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Introduction

Systems dedicated to the communication or storage of information are com-
monplace in everyday life. Generally speaking, a communication system is a
system which sends information from one place to another. Examples include
telephone networks, computer networks, audio/video broadcasting, etc. Stor-
age systems, e.g. magnetic and optical disk drives, are systems for storage and
later retrieval of information. In a sense, such systems may be regarded as com-
munication systems which transmit information from now (the present) to then
(the future). Whenever or wherever problems of information processing arise,
there is a need to know how to compress the textual material and how to protect
it against possible corruption. This book is to cover the fundamentals of infor-
mation theory and coding theory, to solve the above main problems, and to
give related examples in practice. The amount of background mathematics and
electrical engineering is kept to a minimum. At most, simple results of calculus
and probability theory are used here, and anything beyond that is developed as
needed.

1.1 Information theory versus coding theory

Information theory is a branch of probability theory with extensive applica-
tions to communication systems. Like several other branches of mathematics,
information theory has a physical origin. It was initiated by communication
scientists who were studying the statistical structure of electrical communica-
tion equipment and was principally founded by Claude E. Shannon through the
landmark contribution [Sha48] on the mathematical theory of communications.
In this paper, Shannon developed the fundamental limits on data compression
and reliable transmission over noisy channels. Since its inception, information
theory has attracted a tremendous amount of research effort and provided lots
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2 Introduction

of inspiring insights into many research fields, not only communication and
signal processing in electrical engineering, but also statistics, physics, com-
puter science, economics, biology, etc.

Coding theory is mainly concerned with explicit methods for efficient and
reliable data transmission or storage, which can be roughly divided into data
compression and error-control techniques. Of the two, the former attempts to
compress the data from a source in order to transmit or store them more effi-
ciently. This practice is found every day on the Internet where data are usually
transformed into the ZIP format to make files smaller and reduce the network
load.

The latter adds extra data bits to make the transmission of data more robust
to channel disturbances. Although people may not be aware of its existence in
many applications, its impact has been crucial to the development of the Inter-
net, the popularity of compact discs (CD), the feasibility of mobile phones, the
success of the deep space missions, etc.

Logically speaking, coding theory leads to information theory, and informa-
tion theory provides the performance limits on what can be done by suitable
encoding of the information. Thus the two theories are intimately related, al-
though in the past they have been developed to a great extent quite separately.
One of the main purposes of this book is to show their mutual relationships.

1.2 Model and basic operations of information
processing systems

Communication and storage systems can be regarded as examples of informa-
tion processing systems and may be represented abstractly by the block dia-
gram in Figure 1.1. In all cases, there is a source from which the information
originates. The information source may be many things; for example, a book,
music, or video are all information sources in daily life.

Encoder
InformationInformation

source
DecoderChannel

sink

Figure 1.1 Basic information processing system.

The source output is processed by an encoder to facilitate the transmission
(or storage) of the information. In communication systems, this function is
often called a transmitter, while in storage systems we usually speak of a
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1.2 Model and basic operations 3

recorder. In general, three basic operations can be executed in the encoder:
source coding, channel coding, and modulation. For source coding, the en-
coder maps the source output into digital format. The mapping is one-to-one,
and the objective is to eliminate or reduce the redundancy, i.e. that part of the
data which can be removed from the source output without harm to the infor-
mation to be transmitted. So, source coding provides an efficient representation
of the source output. For channel coding, the encoder introduces extra redun-
dant data in a prescribed fashion so as to combat the noisy environment in
which the information must be transmitted or stored. Discrete symbols may
not be suitable for transmission over a physical channel or recording on a digi-
tal storage medium. Therefore, we need proper modulation to convert the data
after source and channel coding to waveforms that are suitable for transmission
or recording.

The output of the encoder is then transmitted through some physical com-
munication channel (in the case of a communication system) or stored in some
physical storage medium (in the case of a storage system). As examples of
the former we mention wireless radio transmission based on electromagnetic
waves, telephone communication through copper cables, and wired high-speed
transmission through fiber optic cables. As examples of the latter we indicate
magnetic storage media, such as those used by a magnetic tape, a hard-drive, or
a floppy disk drive, and optical storage disks, such as a CD-ROM1 or a DVD.2

Each of these examples is subject to various types of noise disturbances. On a
telephone line, the disturbance may come from thermal noise, switching noise,
or crosstalk from other lines. On magnetic disks, surface defects and dust par-
ticles are regarded as noise disturbances. Regardless of the explicit form of the
medium, we shall refer to it as the channel.

