens,
the stored files are corrupted and can no longer be used. Since the scratches
are inevitable, it makes no sense to ask the users to keep the disks in per-
fect condition, or discard them once a perfect read-out from the disk becomes
impossible. Therefore, it would be better to have some kind of engineering
mechanism to protect the data from being compromised by minor scratches.

1 MP3 stands for MPEG-2 audio layer 3, where MPEG is the abbreviation for moving picture
experts group.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


32 Repetition and Hamming codes

We use error-correcting codes to accomplish this task. Error-correcting codes
are also referred to as channel coding in general.

First of all, you should note that it is impossible to protect the stored MP3
files from impairment without increasing the file size. To see this, say you have
a binary data stream s of length k bits. If the protection mechanism were not
allowed to increase the length, after endowing s with some protection capa-
bility, the resulting stream x is at best still of length k bits. Then the whole
protection process is nothing but a mapping from a k-bit stream to another k-
bit stream. Such mapping is, at its best, one-to-one and onto, i.e. a bijection,
since if it were not a bijection, it would not be possible to recover the original
data. On the other hand, because of the bijection, when the stored data stream
x is corrupted, it is impossible to recover the original s. Therefore, we see that
the protection process (henceforth we will refer to it as an encoding process)
must be an injection, meaning x must have length larger than k, say n, so that
when x is corrupted, there is a chance that s may be recovered by using the
extra (n− k) bits we have used for storing extra information.

How to encode efficiently a binary stream of length k with minimum (n−k)
extra bits added so that the length k stream s is well protected from corrup-
tion is the major concern of error-correcting codes. In this chapter, we will
briefly introduce two kinds of error-correcting codes: the repetition code and
the Hamming code. The repetition code, as its name suggests, simply repeats
information and is the simplest error-protecting/correcting scheme. The Ham-
ming code, developed by Richard Hamming when he worked at Bell Labs in
the late 1940s (we will come back to this story in Section 3.3.1), on the other
hand, is a bit more sophisticated than the repetition code. While the original
Hamming code is actually not that much more complicated than the repeti-
tion code, it turns out to be optimal in terms of sphere packing in some high-
dimensional space. Specifically, this means that for certain code length and
error-correction capability, the Hamming code actually achieves the maximal
possible rate, or, equivalently, it requires the fewest possible extra bits.

Besides error correction and data protection, the Hamming code is also good
in many other areas. Readers who wish to know more about these subjects
are referred to Chapter 8, where we will briefly discuss two other uses of the
Hamming code. We will show in Section 8.1 how the Hamming code relates
to a geometric subject called projective geometry, and in Section 8.2 how the
Hamming code can be used in some mathematical games.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


3.1 Arithmetics in the binary field 33

3.1 Arithmetics in the binary field

Prior to introducing the codes, let us first study the arithmetics of binary oper-
ations (see also Section 2.1). These are very important because the digital data
is binary, i.e. each binary digit is either of value 0 or 1, and the data will be
processed in a binary fashion. By binary operations we mean binary addition,
subtraction, multiplication, and division. The binary addition is a modulo-2
addition, i.e.

0+0 = 0,

1+0 = 1,

0+1 = 1,

1+1 = 0.

(3.1)

The only difference between binary and usual additions is the case of 1+ 1.
Usual addition would say 1+ 1 = 2. But since we are working with modulo-
2 addition, meaning the sum is taken as the remainder when divided by 2,
the remainder of 2 divided by 2 equals 0, hence we have 1+ 1 = 0 in binary
arithmetics.

By moving the second operand to the right of these equations, we obtain
subtractions:

0 = 0−0,

1 = 1−0,

0 = 1−1,

1 = 0−1.

(3.2)

Further, it is interesting to note that the above equalities also hold if we replace
“−” by “+”. Then we realize that, in binary, subtraction is the same as addition.
This is because the remainder of −1 divided by 2 equals 1, meaning −1 is
considered the same as 1 in binary. In other words,

a−b = a+(−1)×b = a+(1)×b = a+b. (3.3)

Also, it should be noted that the above implies

a−b = b−a = a+b (3.4)

in binary, while this is certainly false for real numbers.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


34 Repetition and Hamming codes

Multiplication in binary is the same as usual, and we have

0×0 = 0,

1×0 = 0,

0×1 = 0,

1×1 = 1.

(3.5)

The same holds also for division.

Exercise 3.1 Show that the laws of association and distribution hold for
binary arithmetics. That is, show that for any a,b,c ∈ {0,1} we have

a+b+ c = (a+b)+ c = a+(b+ c) (additive associative law),

a×b× c = (a×b)× c = a× (b× c) (multiplicative associative law),

a× (b+ c) = (a×b)+(a× c) (distributive law). ♦

Exercise 3.2 In this chapter, we will use the notation ?
= to denote a con-

ditional equality, by which we mean that we are unsure whether the equality
holds. Show that the condition of a ?

