
2
Error-detecting codes

When a message is transmitted, the inevitable noise disturbance usually de-
grades the quality of communication. Whenever repetition is possible, it is
sufficient to detect the occurrence of an error. When an error is detected, we
simply repeat the message, and it may be correct the second time or even pos-
sibly the third time.

It is not possible to detect an error if every possible symbol, or set of sym-
bols, that can be received is a legitimate message. It is only possible to catch
errors if there are some restrictions on what a proper message is. The prob-
lem is to keep these restrictions on the possible messages down to ones that
are simple. In practice, “simple” means “easily computable.” In this chapter,
we will mainly investigate the problem of designing codes such that any sin-
gle error can be detected at the receiver. In Chapter 3, we will then consider
correcting the errors that occur during the transmission.

2.1 Review of modular arithmetic

We first give a quick review of the basic arithmetic which is extensively used
in the following sections. For binary digits, which take values of only 0 and 1,
the rules for addition and multiplication are defined by

0+0 = 0

0+1 = 1

1+0 = 1

1+1 = 0

and

0×0 = 0

0×1 = 0

1×0 = 0

1×1 = 1,

(2.1)

respectively. For example, by (2.1), we have

1+1×0+0+1×1 = 1+0+0+1 = 0. (2.2)
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14 Error-detecting codes

If we choose to work in the decimal arithmetic, the binary arithmetic in (2.1)
can be obtained by dividing the result in decimal by 2 and taking the remainder.
For example, (2.2) yields

1+0+0+1 = 2≡ 0 mod 2. (2.3)

Occasionally, we may work modulo some number other than 2 for the case
of a nonbinary source. Given a positive integer m, for the addition and multi-
plication mod m (“mod” is an abbreviation for “modulo”), we merely divide
the result in decimal by m and take the nonnegative remainder. For instance,
consider an information source with five distinct outputs 0, 1, 2, 3, 4. It follows
that

2+4 = 1×5+ “1” ⇐⇒ 2+4≡ 1 mod 5, (2.4)

3×4 = 2×5+ “2” ⇐⇒ 3×4≡ 2 mod 5. (2.5)

Other cases for the modulo 5 addition and multiplication can be referred to in
Table 2.1.

Table 2.1 Addition and multiplication modulo 5

+ mod 5 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× mod 5 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

For multiplication mod m, we have to be more careful if m is not a prime.
Suppose that we have the numbers a and b congruent to a′ and b′ modulo the
modulus m. This means that

a≡ a′ mod m and b≡ b′ mod m (2.6)

or

a = a′+ k1m and b = b′+ k2m (2.7)

for some integers k1 and k2. For the product ab, we have

ab = a′b′+a′k1m+b′k2m+ k1k2m2 (2.8)

and hence

ab≡ a′b′ mod m. (2.9)
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2.2 Independent errors – white noise 15

Now consider the particular case

a = 15, b = 12, m = 10. (2.10)

We have a′ = 5 and b′ = 2 by (2.7) and ab ≡ a′b′ ≡ 0 mod 10 by (2.9). But
neither a nor b is zero! Only for a prime modulus do we have the important
property that if a product is zero, then at least one factor must be zero.

Exercise 2.1 In order to become more familiar with the modular operation
check out the following problems:

3×6+7≡ ? mod 11 (2.11)

and

5−4×2≡ ? mod 7. (2.12)

♦

More on modular arithmetic can be found in Section 3.1.

2.2 Independent errors – white noise

To simplify the analysis of noise behavior, we assume that errors in a message
satisfy the following constraints:

(1) the probability of an error in any binary position is assumed to be a fixed
number p, and

(2) errors in different positions are assumed to be independent.1

Such noise is called “white noise” in analogy with white light, which is sup-
posed to contain uniformly all the frequencies detected by the human eye.
However, in practice, there are often reasons for errors to be more common
in some positions in the message than in others, and it is often true that errors
tend to occur in bursts and not to be independent.We assume white noise in the
very beginning because this is the simplest case, and it is better to start from
the simplest case and move on to more complex situations after we have built
up a solid knowledge on the simple case.