Information conveyed through (or stored in) the channel must be recovered
at the destination and processed to restore its original form. This is the task
of the decoder. In the case of a communication system, this device is often
referred to as the receiver. In the case of a storage system, this block is often
called the playback system. The signal processing performed by the decoder
can be viewed as the inverse of the function performed by the encoder. The
output of the decoder is then presented to the final user, which we call the
information sink.

The physical channel usually produces a received signal which differs from
the original input signal. This is because of signal distortion and noise intro-
duced by the channel. Consequently, the decoder can only produce an estimate

1 CD-ROM stands for compact disc read-only memory.
2 DVD stands for digital video disc or digital versatile disc.
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4 Introduction

of the original information message. All well-designed systems aim at repro-
ducing as reliably as possible while sending as much information as possible
per unit time (for communication systems) or per unit storage (for storage sys-
tems).

1.3 Information source

Nature usually supplies information in continuous forms like, e.g., a beauti-
ful mountain scene or the lovely chirping of birds. However, digital signals in
which both amplitude and time take on discrete values are preferred in modern
communication systems. Part of the reason for this use of digital signals is that
they can be transmitted more reliably than analog signals. When the inevitable
corruption of the transmission system begins to degrade the signal, the digital
pulses can be detected, reshaped, and amplified to standard form before relay-
ing them to their final destination. Figure 1.2 illustrates an ideal binary digital
pulse propagating along a transmission line, where the pulse shape is degraded
as a function of line length. At a propagation distance where the transmitted
pulse can still be reliably identified (before it is degraded to an ambiguous
state), the pulse is amplified by a digital amplifier that recovers its original
ideal shape. The pulse is thus regenerated. On the other hand, analog signals
cannot be so reshaped since they take an infinite variety of shapes. Hence the
farther the signal is sent and the more it is processed, the more degradation it
suffers from small errors.

Propagation distance

Original signal Regenerated signal

Figure 1.2 Pulse degradation and regeneration.

Modern practice for transforming analog signals into digital form is to sam-
ple the continuous signal at equally spaced intervals of time, and then to quan-
tize the observed value, i.e. each sample value is approximated by the nearest
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1.4 Encoding a source alphabet 5

level in a finite set of discrete levels. By mapping each quantized sample to a
codeword consisting of a prescribed number of code elements, the information
is then sent as a stream of digits. The conversion process is illustrated in Fig-
ure 1.3. Figure 1.3(a) shows a segment of an analog waveform. Figure 1.3(b)
shows the corresponding digital waveform based on the binary code in Ta-
ble 1.1. In this example, symbols 0 and 1 of the binary code are represented by
zero and one volt, respectively. Each sampled value is quantized into four bi-
nary digits (bits) with the last bit called sign bit indicating whether the sample
value is positive or negative. The remaining three bits are chosen to represent
the absolute value of a sample in accordance with Table 1.1.

Table 1.1 Binary representation of quantized levels

Index of Binary Index expressed as
quantization level representation sum of powers of 2

0 000
1 001 20

2 010 21

3 011 21 +20

4 100 22

5 101 22 +20

6 110 22 + 21

7 111 22 + 21 +20

As a result of the sampling and quantizing operations, errors are introduced
into the digital signal. These errors are nonreversible in that it is not possible to
produce an exact replica of the original analog signal from its digital represen-
tation. However, the errors are under the designer’s control. Indeed, by proper
selection of the sampling rate and number of the quantization levels, the errors
due to the sampling and quantizing can be made so small that the difference
between the analog signal and its digital reconstruction is not discernible by a
human observer.

1.4 Encoding a source alphabet

Based on the discussion in Section 1.3, we can assume without loss of gener-
ality that an information source generates a finite (but possibly large) number
of messages. This is undoubtedly true for a digital source. As for an analog
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Figure 1.3 (a) Analog waveform. (b) Digital representation.
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1.4 Encoding a source alphabet 7

source, the analog-to-digital conversion process mentioned above also makes
the assumption feasible. However, even though specific messages are actually
sent, the system designer has no idea in advance which message will be chosen
for transmission. We thus need to think of the source as a random (or stochas-
tic) source of information, and ask how we may encode, transmit, and recover
the original information.