= b in binary is the same as a+b ?
= 0. ♦

3.2 Three-times repetition code

A binary digit (or bit in short) s is to be stored on CD, but it could be corrupted
for some reason during read-out. To recover the corrupted data, a straight-
forward means of protection is to store as many copies of s as possible. For
simplicity, say we store three copies. Such a scheme is called the three-times
repetition code. Thus, instead of simply storing s, we store (s,s,s). To distin-
guish them, let us denote the first s as x1 and the others as x2 and x3. In other
words, we have {

x2 = x3 = 0 if x1 = 0,

x2 = x3 = 1 if x1 = 1,
(3.6)

and the possible values of (x1,x2,x3) are (000) and (111).
When you read out the stream (x1,x2,x3) from a CD, you must check wheth-

er x1 = x2 and x1 = x3 in order to detect if there was a data corruption. From
Exercise 3.2, this can be achieved by the following computation:

{
data clean if x1 + x2 = 0 and x1 + x3 = 0,

data corrupted otherwise.
(3.7)

For example, if the read-out is (x1,x2,x3) = (000), then you might say the data

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


3.2 Three-times repetition code 35

is clean. Otherwise, if the read-out shows (x1,x2,x3) = (001) you immediately
find x1 + x3 = 1 and the data is corrupted.

Now say that the probability of writing in 0 and reading out 1 is p, and
the same for writing in 1 and reading out 0. You see that a bit is corrupted
with probability p and remains clean with probability (1− p). Usually we can
assume p < 1/2, meaning the data is more likely to be clean than corrupted. In
the case of p > 1/2, a simple bit-flipping technique of treating the read-out of
1 as 0 and 0 as 1 would do the trick.

Thus, when p < 1/2, the only possibilities for data corruption going unde-
tected are the cases when the read-out shows (111) given writing in was (000)
and when the read-out shows (000) given writing in was (111). Each occurs
with probability2 p3 < 1/8. Compared with the case when the data is unpro-
tected, the probability of undetectable corruption drops from p to p3. It means
that when the read-out shows either (000) or (111), we are more confident
that such a read-out is clean.

The above scheme is commonly referred to as error detection (see also
Chapter 2), by which we mean we only detect whether the data is corrupted,
but we do not attempt to correct the errors. However, our goal was to correct
the corrupted data, not just detect it. This can be easily achieved with the rep-
etition code. Consider the case of a read-out (001): you would immediately
guess that the original data is more likely to be (000), which corresponds to
the binary bit s = 0. On the other hand, if the read-out shows (101), you would
guess the second bit is corrupted and the data is likely to be (111) and hence
determine the original s = 1.

There is a good reason for such a guess. Again let us denote by p the proba-
bility of a read-out bit being corrupted, and let us assume3 that the probability
of s being 0 is 1/2 (and of course the same probability for s being 1). Then,
given the read-out (001), the probability of the original data being (000) can
be computed as follows. Here again we assume that the read-out bits are cor-
rupted independently. Assuming Pr[s = 0] = Pr[s = 1] = 1/2, it is clear that

Pr(Writing in (000)) = Pr(Writing in (111)) =
1
2
. (3.8)

It is also easy to see that

2 Here we assume each read-out bit is corrupted independently, meaning whether one bit is cor-
rupted or not has no effect on the other bits being corrupted or not. With this independence
assumption, the probability of having three corrupted bits is p · p · p = p3.

3 Why do we need this assumption? Would the situation be different without this assumption?
Take the case of Pr[s = 0] = 0 and Pr[s = 1] = 1 as an example.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


36 Repetition and Hamming codes

Pr(Writing in (000) and reading out (001))

= Pr(Writing in (000)) ·Pr(Reading out (001) |Writing in (000)) (3.9)

= Pr(Writing in (000)) ·Pr(0→ 0) ·Pr(0→ 0) ·Pr(0→ 1) (3.10)

=
1
2
· (1− p) · (1− p) · p (3.11)

=
(1− p)2 p

2
. (3.12)

Similarly, we have

Pr(Writing in (111) and reading out (001)) =
(1− p)p2

2
. (3.13)

These together show that

Pr(Reading out (001))

= Pr(Writing in (000) and reading out (001))

+ Pr(Writing in (111) and reading out (001)) (3.14)

=
(1− p)p

2
. (3.15)

Thus

Pr(Writing in (000) | Reading out (001))

=
Pr(Writing in (000) and reading out (001))

Pr(Reading out (001))
(3.16)

= 1− p. (3.17)

Similarly, it can be shown that

Pr(Writing in (111) | Reading out (001)) = p. (3.18)

As p < 1/2 by assumption, we immediately see that

1− p > p, (3.19)

and, given that the read-out is (001), the case of writing in (111) is less likely.
Hence we would guess the original data is more likely to be (000) due to its
higher probability. Arguing in a similar manner, we can construct a table for
decoding, shown in Table 3.1.

From Table 3.1, we see that given the original data being (000), the cor-
rectable error events are the ones when the read-outs are (100), (010), and
(001), i.e. the ones when only one bit is in error. The same holds for the other
write-in of (111). Thus we say that the three-times repetition code is a single-
error-correcting code, meaning the code is able to correct all possible one-bit
errors. If there are at least two out of the three bits in error during read-out,

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


3.2 Three-times repetition code 37

Table 3.1 Decoding table for the repetition code based on probability

Read-outs Likely original Decoded output

(000), (100), (010), (001) (000) s = 0
(111), (011), (101), (110) (111) s = 1

then this code is bound to make an erroneous decision as shown in Table 3.1.
The probability of having an erroneous decoded output is given by

Pr(Uncorrectable error) = 3p2(1− p)+ p3 (3.20)

that is smaller than the original p.

Exercise 3.3 Prove 3p2(1− p)+ p3 < p for p ∈ (0,1/2). ♦

Exercise 3.4 It should be noted that Table 3.1 is obtained under the assump-
tion of Pr[s = 0] =Pr[s = 1] = 1/2. What if Pr[s = 0] = 0 and Pr[s = 1] = 1? Re-
construct the table for this case and conclude that Pr(Uncorrectable error) = 0.
Then rethink whether you need error protection and correction in this case. ♦

To summarize this section, below we give a formal definition of an error-
correcting code.