Consider a message consisting of n digits for transmission. For white noise,
the probability of no error in any position is given by

(1− p)n. (2.13)
1 Given events A`, they are said to be independent if Pr(

⋂n
`=1 A`) = ∏

n
`=1 Pr(A`). Here “

⋂
`”

denotes set-intersection, i.e.
⋂
`A` is the set of elements that are members of all sets A`. Hence,

Pr(
⋂n
`=1 A`) is the event that all events A` occur at the same time. The notation ∏` is a short-

hand for multiplication: ∏
n
`=1 a` , a1 ·a2 · · ·an.
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16 Error-detecting codes

The probability of a single error in the message is given by

np(1− p)n−1. (2.14)

The probability of ` errors is given by the (`+ 1)th term in the binomial ex-
pansion:

1 =
(
(1− p)+ p

)n (2.15)

=

(
n
0

)
(1− p)n +

(
n
1

)
p(1− p)n−1 +

(
n
2

)
p2(1− p)n−2

+ · · ·+
(

n
n

)
pn (2.16)

= (1− p)n +np(1− p)n−1 +
n(n−1)

2
p2(1− p)n−2 + · · ·+ pn. (2.17)

For example, the probability of exactly two errors is given by

n(n−1)
2

p2(1− p)n−2. (2.18)

We can obtain the probability of an even number of errors (0,2,4, . . .) by
adding the following two binomial expansions and dividing by 2:

1 =
(
(1− p)+ p

)n
=

n

∑
`=0

(
n
`

)
p`(1− p)n−`, (2.19)

(1−2p)n =
(
(1− p)− p

)n
=

n

∑
`=0

(−1)`
(

n
`

)
p`(1− p)n−`. (2.20)

Denote by bξc the greatest integer not larger than ξ . We have2

Pr(An even number of errors) =
bn/2c
∑
`=0

(
n
2`

)
p2`(1− p)n−2` (2.21)

=
1+(1−2p)n

2
. (2.22)

The probability of an odd number of errors is 1 minus this number.

Exercise 2.2 Actually, this is a good chance to practice your basic skills on
the method of induction: can you show that

bn/2c
∑
`=0

(
n
2`

)
p2`(1− p)n−2` =

1+(1−2p)n

2
(2.23)

and
b(n−1)/2c

∑
`=0

(
n

2`+1

)
p2`+1(1− p)n−2`−1 =

1− (1−2p)n

2
(2.24)

2 Note that zero errors also counts as an even number of errors here.
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2.3 Single parity-check code 17

by induction on n?
Hint: Note that (

n+1
k

)
=

(
n
k

)
+

(
n

k−1

)
(2.25)

for n,k ≥ 1. ♦

2.3 Single parity-check code

The simplest way of encoding a binary message to make it error-detectable
is to count the number of 1s in the message, and then append a final binary
digit chosen so that the entire message has an even number of 1s in it. The
entire message is therefore of even parity. Thus to (n− 1) message positions
we append an nth parity-check position. Denote by x` the original bit in the
`th message position, ∀1 ≤ ` ≤ n− 1, and let xn be the parity-check bit. The
constraint of even parity implies that

xn =
n−1

∑
`=1

x` (2.26)

by (2.1). Note that here (and for the remainder of this book) we omit “mod 2”
and implicitly assume it everywhere. Let y` be the channel output correspond-
ing to x`, ∀1≤ `≤ n. At the receiver, we firstly count the number of 1s in the
received sequence y. If the even-parity constraint is violated for the received
vector, i.e.

n

∑
`=1

y` 6= 0, (2.27)

this indicates that at least one error has occurred.
For example, given a message (x1,x2,x3,x4) = (0111), the parity-check bit

is obtained by

x5 = 0+1+1+1 = 1, (2.28)

and hence the resulting even-parity codeword (x1,x2,x3,x4,x5) is (01111).
Suppose the codeword is transmitted, but a vector y = (00111) is received. In
this case, an error in the second position is met. We have

y1 + y2 + y3 + y4 + y5 = 0+0+1+1+1 = 1(6= 0); (2.29)

thereby the error is detected. However, if another vector of (00110) is re-
ceived, where two errors (in the second and the last position) have occurred,
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18 Error-detecting codes

no error will be detected since

y1 + y2 + y3 + y4 + y5 = 0+0+1+1+0 = 0. (2.30)

Evidently in this code any odd number of errors can be detected. But any even
number of errors cannot be detected.