An information source’s output alphabet is defined as the collection of all
possible messages. Denote by U a source alphabet which consists of r mes-
sages, say u1,u2, . . . ,ur, with probabilities p1, p2, . . . , pr satisfying

pi ≥ 0, ∀ i, and
r

∑
i=1

pi = 1. (1.1)

Here the notation ∀ means “for all” or “for every.” We can always represent
each message by a sequence of bits, which provides for easier processing by
computer systems. For instance, if we toss a fair dice to see which number
faces up, only six possible outputs are available with U = {1,2,3,4,5,6} and
pi = 1/6, ∀ 1≤ i≤ 6. The following shows a straightforward binary description
of these messages:

1↔ 001, 2↔ 010, 3↔ 011, 4↔ 100, 5↔ 101, 6↔ 110, (1.2)

where each decimal number is encoded as its binary expression. Obviously,
there exist many other ways of encoding. For example, consider the two map-
pings listed below:

1↔ 00, 2↔ 01, 3↔ 100, 4↔ 101, 5↔ 110, 6↔ 111 (1.3)

and

1↔ 1100, 2↔ 1010, 3↔ 0110, 4↔ 1001, 5↔ 0101, 6↔ 0011. (1.4)

Note that all the messages are one-to-one mapped to the binary sequences,
no matter which of the above encoding methods is employed. The original
message can always be recovered from the binary sequence.

Given an encoding method, let li denote the length of the output sequence,
called the codeword, corresponding to ui, ∀ 1 ≤ i ≤ r. From the viewpoint of
source coding for data compression, an optimal encoding should minimize the
average length of codewords defined by

Lav ,
r

∑
i=1

pili. (1.5)
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8 Introduction

By (1.5), the average lengths of codewords in (1.2), (1.3), and (1.4) are, re-
spectively,

L
(1.2)
av =

1
6

3+
1
6

3+
1
6

3+
1
6

3+
1
6

3+
1
6

3 = 3, (1.6)

L
(1.3)
av =

1
6

2+
1
6

2+
1
6

3+
1
6

3+
1
6

3+
1
6

3 =
8
3
' 2.667, (1.7)

L
(1.4)
av =

1
6

4+
1
6

4+
1
6

4+
1
6

4+
1
6

4+
1
6

4 = 4. (1.8)

The encoding method in (1.3) thus provides a more efficient way for the rep-
resentation of these source messages.

As for channel coding, a good encoding method should be able to protect
the source messages against the inevitable noise corruption. Suppose 3 is to be
transmitted and an error occurs in the least significant bit (LSB), namely the
first bit counted from the right-hand side of the associated codeword. In the
case of code (1.2) we now receive 010 instead of 011, and in the case of code
(1.3) we receive 101 instead of 100. In both cases, the decoder will retrieve
a wrong message (2 and 4, respectively). However, 0111 will be received if 3
is encoded by (1.4). Since 0111 is different from all the codewords in (1.4),
we can be aware of the occurrence of an error, i.e. the error is detected, and
possible retransmission of the message can be requested. Not just the error in
the LSB, but any single error can be detected by this encoding method. The
code (1.4) is therefore a better choice from the viewpoint of channel coding.

Typically, for channel coding, the encoding of the message to be transmitted
over the channel adds redundancy to combat channel noise. On the other hand,
the source encoding usually removes redundancy contained in the message to
be compressed. A more detailed discussion on channel and source coding will
be shown in Chapters 2 and 3 and in Chapters 4 and 5, respectively.

1.5 Octal and hexadecimal codes

Although the messages of an information source are usually encoded as bi-
nary sequences, the binary code is sometimes inconvenient for humans to use.
People usually prefer to make a single discrimination among many things. Ev-
idence for this is the size of the common alphabets. For example, the English
alphabet has 26 letters, the Chinese “alphabet” (bopomofo) has 37 letters, the
Phoenician alphabet has 22 letters, the Greek alphabet has 24 letters, the Rus-
sian alphabet 33, the Cyrillic alphabet has 44 letters, etc. Thus, for human use,
it is often convenient to group the bits into groups of three at a time and call
them the octal code (base 8). This code is given in Table 1.2.
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1.6 Outline of the book 9

Table 1.2 Octal code

Binary Octal

000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

When using the octal representation, numbers are often enclosed in paren-
theses with a following subscript 8. For example, the decimal number 81 is
written in octal as (121)8 since 81 = “1”×82+“2”×81+“1”×80. The trans-
lation from octal to binary is so immediate that there is little trouble in going
either way.