Definition 3.5 A code C is said to be an (n,k) error-correcting code if it is a
scheme of mapping k bits into n bits, and we say C has code rate R= k/n. We
say C is a t-error-correcting code if C is able to correct any t or fewer errors
in the received n-vector. Similarly, we say C is an e-error-detecting code if C

is able to detect any e or fewer errors in the received n-vector.

With the above definition, we see that the three-times repetition code is a
(3,1) error-correcting code with code rate R = 1/3, and it is a 1-error-cor-
recting code. When being used purely for error detection, it is also a 2-error-
detecting code. Moreover, in terms of the error correction or error detection
capability, we have the following two theorems. The proofs are left as an exer-
cise.

Theorem 3.6 Let C be an (n,k) binary error-correcting code that is t-error-
correcting. Then assuming a raw bit error probability of p, we have

Pr(Uncorrectable error)≤
(

n
t +1

)
pt+1(1− p)n−t−1

+

(
n

t +2

)
pt+2(1− p)n−t−2 + · · ·+

(
n
n

)
pn, (3.21)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


38 Repetition and Hamming codes

where
(n
`

)
is the binomial coefficient defined as

(
n
`

)
,

n!
`!(n− `)!

. (3.22)

Theorem 3.7 Let C be an (n,k) binary error-correcting code that is e-error-
detecting. Then assuming a raw bit error probability of p, we have

Pr(Undetectable error)≤
(

n
e+1

)
pe+1(1− p)n−e−1

+

(
n

e+2

)
pe+2(1− p)n−e−2 + · · ·+

(
n
n

)
pn. (3.23)

Exercise 3.8 Prove Theorems 3.6 and 3.7.
Hint: For the situation of Theorem 3.6, if a code is t-error-correcting, we

know that it can correctly deal with all error patterns of t or fewer errors. For
error patterns with more than t errors, we do not know: some of them might
be corrected; some not. Hence, as an upper bound to the error probability,
assume that any error pattern with more than t errors cannot be corrected.
The same type of thinking also works for Theorem 3.7. ♦

Recall that in (3.6) and (3.7), given the binary bit s, we use x1 = x2 = x3 = s
to generate the length-3 binary stream (x1,x2,x3), and use x1+x2

?
= 0 and x1+

x3
?
= 0 to determine whether the read-out has been corrupted. In general, it is

easier to rewrite the two processes using matrices; i.e., we have the following:
(

x1 x2 x3

)
= s
(

1 1 1
)

(generating equation), (3.24)

(
1 1 0

1 0 1

)



x1

x2

x3




?
=

(
0

0

)
(check equations). (3.25)

The two matrix equations above mean that we use the matrix

G=
(

1 1 1
)

(3.26)

to generate the length-3 binary stream and use the matrix

H=

(
1 1 0

1 0 1

)
(3.27)

to check whether the data is corrupted. Thus, the matrix G is often called the
generator matrix and H is called the parity-check matrix. We have the follow-
ing definition.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


3.2 Three-times repetition code 39

Definition 3.9 Let C be an (n,k) error-correcting code that maps length-k
binary streams s into length-n binary streams x. We say C is a linear code
if there exist a binary matrix G of size (k× n) and a binary matrix H of size
((n− k)×n) such that the mapping from s to x is given by

x = (x1 · · · xn) = (s1 · · · sk)︸ ︷︷ ︸
=s

G (3.28)

and the check equations are formed by

HxT ?
=




0
...

0


 , (3.29)

where by xT we mean the transpose of vector x (rewriting horizontal rows as
vertical columns and vice versa). The vector x is called a codeword associated
with the binary message s.

Exercise 3.10 With linear codes, the detection of corrupted read-outs is ex-
tremely easy. Let C be an (n,k) binary linear code with a parity-check matrix
H of size ((n−k)×n). Given any read-out y = (y1, . . . ,yn), show that y is cor-
rupted if HyT 6= 0T, i.e. if at least one parity-check equation is unsatisfied. It
should be noted that the converse is false in general.4 ♦

Exercise 3.11 Let C be an (n,k) binary linear code with generator matrix G
of size (k× n) and parity-check matrix H of size ((n− k)× n). Show that the
product matrix HGT must be a matrix whose entries are either 0 or multiples
of 2; hence, after taking modulo reduction by 2, we have HGT = 0, an all-zero
matrix. ♦

Exercise 3.12 (Dual code) In Definition 3.9, we used matrix G to generate
the codeword x given the binary message s and used the matrix H to check the
integrity of read-outs of x for an (n,k) linear error-correcting code C . On the
other hand, it is possible to reverse the roles of G and H. The process is detailed
as follows. Given C , G, and H, we define the dual code C⊥ of C by encoding
the length-(n− k) binary message s′ as x′ = s′H and check the integrity of x′

using Gx′T ?
= 0T. Based on the above, verify the following:

(a) The dual code C⊥ of the three-times repetition code is a (3,2) linear code
with rate R′ = 2/3, and

(b) C⊥ is a 1-error-detecting code.