For channels with white noise, (2.22) gives the probability of any even num-
ber of errors in the message. Dropping the first term of (2.21), which corre-
sponds to the probability of no error, we have the following probability of
undetectable errors for the single parity-check code introduced here:

Pr(Undetectable errors) =
bn/2c
∑
`=1

(
n
2`

)
p2`(1− p)n−2` (2.31)

=
1+(1−2p)n

2
− (1− p)n. (2.32)

The probability of detectable errors, i.e. all the odd-number errors, is then ob-
tained by

Pr(Detectable errors) = 1− 1+(1−2p)n

2
=

1− (1−2p)n

2
. (2.33)

Obviously, we should have that

Pr(Detectable errors)� Pr(Undetectable errors) . (2.34)

For p very small, we have

Pr(Undetectable errors) =
1+(1−2p)n

2
− (1− p)n (2.35)

=
1
2
+

1
2

[(
n
0

)
−
(

n
1

)
(2p)+

(
n
2

)
(2p)2−·· ·

]

−
[(

n
0

)
−
(

n
1

)
p+
(

n
2

)
p2−·· ·

]
(2.36)

=
1
2
+

1
2

[
1−2np+

n(n−1)
2

4p2−·· ·
]

−
[

1−np+
n(n−1)

2
p2−·· ·

]
(2.37)

' n(n−1)
2

p2 (2.38)

and

Pr(Detectable errors) =
1− (1−2p)n

2
(2.39)

=
1
2
− 1

2

[(
n
0

)
−
(

n
1

)
(2p)+ · · ·

]
(2.40)
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2.4 The ASCII code 19

=
1
2
− 1

2
[1−2np+ · · · ] (2.41)

' np. (2.42)

In the above approximations, we only retain the leading term that dominates
the sum.

Hence, (2.34) requires

np� n(n−1)
2

p2, (2.43)

and implies that the shorter the message, the better the detecting performance.
In practice, it is common to break up a long message in the binary alphabet

into blocks of (n−1) digits and to append one binary digit to each block. This
produces the redundancy of

n
n−1

= 1+
1

n−1
, (2.44)

where the redundancy is defined as the total number of binary digits divided
by the minimum necessary. The excess redundancy is 1/(n− 1). Clearly, for
low redundancy we want to use long messages, but for high reliability short
messages are better. Thus the choice of the length n for the blocks to be sent is
a compromise between the two opposing forces.

2.4 The ASCII code

Here we introduce an example of a single parity-check code, called the Amer-
ican Standard Code for Information Interchange (ASCII), which was the first
code developed specifically for computer communications. Each character in
ASCII is represented by seven data bits constituting a unique binary sequence.
Thus a total of 128 (= 27) different characters can be represented in ASCII.
The characters are various commonly used letters, numbers, special control
symbols, and punctuation symbols, e.g. $, %, and @. Some of the special con-
trol symbols, e.g. ENQ (enquiry) and ETB (end of transmission block), are
used for communication purposes. Other symbols, e.g. BS (back space) and
CR (carriage return), are used to control the printing of characters on a page.
A complete listing of ASCII characters is given in Table 2.2.

Since computers work in bytes which are blocks of 8 bits, a single ASCII
symbol often uses 8 bits. The eighth bit is set so that the total number of 1s in
the eight positions is an even number. For example, consider “K” in Table 2.2
encoded as (113)8, which can be transformed into binary form as follows:

(113)8 = 1001011 (2.45)
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20 Error-detecting codes

Table 2.2 Seven-bit ASCII code

Octal Char. Octal Char. Octal Char. Octal Char.
code code code code

000 NUL 040 SP 100 @ 140 ‘
001 SOH 041 ! 101 A 141 a
002 STX 042 ” 102 B 142 b
003 ETX 043 # 103 C 143 c
004 EOT 044 $ 104 D 144 d
005 ENQ 045 % 105 E 145 e
006 ACK 046 & 106 F 146 f
007 BEL 047 ’ 107 G 147 g
010 BS 050 ( 110 H 150 h
011 HT 051 ) 111 I 151 i
012 LF 052 * 112 J 152 j
013 VT 053 + 113 K 153 k
014 FF 054 , 114 L 154 l
015 CR 055 - 115 M 155 m
016 SO 056 . 116 N 156 n
017 SI 057 / 117 O 157 o
020 DLE 060 0 120 P 160 p
021 DC1 061 1 121 Q 161 q
022 DC2 062 2 122 R 162 r
023 DC3 063 3 123 S 163 s
024 DC4 064 4 124 T 164 t
025 NAK 065 5 125 U 165 u
026 SYN 066 6 126 V 166 v
027 ETB 067 7 127 W 167 w
030 CAN 070 8 130 X 170 x
031 EM 071 9 131 Y 171 y
032 SUB 072 : 132 Z 172 z
033 ESC 073 ; 133 [ 173 {
034 FS 074 < 134 \ 174 |
035 GS 075 = 135 ] 175 }
036 RS 076 > 136 ˆ 176 ˜
037 US 077 ? 137 177 DEL
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2.5 Simple burst error-detecting code 21