The binary digits are sometimes grouped in fours to make the hexadecimal
code (Table 1.3). For instance, to translate the binary sequence 101011000111
to the octal form, we first partition these bits into groups of three:

101︸︷︷︸ 011︸︷︷︸ 000︸︷︷︸ 111︸︷︷︸ . (1.9)

Each group of bits is then mapped to an octal number by Table 1.2, hence
resulting in the octal representation (5307)8. If we partition the bits into groups
of four, i.e.

1010︸︷︷︸1100︸︷︷︸0111︸︷︷︸, (1.10)

we can get the hexadecimal representation (AC7)16 by Table 1.3. Since com-
puters usually work in bytes, which are 8 bits each, the hexadecimal code fits
into the machine architecture better than the octal code. However, the octal
code seems to fit better into the human’s psychology. Thus, in practice, neither
code has a clear victory over the other.

1.6 Outline of the book

After the introduction of the above main topics, we now have a basis for dis-
cussing the material the book is to cover.
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10 Introduction

Table 1.3 Hexadecimal code

Binary Hexadecimal

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

In general, the error-detecting capability will be accomplished by adding
some digits to the message, thus making the message slightly longer. The main
problem is to achieve a required protection against the inevitable channel er-
rors without too much cost in adding extra digits. Chapter 2 will look at ways
of encoding source symbols so that any errors, up to a given level, may be
detected at the terminal end. For a detected error, we might call for a repeat
transmission of the message, hoping to get it right the next time.

In contrast to error-detecting codes, error-correcting codes are able to cor-
rect some detected errors directly without having to retransmit the message a
second time. In Chapter 3, we will discuss two kinds of error-correcting codes,
the repetition code and the Hamming code, as well as their encoding and de-
coding methods.

In Chapter 4, we consider ways of representing information in an efficient
way. The typical example will be an information source that can take on r
different possible values. We will represent each of these r values by a string
of 0s and 1s with varying length. The question is how to design these strings
such that the average length is minimized, but such that we are still able to
recover the original data from it. So, in contrast to Chapters 2 and 3, here we
try to shorten the codewords.
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References 11

While in Chapters 2 to 4 we are concerned with coding theory, Chapter 5 in-
troduces information theory. We define some way of measuring “information”
and then apply it to the codes introduced in Chapter 4. By doing so we can not
only compare different codes but also derive some fundamental limits of what
is possible and what not. So Chapter 5 provides the information theory related
to the coding theory introduced in Chapter 4.

In Chapter 6, we continue on the path of information theory and develop the
relation to the coding theory of Chapters 2 and 3. Prior to the mid 1940s people
believed that transmitted data subject to noise corruption can never be perfectly
recovered unless the transmission rate approaches zero. Shannon’s landmark
work in 1948 [Sha48] disproved this thinking and established a fundamental
result for modern communication: as long as the transmission rate is below
a certain threshold (the so-called channel capacity), errorless data transmis-
sion can be realized by some properly designed coding scheme. Chapter 6 will
highlight the essentials regarding the channel capacity. We shall first introduce
a communication channel model from the general probabilistic setting. Based
on the results of Chapter 5, we then go on to specify the mutual information,
which provides a natural way of characterizing the channel capacity.

In Chapter 7, we build further on the ideas introduced in Chapters 2, 3, and
6. We will cover the basic concept of the theory of reliable transmission of in-
formation bearing signals over a noisy communication channel. In particular,
we will discuss the additive white Gaussian noise (AWGN) channel and intro-
duce the famous turbo code that is the first code that can approach the Shannon
limit of the AWGN channel up to less than 1 dB at a bit error rate (BER) of
10−5.

Finally, in Chapter 8, we try to broaden the view by showing two relations
of coding theory to quite unexpected fields. Firstly we explain a connection of
projective geometry to the Hamming code of Chapter 3. Secondly we show
how codes (in particular the three-times repetition code and the Hamming
code) can be applied to game theory.
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