4 For the correction of corrupted read-outs of linear codewords, see the discussion around (3.34).

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


40 Repetition and Hamming codes

This code is called the single parity-check code; see Chapter 2. ♦

In the above exercise, we have introduced the concept of a dual code. The
dual code is useful in the sense that once you have an (n,k) linear code with
generator matrix G and parity-check matrix H, you immediately get another
(n,n− k) linear code for free, simply by reversing the roles of G and H. How-
ever, readers should be warned that this is very often not for the purpose of
error correction. Specifically, throughout the studies of various kinds of linear
codes, it is often found that if the linear code C has a very strong error correc-
tion capability, then its dual code C⊥ is highly likely to be weak. Conversely,
if C is very weak, then its dual C⊥ might be strong. Nevertheless, the duality
between C and C⊥ can be extremely useful when studying the combinatorial
properties of a code, such as packing (see Section 3.3.3), covering (see p. 179),
weight enumerations, etc.

3.3 Hamming code

In Section 3.2, we discussed the (3,1) three-times repetition code that is capa-
ble of correcting all 1-bit errors or detecting all 2-bit errors. The price for such
a capability is that we have to increase the file size by a factor of 3. For exam-
ple, if you have a file of size 700 MB to be stored on CD and, in order to keep
the file from corruption, you use a (3,1) three-times repetition code, a space of
2100 MB, i.e. 2.1 GB, is needed to store the encoded data. This corresponds to
almost half of the storage capacity of a DVD!

Therefore, we see that while the three-times repetition code is able to pro-
vide some error protection, it is highly inefficient in terms of rate. In general,
we would like the rate R = k/n to be as close to 1 as possible so that wastage
of storage space is kept to a minimum.

3.3.1 Some historical background

The problem of finding efficient error-correcting schemes, but of a much smal-
ler scale, bothered Richard Wesley Hamming (1915–1998) while he was em-
ployed by Bell Telephone Laboratory (Bell Labs) in the late 1940s. Hamming
was a mathematician with a Ph.D. degree from the University of Illinois at
Urbana-Champaign in 1942. He was a professor at the University of Louisville
during World War II, and left to work on the Manhattan Project in 1945, pro-
gramming a computer to solve the problem of whether the detonation of an
atomic bomb would ignite the atmosphere. In 1946, Hamming went to Bell

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


3.3 Hamming code 41

Labs and worked on the Bell Model V computer, an electromechanical relay-
based machine. At that time, inputs to computers were fed in on punch cards,
which would invariably have read errors (the same as CDs or DVDs in com-
puters nowadays). Prior to executing the program on the punch cards, a special
device in the Bell Model V computer would check and detect errors. During
weekdays, when errors were found, the computer would flash lights so the op-
erators could correct the problem. During after-hours periods and at weekends,
when there were no operators, the machine simply terminated the program and
moved on to the next job. Thus, during the weekends, Hamming grew increas-
ingly frustrated with having to restart his programs from scratch due to the
unreliable card reader.

Over the next few years he worked on the problem of error correction, de-
veloping an increasingly powerful array of algorithms. In 1950 he published
what is now known as the Hamming code, which remains in use in some ap-
plications today.

Hamming is best known for the Hamming code he developed in 1950, as
well as the Hamming window5 used in designing digital filters, the Hamming
bound related to sphere packing theory (see Section 3.3.3), and the Ham-
ming distance as a measure of distortion in digital signals (see Exercise 3.16).
Hamming received the Turing award in 1968 and was elected to the National
Academy of Engineering in 1980.

Exercise 3.13 The error-correcting mechanism used in CDs6 for data pro-
tection is another type of error-correcting code called Reed–Solomon (R-S)
code, developed by Irving S. Reed and Gustave Solomon in 1960. The use of
R-S codes as a means of error correction for CDs was suggested by Jack van
Lint (1932–2004) while he was employed at Philips Labs in 1979. Two con-
secutive R-S codes are used in serial in a CD. These two R-S codes operate
in bytes (B) instead of bits (1 B = 8 bits). The first R-S code takes in 24 B of
raw data and encodes them into a codeword of length 28 B. After this, another
mechanism called interleaver would take 28 such encoded codewords, each
28 B long, and then permute the overall 282 = 784 B of data symbols. Finally,
the second R-S code will take blocks of 28 B and encode them into blocks of

5 The Hamming window was actually not due to Hamming, but to John Tukey (1915–2000),
who also rediscovered with James Cooley the famous algorithm of the fast Fourier transform
(FFT) that was originally invented by Carl Friedrich Gauss in 1805, but whose importance to
modern engineering was not realized by the researchers until 160 years later. The wonderful
Cooley–Tukey FFT algorithm is one of the key ingredients of your MP3 players, DVD players,
and mobile phones. So, you actually have Gauss to thank for it. Amazing, isn’t it?

6 A similar mechanism is also used in DVDs. We encourage you to visit the webpage of Professor
Tom Høholdt at http://www2.mat.dtu.dk/people/T.Hoeholdt/DVD/index.html for an extremely
stimulating demonstration.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


42 Repetition and Hamming codes

32 B. Thus, the first R-S code can be regarded as a (28 B, 24 B) linear code
and the second as a (32 B, 28 B) linear code. Based on the above, determine
the actual size (in megabytes (MB)) of digital information that is stored on a
CD if a storage capacity of 720 MB is claimed. Also, what is the overall code
rate used on a CD? ♦

3.3.2 Encoding and error correction of the (7,4) Hamming code

The original Hamming code is a (7,4) binary linear code with the following
generator and parity-check matrices:

G=




1 1 0 1 0 0 0

0 1 1 0 1 0 0

1 1 1 0 0 1 0

1 0 1 0 0 0 1




and H=




1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1


 .