(where we have dropped the first 2 bits of the first octal symbol). In this case,
the parity-check bit is 0; “K” is thus encoded as 10010110 for even parity. You
are encouraged to encode the remaining characters in Table 2.2.

By the constraint of even parity, any single error, a 0 changed into a 1 or a
1 changed into a 0, will be detected3 since after the change there will be an
odd number of 1s in the eight positions. Thus, we have an error-detecting code
that helps to combat channel noise. Perhaps more importantly, the code makes
it much easier to maintain the communication quality since the machine can
detect the occurrence of errors by itself.

2.5 Simple burst error-detecting code

In some situations, errors occur in bursts rather than in isolated positions in the
received message. For instance, lightning strikes, power-supply fluctuations,
loose flakes on a magnetic surface are all typical causes of a burst of noise.
Suppose that the maximum length of any error burst4 that we are to detect is
L. To protect data against the burst errors, we first divide the original message
into a sequence of words consisting of L bits. Aided with a pre-selected error-
detecting code, parity checks are then computed over the corresponding word
positions, instead of the bit positions.

Based on the above scenario, if an error burst occurs within one word, in
effect only a single word error is observed. If an error burst covers the end of
one word and the beginning of another, still no two errors corresponding to the
same position of words will be met, since we assumed that any burst length l
satisfies 0≤ l ≤ L. Consider the following example for illustration.

Example 2.3 If the message is

Hello NCTU

and the maximum burst error length L is 8, we can use the 7-bit ASCII code in
Table 2.2 and protect the message against burst errors as shown in Table 2.3.
(Here no parity check is used within the ASCII symbols.) The encoded mes-
sage is therefore

Hello NCTUn

3 Actually, to be precise, every odd number of errors is detected.
4 An error burst is said to have length L if errors are confined to L consecutive positions. By

this definition, the error patterns 0111110, 0101010, and 0100010 are all classified as bursts of
length 5. Note that a 0 in an error pattern denotes that no error has happened in that position,
while a 1 denotes an error. See also (3.34) in Section 3.3.2.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.003
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:30, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.003
https:/www.cambridge.org/core


22 Error-detecting codes

Table 2.3 Special type of parity check to protect against burst errors of
maximum length L= 8

H = (110)8 = 01001000
e = (145)8 = 01100101
l = (154)8 = 01101100
l = (154)8 = 01101100
o = (157)8 = 01101111

SP= (040)8 = 00100000
N = (116)8 = 01001110
C = (103)8 = 01000011
T = (124)8 = 01010100
U = (125)8 = 01010101
Check sum = 01101110 = n

where n is the parity-check symbol.
Suppose a burst error of length 5, as shown in Table 2.4, is met during the

transmission of the above message, where the bold-face positions are in error.
In this case, the burst error is successfully detected since the check sum is not
00000000. However, if the burst error of length 16 shown in Table 2.5 occurs,
the error will not be detected due to the all-zero check sum. ♦

Exercise 2.4 Could you repeat the above process of encoding for the case of
L = 16? Also, show that the resulting code can detect all the bursts of length
at most 16. ♦

Exercise 2.5 Can you show that the error might not be detected if there is
more than one burst, even if each burst is of length no larger than L? ♦

2.6 Alphabet plus number codes – weighted codes

The codes we have discussed so far were all designed with respect to a simple
form of “white noise” that causes some bits to be flipped. This is very suit-
able for many types of machines. However, in some systems, where people are
involved, other types of noise are more appropriate. The first common human
error is to interchange adjacent digits of numbers; for example, 38 becomes 83.
A second common error is to double the wrong one of a triple of digits, where
two adjacent digits are the same; for example, 338 becomes 388. In addition,
the confusion of O (“oh”) and 0 (“zero”) is also very common.
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2.6 Alphabet plus number codes – weighted codes 23

Table 2.4 A burst error of length 5 has occurred during transmission and is
detected because the check sum is not 0000000; bold-face positions denote

positions in error

H⇒ K 0 1 0 0 1 0 1 1
e⇒ ENQ 0 0 0 0 0 1 0 1

l 0 1 1 0 1 1 0 0
l 0 1 1 0 1 1 0 0
o 0 1 1 0 1 1 1 1

SP 0 0 1 0 0 0 0 0
N 0 1 0 0 1 1 1 0
C 0 1 0 0 0 0 1 1
T 0 1 0 1 0 1 0 0
U 0 1 0 1 0 1 0 1
n 0 1 1 0 1 1 1 0

Check sum = 0 1 1 0 0 0 1 1

Table 2.5 A burst error of length 16 has occurred during transmission, but it
is not detected; bold-face positions denote positions in error

H⇒ K 0 1 0 0 1 0 1 1
e⇒ J 0 1 0 0 1 0 1 0
l⇒@ 0 1 0 0 0 0 0 0

l 0 1 1 0 1 1 0 0
o 0 1 1 0 1 1 1 1

SP 0 0 1 0 0 0 0 0
N 0 1 0 0 1 1 1 0
C 0 1 0 0 0 0 1 1
T 0 1 0 1 0 1 0 0
U 0 1 0 1 0 1 0 1
n 0 1 1 0 1 1 1 0

Check sum = 0 0 0 0 0 0 0 0
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24 Error-detecting codes

Table 2.6 Weighted sum: progressive digiting

Message Sum Sum of sum

w w w
x w+ x 2w+ x
y w+ x+ y 3w+2x+ y
z w+ x+ y+ z 4w+3x+2y+ z

In English text-based systems, it is quite common to have a source alphabet
consisting of the 26 letters, space, and the 10 decimal digits. Since the size of
this source alphabet, 37 (= 26+ 1+ 10), is a prime number, we can use the
following method to detect the presence of the above described typical errors.
Firstly, each symbol in the source alphabet is mapped to a distinct number in
{0,1,2, . . . ,36}. Given a message for encoding, we weight the symbols with
weights 1,2,3, . . ., beginning with the check digit of the message. Then, the
weighted digits are summed together and reduced to the remainder after divid-
ing by 37. Finally, a check symbol is selected such that the sum of the check
symbol and the remainder obtained above is congruent to 0 modulo 37.

To calculate this sum of weighted digits easily, a technique called progres-
sive digiting, illustrated in Table 2.6, has been developed. In Table 2.6, it is
supposed that we want to compute the weighted sum for a message wxyz, i.e.
4w+3x+2y+1z. For each symbol in the message, we first compute the run-
ning sum from w to the symbol in question, thereby obtaining the second col-
umn in Table 2.6. We can sum these sums again in the same way to obtain the
desired weighted sum.

Example 2.6 We assign a distinct number from {0,1,2, . . . ,36} to each
symbol in the combined alphabet/number set in the following way: “0” = 0,
“1” = 1, “2” = 2, . . . , “9” = 9, “A” = 10, “B” = 11, “C” = 12, . . . , “Z” = 35,
and “space” = 36. Then we encode

3B 8.

We proceed with the progressive digiting as shown in Table 2.7 and obtain a
weighted sum of 183. Since 183 mod 37 = 35 and 35+2 is divisible by 37, it
follows that the appended check digit should be

“2” = 2.
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2.6 Alphabet plus number codes – weighted codes 25

Table 2.7 Progressive digiting for the example of “3B 8”: we need to add
“2” = 2 as a check-digit to make sure that the weighted sum divides 37

Sum Sum of sum

“3” = 3 3 3
“B” = 11 14 17

“space” = 36 50 67
“8” = 8 58 125

Check-digit = ?? 58 183

4

37 / 183
148
35

Table 2.8 Checking the encoded message “3B 82”

3 3×5 = 15
B 11×4 = 44

“space” 36×3 = 108
8 8×2 = 16
2 2×1 = 2

Sum = 185 = 37×5≡ 0 mod 37

The encoded message is therefore given by

3B 82.

To check whether this is a legitimate message at the receiver, we proceed as
shown in Table 2.8.