(3.30)
Specifically, the encoder of the (7,4) Hamming code takes in a message of
four bits, say s = (s1,s2,s3,s4) and encodes them as a codeword of seven bits,
say x = (p1, p2, p3,s1,s2,s3,s4), using the following generating equations:





p1 = s1 + s3 + s4,

p2 = s1 + s2 + s3,

p3 = s2 + s3 + s4.

(3.31)

Mappings from s to x are tabulated in Table 3.2.

Table 3.2 Codewords of the (7,4) Hamming code

Message Codeword Message Codeword

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0
0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1
0 0 1 0 1 1 1 0 0 1 0 1 0 1 0 0 0 1 1 0 1 0
0 0 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0 1 0 1 1
0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0
0 1 0 1 1 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1
0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 1 0 1 1 1 0
0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

There are several ways to memorize the (7,4) Hamming code. The simplest

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


3.3 Hamming code 43

s1 s2

s3

s4

p1

p2

p3

I

II

III

Figure 3.1 Venn diagram of the (7,4) Hamming code.

way is perhaps to use the Venn diagram pointed out by Robert J. McEliece
[McE85] and shown in Figure 3.1. There are three overlapping circles: circles I,
II, and III. Each circle represents one generating equation as well as one parity-
check equation of the (7,4) Hamming code (see (3.31)). For example, circle I
corresponds to the first generating equation of p1 = s1 + s3 + s4 and the parity-
check equation p1 + s1 + s3 + s4 = 0 since bits s1,s3,s4, and p1 are included
in this circle. Similarly, the second circle, circle II, is for the check equation
of p2 + s1 + s2 + s3 = 0, and the third circle III is for the check equation of
p3 + s2 + s3 + s4 = 0. Note that each check equation is satisfied if, and only if,
there is an even number of 1s in the corresponding circle. Hence, the p1, p2,
and p3 are also known as even parities.

Using the Venn diagram, error correction of the Hamming code is easy. For
example, assume codeword x = (0110100) was written onto the CD, but due
to an unknown one-bit error the read-out shows (0111100). We put the read-
out into the Venn diagram shown in Figure 3.2. Because of the unknown one-
bit error, we see that

• the number of 1s in circle I is 1, an odd number, and a warning (bold circle)
is shown;

• the number of 1s in circle II is 3, an odd number, and a warning (bold circle)
is shown;

• the number of 1s in circle III is 2, an even number, so no warning (normal
circle) is given.

From these three circles we can conclude that the error must not lie in circle III,
but lies in both circles I and II. This leaves s1 as the only possibility, since s1

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


44 Repetition and Hamming codes

0
0

0

1

11

1

I

II

III

Figure 3.2 Venn diagram used for decoding (0111100).

is the only point lying in circles I and II but not in III. Hence s1 must be wrong
and should be corrected to a 0 so that both warnings are cleared and all three
circles show no warning. This then corrects the erroneous bit as expected.

Let us try another example. What if the read-out is (1110100)? The corre-
sponding Venn diagram is shown in Figure 3.3. Following the same reasoning

0

0

0

1

1

1

1

I

II

III

Figure 3.3 Venn diagram used for decoding (1110100).

as before, we see that the error must lie in circle I, but cannot be in circles II
and III. Hence the only possible erroneous bit is p1. Changing the read-out of
p1 from 1 to 0 will correct the one-bit error.

Now let us revisit the above two error-correcting examples and try to for-
mulate a more systematic approach. In the first example, the read-out was
y = (0111100). Using the parity-check matrix H defined in (3.30) we see

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


3.3 Hamming code 45

the following connection:

HyT =




1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1







0

1

1

1

1

0

0




=




1

1

0


 ⇐⇒




I
II
III


 . (3.32)

This corresponds exactly to the Venn diagram of Figure 3.2. Note that the first
entry of (110) corresponds to the first parity-check equation of p1 + s1 + s3 +

s4
?
= 0 as well as to circle I in the Venn diagram. Since it is unsatisfied, a

warning is shown. Similarly for the second and third entries of (110). Now
we ask the question: which column of H has the value (110)T? It is the fourth
column, which corresponds to the fourth bit of y, i.e. s1 in x. Then we conclude
that s1 is in error and should be corrected to a 0. The corrected read-out is
therefore (0110100).

For the second example of a read-out being y = (1110100), carrying out
the same operations gives

HyT =




1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1







1

1

1

0

1

0

0




=




1

0

0


 ⇐⇒




I
II

III


 (3.33)

corresponding to the Venn diagram of Figure 3.3. Since (100)T is the first
column of H, it means the first entry of y is in error, and the corrected read-out
should be (0110100).

There is a simple reason why the above error correction technique works.
For brevity, let us focus on the first example of y = (0111100). This is the
case when the fourth bit of y, i.e. s1, is in error. We can write y as follows:

y = (0111100) = (0110100)︸ ︷︷ ︸
=x

+ (0001000)︸ ︷︷ ︸
= e

, (3.34)

where x is the original codeword written into a CD and e is the error pattern.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


46 Repetition and Hamming codes

Recall that x is a codeword of the (7,4) Hamming code; we must have HxT =

0T from Definition 3.9. Thus from the distributive law verified in Exercise 3.1
we see that

HyT = H(xT + eT) = HxT +HeT = 0T +HeT = HeT. (3.35)

Since the only nonzero entry of e is the fourth entry, left-multiplying eT by H

gives the fourth column of H. Thus, HeT = (110)T. In other words, we have
the following logic deductions: without knowing the error pattern e in the first
place, to correct the one-bit error,

HyT = (110)T (3.36)

=⇒ HeT = (110)T (3.37)

=⇒ e = (0001000). (3.38)

The last logic deduction relies on the following two facts:

(1) we assume there is only one bit in error, and
(2) all columns of H are distinct.