Now suppose “space” is lost during the transmission such that only “3B82”
is received. Such an error can be detected since the weighted sum is now not
congruent to 0 mod 37; see Table 2.9. Similarly, the interchange from “82” to

Table 2.9 Checking the corrupted message “3B82”

3 3×4 = 12
B 11×3 = 33
8 8×2 = 16
2 2×1 = 2

Sum = 63 6≡ 0 mod 37
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26 Error-detecting codes

Table 2.10 Checking the corrupted message “3B 28”

3 3×5 = 15
B 11×4 = 44

“space” 36×3 = 108
2 2×2 = 4
8 8×1 = 8

Sum = 179 6≡ 0 mod 37

“28” can also be detected; see Table 2.10. ♦

In the following we give another two examples of error-detecting codes that
are based on modular arithmetic and are widely used in daily commerce.

Example 2.7 The International Standard Book Number (ISBN) is usually a
10-digit code used to identify a book uniquely. A typical example of the ISBN
is as follows:

0︸︷︷︸
country

ID

– 52︸︷︷︸
publisher

ID

18 – 4868︸ ︷︷ ︸
book

number

– 7︸︷︷︸
check
digit

where the hyphens do not matter and may appear in different positions. The
first digit stands for the country, with 0 meaning the United States and some
other English-speaking countries. The next two digits are the publisher ID;
here 52 means Cambridge University Press. The next six digits, 18 – 4868, are
the publisher-assigned book number. The last digit is the weighted check sum
modulo 11 and is represented by “X” if the required check digit is 10.

To confirm that this number is a legitimate ISBN number we proceed as
shown in Table 2.11. It checks! ♦

Exercise 2.8 Check whether 0 – 8044 – 2957 – X is a valid ISBN number. ♦

Example 2.9 The Universal Product Code (UPC) is a 12-digit single parity-
check code employed on the bar codes of most merchandise to ensure reliabil-
ity in scanning. A typical example of UPC takes the form

0 36000︸ ︷︷ ︸
manufacturer

ID

29145︸ ︷︷ ︸
item

number

2︸︷︷︸
parity
check
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Table 2.11 Checking the ISBN number 0 – 5218 – 4868 – 7

Sum Sum of sum

0 0 0
5 5 5
2 7 12
1 8 20
8 16 36
4 20 56
8 28 84
6 34 118
8 42 160
7 49 209 = 11×19≡ 0 mod 11

where the last digit is the parity-check digit. Denote the digits as x1,x2, . . . ,x12.
The parity digit x12 is determined such that

3(x1 + x3 + x5 + x7 + x9 + x11)+(x2 + x4 + x6 + x8 + x10 + x12) (2.46)

is a multiple5 of 10. In this case,

3(0+6+0+2+1+5)+(3+0+0+9+4+2) = 60. (2.47)

♦

2.7 Trade-off between redundancy and
error-detecting capability

As discussed in the previous sections, a single parity check to make the whole
message even-parity can help the detection of any single error (or even any odd
number of errors). However, if we want to detect the occurrence of more errors
in a noisy channel, what can we do for the design of error-detecting codes? Can
such a goal be achieved by increasing the number of parity checks, i.e. at the
cost of extra redundancy? Fortunately, the answer is positive. Let us consider
the following illustrative example.

5 Note that in this example the modulus 10 is used although this is not a prime. The slightly
unusual summation (2.46), however, makes sure that every single error can still be detected.
The reason why UPC chooses 10 as the modulus is that the check digit should also range from
0 to 9 so that it can easily be encoded by the bar code.
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28 Error-detecting codes

Example 2.10 For an information source of eight possible outputs, obviously
each output can be represented by a binary 3-tuple, say (x1,x2,x3). Suppose
three parity checks x4, x5, x6 are now appended to the original message by the
following equations:





x4 = x1 + x2,

x5 = x1 + x3,

x6 = x2 + x3,

(2.48)

to form a legitimate codeword (x1,x2,x3,x4,x5,x6). Compared with the sin-
gle parity-check code, this code increases the excess redundancy from 1/3 to
3/3. Let (y1,y2,y3,y4,y5,y6) be the received vector as (x1,x2,x3,x4,x5,x6) is
transmitted. If at least one of the following parity-check equations is violated:





y4 = y1 + y2,

y5 = y1 + y3,

y6 = y2 + y3,

(2.49)

the occurrence of an error is detected.
For instance, consider the case of a single error in the ith position such that

yi = xi +1 and y` = x`, ∀` ∈ {1,2, . . . ,6}\{i}. (2.50)

It follows that





y4 6= y1 + y2, y5 6= y1 + y3 if i = 1,

y4 6= y1 + y2, y6 6= y2 + y3 if i = 2,

y5 6= y1 + y3, y6 6= y2 + y3 if i = 3,

y4 6= y1 + y2 if i = 4,

y5 6= y1 + y3 if i = 5,

y6 6= y2 + y3 if i = 6.

(2.51)

Therefore, all single errors can be successfully detected. In addition, consider
the case of a double error in the ith and jth positions, respectively, such that

yi = xi+1, y j = x j +1, and y` = x`, ∀`∈ {1,2, . . . ,6}\{i, j}. (2.52)
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We then have




y5 6= y1 + y3, y6 6= y2 + y3 if (i, j) = (1,2),

y4 6= y1 + y2, y6 6= y2 + y3 if (i, j) = (1,3),

y5 6= y1 + y3 if (i, j) = (1,4),

y4 6= y1 + y2 if (i, j) = (1,5),

y4 6= y1 + y2, y5 6= y1 + y3, y6 6= y2 + y3 if (i, j) = (1,6),

y4 6= y1 + y2, y5 6= y1 + y3 if (i, j) = (2,3),

y6 6= y2 + y3 if (i, j) = (2,4),

y4 6= y1 + y2, y5 6= y1 + y3, y6 6= y2 + y3 if (i, j) = (2,5),

y4 6= y1 + y2 if (i, j) = (2,6),

y4 6= y1 + y2, y5 6= y1 + y3, y6 6= y2 + y3 if (i, j) = (3,4),

y6 6= y2 + y3 if (i, j) = (3,5),

y5 6= y1 + y3 if (i, j) = (3,6),

y4 6= y1 + y2, y5 6= y1 + y3 if (i, j) = (4,5),

y4 6= y1 + y2, y6 6= y2 + y3 if (i, j) = (4,6),

y5 6= y1 + y3, y6 6= y2 + y3 if (i, j) = (5,6).

(2.53)

Hence, this code can detect any pattern of double errors. ♦

Exercise 2.11 Unfortunately, not all triple errors may be caught by the code
of Example 2.10. Can you give an example for verification? ♦

Without a proper design, however, increasing the number of parity checks
may not always improve the error-detecting capability. For example, consider
another code which appends the parity checks by





x4 = x1 + x2 + x3,

x5 = x1 + x2 + x3,

x6 = x1 + x2 + x3.

(2.54)

In this case, x5 and x6 are simply repetitions of x4. Following a similar discus-
sion as in Example 2.10, we can show that all single errors are still detectable.
But if the following double error occurs during the transmission:

y1 = x1 +1, y2 = x2 +1, and y` = x`, ∀3≤ `≤ 6, (2.55)

none of the three parity-check equations corresponding to (2.54) will be vi-
olated. This code thus is not double-error-detecting even though the same
amount of redundancy is required as in the code (2.48).
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30 Error-detecting codes

2.8 Further reading

In this chapter simple coding schemes, e.g. single parity-check codes, burst
error-detecting codes, and weighted codes, have been introduced to detect the
presence of channel errors. However, there exists a class of linear block codes,
called cyclic codes, which are probably the most widely used form of error-
detecting codes. The popularity of cyclic codes arises primarily from the fact
that these codes can be implemented with extremely cost-effective electronic
circuits. The codes themselves also possess a high degree of structure and reg-
ularity (which gives rise to the promising advantage mentioned above), and
there is a certain beauty and elegance in the corresponding theory. Interested
readers are referred to [MS77], [Wic94], and [LC04] for more details of cyclic
codes.

References
[LC04] Shu Lin and Daniel J. Costello, Jr., Error Control Coding, 2nd edn. Prentice

Hall, Upper Saddle River, NJ, 2004.
[MS77] F. Jessy MacWilliams and Neil J. A. Sloane, The Theory of Error-Correcting

Codes. North-Holland, Amsterdam, 1977.
[Wic94] Stephen B. Wicker, Error Control Systems for Digital Communication and

Storage. Prentice Hall, Englewood Cliffs, NJ, 1994.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139059534.003
Downloaded from https:/www.cambridge.org/core. UCL, Institute of Education, on 25 Jan 2017 at 13:33:30, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139059534.003
https:/www.cambridge.org/core