With the above arguments, we get the following result.

Theorem 3.14 The (7,4) Hamming code can be classified as one of the fol-
lowing:

(1) a single-error-correcting code,
(2) a double-error-detecting code.

Proof The proof of the Hamming code being able to correct all one-bit errors
follows from the same logic deduction given above. To establish the second
claim, simply note that when two errors occur, there are two 1s in the error
pattern e, for example e = (1010000). Calculating the parity-check equations
shows HyT = HeT. Note that no two distinct columns of H can be summed to
yield (000)T. This means any double-error will give HyT 6= 0T and hence can
be detected.

From Theorem 3.14 we see that the (7,4) Hamming code is able to correct
all one-bit errors. Thus, assuming each bit is in error with probability p, the
probability of erroneous correction is given by

Pr(Uncorrectable error)≤
(

7
2

)
p2(1− p)5 +

(
7
3

)
p3(1− p)4 + · · ·+

(
7
7

)
p7.

(3.39)

It should be noted that in (3.39) we actually have an equality. This follows from

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


3.3 Hamming code 47

the fact that the Hamming code cannot correct any read-outs having more than
one bit in error.

Exercise 3.15 For error detection of the (7,4) Hamming code, recall the

check equation HyT = HeT ?
= 0T. Using this relation, first show that an error

pattern e is undetectable if, and only if, e is a nonzero codeword. Thus the
(7,4) Hamming code can detect some error patterns that have more than two
errors. Use this fact to show that the probability of a detection error of the
(7,4) Hamming code is

Pr(Undetectable error) = 7p3(1− p)4 +7p4(1− p)3 + p7, (3.40)

which is better than what has been claimed by Theorem 3.7.
Hint: Note from Table 3.2 that, apart from the all-zero codeword, there are

seven codewords containing three 1s, another seven codewords containing four
1s, and one codeword consisting of seven 1s. ♦

Next we compare the performance of the three-times repetition code with the
performance of the (7,4) Hamming code. First, note that both codes are able
to correct all one-bit errors or detect all double-bit errors. Yet, the repetition
code requires to triple the size of the original file for storage, while the (7,4)
Hamming code only needs 7/4 = 1.75 times the original space. Therefore, the
(7,4) Hamming code is more efficient than the three-times repetition code in
terms of required storage space.

Before concluding this section, we use the following exercise problem as
a quick introduction to another contribution of Hamming. It is related to the
topic of sphere packing, which will be discussed in Section 3.3.3.

Exercise 3.16 (Hamming distance) Another contribution of Richard Ham-
ming is the notion of Hamming distance. Given any two codewords x = (x1,

x2, . . . ,x7) and x′ = (x′1,x
′
2, . . . ,x

′
7), the Hamming distance between x and x′

is the number of places x differs from x′. For example, the Hamming dis-
tance between (1011100) and (0111001) is 4 since x differs from x′ in
the first, second, fifth, and seventh positions. Equivalently, you can compute
(1011100)+ (0111001) = (1100101). Then the condition given in Exer-

cise 3.2, namely, x`
?
= x′` is equivalent to x`+ x′`

?
= 0 for ` = 1,2, . . . ,7, shows

the distance is 4 since there are four 1s appearing in the sum (1100101).
Note that the number of ones in a binary vector is called the Hamming weight
of the vector.

Now, using Table 3.2, show that every two distinct codewords of a (7,4)
Hamming code are separated by Hamming distance ≥ 3. ♦

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


48 Repetition and Hamming codes

Some of you might wonder why not simply stick to the general definition of
Euclidean distance and try to avoid the need for this new definition of Ham-
ming distance. There is a good reason for this. Recall that the Euclidean dis-
tance between two distinct points (x,y) and (x′,y′) is defined as follows:

d ,
√
(x− x′)2 +(y− y′)2. (3.41)

However, this definition will not work in the binary space. To see this, con-
sider the example of (x,y) = (00) and (x′,y′) = (11). The Euclidean distance
between these two points is given by

d =
√

(0−1)2 +(0−1)2 =
√

1+1 =
√

0 = 0, (3.42)

where you should note that 1+ 1 = 0 in binary. Thus, the Euclidean distance
fails in the binary space.

3.3.3 Hamming bound: sphere packing

In Exercise 3.16 we have seen that every distinct pair of codewords of the (7,4)
Hamming code is separated by Hamming distance at least d = 3. Thus in terms
of geometry we have a picture as shown in Figure 3.4(a). Now if we draw two
spheres as shown in Figure 3.4(b) (you might want to think of them as high-
dimensional balls), each with radius R = 1, centered at x and x′, respectively,
these two spheres would not overlap and must be well-separated. Points within
the x-sphere represent the read-outs that are at a distance of at most 1 from x.
In other words, the points within the x-sphere are either x or x with a one-bit
error.

x x′d = 3

(a)

x x′
d = 3

R= 1R= 1

(b)

Figure 3.4 Geometry of x 6= x′ in the (7,4) Hamming code with Hamming
distance 3.

If we draw a sphere with radius R = 1 centered at each codeword of the
(7,4) Hamming code, there will be 16 nonoverlapping spheres since there are
16 codewords and every pair of distinct codewords is separated by a distance
of at least 3. Given that a codeword x was written into the CD, for example,

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


3.3 Hamming code 49

the one-bit error read-out must be at distance 1 from x and therefore must lie
within the radius-1 x-sphere centered at x. It cannot lie in other spheres since
the spheres are well-separated. This shows that this one-bit error read-out is
closer to x than to any other codewords of the (7,4) Hamming code.

Thus, correcting a one-bit error is always possible for the (7,4) Hamming
code. This can be seen as a geometrical explanation of the single-error-cor-
rection capability of the (7,4) Hamming code. We may generalize the above
argument slightly and give the following theorem.

Theorem 3.17 Let C be an (n,k) error-correcting code (not necessarily lin-
ear, i.e. it does not necessarily have the generator and parity-check matrices
G and H). Assume that every distinct pair of codewords in C is separated by
Hamming distance at least d; then C is a t-error-correcting code with

t =
⌊

d−1
2

⌋
, (3.43)

where by bξc we mean7 the largest integer not larger than ξ . Also, if C is used
only for error detection, then C is an (d−1)-error-detecting code.

Proof Given d, we can draw spheres with radius t centered at the codewords
of C . Since 2t < d, the spheres must be nonoverlapping. Extending the proof
to error detection is obvious.

The above theorem says that in order to correct more errors, the codewords
should be placed as far apart as possible. But this is not what we are interested
in here. Instead, we are interested in the reverse direction. We ask the following
question.

Consider a t-error-correcting code C that maps input messages to a
binary stream of length n. So, we draw spheres of radius t centered at
the codewords of C . The spheres do not overlap with each other. What
is the maximal number of codewords C can have? In other words, we
are interested in knowing how many nonoverlapping radius-t spheres
can be packed into an n-dimensional binary space.

This is the sphere packing problem in discrete mathematics. Let us work
through some examples in order to understand the question better.

Example 3.18 The (7,4) Hamming code has 16 codewords, hence 16 spheres
with radius 1, since the code is 1-error-correcting.

• The codewords have length 7, with a binary value in each coordinate. So,

7 For example, b1.1c= b1.9c= 1.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


50 Repetition and Hamming codes

the number of possible length-7 binary tuples is 27 = 128, meaning there
are 128 points in this 7-dimensional binary space.

• Each codeword of the Hamming code is surrounded by a sphere with radius
1. There are 1+

(7
1

)
= 8 points in each sphere. This first “1” corresponds to

the center, i.e. distance 0. The remaining
(7

1

)
points are the ones at distance

1 from the center, i.e. one-bit errors from the codeword.

Thus, the 16 nonoverlapping spheres actually cover 16×8= 128 points, which
are all the points in the 7-dimensional binary space. We see that the (7,4)
Hamming code has the tightest possible packing of radius-1 spheres in the
7-dimensional binary space. ♦

Example 3.19 Let us consider the dual of the (7,4) Hamming code C in
this example. Recall from Exercise 3.12 that the dual code C⊥ is obtained by
reversing the roles of the generating matrix G and the parity-check matrix H of
C . That is, we use the parity-check matrix H for encoding and the generator
matrix G for checking. Thus the generator matrix G⊥ of C⊥ is given by

G⊥ = H=




1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1


 (3.44)

and it maps binary messages of length 3 to codewords of length 7. All the eight
possible codewords are tabulated in Table 3.3.

Table 3.3 Codewords of the dual code of the (7,4) Hamming code

Message Codeword Message Codeword

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1
0 0 1 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 0
0 1 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 0 1
0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0

You can check that the codewords are separated by Hamming distance 4
exactly. Hence C⊥ is able to correct errors up to t =

⌊ 4−1
2

⌋
= 1, which is the

same as C does. Thus, it is clear that C⊥ is not a good packing of radius-1
spheres in the 7-dimensional binary space since it packs only eight spheres,
while C can pack 16 spheres into the same space. ♦

Why are we interested in the packing of radius-t spheres in an n-dimensional

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


3.3 Hamming code 51

space? The reason is simple. Without knowing the parameter k in the first place,
i.e. without knowing how many distinct 2k binary messages can be encoded,
by fixing t we make sure that the codewords are immune to errors with at most
t error bits. Choosing n means the codewords will be stored in n bits. Being
able to pack more radius-t spheres into the n-dimensional spaces means we can
have more codewords, hence larger k. This gives a general bound on k, known
as the sphere bound, and stated in the following theorem.

Theorem 3.20 (Sphere bound) Let n, k, and t be defined as above. Then we
have

2k ≤ 2n
(n

0

)
+
(n

1

)
+ · · ·+

(n
t

) . (3.45)

Codes with parameter n, k, and t that achieve equality in (3.45) are called
perfect, meaning a perfect packing.

Proof Note that 2k is the number of codewords, while 2n is the number
of points in an n-dimensional binary space, i.e. the number of distinct bi-
nary n-tuples. The denominator shows the number of points within a radius-t
sphere. The inequality follows from the fact that for t-error-correcting codes
the spheres must be nonoverlapping.

Finally we conclude this section with the following very deep result.

Theorem 3.21 The only parameters satisfying the bound (3.45) with equality
are



n = 2u−1, k = 2u−u−1, t = 1, for any positive integer u;

n = 23, k = 12, t = 3;

n = 2u+1, k = 1, t = u, for any positive integer u.
(3.46)

This theorem was proven by Aimo Tietäväinen [Tie73] in 1973 after much
work by Jack van Lint. One code satisfying the second case of n = 23, k = 12,
and t = 3 is the Golay code, hand-constructed by Marcel J. E. Golay in 1949
[Gol49].8 Vera Pless [Ple68] later proved that the Golay code is the only code
with these parameters that satisfies (3.45) with equality. The first case is a
general Hamming code of order u (see Exercise 3.22 below), and the last case
is the (2u+1)-times repetition code, i.e. repeating the message (2u+1) times.
8 This paper is only half a page long, but belongs to the most important paper in information

theory ever written! Not only did it present the perfect Golay code, but it also gave the gen-
eralization of the Hamming code and the first publication of a parity-check matrix. And even
though it took over 20 years to prove it, Golay already claimed in that paper that there were no
other perfect codes. For more details on the life of Marcel Golay, see http://www.isiweb.ee.eth
z.ch/archive/massey pub/pdf/BI953.pdf.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


52 Repetition and Hamming codes

Exercise 3.22 (Hamming code of order u) Recall that the (7,4) Hamming
code is defined by its parity-check matrix

H=




1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1


 . (3.47)

Note that the columns of the above (3×7) matrix consist of all possible non-
zero length-3 binary vectors. From this, we can easily define a general Ham-
ming code Cu of order u. Let Hu be the matrix whose columns consist of all
possible nonzero length-u binary vectors; Hu is of size (u× (2u− 1)). Then a
general Hamming code Cu is the code defined by the parity-check matrix Hu

with n = 2u−1 and k = 2u−u−1. Show that

(a) Cu is 2-error-detecting (Hint: Show that HueT 6= 0T for all nonzero vectors
e that have at most two nonzero entries);

(b) Cu is 1-error-correcting (Hint: Show that HuyT = 0T for some nonzero
vector y if, and only if, y has at least three nonzero entries. Then use this
to conclude that every pair of distinct codewords is separated by Hamming
distance at least 3). ♦

3.4 Further reading

In this chapter we have briefly introduced the theory of error-correcting codes
and have carefully studied two example codes: the three-times repetition code
and the (7,4) Hamming code. Besides their error correction capabilities, we
have also briefly studied the connections of these codes to sphere packing in
high-dimensional spaces.

For readers who are interested in learning more about other kinds of error-
correcting codes and their practical uses, [Wic94] is an easy place to start,
where you can learn about a more general treatment of the Hamming codes.
Another book, by Shu Lin and Daniel Costello [LC04], is a comprehensive
collection of all modern coding schemes. An old book by Jessy MacWilliams
and Neil Sloane [MS77] is the most authentic source for learning the theory
of error-correcting codes, but it requires a solid background in mathematics at
graduate level.

The Hamming codes are closely related to combinatorial designs, differ-
ence sets, and Steiner systems. All are extremely fascinating objects in com-
binatorics. The interested readers are referred to [vLW01] by Jack van Lint
and Richard Wilson for further reading on these subjects. These combinatorial

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


References 53

objects are also used in the designs of radar systems, spread spectrum-based
cellular communications, and optical fiber communication systems.

The topic of sphere packing is always hard, yet fascinating. Problems therein
have been investigated for more than 2000 years, and many remain open.
A general discussion of this topic can be found in [CS99]. As already seen
in Theorem 3.21, the sphere packing bound is not achievable in almost all
cases. Some bounds that are tighter than the sphere packing bound, such as the
Gilbert–Varshamov bound, the Plotkin bound, etc., can be found in [MS77]
and [Wic94]. In [MS77] a table is provided that lists all known best packings
in various dimensions. An updated version can be found in [HP98]. So far, the
tightest lower bound on the existence of the densest possible packings is the
Tsfasman–Vlăduţ–Zink (TVZ) bound, and there are algebraic geometry codes
constructed from function fields defined by the Garcia–Stichtentoth curve that
perform better than the TVZ bound, i.e. much denser sphere packings. A good
overview of this subject can be found in [HP98].

References
[CS99] John Conway and Neil J. A. Sloane, Sphere Packings, Lattices and Groups,

3rd edn. Springer Verlag, New York, 1999.
[Gol49] Marcel J. E. Golay, “Notes on digital coding,” Proceedings of the IRE,

vol. 37, p. 657, June 1949.
[HP98] W. Cary Huffman and Vera Pless, eds., Handbook of Coding Theory. North-

Holland, Amsterdam, 1998.
[LC04] Shu Lin and Daniel J. Costello, Jr., Error Control Coding, 2nd edn. Prentice

Hall, Upper Saddle River, NJ, 2004.
[McE85] Robert J. McEliece, “The reliability of computer memories,” Scientific Amer-

ican, vol. 252, no. 1, pp. 68–73, 1985.
[MS77] F. Jessy MacWilliams and Neil J. A. Sloane, The Theory of Error-Correcting

Codes. North-Holland, Amsterdam, 1977.
[Ple68] Vera Pless, “On the uniqueness of the Golay codes,” Journal on Combination

Theory, vol. 5, pp. 215–228, 1968.
[Tie73] Aimo Tietäväinen, “On the nonexistence of perfect codes over finite fields,”

SIAM Journal on Applied Mathematics, vol. 24, no. 1, pp. 88–96, January
1973.

[vLW01] Jacobus H. van Lint and Richard M. Wilson, A Course in Combinatorics,
2nd edn. Cambridge University Press, Cambridge, 2001.

[Wic94] Stephen B. Wicker, Error Control Systems for Digital Communication and
Storage. Prentice Hall, Englewood Cliffs, NJ, 1994.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core


use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.004
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:29, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.004
https:/www.cambridge.org/core



